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COMPUTATIONAL COMPLEXITY OF COHERENT SYSTEMS

AND THE RELIABILITY POLYNOMIAL

R. E. Barlow and S. Iyer

Abstract)

There are three general methods for system reliability evaluation,

namely: 1) Inclusion-Exclusion, 2) Sum of Disjoint Products, and

3) Pivoting. Of these, only pivoting can be applied directly to a

logic tree or network graph representation without first finding

minimal path (or cut) sets. Domination theory provides the basis for

selecting optimal pivoting strategies. Simple proofs of domination

theory results for coherent systems are given, based on the

reliability polynomial. These results are related to the problem of

finding efficient strategies for computing coherent system reliability.

The original results for undirected networks are due to Satyanarayana

and Chang (1983). Many of the original set theoretic results are due

to Huseby (1984). However, he does not use the reliability polynomial

to prove his results. I . ' - "'- " '.

1. INTRODUCTION

Let C = {l,2,...,nl be a set of components and P =[Pl""'P

be a family of min path sets where Pi SC, Pi P for 1 0 j and
m

C= UiP. Let

l if Pi C S for some i
0 otherwise.

• -.-.. .;. ....,.-.....-.,.-....... ,.,-..-,-..,... ...-.. -....,..- -.. .. ,-....-.-..-...-....-..-..,..,...,,,-.--.-,-..,.. . . .,L
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is a monotonic set function which is one for any min path set and

any superset of min path sets.

DEFINITION. (C,PO) is a coherent system. (Abbreviated [C,P])

DEFINITION. The reliability polynomial for (CP,0) is

h (p) (S)p lS (IP)n Is l

h0(p) = SCC

n
or h (p) = !iBip i  (1.2)

i~l*

where ISI is the cardinality of set S.

N.B. This polynomial is relevant to (C,P,O) regardless of the

probability measure assigned to components of C! The coefficients

of the reliability polynomial provide useful information about the

system. If components operate independently of one another with

probability p, then (1.2) is system reliability.

DEFINITION. A formation for C is a set of min paths whose union

is C. It is odd (even) if the number of min paths is odd (even).

EXAMPLE. The following simple example of an undirected network will

be used to illustrate ideas.

Figure 1

Undirected Two Terminal Network
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For this example C = {1,2,3,4,e} while P = [{1,3},{1,2,4},

{e,4},{e,2,3}]. The formations of C are:

F0 = P = [{l,31,{l,2,4},{e,4},{e,2,3}1

F1 = [{1l,3},{l,2,4},{e,2,3}]

F2 = [{l,3},{l,2,4},{e,4}]

F3 = [{l,3},{e,4},{e,2,3}]

F4 = [{1,2,41,{e,2,3}]

F5 = [{l,2,4},{e,4},{e,2,3}]

The reliability polynomial for this example is

=2
2  3 4 5h (p) +2p2 + 2p -5p +2p

Notice that the coefficients always sum to 1 since h (1) = 1.

This is a convenient check on numerical calculations.

By the inclusion-exclusion formula, the coefficient of pn is

the number of odd formations of C minus the number of even formations

of C. In our example there are 4 odd formations and 2 even formations

so that the coefficient of pn is 2.

DEFINITION. The Signed Domination, d(P), of (C,PO) is the number

of odd formations of C minus the number of even formations of C.

For coherent systems the signed domination is the same as the

n Focoefficient of p . For non-monotonic systems (e.g. logic trees

with NOT gates), the coefficient of pn cannot be interpreted in
terms of formations.

DEFINITION. The domination, D(P), of (C,P,O) is Id(P)H.
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DEFINITION. The dual system to (C,P,O) is (C,K,0d) where

K = [K1,... ,Kk] are the corresponding min cuts and

1 if Ki CS for some i
0 otherwise.

The reliability polynomial for (C,K,Od) is

4d
hd(p) 1 -h(l-p)-

Or 0

so that the signed domination of the dual system satisfies

d(K) = (-l)n+Id(P) . (1.3)

It follows that for coherent systems

D(P) = D(K)

EXAMPLE. For a series system h(p) = pn and the signed domination

is 1. For its dual (a parallel system) the signed domination is

However, both have domination 1.

2. PIVOTING

A general method useful for computing system reliability is to

pivot on a component, say e. Let p = (Pl""'Pn ) be the vector of

component reliabilities and assume components fail independently of

one another. Let h(p) be the coherent system reliability. Then if

we pivot on component e, we will have

h(p) = Peh(leP) + (1-Pe)h(OeP)

where ( 1e') = (P19... $leg ...'Pn' etc. The systems corresponding

r' . .• = •..... .. -" "

" . . . . . p. * '" . ... .uu**
=' -

ia l drl= dial *m .l.'l Iii j l l Wm '. - l ~ nr nl
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to h(l ,p) and h(Oep) are called the minors of [CP] with
eae

respect to e. The minor [C-e,P +e corresponds to the system with

e perfect while the minor [C-e,P I corresponds to the system with

e-e failed. P e are the min paths of P not containing e while

P+e is obtained by deleting e from all min paths of P and then

discarding any supersets which may now be present. We illustrate the

procedure using our previous example.

P
44

5 

>

4

t2.t

P 3-

Figure 2

Pivoting on e

Note that we pivoted once and the number of leaves is equal to the domination.
4.°

In this example P = [{1,31,{41,{2,3)]
and P-e = [{1,3),{1,2,4)]

In P {1,2,4) was a superset of {4 and was eliminated.

,.,'" 
.

q % = " % = - ,% , *, - °.m 
% , % =, ,,,- .,-,'. '.' '4= ,, , ", ,. " ',. ... +,-. .,.,,- " , .. ",.

, kl ,, , ,¢ , , , ,., , . ,,,, , = ,.,. , ... ;,.......,,... , ; i 4%

.4 
P . w , W = , " . ; " " " ' ,- ' " .° . . - " , '" u '' .
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THEOREM 2.1 (The Signed Domination Theorem). For all coherent systems

d(P) = d(P+e) -d(P e) (2.1)

Proof. By pivotal decomposition (true for all systems) the

reliability polynomial for (C,P,O) can be written as

h (p) = ph0(leP) + (l-p)h (OeP)

Equating coefficients of pn on both sides of the equation, we have

that the coefficient of pn equals the coefficient of pn-1 in

h0(leP) minus the coefficient of pn-l in hY(OeP). The result is

not true for non-monotonic systems since the coefficient of pn does

not correspond to the signed domination in this case. Q.E.D.

Using Theorem 2.1 and induction, it is easy to verify the following

corollary for undirected networks. An undirected network with IKI

distinguished nodes works iff all nodes in K can communicate with

each other.

COROLLARY. For a coherent system corresponding to an undirected

network with v nodes and IKI < v distinguished nodes

d(P) = (-l)n-v+lD(p)

where D(P) = Id(P) I is the domination and n is the number of edges.

DEFINITION. A coherent system (C,P,O) will be called totally

amenable iff for all components e,

D(P) = D(P+e) + D(P e) (2.2)

and all minors of minors also satisfy (2.2).

...... -... ........... ...... ............................... .....9. • , . . . . .. . . , . , , . ! , . ,
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THEOREM 2.2. Undirected networks with IKI distinguished nodes and

k-out-of-n systems are totally amenable; i.e. (2.2) holds.

Proof. Use Theorem 2.1 and its Corollary relative to undirected

networks with IKI distinguished nodes. Use Theorem 2.1 and induction

relative to k-out-of-n systems. Q.E.D.

Huseby (1984) defines a class of coherent systems which he calls

regular and which includes undirected networks, k-out-of-n systems and

others. Regular coherent systems are totally amenable. Lehman (1964)

provides an algorithm based on min paths to determine whether or not a

system is regular. It is not known at this time if the class of regular

coherent systems is equivalent to the class of totally aifenable

coherent systems.

4

3. COMPUTATIONAL COMPLEXITY OF TOTALLY AMENABLE COHERENT SYSTEMS

In considering a strategy for computing system reliability,

usually the first idea is to discover modules, compute their

reliability and then replace each module in the original system by a

super component with that module's reliability. Although clearly

prudent, we seek some way of measuring the advantage of this approach

in conjunction with pivoting. This can be done for totally amenable

systems using domination theory.

MODULES OF COHERENT SYSTEMS. Let xi = 1 if component i works,

x. = 0 otherwise and x = (x, ...X). Then, with a slight abuse of

notation, we define O(x) = I if the set, S, of indices corresponding

to coordinates which are 1 contains a min path set and 0 otherwise.

-, L °-"- -'- -"-- - " " .= -'X.-"-"-.', -. -. . . . .2 *-- ..... ::!.... .. ...--....'--. -.- .- ,
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Let Xj, J = 1,...,r be corresponding indicators for modules of

(C,P,0). Let 4 be the module organizing structure function such that

O(x) = [Xl(x),... ,Xr(x)]

Modules are coherent sub-systems. Their components do not overlap.

THEOREM 3.1. The domination of (C,P,0) corresponding to the modular

decomposition

(x) (x),... ,Xr(X)]

satisfies
r

D(O) - D(,) I D(X.) (3.1)
j=l

where D(P) = D(P), again by an abuse of notation.

Proof. The reliability polynomial of 0 can be written in terms

of that of 0 and of the Xj, J = l,...,r as follows

ho(p) = hjh l(P),...,hXr(P) .

The coefficient of pn on the left hand side is equal to the coefficient

r
of p corresponding to hi, since 0 has r supercomponents, times

the product of the coefficients of p "J corresponding to each of the

modules where module j has nj components. Q.E.D.

Clearly if each module is either series or parallel and the

organizing structure function is either series or parallel then the

domination of the system is 1.

",.



9

DEFINITION. For a coherent system, components i and j are in series

(parallel) if whenever i is in a min path (min cut) so is j and
D

vice versa.

DEFINITION. A series (parallel) replacement consists of replacing a

series (parallel) system by a "supercomponent" with the same reliability.

COROLLARY 3.2. The domination of a coherent system is invariant under

series and parallel replacements.

Proof. If XiX 2,...,r correspond to series and/or parallel

modules, then by (3.1)

D(6() = D(@)

where 4 is the organizing structure function. Hence the domination

of the modified system is the same as that of the original system. Q.E.D.

DEFINITION. A coherent system is series-parallel iff it can be reduced

to a single component by series and parallel replacements alone.

DEFINITION. A coherent system is series-parallel complex (s-p complex)

iff it has no components in series or in parallel.

THEOREM 3.3. A totally amenable coherent system is series-parallel

iff its domination is 1.

Proof. Suppose (C,P,0) is totally amenable and D(P) = 1.

Then by (2.2), for any e E C

D(P) = D(P+e)+D(Pe) = 1

U

U- .- ,-.-, ..... ., -.- .,,• .-,- --. ..,• ., ... . -. - -.- -, , , , .... . .-.- ..- .- ,- ,... . . .,... . . .. ..- ..- .. ..
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which implies that either D(Pe) = 1 and D(Pe) = 0 or vice versa.

Suppose D(Pe) = 0, then U P = C-e meaning that the min paths

-e
in P-e do not contain e and at least one other component, say j.

Hence e and j were in series in the original system and a series

replacement is possible for the original system. By a similar

argument, if D(Pe) = 0, then e is in parallel with another

component in the original system and a parallel replacement is possible.

Continuing in this way we see that (C,P,O) can be reduced to a single

component by series and parallel replacements. Q.E.D.

Note that the simple example on page 2 is totally amenable,

s-p complex and its domination is 2.

Huseby (1984) proves that for every coherent system which is

s-p complex, there exists a component e such that both minors

[CP+e] and [C,P_e] are coherent. The only way they could fail to

be coherent would be if one or the other contained an irrelevant

component. If a system contains an irrelevant component, its domination

is zero since it has no formations in terms of minimal paths. Of

course, coherent systems have no irrelevant components. However, a

coherent system can still have domination zero. For example, the

domination is 0 for directed cyclic networks.

THEOREM 3.4. If a s-p complex, coherent system (C,P,O) is totally

amenable, then D(P) > 1.

Proof. The proof is by induction on the number, n, of COmDonents.

It is easy to verify that all coherent systems of orders 2 and 3 are

totally amenable and their dominations are positive. Suppose all

.. .. ... . . - .--. ... -.. . .. ..... ..-------- - .--.- * . :
r . . ...- . . .. . . . V . *..



coherent, totally amenable systems of orders less than or equal to n-l '2

have positive domination. Let [C,P] be a s-p complex, coherent

system which is totally amenable. Huseby (1984) proved that there

exists e such that both [C-e,P +e and [C-e,P ] are coherent.

Since [CP] is totally amenable, so are the minors and

D(P) = D(P+e) + D(P+e)

by (2.2). By the induction assumption D(P +e) > 0 and D(Pe) > 0 '1
imply D(P) > 1. Q.E.D.

THE FACTORING ALGORITHM FOR COMPUTING SYSTEM RELIABILITY.

1. Perform all possible series-parallel replacements so that the r "

system is s-p complex;

2. Choose a component e such that both [C,P+eI and [C,Pe '

are coherent (this can always be done for coherent s-p complex systems);

3. Again perform all possible series-parallel replacements;

4. Repeat this procedure until the system is reduced to a single

component.

THEOREM 3.5. If a coherent system is totally amenable, then the

Factoring Algorithm requires exactly D(P)- 1 pivots. Any other

strategy for choosing components to pivot on would require at least as

many pivots.

Proof [See Satyarayana and Chang (1983)]. For totally amenable --

coherent systems

D(P) = D(P+e + D(P e)
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by (2.2). Since we can always choose e so that

D(P+e) > 0 and D(Pe) > 0

after all possible series-parallel replacements have been performed, the

number of leaves in the corresponding binary computational tree is

D(P). The number of nodes in the binary computational tree is 2D(P) -l

and the total number of pivots is D(P)- 1 since the D(P) leaves

of the binary computational tree are series-parallel systems with

domination one. Q.E.D.

If, after all possible series-parallel replacements, a totally

amenable coherent system has a modular representation

O(x) - [xl(x), . xrlx)]

then by (3.1) the factoring algorithm will require

r
D(O) -1 D(4) 11 D(Xj) -1 (3.2)

.t.. j=l

pivots. However, if we first use the factoring algorithm to compute

the modular reliabilities and then the system reliability, the minimum

total number of pivots required, namely

r
[D(o)-l] +I [D(xj)-l]

j=l

will be much less, in general, than (3.2).

Notice that were )j series-parallel then [D(xj)-1] = 0 and

pivoting on components in a series-parallel system would be wasteful

in time and effort.

,-..*, ... ,....., .* .. ... .,,,......... ,.-. -4 ..,. .... , ....-... 4 *- "-.-.- - - -,- - -" " ''€' '' ,'.
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k-OUT-OF-n SYSTEMS. Although k-out-of-n systems are totally amenable, j
the factoring algorithm is a very poor algorithm for this system.

Suppose components fail independently of one another and component i

has reliability pi, i = 1,...,n. In this case a well known algorithm

based on generating functions is available. The computational running

time of program 2 in Barlow and Heidtmann (1985) is k(n-k+l) < n2 /4.

The signed domination for k-out-of-n systems is

add(P) =(-I)(k+n)(nl)
and

D(P)=- (n-l)...(n-k+l)

so that the factoring algorithm can be very bad in this case. Program 1

in Barlow and Heidtmann (1985) computes exact k-out-of-n reliability.

The running time in this case is of the order n 2/2.

FINAL REMARKS. For logic trees without NOT gates an algorithm based on

pivoting and modular reduction can be devised. For totally amenable

systems (with the exception of k-out-of-n systems) it should be far

superior to current methodology.

"'h

[]] ";
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