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COEURENT SUB-APRRTURE PROCESSING
TECMIQUES FOR SYNTHEC APERTURE RADAR

by

K.H. Wu and M.R. Vant

ABSTRACT

Coherent sub-aperture techniques for processing syn-
thetic aperture radAr (SAR) signals are described. The
techniques involve partitioning the full aperture data, in
either the time or the frequency domain. Each partition
or sub-aperture is then processed independently by the ap-
plication of a conventional matched filter, or the equiva-
lent. The low resolution images formed by this process
are t!hen coherently recombined to form a full resolution
image. Such a processing scheme has the advantage of high
computational efficiency and provides the capability for
the compensation of low frequency spurious motions, even
when the SAR is operatint3 "'I a highly . .qunted, high
resolution imaging situation.

A detailed description of two coherent sub-aperture
techniques namely, the multi-look matched filtering
approach and the step transform, are presented. The tech-
niques are characterized and the normal computational
requirements are evaluated. Computer simulations, which
were performed to verify the feasibility of the processing
schemes, are also described.

1. INTODCTIoN

In this report two coherent sub-aperture schemes, for compressing
synthetic aperture radar (SAR) azimuth data are described. One scheme is
based on matchciý Otlter 4 ng ýk.l *he nther on the -c-p tran-sorm. T¶- -r'-
cesstnq involves breaking up an aperture data set into pieces, in either
the spatial or the frequency domain. Each piece, or sub-aperture, which
has a fraction of the original bandwidth, is processed individually and
then the processed piece- are recombined coherently to restore th_ orig-
inal bandwidth and hence the original resolution. As opposed to the usual
non-coherent sub-aperture processing, where the major purpose is to smooth
out speckle noise at the expense of resolution, the technique described
herein is aimed at improving the processing efficiency, within the con-
straint of having to pruduce high resolution imnagery at high squint
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angles. The additional requirements that low frequency spurious target
motion must be corrected, and that the whole system performs with limited
procezsor memory, are also imposed. It is also assumed in the Zollowirg
discussions that the angle of the antenna, with respect to the aircraft or
satellite velocity vector, remains fixed, i.e., the target is not spot-
lighted. Most of the techniques can also be applied to spotlight SARs,
but that problem is not considered here.

In the first technique, matched filtering via fast convolution, the
bandwidth of the recorded data is partitioned in the frequency domain.
Each partition, or "sub-aperture", or *look*, is extracted b1 an FIR
filter. (The terms "look* and 'sub-aperture* are used interchangeably).

F-ach look is then compressed by a linear FM matched filter speci-
ally tailored to overcome the complexities associated with large squint
angle and high resolution. In synthesizing each sub-aperture matched
filter, a piecewise approximation of its exact phase characteristic at the
centre of the look is used. It is assumed that there is little phase
deviation over the entire cross-range extent of the look.

As described later in the report, the processing requires that each
sub-aperture data be shifted in range to correct for the effects of range
curvature. The shifting, which must be done by means of an interpolation
opera3tion: rteuires that a certain minimum number of rows or range cells
be in memory simultaneously. Since each sub-aperture is shorter than the
full aperture it was extracted from, it is frequently possible to meet the
riinimum number of rows requirement with sub-aperture processing whereas
with full aperture processing it is not. Even in situations where the
minimum number of rows requirement is met with the full aperture, it may
be advantageous to use sub-apertures to increase the interpolation
eff iciency.

In situations in which target motion must be compensated, the sub-
aperture approach allows, at least in theory, for piecewise compensation
of the target motion over the number of sub-apertures. This of course
assumes a suitable motion spectrum for the target.

The second technique, known as the step transform [6-9], is a
modified form of the deramping technique, wherein small deramp references,
whose lengths are a fraction of the full aperture, are used to extract
sub-apertures. Upon deramping each look, the data set becomes an ensemble
of CW signals whose frequencies correspond to the relative spatial
locations of the targets. Then, the target spectra can be extracted using
a filter bank, which can be realized by the discrete Fourier transform.
The process is repeated for the other sub-apertures, and the extracted
spectra, from the sub-apertures that are associated with a given target,
are added coherently to form an image of the target at full resolution.
The major advantages of this technique include a small requirement for
memory and a smaller signal loss than with the conventional deramping
technique. This report extends the original concept of the step transform
[6-9] and shows how such effects as range curvature and cubic phase error
can be overcome.
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In the following sections details of the different principles
underlying the technique of sub-aperture processing via matched filtering
is given. Then, the general form of the radar return, including such
effuts a. range curvature and cubic phase error is formulated, followed
by a description of the image quality degradations that result if these

effects are left uncompensated. Next, the general form of the sub-
aperture (multi-look) matched filter is synthesized, using a piecewise
approximation. This is followed by an analysis of the projected per-
formance of Lhe technique, based on the computer simulation. Next, an
overview of the various deramping techniques is given and finally, the
computational requirements for the approaches are calculated, and their
efficiencies compared.

2. BASIC CONCEPT OF (ERENT SUB-APERTURR PROCESSING VIA MATCMM
VtLTERING

The principle of sub-aperture processing is based on the fact that,
provided the frequency variation with respect to time is monotonic, and
the amplitudes in the data change gxadually, there is a one-to-one mapping
between the time and the frequency domains. This phenomenon is known ds

the principle of stationary phase [3]. How this principle relates to SAR
procecsing is explained next. Point targets paraded on a straight line
parallel to the radar flight path will give exactly tne same phase
history, and will differ only in their respective time delays. If the
collact-c tcr-et return ensemble is Fourier transformed, the frequency

responses of all targets will be superimposed on tne same rezqueiicy rage,
but within the return from each target there will be embedded a linear
phase term (in addition to other inherent higher order phase terms), which
signifies its spatial location. A lock extraction process in the

frequency domain is equivalent to simultaneous look extractions for all
targets illuminated by the same portion of the antenna pattern. The
portion of the spatial look thus extracted depends on the frequency-space
relationship, which in turn is governed by the geometrical complexity of
the imaging scenario. The relationship between frequency and space is
greatly simplified, indeed it is one-to-one, if the principle of
stationary phase holds.

In order to facilitate the illustration of the concept, we assume

that the Doppler phase history traced by a point target is purely quadrat-
ic (i.e. linear FM) over a full aperture, of duration T. This typifies
the side-looking, low resolution case. The form of this one-dimensional
signal is

?T 2

p t) - rect e T
T

where B is the bandwidth in Hz, and rect t'i is a rectangular function of
LT'

duration T. Assuming the time-bandwidth product is sufficiently large,
the Fourier transform of P(t) can be approximated, using the principle of
stationary phase [3] as:
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+ _
O(f) - F{v(t)} rect e

where F{1 denotes the Fourier transform operation. The first and the last
factors are of no importance to our formulation, and hereafter are
dropped.

The spectrum can be broken up into NL (even) equal looks as shown
in Figure I and the signal spectrum in (2) is partitioned to give:

2q-1- I Tf 2
f -- j----

re/2- 
2 NL Bu~f -{ rectl - 1 e (3)

q-NL/2 -- B/NL

SIGNAL

/ M('• _ ,/)(-'

0 AZIMUTH

(FIXED RANCE)

CORRESPONDENCECRU
FOR LARGE TIME-BRKNU
BANDWIDTH PRODUCT IT QA

0 FREQUENCY

CANCEL OUT
QUADRATIC PHASE TERM
BY MATCHED FILTERING
AND DO PIECEWISE
STRAIGHTENING CONCATENATED

/SPECTRUM

WITH LINEAR
PHASE TERMS
ONLY

0 FREQUENCY

F-1

- -COMPRESSED 
- TIME

PULSES

a 1' TIME
0 t

Fig. I -Basic. principle of coherent sub-aperture processing

for twn ideal linear PH signals.



The rect[ ] can be thought of as an ideal low pass extraction

filter with bandwidth B/NL and centred at 2q+1

If the qth look spectrum is shifted to baseband by substitution

f * ft + 2_ B, (4)
2NL

it becomes,

U4(f) - Uq(f + 2+l- B)),
2NL

-Z. fI ,/• 1•
- rect[N!-] e B 

2NL

B
WT 2 ~.( 2 ~l ,f .. T(23+L 2B2

N~f' B B 2NLB L
mrect[eB ]e

(5)

they must be taken out before the universal matched filter is applied.

When this is done,

j2:w~~q+1 + j.n3lql)2 22
up q(f) - , UqW) e B 2NL B 2NL

NLf ' B

r- ct[-] e , (6)

is obtained. The matched filter for (f') isq

7rT ,2

M(f') - rectNLf- ] e B(7)L B3

After multiplication by the matched filter in the frequency domain, the

compressed signal is

Rq(f') - U�(f') M(f') - rect[- B (8)

After frequency shifted back to its orignal frequency position, using (4)

for the relationship between f and f', the correlated signal becomes

[!L rf 2+1

R (f) - rectN <f - " ] (9)
B 2 NL "
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The same process can be applied to all the other looks, and then the looks
can be summed or concatenated together to form the original bandwidth
signal,

N-
- -I

R(f') - L re rNL: _ 2q+1B,

NL B 2 NL

2

- recti! V. (10)
B

The compressed pulse, or the point spread function of the point target, is
obtained by taking the inverse Fourier transfoLm of R(f'), i.e.,

r(t) - B sinc(Bt). (11)

Alternatively, the summation can be performed in the time domain

NL 

2

- -
2t 1 NLf 2q+11 )]I

Nv

2

-NL 121r( 2q+1 )Bt
7 B sinc(2-t) N

NL NL NL

2

- B sinc(Bt) - (12)

The above analysis is illustrated in Figure 1, where two point
targets located at t-0 and t-t' and at the same slant range are assumed to
be present. A Fourier transform over the entire time domain results in
superimposed spectra of the two targets, since they both have the same
phase characteristic. Moreover, there is a one-to-one correspondence
between the time and the frequency domains, as illustrated by the mapping
of two corresponding strips of the time signals into a single superimposed
strip in the frequency domain. The spectrum. is then partitioned into
equal looks. Each look is individually processed. All the processed look
spectra are then concatenated and inverse Fourier transformed to form the
final compressed pulses. Since the system is linear, an ensemble of
target returns can be processed simultaneously. The processing procedure
is sunmiarized in Figure 2, where the coherent look summation takes place
in the time domain.



SIGNAL. AMPLITUDE

TIME

IF I

FREQUENCY

0

F RQENCYSH'FT LOOK TO 8ASEEIN7

0

ICANCEL LOOK C) DEIENLý:NT TERMS

[ ,,,TC •ED FILTER CANCEL ,'2 TE ,,,

I ,"VERSE FOURIER TRANSF-,RM

iLOW RESOCLUTION COt.lnR~sEr)I PULSE I •t

rIPHASE SHIFT FOR PHASE CON fINUIT, I

RESOLUTION

rFINAL HIGH RESOLUTION COMPRESSED PULSE

Fig. 2 - coherent sub-aperture proxKessing prucedure for an ideal
linear PM signal.-

Other than the fact that the foregoing approach can ease the
computer memory requirement in some cases, it is obvious that sich a
processing scheme would be redundant if the input signal is as simple as
that given by (1). However, complications arise under different operating
conditions such as: high squirt angles, long integration periods, and
spurious target motions. In order to combat these complications, with
little loss of processing efficiency and small increase in meraory
requirements, it may be necessary to fine--tune a matched filter for each
seoment (look or sub-aperture) of the input data. The inter-relationshio
between the sub-aperture and this fine-tuning procedure will be discussed
further in the following sections.



3. GENERAL FORM, OF RECEI'VE& SIGNAL

Tle received signal in the azimuth dimension, encompasses more com-
plications than the one-dimensional linear FM signal described in the pre-
vious section. when the antenna is scruinted away from the side-lookinc
position, abnormalities in phase and time of arrivdl of the radar return
sianal become a problem. In general, higher order phase terms (e.q. the
cubic term) .my severely degrade the compressed pulse width and the inte-
grated sidelobe ratio. If the time of arrivil of the radar return signal
and the digitization timing are not synchronized then the range compressed
target history associated with a point target is no longer confined to a
single row of 4igiti-ed azimuth data, but instead spans several range
cells. This phenomenon is commonly knnwn as range migration. A thorough
treatment of these effects can be found in [2].

Next, we will descrihe, in terms of the slant range and squint
angle, a general form of the received signal. This formulation will pro-
vide for a better understanding of the various complications and hint a-
ways to suppress image quality degradations, while still maintaining a
reasonable degree of oomputational efficiency.

Wit, reference to the flight geometry depicted in Figure 3, the
distance, r(s), between the radar and a point target on the ground, for a
flat Earth model, is

r(s) - + F2 - 2srFco sri, (13)

where s is the distance along the radar flight path, rF (-r(o)) is the

,AW

/0

IS

ALTITUDE

i ••POINT

L.,,' "TARGET

G.ROUND

Fig. 3 - Airrhorne SAR geometry with fixed antenna squint
angle (aussuming flat Earth).
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slant range at the centre of the aperture, and nF is the squint angle,
measured between the slant range and the aircraft velocity vector, as
shown in Figure 3.

For ease of analys ,, the right hand side of (13) is expanded into
a Taylor's series, i.e,

where a 0 - rF,

al 1 - cOs-F,

a 2  sin2 .
2r

2r 2rF

and,

a•-sin 2 p( 5cos 2 r)-1)

3r2

and the fumj of tkhe zeceivd signal can te e-':prssed a3 a two-t.imenqional
function, i.e.,

4wf
- J-r ( s)

9 D (t ' ,s ) = [t o _ _2 r (s ) ]I e XI S

C

where C is the velocity of propagation,

t' - t-mA,

is the time measured from the start of the mth pulse, and represents the

along 'auwge dimension,

s 2 mVeq!,

is the distance travelled by the sub-air-2z-aft point along the sub-aircraft
track during m interpulse pericl,3 of length A sec., and represents the
azimuth (cross-rangn) dimension, Ve" is •:he radar platform velocity, ).
is the trarksmitt-d carrier waveiength in metres, and ip(t) is the
compressed range profile. The time delay embedded in PI signifies the
range curvature variation over the aperture. The scattering magnitude and
the antenna pattern are assumed to be unity.

The series given in (14) converqg. In most practical cases, when
calculating the amount of ranqe mnigration in 4, only the terms up to the
quadratic need to be included. Howeve., when calculating the phase term,
which must be accurate to with.in 0.75T ,.t aperture edge with heavily



windowed data, the cubic term, sometimes has to be included (see Appendix
A). wNith these modifications the general form of the received signal
becomes

gD(t',s) -Lt' __2 (aO .2 als + a 2 s 2 )]

-4[ +als + a 2 s2 + a 3s]
e

(16)

The envelope term in (16) shows that the locus of the ridge of the

range compressed data is defined by a parabola,t' 2 -- (a +als+a2 s ), in the
C

(t',J' domain. The tilted linear locus, due to the a 2 s2 term, is known as
range curvaLure 191. In squinted mode SAR, the amount of range walk can
span several range cells, thereby prohibiting the use of one-dimensional
processing. In practice, range walk can be avoided by acquiring data
along the line ao+ajs, this simp]ifies the argument of *; and by
deniodulating the data in azimuth to remove the als phase term. Thus

gT(t',s) can be rewritten as

4r 2 3
ao + a 2 s + a 3 s 1

-TWS) : 44t- 2 a 2 s 2 . (17)
C

The acquisition scheme is implemented by triggering the A/D conversion
2
- (ao+ale) sec. after an FM pulse is transmitted. As t-he radar plat-
C
form advances in the s-dimension, the A/D triggering delay time also
chanriges accordingly. .n doing so, individual target data are placed on
arectangular grid of a two-dimensional computer memory array, and thereby
minimizes range migration in the range dimension. This iE shown in Figure
4. Tha recorded datA look as if they were taken in the side-looking
position (nr - 90*). However, there is a major complication: targets
with differer.t true ranges, rF, and thus requiring different phase
compenzation, are mapped into the same processing cell. The processing
3cheme outlined here does not allow different compensation to be applied
to the various targets if they lie in the same cell. Therefore, the
region, over which the same compensation can be used, must be large enough
to accommodate the change in true range with azimuth as we move from one
end of the cell to the other.

3.1 Spatial-tn-Spectral Mapping in Aui iuth

Since the look extraction and matched filtering are performend in
the fie uency domain, it is necessary to know the form of the range
curvature in that domain. The mapping of range curvature between space
and frequency %ill not alter the overall parabolic shape of the curvature
significantly. Rased on the principle of stationary phase, it can be seen
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c
FA

rF -

"A- DATA IN MEMORY IF

(a, • ACQUIRED PARALLEL

TO als

DATA IN MEMORY
-"• -IF ACQUIRED PARALLEL

- "\ TO THE FLIGHT PATH

-C 
e

DIFFERENT a, ,- , SET
aj SET x*' ' / S

A

MEMORY
C E L L G R ID (Z!M U T H )

rig. 4 Two data awquistio scmes, (U) parallel to flight patb,
(it) parallel to als. (a) Shows flight geositries for
three targes, A, B C. Wb Shows the xirrespondinq data
meory arrangent for the two sceames

that the most important term in the mapping is the quadratic phase term,
41r 2

a2s . This reinforces our ntion that the shape is parabolic. However,
41t

it is not that simple. The cubic phase term, T-- a 3 s8, introduces a non-

linearity into the mapping, which slightly distorts the parabolic shape of
the range curvature. The form of the mapping is discussed in the next
paragraph.

rhe point-to-point correspondence between the two domains is
obtained by differentiating the phase term, 6(s), given in (17):

ta0 + &2 s+ a35, (18)

so

f - f de(s) 2=_ 2 (2a 2 s + 3a 3 s2 •- -- 2a~ + ,(19)
2,r ds
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or

3a3 2 + 2a2s + 0. (20)
2

The solution to this quadratic equation in s is
"2a2 + / 4a22 - 6a 3Xf

6a2  for a3 0;I 6a 3

(21)

- afor a 3  0.
4a2

The f-s curve given by (19) is sketched in Figure 5.

QUADRATIC AND
f /--,/ CUBIC TERMS

A ."-QUADRATIC, TEM

EQUAL LOOK 'I OL

PARTITIONS
IN FREQUOENCY) L

YýLKO

0 a -LKOILKI_-S

LK-1 UNEQUAL LOOK PARTITIONS

g. - I. IN SPATIAL DOMAIN

/ ! iLK-2

Fig. 5 -Depend e of frequency f an distance a. Look
paztitions, donated by LK-2, LK-i, LKO, WK.

2a2 [-2a 2 + /4a22 - 6a 3 Xf] , for a 3 0 0,

CT 6a 3

d 1 (f) - (22)
•2 2

8a2C , for a 3 n 0.
8a 2CT

where T is the range sampling interval.. In general, a3 is small, and di
can be approximated as
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dl(f) • 8a f 2 , (23)

which is a parabola, as noted before.

4. ONE-DIMENSIONAL AZIMUTH PULSE COMPRESSION WITHOUT RANGE
CJR J 00" WHFSATION

The exact matched filter for the SAR given by (17) is two-
dimensional [21. Two-dimensional data processing is characterized by its
massive data size, and its efficiency is contrained by the available
computer memory space. Therefore it would be advantageous if one-
dimensional processing could be used instead. This can be achieved under
either of two circumstances:

(i) if the range and azimuth signals can be decoupled by break-
ing up the aperture into small pieces, each one exhibiting
negligible curvature,

or
(ii) if the range curvature is small enough to be disregarded.

In this section, we will assess the degradation due to uncompensated range
curvature and in Section 5 we will consider the decoupling approach.

The dominant deterioration caused by range curvature is the broad-
ening of the mainlobe of both the azimuth and the range compressed pulse.
We will attempt to characterize the mainlobe broadening effects in range
and azimuth in a simple manner, while still keeping the de3cription
general. Because of the non-linear and three-dimensional nature of the
scenario, namely, range, azimuth and signal amplitude, a more precise
characterization can only be obtained by empirical means, and then only
for a limited set of parameters.

4.1 Mainlobe Broadening in the Aximutf Dimna ion

A typical range compressed profile exhibiting range curvature is
shown bi Figure 6. Profiles of the uncompressed azimuth signal in the
spatial and the frequency domains are shown in Figures 7(a)-(c). The
envelopes of these profiles are shaped by coupling between the range and
azimuth signals. Antenna pattern effects have been neglected. Provided
that a Hamming (or similar) window is used during range compression and
that the range curvature is approximately parabolic, the overall shape of
the profiles will be Lnsensitive to practical parameter variations.

In this characterization, the_ azimutn profile passing through the
orig.in (i.e. at s-0, and f-0) was found to be the major energy contributor
(see Figu-e 7(a)). Thic r•entre profile was used to examine the effects of
range curvature. A generalizad rarameter R was used to characterize the
extent of the civature. R is the ratio of the full bandwidth, Np cells,
measured along the range curvature locus, to the -,.dB (half amplitude)
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COMPRESSED RANGE PROFILE

RANGE

AZIMUTH
(UNCOMPRESSED)

(W)

RANGE RANGE
CURVATURE (COMPRESSED)~~~TAJECTORYAIMT

SPECTRA/

, •,•- •-- •_ _• • "•,.=,, RANGE . . .. AI M T

0

(0)

Fig. 6 - Signal history of a point target. (a) Range curvature
with copressed range profile. (b) Perspective view of
range curvature.

bandwidth, 2n' cells, measured along the middle of the range cell, i.e.,

R p (24)
2n'

The parameters R and n' are shown in Figure 8. Note that n'
locates the -6dB points in range and azimuth. The offset of the range
profile is given by d, which is measured from the centre of curvature (see
Figure 8). The parameter d can be used tu relate n' to the other
parameters. First, cl is expressed in terms of the number of range cells
of curvature:

d - 1.81YRASR (25)
2

where the 1.81 factor is the -6dB mainlobe width of a Hamming weiqhted
pulse, expressed in terms of range resolution bins (see t4], p. 5 5), YR
is

YR sampling freauency where yR> 1 , (26)
range signal bandwidth
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(a)

Fig. 7 -Slices of un€ompressed azimuth profiles (c•mressed in the
range dAl- nion) in space and frequency dmalna. In the
signal profiles, the horizontal ames denote the samples
collected at the pulse repetition frequency. The vertical
axes denote the real part of the signal. The azimuth
spectra c:re obtained by taking PVT (4096 points in this...
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signal (see Figure 6), (b) and (c) are the profiles in the
next two adjacent range cells.
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COMPRESSED RANGE
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Fig. - Range (Compressed) -azimth (=mcomressed) Cuping.

d - a 2 n' 2ASA2

"sin •F n2A , (27)

2 r 

n

where ASA is the azimuth sampling interval in metres. The desired
expression for n' can now be obtained by equating (25) and (27), i.e.,

0. 9 05YRASR = sin 2 2 n' 2 ASA2 (28)
2rp

and solving for n':

n- .81 YRrFA (29)
22AS Asin nF

This expression for n' can then be substituted in (24) to obtain the
desired expression:

R- NPLSA sinriF (30)

2 01.81 YRrFASR

The azimuth resolution, as derived in Appendix B, is given by
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P 1.4 XrF(3
2 NPASAsinnF

This can be substituted in (30) to further simplify the expression for R,
i.e.,

P /YR35R

The Inrger the curvature, the larger the value R will be. For
small curvatur, (R<I), the -6dB point is beyond the ends of the azimuth

N N
aperture bounded by -P, i.e., n' <--. However, even in this situation,

2 -- 2
R remains a valid parameter for the characterization.

Computer simulations of the amount of mainlobe broadening were per-
formed for different values of R. The results are plotted in Figure 9.
The percent broadening of the compressed mainlobe width, measured at the
-10dib points, was defined as

MI 
y-3.4 R3_1 1%)

2 24- -!Gl3

20-

z

o 16-X/
12

U-
I

UJ

LU

LU

0 0.5 1.0 1¶5 2.0
R

Fig. 9 - Empirical, azinat-h beam broadenzing.



W" I • 100% (33)Wc

where Wu is the mainlobe width without range curvature compensation, and
wc is the rnainlobe width with range curvature compensation. Before Wu
and W. were measured, the compressed mainlobes were interpolated by a
factor of 100. An empirical equation relating WA and R, was developed
to fit the measurements:

wA = 3.4R3 -1 , for R < 2, WA < 2.7%. (34)

In the above computer simulations, a Hamming window was applied in
the frequency domain over the uncompensated range curvature azimuth data
set before the inverse Fourier transform was taken. Therefore, Np is no
longer a measure of the bandwidth associated with a single point target
but is instead a measure of the length of the weighted aperture.

4.2 Malnlobe Broadening in the Range Dimension

with significant range curvature, energy is spilled over onto the
concave side of the range curvature thereby broadening the already com-
pressed range profile. If a Hamming window is applied in the frequency
domain in azimuth, energy at the end of the curvature is highly atten-
uated, and the spill-over in the range dimension is small. Computer
simulations wre used to demonstrate that under nor-nal operating con-
ditions the rate of mainlobe broadening in range is slower than that in
azimuth.

A parameter x, which is the number of range cell crossings at the
end of the aperture, normalized by the -6dB range mainlobe width, was used
as a simple and effective way of characterizing the range broadening.
This parameter x is given by:

number of range cell crossings

1.81YR

824SA 2 ( N )
2

from (31),

x - 0"0338X 2 rF (35)
YRP

Computer simulations of the amount of range mainlobe broadening, expressed
as a percentage, were performed for different values of x; the results are
plotted in Figure 10. An empirical equation

WR = 1.46x 2 . 5 6 2 , for x < 2, wR < 9%, (36)
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was found to fit the curve.

I

Z~yl 1 48 X2 -452

3 6

2~

0 05 ¶0 15 20 25
NUMLI ER OF CELL CROSSINGS IN PANGE iNORMALIZED)

Fig. 10 - tpiricaC range be- broadening.

5. A PIECEMIS QA IC. PP'ROIMUO0 - COXNMT SUB-APERTURR
PROCESSING

In this section, a generalized coherent sub-aperture processing
technique is described. This technique overcomes the processing problems
caused by the nor-linearities that arise when imaging at a high squint
angle and/or to a high resolution. The reasons for favouring the sub-
aperture approach over the continuous straightening approach [1I] are two-
fold:

i) spurious low frequency motion effects, if they exist, can be
corre-ted over small areas by applying different compensa-
tion, e.g. azimuth FM rates, to each sub-aperture; and

ii) T'he sub-aperture technique, viith its piucewise correction,
reqcires much shorter row--lengths than the continuous
straightening approach, thu.i the across-row operations re-
qiaired for the interpolation luring range curvature correc-
tio.: car. be much more easily accommodated, i.e., inTre rows
car. •. fit in memory simultaneously.

I:.-i major goal i4 to devise a sub-aperture pro:essinq scheme rhat
.'tmcve, withcat re--orting to two-dimensional processing, the distor-

tionb ittributed to the non-linear effects previously de:icribed. As with
m £." problems in,3lvring non-linearitien, piecewise approximation was
deened to he the sin.plest approach. Each piece of the siqnal was assumed
tr be lin'ar up t,: a certain degree of error tolerance. Figure 11 illus-
tr.a)ei a slant r pn,] plane containing the flight path and a point target
of inte,-est. The ir:tht path is broken up into several segments to signify
different sub-apert'rt_.s. Each sub-aperture i.- extracted by an FIR filter
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and is then demodulated by a matched filter, especially designed for it.
The extraction filtering and the matched filtering can be co-nbined in the
frequency domain and -he two processes performed simultaneously. All the
sub-apertures, exýept the two end ones, which may only be partly filled,
have equal bandwidt-.

LK-2a LK-1a LKOa LK1a LKOb LK1b

S•-SQUINT ANGLE OF
SQUINT ANGLE FULL APERTURE

rrF

POINT TARGET POINT TARGET
a b

Fig. 11 - A slant plae contanaing flight path and two point

targets, a and b. note the corresponding look
designations (dmcted by LK) are displaced by the same
adat i-i ahqmratiou beween tWO targlar-S. The Lock

geamitries are congruent.

In order to define the matched filters for each sub-aperture
several other things must first be done. The look centres in the

frequency domain must be located, and their frequency domain locations
translated into corresponding spatial domain ones. This ties down the
values of %.ýffective scpuint angle, nq, of the qth look, and slant range

to the look centre, rq, which are required to define the matched
filter. Next the phases, over the look as.- over the local section of the
full aperture, are matched. The look phase contains terms of up to

quadratic order, whereas the full aperture phase contains terms of up to
cubic order. The phase matching must be done in order to maintain
coherency over the phase jumps between the looks. Range cirvature com-
pensation must also be apnlied; in this case, as already discussed, the
curvature compensation is to be piecewise. Finally, the demodulation
whica removed the als term during data acquisition must be accounted for.
After all these operations are completed the matched filter can be

defined.

Referring back to Figure 11, each look can be thought as inde-
pendent, with its own look centre, slant range and squint angle. The

locations of the look centres are based on the number of looks required,
or equivalently, the bandwidth of the extraction filter. In the present

scheme, the entire frequency axis is extracted even though part of the

spectrum has no signal.

In the frequency domain, the look centre of a sub-aperture is given

by,
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fq -M Be; - NL - q < -C , N, is even, (37)

2NL 2 2

where q denotes the look index, &nd Be is the bandwidth of a pre-
designed extraction filter. Be is a function of the number of looks,
NL, such that BeNL=0. 9 fs, where ES is the samplin9 frequency. A
bandwidth of 0.1fs is reserved as guard-band near the Nyquist frequency.

The look centre in the spatial domain can be calculated using (21):

1 -2a2 + /4ai-6a3Afq
6&3  , foc a3*0;

sq(8I Xfq
- � , for a 3 -0.

4 a2
I

Once Sq is known, the slant range rq, to the qth look centre, from
the point target of interest, and the squint angle qF can be calcu-
lated. Referring back to Figure 11, we have,

rF aq

or, nq - ta wn'-1 sin np ].)

COS ni -

s innp sin( 180 "-rCq)Also, _
rq rip

so that rq. irF -- (40)ainnq

Equipped with n.q and rq, and the previously derived quadratic approxi-
mation, we can synthesize the phase of the acquired da~t. Witbin the
qth sub-apeztuze, the phase is,

0q s' = 4w , , 2)( 1
0 q(s') - - (aq + alqS + a2qe .(41)

whnre a' is the spatial co-ordinate with i.ts origin located at the
sub-aperture centre,

aoq - rq, (42)

alq - -Cohfý, (43)
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sin2 n
and a2q - q (44)

From (16), the phase of the original data is given by,

0(s) L- -- (a. + als + a 2 s2 + a3s3). (45)

The phases 8q(s') and O(s) must match very closely over the look, i.e.,

6 (g') = 9(s), for R sq, so M 0,

and (46)
eg(s') e(3), for a Zs!sa .k-, i.e., - -La ze' !-_,

214L - 2 NL 2 NL 2 NL

where L. is the full synthetic-aperture length. Since s' - s-s,*
aq(S') can now be written as,

(s)- - [aq + lq(qS-s) + a2q(S-sq) 2.q x 1147)

Because amplitude matching is unimportant, we can set the amplitude to be
unity without piecewise approximatioi,, and rewrite the piecewise
synthesized phase signal over the sub-aperture as

gq(t',s) = 1[t'- 2 a2 2]ejqs),

C

-4 [aoq + alq(s-sg) + a2q(S-5,)2

- 2ta- 221 e
C

(48)

ý(t) represents the profile of the range compressed pulse uver the range

dimension, and the variable It'- 2 a 2 s 21 represents the continuous range
C

curirature, as a function of position Ln the azimuth aperture. A s
described in Section 3, range curvature correction is sometimes required
to prevent range and azmnuth broadening from occurring.

It range curvature compensation is needed, interpolation must be
ptrformed on thc range compressed signal in the range distension. The
range interpolation can be done in the azimuth frequency domain, prior to
azimuth fast convoiuticn compres3ion, or in the azimuth spatial domain,
after azir.tuth compression. In the foriner approach, the raztj•e curvature
can be fully r-nmpensated, whereas in the latter approach only a piecewise
compensaticn can be dune. The reason for this is as foLiows: once the
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azimuth signal is compressed, the curvature phase is transformed into
broadening of the range compressed pulse, and the trace of the range cur-
vature is lost. The only way to correct for curvature after the azimuth
signal is compressed (i.e. the post-compression scheme previously men-
tioned), is to use sub-apertures, each of which produces a pulse which is
minimally distorted, but is displaced in range from the centre of the
range cell. The displacement is equal to the amount of range curvature at
the sub-aperture centre. Range shifting of the sub-apertures, by means of
interpolation, can be used to remove the curvature. Such interpolation is
equivalent to performing a piecewise correction along a single azimuth
array in the frequency domain. This is shown in Figure 12. This piece-
wise curvature compensation is incomplete and causes paired-echoes in the
final image, see Sections 6 and 7 for further details.

COMPRESSED RANGE
PULSE PROFILE LOOK CENTRES

SINTEFPOLATEAND ALIGN

I II I I

LOOK LOOK LOOK LOOK
0 1 2 3

I VI

, I I

0 AZIMUTH
FREQ.

Pig. 12 - fook awt~rection with range curvature. (a) Signal history
of a point target. (Wi Look extraction with piece•ise
range oxvature correction (only the positive frequency
axis is shown).

Desipite these pa"red-echoes, post-compression interpolation is
preferred in the pre.ent scheme. This is because there is insufficient
computer memory to &o the 7_oss-row interpolation operations on the long
rows needed for •ull aperture correction in the range, azimuth-frequency
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domain. In this case, the shorter rows required for the piecewise
correction of the sub-apertures make the post-compression, range-azimuth
spatial co-ordinate correction technique more attractive.

The range curvature profile *(t), given in (4a), will also be

approximated in a piecewise fashion, namely,

-42l•aoq + alq(s-sq) + aZq(s-sq)2]

gq(t4,) • O[t - 2 a2 s
2j e A

C
(49)

, 2 2
over the sub-aperture, where t =- a 2 s near the look centre. V(t) now
Lepresents a coupled, slanted qpro3ectign of the compressed range profile
onto the uncompressed azimuth profile. This coupling only affeuts the
spectrum magnitude, leaving the phase unaffected. For ease of
illustration, ý(t) will be dropped, i.e., it will be assumed the curvature
has been properly corrected. Thus, (49) becomes,

47 [aoq + alq(s-sq) + a2q(s-sq)2]

gq(s) M C . (50)

The phase of the original signal is

w - [a, + als + a 2 s 2 + a 3s 3 ]1
g(s) - e X. (51)

This signal is mAified by rermving the phase term -4 als, during datax
acquisition, i.e. the zecouide phase signal is

4w _47w 2 3
i-.aa. + a 2 s + a 3s(5

4(s) - g(s) e -a X (52)

It now remains to define the matched filter for this signal.
Setting g(s)mgq(s) over the sub-aperture q, we get

4w

gq(s) g(.s) g(s) e

411
_:aSgq(8) e•

_.21 4n
-a- J-- a is-JLaoq + al q(5--Sq) + a2.(s-q2 al

e e

(53)

where gq(s) is a quadratic piecewise approximation to g(s) over the
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sub-aperture. Equation (5.17) can be regrouped as,

-. [(aoq-alqsq) + (alq- al)s + a2q(s-sq)2 ]
gq(s) - e , (54)

and the matched filter, rm(s), can be derived from this regrouped 4q(S),
i.e.,

rM(s) g (-s),

(aoq - alq) - (alq-al)s + a2q(-s-sq) ]

-e
(55)

The Fourier transform of rn(s) is

N(f) - F{-,5)1,

4w WX 2
Jý=-(a- -j--- h2 + J2wsqhoA 4a'q

m e Ae (56)

where ho - f + 2(alqal)" The amplitude of M(f) is normalized to

unity, and the small amplitude variations from look to look are ignored.
By completing the square of the phase of the second exponent, (5.20) can
be rewritten as

4w 2 X112-- ( aq - + a2sq) +-

M(f) - a A e 4 a2q (57)

where h - f + . [(al - al) - 2sqa2q].A

The q dependent phase termsi ensure phase continuity at the boundaries
between adjacent looks in the concatenated spectrum. The freouency
dependent phase terms cancel the quadratic and linear phase factors in the
original data. The above matched filter can be applied directly onto the
Fourier transformed data via fast convolution.

6. CDNPVFM SIOLAIIONS OF CQJErET SJB- APSWU PROCESSING WITH"
PtUIBH MBZCOPMTOR

In this section the digital form of the received signal from a unit
amplitude point target, and the form of the continuously straightened
spectrum of the signal are described; the effect of the cubic phase term
is examined; and the results ot a computer simulation of piecewise
correction, i.e. sub-aperture processing, are pre4ented.

It was assumed in the simulation that a Hamming window was applied
to the range frequency data prior to range compression, and that the slope
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of range curvature versus azimuth position in the aperture was small at
either end of the aperture. It was also assumed that the linear component
of range migiation wis removed darir.g the data acquislt-on operation.

6.1 Form of the Received Signal.

The digital form of the received signal is

4 7- J-.-r (in)

G(m,n) - R(m,n) e

where m,n are the running indices for azimuth and range respectively,
R(m,n) is the amplitude profile of the recorded signal, and

r(m) - (mASA)2 + r' 2m&SArpOSnF - a, m6SA
I

2 2
- / (maSA) + rp -

2 mASArFcosnF + mASACOsfnF, (58)

where ASA is the azimuth sampling interval in metres, and

LS LS
-- s< < m -< , where LS is the synthetic-aperture length in metres.2ASA 2ASa

The last term in (58) accounts for the cancellation, during data
acquisition, of the linear term mnSAcOsnr. R(m,n) is the compressed
range profile, which runs along the range curvature. It is given by the
Fourier transform of the Haiming window (41, i.e.,

R(m,n) - DI + 0.426(D 2 + D3 ), (59)

where DI - sinc,---),
YR

D2 = e NW sinc(!- - 1) m sinc(x- - 1),
'YR YR

D3 - e NW sinc(-- + 1) a sinc(,!- + 1),
YR YR

and NW is the range data length for compression, which is the same as
the window length. The peak amplitude of R(m,n) has been normalized to
unity. Fcr large NW, the phase terms, w/NW, in D2 and D3 are
negligible. The variable x is given by

x - - N - r(m)

ASR

where ASR is the range sampling interval in iretres, yR is the
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over-sampling factor in range, and No is an arbitrary offset for
positioning the data in the middle of the two-dimensional computer
memory. A profile of a compressed range pulse is shown in Figure 13. To
obtain this figure, a set of typical operating parameters was used (see
Table 1).

0.6
OVER-SAMPLING FACTOR * 1.1

0.5-

0.47 -3 dB BEAMWIDTH = 1.5 PIXEL

U!1
0 0.3-D •--6 cB 8EAMWIDTH" 2 PIXEL.S

Z 0.2

0.1

0.0

-0.11 . ' . . . . ' " '
-20 -15 -10 -5 0 5 1.0 15 20

PIXEL NUMBER

Fig. 13 - copresed range pulse with Baing wLghting.

6.2 coatinnons Range Curvature Compesation

As previously described, one way to remedy the energy spill-over
effect caused by range curvature is to straighten out the curvature by
continuous correction in the range-spatial, azimuth-frequency domain. An
azimuth spectrum, straightened by this method is shown in Figure 14. it
is virtually identical to what would be obtained if there were no
curvature. The interpolator used in the straightening process was a
modified four-point ucinc function (5] given by

Wix) - sin(x) ( - ), (60)
7x 16

where x - i + TB1EGER( 1 )-ij, i - -1, 0, 1, 2, (61)

2 N

and X - A m2 + n, - 1T < m <N
8CTa2ASANT 2 2 (62)
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TABLE I

Processing Parameters for Computer Simulation Examples

Parameter

Stant Range (rp) 100 km
Wavelength (M) 0.0321 m

-3dB azimuth resolution (p) 1.358 m
Azimuth sampling interval (ASA) 1.617 m
Azimuth over-sampling factor (YA) 1.18

Range sampling intervals (ASR) 0.75 m
Range sampling period (T) 5 nS
Range over-sampling factor (TR) 1.1
Squint angle (nF) 30'
Range curvature at the end of the full 2.33

aperture

N.B. For examples with squint angles (nF) equal to 15° and 6, ASA
will be changed accordingly, all other parameters are kept
conatanto

C,,

-200 ! .1.. -1000 150

SPECTRAL NUMBER

F~ig. 14 - Azimuth spectrum cnt~inous range curvatur-e
compesat ion.

where NTr is total number of data points used i-n processing. Ea~uation
(62) is the digital form of (23) with f - /.T.AsA. The straightened
spectrum shown in Figure 14 was then windowed to suppress spectral leakage
and multiplied by a matched filter. The windowed spectrum is shown in
Figure 15, and the final compressed pulse is shown in Figure 16.
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Fig. 15 - SpeCturm of ?g1ure 14 with Haming ,weighting.
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Figure 16 - Oibmresoed pu•lse with continuous range crvature

eoupensation, (a) overall,
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Fig. 16 - (b) zoom in.

6.3 Cubic Phase Term Effect

Aside from the range curvature problem, there may be a problem
caused by the cubic phase term. If the cubic phase term is significant
relative to the quadratic phase term, as in the highly squinted, high
resolution case, a phase correction must be made in addition to the range
curvature correction. An example of such a case is shown in Figure 17.
In this situation there was a cubic phase error of 1102" at the end of the
aperture. This cubic phase error can be eliminated by adding an
appi'opriate cubic phase term in the matched filter, or by using the
sub-aperture processing technique.

6.4 Sub-aperture Processing Comuter Sim-lations

In sub-aperture processing, the spectrum. is brnkenj up into small
pieces or sub-apertures, which are proportionally shý'iter in length, and
can have their FM rates fine-tuned to that of the corresponding
solb-aperture data. The form of the frequency domain matched filter is

J:.- (a-alqsq+qq) e e (63)

min) -e e 4a2q,
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where, v - n + A- A f(alq-a1) - 2sqa2q]';

NT is the FFT length;
ASA is the azimuth sampling interval in metres;
ASq is the spatial location of the look centre, given by (55);

f 1
n - -f and Af - - .

Af NTASA

Equation (63) is the digital counterpart of (57).

0

-20

An-

-90 -80 ý0 -4 -0 0' 20 40 60 80 90

SPECTRAL NUMBER

Fig. 17 - Cmpressed pulse with cubic phase uncompensated.

Each of the sub-apertures is filtered with its own M(n) and then
the spectra for the sub-apertures are coherently summed by concatenating
them together. An example of a coherently summed spectrum with eight
looks is shown in Figure 18 where the left portion of the spectrum belongs
to negative frequencies. Prominent gaps are evident between the adjacent
sub-aperture spectra. As the frequency increases, the gaps go deeper.
This is because the coupling between range and azimuth increases at the
ends of the aperture, i.e., where the range curvature slope is steepest.

If a Hamming window, with the same bandwidth as that of the
original speýctrum is applied to the concatenated spectrum shown in Figure
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Fig. If -s Azimth sfpectr with pieaevise range curvature
oampensation (squ-int amgle Tip - 301).
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Fig. 19 - Spectrum of Figure 18 with Hamming weighting.
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19, the spectral leakage is suppressed. In addition and perhaps more
importantly, the amplitude of the gaps in the envelope are equalized. The
gaps modulate the envelope intensity and cause distortion in its Fourier
transform. The equalization effect of the window makes the envelope modu-
lation almost sinusoidal. This means that Opaired-echoes" will be pro-
duced in the other domain (1]. Without the equalization the modulation is
non-sinusoidal, and a more complex, harder to analyze distortion is pro-
duced.

An output pulse from one sub-aperture is depicted in Figure 20.
The mainlobe width is wider than that from a fully compensated full aper-
ture. This is because the sub-aperture bandwidth is proportionally

0-
LOOK No. 0

-20 -

-100 -80 -80 -40 -20 0 20 40 (0 80 100
SAMPLE NUMBER

Fig. 20 - Comressed pulse of one look.

smaller than that of the full aperture. Also, there are prominent side-
lobes . This is to be expected since the window was not applied to the
sub-aperture spectrum. Instead the window will be applied later to the
concatenated spectrum, and the high sidelobes will be cancelled out at
that time.

Thus far only the effects of amplitude distortion have been con-
sidered. Phase errors near the boundaries cf the adjacent looks also
cause 'paired-echo" type distortions. The phase cancellation during
matched filtering is incomplete when a piecewise correction is used. This
incomplete phase cancellation causes a nearly sinusoidal residual phase
error in the frequency domain, which in turn causes paired echoes in the
time domain. This effect is serious at high squint angles (e.g. 6"),
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where the cubic phase term ( 4-.v a3s3) becomes very large and cannot be
X

ignored. A plot of the residual phase errors for our present example, 1.3

shown in Figi -e 21.

Tn order to obtain the final compressed pulse, an inverse Fourier
transform of the wind-wed, demodulated, concatenated spectrum is taken.
The result is shown in Figure 22. Except for the presence of paired-
echoes, the compressed pulse shape is identical to the case with continu-
ous range curvaiure compensation. As has already been mentioned, these
paired-echoes are the products of envelope and residual phase distortions.

Simulated compressed output pulses for two cases with high scuint
angles (np - 15', 6") are shown in Figure 23 and 24. As can be seen in
the figures, the pairLd-echo magnitudes increase as the radar becomes more
highly squinted (i.e., smaller nF is used). The interrelationship be-
tween various radar parameters and the paired-echo magnitudes will be dis-
cussed in the next section.

7. ERROR ANALYSIS OPF THE EFFTS OF PHASE AND AMPLITUDE DISTORTIONS,
CAUSE•Y) TM2 PI'W.MISN APPROXIIU'ON

The piecewise correction fur range curvature and cubic phase intro-
duces ohase and amplitude errors into the matched filtering process. In
fact, exact matching occurs only at the look centres. Our goal here is to
characterize, with respect to the number of sub-apertures and the other
operating parameters, the form and magnitude of each of the distortions
arising from these abnormalities. Because an exact description of the
errors is extremely complicated and unnecessary, a combined deterministic
and empirical estimation procedure will be used instead.

In this section the form of the magnitude and phase errors in the
frequency domain, will be examined. Then, models will be developed that
allow prediction of both the size of the errors, and the individual and
combined paired echo levels that result from the errors. Next, a oro-
cedure for estimating the Integrated Sidelobe Ratio degradation, caused by
the errors, will be described, and finally, the range independence of a
given set of piecewise corrections will be examined.

7.1 Spectrum Envelope Distortion

In the following, we will describe a simplified approach for deter-
mining the gap size between adjacent looks in the freiuency domain, as a
function of look centre location, and then we will relate the gap sizes to
the paired-echo magnitudes in the spatial domain.

When post-compression interpolation is used, the coupling betwe•n
range and azimuth prevents the complete correction of the curvature, and
gaps are left in the spectrum. The height and width of the gap, associ-
ated with each sub-aperture, depend on the compressed pulse width in range
and the local slope of the range curvature versus azixruth position curve.
The slope of the range curvature functicn in the frequency domain is given
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by the derivative of the amount of range curvature (X1 ) as given in (62)
with respect azimuth space (m), i.e.,

slope - d_ 2 , (64)
dm, 4CTa2ASANT

where the slope is expressed in number of range cells shifted per azimuth
cell. The parameters t and m are the running indices in range and azimuth
respectively. This slope is used to project the compressed range profile
onto the azimuth spectrum. It is assumed that a Hamming window is used in
range compression, and that therefore the compressed range profile is ap-
proximately the shape of the Fourier transform of the Ramming window, (see
(59)).

RANGE

APPROXIMATELY

PROJECTION\LNA
PROFILE

AZIMUTH

PROFILE OF COMPRESSE0 RANGE PULSE

Fig. 25 - Range-e-imxth coupling.

The coupled range-azimuth signal for one sub-aperture is shown in
Figure 25. It is assumed that the sub-aperture is short, that the quiad-
ratic component of the curvature is negligible, and that the slope

(• ) of the sub-aperture segment a so wall, and so constant over the

sub-aperture, that 8(m) in Figure 25 can be approximated as:

G(m) = tan0r(m) - di M. (65)

dM 4CTar2ASA T

With this approximation, the normalized projection of the compressed range
profile onto the azimuth frequency axis becomes,

W(mgP) - EI(MqP) + 0. 4 2 6 [E2(mq,p)+E3(rnq1P)], (66)

where,
E1 (mq,p) - sinc (pk),
E2(mq,p) - sine (pk-1),
E3 (Nm,p) -sine (pk+1),
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fqmq ý f,

p - m-Mq,

and fq isq the location of the centre of look q. IN denotes the centre
of the qth look in the m (global frequency) dimension. p is a new local
frequency dimension, whose origin is at the centre of the qth look.
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Fig. 26 Look extzactiom using a low pass filter.

As shown in Figure 26 the desired sub-aperture is extracted, by
means of an FIR filter, from an appropriately rotated version of the
baseband spectrum. If the FIR filter shape is approximately rectangular,

the spectral height at the filter edge (p - -) is
2

hq - W(mqp) - El(lq, -)+ 0.426 [E2(Mq, -)
q 2 2

NF (67)+ E3(rn, -n ]~,

where NV is the number of frequency cells covered by the bandwidth of
the extraction filter.

For the looks extracted from the ends of the spectrum, the slope of
the range curvatuce Is steeper, and the area of the projected range
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profile is narrower. As a result, the gap between adjacent sub-apertures
is widened and deepened. In other words, the envelope distortion worsens
towards either end of the full aperture. A typical coherently summed
spectrum is sketched in Figure 27. As shown in the figure, the minima can
be cnnected by a dotted line described by,

h(m) - Fi(m) + 0.426[F 2 (m) + F 3 (M)], (68)

where,
PI(m) -sinc (Km),
F 2 (m) - sine (Km-l),
F3 (m) - sinc (Km+1),

and,
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Fig. 27 - A typical cohorent swn•d spectrum. The dotted line
conmncting all the adnlia is describea by Eq. 68.

As mentioned previously, Ramming weighting is normally applied to the
concatenated spectrum to suppress the spectral leakage that occurs during
the calculation of the inverse Fourier transform. The weighting function
has the same bandwidth *s the summed spectrum. The weighted spectrum is
sketched in Figure 28.

Besides suppressing spectral leakage, the weighting also helps
reduce the size of the larger gaps at the ends of the concatenated
spactrum. The gaps are now more or less equalized over the entire
aperture. As shown in Figure 29, the weighted gaps can be thought of as
ripples superimposed on an ideal smooth spectrum. The amplitude of the
ripples at a distance of a quarter of the bandwidth from the aperture
centre is estimated to be,
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h. w 4(E x 0.54, (69)
2

where h(m) is given by (29) and the 0.54 numerical factor accounts for the
RanmTing weighting. This ripple amplitude is taken to be representative of
the ripple across the whole aperture.
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The ripples shown in Figire 28 exhibit a periodic sinusoidal-like
waveform. Assuming for now that the ripples are purely sinusoidal (which
is not really true), the inverse Fourier transform, as shown in Figure 29,
will give paired-echoes of magnitude hj/2, on either side of the mainlobe
of height approximately equal to 0.54.

The ratio of the magnitudes of the paired-echoes to that of the
main peak is

pair•ed-echo magnitude - h/2

mean peak 0.54

[ 1 -ha,1
4YR"rR
4

1 _ {1-F 1 (m')-0.426[F 2 (m')+F 3 (m')]}
4

(70)

NT
where m' - -- .

4%R

Unfortunately, the computer simulations did not produce
paired-echoes of the predicted magnitude. One explanation for this
disagreement is that the ripples on the summed spectrum are not purely
sinusoidal. If this is the case, the first order harmonic coefficient
should fairly cloasly represent the most dominant paired-echo. In the
absence of an analytical expression for the ripple, it is impossible to
prove this implication. Instead, a correction factor was established,
which, when used in the simulation, caused paired-echoes of the correct
magnitude to be produced. It was found that if a correction factor of
one-half was used in ('70), the results were reasonable in most cases.
With a correction factor of one-half, (70) becomes

(1-h', for more than two looks;

dominant paired-echo magnitude =

main peak 1-h', for two looks.
S12

(71)

A special provision is made for the two-look case, i.e., the correction
factor is set to 1/3 instead of 1/2. This is required because the
envelope ripple deviates more strongly from a sinusoidal shape in the
two-look case than it does in the other cases.

These results are consistent with the fact that as the ripple shape
deviates more and more from the sinusoidal, more energy is displaced into
the hiqher order harmonics, and thus the magnitude of the dominant
harmonic decreases.
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With changes in the operating parameters, the general shape of the
ripples is preserved, and the relative values of Fourier coefficients do
not change. Equation (71) provides a good estimate of the paired-echo
magnitudes when the magnitudes are between -20dB to -35dB. For ratios
greater than -20dB, the aforementioned linear approximation assumptions
break down gradually, with the estimated ratio increasing more rapidly
than the actual ratio. For ratios less than -35dB, (71) also breaks down,
this time because the pair-echo magnitude becomes so low that it merges
with the shoulder of the main peak.

The location of the dominant paired-echo, which is related to the
number of looks involved, is given by

NT
= _ cells, (72)p

where NL is the number of looks and p is the ratio of the overall
extracted spectrum to the Nyquist bandwidth. In most cases,

NINL. (73)p m -_ = 0.9,
NT

and thus

npe .F 1.1 NL cells. (74)

In the above analysis and simulations, envelope distortion was
considered to be the sole contributor to paired-echoes, and the phase was
assumed to be perfectly matched. In the next section, the effects of
phase errors are examined.

7.2 Residual Phase Errir

The residual phase error originates from a phase mismatch between
the piecewise quadratic matched filter and the data. This error causes
paired- echoes.

The phase error, between the recorded data and the matched filter,
at suO, is taken to be representative of the phase error ripple across the
entire aperture, This representative phase error is obtained by
subtracting the phase in (45) from (47), and then setting s-0, and q-1,
i.e.

4-- aol - allsl + a 2 1s 1
2 - a.

Based on the correspondence between the spatial and frequency domains
described by (21) it is possible to find an fj for every s1, such that the
phase in the frecuency domain at fI equals the phase in the spatial domain
at sI. If the principle of stationary phase holds, it also follows that
the marimum phase error in the frequency domain is equal to the maximum
phase error in the spatial domain. Therefore the residual phase error,
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40, given by (75), is equal to the phase error at the boundary cf the
first look in the frequency domain.

It was assumed, and confirmed later by computer simulations, that
the peak residual phase errors at the end of the sub-apertures are approx-
imately equal.

A sketch of the typical residual phase error in a coherently summed
spectrum is shown in Figure 30. The residual phase error is periodic in
pattern. Because of the overlap (18 to 21%) of the transition bands of
the look extraction filters, the residual phase errors at the look bound-
aries cancel each other out. This cancellation reduces the peak error
(A0e), to about 2/3 of AO, i.e.

Ap -2 A63

sit I - a&Is, + a 2 1 s 1
2  

- ao (76)

If the phase error is pu.Lely sinusoidal, with amplitude 66p, where A6p
< 0.4 radian, then the paired-echo magnitude is given by a Bessel function
approximation [1), such that

paired-echo due to phase error A6_= -- .(77)
main peak 2

8(f)

RESIDUAL PHASE ERROR
'6p (ASSUME SINUSOIDAL)

NIF

PAIRED ECHOES
AFTER COMPRESSED

0
&Lft/2

N 3a

Fig. 30 - Residual phase error mad are ecoe.
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As was the case with the envelope distortion, the phase error is
not exactly sinusoidal and no simple solution can 1he formulated. However,
the size of the dominant first harmonic coeffic ent can be obtained by
computer simulation. When this is done, and 20% transition band is
assumed, the magnitude of the first harmoni _ out to be only about
half of that given by (77), i.e.,

- paired-echo due to phase error , AB

main peak 4 (78)

Since the residual phase error in the frequency domain has the same period
as that of the envelope distortion, the locations of the paired-echoes.
caused by the phase distortion, coincide with the locations of the echoes
produced by the envelope distortion.

7.3 Overall Paired-echo Magnitude

The first order paired-echo magnitudes are given hv the sum and
difference M 1] of that contributed by envelope distortion
(70) and residual phase error (78), i.e.,

overall paired-echo = pm -- (79)
main peak

7.4 Degradation of Integrated Sid1elobe Ratio due to Paired-echoes

For a heavily weighted spectrum (e.g. Hamming), in the absence of
additional phase errors, e.g. FM rate mismatch or motion errors, the
integrated sidelobe level (everything outside the first minima from the
main peak) is composed mainly of energy contributed by the paired-echoes,
I -- The integrated sidelobe ratio (ISLR) can be approximated
as

ISLR 10 loglo[(pm + pp) 2 + (pmPp)2

(80)
- 10 loglo[2(pm2 + pp2 )].

7.5 Range Independence of the Piecewise Solution

The resultant piecewise solution can be regarded as a one-look
matched filtering process with a distorted frequency transfer function.
The amplitude versus frequency response is modulated with sinusiodal-like
ripples in its passband, while the phase versus frequency response is
composed of ripple-like residual phase errors superimposed on the usual
linear and quadratic phase cont ributions. In both cases, the distortions
are local in nature since they arise from mismatches within a look.

In a normal one-look azimuth matched filtering process, the filter
is matched to the azimuth signal returned from a radar point targ&e
located at the centre of the processing swath. This matched filter is
then applied to all the data in that processing swath. The quadratic or
cubic phase mismatch between the data and the filter increases towards the
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edges of the swath. The width of a swath is determined by the maximum
anmunt of phase mismatch tolerable, at the end of the processing
aperture. This swath width is known as the depth of focus (2].

During the application of the azimuth malti-look, frequency domain,
matched filter to data at different ranges across the swath, the compress-
ed frequency domain signal will suffer both local and global phase mis-
matches, as well as envelope distortion. The overall distortion in the
frequency domain signal will be

e(f) - A(f) e

J~e~f) Jg(f)

- [A(f) e I e

In the spatial domain the error will be

J~e~f) J 9(f)

08) - r-1  (f)l - P{A(f)e } lF-Te },
(81}

where,
A(f) is the envelope ripple as a function of frequen'cy;
*e( f) is the local residual phase error as a function of

frequency; and
Og(f) is the global phase mismatch ad a fun-ction of

frequency.

In (81), the local phase error can be combined with the envelope
distortion and inverse Fourier transformed. The global phase can be in-
verse Fourier transformed separately. The first inverse Fourier transform
gives rise to paired-echoes, whereas the second degrades the integrated
sidelobe ratio. The convolution of the two inverse Fourier transforms
describes the total effect. Thus, in evaluating the paired-echo magni-
tudes only the localdistortions need to be considered, whereas in evalu-
ating the degradation in the integrated sidelobe ratio (separate from that
contributed by the paired-echoes), only the global phase mismatch needs to
be considered.

8. DERAMPI3M TWIQUMS

This section is an overview of alternate foruis of pulse compression
for a linear FM signal. Instead of matched filtering, or fast convolu-
tion, a deramping (dechirping), spectral analysis approach can be used.
In the conventional deramping method, the quadratic phase term in the
incoming radar return signal is cancelled by multiplication with a
reference signal, which has a phase term that is the conjuge- of the
returned signal. The process is shown diagramatically in Figure The
deramped signal becomes a CW signal, which has a frequency, fl, directly
proportional to the time separation, A, between the received signal and
the reference. The CW signal is then Fourier transformed to give a
compressed pulse as shown in Figure 31(c). The location of the pulse is
directly proportional to the deramped CW frequency, fl. As a result, the
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target is resolved at its location of arrival, A. Figure 32 shows a
multi-target environment, in which three targets are resolved at their
respective locations.

The width and magnitude of the compressed pulse depend on the
duration of the overlap (Te) between the reference and the received
signal, as shown in Figures 32(a) and (b). For targets which lie further
away from the reference (i.e. smaller Te), the deraxied signals suffer
more energy loss, and therefore, their pulse wiuth and tragnitude are
degraded, as shown in Figure 32(c). In practice, there existE a threshold
above which the amount of energy loss is intolerable. In order to stay
within the threshold, it is necessary to overlap reference signals so as
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Fig. 31 -Conventional deranping technique for a point targ~et.
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to decrease the time separation between the received signal and the

nearest reference. Such a scheme reduces the amcunt of energy loss, but

at the expense of having the data repeatedly deramped by nearby reference

signals. This is illustrated in Figure 33. The repetiti.ons produce

redu.ndant data with energy loss above the tolerable threshold. only data

in the vicinity of the centre of a reference tamnp are kept. The redundant

data are discarded. The valid data derived -From successive references a-re

concatenated to form the final image.
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In this secLion, we will overview two pulse compres'in techniques

based on the aforementioned deramping approach, nm.2. y, the Spectral

Analysis (10] and the Step Transform [6-9] Methods. Compared to the basi'

de-ramping approach both methods allow a reduction of t.ie energy loss

and/or an improvement in th,- pr,;-eising efficiency. The following

description forms a fra--.k > tor the discussion, in Section 9, of the

processing effictcilcv ot *"le sub-aperture compression technicues.
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8. Spectral Analysis Method [9,101

The spectral analysis method attempts to reduce the energy lost,
due to aliasing, during the deramping process. This is achieved by
utilizing a continuous, non-overlapping deramp sawtooth reference with an
FM rate of the same magnitude, but of opposite slope and longer duration,
than the signal from a single point target. In addition, the phase at the
end of one sawtooth is w and that at the beginning of the next sawtooth is
-w, or vice versa (i.e. the phase at the boundary is circularly continuous
and anti-sym•etric). A signal ramp crossing a sawtooth boundary does not
change its deramped CW frequency because aliarinT causes the disjoint
frequency to fold back in the spectrum and align with the unaliased
portion. The phase is continuous at the boundary. Th;.s is illustrated in
the frequency versus time diagram shown in Figure 34(a)-(r). It is
therefore possible to employ a Fourier transform to extract uhe spectrum
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Pig. 34 - The spectral analysis umet od.
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representing the point target.

For multiple targets, sup-.rimposed target returns can be uniquely
resolved by the deramping - Fourier transform process. Figure 35(a) shows
a parade of equally spaced target returns in the frequency versus time
plane. Figure 35(b) shows the corresponding deramping reference signal.
Note that it has opposite FM slope as the target signals. Upon mixing the
target signals with the reference, the individual FM signals are trans-
lated into CW signals, with their frequencies corresponding to their
positions relative to the reference. The resultant deramped signal
ensemble is depicted in Figure 35 (c).
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Fig. 35 - Deramping process via the spectral analysis method.

Signal ramps falling within a period of the sawtooth reference are
grouped into a parallelogram in the frequency versus time plane. The
oblique boundaries between parallelograms prohibit Fourier transformation
of the full aperture data set. Processing can only be performed with
shorter Fourier transforms that prevent data from the adjacent parallelo-
gram from being drawn into the transform and getting mixed up with the
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returns that belong there. It shotild be noted that the data are only
directly accessible in the cime-domaLn (i.e. column-wise in Figure 35(c)),
because all the targets are superimposed. The frequency dimension
(verxical axis) is accessible through either the DFT or filtering
separations on the time domain data. As already mentioned, one way to
avoid mixing up the data is to partition the parallelogram into narrow
columns. Each column is centred in the neighbourhood where the target
data are to be resolved. Each column of data (actually a superimposed
one-dimensional time-domain data ensemble) is Fourier transformed along
the time axis to resolve the target ensemble. A data column will
I.nevitably cross a parallelogram boundary, thus mixing up data between the
parallelograms. Compressed data in the vicinity of a boundary are invalid
and must be discarded. The placement of one processing region is shown in
Figure 36.
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Fig. 36 - Placesent of one processing region.

Eecause of the antenna aperture modulation, target signals com-
pressed using th7 technique are subject to amplitude modulation. The
a-mplitude ::'Iulsti., an be controlled by keeping the data of interest
away front thc edge. '., the parallelogram.
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Targets in the remaining portions of the parallelogram can be
similarly compressed by partitioning another processing column at the
other end of the parallelogram as shown in Figure 37. Compressed data
from the two processing regions within the parallelogram are concatenated
to form L continuous image. In practice, a guard band of fractional width
8 is included to keep the valJ processed data away from the oblique
border. As mentioned prevlousiy, this is done to cuntrol amplitude
modulation. A typical value of 8 should be 0.3 to 0.5 depending on the
antenna pattern. The output of an N-point DFT computed along a processing
column spans the entire frequency space of B Hz. When weighting is
applied to the N-point DFT, the effective DFT length aN (where a < 1) is
chosen to be less than or equal to the -3dB width of the weighting
function. This narrower processing column is then used to calculate the
number of valid output points. With the aid of Figure 36, the number of
valid points is found to be

G - (1-5 - UkN samples, (82)
B"

where k is the azimuth linear PM rate;
B is the reference sawtooth bandwidth; and
N is the DFT length, which is fixed for all the procebsing

columns.
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The invalid data, discarded because of the boundary crossino problem, can
be regained by putting another processing column near the opposite end of
the parallelogram, as shown in Figure 37. This second processing column
has the same width (N points) as the first one. Its position is deter-
mined by the frequency at which the first col.'irnn is cutoff. The second
processing column encompasses both data left over from the first
processing column and data from the succeeding parallelogram. Part cof the
output is invalid data corresponding to the frequencies which straddle the
oblique boundary. In order to ensure image continuity, the second
processing column is located such that the beginning of the region of
valid output samples in the second DFT is at the same frequency as the end
of the corresponding region of the first DFT. This is shown as a
horizontal dotted line in Figure 37. From simple geometry, L e required
continuous frequency coverage is achieved if the second DFT i, .egun at

N -G B2  
- ¶!• •2 e2

G B... - - --- (1-a) - oN (83)
N k Ba k k

input samples after the start of the first DYT.

Since N is not equal to tha width of a parallelogram, the
processing columns are not synchronized with the parallelogram
boundaries. As the processing progresses, the boudnary cuts the
proceeeing column-n'R at different frequencies, therefore the locations of
the valid data regions must be updated for each processing column.

The above analysis assumes that two processing columns are
sufficient to resolve the entire bar-d&idth with the prescribed resolution,
but that is not necesarily true. Situations may occur where the required
processing column is so wide and 8 (guard band) is so large that rore than
two processing columna ara required within a single parallelogram. An
example of such a situation is shown in Figure 38. In the case depicted
in the figure, none of the processing columns produce any valid data in
the adjacent parallelogram. In generai, this happens when

N
G < - , i.e.,

2

1-a - -- < -I , or
B2 2

1 oNk (w

2 ii

If a substitution involving the resolution Pal is given by

Pa- 14VB
aNk (85)

where V is the velocity of the radar, is made in (84), the inequality can
be written as
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8>1- 1.4V (86)
2 BPa

Note in (85) that N is restricted to integer powers-of-two. This places
limits on the permissible values Pa may assume.
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Major drawbacks of this m•ethod include: cubic phase errors and
range curvature cannot be compensated easily, it is difficult to achieve
full resolution efficiently, and th~re is a variation of signal-to-noise
ratio over the image due to the fact that different sections of the scene
are illuminated by different portions of the antenna pattern.

8.2 Step Tr~ansform

The aim of the step transforrm technique is to reduce the energy
loas encountered with high resolution derainp processing, while maintaining
a high processing efficiency and efficient memory utilization. This is
done by conforming the procesising path to the trend of the signal ramp,
thereby avoiding the problem of having to use multiple full length, highly
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overlapped reference signals. This method is efficient for compressing

linear FM signals in a minimnal memory space, but it lacks on inherent cap-

ability for accommodating cubic or other non-linear phase characteristics

of the frequency chirp. In the next sec-tion, the effect of the cubic

phase term will be investigated, and a means for avoiding image degrada-

tions caused by cubic errors, suggested.

In rhe step transform, the multiple references in the frequency

versus time plane are replaced by a continuous sawtooth reference func-

tion, as shown in Figure 39. The sawtooth reference will overlap an in-

coming signal more evenly, regardless of its time of arrival, and thus

Z
UJ

U_

ITIME

0/

SUB-APERTURE
REFERENCE

RAMPS

Fig. 39 -Stop transform processing using a continuous
sawt~oot.. reference function.

reduce tJhe energy loss to almost zero. Mixing an incoming raml with the

sawtooth reference gives a step-like waveform, in the frequency versus
time plane, as shown in Figure 40. The horizontal part of each step is a

CW waveform. The vertical parts of the steps are of equlal size and are

spaced evenly in time. This step-wise partitioning of the full aperture
return signal is similar to the sub-aperture processing described in the

previous sections. In the matched filtering case, the look extraction was

performed by a combination of FIR and matched filter in the frequency

dommain. Hence each exctracted look consists of scenes illumtinated by the

same- portion of the anten~na pattern. In the step transform, each look

extr:action is performed by a Hamuming weighted conjugate ramp in the tm

diona I n. Hence each extracted look consists of scenes illumidnated Ly a

different Eart vf the antenna pattern.
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_______ SIGNALS
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TIME

ftg. /4 - signai actr desr ed by a cotinuous sawtooth
reference function.

In the step transform, as in the basic deramping techni ,ue
prpvtousiy ,: ibed, liff•e.-,.t targets will generate different Dopplei
frequencies depending on their locations relative to the sub-ramps. If
part of the signal data for several different targets falls into the same
sub-ramp, the extracted look will be composed of an ensemble of CW signals
whose frequencies are directly proportional to the locations of the
targets on the sub-ramps. The frequency produced by mixing the signal
with the reference will also be directly related to position in the
azimuth antenna pattern. Thus, it can be seen that different targets in
the sub-aperture are acquired from different portions of the antenna
pattern. This is the basic difference between the matched filter and the
step transform approaches. The scenario for the step transform is
illustrated in Figure 41. The image formed by the first stage of the step
transform is of low resolution because only a small fraction of the target
energy is contained in each sub-aperture. The remaining portions of the
signal energy are embedded in the other sub-apertures that together make
up the full aperture. In order to regain the original resolution, the
sub-apertures must be added coherently.

The case of an input signal consisting of one point target is shown
in Figure 42. The spectrum associated with the target moves to a higher
frequency as it climbs each step up the frequency staircase. In addition,
there is a step increment in linear phase, which depends on the separation
in time of the signal and the reference tooth. These two properties can
be used to regain the original high resolution of the input signal.
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DATA ACQUIRED
FROM DIFFERENT
"PORTIONS OF THE
ANTENNA PATTERN

0TIME

(a) DATA ENSEMBLE COLUMN
TO BE DERAMPED
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LU

LUL

0 TIME

AMPLITUDE OF THE
UPERIMPOSED DATA

/SENSEMBLE AFTER

(b) ,ERAMPING

ONLY THIS COLUMN
IS SHOWN

Fig. 41 - Deraunping of dmutiple targets.

The frequency step in a sub-aperture (see Figure 41 (b)) can be

segregated from the superimposed ensemble data by utilizing a DFT as a
filter bank. The frequency stepping behaviour necessitates a two-

dimensional processing scheme indexed by spectral frequency and sub-
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aperture number, as illustrated in Figure 42. All the spectral energy
associated with a single target can be recaptured by coherently summing
the sub-apertures along a diagonal line. Each line of the diagonally
arranged spectra associated with a point target contains a linear phase
whose frequency is linearly dependent on its distance from the nearest
sub-aperture on the time axis. The form of this phase term will be
derived in the next section. Because of this intimate relationship
between local frequency and time, a diagonal DFT can be used to sort out
the fine details which are hidden in the first set of DFTs.

r

ROW DATA
ACQUIRED THROUGH

" ." THE SAME
PORTION OF THE

* ANTENNA PATTERN
FIRST DFT

COEFFICIENTS
FOR EACH

SUB-APERTURE
(AS A FILTER

BANK)

0* 0e

1 . .

123 N

SECOND SUB-APERTURE NUMBER
DIAGONAL

DFT
FOR FINE

RESOLUTION

Fig. 42 - Processing stizL after the first set of DFTs.

In performing the first DFT on each sub-aperture, windowing must be
applied in order to suppress sidelobes and spectral. leakage. it is essen-
tial to suppress these effects so that energy spill-over onto the neigh-
bouring diagonals is minimized. One major negative aspect of the window-
ing is that the spectrum is broadened. Since the first DFT is regarded as
a filter bank, a broadened spectrum due to windowing means a wider band-
pass filter element (wider than one cell). The widened oandwidth will
undoubtedly let in energy from the adjacent diagonals. These intruders,
which are fuither away from the diagonal under consideration, contain
higher frequency components. These higher frequency components exceed the
sampling rate along the diagonal. If a DFT is taken along the diagonal
data array, the intruding components will fold into the desired region.
in order to avoid aliasing, the sampling frequency along the diagonal
direction must be increased. In order to do this, the dimension of the
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processing matrix, i.e., the spacing between the first DFTs must be
decreased. Since a minimum size DFT is required for adequate resolution
from the first processing stage, the first DFTs become overlapped when the
spacing is decreased. The above explanation is summarized in Figure 43
[7]. A block diagram of the step transform processing is shown in Figure
44.

, / / /

I , /1 o
0 /

/L /o
0. / ' OFT

• !.1 71

8.2. ~ ~ ~ ~ ~ ~ P IM To~aino h t rnfr

0 0/

0

Pig. 43 -Time weighting and overlap to red ce tie aide-lobes and
tA.ia-' al-iasing (71.

8.2.1 Formulation of the Step Transform

In this section, which follows (6], the step transform is described
mathematically. Figure 45 shows the frequency versus time diagrm for the
received linear FM signal,
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Fig- 44 -Step trxansform promaesi~ng pr'ocedlure 16j.

ýT

SIGNAL
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Fig. 45 - ixing a point target signal with a reference ramp.
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W(-A2

g(t-u&) - e T, (87)

where t - uA is the time of arrival of the received signal, B is its
bandwidth, and T is its duration. Also shown in the diagram is a segment
of the sawtooth reference signal used to deramp the input signal. The
reference segment locited at t - nA is given by

c'(t-nA) - e T (88)

It has a duration of T', i.e.,

-T- + nA < t < - + ntA
2 2

After performing the deramping within this duration, we have

UB 2

g(t-uA)g*(t-nA) - e T e T . (89)

Since the processing is performed in discrete form,

t - (nA - .-- ) + kA, 0<k< " -I,
2 A

where the term in parenthesis is the beginning of the reference segqment, k
is the sampling indem, and A is the sampling interval. The discrete form
of (89) is

S- T- Lg*Ck - T'
2 2

.?B T'v T 2
)--[ n+k-u-) A - 12 -j----(kA- -

.2eT 2 e T 2

1TB 2 2 YB 2 2 21rBA 2  27TB 21(u2A uAT') j-B(n A-nAT') ) jz (n-u)k -A unST T T
-e e e e

(90)

This output is then Fourier transformed, with respect to k, to extract an
image with a resolution corresponding to the bandwidth of the reference
segment.

The interpretation of each exponential factor in (90) is as
follows:

i) The first exponential factor is independent of the location uf the
sub-aperture reference n, and is solely a function of the location
of the input signal u, therefore this term will not be affected by
the first or subsequent Fourier transforami.

I I I M i i
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ii) The second exponential factor is an undesirable term since it does
not relate - to the input signal location, u. This term is deter-
ministic anu must be cancelled out before the second Fourier trans-
form is taken.

iii) The third expo.nential factor is a linear phase term, which deter-
mines where the signal spectrus is located in the frequency dimen-
sion after the first OFT is taken with respect to k. The first DFT
can be regarded as a filter bank which segregates t~he spectral com-
ponents in the sub-aperture. The spectral locations are determined
by the corresponding locations relative to the sub-aperture refer-
ence.

iv) The fourth exponential f&ctor is a phasor whose frequency of
rotation depends on the location u. In order to recover the
precise ta-get location, another Fourier transform can be applied.

The OFT of (90) with respect to k, (iglioring the first exponential
factor) is,

7B 2 2-nT~ 2iTB 2 2IT BA 2
j-(n A 2-nAT,) t- i un 2- (n-u)k

X(r,n) - eT e T F{e T

itS 2 2 2w~z N-i .2 I B a, .2irk
(n A -nAT') -- (n-u)k -j--

eT e T e T e N,

k-0

nAT) --'it2 uN- J2w[ (n-u)-r]
meT e T I e T N

k-0

n 2 A2 -nAT') -i 2u.::2e T e T ,i,',•[ --N---- (n--u;],,
T

(91)

where F{} is a Fourier transform operator, N - T' is the number of
L A

points in the DFT, r is the frequency veriable corresponding to the
temporal variabla k, and sinc(.) is a cyclic sinc-function defined as
sinc(x) - sin(r.x)/sin(nx/N).

The loca-ion of the sinc-function depends on the spatial separation
between the target and the reference ramp, (n-u)2., i.e. the tarcet is
located at r r'

r A (n-u), (92)
T

relative to the sub-aperture reference located at t - nA.
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Assuming tht the input signal is sampled at the Nyquist rate, we
have BA-i. If the signal is oversampled (i.e. BA(1), as is normally done
in practice, some of the Fourier coefficienti in r will be small,
containing only noise and leakages, but this will not affect our
analysis. Hence, (92) becomes

NA-'• (n-u),

T

-T (n-u). (93)
T

Furthermore, if we set the number of sub-apertures tnat can be fit into a
full aperture to aiso be N, i.e. T/T' - N, then (93) can be simplified to

r n U.. (94)

N N

In suvmsry, the aperture data ',, divided into N n.on -apertures of N samples
each, which gives a total of N2 points for a full aperture data set.
Equating (92) and (94) gives the value of N

N2 T

B A

- 1(95)

(FM rate)A•
2

Since adjacent sub-aperture references are separated by n-N cells,
the sub-apertures can be indexed by a new parameter £,defined as Z - n/N.
Equation (94) then becomes,Iu

r' - X - --. (96)
N

Substituting (95) and (96) into (91), we have

X(r,C) - e N s3zC.'[r--•i 1 . (97)

Thus, (95) en.ut',s thv - ,hal histoty associated with a point target
lies on a lin. *-rm u - L•e (in the r versus X plane) and passing
throug. the t axis at u,,-, as denoted in (96). This arrangement mares, the
processinq more efZicient since further processing can proceed along
successive diagonal lines with unit slope, and no interpolation is
needed. If FFTs are to be used to perform DF1s, N mu3t 1ýe a power-of-two
integeL. Unfortunately, this imposes a stringent restriction on the
signal characteristic, namnely the FM rate and the sampling interval, upon
which a step transform can be accurately applied. This restriction can be
partially relieved by overlapping the sub-aperture reference ramps as will
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be described in Section 8.2.2.

To obtain the full resolution, the sub-aperture data represented by
(91) must be added coherently over the entire aperture. The processing is
two-dimensional (across aperture, 'X.', and within aperture, 'r'). The
coherent summation is performed via an IDFT with respect to £(-n/N) along
the diagonal line r-Z, i.e.

N/2-I jIT( X2 _X) I2iq9
Yq - [X, e ]e N , 98)

1--N/2

where q is the tine domain equivalent of the sub-aperture number 'i'. The
exponential factor in parentesis cancels the first exponential term in
(97). Before the second DFr is taken in (99a), X(r,2) should be rotated
over r by half a cycle (i.e. N/2) in order to ensure that the negative
axis in r precedes the positive axis in a linear continuous manner. In
practice, this can be achieved by embedding an appropriate linear phase
term in the reference ramp. If we substitute X(L,Z) from (97) into (98),
we get

N/2-1 N N
YX(q- e sinc[III e

1--N/2 N

27rul. 2 iq L

- ainc [aN] X e N e N (99a)
N £

- sinc r-1sincfq-ul,

-silic 2 sincfq-ul. (99b)
N

Hence after both DFTs (forward and inverse DFTs are collectively referred
to as DFTs since they do not bear the usual connotations of the Fourier
transforms), a target located at t-uA is recovered as a compressed pulse
denoted by the second sinc function in (99b) at q-u. The first
sinc-function in (99b) is an envelope modulation function inherited from
the rectangular window in the first DFT.

As mentioned previously, the input data are assumed to be
adequately sampled, therefore there is no aliasing effect in the first
DFT. However, as described in (99a), the Nyquist criterion is violated in
the second DFT. The width of the mainlobe of the envelope function is 2N,
whereas the sampling rate is only N, i.e. the DFT length is only N.

Hence, areas of the mainlobe corresponding to Nul>N are folded back into
1+7
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unambiguous region of the DFT resulting in heavy degradation of the radar
image. The aliasing effect is shown in Figure 46. Three point targets A,
B and C are shown. The top diagram shows that A, B and C are unambiguous-
ly resolved as if there is no aliasing problem in the second DFT. The
bottom diagram shows the realistic case where. the function is circularly
periodic, with period q.

sin ,: c l
/

s ic [ q-u2]

A ~ !n .1c~~2

'3] 

q
-3N -2N -N 0 u1  u2 N u3 2N 3N

(a)

, A A
ALIA SIN G,.. ,\

.P4 0 N N 3
2 2 2

(b)

Pig. 46 - Capressed image after c•herent mumation of sub-
aperture images along a diagonal line in the processing
matrix. Three point targets A, 9 and C are shown,
(a) assuming no aliasing, (b) with alianing.

8.2.2 Effccts of Windowing and Sub-aperture Overlap an the Step Transform

In order to avoid the aliasing effect, the signal, exp{-2r-Z} in

(99a), must be adequately sampled in 'I', and the point target response of
the first DET, i.e. the sinc-function in (99a) imust be replaced by one
with a negligible sidelobe level.

To suppress tho. sidelobe level of the target response of the first
DPF, windowing can be imposed on the sub-aperture dat-a before the DFT is

I M
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taken. In practice, a Hamming window is used to suppress the sidelobes to
less than -43drB. In such a case, (91) becomes

IWB 22_ 2.tB 2Jý(n2A2-nAT ' -1.rA&u n

X(r,n) e T e T

y- n-u)k
Fl[0.54-0.46cos(2sk +5)] e T 1,

irE Z2 21FB 2

T Tr 2
eT [r'ý (n-u) ], (100)

T

NO is now replaced by' Ný to signify the effects of windowing and over-
.apped sub-apertures, and W(r) is the Fourier transform of the Ramming
window, which is given by

W(r) - 0.54D(r) + 0.23[D(r-1)+D(r+1)],
and

j- sin(rr)
D(r) - e N sin(itr/N-

To increase the sampling rate in 'V', the spacing between adjacent
sub-aperture references needs to be smaller than N. This implies that
they have to overlap. Let t be the ratio of the number of cells overlap
to the number of cells in a sub-aperture. The sub-aperture index 'V' is
redefined as

n £ - ,(101)

where the factor N(1-C) represents the sub-aperture reference spacing in
number of cells.

If the processing efficiency for the second DFT is to be main-
tained, the locus of the envelope function of X(r,i), W(r,Z), given by
(100) n'e-ds to lie on a diagonal line parallel to r.£, as in the previous
case, otherwise interpolation would be required. This discrete space
arrangement car. be achieved by modifying (95) to

N 2 T

-. I(102)
(I-ng (0 M rate) i2

Substituting (101) and (102) into (100), we have
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JIrT[ (I-&)Z-1 IJ -

X(r,Z) - e e N& W[r-i+---.---]. (103)

Note that the diagonality property (r-£ for the signal position) is
maintained in the argument of W[. .

We can perform coherent summation along the diagonal line r-Z via
an IDFT with Hamming window:

N/2-1 L+0.5Y(q,• I ( 0.54-0.46co5(2,£+0")] X(L,Z)

L-N/2 Ný

e e N (104a)

2wut 2nqX

M e[ [.54-0.46cos(2w 9 -.5)] e e
NW(-E) NE

M U u w[q-ul,

Wf-!- Wfq-uI, (104b)

This result is analogous to the previous case without windowing and sub-
aperture overlap, as described by (99b). The sinc-functions are now
replaced by the Fourier transform of Hamming window. The compressed. pulse
is represented by the second W-function located at q4u. The first
W-fwiction represents an envelope due to the Hamming window in the first
DFT. The W-function offers a much lower sidelobe level (<-43dB) than the
sinc-funct on (-13dB). Hence in most caes the W-function can be regrarded
as sidelobe free.

A minor penalty introduced by the W-function is that its mainlobe
width (null-to-null) is four cells wide, whereas that of the sinc-function
is two cells wide. The mainlobe would cause more maixalobe aliasing, if it
were not for the overlapping of the sub-apertures. Assuming the sidelobe
level is negligibly low, the W-function in (104a) limits u to the region
-2 cells < u < 2 cells, recalling that the Fourier transform of the

Hamming windowing has a null-to-null mainlobe width of four cells. The N-

point Fourier transform allows .N < u < N( . Equating thes inequalities
2 - 2

gives a sub-aperture overlap ratio, • - 0.75. For point targets lying

outside the regicn, i.e. -U > 2, the W-fur~ction attenuation
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becomes so large (>43dB) that aliasing becomes unimportant. The above
aliasing mechanism is illustrated in Figure 47.

ONE PEROID

ALIASING

0 0
-2N11- C) 2N(1-C)

(a)

Wrol

eq
N_ NN2 2-

Fig. 47 - Aliasinq ra•,.•sdm d&e to• he envelop function
of the Hmsinq n JAow, (a) with aliasing for 4 ( 0.75,
(b) mdnim oondition with no aliasing, S - 0.75.

The processing efficiency can be further improved by minimizing the
sub-aperture overlap, and hence reducing the processing of duplicate
data. The arount of overlap can be reduced by allowing aliasing in the
portion of the data tht will be thrown away. The alias free region is
defined as the width of the separation between adjacent sub-aperture

references, i.e., - 2(-) u < N2(l-•) Targets falling in the2 "-2

aliased regione, ramely, -2Ný(I-&) < u < and NE(l-) < u ' (I-F),
2 2 -

are recovered from the unaliased regions of adjacent diagonai DFTs.
Figure 48 illustrates how allowing aliasing in the throwaway region can
reduce the amount of sub-aperture overlay. In the diagram, the envelope
modulation function (the first term in (104b)) is partitioned into five
regions (A to EL. The uneaubiguous width in q is kept at N&. Region C
represents an unaliased region, from which valid processed data are
derived. The other regions produce duplicate (invalid) processed data.
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Piq. 48 - Imroved processing efficiency by aLlowing aliasing
into discarded regions.

It is desirable to let region A to fold into region D, and region E to
fold into region B, in order to pack all regions compactly within N
cells. Regions B and D now contain aliased data and will be discarded.
In this case, as shown in the diagram, the optimum value of is 0.6.
Data from region C is retained as valid data. The valid data are
amplitude corrected by multiplying by the inverse of the envelope function

(i.e. 1 ). The process is repeated for all diagonal data, and

Wr q
L 1 (1-U)

then all valid data are concatenated to form an image.

In cases where 0.2<&<0.6 for a selected value of N&, the data,
which lie on a diagonal after the first set of FFTs, are undersampled as
just described. This can be remedied by using another set of sub-aperture
references to interpolate the original diagonal data array. The method is
illustrated in Figure 49. The top diagram shows the sic,-nal of a point
target with the original sub-aperture reference. The middle diagram shows
the signal with another sub-aperture reference. The new sub-aperture
reference is so designed that it is delayed by half a period from the
original sub-aperture sawtooth, and has a negative frequency offset
corresponding to half a resolution cell.. This offset reference provides
an additional sampling process to obtain the in-between value of the
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Fig. 49 - Two sets of refexence ims for cases with
0.2 < F& < 0.6.

original diagonal data array. Phase correction is tlhen imposed on both
diagonal arrays as described in (47). Because of ti- additional frequency
offset in the second diagonal data array, an additional phase correction

factor, exp{-f 1' 1, is required. This is done to maintain phase
T 2

coherency between the t-wo diagonal arrays. The data from the arrays are
interleaved (as shown in the bottom diagram) before the second FETE of
length 2N is taken.

In cases where 0 < ý < 0.2, one has to c:ioo)se a larger value of N
or tolerate a fair amount of degradation.
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8.2.3 Computer Simulation Results

Figure 50 shows the result of a computer simulation for a point
ta•get, which had a time-bandwidth prcduct of 384, and which was processed

0

-00

-300 -200 -100 0 100 200 300

SAMPLE NUMBER

Fig. 50 - Cbpressed pulse of a point target processed with
step transform.

with a sub-operture of length of 32 cel.s, overlapped with the other
sub-apertures by 20 cells (62.5%). The prominent main peak has been
normalized to OdB. Artifacts are noticeable but are mostly at least -40dB
down fromn the main peak. These artifacts originate from the sidelobe
structure of the first W-function given in (104b).

The humps on each side of the iainlobe are due to spectral leakage
from the incompletely filled sub-apertures at both extreme ends of the
diagonal, i.e. the data starts and ends part way through those sub-
aperture. These partially filled sub-apertures have lower resolution than
the rest, and the dat& corresponding to the target is spread widely over
the 'r'-dimension after the first DFT is taken. This data does not get
properly incorporated in the Fourier transform along the diagonal, but
instead it contributes to the integrated sidelobe ratio. The shapes of
the humps are determined by the window used in the diagonal DFT. The

peaks of the humps are located at approximately from either
2

side of the main peak, where C is the portion of sub-aperture overlap.
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8.2.4 Effects ef the CQbic Term an the Step Transform

The forego-!nq description of the step transform assumes that the
input signal is strictly linear FM. It is thelinearity (in frequency
versus time) of a linear FK signal that allows the step transform, which
follows the trend of the linear FM slope in a step-wise fashion, to be
used to perform pulse compression. The introduction of cubic and higher
order phase terms destroys the desirable linear relationship, and results
in unequal deramped frequency step intervals, and other abnormalities,
such as defocussing in the output of the first DFT. In this section, as
was done for the matched filter approach, we will consider the effect of
the cubic phase term, and seek ways to rnmedy the problem it causes.

In th. following analysis, we assume the form of the received signal
to be

3-(t-uA) + j2rc(t-uA) 3

g(t-u&) - e T, - +UA < t < !L+UA,
2 2

(105)

where t-uA is the time of arrival of the mid-point of the received signal,
A is the sampling interval, B is the second-order signal bandwidth, and T
is the second-order signal duration. The first pase factor represents
the second-order azimuth signal (i.e., a linear FM signal). The second
phase factor represents the third-order azimuth signal, seen at extreme

3adar squint angles (2]. The coefficient c is in cycles/sec

A sagment of the sawtooth reference, centred at t-nA, is used to
deramp the input signal. The reference is shown in Figure (8.21), and is
given by,

-7B(t-nA) 2  
(106)

g*(t-n.n) - e T

It has a duration of T', i.e.,

- -- + nA < t < - + nA. (107)

2 2

After multiplying the input signal by the reference function, we
have,

g ( t - u l) g q ( t - n A ) - B,
irE(t-uA) +j2 E(t-uA)3 -li(t-uAE '

=e T e T (108)

Because the processing is performed in discrete form, t must be
replaced by

t - (n.1 -TL) + kA, 0 < k < N-1, Ne- T' (109)
2 a
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where the term in parenthesis is the beginning of the reference segment,
and k is the sampling index within the sub-aperture. The discrete form of
(108) is

g[(n+k-u)& - Tl (k - -2 2

7rB 2 2 AT ra ? 2- 2irBA(u A +u4Tj) (n A -nAT') j- (n-u)k
-eT aT e T

_2wBA2  *j2wE [ (n+k-u)A - T' ]* (110)

ST e 2

The first factor in (110) is solely dependent on u and is of no
importance to the image processing. It will therefore be dro2ped. With
this change (110) becomes

g[(n+k-u)A-L. g.(k4-)
2 2

1B 2 2 _ 3 AT) 2)k TB ]3
Jý=n 4 nA')J~i~n-~k-a-- un J2wr[(kA-u4_)+M1A

* T e T e T e 2

(11)

The last exponential factor in (111) is solely due to the cubic
phase term. The k-dependency in this factor sipiifies that the error
caused by the cubic term is proportional to the duration of a
sub-aper.ure. In practice, the aub-apexture length is much shorter than
the full xperture, and the variation in the phase factor as k changes from
one end of the practice, the sub-aperture length is much shorter than the
full aperture, and the variation in the phase factor as k chinges from one
end of the sub-aperture to the other is very small. An expansion of thiq
factor gives

J2IrE4kL-uA-L)+nA]j J27t~kA-u4ý.~)~ j21r[3ckA-uAý!..nA]
e 2 2 e 7

3 To' 2j2irE(nA) j2 1[3e(kA-uA----')(nA) ]
e e 2 . (1 12)

The significance of these phase terms is depicted in Fi;,,xre 51, and L2
explained as follows:

i) The first exponential factor is independent of n. It represents
the phase deviation due to the cubic term of the input signal
within the sub-aperture located nearest to the centre of the
full aperture. This term is extremely small and is of the order
of 1ess than 0.5* for highly-squinted (e.g. 6' from flight
direction), hI:gh resolution (e.g. I hetre), and long slant range
(e.g. 100 kin) cases operatiag at x-band.



76

ii) The second exponential favtor, wt'.ich is a function of n,
represents the additional phase error within a derampod
sub-aperture. This phase error is rather small under most
stringent circustances, it is less than 10' for sub-apertures
located at the ends of the full aperture.

iii) The third exponential factor depends solely on n. Itdescribes
the global phase error along the input dat.. Its magnitu6@, may
be rather signifizant and it must be cancelled before the second
DnT is performed.

iv) "rhe fourth e*xp-ner.tial factor, dep3ndent on k, u, and n, is the
amount of frequency c.ffset from Uhe normal deranped CW signal.
This frequency ,iffset slows up as a shift inL the spectrum
produced by the fi'st DFT.

In summary, the f±rsz tw exponential fectors de.-cribe the local
residual phase errors within a sau-aperture. Their Atagnitudes are
normally too anall to affect .--he final result. The laj. t'eo exponential
factors describe the global tesiduel phh3e errtor and the frejiency offset
respectively. Tiieir effect on the final result is -ozxth further
consideration.

q•. . ... . . T,?

PHASE DIFFERENCE BETWEEN
THE CENTRE SUB-RAMP AND 2v- (na)•'
THE CENTRE OF THE
INPUT DATA 23 - (r')

2v. (ka-ueL-)3 2134k-&2)2 iDEAL PHASE
I MATCHING POIT

TIVwE

SUB-APERTURE T
REFERENCE
RAMPS

-IDEAL LINEAR
FM SIGNAL

NON-LINEAR
FM SIGNAL

Fig. 51 - Deramping a non-linear VM signal with cobic phase. All
errors are shovn for the case in which an idal sawtooth
reference is applied.

With on2y the last two phase factors of the expansion included, the
deram'ped sig-ial of (6.30) can be written as
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2 2

WS ( 2 2 nT') - 2irB4 2  3
ý(n2A2_n&T.) J-ý(njOk -j_ uun j2Trc(nA)

-eT e T e T e

j21t[3 C (kL-uA.T' n) 22

e 2 (113)

The image is produced from (Ii3) by usiny the modified step
transform. First a Hamming window is imposed on the sub-aperture in order
to suppress sidelobe leakaje, and a DFT is taken with respect to k; the
result is

.B 22 3 _' -1YEu+)n) 'r
JB (n AI-nWT') J2we(nfý) I j, ua'(n)• ••

X(r,n) - e T e e 2 e T

N-I k+O. 5
1 (0.54-0.46 ~(i---)

k-O

2B (n-u)k j2w3ekA(nA) 2  _j21rk

[e T e e NC

:ý(n 12 nAT.) j2re(n6)3 -J6ff(uA4--)n) j un.

TT
--eT e e 2 e T

T t;

where W(r) is the Fourier trarsform of the Hamming window and is given by

W(r) - 0.54Dr)-0.23[D(r-1)+L,(r+1)], (115)

and

lTrr

D(r) e • sin[-r]
sinjr]I

Substituting (10A), (102) and T' - NýA into (112) yields

-J61TCN2(I --&) 2 A3 uZZ j~l(£)

X(r,Y) - e e

e N W ýr-Z-3Q (1-j)-63 z--- - ,
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where S(L_ 2c[Ný(1-E)AY + 2 t. We can see that

the location of the spectrum is off by (3cN 3-(1)2•2]"Z2  cells from the
normal diagonal position. If uncompensated thi- 1 ositional snift will
result in amplitude tapering of the sigr 1 on bott' ends cf the diagonal;
moreover, the er.ergy associated with •ne diagonal can a.rve into the
adjacent diagonals. This intermixing of diagonals will introduce image
blurring into the DFT of the adjacent diagonals.

If this amount of degradation is intolerable, then the curvature
can be corrected by interpolation along the r-d-mtension after the first
DFT.

The W-.-functiun in (116) represents a narrow bendpass filter moving

along a locus described by r - X + 3cNE(1_-) 2A3L 2, in the r versus Z

plane. To regain the original resolution, a coherent summation (DFT) over
r needs to be performea along this locus.

The first exponential .ector in (1 16)is dependent on the location
of the target, u, and the sub-aperture locati-n, £. The maximum phase
value of this term oczurs at the above extreme values

t l5 3
6mx- 0.75TEAN5 A (,)3,

0 .757icT3
- 0_. (117)

The maximum tolerable 9max value is 0.75w for - heavily weighted OFT

(see (120) bel:iw). Therefore

NE > CT3 . (1181

Substituting the criterion in (118) into the cubic phase at the end of a
full aperture as given Ln (105), gives

6cub2.c

< .(119)
4

in other words, if the cubic phase at the end of the full aperture is
7N.4/4 or less, then the first exponential factor in (116) is
insignificant, and will h-e dropped henceforth. For example if Nr - 32,
the maximum tolerable cubic phase at the end of the full aperture is 1440;
a phase error which would other- Loe be intolerable if no sub-aperture
compensation is used.



79

Before proceeding with the coherent sub-aperture summation, namely,
a second DIP, the second and third exponential factors in (116) should be
cancelled. When this is done the second DFT with Hamming window becomes,

L+2) -JIS *, N

L(q) ]. X(r,2 [0.54-0.46cos ] e ei•-N •/2

.21I£ .2Trqt-3---- 3---w1. ] [0.54-0.46cos(2n : i] e e
along 232
r-X÷3 £NF ( 1-C•) A4 X

(1 I q-u]. (120)

After both DFTs, a target located at t w uA is recovered as a com-
pressed pulse, w(q-u]. ehe first w-function in (120) :epresents cu, unde-
sired amplitude modulation function inherited from the Ranuming weighting
in the first DFT, and should be corrected.

8.2.5 Range Cwvature Cpensation

Range curvature can be compensated in a similar fashion to the
matched filtering case described in Section 7.1. In the step transform,
the raage curvature compensation should take pla':e after the first- set of
DPTs. Referring back to Figure 42, each row of data indexed in £ have the
same frequency characteristic and are acqluired through the same portion of
the antenna pattern. Thus each row of data in t~he pro( -ssing matrix
nuftere the sime amount of curvsture, whereas tne data irn a column, which
are each acquired from different a&)gles, suffe:.- different amounts of
curvature. "o perform the interpolation a number, based on the length of
the Lnter-polator, of processing matrices frcm consecuti,:e ranges are
collected (lee Figure 52). Interpolation is then performed across th4!
matrices on a set of corresponding dara (g,r;, one from.r each processing
matrix.

am*U1TfAT1o0ftL RDQUI1LPq)&Wr'

In this section, we attempt to gi'e an assessment of th
computational req,,trements Tor, the foregoing SR data procussin.'
algorithms. SAPý data processing9 is often characterized by its vo.umizious
data size, and the stringent te-uAiren-ent: for arithmetic operati-net. '[Ilus
the design of a SAR processor sho;ild !e optimized in terms of arithmoetic
complexity ead cuntrol-function 4L[mplexity. Thw predtminant factors tor
cons:deratlon are the throughput rate, the pd..s--orijressioi ratio, ald
the number nt looks. A desirable algor ithmn for SAR data processing should
be selected by making the necessary tradeuffs between these factors.
B3ecause :;tf a larq number of pat auieters, the ciuinputa • jial. raLes of
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m.1 m m-1

r/

LOCUS//OF~ " /
RANGE /

CURVATURE /
/ /

INTERPOLATOR / -"

,/
.rr

CORRESPONDING
DATA POINTS INCONkSECUTIV E PRiOCESS;NG MIATRIE
RANGE OF CONSECUTIVE
CELLS. RANGE CELLS

Fig. 52 - Range curvature coaensation in step transform.

generalized optimal processing schemes are not easily compared. In
general, the matched filtering approach zequires less control-function
complexity and provides more flexibility and e:actness in tailoring the
matched filter to fit the data. On t' f other hand, the deramping
technique demands less memory end can procea. in a continious rather than
batch fashior, and is t. --- by woro cuited to real-time processing. In the
present asnessment, '. ress the computational requirements in terms of
numbers I complex multi,..-ations and additions (including subtractions),
in the hope that the quantity; when consilered with other factors, will
help in the refinement of the overall processing configuration. It is
assumed in the following that the matched filters, or the deranp
references, and the phase-magnitude correction factors are pre-computed,
and that the effort required to synthesize them is small compared with the
acLual jlJcessing of the data.

UJnrless otherwise redefined, t-he symbols used in the following
evaluations are the samie as those used in their ruspective descriptions
given earlier. In order to use the FFT zdlgczithm, the variables N1 ,
1i; anW N need t; " power-of-two iTAtegers.

1 C.x LAlt 'K bequirements f.Lu Sizigle [L)ok CaatrA without Rangf
CurvLa. c- i. bbic Phase Teum Conq-:,nLtil(mrz

lie ccmpFtat icliaJ requirex.ents for thu three puise c',mpi.-eb3iuri
technr. •s z eve, u8Atid Tt is 4asumed t, a,. 0h1 cc)ii,,ipaLIons duo,_ tu
ranugJ CUIVC.LU ah1i t1161 I't. . I.s LeUPI ate r;-g[ .gible.



81

a) Computational requirement for the matched filtering
approach (via fast convolution)

For complex multiplications

-Forward FFT on a set of NT input data 2og2NT
2

-Matched filtering with windowing included NT
NT

-Inverse F9T on NT matched filterea data •Tlog 2 NT
2

-Total number of complex multiplications NTIOq 2 NT+NT

For Complex Additions

-Forward FFT on nr input data Oq2NT
2

-Inverst FFT on NT matched filter data -lo2 NT
2

-Total number of complex alditione NT1Og2NT

-Matched filter length in time domain M

-Valid output data length NT-M

lc1g 2 NT+l
-Rumber of oorplex multiplications per
valid output point 1---

NT

-Number of crmplex additions per valid 1

output print 1-M

b) fCmiputational r- uiremnent tor the step. translotm

Let . be the sub-aperrture: overlap and Nt. be thc nu'rbex ýf

uub apartuy es, so tlhat N'
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For cases with E>0.6
For complex multiplications

-Deramp input signal with NE sub-apertures
and use Ný data points for each sub- N• 2

aperture

-First FFT for one sub-aperture --- og 2 Ný
2

-Do the above for N& sets of sub-aperture .ilog 2 Ný

FFTs which results in a N&XNý matrix 2
containing NE complete diagonals

-Number of multiplications to form one -l&og?2 N&+÷N
complete diagonal 2

-Phaue rtecULon &nd -Wndowing Or,

one diagonal

-Second FFT (along diagonal) --/1og2NC
2

-Total number of complex multiplications 1oq 2 P.+2N•

(not including the final amplitude
correct ion)

For complex additions

-rNumbeir of additions in the first and
second FFTs that are req-aired to form N&IogZNý
the output from une diagonal

-Number of valid data produced from (1- )N•
one !'FT along the diagonal

-Number of complex multiplications log2N +2
oex- 1ralirl output point

-Mumber of complex additions pezz lg 2 N& ]
valid output pWint -- I
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For cases with 0.2<&<0.6

These cases require two sets of sub-aperture references, see
Section 8.2.2 for details.

For complex multiplications

-Deramp input signal with 2N& 2Ný 2

sub-apertures and use Ný data points

for each sub-aperture.

-First FFT for one sub-aperture -. log 2Ný
2

-Do the above for 2NE sets of 2N 2

sub-aperture FTS which results in 2 2 N

2N& X NE matrix containing Ný
complete diagonals

-Number of multiplications to form N&1og 2 4N+2N&
one complete diagonal

-Phase correction and windowing on 2N&

one diagonal

-Second FFT (along diagonal) 2--/og22N2

-N&( I+log2 N0)

-Total number of complex multiplicotions 2N&log 2 +SN&
(not including the final amplitude
correction)

For complex additions

-Number of additions in the first and NFIoq 2 2N2

second FFTs that are required to form -2Nclog 2MN+Nc

the output from one diagonal

-Number of valid data produced
from one "T along the diagonal

-Number of complex nuitiplications
per valid output point 2Ný10g 2 NF+5

1 aI
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Vumber of complex additions per 21°g2 NE+1
valid output point

c) Computational requirements for the spectral analysis method

In the present treatment, we assume that the guard band, 5, and the
DFT length, N, depend on the required resolution, and that they are suf-
ficiently large that the number of processing columns within a parallelo-
gram is not less than two (see for example, Figure 38). The number of
processing columns required for each parallellogram can be calculated, by
using (82), as

L - INTEGER +1

B

- INTEGRba1 - +1

B2

Let N P be the recorded data length before presummirng, therefore

Np - BT - a .
k

For complex multiplications

-Deramp input signal (including windowing
to form L processing columns within a LN
parallelogram)

N-FFTs for L processing columns L-log 2 N
2

LN-Total number of complex multiplications -log 2 N+NL
2

for one parallelogram

For complex additions

-Number of additions in the L FTs LNlog 2 N
2

-Number of valid data given by N
one parallelogram
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-Number of complex multiplications
per valid data output -,Ioq2 N+L2

-Number of complex additions per
valid data output [ og2N

9.1 . I Ezmplea for Cases without Range Curvature and Cubic
Phase Te=m Comeasatior-

The following examples are intended to provide some insight into
the computational requirements of the processingalgorithms. Two cases are
given, both have a presum factor of 8.

Examples for typical resolution (3.5m)

Parameters:

-Raw data length 16,384
-Data length, after presum, NT 2,048

-Slant range 100 km
-Matched filter length, M 557

(>Time-bandwidth product in cycles)

a) Matched filtering approach

Number of complex multiplications (log22048)+;
per valid data point

557

2048

16.5

Number of complex additions 1o0 2 2048

155ý
2048

- 15.1

b) Step transform (assuming (8,21) is satisfied)

The computational requirement depends heavily on the FM rate and
the sampling interval as given in (8.21), or equivalently, the
oversamplihg factor. According to the Nyquist criterion, BA<I, we have

TBN;: ) -.
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amn

N 2

where TB is the time-bandwidth product. Setting TB - 557, • , 0.6, we
have,

N > L557= 37.3,
0 0.4

we choose N- 64, and

< 557

(64)

< 0.864.

which gives the number of overlapped points - 21.6 = 27, • is recalculated
as 0.844.

To calculate the computational requirement with • - 0.844, we have

-Number of complex multiplications log2 64+2

1-0.844
per valid data point

- 52

10g2 64
-Number of complex additions per -

1-0.844
valid data point

- ~39

c) The spectral analysis method

Since N - 557, we choose N - 1024, this makes the resultant
resolution proportionally finer.

The number of processing columns is

L - INTEGER [ 1 + I], where B-0.4, ,j-' .4,

1.-0,4 -0.4x1024

16384

- INTEGER [r2.7],
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-Number of complex multiplications 21092-191 024+2
per valid data point 2

- 12

-Number of complex additions per ýIog,1024

valid data point 2

- 10

Examples for fine resolution (1.75 m)

Parameters:
-Raw data length 16,384
-Data length after presum 2,048
-Slant range 100 km

M• te a fErlegth i ,--6

a) Matched filtering approach

-Number of complex multiplicatio-is (10q22048)+l

per valid data point 1116

2048

;.6.4

-Number of complex additions log22048
1116

per valid data point 1 - --

2048

24.2

b) Step transform (assuming (102) is satisfied)

2 TB

T11176

0.4
> 52.8

choose N4 - 64

<1 TB

N<
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< 0.728

which giveb the number of overlapped points - 2.33 = 23. • is recal-
culated as 0.719.

To calculate the computational requirement with • - 0.719, we have

-Number of complex multiplications 10g 2 64+ 2

per valid data point 1-0.719

29

-Number of complex additions log 2 64

1-0.719
per valid data point

- 22

C) Spectral analysis method

t - 1116
choose N - 2048
The number of processing columns is

L - INEGER [ I 0 + i], with 8 - 0.4, a 0.4.0.4x2048
1-0.4

16384

- INTF.MR [2.81

= 2

-Number of oc.mlex mu' Aiplications per 21og22048+2

valid data poinL 2

13

-Number of complex additions per 2.--iog 2 2048
valid data point 

2

* 11

IA, practice, the matched filtering method and the step transform
recuire the raw data be presuzmied before being processed. The presumming
can be -cccmplished by using a two-.tage lov-pass filter with 15 coeffi-
cients each. Therefore, an additional 30 multiplications and additions
per input data point should be added on top of the computation
requirements. In the case of the spectral analysis method, the presumming
process is done by selectively leramping and windowinq the desired
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processing column, t.us no additional presumming is required. Rowever,
the output product is not as well controlled, with respect to aliased
energy, as the cases in which a preaunming filter is used.

9.2 computational Requirements for Single Look Cases
with Ramq Curvature Compensation

The above computational evaluations are now extended to include
cases with range curvature. The spectral analysis method is not include.d
since it cannot acconftodate range curvature.

a) Computational requirements for the matched filtering
a ioach (via fast convolutional) with range curvature
compensation

The range curvature compensation is accomplished by interpolation,
in the range d-nira.sion, along the curvature. A four-point interpolator is
assumed here. The procedure has been described in Section 6.2

For complex multiplications

-4-point interpolator 4 NT

-Other computations NTIOq2NT+NT

-Total number of complex multiplications NTlog2NT+5NT

For complex additions

-4-point interpolator ANT

-Other computations NT1Og2NT

-Total number of complex additions NTlOg2N+3NT

-Valid output deta length NT-M

-Numiber of complex rrultipl~ications per log2 NT+5

valid data output point

Nq.
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-Number of complex additions per log2 NT+3
valid dAta output point

M

NT

b) Computational requirements for the step transform
with range curvature compensation

The range curvature compensation is accomplished by interpolation
of the corresponding elementr in the processing matrices from different
ranges, as described in Section 8.6. A four-point interpolator is assu~med
here also.

For cases with E > 0.6
For complex multiplications

-Interpolation to form one complete diagonal 4Ný

-Other computations N-Iog2 Ný+2Ný

-Total number of complexc multiplications N1lOg 2 N&+6Ne

For ccmplex additions

-Interpolation to form one complete diagonal 3NE

-Other computations N log 2 N&

-Total number of complex additions N1Iog 2 Mr+3NE

-Number of valid data given by one (1-ý)Nc.
diagonal FFT

-Number of complex rmultiplications log 2 Ný+6
per valid data output point

-Naimber of complex additions 10g'N&+3
per valid data output point
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For cases with 0.2 < ý < 0.6

For complex multiplications

-Interpolation to form one complete 8NC
diagonal

-Other computations 2NE loq2 Ný+5Ný

-Total number of complex multiplications 2NElog 2 NP+13Ný

For complex additions

-Interpolation to form one complete diagonal 6N&

-Other computations 2Nlog 2 N +NE

-Total number of complex additions 2N1Iog 2 Ný+7N'

-Number of valid data given by one (1-&)N•

diagonal FFT

-Number of complex multiplications

per valid data output point /loq 2 Ný+13

-NumT1e>r of complex additions per

valid data output point 21og2NC +7

9.3 Computational. Requirements for the Coherent Multi-look
Cases with Range Curvature and Cubic Phase Ccnpersations

The computational requirements for the severe combination of range
curvature, cubic phase, and high resolition are en:0lmpassed in the
following.



92

a) Ccmputational requircements for the multi-look matched .
filtering approach (via fast convolution)

No additional computatiop is required for the cubic phase compensa-
tion, since the cubic phase tern can be pre-calculated and embedded in the
matched filter when it is synthesized. If sub-aperture summation is per-
formed in the time-domain, the inverse Fourier transfornr of edch sub-
aperture has to be the same length as the overall criginal dat. length
(NT). This is accomplished by appending zeroes to the uneccupied por-
tion of a sub-aperture spcýtrun. if sub-aperture summation is performed
in the frequency domain durirg compression, the suL-aperture spectra are
concatenated (except in the transition bands) to the original bandwidth,
before the inverse Fourier transform is taken. Thus the amount or
computation is very much the same as that for the single look case. In
the following analysis, post-compression sub-aperture suurnatioii in the
time domain is assumed.

For complex multiplications U
-Forward FFT an a set of NT input data alog 2 NT

2
-Interpolation for all sub-apertures -4N.

(with a 4-point inte r~rnlator)

-Matched filtering with extraction filter -NT
and windowing for L sub-ape,--ures

-L inverse FFTs with NT dat-: _Log2NT

-Total number of complex multiplications NT(L+W) i
log2 NT

For complex additions

-Forward FFT on a set of NT input data "'3l2 Nq
2

-Interpolation for all sub-apertures -3NT

-L ii)verse FFTS with N data each- N

-Ch-et•u:./'u of F sub-.apartuu'.s (L-I )N4,

I I nI I~ t I IIII I I
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-Total number of complex additions NT(L+I)

2

+(i,+2 )NT

-Valid output data length NT-M

-Number of complex multiplications per (L+1)log2NT÷5

2

valid output point I M
NT

-Number of complex additions per LL+l)1iO2NT+L+2

NT

b) Computational requirements for the step transform with
ran._, curvature and cubic phase

If the cubic phase te.-m is significant compared to the quadratic
phase term, then the data array for the second DFT will no longer lie
along the diagonal of the array. This phenomenon has been described in
Section 8.6. To remedy this, interpolation is used to straighten otit the
curvature of the diagonal, before the computation of the second DFT. In
the following analysis, we assume that all the diagonal data are
interpolated using a four-point interpolator.

For cases with C > 0.6

For cowmplex multiplications

-Interpolation for the diagonal data 4Ný

-Other calculations (including range Nloc2Nc+6N•

curvature computation)

-Total number of complex multiplications N1log 2 Ný+10ON

For complex additions

-Interpolation for the diagonal data 3N&
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-Other calculations (incl,zdi-ng range N&log 2 Ný*3NE

curvature compensation)

-Total number of complex additions N•Iog 2 NP+6Ný

-Number of valid data given by one (1- )N•
diagonal FFT

Number of complex multiplications log 2 NF+10
per valid data uutput point I-1

Number of complex additions log 2 NE+6

per valid data output point

For canes with 0.2<t<0.6

For complex Multipliication6a

-Interpolation for the diagonal data 8N•

-Other calculation (including range N&log 2 2NE+12NE

curvature computation)

-Tot~l number of complex multiplications NýIoq 2 2N•+20NE

For complex additions

-Interpolation for the diagonal data 6Nt

-Other calculations (including range NElog 2 2N&+6NE
curvature compensation)

-Total number of complex additions Nýlog 22N2+12N&

-Number of valid data given by (1-E)N•
one diagonal FFT

-Number of complex multiplications log2 2N2++2

per valid data output point '-:1-i
-Number of complex additions per log 2N' 12

valid data output point - -P
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10. SUNKLRY

A general theory of coherent sub-aperture processing for SAR, has
been presented. The problems encountered in applying a one-dimensional
matched filter on SAR azimuth data have been reviewed and characterized.
A piecewise solution for the one-dimensional matched filter has been form-
ulated and it has been shown how this .,olution can be used to combat the
proce0ising problems without resor-In-- to memory intensive two-dimensional
filtering. The solution has been thoroughly tested by computer simula-
tions, and an error analysis of the effects %" the phase and amplitude
distortions, caused by the piecewise approximation, has been given. In
addition, the basic deramplng techniques have been overviewed, and the
step transform technique diicussed in detail. In particular, the step
transform method has been extended to include compensation for phase
errors and range_ curvature. Finally, the computational requirements for
different cases and processinc techniques have been evaluated.
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APPENDIX A

PolyncmiaLl Truncations of the Taylor Expansion of the
Radar Received Signal

To illustrate that the quartic (and higher order) phase ter.ms are
insignificant, we go through the following numerical example.

We assume a high squint angle, high resolution case, which
represents the worst possible operating conditions:

Resolution (p) - 1.358 m,
wavelength MX) 0.0321 m
Squint angle (no) 6",
Slant range (r.) - 100 km.

The half aperture length 4*s given by

Xro

4psinnF

With these parameters, the quadratic, cubic and quartic phase terms at the
end of the full aperture are given by

4n 2quadratic phase .- -2sma,

8.f2

- 31.17 rad,

41t 3cubic phase a 3 smax,

2

32D 3 taF

- 12.2w rad,

4T
quartic phase - 41Sma4x,

X A MX



98

71 X rF 4S4r (- 4 -1 ),

5120 tan2 TP

" 0.686, rad.

In practice, the overall phase error, with a heavil-- weighted aperture,
should not be more than 0.75w rad. It can be seen then, that even in this
extreme case, the contribution due to the quartic phase term can be
ignored.
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APPVIDIX B

Azimth Resolution

The azimuth resolution is mainly determined by the second order
phase term given in (3.2).

Let

4it 2
8 - -- a 2 s

The Doppler bandwidth (BW) is given by

1 d8
BW - L -|t

2r ds! SMNpASA

4"-W 2NpLSA,

2sinT1F

"'P-•A'

where all variables are defined in Section 3.

The resolution, p', in the flight direction is given by

1.4 1. 4XrF

OW 2Np ASAsin nf

where the factor of 1.4 is due to the broadening effect of the Haamming
window.

The azimuth resolution in the direction perpendicular to the
antenna pointing vector is

p =p ,sinflF 1.4 ýrp

2N PASAsinriF
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