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ABSTRACT

The problem of automatic collision-free path planning is central to robile
robot applications.-ITdthis report'-we presents.an/approach to automaticpath
planning based on a quadtree representation., I e introduce hierarchical path
searching methods, whicn make use of this multiresolution representation, to
speed up the path planning process considerably. Finally, Ne discuss the applica-
bility of this approach to mobile robot path planning..
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1. INTRODUCTION

The problem of automatic collision-free path planning is central to mobile

* robot applications. Path planning for mobile robots is in many ways different

* from the more familiar case of path planning for manipulators (see also the dis-

cussion in lThorpe84] ). For example:

* (1) A mobile robot may have only an incomplete model of its environment,

perhaps because it constructs this model using vision and thus cannot deter-

mine what is occluded by an object.

(2) A mobile robot will ordinarily negotiate any given path only once (as

opposed to a manipulator which might perform the same task thousands of

times). This implies that it is more important to develop a negotiable path

quickly than it is to develop an "optimal" path, which is usually a costly

operation.

(3) A mobile robot will be moving according to a previously computed path

while it is computing an extension or modification to that path; also the

path being developed may change as more information about the environ-

ment is discovered. Thus, path planning in mobile robots is a continuous

online process rather than a single offline process as in the case of a manipu-

lator.

Conventional path planning algorithms can be divided broadly into two

* categories. In the first category are the methods which make trivial (if any)

changes to the representation of the image map before planning a path. The reg-

* ular grid search [Thorpe84] and vertex graph methods [Moravec81l 'Thompson77]

1I
-. . . . -qi* *.. .. '' .< . *. * * * * *



[Nilsson8g] fall into this category.

Though these methods keep the representational cost to a minimum, their

*. applicability to mobile robot navigation is limited. For example, the regular grid

search is (Wallace831 (Thorpe841 "too local" and its path planning cost increases

with grid size rather than with the number of obstacles present. Further, both

*" regular grid search and vertex graph methods generate paths which clip obstacle

corners.

The methods in the second category make elaborate representation changes

* to convert to a representation which is easier to analyze before planning the path.

Free space methods [Brooks83a], medial axis transform methods, Voronoi

methods, etc., fall into this category. A potential practical shortcoming of such

methods for mobile robot navigation is that the path planning cost is still very

high because of the representation conversion process involved.

Though the above two categories by no means exhaust the existing methods

• "(there are configuration space methods that use a vertex graph approach

.* ILozano79] and others that use a free space approach ILozano81] to solve the

manipulator findpath problem), they do point out that what mobile robots need

may be a compromise between these two categories.

It is these considerations that motivated the multiresolution (hierarchical)

representation based path planning algorithms described in this report (see also

[Davis85l). Similar considerations also led to the use of hierarchical representa-

tions in manipulator "findpath" problems (see Section 4 for a discussion of

*" related work). In this report, we first develop a method of path planning for
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mobile robots using a hierarchical representation based on quadtrees and then

describe staged search as a way of exploiting the hierarchical nature of the

representation to gain substantial computational savings. Throughout this report

we restrict our attention to two-dimensional path planning without rotation and

a vehicle with circular cross-section.

Section 2 develops a quadtree planning algorithm based on A* search. Sec-

tion 3 presents a staged (hierarchical) path planning algorithm which has compu-

tational advantages as compared to the pure A* search on quadtrees. The

staged search involves inclusion of gray nodes in the search. Section 4 discusses

related work and finally, Section 5 summarizes the conclusions reached from this

research and discusses future directions. In the remainder of this section we

define some terms used in these discussions.
2

Quadtree related terminology:-(A quadtree is a recursive decomposition

of a 2-D picture into uniformly colored 2' X2' blocks). (e.g., see Figure 2.1)

[Samet83]. A node of a quadtree represents a 2J X 2 square region of the pic-

ture. A free node of a quadtree is a node of the quadtree representing a region of

freespace. An obstacle node is a node representing a region of obstacles. A gray

node is a node representing a region having a mixture of freespace and obstacles.

A leaf node of a quadtree is a tip node of the tree. In ordinary quadtrees, leaf

nodes are always obstacle nodes or free nodes, but in pruned quadtrees (see

below), they may also be gray nodes. For any gray node G, S(G) denotes the

subtree rooted at G. L (G) denotes the number of leaf nodes in S (G). The gray

content of a gray node G is defined as the number of obstacle pixels in the region

3
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represented by G, and the grayness of G is the percentage of obstacle pixels in

that region.

A pruned quadtree, QP, of a quadtree, Q, is generated by making some of

the gray nodes, G i, into leaf nodes, thus pruning the subtrees, S (Gi ), rooted at

the G1 . The pruned quadtree, Q. thus represents the same space as Q, but with

a reduced resolution.

A" terminology: A" is a classical minimum cost graph search algorithm,

whose optimality properties are well known [Nilsson80]. In this algorithm OPEN

is a list consisting of all the nodes in the search graph that are generated but not

yet expanded. CLOSED is the list of nodes in the graph that have been

expanded. Best node is the node that is currently being expanded in the search.

This node has the best evaluation (i.e., minimal path cost) among the nodes on

OPEN. The predecessor of a node N in the search graph is the node preceding

N on the current best path to N (from the start node).

o-p
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* 2. QUADTREE BASED PATH PLANNING

2.1. Representation preprocessing

We have developed an algorithm for mobile robot path planning based on a

quadtree representation of the robot's immediate environment. If there are large

areas of free space (or of obstacles) then those areas can be represented by a few

large blocks in the quadtree and can be dealt with as units by the planning algo-

rithm.

Given a binary array or raster representation of a robot's immediate

environment we first grow the obstacles by the radius of robot's cross-section

[Moravec8l] and then convert the raster into a quadtree representation using a

raster to quadtree conversion algorithm [Samet8l]. This algorithm is of complex-

ity 0 (n) where n is the number of pixels in the image being converted. In the

*i resulting quadtree blocks of O's represent free space nodes and blocks of l's

represent obstacle nodes.

In the second stage of preprocessing, we compute the distance transform of

* the set of O's, i.e., the free space blocks. This determines, for each block of free

space, the minimal distance between the center of that block and the boundary

of a block of obstacles. Samet [Samet82a] describes an algorithm for computing

this distance transform for quadtrees which is of complexity 0 (n), where n is

now the number of leaf nodes in the quadtree.

S. .



* 2.2. Path planning algorithm

Given the start and goal points, we first determine the quadtree leaf nodes,

* S and G, representing the regions of the image containing these points. Next,

* we plan a minimum cost path between S and G in the graph formed by the

* non-obstacle leaf nodes of the quadtree, using the well known A* search algorithm

* with the evaluation function f of a node c defined as

f (c) g(c )+ h (c)

*Here g (c ) represents the cost of the path from S to c and h (c) represents the

heuristic estimate of the cost of the remaining path from c to G.

Since the cost of a path should depend both on the actual distance travelled

along the path and the clearance of the path from the obstacles, we define g (c)

- a

g (c) g (P) + g(p,c)

where g (p) is the cost of the path from S to c 's predecessor, p , on the path and

* ~ (p, c ) is the cost of the path segment between p and c . The latter function in

turn is defined as

(p, c)D (p, c)+ ad(c)

with D (p ,c) representing the actual distance between nodes p and c , given as

half the sum of the node sizes, and d (c) representing the cost incurred by includ-

ing node c on the path. d (c ) depends upon the clearance of the node c from

ithe nearby obstacles. We chose a linear shape for the cost function d, defining
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.............................................................................................

.....................................................................

Sincethe.ost....... h.. huld.epen... th.n.. e.actal.dstanc.traelle

along the pth and theclearance.o.the.path..om.t.e.obsacles,....efine ...( *

" ** ) -.) (p



d(c) as

d(c) o,,m - o(c)

- where o (c) is the distance of the node c from the nearest obstacle given by the

quadtree distance transform, and 0 max is the maximum such distance for any

node in the quadtree (so that d (c) is always positive), a in the equation for

(p, c ) is a positive constant which determines by how far the resultant path

will avoid obstacles.

Finally, h (c) is calculated as the Euclidean distance between the midpoints

of the regions represented by c and G. Clearly, this measure is a lower bound

on the actual minimum cost path between c and G; thus an A* search with this

* measure as its heuristic estimate is admissible. The power of this heuristic

* depends upon the average deviation of the minimum cost path from the straight

line path. It is highest for the case where a is zero and decreases as a increases.

It is of course possible to use more informed, but inadmissible, heuristics to speed

up this search.

The node expansion process involves finding the non-obstacle leaf nodes

adjacent to the the node being expanded. We accomplish this by using a neighbor

finding strategy similar to that given by Samet [Samet82b] with two differences.

* First, only the neighbors in the horizontal and vertical directions are

. considered-diagonal neighbors, which share only single points with the current

node, would result in inflexible paths which clip obstacle corners. Secondly, when

one of the neighbors given by the quadtree neighbor finding algorithm is a gray

7
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4.

" node, we find the non-obstacle leaf nodes, if any, of the quadtree rooted at that

gray node that are adjacent to the node being expanded and consider them as

- neighbors.

The result of applying the above A* algorithm to the quadtree is a list of

nodes from the quadtree (ordinarily of varying sizes) which define a set of paths

*. between the start and goal nodes. If desired, an optimal path through these

blocks can be computed, or the center points of consecutive blocks on the list can

be connected to compute a negotiable path.

2.3. Results

Figure 2.2 contains a simple example of a path obtained using this algo-

" rithm. Figure 2.2(a) is a binary array with start and goal points marked, along

with an indication of the path determined by the algorithm. Figure 2.2(b) con-

tains the tree data structure that represents the quadtree, in which the blocks on

the computed path are marked with p 's. It is important to note the reduction in

the number of nodes achieved by the algorithm. Figure 2.3(a) shows a path

*.. planned on a more complicated image map with the constant a set to 1 and Fig-

ure 2.3(b) shows the same example with a set to zero. Notice that the time

taken in the former case is considerably higher than in the latter. This should be

,°  expected, since as noted in the last section, the heuristic power of h reduces as a

" increases.

It is also interesting to note that although it is true that the quadtree

representation is sensitive to displacements of obstacles with respect to the grid

8A
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*" boundaries, the savings in space and computation afforded by this method are

still very high on the average. Further, Samet et al. [Samet84] point out that

- for complicated images the positioning of the image origin is likely to have little

* effect on the number of nodes in the resultant quadtree.

2.4. Advantages of the quadtree approach

Compared to the first category of path planning algorithms mentioned in the

introduction, such as the grid search method, the path planning cost for quadtree

based search will be substantially lower because the number of nodes to be

searched in the quadtree approach is considerably smaller. In fact, the number of

leaf nodes in a quadtree of an image map having polygonal obstacles is approxi-

mately [Samet83] _. O (p), where p is the sum of the perimeters of the (polygo-

nal) obstacles in terms of the lowest resolution units, in our case pixels (or grid

points). Thus A* search will only have to deal with about 0 (p) nodes in the

case of a quadtree, instead of the n 2 grid points in the case of a grid search, a

substantial reduction. Similarly the "local-bound" behavior of the first category

algorithms is absent in this approach, because the nodes are on the average much

larger than single pixels and it is straightforward to determine the "nearness" of

' the nodes to the obstacles. A hierarchy of different levels of description of the

space that is available with quadtrees enables us to search for a path close to obs-

tacles only when necessary. Corner-clipping, inflexible paths are eliminated by

considering only neighbors in the horizontal and vertical directions.

9



Unlike the second category of methods that involve a costly change of

• Jrepresentation, the proposed approach has a very small representation overhead.

As pointed out in Section 2.1, both the representation algorithms involved are of

complexity O(n), whereas many methods of the second category have a

representation cost which is far higher.

Thus quadtree based path planning is a good compromise between free space

algorithms and grid search type algorithms. In addition, the paLh produced by

- the quadtree algorithm, although not "optimal", is a "negotip.ble" path which

.. can be computed relatively quickly. Apart from this, the hierarchical nature of

the representation gives many advantages in path planning. For example,

- [a] We can easily constrain the path to satisfy certain conditions, such as

specification of minimal clearance of the path.

[b] More importantly, we can make the search staged, i.e., plan a path at a

coarser lever and subsequently refine it as needed, thus reducing the plan-

ning cost substantially.

*" The former advantage has been discussed in Section 2.2. We will discuss the

latter at greater length in the next section.
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3. STAGED PATH PLANNING

3.1. Motivation

Though the algorithm which we presented in the previous section is rela-

tively efficient it can be improved upon substantially. We often get undesirably

' small "black" (obstacle) nodes in the quadtree representation. One obvious

source for this may be the existence of very small obstacles in a region of the

environment that is otherwise obstacle free. A more important source of these

black nodes is the representation of irregular obstacles in quadtrees. Due to the

recursive nature of the quadtree, these small black nodes will fragment the free

.. space, giving rise to an undesirable increase in the depth of the quadtree and the

"* number of leaf nodes, consequently increasing the cost of the search.

We can deal with this problem by first planning the path in a reduced reso-

- lution quadtree, called a pruned quadtree, that contains gray leaf nodes,

corresponding to mixtures of obstacles and free space. This implies that a node

can now have gray neighbors. An algorithm which is capable of planning a glo-

" bal path at this coarser level, and subsequently developing the path inside the

*gray nodes (which are included in the global path) in the second stage, can give

rise to savings in terms of computation, without significant degradation of the

" path obtained. As mentioned in Section 2.4, the number of leaf nodes is on the

" order of the sum of the perimeters of the obstacles, measured in the lowest reso-

-' lution units. Thus conducting search at a resolution I levels below the pixel reso-

lution reduces the "sum of the perimeters" and "number of leaf nodes" by a fac-

.1
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tor of 21 thereby substantially reducing the time complexity of the search.

There are two aspects to this staged search that deserve detailed

attention-the treatment of gray leaf nodes during planning and the generation

of pruned quadtree from the original quadtree. In the next two subsections we

shall discuss these two aspects in detail.

3.2. Dealing with gray leaf nodes

When planning a path through the pruned quadtree, we have to deal with

gray leaf nodes. Specifically, the following three questions must be answered:

(1) What is done when one of the neighbors of the current best node (the node

that is currently being expanded in the A* search) is a gray node?

* (2) How is the current path expanded when the current best node is a gray

node?

" (3) How is the first stage path, involving gray leaf nodes, processed to get the

final path that contains free nodes exclusively?

We shall address these in the following subsections.

3.2.1. Gray leaf neighbors

If one of the neighbors, N, of the current best node, B, is a gray node then

before putting N on the OPEN list, we must ensure that N can be entered from

B. If B is a free node then N can be entered iff there exists at least one free

node, m, in S (N) such that m is adjacent to B. If, in addition, B itself is a

gray node then N can be entered from B as long as there exists a free node, e,

12
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S (B) such that e is adjacent to m. Note that checking this entry condition

alone does not guarantee that the gray node N is passable, i.e., that a path from

C- B through N to a third node, C, exists. For example in Figure 3.1, N can be

entered from B, through the free node m, but N cannot be exited, except back

to B.

If we decide to put N on the OPEN list then we shall include in the heuris-

tic value of N a measure of the "path complexity", c (N), inside N. (This

measure should be zero for a free node since the path inside the free node can be

a straight line.) In general, it is difficult to give a measure which truly represents

*the complexity of a path inside the gray node, since at this point in the search

the direction in which the path will be exiting the gray node is unknown. But in

practice any measure depending upon the gray content (number of obstacle pixels

inside the gray node) of the gray node will be a good choice. One such normal-

ized complexity measure for the gray node N is

c()-gray content (N):. c (N) =
size (N)

Given two gray nodes having the same gray content, the path complexity should

* intuitively be higher for the gray node representing a region with more obstacle

nodes. Thus, a better, although costlier, complexity measure of the gray node N

will take into account the number of obstacle nodes in S (N).

Once the heuristic value is calculated, the gray node is placed on the OPEN

list and it can be selected for expansion whenever its f-value is the best among

the nodes on the OPEN list.

13
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3.2.2. Expanding gray nodes during search

When the current best node, B, happens to be a gray node, expanding B

-: becomes a more involved operation. After generating B's neighbors we must

" ensure that for each of these neighbors, N, there exists a path through B that

• connects B's predecessor, P, on the current path to N (see Figure 3.2). We

* refer to this as the "reachability" analysis for neighbor N. Secondly, for each

neighbor N that can thus be reached we have to record as N's g -value an esti-

mate of the shortest path to N through B. This estimate should take into

*account the fact that the shortest path through B may not be a straight line

path since B is a gray node.

One way to achieve the above two objectives is by performing an A* search

rooted at B to determine if N can be reached from P. If the A* search finds

such a path to N, then we can use the cost of that path as the g -value of neigh-

• bor N. The advantage of this method is that we have the full power of A*

*l search. The principal disadvantage to this method is that we need to perform

this A* search once for every neighbor of B, a rather large price to pay for path

optimality.

To avoid the above disadvantages associated with A* search we elected to

compute a distance transform of the gray node as a way of dealing with the prob-

* lems of best gray node expansion.

Let f be a free node in S (B) such that f is adjacent to B's predecessor, P.

Notice that there can be more than one such free node in S (B). If P is a gray

node, then we require that f be adjacent to a free node in S (P) (called an "exit

14
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node" for P). This exit node would have been determined when P was being

expanded. We illustrate all this in Figure 3.2. P is the predecessor of the best

* node, B, and N is a neighbor of B. Both f and f' are free nodes in S (B). They

* .are also adjacent to P. In such a situation, we chose the free node which has the

least straight line distance to the goal node-in this case f. Thus the current

path enters B through f. f is recorded as the entry node of B.

Next, we compute a distance transform of the region represented by B, with

respect to f. This involves recording for each free node,f ', in S (B), f "s shor-

test distance (which we refer to as dis(f, f 9) from f. To carry out this computa-

tion, we first initialize dis(f, f) to zero (see Figure 3.2), and dis(f, f') for all other

free nodes, f', in S (B) to oo. Next, we carry out the propagation step: we find

all the neighbors of f, f', which are in S (B ) and for each such neighbor, f', cal-

" culate dis(f, f'), as the sum of dis(f, f) and the nodal distance between f and f',

D (f, f'). To ensure that the path inside B will take clearance from the obstacles

into consideration, we include the cost of the node d (f ) (see Section 2.2) in

• dis(f, f'). We repeat this propagation step for all the neighbors of f, with the

neighbors taking the role of f, and so on, until we exhaust all the free nodes in

,. S (B). The detailed procedure is given in an algorithmic fashion in Table 3.1.

* .and is, essentially, the familiar shortest path algorithm for the case of "single

* source multiple destinations" (see, e.g., [Horo82J).

Having computed the distance transform of B with respect to f, as detailed

above, we are now ready to continue with the expansion of B. For each of B's

- neighbors, N, N is marked reachable, if there exists a free node, e, in S (B)

"-- 16
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Procedure Distrans(B ,f);

/* B is the gray node representing the region in
which f is a free node. The algorithm computes the
distance transform of B with respect to f.

begin

Vnode ES(B) dis (f, node ).-oo;
di (f, f)--0;
distransOPEN -- bold list ();
until null (distransOPEN)

do
f I- first (distrans_ OPEN);
distransOPEN +- rest (distrans OPEN);
NBRS Z- get neighbors inside .theregion(f', S (B));

/* get the neighbors of f' that lie in S(B) */
foreach nbr E NBRS

do
dis (f , nbr )i-min{D (f, f') + a- node.cost(nbr)

+ dis (f, f),
dis (f, nbr )};

distrans_OPEN -append (distrans_OPEN , nbr);
od

od
end Distrans;

Table 3.1. Distance transform algorithm

• which satisfies the following two conditions (see Figure 3.2.):

*(1) dis(f, e )<oo. This ensures that there is a path between e and f inside

S(B).

* (2) N can be entered from e . As discussed in Section 3.2.1, if N is a free

node, this condition is satisfied as long as N and e are adjacent. If, on the

" 1S
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other hand, N is a gray node then the condition is satisfied if there exists a

free node m in S (N) such that m and c are adjacent.

The node, e, satisfying the above two conditions is marked as the exit node of

gray node B with respect to N. Notice again that there may be more than one

such node. For example, in Figure 3.2, e and e' satisfy both conditions, since

there is a path from f to each of these nodes, and N can be entered from both

the nodes. In such a situation, we select the node with smaller distance to f as

the exit node. Thus, in Figure 3.2, e would be chosen as the exit node of B with

respect to N.

Neighbor N of the best node B, is placed on the OPEN list only if there

exists an exit node, e, for B with respect to N. If N does go on to the OPEN

list, the sum of the g -value of B's predecessor P, g (P), and dis(f, e) is

recorded as g (N). If N is a gray node, we have to include in N's heuristic

value, h (N), an estimate of the path complexity inside N as discussed in Section

3.2.1. This completes the discussion of the expansion of the best gray node B.

At this point it is worth noting the advantages of using the distance

transform in dealing with gray leaf nodes: First, it eliminates the necessity of

multiple rooted A* searches. The distance transform computation is efficient on

,* the quadtree representation. Second, developing the path inside the gray nodes,

,. after the first stage, is very simple (see below).

17
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3.2.3. Developing the first stage path containing gray nodes

At the end of the first stage of the staged search the planned path may con-

tain gray nodes as well as free nodes. The path inside the gray nodes is

developed in the second stage.

If rooted A* search were used in expanding gray nodes (as discussed in the

previous subsection), then this second stage would simply amount to concatenat-

ing these paths through gray nodes with the free nodes.

If the distance transform is used instead of rooted A* search, then the path

development inside gray nodes is not as simple. The path development computa-

tion involves the following (refer again to Figure 3.2):

For each gray node B on the path we retrieve B's entry node f (recorded

while expanding B) and B's predecessor P and successor N on the path. Next,

using N, we retrieve the exit node, e, for B corresponding to N. Now develop-

* ing the path inside B amounts to finding the shortest path between e and f and

inserting it in between N and P. Finding the shortest path between e and f

- simply involves backing up to f through neighbors having smallest distance

transform values. In Figure 3.2, for example, the shortest path between e and f,

as found by this method, is e -dl-d 2  -ds-f.

3.3. Pruned quadtree generation methods

The primary motivation for pruned quadtree based staged search, as noted

* in Section 3.1, is to offset the disadvantages of the fixed grid uniform recursive

decomposition involved in quadtree representation. By choosing an appropriate
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pruned quadtree, we can avoid a profusion of nodes in a region of the image map

which is relatively obstacle free. This poses the question of how to decide when a

region, or the gray node representing it, is relatively obstacle free. None of the

*. simple measures (such as grayness of the node) alone can answer this question

*entirely satisfactorily. For example, the grayness of a node tells us nothing about

the distribution of the obstacles in the region represented by that node, and in

the extreme case a small value of grayness may actually be the result of a streak

of obstacle pixels through the middle of the node. More commonly, a small gray-

ness value of a gray node may be due to a scattered obstacle distribution inside

"he gray node, which fragments the free space. In such a case, the gray node is

' obviously a bad candidate for a leaf node in the pruned quadtree. At the same

time, we do not want to base our decision on a very involved analysis of the gray

node, because this may increase the cost of pruned quadtree generation to the

" point where the staged search is, overall, less efficient than searching the original

quadtree.

Keeping all these considerations in mind we experimented with the following

pruned quadtree generation strategies:

(1) Using the grayness of the gray node. This method uses a threshold on

grayness to identify leaf nodes of the pruned quadtree. The quadtree is

traversed in a breadth first fashion and any gray node whose grayness falls

below the threshold is made a leaf node of the pruned quadtree. Once a

*. gray node G is chosen as a leaf node, the breadth first traversal ignores

S (G). Figure 3.3(b) shows the pruned quadtree generated from the

°°~~~~.. -............. .° ... . .. . .. . .. ..... ............ .. .. . . , ,, -. . .... ..o ~.-- !



quadtree in Figure 3.3(a), using this method, and also gives the result of a

staged search on this pruned quadtree. This method sometimes chooses very

large gray nodes, having a small grayness but a scattered obstacle distribu-

tion, as leaf nodes. This is undesirable, since the cost of the distance

transform increases polynomially (0 (n 2)) with the number of free nodes

inside the region represented by the gray node. We can partially offset this

problem by adaptively setting the grayness threshold to lie between zero and

the minimum of the grayness of the top few gray nodes of the quadtree (say,

the root node and its four sons), thus ensuring that none of those top level

gray nodes become leaf nodes. More importantly, pruned quadtrees gen-

erated using this method are potentially unstable with respect to the gray-

ness threshold-a small change in the threshold may change the structure of

the pruned quadtree drastically.

(2) Using size information with grayness threshold. This is one way of

avoiding the problem of overly large gray leaf nodes associated with the first

method. This method also traverses the original quadtree in a top down

breadth first fashion. When it encounters a gray node whose grayness falls

below the grayness threshold, it checks that the size of the gray node falls

below the size threshold before making the gray node a leaf node. This

method is superior to the first one, because it will not choose large gray

nodes with small grayness and scattered obstacle distribution as leaf nodes.

Figure 3.3(c) shows the pruned quadtree generated from the quadtree in Fig-

ure 3.3(a), using this method and also gives the result of a staged search on
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this pruned quadtree.

(3) Truncating the tree below a fixed level. This method makes any gray

node of the original quadtree lying at a fixed level a leaf node of the pruned

quadtree. Figure 3.3(d) shows a pruned quadtree generated from the quad-

tree in Figure 3.3(a) using this method and also gives the result of a staged

search on this pruned quadtree. The level of truncation could be determined

based on a histogram analysis on the obstacle node levels. This relatively

straightforward method turns out to be unsatisfactory since depending upon

the level of truncation it may make either of the following two undesirable

decisions:

1. It may choose very large gray nodes with scattered obstacle distributions

as leaf nodes (like the first method)

2. It may prevent moderately large gray iw.des, which represent regions

with small grayness and very few free nodes, from becoming leaf nodes.

From the above three methods, it is obvious that the criteria for pruning

*" should be independent of the size of a gray node, and should instead depend

mainly on the cost of gray node evaluation. As observed already, the cost of the

* distance transform on a gray node, G, depends upon the level of fragmentation

of the region represented by G. L (G), the number of leaf nodes in S (G), is a

good measure of the the fragmentation of the region: the higher L (G), the

higher the fragmentation and the costlier the distance transform. Notice that

L (G) does not depend on the size of G; thus, larger nodes with relatively low

fragmentation will also be included in the pruned quadtree as leaf nodes. Method

21
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4, presented below, which we chose as our method of pruned quadtree generation,

uses L (G) as its basis for pruning.

(4) Using L(G), the number of leaf nodes in S(G). This method uses a

threshold on L (G) to identify leaf nodes of the pruned quadtree. Any gray

node, G, whose L (G) is lower than the threshold is made a leaf node of the

pruned quadtree in a breadth first traversal of the quadtree. Computation

of L (G) is straightforward and is, in fact, even cheaper than grayness com-

putation. For a given threshold, there is an upper bound on the cost of gray

node evaluation based on the distance transform, and thus the cost of the

. staged search can be effectively controlled.

One important advantage of this method is that the threshold on L (G) is

relatively independent of the specific image, and depends only on global cri-

teria such as maximum allowable gray node evaluation cost and maximum

allowable suboptimality of the resultant path. Figure 3.3(e) shows a pruned

quadtree generated using this method from the quadtree in Figure 3.3(a) and

also gives the result of a staged search on this pruned quadtree.

One important difference between methods 1, 2, and 4 is that the latter may

also include a gray node with very high gray value as gray leaf node, as long as

its L (G) value falls below threshold. This means that we are no longer assured

of the fact that all gray nodes are relatively obstacle free. Thus there is an

increased need to penalize gray nodes on OPEN having higher grayness so that

the search is inhibited from expanding these nodes unless absolutely necessary.
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Finally, we observe that none of the above methods uses a criterion that

properly reflects the distribution of obstacles inside the gray leaf node. This is

- not serious since the passability question is completely answered by gray node

evaluation based on the distance transform.

3.4. Results of the staged search

Figures 3.4(I-IV) depict the paths found by pure A* search on the original

quadtree, the first stage of staged search on the pruned quadtree (with gray nodes

in the path), and the second stage of staged search (after paths inside the gray

nodes are developed). The pruned quadtree used in the staged search is gen-

* erated automatically, as discussed in the section on pruned quadtree generation.

- Each of the figures lists the cpu time taken for path planning, number of nodes

considered by the search versus total number of leaf nodes, and details of the

" method of pruned quadtree generation used.

The path generated by the staged search is comparable to the optimal path

generated by the pure A* search. However, the total cpu time taken (with com-

piled Franz Lisp running on a VAXll/785) by staged search (for pruned quadtree

generation, A* search and second stage path development) is 3 to 10 times less

than that taken by the pure A* search. (See Figures 3.4(I-IV) for detailed timings

for the examples presented. The timings are in cpu seconds and involve substan-

* tial page swapping overhead.) Our experiments show that the computational

savings are much higher for cluttered environments than for relatively free

environments-compare Figures 3.4(1) and 3.4(IV), for example. This is reason-
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able since the fragmentation of free space is much higher in cluttered environ-

ments.
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4. RELATED WORK

As pointed out in Section 1, hierarchical representations have been used pre-

viously in manipulator findpath tasks. In this section we discuss some of that

previous work in relation to our own.

Wong et al. [Wong85] use a modified version of quadtrees to solve 3-D

,. findpath problems by planning a path in the three orthogonal 2-D projections of

the 3-D environment. Their approach essentially searches for a path in a "point

based" quadtree representation. (See [Samet83] for a comparison between

"region based" and "point based" quadtrees.) Faverjon [Faverjon84l uses octrees

(an extension of quadtrees to 3-D) for reducing the time complexity of the 3-D

findpath problem for a six joint manipulator.

Lozano-Pe'rez [Lozano8l] represented free space in the "configuration space"

*. as a hybrid hierarchical structure consisting of rectanguloid and polyhedral cells.

He, however, planned a cell path strictly among the free cells of the representa-

tion, thus missing the computational advantages of hierarchical staged search.

Another problem with his approach was that the path search could fail because

the resolution of the representation was not fine enough. Brooks and Lozano-

Perez later remedied these problems in [Brooks83b]. The approach presented in

. their paper comes closest to our "staged search" approach. They cut the free

space hierarchically into full (obstacle), empty (free), and mixed rectanguloid

cells, with the mixed cells representing areas of unexplored configuration space.

* They first try to plan a path exclusively through the free cells. If that fails, they

-. then repeat the search, this time considering the mixed cells also. Next, for each
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.......... . -. ...

-. mixed cell in the cell path, they try to develop a path through the mixed cell. If

any of the mixed cells turns out to be impassable, then they may have to repeat

the search again, finding another free-mixed cell path. Since they use the A*

search algorithm as the main engine for all these different searches, the overall

-process turns out to be very expensive computationally. Both [Lozano8l] and

-[Brooks83] refine their cell paths into point paths, since the cell path in

configuration space represents a set of possible solutions to the flndpath problem.
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• .5. CONCLUSIONS

In this report we have presented methods of short range path planning for

*" mobile robots, using quadtree hierarchical data structures. We demonstrated the

* merits of quadtree based path planning and also discussed in detail a method of

staged path planning, with improved computational cost compared to pure quad-

tree based single stage path planning.

Lozano-P'rez [Lozano8l] observes that the most important heuristic for a

path planning space representation is to avoid excess detail (and therefore time

spent) on parts of the space which do not affect the planning operation. The

quadtree representation naturally provides such a description of free space. Short

range planning for a mobile robot should be based on decomposition of free space

into units larger than pixels for the search to be global. Hierarchical decomposi-

- tions like the quadtree are a good way to achieve this, especially since the

representation cost involved is small. They obviously are not as optimal as

decomposing free space into channels or more natural shapes, but the latter

methods have a higher representation cost. Some of the suboptimality of uniform

grid recursive decomposition involved in quadtree representation is offset by the

• -staged version of the path planner. Another important use of staged search in

dynamic path planning is that it offers an elegant way of treating uncharted

areas. These can be represented as gray nodes with very high cost, and when they

get included in the search, further processing can be expended to "chart" those

regions.
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Looking further, the mobile robot needs to continually update the planned

path, as it traverses it, in the light of new information. To do this efficiently, we

need to be able to "add to" and "delete from" (or update) the representation of

the image map with relatively low cost. In the context of dynamic path updat-

* ing, one desirable property of a free space representation is that the individual

* obstacles affect the representation only in their immediate locality. A disadvan-

tage of quadtree representation of free space is that it does not localize the effect

of obstacles on the representation. This is a general shortcoming of representa-

tions which cut free space into rectanguloid cells. In contrast, the generalized

cone representation of free space described in [Brooks83a] satisfies this property.

Presently we are concentrating on efficient methods of path updating for the

quadtree based planning methods discussed in this report.
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A the region in (a).
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(d) Quadtree representation of the blocks in (c).

Figure 2.1
A region, its binary array, its maximal blocks and the corresponding
quadtree (from [Samet83l).
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Figure 2.2(a) Path planned on a quadtree representation
A binary image with obstacles represented by black regions. Start node is
indicated by S and goal node is indicated by G. The nodes on the path
found by the algorithm are represented by shaded regions. All the node
boundaries are outlined with black lines.
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Figure 3.1 Dealing with a gray neighbor

The gray neighbor, N, is placed on OPEN since there is a free node, m,
in S(N) that is adjacent to the exit node, e, of the best node, B,
corresponding to N. Notice that this does not guarantee that N is pass-
able, since N cannot be exited to any node other than B.
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C

B

Figure 3.2 Expanding a gray node
In the figure, B represents the current best node in the A* search and N
is one of its neighbors. S and G represent start and goal nodes respec-
tively. The path to B consists of nodes S -1 -2-3-4 -5--6-7-P -

B in that order. Thus P is B's predecessor on the current path. Of the
two nodes f and f' that are adjacent to P, f is nearer to G, so f is the
entry node of B. Of the four nodes e, e', e ", and e "' that are adjacent
to node N, N can not be entered from e' and e ' can not be reached
from f. Thus c, c' are the possible candidates for exit nodes. e is
chosen as the exit node for B corresponding to N since it is nearer to f
than e'. e -dl-d 2 - . -d-f represents the path that will be
developed inside B during the second stage of path development.
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