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Information in Censored Models

by

Myles Hollander, Frank Proschan, and James Sconing

- I Florida State University

Abstract

Criteria are developed for measuring information in the randomly right-

censored model. Measures which are appropriate include an extension of Shannon's

entropy. The measures are seen to satisfy some fundamental theorems including

(i) the uncensored case is always at least as informative as any censored model,

(ii) information decreases as censoring increases stochastically, and (iii) the

information gain is marginally decreasing.
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1. Introduction.

Let X Xn be independent and identically distributed positive

random variables corresponding to the true lifetimes of some items on test. With

every Xi there is a corresponding Yi, independent of Xi. The Yi's are also inde-

pendent and identically distributed on the positive real line. Yi is said to be

the censoring variable. The observations consist of the iid pairs (Zi, 8i) ,
i=1, ..., n, where Zi =min(Xi, Yi), 6i =I(X < Y), and I(A) denotes the indicator

function for the set A. This is the randomly right-censored model.

Typically the goal is to make inferences about some property of the distri-

bution of X. The censoring variable can be thought of as a confounding variable

which inhibits the ability to see X. Suppose it is desired to compare experiments

where different t s of censoring may take place and then decide which experiment

is preferred. One approach is to use the "information" in the experiment as a

basis for decision.

The term information was first used by Fisher (1925) to describe the effi-

ciency of an estimator of some parametric component of the unknown distribution

function.

A more common usage of the term is in the field of coummmication theory

pioneered by Shannon (1948). Shannon's information can be viewed as a measure of

uncertainty as to the outcome of a random variable. In our paper Shannon's mea-

sure is extended to provide a comparison of experiments in the censored model.

In extending Shannon's measure to the censored case and developing other suitable

measures of information, we find that the notion that more censoring should yield

less information is fundamental. This property should hold for any satisfactory

measure of information.

The property of decreasing information as censoring increases has also been



-2-

studied by Lindley (1956), Brooks (1982), and Barlow and Hsiung (1983), all in

the Bayesian context where information is given in terms of expected risk. The

connection between our approach and the Bayesian approach is given by Bernardo

(1979).

Some satisfactory notions of information are developed in Sections 2, 3,

and 4. Each information measure advanced is shown to satisfy Theorems 1.1 and

1.2 below.

Theorem 1.1. E[Information (X)] ._E[Information (Z, 6)] for every X and Y.

Theorem 1.2. E[Information (Zl, 61)] s E[lInformation (Z2, 62)] for every X, where

(Zi, 6i) is the censored variable associated with Yi, i = 1, 2, and YI 2 "

The form of the information measure is utilized in the proof. In the dis-

crete case, information takes the form Ey[G] where

G(i) = Information (X =j Y =i, i > j)+ Information (X > iY= i).

The first term represents the information in observing the X variable directly.

The second term is the "partial" information in observing only that X is larger

P,.. than the observed variable*Y. Information is given by taking the expectation

over the Y variable. Theorems 1.1 and 1.2 are proved by first showing G(i)

< G(i 1), for every i> O.. This says that information is increased if the exper-

iment is observed for the additional time from i to i+ 1. With this preliminary

* lemma the theorems follow directly.
r--w

.

While information increases as censoring decreases there are limits to this

increase. Barlow and Hsiung (]983) state "it would be interesting to see when

this (information) gain is marginally decreasing." This leads to the following

theorem.

.i~i...............,-...-..........-... .............................. ............................ .. :......
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Theorem 1.3. Let X(i) be the lifetime variable which is censored deterministi-

cally at time i (Type I censoring). Then for sufficiently large i,

E[Information X( ] is a concave increasing function of i.

In Sections 2, 3, and 4 various regularity conditions are imposed to obtain

versions of Theorem 1.3 for the particular information measures considered.

In Section 2 Shannon's original measure, entropy, is defined and extended

to the censored case and the three fundamental theorems are proved. In Section

3 a more general class of measures is developed based on the theory of majoriza-

tion. Once again the three basic theorems are proved. In Section 4 Shannon's

measure is shown to be inadequate in the continuous case. Several measures are

developed based on the variance of the lifetime variable X and the fundamental

theorems are proved.

2. Information in the discrete case.

Shannon (1948) axiomatically derived an information measure which satisfies

some intuitive requirements. Suppose a variable X takes on only two values with

probabilities p and I- p. If an information measure is denoted H(p) (or H(X))

then it should satisfy the following requirements:

(i) H(p) >0 for all p, 0<p 1,

(ii) H(h) a 1, H(l) *;H(0)a 0,

(iii) H(X, Y) =II(XIY) +11(Y) for all (X, Y),

where H!(X, Y) is the infornation in the joint experiment (X, Y) and H(XIY) is the

conditional information in the experiment X, given the outcome of experiment Y.

Imposing (i) - (iii) leads to the definition of information as

n
(2.1) H() = pilog2p i'

:;i i--,- i-," -2121:- )." ??? .... :i?-.-- .. --. . :i. .°.'-. : ..';'.'..:,. . -'-i-i.'-' '-i- -'--i- 'i. ,'.i:.i,'," .Z--l.:
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defwhere =og2 0 =e0 and p= (pl 2 P.) with P(X=i) =pi. The choice of the

L
base of the logarithm is unimportant and henceforth will be defined as the base

of the natural logarithm. The definition can also be extended to the case where

X has a countably infinite number of support points. This measure is termed

entropy.

For the censored model where X and Y have discrete distributions, let

Pi = P(X wi), qi =P(Y= i), then extend (2.1) to:

Definition 2.1. The information in the discrete experiment (X, Y) is

(2.2) H(p, gj=-Xqi[ pj ogpj 4 Og ]

- where P. p..

Our definition of information in the discrete censored case can be inter-

preted as follows. Suppose the censoring variable takes the value i. Then the

information in our observed variable Z is full information, -pjlogpj, if a death

occurs prior to the censoring time. Otherwise we receive partial information,

-V. ElOgPi~l. Note that if a death and a censorship occur at the same time wei+1 il

say that a death is observed. The definition follows by averaging over the

censoring times. It is interesting to note that (2.2) is equivalent to Shannon's

- mutual information, H(X) -H(XIZ, 6). To see this write H(X) -H(XIZ, 6) as

-Pilogp - , rj1Piilogpi where rj is the probability that (Z, 8)i JL=(il' j2)

where j = 1, 2, ... an =0, 1. Also is the conditional probability that

X =i given that (Z, 6) = (j1 , J2 ) " The mutual infornation can be rewritten as
I p log(p /pir ) where p_ is the joint probability that

4 ijij i~ 12.

(Xfi, (Z, 8)=(j I , .2 . Note that P[Xzi. Z=J, 8-0)=p i qj if i>j,

E. -.. ,...

I-." ', - -"-: _: - "" ,""""" " """''""" :""""" , "". :X .. :L - - 2_. -- . . .
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0 otherwise. Also P[X=i, Z=j, 8 =11=p. if i=j, 0 otherwise. Finally
P[Z=j, 6=0]=qjP +1, P[Z=j, aw1]=pj.. I'ith these probabilities (2.2)

follows fron. straightforward caiculations...

Now with this definition for information in the discrete censored case we

show that the three basic theorems stated in Section I hold.

Theorem 2.2. H(pQ) H(p, a) for all probability vectors p and q.

The theorem states that any amount of censoring reduces information. In

order to prove this we first prove Lemma 2.3. This lemma has appeared in the

literature in several different forms. Dobrugin (1963) showed that H(p) H(f(p))

with equality if and only if f(p) is a one-to-one function. Khinchin (1957)

showed that if uA. =A and A n A. =0, is j, then H(p(A )) 2H(p(A)), where A repre-

sents a set of support points for X and p(Ai)= P(Xc Ai). We prove the lemma di-

rectly.

Lemma 2.3. -j'logpj > ;i j Og p j " P+ 1 log i 1,. for every i.

Proof. Since log x is an increasing function, then log P 1 zlog pj, j2!i +l.

Hence, lp.logp. ipjlogpj + I PjlogvP.+, I pjlogpj +Vrillgvi+l- 1

We now proceed with the proof of Theorem 2.2.

Proof of Theorem 2.2.

HQ.., _q - qi( I p logpj Vp lfogmi a2 )

- "."- ,,".-. ". S,. . l. "o:.,' I pj", "° .. ". -)..H .p). (.f.r.om Le ...m.a . 2 2.. 2-g-.. e.g. ....-. z. " % ' .,.'.,.."
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Next we compare amounts of information available in two models with differ-

ent censoring distributions, one of which is stochastically larger than the

other. First we prove the following lenma.

Lemma 2.4. Let G= pj logp .P-i+lOgP i+1  Then Gi 2 Gi+1 , for i -, 2,.

Proof. G i Gi+l a Pi+ll°gPi+l + Pi+llgPi*,l " i+2Il gP i+2

= Pi+l(logPi+l - logPi+l) + -i+2(logPi+l " logP,,+2) 2 0'

since P 2i Pi+l and P+ 1 '-i2*

We are now ready to prove an analogue of Theorem 1.2.

Theorem 2.5. Let Y1 sY Let Y have outcome probability vector i 1, 2.

Then H(Q, _qI) H(p, _2) for every life distributiov vector £"

Proof. From (2.2) we see that HQ, q ) =fy (-G), i=l, 2, where G is the func-P -

tion defined by G(i) = G. as in Lemma 2.4. From Lemma 2.4 Gi is increasing (non-

decreasing) in i. Thus EY (-G) sEY (-G). Ii
1 2

Thus we see that our intuition has been justified in the simple case where

Shannon's entropy is the measure of information. Theorem's 2.2 and 2.5 should

represent a sort of "acid test" for the applicability of any measure of informa-

tion.

The condition of stochastic domination of the censoring variables is also

necessary. If stochastic domination does not occur then there exists an interval

where YIs SY2 and another interval where -2s YI. By defining X to have support

only on one of these intervals and applying Theorem 2.5, a contradiction arises.

• .- o - . . - - .. -.-. . . . . ..-.. . . ... .-' "- -' +.'-.. " . . ". " . . ." '.''+,." S . ""

"+ ' ." ,+ " -" +' " + '- ' '' . .."" " " " '' " . - ''+" -' ' + ," +" "" + "" """. ." -. ".".. .".".". .". .-.. . .,."+' -- - ".,"'
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In a similar fashion stochastically decreasing the lifetime variable X also

yields more information. Note that (2.1) and (2.2) are scale invariant. By

relabeling the axis after stochastically decreasing X and then applying Theorem

2.5 we get analogous results.

ie now establish a parallel for Theorem 1.3.

Theorem 2.6. If there exists a k such that for all i> k, pi >p i ,, and k < e

then G - CGi+I is decreasing (nonincreasing) in i, i >k.

Proof. It is sufficient to show (Gi G. )-( i -G G ) O.

(G Gi) - (Gi - Gi I ) =-pilogpi + pi+llogPi+l + 2Pi+llogi - l0T - --i+21og Pi+2

a2P i+logPi 1 PilogP. - P l+21ogf' 12 (since Pk < e )

2:2[I. logvyl-M(.+F 1+i2
i+1 i~l o C'2Cgi )log{C )(g i * i2] 0. II

The conditions of the theorem assure that the index i is far enough in the

right-hand tail for the marginally decreasing property to take hold.

3. Majorization and information.

We wish to consider generalizations of Shannon's entropy measure. In par-

ticular requirement (iii) of Section 2 is not universally accepted, and it is

this requirement which leads to the specific functional form for Shannon's

entropy. By relaxing this assumption we can generalize Shannon's measure. Note

that the information in an event is governed solely by the probability of that

event. Thus information in the event labeled i is given by f(pi). What types of

measures perform satisfactorily as measures of information? To answer this

-.......

".
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question the theory of the majorization ordering is utilized. Hajorization is a

powerful tool, useful in proving inequalities. The standard reference on major-

ization is Marshall and Olkin (1979). First we state some definitions and pre-

liminary theorems.

Definition 3.1. Let x, ye Rn, n-dimensional Euclidean space. We say Y majorizes

x (a x) if

k k
(1) Y[i] k=l, ... , n-i;

and,

n n
(2) X y= isi=1 i=1

where x[) >[2] ..' 'x [n] , Y[1] [2] > '''1 y(n] are the decreasing rearrange-

ments for x and y respectively.

An equivalent definition of majorization is given by:

nDefinition 3.2. Let x, yeRn . Then yTx if and only if there exists a doubly

stochastic matrix P, such that x=XP.

A matrix is doubly stochastic if each row sum and each column sum equals

one. This definition illuminates why majorization is particularly useful in the

study of information under censoring. The y vector can be thought of as the

probabilities when a censorship has occurred, that is, (pl' P2  . Pi$

P i+l' 0, ... ). The x vector is the vector of probabilities of the life distribu-

tion (N' 2' "")" Hote that

"-(3.1) (Pl', P2' "'Pi, Pi~l' 0, .. )(pl, P2 ""

for every i. The doubly stochastic matrix in this case consists of the

-0 ' - ," , , - ",": " - : "- " - - - "- L 'l.',,i .i -'"- 'm ",,',,-''"": , :,A'
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conditional probabilities of surviving to time j given that the item was censored

at time i, i <j.

Functions which preserve (reverse) the ordering of majorization are called

Schur-convex (Schur-concave).

Definition 3.3. A function f: Rn R1 is said to be Schur-convex (Schur-concave)

if y x implies f( () f(x).

Theorem 3.4. (Schur, 1923, Ostrowski, 1952). A permutation invariant function

is Schur-convex (concave) if and only if (zi - zj) (i) () (j) (_) >() 0  where

¢(i) (z_) is the partial derivative of 0 with respect to z.

It is useful to identify specific types of functions which can represent

the average information in a random variable.
n

Theorem 3.5. (Schur, 1923). Let f() (xi) where f: R I 1  Then is

Schur-convex (concave) if and only if f is a convex (concave) function.

This provides a basis for constructing information measures with a general

function f. Let the information in the occurrence of a death at time i be repre-

sented by f(pi) . Two possibilities for classes of information measures can be

obtained as follows. Define A ={f: f(x) is decreasing and f(x)/x is concave)

and 8 -(g: g(x) is concave and g(x)/x decreasing). Then there are the following

two candidates for general information measures,

(3.2) Hf() -pif(pi ) , f A,

or

(3.3) Hg( 9 W gCPi), g C R.

IL

K '4
.~h % . ~ *~. . ..4 . . . . . -.. . .. -. -, - .-. ,. 4. ,.-.
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Solomon (1979) uses a measure similar to (3.3) to measure ecological diver-

sity. The measure given by (3.2) will be adopted here as it reprcscnts the

average information in an experiment and it facilitates the proof of Theorem 3.12.

Definition 3.6. Let p be the vector of probabilities associated with a life

variable X. Then the "f-type" information measure in X is given by (3.2).

Note that from the definition of the class A, Hf(p) is Schur-concave.

Definition 3.7. Let p and _ be the probability vectors associated with X and Y.

Then the amount of information in the censored model is defined to be

(3.4) H Q, Eq. I p. f (p..)

where f c A.

Choosing f(x) =-logx gives (2.2), however (3.4) cannot be obtained as a

measure of Shannon's mutual information. Henceforth, Of(O) 0 to fix the

location.

Lemma 3.8. lpif pi) Z +Fi+lf(i+l) for every i.

Proof. This follows immediately from (3.1) and the fact that Hf(p) is Schur-

concave. I

Theorem 3.9. Hf( ) Hf(p, 3 for every p and 3.

Proof. The proof is analogous to that of Theorem 2.2. II

Lema 3.10. Let G(f) be a function defined by G(f(i)) uGf(i) u pjf(pj) +

P. lfCP ). Then G,(f) G j+C, i- l, 2, ...
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S. Proof. Note that (p.p...., i2 0 *

<(PIk 2' "'" i l 0, ...) and that Hf(V is Schur-concave.

Theorem 3.11. Let Y and Y be censoring variables with probability vectors

and %2 respectively. Let YI s Y2 " Then for every p, Hf(p, l) Iif(p, se).

Proof. With Lemma 3.10 the proof is analogous to that of Theorem 2.5. I"

Theorem 3.12. If there exists a k such that for all i >k, Pi Pi+l, then Gi(f)

is a concave function of i, i >k.

Proof. The proof is similar to the proof in Theorem 2.6. fl
Thus the "f-type" information measures are suitable for the discrete cen-

sored model.

4. Information in the continuous case.

Our goal is to extend our definition to include life distributions which are

continuous. The obvious analogue of Definition 2.1 would be to define H(p(x))

= "f p(x)logp(x) dx. However, Example 4.1 shows that such a definition is unsat-

isfectory.

AeA x, O<x<c, X>O,
Example 4.1. Let p(x) =1

0 otherwise.

Then H(p(x)) z- Xe' Xx[-Xx+logX] dx 1-1ogX. p

From Example 4.1 it is seen that H(p(x))zO if and only if X >e. Thus the

base of the logarithm is crucial in determining a key property of information.

Furthermore H(p(x)) does not have the scale invariant property present in the

discrete case. Finally note that if ) e, then H(p(x)) 9 0 so that an observation

" . .. . .. ". .-" -'' "X . .- " .' " ' . ' '." , ... .. , , " , 2 2 . 4 .. . .. " ". .'" " '2 ". ' ' '.' "... '... ... . . . " ". .' '., , . ¢ ..- . ¢,I ,, - ,-, '. _ . ., ¢ _
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will decrease our knowledge. All these properties run counter to the properties

which measures of information should possess. Thus H(p(x)) as defined above is

unsatisfactory for defining information.

In order to find a new measure of information, recall the properties Shannon

used to define entropy: (i) H(p) ;O, (ii) H(h, ) =0 and H(1, 0) =1 and (iii)

H(X, Y) -H(XIY) +H(Y). The first two requirements simply fix the scale and thus

are not crucial. It is the third requirement, the so-called additivity criter-

ion, that is crucial in defining entropy. It is desirable to retain this crucial

property in the continuous case. Restricting consideration to functions of the

2 2form B(X, EX), where B(-, -) is a metric, leads to H(X) -E(X- EX)2=o ] (Blyth,

1959). This suggests:

Definition 4.2. Let X be a continuous random variable on the positive real line

with p.d.f. f(x) and finite variance. Then the information in X is defined to

be H(X) =H(f) = (x- _U) 2 f(x) dx=caa2, where pf xf(x)dx.

Note that information, in any sense, measures the spread of the distribution.

From this it seems unreasonable to expect any measure of information to be scale-

invariant in the continuous case. Thus when comparing measures of information

-,-p- care must be taken to use the same scale of measurement. Definition 4.2 gives a

*measure of information in the uncensored case. Recall that in the discrete case

there is full information if death occurs prior to censorship, and only partial

information, -Pi+llogPi+ , otherwise. In the case of censoring the only con-

straint is.that the remaining probabilities sum to i Note that among all
i+.

discrete probability distributions which have probability Pi*l remaining, the one

C- that gives the least amount of information is that which puts its entire remain-

ing mass at a single point. This would yield information -P illogVi+I  Thus
. i T
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-Pi llogVi. 1 can be viewed as a type of "worst case" under the probability con-

straint. With this "worst case" type of reasoning for the variance measure,

information measures can be developed.

In the continuous case, minimizing information is equivalent to minimizing

a(X, EX). Given that the censorship takes place at time c, the constraint is

that the remaining probability, f(c), must be placed in the set A =(x: x >c1. It

is easy to show that if csEX, then 3(X, EX) is minimized by placing all the

remaining mass at EX. If c> EX, then 3(X, EX) is minimized by placing all the

mass at c. We now give a definition for information in the continuous censored

case.

Definition 4.3. Let X be a lifetime variable with p.d.f. f(x) and finite vari-

ance. Let Y be a censoring variable with p.d.f. g(y). Let

Z (rmin(X, Y), I(X &Y)) be the observed variable. Then the information in Z is

defined to be:

H (1) (X, Y) - H(1) (f. g) =Fog (c) [J (x - u)'f (x) dx (c - )2F(c)lI(c > 1j)]dc;
0r

equivalently,

g)u g(c)Jc(x_ - )2 f(x)dx. Jfg(c)( a 2 ~~c

From this definition results analogous to those of the discrete case are

obtained.

Lama 4.4. Let k( 1)  f (x)dx Cc i)2 F(c)I(c > i). Then for every c > 0,

Proof.a 2.Le k~) JLx- P a)2 f (x)dx . -U 2-Ic>1)
a2 Xk c.

i l " ' m - - k " " ' - "- =' - - - * ' '- ' - -- - "-"" °' ' '''c'" : 1 ;
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Case 1. If c <U, the second term is zero, and a 2- k(1 u) r(x V)2f(x)dx:0.

X cc cCase 2. Ii,f then Ox2-k,~1)Cc-ii) 2Jf~x)dx- c-) 2g(c)zO. I

, Theorem 4.S. H(1)(X, Y) SH(X).

Proof. H(1)(x) fo(X- j)2f(x)dx, aog(c)[o(x- p)2f(x)dx]dc

> f0g(c)[kc(1 )dc"H(1 )(X, Y). II

Lena 4.6. k(I) is increasing in c.S" C

fc)

Proof. dk(1)/dc =(c -U ]2f(c) - (c - )f(c)I(c > v) 2'(c) (c - u)2

(c-U) 2f(c) if c<,r

12F(c) (c -p) if c >,

and each expression is positive. II

Theorem 4.7. Suppose that Y, and Y2 are censoring variables with d.f.'s GI and

G2 respectively. Suppose Y s1  
Y  Then H(1) (X, Y1) SH

(1 ) (X, Y2).

Proof. Define a function k(1) by k(1)(c) =k 1 ) as defined in Lemma 4.4. Then
c

H'1)(X, Y)- Ey.(k(l)). From Lemma 4.6 the conclusion follows. if1

Definition 4.8. X is said to have an increasing failure rate (IFR) if

r(t) = f(t) (F(t))-1 is increasing in t.

Theorem 4.9. Let censoring be deterministic at time c and let X be an IFR

variable. If there exists a value A such that f(x) is decreasing for x> A, then

for c sufficiently largeH (X, c) is a concave increasing function of c.

Proof. H(Il)(X, c) k(1) which is increasing from Lemma 4.6.
c

q~~~~~~~~~~~~~~~~~~.'.-.'."..•.'. _.'......."....'........'....................... ".....-...... '... . . ....o-
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Computing df 2f,(c
"""2(c - U) f (c) *(c - U) 2,() for c < p,

-2F(c) - 2(c - ) f(c) for c> U.

. . The first term is negative if f is decreasing; thus we need only consider the

second term. We have 2F(c) - 2(c - u)f(c) k 0 if and only if (c - ) r(c). But

(c-U) *lO as c- . Thus if X is IFR and c is sufficiently large, then the

inequality holds. II

Theorem 4.9 shows that more censoring yields less information; however, this

relationship is not as strong as one would like. Consider two censoring distri-

butions GI and G20 where G1 is stochastically larger than G2 up to time u and

equal thereafter. Then the difference in information reduces to

o(x- U)2 f(x)(Gl(x)- U2(x))dx. This term is positive from Theorem 4.7 but it

merely reflects the information in those observations where a death occurred

under Model 1 and a censorship occurred under Model 2. The difference for the

censored observations is zero even though they are stochastically larger in one

*case than in the other. This occurs because all censored observations which

occur prior to time u are shifted to u, regardless of when they actually occur.

" An alternate measure is sought which will more carefully distinguish among cen-

"': sored observations. This can be achieved by a constraint which was previously

ignored, that corresponding to the value of the mean of the distribution, U.

Again, the "worst case" will be used under this new set of restrictions. Given

that censorship takes place at time c, consider a new variable, XO, with p.d.f.
30

SO(x), which equals f(x) for x< C, and minimizes (x- p) 2fE0 (x)dx, under the

*. : restrictions that J f 0(x) F(c) and J.xf0 (x)dx I xf (x)dx. It can be shown that

fo(x) must put all its mass at the point a(c) = ((c))'lrxf(x)dx. This gives a

new definition for information.

V-

" -...-. . • .. " ". '* ... . . . . .. . • . , . •,- ,. '. - . . . . .. '.- . . . . : .. 2.
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* Definition 4.10. Let X, Y, Z be defined as in Definition 4.3. Then the infor-

mation in the random variable Z is defined by H(2)(X, Y)

Og (C)[f(x- ~ 2f (x) x+ (a (C) _J 1 2 F(c)Jdc.Lemma- 4.1 e ~22

Lamma 4.11. Let k(2) . Io(x" U)2f(x)dx + ( (c) - 1) FCc). Then for every c > 0,

a 2>k (2)

Proof. a X k c) b(x _ ) 2 f (X) d (0(C) 2yi)

2 .
J(x -tQc) f (x)dx +2(ot(c) -v)J r(x -. a(c)) f(x)dx - JC(x _a(c)) 2f(x)dx 0.

Theorem 4.12. H(X)>H (2 )(X, Y), for every X, Y.

Proof. From Lemma 4.11 the proof is the same as that of Theorem 4.5. H

Lemma 4.13. k is increasing in c.
c

Proof. Direct calculations show that dk (2)/dc- f(c)(c- v)2 ko. It

Theorem 4.14. Let X, Y1 1 Y2 be as in Theorem 4.7. Then gC2)(X, YI) 1 H(2)(X, Y2)

for every X.

Proof. From Lemma 4.13 the proof follows along the lines of the proof of

Theorem 4.7. H

. Definition 4.15. A random variable is said to have increasing (decreasing) mean

residual life ITRL(DM4L), if g(y)= (f(y)) f t)dt is increasing (decreasing)

in y.

Theorem 4.16. Suppose censoring is deterministic at time c and X is a DMRL var-

iable. If there exists a number A such that f(x) is decreasing for all x> A then,

for sufficiently large c, H (2)(X, c) is a concave increasing function of c.

..-. , • .,. '.. ... ,.. .,,... .. ... . . . , - ' ,,.' -.. -,, , . ..,.- .. , -%,. . .. ,,. . .. ,. . .,,' ',,.. ,,,, ,,% , . % .

a, .,,.••. . .. .--- , . , ,•• " " " '. . . . "-"- :._: .. . . :.: '.,. ,. . .,:e,. ,: "'-
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Proof. H(2 (X, c) =k( 2) which is increasing by Lemma 4.13. Also d 2k 2 /dC2
C

2fc(-~)[- - 2 2
2f)(c) (c -a(c)) c1 - (+ (c)f( (c))I + (c -a(c)) f'(c).

The second term is negative beyond the point A. The first term is negative if

f(c)(F(c)) "  (cg(c) - c) 1. We now use the following identity of Meilijson (1971),

g(c)r(c) = 1 + go(c), where r(c) is the failure rate at c, and g(c) a(c)- c is the

mean residual life function at c. If X is a DMRL variable then g"(c)s 0. Thus

g(c)r(c) < 1 and the conclusion follows. II

The discrete case can be paralleled in one more fashion. The "worst case"

scenario is no longer used. Now the remaining mass F(c) is simply moved to the

point of censoring. Note that this is not the same as in Definition 4.3. There,

mass was sometimes displaced to the right. Here, it is always displaced to the

left.

Definition 4.17. Let X, Y, and Z be as in Definition 4.3. Then information in

th aibl sHM M Y) - o C r2- 1: 2*
the variable Z is H(X(1, Y)J0g~c[ (c) + JO(x- pi)2f (x)dx]dc, where uc

(F(c)) 1Jxf (x)dx and f (x) -f(x) for x<c,=F(x) for xac.

2
Lema 4.18. Let a denote the variance of the truncated density f . Then

2 2
oc X.

Proof. Let X I, X2 be iid copies of X with p.d.f f(x). 
Then 2a2E(XI- X2 )

2

and 2a2 =E(X- x) where Xc is the truncated version of Xi, i -i, 2. Then

lettinf A=( 11<c, X2 c, B=(Xl<c, 12<c1, C-{XI- c, X2 <cC1, and

D-{Xl Z c, X2  c ) we have

a 20 >A(X 1 -x2 ) f(x 1 )fx 2 )dXldx 2  ffB(xl- x2 ) f(x1)f(x2 )dxdx2
2

+ ffC (xI - x2 ) f(x 1 1)f(x 2) dxldx2
x) 2f(x1)  )d c (x c) 2f(Xl)V(c) dx1

zfAx x2 ff(x1 -2 0 ) -

JAC(Xl -x )f(x 2)dldx2 *0l-

0J.(c-x 2) 2f(x2 ) 2

-*-.-,-...*Xc,-
.,.. '
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Theorem 4.19. H(3)X, Y)4H(X).

Proof. From Lemma 4.18 we have
HM )  O)g 0(c) IF (c)a + 7F(c)a]2 2 2

gcc) RCc) o~x + cC)oxi. ox H(X). .

2
Lemma 4.20. a is increasing in c.

2 2Proof. Let c1 <c 2. It is enough to show c1 e. Denote the two random var-

iables as X and X c, then XC can be obtained from XC by truncating Xc2 at c1.
1 C2  CC 2  2

The desired result follows from Luma 4.18. II

Lemma 4.21. Let L cF(C)2 +-( c2 . Then Lc is increasing in c.
c (cCX+Fco Te

Proof. A /dcuf(c)(a2  2 + F(c) (do2/dc). Now, from Lema 4.18 and Lema 4.20,

dLc/dc 0. II

Theorem 4.22. Let X, YI, and Y2 be defined as in Theorem 4.7. Then H (X, Y)
H (3) (X, Y2).

Proof. From Lemma 4.21, the conclusion follows as in Theorem 4.7. i

Theorem 4.23. Let X be an IFR variable. Suppose censoring is deterministic at

time c. Suppose there exists a value A such that f(x) is decreasing for all

x >A. Then for c sufficiently large, H(3 (X, c) is a concave, increasing func-

tion of c.

Proof. H (Xc, ) - L c which is increasing by Lemma 4.21. Also,

d2L /dc2 ! -2fCc) (do2/dc) F(c) (d2 2 /dc2
c c o )

Thus d2L /dc2 &0 ifc
-1 Pc)rf(cy 2  -1f(C)F~c)- k~c)31C~-y)f(y)dy]-
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The term on the right decreases to zero. Hence since X is an IFR variable, the

result holds. II

It is interesting to note that Rao (1983) also suggests variance as a

measure of ecological diversity. He considers measures of the form

Jfk(X, Y)dPxdPy, where k(., -) is a kernel measuring the distance between X and

2Y. Taking k(X, Y) = (X- Y) gives the variance measure.

We also note that alternate proofs of some of our results can be obtained

by using Blackwell's (1951) method for comparing two experiments. For example,

to show that the uncensored case is always at least as informative as any cen-

sored model, let P denote the distribution of the lifetime variable X, Q the

distribution of the independent censoring variable Y. Transform X to (Z, 6) by

(Z=X, 6=1) if X Y*, (Z=Y*, 6=0) if XY*, where Y* is independent of X and

has the distribution Q.

Acknowledgments. We are grateful to Ian McKeague for helpful comments and to

Prem Goel for a useful discussion concerning the relationship of our approach to

David Blackwell's method of comparing two experiments.
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