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* Foreword

* ~The Naval Ocea Reserch and Development Actvity has been investigating
a possibe application of the airborne electromagnetic method to bathymetric
charting in a shallow ocean. There is a strong Navy requirement for a rapid,
airborne, shaow-ocean bathymetric measurement method that will supple-
ment or even replace the traditional shipborne acoustic sounding methods
that are tmcsuigand often not suited to shalow coastal are.. Periodical

* ~and repetitive bathymetric mapping of heavily trafficked shallow-oceanreis
is necessary for meeting specific Bleet requirements and for monitoring bot-
tomn sediment moviements, ship lane maintenance, and a variety of geotechnial
operations, as well as for routine charting.

R. P. Onorati, Captain, USN
Commanding Officer, NORDA



Executive summary

An experimental airborne electromagnetic (AEM) survey was carried out
in the Cape Cod Bay area to investigate the potential of extracting bathymetric
information for a shallow ocean. A commercially available Dighem III AEM
system was used for the survey without any significant modification. The
helicopter-borne system operated at 385 Hz and 7200 Hz, both in a horizontal
coplanar configuration. A concurrent ground truth survey included exten-
sive acoustic soundings, as well as spot water conductivity measurements,

0Because of a lack of knowledge about the absolute system calibration figures,
an acoustic-sounding calibration was made for each flight line using a small
portion of AEM data to derive the zero-level signal, amplitude, and phase
calibration factors for each coil pair. The interpreted bathymetric profiles
show excellent agreement with corresponding acoustic depth profiles up to
one (possibly more) skin depth of the source frequency. It is envisioned that

* with further improvements in hardware and software, the bathymetric resolu-
tion may extend beyond the skin depth. AEM data can also produce (as by-
products) conductivity profiles of both seawater and bottom sediments that
may find potential applications in mine warfare and offshore geotechnical
engineering works.
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Airborne electromagnetic bathymetry

Introduction zero-level signal of the receiver coils. In addition, three

The Naval Ocean Research and Development Activity short calibration flights were made in a location about

(NORDA) has been investigating a possible application 15 km east of the Cape, where the bathymetric chart in-
of the airbom electromagnetic (AEM) method to dicated water depth in excess of 60 n. These data were

bathymetric charting in a shallow ocean. There is a strong intended to be used for determining the absolute calibra-

Navy requirement for a rapid airborne and cost-effective tion constants for amplitude and phase of each coil pair

shallow-ocean bathymetric method capable of supplement- on an assumption that the water body below may be con-

ing or even replacing the traditional shipb, ne acoustic sidered a uniform conductive half-space. It turned out.
sounding methods, which are time-consuming and often however, that this calibration method is not accurate
not suited to shallow coastal areas. Periodical and repetitive enough for the bathymetric processing. As discussed in
bathymetric mapping of heavily trafficked shallow-ocean "Data Calibration," both zero-level signal and
regions is necessary for monitoring bottom sediment amplitude/phase calibration constants are derived from a
movements, ship lane maintenance, and a variety of small portion of each actual flight line data.
geotechnical operations, as well as for routine charting. Figure 2 shows a raw AEM data profile accompanied

by a corresponding radar altimeter profile along Line 5021
(see Fig. I for location). Clearly, the AEM data are over-

Test survey In Cape Cod Bay whelmingly correlatable with variations in altitude. A very
crude indication of water depth may be observed from
the ratio of the quadrature component to the inphase corn-

S The test survey area and the AEM flight fines are shown ponent of the 385-Hz data: the ratio increases with a
in Figure 1. All flights and ground truth surveys were decreasing water depth. Unfortunately, this relationship
performed during a 3-day period in June 1984. The AEM is highly nonlinear. Even though the aircraft altitude is
system used was a commercially available Dighem III, maintained mostly within a 10-m range (between 40 m
described in detail by Fraser (1978, 1979, and 1981). The and 50 in), the corresponding variations of the AEM

* system was equipped with two horizontal coplanar coil responses amount to more than 500 parts per million
pairs operating at 385 Hz and 7200 Hz. Both pairs had (ppm). Owing to the high water conductivity, errors in-
an 8-m coil separation (an additional coaxial coil pair duced by inaccurate altimetry pose a critical problem. At
operating at 900 Hz was deactivated due to an electronic a 45-m bird altitude, a 1% altitude change at a given water
malfunction). depth of 10 m generates amplitude differences of 22 ppm

The sensor platform, or bird, towed by a Sikorsky S58T at 385 Hz and 33 ppm at 72(0) Hz. It can also be shown
twin-engine helicopter using a 30-m cable, maintained an that, for a 1-m depth change at the same water depth of
average altitude range between 40 m and 50 in above the 10 m, the predicted amplitude differences amount to
sea surface. The aircraft altitude was measured by a radar only 10 ppm at 385 Hz and 0 ppm at 7200 Hz.
altimeter (Sperry Model 220 mounted on the aircraft) that Since the employed radar altimeter has a specified ac-
had a manufacturer-specified accuracy of 5%. A total of curacy of 5%, it soon became evident that the radar
about 20 line-kin AEM data consisting of 13 segment altitude cannot be trusted for the bathymetric processing.

C profiles was obtained in three sorties in less than 7 hours. Instead, a new algorithm was developed to use the 72()
The sampling rate was I sec, corresponding to about 50 Hz response to derive the electromagnetic altitude dur-
m along the ground track (about a 3 km/min ground ing the inversion process. The new altitudes thus derived
speed). The maximum water depth in the survey area is show fairly random zero-biased differences (with respect
about 40 m, according to the bathymetric chart (NOAA to the radar altitudes) whose rms amounts to about 2-3%.
Chart 13,246). Navigation was originally planned to employ a Del

C The flight plan included data collection before and after Norte navigation system supported by three ground
each profile at an altitude of about 270 in to calibrate the transponders. Excessive distances caused poor reception:

C
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Figure 2. Raw AEM and radar altitude data along Flight Line 5021.

therefore, a LoranC system was instaled on site with a Interpretation
makeshift arrangement of a printer that produced coor-
dinates at a 5-sec interval. These were later interpolated The high conductivity of seawater (between 3 and 5
to produce 1-sec interval coordinate data corresponding mhom, depending on salinity and temperature with no
to the AEM data rate. fresh-water inlets) severely restricts the ability of EM waves

A ground truth bathymetric survey concurrent with to penetrate the water. Bathymetric range and resolution
the AEM flights was carried out using an acoustic depth are, therefore, primarily governed by the source frequen-
sounder. A total of about 120 line-km depth profiles was cy. Figure 3 shows the skin depths in a frequency range

• obtained, which covered about 60% of the AEM flight between 40 Hz and 40 kHz for assumed water conduc-
area. Unfortunately, due to many practical reasons, the tivities of 2, 3, 4, and 5 mho/m.
flight lines and the ship track did not coincide and were For the employed frequencies of 385 Hz and 7200 Hz
often more than 500 m apart. Therefore, the best available for seawater with a conductivity of 4 mho/m, we may,
ground truth still reflects another interpolated approxima- therefore, expect skin depth of 12.8 m and 3.0 m, respec-

tion (unless the bottom topography fluctuates rapidly, the tively. From Figure 3 the source frequency obviously

ground truth is considered to be accurate within 1 to 2 m). should be less than 100 Hz to achieve a depth range of

Spot measurements of water conductivity were made 50 m or more.
at eight different locations along the ship track at a 3-m Fundamental equations for the magnetic field generated
depth. They ranged between 4.0 mho/m and 4.12 mho/m. by a vertical magnetic dipole located at or above the sur-
While these values may be fairly representative for deep face of a layered earth are given by Kozulin (1963) and

water, there are considerable uncertainties over very Frihkneckt (1967). The mutual coupling ratio for a

shallow water (< 3 m) where water temperature may rise horizontal coplanar configuration, used for the present
significantly during the day (particularly during sunny days frequency-domain AEM system, is defined as the ratio
in June, as in this case). A mere 40C difference in the of the total magnetic field (H) to the primary field (HP:

water temperature at a given salinity can result in as much 00
as a 10% change in water conductivity. Unfortunately, H,/e = I - a3 X2 R (, d, o, a2, b, )9 J, Ow) Ano ground truth measurements were made during the X

survey to confirm this possibility. (1)

.. 3
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The integral in Equation (1) can be evaluated by the linear total change corresponding to a water depth change from
digital filter method (Koefoed et al., 1972). We used the 10 m to 50 m amounts to about 100 ppm. In general,
filter coefficients published by Anderson (1979b) for the this response increases proportionally to the inverse cube
Hankel transform integral. of the bird altitude. It is obvious, therefore, that the record-

* The first term in Equation (1) representing the primary ing device must have much larger dynamic ranges than
field is customarily bucked out during measurements, and that used for land survey.
only the second term representing the ocean response is Various inversion techniques are presently available to
recorded in a ppm unit. Figure 5 shows computed inphase solve for the unknown parameters in Equation (1). These
and quadrature frequency responses in a range of 40 Hz include predominantly several variations of the least-squares
to 40 kHz for various water depths up to 50 m for a 50-m method, including the Marquardt algorithm (Marquardt,

* bird altitude, an 8-m coil separation, and conductivities 1963; Anderson, 1979a) and, occasionally, applications of
of water and sediment 4 mho/n and 1 mho/m, respectively, the generalized inverse theory (Backus and Gilbert, 1967;

Compared with normal land survey, the ppm responses Fullagar and Oldenburg, 1984; Son, 1985).
over an ocean are extremely high due to the highly con- The Cape Cod test data were initially interpreted and
ductive seawater. It is also noted that the responses are reported by Fraser (1985) using a least-squares algorithm
critically sensitive to the bird altitude. The inphase response by Anderson (1979a). Subsequently, the data were
increases with the source frequency while the quadrature reprocessed at NORDA using a different Marquardt least-
response peaks approximately at a frequency at which the squares algorithm, notably Subroutine ZXSSQ in the IMSL
water depth equals the corresponding skin depth. This package. The inverted bathymetry in both cases agreed
is previously explained theoretically by Won (1980). approximately in trends with known bathymetry but

Since we are concerned with the differential changes showed a considerable static bias that often exceeded 5-10
* in the response for varying bathymetric depth, we pre- m. Further careful inspection of the least-squares inver-

sent Figure 6, which shows the differences of the ppm sion results leads us to the following conclusions:
responses with respect to an infinitely deep ocean having * Computer inversion time is unacceptably long: one-
the same 4 mho/m conductivity. We now notice that the point inversion of the two-frequency data consumes

AEMB RESPONSE(PPM) Inphase: Q----- Quad
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C Figure 5. AEM bathymetric responses expressed in ppm for water depths of 10 m, 20 m, 30 m, 40 m and 50 m. The bird
altitude is assumed to be 50 m, the coil separation 8 m, water conductivity 4 mho/m, and sediment conductivity I mbo/m.
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P from 5 sec to 1 min on a VAX 11/780 computer, even error. Under this circumstance, a low-pass filtering of the
when the water depth is the only sought parameter, inverted profile is justifiable to countermeasure the ran-
while all other parameters are prescribed and fixed. dom data errors.

-AEM response is too sensitive to the bird altitude An inversion algorithm using a modified Newton-
to accept the specified 5% accuracy of the radar Raphson method is then applied to the data. Initially, we
altimeter used for the survey, derive the sensor altitude and water conductivity from

" Both the water and the sediment conductivities must the 7200-Hz data and, subsequently, water depth and bot-
be allowed to float albeit in constrained ranges. tom conductivity from the 385-Hz data. Inversion time

• The AEM bathymetric profiles reported here are derived for deriving all four parameters amounts to 0.5 to 2 sec
from yet another method: analytic solutions of on a VAX 11/780 computer. The analytic method, as
simultaneous nonlinear equations. At each data location, in the least-squares method, also requires initial guesses
we have four measured quantities; i.e., inphase and and, to ensure physically acceptable solutions, reasonable
quadrature components at two frequencies. From this data solution constraints. The constraints used for the final proc-
set we derive exact solutions of four parameters: water essing of the Cape Cod data follow.
depth, water conductivity, sediment conductivity, and elec- 0 Water conductivity (a,): 3-5 mho/m
tromagnetic altitude. When unconstrained, the solutions * Sediment conductivity (02): 0.01-2 mho/m
are exact (since the number of knowns and unknowns is * Water depth (d): 0-50 m

" the same), resulting in zero residuals regardless of data 0 Altitude (h): positive
error. However, severe data error may produce physical- Spot measurements of water conductivity at a 3-m depth
ly unacceptable solutions (e.g., negative depth or conduc- at eight locations ranged from 4.0 to 4.12 mho/m. No
tivities). While least-squares methods (in which the number bottom sediment conductivity data are available. However,
of knowns is usually much more than that of unknowns) an extensive in situ study by Hulbert et al. (1982) off the
may produce a stable solution set (even though its rms Florida coast shows a common range of 0.4 mho/m to

. error may be high) from a noisy data set, the present 1.4 mho/m within the first 5-m depth, decreasing only
analytic approach is understandably sensitive to data slightly with increasing depth of burial.

AEMB RESPONSE(PPM) Inphase: ------ Quad
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Figure 6 AEM bathymetric response expressed in ppm for water depths 10 m, 20 m, 30 m, 40 m and 50 m relative to
. an infinitely deep water. The bird altitude is assumed to be 50 m, coil separation 8 m, water conductivity 4 mho/m, and

sediment conductivity I mho/m.
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The inversion process is initiated as follows: For the Calibration factors for selected profiles are listed in Table
very first point, we prescribed starting values of a, = 1. We note that the amplitude correction factors range
4 mho/m, or, = 1 mholm, d as read from the between 0 and 7%, the phase correction between 20 and
hydrographic chart, and b as indicated by the radar 50, and the zero-level correction between -28 and -2
altimeter. Once the process starts, the solution set at the ppm. Such insignificant corrections may be quite ignorable
present location is prescribed as the initial parameters for for many routine mining exploration problems where only
the next location. Thus, after the first data point of a pro- relative anomalies are sought.
file, the interpretation becomes completely autonomous. The calibration constants are derived as follows: to stand-

We present only the bathymetric results. Presentation ardize the process, we choose an arbitrary 50-data point
of other parameters will be dealt with in a separate report. profile segment (about 2.4 km long for the present data)
It is noted, however, that (1) the derived electromagnetic over a relatively flat and deep ocean where an average
altitude is well within ± 1 m of the radar altitude (less water depth is known. For each data point, we then
than the manufacturer-specified 5 % error), (2) water con- prescribe a, = 4 mho/m, a 2 = 1 mho/m, and h = the
ductivity is mainly 4 :t 0.2 mho/m except for very shallow- radar altitude. The last is the only parameter that varies
water regions, and (3) bottom sediment conductivity ranges for each data point. Using these prescribed parameters,
between 0.5 mho/m and 1.5 mho/m in most profiles. we subject the entire segment data set to the Marquardt

least-squares inversion to derive the best fit amplitude,

Data calibration phase, and zero-level values. Because of the large data set,
From the beginning it was realized that using an ex- the inversion produces very stable calibration factors. Theseisting commercial frequencydomain AEM system designed calibration factors are applied to each raw data profile

for over-the-land survey posed a serious problem in before the final inversion process. It should be pointed

establishing the zero-level signal, and gain and phase out that this known-depth-point calibration method also

calibration factors. Exploration geophysicists usually pay compensates for the tidal fluctuation, which amounted to

more attention to relative anomalies than to their absolute a maximum height of 2.8 m during the 7-hour flight

values. In the AEM bathymetric survey, we face the period.

challenge of determining the absolute values. Obviously such a hindsight calibration technique is unac-

An initial attempt to use a set of uniform calibrations (de- ceptable: a future production AEM bathymetry system

rived from the deep ocean data) for the entire survey data must contain an automatic electronic calibration capabili-

produced unsatisfactory results: while the AEM bathyme- ty. It should be noted, however, that the data used for
tryppro xuifaty folloedulnownilepthprfles, t at n- the calibration comprise only a fractional segment (abouttry approximately followed known depth profiles, it mani- 10%) of a given profile; thus, most of the profile is not

fested significant static bias often amounting to 5-10 m. drcl i enedfby th scheme.

For the Cape Cod test data, we experimented with three directly influenced by the scheme.

0 different calibration techniques, viz, zero-level calibra-
tion only, amplitude/phase calibration, and zero-levelI
amplitude/phase calibration. Of these, the last approach Results
turned out to be superior to others in inversion results Figure 7 shows the interpreted AEM bathymetry for
and was adopted for the final processing. Line 5021 (see Fig. 1 for location). The solid line represents

Table 1. Cape Cod AEM data calibration constants.

385 Hz 7200 Hz

Line
Ampl Phase Zero level (ppm) Ampl Phase Zero level (ppm)

(deg) Inphase Quad (deg) Inphase Quad

5021 1.063 2.56 0 -17.1 1.089 2.91 0 -12.7
5031 1.028 3.68 0 - 2.4 1.056 4.30 0 -13.3
5041 1.072 5.20 0 -27.5 1.099 4.90 0 -277
5051 1.025 3.49 0 - 5.0 1.054 4.30 0 -173
1021 1.040 -0.61 0 38.6 1,078 2.77 0 -14 0

5082 0.996 2.54 0 - 4.3 1.036 2.39 0 - 3.3

7
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Figure 7. AEM batbymetric profile for Line 5021 along with radar altimeter profile. Solid line represents AEM batbymetry;
while solid circles represent depths obtained from a shipborne acoustic profiler Small numerals at bottom are the flight fiducials.

the water depth inferred from the AEM data. Solid circles sources are likely related to the altimeter resolution and
denote the depths determined from acoustic profiles, to such bird attitude uncertainties as pitching and yaw-
Depths are computed at approximately 50-m intervals. ing associated with the aircraft altitude variations. The

• Small numerals at the bottom are the flight line fiducials bird attitude can be monitored in the future using in-
representing every 20th data point. The profile length is clinometers whose output can be incorporated into the
about 20 km. interpretation (Son, 1985).

The agreements are excellent up to a water depth cor- Such an oscillatory behavior can sometimes be sup-
responding to about one skin depth (12.8 m) of the 385-Hz pressed if we use instead a least-squares inversion method
signal. In fact, the agreements up to this depth are well when a sufficient number of redundant measurements is
within the interpolation accuracy of ground truth data. available. The resultant solutions in this case will carry
Below the skin depth we notice progressively degrading large rms errors, yet may give a deceptively smooth solu-
resolution resulting in oscillatory bathymetric profiles. Such tion profile (errors never die; they simply become hidden
oscillatory behaviors over deep water in the process). The present analytic inversion method

" are common to all AEM bathymetric profiles obtained produces zero-residual solutions that fit the observed data
in the Cape Cod Bay, regardless of the measurement errors. Although the two

- exhibit more or less the same rate of degradation with approaches are equivalent in the sense of error budgeting,
*depth, the analytic inversion method appears to be superior in
" are strongly correlated with variations in the aircraft field logistics and in computational speed.

altitude, and Figure 8 shows the interpretive error profiles for Line
' appear to be of random Gaussian error (not rigorous- 5021. The top figure shows the difference between the

ly determined). radar altitude and the electromagnetic altitude derived from
In essence, the oscillatory behavior is a direct result of the 7200-Hz record. The differences are mainly less than

the decreasing signal-to-noise ratio with respect to the 1 m, except toward the shoreline where water becomes
altitude uncertainty. At a 20-m depth, for instance, the very shallow and where the interpretative model for the
maximum theoretical 385-Hz response (against an infinitely AEM data fails. While the differences appear to be ran-
deep water) is expected to be about 10 ppm (Fig. 6), while dom, they are fairly correlatable with the altitude changes.
a mere 0.2-m error in altitude will result in the same It is understandable that when aircraft altitude changes,
amount of difference in response. Since the bathymetric the air speed in general also changes, thus resulting in
errors appear to be random, yet strongly correlated with changes in the towing angle which, in turn, produces a
the aircraft altitude, we tentatively conclude that the error relative motion between the aircraft (on which the altimeter

8
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is mounted) and the bird. This relative motion appears to perform a low-pass filtering of the interpreted
to be responsible for the differences. Mounting the bathymnetric profile to render smooth appearances. To this
altimeter on the bird may help to resolve this problem end, we applied to Line 5021 a simple, equal-weight,
in the future. I1-point running average filter to produce Figure 9. Figures

If we assume that the oscillatory behavior of the AEM 10-14 show additional AEM bathymetric profiles produced
bathymetry (Fig. 7) is of random nature, we are justified by the above described procedure. The same 11 -point filter

AEMB LINE: 5021
Altimneter Difference(m)

God-

7200z Residual

0

*0 Isi' ni
Distance(Km)

Figure 8. Interpretative error profiles for Line 5021. Top graph shows the differences between the radar altitude and the
electromagnetic altitude deduced from the 7200 Hz data. The rest shows differences between measured EM responses and
computed EM responses for 385 Hz and 7200 Hz records.
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30-
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Figure 9. AEM bathymetric profile for Line 5021 after applying an IlI-point running average filter. Solid circles represent
acoustic depths.
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Figure 10. AEM bathymetry profile for Line 5031. Solid circles represent acoustic depths.
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Figure 11. AEM bathymetry profile for Line 5041. Solid circles represent acoustic depths.

- has been applied to all profiles. Where the ground truth Conclusions
survey was not performed, we show water depths as read

" from the bathymetric chart. From our experience through the Cape Cod AEM
A composite of seven AEM profiles is shown in Figure bathymetry experiment, we summarize some of the er-

- 15. We notice striking details of the sea bottom mor- ror sources that degrade the bathymetric resolution:
phology showing subtle trends and developments of slopes, * calibration errors: amplitude, phase and zero-level;
trenches, and shoals. The fact that each profile is in- 0 error in the interpretative ocean model, particularly
dependently derived and yet shows remarkable correla- assuming the vertically homogeneous bottom sediment
tions with neighboring profiles renders further credence layer;
to the AEM results. * altimeter error;

-" 10
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Figure 12. AEM b hbynsery prowil for Line 5051. Solid circls represent acoustic depths.
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Figure 13. AEM bsflbmetry profile for Line 1021. Solid circles represent acoustic depths.

* measurement error due to pitching and yawing of the accurate bathymetric charts over a shallow ocean (perhaps
bird-negligible up to 100 if the bird altitude is 50 up to 100 m in depth). Compared with the traditional
m or higher; acoustic sounding techniques, the AEM method can pro-

C * ground truth interpolation error due to noncoincidence vide an order-of-magnitude faster survey speed at a reduced
of tracks by boat and aircraft; cost and thus yield a synoptic knowledge of ocean-bottom

*electronic measurement noise. topography. With improved interpretation schemes, even
Most of the above error sources can be significantly re- real-time data processing appears to be a realizable goal.
duced through improvements in equipment and interpreta- In addition, the method has potential applications to
tion software. remote measurements of electrical conductivities of ocean

C It is envisioed that with additioal research and develop- water and bottom sediments. The bottom sediment con-
ment efforts, the AEM method will be able to produce ductivity, in particular, is closely related to certain

( 11
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Figure 14. AEMbathymetry profile for Line 5082. Solid cirdes represent uater depths read from the bathymetric chart (NOAA
chart: 13,246).

Covrnoosite of AEM Bothymety Profiles from the Cope Cod Bay
20 1P f61 I 4
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Figure 15. A composite of seven AEM bathymetry profiles from the Cape Cod Bay.
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