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Criteria are developed for measuring information in the randomly right-
censored model. Measures which are appropriate include an extension of Shammon's
:'.E: entropy. The measures are seen to satisfy some fundamental theorems including
1 (i) the uncensored case is always at least as informative as any censored model,
j‘ (ii) information decreases as censoring increases stochastically, and (iii) the
" X information gain is marginally decreasing.
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1. Introduction.

Let xl, xz. ey xn be independent and identically distributed positive
random variables corresponding to the true lifetimes of some items on test. With
every Xi there is a corresponding Yi’ independent of xi. The Yi's are also inde-
pendent and identically distributed on the positive real line. Yi is said to be

the censoring variable. The observations consist of the iid pairs (Zi, 61),

i=1, ..., n, where Zi=min(xi, Yi), Si=I(XsY), and I(A) denotes the indicator
function for the set A. This is the randomly right-censored model.

Typically the goal is to make inferences about some property of the distri-
bution of X. The censoring variable can be thought of as a confounding variable
which inhibits the ability to see X. Suppose it is desired to compare experiments
where different typgs of censoring may take place and then decide which experiment
is preferred. Ohe approach is to use the "information'" in the experiment as a
basis for decision.

The term information was first used by Fisher (1925) to describe the effi-
ciency of an estimator of some parametric component of the unknown distribution
function.

A more common usage of the term is in the field of communication theory
pioneered by Shannon (1948). Shannon's information can be viewed as a measure of
uncertainty as to the outcome of a random variable. In our paper Shannon's mea-
sure is extended to provide a comparison of experiments in the censored model.

In extending Shannon's measure to the censored case and developing other suitable
measures of information, we find that the notion that more censoring should yield
less information is fundamental. This property should hold for any satisfactory

measure of information.

The property of decreasing information as censoring increases has also been
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studied by Lindley (1956), Brooks (1982), and Barlow and Hsiung (1383), all in
the Bayesian context where information is given in terms of expected risk. The
connection between our approach and the Bayesian approach is given by Bernardo
(1979).

Some satisfactory notions of information are developed in Sections 2, 3,
and 4. Each information measure advanced is shown to satisfy Theorems 1.1 and

1.2 below.
Theorem 1.1. E[Information (X)] =2E[Information (Z, 8)] for every X and Y,

Theorem 1.2. E[Information (zl, 61)]:sE[Information (22, 62)] for every X, where

(Zi, Gi) is the censored variable associated with Yi’ i=1, 2, and Yl sst Yz.

The form of the information measure is utilized in the proof. In the dis-

crete case, information takes the form EY[G] where
G(i) = Information (X=j|Y=1, i>j)+ Information (X>i|Y=1).

The first term represents the information in observing the X variable directly.
The second term is the 'partial" information in observing only that X is larger
than the observed variable'Y. Information is given by taking the expectation
over the Y variable. Theorems 1.1 and 1.2 are proved by first showing G(i)
< G(i+1), for every i >0. This says that information is increased if the exper-
iment is observed for the additional time from i to i+ 1. With this preliminary
lemma the theorems follow directly.

While information increases as censoring decreases there are limits to this
increase. Barlow and Hsiung (]983) state "it would be interesting to see when

this (information) gain is marginally decreasing." This leads to the following

theorem.
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Theorem 1.3. Let x(i) be the lifetime variable which is censored deterministi-
cally at time i (Type I censoring). Then for sufficiently large i,
E[Information x(il] is a concave increasing function of i.
| In Sections 2, 3, and 4 various regularity conditions are imposed to obtain
versions of Theorem 1.3 for the particular information measures considered.

In Section 2 Shannon's original measure, entropy, is defined and extended
to the censored case and the three fundamental theorems are proved. In Section
3 a more general class of measures is developed based on the theory of majoriza-
tion. Once again the three basic theorems are proved. In Section 4 Shannon's
measure is shown to be inadequate in the continuous case. Several measures are
developed based on the variance of the lifetimé variable X and the fundamental

theorems are proved.

2. Information in the discrete case.

Shannon (1948) axiomatically derived an information measure which satisfies
some intuitive requirements. Suppose a variable X takes on only two values with
probabilities p and 1 -p. If an information measure is denoted H(p) (or H(X))
then it should satisfy the following requirements:

(i) H(p) 20 for all p, 0<ps1,

(ii) H(%) =1, H(1) =H(0) =0,

(iii) H(X, Y) =H(X|Y) + H(Y) for all (X, Y),

H! where H(X, Y) is the information in the joint experiment (X, Y) and H(X|Y) is the
EQ conditional information in the experiment X, given the outcome of experiment Y.
i Imposing (i) - (iii) leads to the definition of information as
u n
: (2.1) H) =- 1 pylog;py,

..................................
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where 010g20 dt--?fo and p= (pl’ pz, cees pn) with P(X=1i) =P;- The choice of the

base of the logarithm is unimportant and henceforth will be defined as the base
of the natural logarithm. The definition can also be extended to the case where
X has a countably infinite number of support points. This measure is termed
entropy.

For the censored model where X and Y have discrete distributions, let

pi=P(x=i), qi=P(Y=i), then extend (2.1) to:

Definition 2.1. The information in the discrete experiment (X, Y) is

(2.2) H(p, q) = -gqi[j E ipjlogpj +P,, 108P, .1,

vwhere P. = } p..

Our definition of information in the discrete censored case can be inter-
preted as follows. Suppose the censoring variable takes the value i. Then the
information in our observed variable Z is full information, -pjlogpj, if a death
occurs prior to the censoring time. Otherwise we receive partial information,

+1logP +1° Note that if a death and a censorship occur at the same time we
say that a death is observed. The definition follows by averaging over the

censoring times. It is interesting to note that (2.2) is equivalent to Shannon's

mutual information, H(X) - H(X|Z, 8). To see this write H(X) - H(X|Z, 6) as

-)i:pilogpi- erj{pil ogpl'J where 1:j is the probability that (Z, é) =j= (jl’ jz)

vhere j1 =1, 2, ... and j2 =0, 1. Also pili is the concitional probability that
X=1i given that (Z, §8) = (jl’ jz).’ The nmutual information can be rewritten as

2 P; j_log(p:l j_/p .1) where p, j is the joint probability that

[X=1, (2, 8) =y, 1,)]. Note that P[X=1, Z=j, 8=0) =p,q, if i>J,
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}.ﬁt 0 otherwise. Also P[X=1i, Z=j, §=1] =p.1QJ. if i=3j, 0 otherwise. Finally
{, P[z=j, 6=0] =qu3.*1, P{Z=j, 6§=1] "Pij'. With these probabilities (2.2)
= follows from.straightforward calculations.. .
3 Now with this definition for information in the discrete censored case we
e show that the three basic theorems stated in Section 1 hold.
<.
- Theorem 2.2. H(p) 2H(p, q) for all probability vectors p and g.
The theorem states that any amount of censoring reduces information. In
> order to prove this we first prove Lemma 2.3. This lemma has appeared in the
:fii literature in several different forms. Dobru3in (1963) showed that H(p) 2H(£f(p))

with equality if and only if f(p) is a one-to-one function. Khinchin (1957)

showed that if ul\i = A and Ai n Aj =p, i=j, then H(p(Ai)) 2H(p(A)), where Ai repre-

sents a set of support points for X and p(Ai) =P(XeAi) . We prove the lemma di- ]
. rectly. h
» Lenma 2.3. -):p logp. 2 -2 p logp -P, llogF , for every i.

j T H i1

o Proof. Since log x is an increasing function, then log Fi o 2108 Pys jzi+l,
n.::' '
- Hence, {p logp.s ¥ p logp.+ ] p.logP. = ] p.logp.+P, logF i :
= 33 j j<i j j>1 9 is1 jsild Joois is1* .
5 We now proceed with the proof of Theorem 2.2.
® Proof of Theorem 2.2.
-:. H(RD ﬂ) he ’gqi(j z ipj logpj ’Fi 1°gpi41) :
C szqi(-?’jxogpj) =H(p) (from Lemma 2.3.). ||
s
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Next we compare amounts of information available in two models with differ-
ent censoring distributions, one of which is stochastically larger than the

other. First we prove the following lerma.

Lewma 2.4. Let G, = 2'pjlogpj+Pi+110gP.

jsl 1..,1’ men GiZGi‘l’ for i'l, 2’ cee o

Proof. Gi - Gi+1 = -pi‘llogpi a1t Pi+11°gpi+l - Pi+21°gpi +2

= piﬂ(logl’i+1 - logpiﬂ) + Pi+2(logpi+1 - logPi‘*z) 20,
since P, , 2p,,, and P, 2P, .. I

1

We are now ready to prove an analogue of Theorem 1.2.

Theorem 2.5. Let Y1 s§ Yz. Let Yi have outcome probability vector ﬂi’ i=1, 2.

Then H(p, q,) SH(p, q,) for every life distributior vector p.

Proof. From (2.2) we see that H(p, _ch) =-EY (-G), i=1, 2, vhere G is the func-
i
tion defined by G(i) =Gi as in Lemma 2.4, From Lemma 2.4 Gi is increasing (non-

decreasing) in i. Thus Ey (-G) <E, (-6). ||
1 2

Thus we see that our intuition has been justified in the simple case where

L;Z Shannon's entropy is the measure of information. Theorem's 2.2 and 2.5 should

=

, &

- represent a sort of "acid test" for the applicability of any measure of informa-

o tion.

Fi-j'- The condition of stochastic domination of the censoring variables is also y

P - )

;Ij:: necessary. If stochastic domination does not occur then there exists an interval N

b

E}‘ where Y1 ¢ Yz and another interval where Yz ¥ Yl‘ By defining X to have support :

- 3

:.::: only on one of these intervals and applying Theorem 2.5, a contradiction arises. ;]

a

- ‘-*

1
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In a similar fashion stochastically decreasing the lifetime variable X also
yields more information. Note that (2".1) and (2.2) are scale invariant. By
relabeling the axis after stochastically decreasing X and then applying Theorem
2.5 we get analogous x_-esults.

We now establish a parallel for Theorem 1.3.

A

Theorem 2.6. If there exists & k such that for all i>k, p, >p;,,, and T>'k< e-l,
then Gi"Gi¢1 is decreasing (nonincreasing) in i, i>k.

Proof. It is sufficient to show (Gi-l - Gi) - (Gi - Gi+1) 2 0.

(Gj_1=63) - (6; - G;,4) =-P;logp; + Py, 10gP; + 2P, logP, , - F;logP, - P, ,logP, ,

- P - . — -1
zi.’Pi‘_1 - PilogPi- P logPi_l_2 (since P, <e )

logPi‘ is2 k

1
2 z[leogFm - (%) (Fi + th) log{ (%) ('Fi + Fi’z) 1 =zo. ||

The conditions of the theorem assure that the index i is far enough in the

right-hand tail for the marginally decreasing property to take hold.

3. Majorization and information.

¥e wish to consider generalizations of Shannon's entropy measure. In par-
ticular requirement (iii) of Section 2 is not universally accepted, and it is
this requirement which leads to the specific functional form for Shannon's
entropy. By relaxing this assumption we can generalize Shannon's measure. Note

that the information in an event is governed solely by the probability of that

"G G A AR A g e |

&8 .8 Bd 8.

o w E Mmoo

AN event. Thus information in the event labeled i is given by f(pi). Vhat types of
measures perform satisfactorily as measures of information? To answer this |
- |
o :
= !
n i
| ~
;- 1
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question the theory of the majorization ordering is utilized. Majorization is a
powerful tool, useful in proving inequalities. The standard reference on major-
ization is Marshall and Olkin (1979). First we state some definitions and pre-

liminary theorems.

Definition 3.1. Let X, ye Rn, n-dimensional Euclidean space. We say y majorizes

x5 p if
k k
(1) izlymzizlx[i]. k=1, ..., n-1;
and,
n n

where xu] ax[2] ... zx[n], Y[l] zy[Z] 2 ... zy[n] are the decreasing rearrange-
ments for x and y respectively.

An equivalent definition of majorization is given by:

Definition 32 Let x, ye¢ R", Then Zg‘i if and only if t_here exists a doubly

stochastic matrix P, such that x=yP.

»;-"_:-j A matrix is doubly stochastic if each row sum and each column sum equals
i’, _ one. This definition illuminates why majorization is particularly useful in the
E study of information under censoring. The y vector can be thought of as the

é?::- probabilities when a censorship has occurred, that is, (pl’ Pys -++» Pys

9 Pi+1, 0, ...). The x vector is the vector of probabilities of the life distribu-

tion (pl, Py .+..). HNote that

(3~1) (pl’ pz: LICI ) Pip Fi“‘l’ 0: ---)E(Pln Pz) '-')

for every i. The doubly stochastic matrix in this case consists of the

. - - M . L >.‘ '.. .
............ R "-\.-" ..,". - ._..\
VTSP VIR Y W Y
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conditional probabilities of surviving to time j given that the item was censored
at time i, i<j.
Functions which preserve (reverse) the ordering of majorization are called

Schur-convex (Schur-concave).

Definition 3.3. A function f: Rn-bkl is said to be Schur-convex (Schur-concave)

if y¥x implies £(y) 2(s) £(x).

Theorem 3.4. (Schur, 1923, Ostrowski, 1952)., A permutation invariant function
¢ is Schur-convex (concave) if and only if (Zi° zj)(¢(i) (z) - ¢(j)(_z_)) 2(<) 0, where
¢(i) (z) is the partial derivative of ¢ with respect to Z5e

It is useful to identify specific types of functions which can represent
the average information in a random variable.

, v 1,1
Theorem 3.5. (Schur, 1923). Let ¢(x) = ] f(x,) where £: R +R'. Then ¢ is
Schur-convex (concave) if éﬁd only if flissla convex (concave) function.

This provides a basis for constructing information measures with a general
function f£f. Let the information in the occurrence of a death at time i be repre-
sented by f(pi). Two possibilities for classes of information measures can be
obtained as follows. Define A={f: f(x) is decreasing and £(x)/x is concave}
and B={g: g(x) is concave and g(x)/x decreasing}. Then there are the following

two candidates for general information measures,

(3.2) He(p) = Epif(pi), feA,
or
(3.3) Ho(p) = Le(p;), g€B.
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Solomon (1979) uses a measure similar to (3.3) to measure ecological diver-

sity. The measure given by (3.2) will be adopted here as it rerrcscnts the

average information in an experiment and it facilitates the proof of Theorem 3.12.

Definition 3.6. Let p be the vector of probabilities associated with a life

variable X. Then the "f-type" information measure in X is given by (3.2).

Note that from the definition of the class A, Hf(p_) is Schur-concave.

Definition 3.7. Let p and q be the probability vectors associated with X and Y.

Then the amount of information in the censored model is defined to be
(3.4) Hf(n’ ﬂ.) = §q1[5 £ ipjf(pj) + Fi*lf(p-i*l)] ’

where fcA.

Choosing f(x) = -logx gives (2.2), however (3.4) cannot be obtained as a

measure of Shannon's mutual information. Lenceforth, 0£(0) dgfo to fix the

location.

. Y

Lemma 3.8. Ej:pjf(pj) ?.ngpjf(pj) +$i’1f(Fi’1) for every i.

Proof. This follows immediately from (3.1) and the fact that Hf(g) is Schur-

concave. ||
Theorem 3.9. H.(p) 2Hg(p, q) for every p and g.
Proof. The proof is analogous to that of Theorem 2.2. ||

temma 3.10. Let G(f) be a function defined by G(£(i)) -Gf(i) = z pjf(pj) +
- - jsi
Pi#lf(Piol)‘ Then Gi(f) sciﬂ(f)' i=1, 2, ... .
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Proof. Note that (P;, P,s «+s Py,qs Py,p0 05 +:2)

2 (Pys Pys --vs Pys Fi*l’ 0, ...) and that H.(p) is Schur-concave. i

Theorem 3.11. Let Yl and Y2 be censoring variables with probability vectors 9

and 9, respectively. Let Yl sst Yz. Then for every p, Hf(P_, 31) sxlf(n, 32).
Proof. With Lemma 3.10 the proof is analogous to that of Theorem 2.5. ||

Theorem 3.12. If there exists a k such that for all i>k, Py >Pjep° then Gi(f)

is a concave function of i, i>k.

Proof. The proof is similar to the proof in Theorem 2.6. ||
Thus the "f-type" information measures are suitable for the discrete cen-

sored model.

4. Information in the continuous case.

Our goal is to extend our definition to include life distributions which are
continuous. The obvious analogue of Definition 2.1 would be to define H(p(x))
= - p(x)logp(x) dx. However, Example 4.1 shows that such a definition is unsat-

isfectory.

=Ax

Ae "7, 0O<x<o, A>0,

Example 4.1. Let p(x) =

0 otherwise.

Then H(p(x)) = -}';Ae'lx[-xxdogxl dx = 1-logh.
From Example 4.1 it is seen that H(p(x)) 20 if and only if A>e. Thus the
base of the logarithm is crucial in determining a key property of information.

Furthermore H(p(x)) does not have the scale invariant property present in the

discrete case. Finally note that if XA <e, then H(p(x)) <0 so that an observation
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will decrease our knovwledge. All these properties run counter to the properties
which measures of information should possess. Thus H(p(x)) as defined above is
unsatisfactory for defining information.

In order to find a new measure of information, recall the properties Shannon
used to define entropy: (i) H(p) 20, (ii) H(%, %) =0 and H(1, 0) =1 and (iii)
H(X, Y) =H(X|Y) +H(Y). The first two requirements simply fix the scale and thus
are not crucial. It is the third requirement, the so-called additivity criter-
ion, that is crucial in defining entropy. It is desirable to retain this crucial
property in the continuous case. Restricting consideration to functions of the
forn 3(X, EX), where 3(, *) is a metric, leads to H(X) =E(X-EX) =0l (Blyth,
1959). This suggests:

Definition 4.2. Let X be a continuous random variable on the positive real line
with p.d.f. f(i) and finite Qariance. Then the information in X is defined to

be H(X) =H(f) ='f;(x- u)z £(x) dx=a§, where af; xf(x)dx.

Note that information, in any sense, measures the spread of the distribution.
From this it seems unreasonable to expect any measure of information to be scale-
invariant in the continuous case. Thus when comparing measures of information
care must be taken to use the same scale of measurement. Definition 4.2 gives a
measure of information in the uncensored case. Recall that in the discrete case
there is full information if death occurs prior to censorship, and only partial
information, -F;+1log§;+1, otherwise. In the case of censoring the only con-
straint is.that the remaining probabilities sum to §;+1. Note that among all
discrete probability distributions which have probability P remaining, the one

i<
that gives the least amount of information is that which puts its entire remain-

ing mass at a single pcint. This would yield information -3;’110§F

j+1° Thus
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-P logl’ q can be viewed as a type of "worst case" under the probability con-

i+l
straint. With this "worst case' type of reasoning for the variance measure,
information measures can be developed.

In the continuous case, minimizing information is equivalent to minimizing
3(X, EX). Given that the censorship takes place at time c, the constraint is
that the remaining probability, F(c), must be placed in the set A={x: x>c}. It
is easy to show that if c <EX, then 3(X, EX) is minimized by placing all the
remaining mass at EX. If c¢>EX, then 3(X, EX) is minimized by placing all the

mass at ¢. We now give a definition for information in the continuous censored

case.

Definition 4.3. Let X be a lifetime variable with p.d.f. £(x) and finite vari-

ance. Let Y be a censoring variable with p.d.f. g(y). Let
Z={min(X, Y), I(X<Y)) be the observed variable. Then the information in Z is

defined to be:

HDx, 1 =0 (g, g) = L x - W edx s (e - (O 1(c > W)de;

equivalently,
H (£, g) = [Ge(e) [§(x - w2E(xIdx + [g(e) (e - W) *Fle)de.

From this definition results analogous to those of the discrete case are

obtained.

v s v e
.
PN

Lemma 4.4. Let kS_l) s Ig(x- w2£(x)dx + (c - u)zf(c)l(c >u). Then for every c>0,
oizkén.

e, .';;I L

Proof. oi - kf_f’ -fox- W2Ex)dx - (e - W) 2F(e) (e > v). !i
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Case 1. If c<yu, the second term is zero, and o (1) f'(x u) f(x)dxzo.

2

Case 2. 1f c2y, then ox-kf:‘)z(c-u)zf:f(x)dx- (c-w)2F(e) =0. |

Theorem 4.5. HD(x, Y) <H(X).

proof. MY (0 = [{(x - w2E(xdx = [Gg(e) [ x - W2E(x)ax)de
2 [ kM1 =1Vex, vy |

Lemma 4.6. kél) is increasing in c.

Proof. dk‘(:l)/dc = (- 1) 2£(C) - (c - W2E(e)I(c > 1) + 2F(c) (¢ - u) 2T (c > u)
(c-w2E(c) if csy,
2F(c)(c-u) if e>y,

and each expression is positive. ||

Theorem 4.7. Suppose that Yl and Yz arc censoring variables with d.f.'s G1 and

G, respectively. Suppose Y, ¥v,. mhen ) (x, v,) st (x, v,).
Proof. Define a function k(l) by k(n (c) ékgn as defined in Lemma 4.4. Then

Hu)(x, Y,)=E, (k(l)). From Lemma 4.6 the conclusion follows. ||
i

Definition 4.8. X is said to have an increasing failure rate (IFR) if

i -~
¢ .\..-r,- ,.

r(t) = £(t) (F(t))~! is increasing in t.

Theorem 4.9. Let censoring be deterministic at time c and let X be an IFR

variable. If there exists a value A such that £(x) is decreasing for x> A, then

for ¢ sufficiently large,H(l) (X, ¢) is a concave increasing function of c.

Proof. H(l)(x, c) -kf:l) which is increasing from Lemma 4.6,

--------------------------------------------------------------
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.:-E'.:: Computing

% ' ax D ygc=
oA c L 2F(e) - z(c wf(c) for ¢ > p.

2(c - u)f(c) + (c - u) f’(c) for csy,

The first term is negative if f is decreasing, thus we need only consxder the

I second term. We have 2F(c) - 2(c - u)£(c) 20 if and only if (c-u) ' sr(c). But
_ﬁj:EIj (c- u)'l-ro as c+=. Thus if X is IFR and ¢ is sufficiently large, then the
SSE . . ' . Co ' o o 1

inequality holds. ||

Theorem 4.9 shows that more censoring yields less information; however, this
iy relationship is not as strong as one would like. Consider two censoring distri-
butions G

and Gz, where G, is stochastically larger than G2 up to time u and

1 1
equal thereafter. Then the difference in information reduces to

XD

[;(x- u)zf(x) (El(x) - Ez(x))dx. This term is positive from Theorem 4.7 but it
= merely reflects the information in those observations where a death occurred
under Model 1 and a censorship occurred under Model 2. The difference for the
censored observations is zero even though they are stochastically larger in one

case than in the other. This occurs because all censored observations which

- occur prior to time u are shifted to u, regardless of when they actually occur.
«- An alternate measure is sought which will more carefully distinguish among cen-
,:::_‘: sored observations. This can be achieved by a constraint which was previously

S ignored, that corresponding to the value of the mean of the distribution, u.

" Agair, the 'worst case" will be used under this new set of restrictions. Given
m. that censorship takes place at time ¢, consider a new variable, x°. with p.d.f.
‘-.ZT:;-_VZ fo(x), which equals £(x) for x<c, and minimizes I:(x- u)zfo(x)dx, under the
restrictions that I:fo(x) =F(c) and I:xfo(X)dx = I:xf(x)dx. It can be shown that
':L::: fo(x) must put all its mass at the point a(c) = ('l?(c))'lf:xf(x)dx. This gives a
":Z:Z new definition for information.

0
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32-‘ Definition 4.10. Let X, Y, 2 be defined as in Definition 4.3. Then the infor-

' mation in the random variable Z is defined by 1(?) X, Y)

= [58@ [J§x - w2E(x)dx + (alc) - w)2F(e) e,
) _ (c 2 2=
. Lemma 4.11. Let k; =10(x- w) ‘£(x)dx + (a(c) - W)F(¢). Then for every c¢>0,

X 2.,

\; oxzkc .

3 2 ()= 2 2

c Proof. oy -k; = [ (x - u)“£(x)dx - (a(c) - W) °F(e) ‘
2 = [2x- (@) 2e(xdx + 2(a(c) - W [L0x - a(@)) ERIEX - [L(x - a(e)) *(x)ax 20. | 1

= 2) :

- Theorem 4.12. H(X) 2H‘"’/ (X, Y), for every X, Y.

L

. Proof. From Lemma 4.11 the proof is the same as that of Theorem 4.5. ||
"-j Lemma 4.13. k‘(:z) is increasing in c.

¥ Proof. Direct calculations show that dkgz)/dc = £(c) (¢ - w2zo0. I
o,

Theorem 4.14. Let X, Y, Y, be as in Theorem 4.7. Then KD (x, ¥,) st (x, 1,

1 1)
. for every X. :
s :
o Proof. From Lemma 4.13 the proof follows along the lines of the proof of
> Theorem 4.7. || :

Definition 4.15. A random variable is said to have increasing (decreasing) mean :
residual life IMRL(DMRL), if g(y) = (i='(y))’l [‘;F(ys t)dt is increasing (decreasing)

' in y.

:EZ Theorem 4.16. Suppose censoring is deterministic at time c and X is a DMRL var- .
% iable. If there exists a number A such that f(x) is decreasing for all x>A then, }
: for sufficiently large c, H(ZJ (X, ¢) is a concave increasing function of c. X
L N
p7 b
-_— '
:
LY L

- r.;'. h..:;
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Proof. H(z) X, ¢) =k§2) which is increasing by Lemma 4.13. Also dzk‘(:z)/dc2

= 2£(c) (¢ - a(c)) 1 - (F(€)) "2 (~cE()F(c) + a () E()F(e))] + (¢ - a(e)) 2£7(c).

The second term is negative beyond the point A. The first term is negative if
£(c) (’F-(c))'1 < (a(c) - c)'l. We now use the following identity of Meilijson (1971),
g(c)r(c) =1+g”°(c), where r(c) is the failure rate at c, and g(c) =a(c) - ¢ is the
mean residual life function at c¢. If X is a DMRL variable then g“(c) 0. Thus
g(c)r(c) <1 and the conclusion follows. ||

The discrete case can be paralleled in one more fashion. The "worst case"

b scenario is no longer used. Now the remaining mass F(c) is simply moved to the
. point of censoring. Note that this is not the same as in Definition 4.3. There,
t., mass was sometimes displaced to the right. Here, it is always displaced to the

left.

Definition 4.17. Let X, Y, and Z be as in Definition 4.3, Then information in

the variable Z is H(s) X, )= j';g(c) [oif(c) + Ig(x - u:)zf* (x)dx)dc, where u:

= (F(e)) " fCxf (x)ax and £ (x) = £(x) for x<¢, =F(x) for x=c.

*
Lemma 4.18. Let o: denote the variance of the truncated density f . Then
2_ 2
o_S0y.

Proof. Let X, X, be iid copies of X with p.d.f £(x). Then 202 = E(X, - X,)°

and 20:-5()(: - x‘z’) where Xg is the truncated version of xi, i=1, 2. Then

PO T R

letting A= {x1 <e, X,< c}, B= {)(1 <c, X2 ¢}, C= {)(1 2c, X, < c}, and
D={X, 2¢c, xzzc} we have

2072 [, (g = %) 26 0x)) E(x)dx dx, + ff(x, - x,) 2 (x,) £(x,)dx dx,
+ ”C (xy - x,) 2f(xl) f(xz)dxldx2

2 ff, (xy = %) 26 0x ) E(x,)dx dx, + [S(x, - ) 2£x))F()ax,

+ (e - x,) 2E(x,)F(e)dx, = 202, ||

1
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Theorem 4.19. HC)(x, Y) sH(X).

i
%
i
|
Proof. From Lemma 4.18 we have 1

i 13 (x, v - [o8(® [F(C)Of( +F(0) 021

s fo8(e) [F(c)oi +¥F() 6,2(] = 0§ =HX. ||

| j’. Lemma 4.20. a: is increasing in c.

3 —_—

. Proof. Let €y <€yt It is enough to show °§ Sc: . Denote the two random var-
: 1 2

= iables as X_ and X_, then X_ can be obtained from X by truncating X_ at c,.
< c, <, <, <y 1
Lo The desired result follows from Lemma 4.18. ||
Ly Lema 4.21. Let L_=F(c)as+F(c)a>. Then L_ is increasing in c.
k Proof. al-c/dcaf(c) (ui- °¢2:) +F(c) (du:/dc). Now, from Lemma 4.18 and Lemma 4.20,

- dL_/dc20. ||
b Theorem 4.22. Let X, Y;, and Y, be defined as in Theorem 4.7. Then H(®)(x, ¥
A

- shx, v,).

Proof. From Lemma 4.21, the conclusion follows as in Theorem 4.7. ||

- Theorem 4.23. Let X be an IFR variable. Suppose censoring is deterministic at
-‘ : time c¢c. Suppose there exists a value A such that f(x) is decreasing for all
x>A. Then for c sufficiently large, H(S) (X, ¢) is a concave, increasing func-
2 tion of c.

9
"J Proof. H(s) (X, ¢c) = Lc’ which is increasing by Lemma 4.21. Also,

2 a%L_/dc? s -2£(c) (d0%/de) + Fle) (a%0%/dc?).
L | Thus d“’l.c/dc2 <0 if

£(c) (F(e)) ™! 2 F) (3f§ (c - ) *£n)ay) .

& Pt et a®  me e "M o -'.'-:_.'.-"'.--‘ IR SR
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.

The term on the right decreases to zero. Hence since X is an IFR variable, the

el Lo Tt

result holds. ||
It is interesting to note that Rao (1983) also suggests variance as a

measure of ecological diversity. He considers measures of the form

l'.

I Ik(x, Y)ddePy. where k(+, *) is a kernel measuring the distance between X and

Y. Taking k(X, Y)=(X- Y)z gives the variance measure.

IRBIRE T o WIORIREE

* 3
§r
“ate

We also note that alternate proofs of some of our results can be obtained
by using Blackwell's (1951) method for comparing two experiments. For example,

to show that the uncensored case is always at least as informative as any cen-

MR A IR -

sored model, let P denote the distribution of the lifetime variable X, Q the
distribution of the independent censoring variable Y. Transform X to (Z, §) by
(Z=X, §=1) if X<Y*, (Z=Y*, §=0) if X>Y*, where Y* is independent of X and

has the distribution Q.
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.
.
D
) h
. ™
.
» .
d
Al
Y >
S ;
o 4. >
.. -
- »
‘. ‘F ‘
4. L4 L
“ rd
> ’
+
. '
' -
%‘
! ‘s

N T T e T T e L AN T AT N
AT R I TR

,P"(.' LR AP A ""-.¢~."’ . ) '_'.."- N T A \“.*‘- e
- 4 4 Al LI .

" PG TN SN
\"h"--""



v TV T Ladar atiet” e et il a i Sl el aiei d A alii i odr S AR =l o B g Bee Jany et Aok St -Sei-Aek Skt Pulk Sk iRk Sk Sk B R AR Ak A v D A i A R

References

- Barlow, R. and Hsiung, J. (1983). Information in a Life Test Experiment.

= The Statistician 32, 35-45.
ﬁ:; Bernardo, J. (1979). Expected Information as Expected Utility. Ann. Statist. 7,
B 686-690. .

Blackwell, D. (1951). Comparison of Experiments. Proc. Second Berkeley Symp.
Math. Statist. Prob. Univ. California Press. 93-102.

- Blyth, C. (1959). Note on Estimating Information, Ann. Math. Stat. 30, 71-79.

o Brooks, R. J. (1982). On the Loss of Information through Censoring. Biometrika
; 69, 137-144.

Dobrusin, R. L. (1963). General Formulation of Shannon's Main Theorem.
Amer. Math. Soc. Transl. 33, 323-428.

| Fisher, R. A. (1925). Theory of Statistical Estimation. Proc. Cambridge Philos.
- Soc. 22, 700-725.

Khinchin, A. I. (1957). Mathematical Foundations of Information Theory.
Dover, New York.

o Lindley, D. L. (1956). On a Measure of Information Provided by an Experiment.
Ann. Mathc Stato -2_7-’ 986‘1005.

Marshall, A. and Olkin, I. (1979). Inequalities: Theory of Majorization and
- its Applications. Academic Press, New York.

)
- Meilijson, I. (1972). Limiting Properties of the Mean Residual Lifetime Function.
2y Ann. Math. Stat. 43, 354-357.
:% Ostrowski, A. M. (1952). Sur Quelques Applications des Convexes et Concaves au
f{f Sens de I. Schur. J. Pures Appl. 31, 253-292.
‘éf ' Rao, C. R. (1983). Convexity Properties of Entropy Functions and Analysis of
o Diversity. University of Pittsburgh Technical Report 83-11.
7$i Schur, I. (1923). Uber eine Klasse von Mittelbildungen mit Anwendungen die
- Dieterminaten. Theorie Sitzungsber Berlin Math. Gesellschaft 22, 9-20.
L J

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System
Technical Journal 27, 379-423.

- Solomon, D. L. (1979). A Comparative Approach to Species Diversity. Ecological
- Diversity in Theory and Practice (eds. Grassle, et al.). International
Cooperative Publishing.

.

-, s .

R P R ¢‘ AR, Ve e ATt i__‘._‘_- ST \-. PR LI S UL S T ST I UL I TR SN e A
AN NN LA -:_-- ~ \1-. QLS ‘,"'. AT N T _"- e “{.‘2:" \_,_'_.' R R R A AR, .‘r-.




~ - PP T Ty T e L
i AR A LAt h s Sk e e Eh g fe e AT e B b B-B g d-fl gl gt aagy P R R L T - (i ae gl S
-
o o
-
~

LK

ATLTTY CLASSIFICATION 6F THIS PAGE
REPORT DOCUMERTATION PAGE
EPURT T BER 2. GOVT ACCESSION WO, 3. PECIPIERT'S CATALTL (UFEER
"FSU M701 ) )
AFOSR 85-177 4y PSSl Yy o
TITLCE {and subtitle] 5. TYPE F REPURT # PERI(N COVERED

Technical

Inf_ormation in Censored Models 6. PERFDRHI“G DRG. REPURT N‘MBER [

AUTHOR('s) 8, COHTRACT OR GRAMT HUMBER(s)
Myles Hollquer, Frank Prcschan, and AFOSR F49620-85-C-0007
James Sconin
PERFORMING ORGAMIZATION MATE A ADDRESS (0. PROARAM MEAT, PROJECT, TASK
Department of Statistics ARES, 2 UORK UNMIT nNHMRERS
Florida State University
Tallahassee, FL 32306
CONTROLLING OFFICE VAME AHD ADDRESS 12, REPORT DATE
The U.S. Air Force June, 1985
Air Force Office of Scientific Research 13, 1UrBER OF PAGES
Bolling Air Force Base, DC 20332 20
TOrTTORTHG AGEFCY NAGE % ADNRESS (if 16, SECURTTY CLASS. (of this report)

different from Controlling Office)

SCHFDULF

NISTRIBUTIO STATEHFTT (of this report)
distribution unlimited

DISTRIRUTION STATEMENT (of the ahstract entered in Block 20, if different from report)

SUPPLEVIEHTARY WOTES

KEY HORNDS

Information, randomly censored model, majorization

\HSTRACT (Continue on reverse side if necessary and identify by block number)

Criteria are developed for measuring information in the randomly right-
censored model. Measures which are appropriate include an extension of Shannon's
entropy. The measures are seen to satisfy some fundamental theorems including 1
(1) the uncensored case is always at least as informative as any censored model,

(ii) information decreases as censoring increases stochastically, and (iii) the
information gain is marginally decreasing.

AN . B W
R R PR I RIS ORI R A T N O P I T NI O
)1'5 &’_& '-'L‘)}.‘:»"-' 4, _:‘ ."$'\_ . )'.4-"),‘-'.'- AR T IR T A R DAL Wiy AL Uy S DN Y AT YT NI e e WP e ¥ el




"y

4

Ce

=

anTRELrL
.'.‘ .h-“.'\'\..‘ K
- - - iy
15 T R N N
AL WOATYSY




