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ABSTRACT'
Target Tracking and 3-D Scene Analysis are two research areas in Computer

Vision which in the past have been considered separately. However, there are
many Advantages in combining the two problems. One such advantage would be
the ability to analyze and build a model of a stationary scene/environment
through which dynamic objects move. This is possible through tracking the mov-
ing objects and detecting instances of occlusion. This work is based on such an
idea and is concerned with the design of an Intelligent Target Tracking System
(ITTS) which combines the above two problems into one. In this Daper we
present an experimental 'ITTS which generates a perspective, and ground map of
"a stationary environment.
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I- INTRODUCTION

Target Tracking and Scene Ai'alysis are two research areas in Computer

Vision which,in the past, have been dealt with as separate problems. Most target

tracking systems [3,5,9,10,18,23,26,27,301 have the relatively modest goal of

detecting and identifying moving objects and tracking them, using prediction and

correlation techniques, as long as they move unobscured across the field of view.

Most o! these systems have been develooed with a set of stringent real time

, constraints which, given current hardware technology, constrains them to employ

a set of computationally simple algorithms.

Most scene analysis/segmentation systems [11,17,19,25] analyze a given scene

based on the static properties of objects such as shape/structure and texture,

where the class of objects are generally predefined. These systems tend to be slow

whenever the scene is complex, containing many objects.

There are advantages to combining the two problems into one. This paper is

based on such. an idea and is concerned with the design of an Intelligent Target

Tracking System (ITTS). ThisAsystem tracks targets based not only on models for

targets (shape, motion, etc) but also.on models of the environment through which

the targets navigate and of 'the sensing system(s) employed to acquire the time.

varying images on which the analysis is based. . .___"

In this paper we utilize the dynamic occlusion of moving and stationary -

objects by one' another to place bounds on distance and angular extent of

location of the stationary objects. Occlusion of a moving object by a stationary
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object yields an upper bound on the distance for that particular stationary

object, while occlusion of this stationary object by another moving object yields a

lower distance bound for it. WVe detect occlusion using object models and

perspective information. Figure I illustrates an example where an occluding

object, such as a tree, can be detected by tracking a moving objoct as it moves

behind the tree. During the course of tracking the moving object, we are able to

segment the stationary scene via the dynamic occlusion. This allows us to

constrict a perspective map and a scaled ground map of the environment.

"The ITTS is composed of a number of processes which can be divided into

three processing stages: target recognition, segmentation of time-varying images,

and scene model generation. -- - -77. 9.'n'• • r-

Target recognition is an interactive process (in the current version of our

ITTS) where the distance and orientation of a moving target with respect to the

viewer, at a particular instant, is computed from a zoom picture. The

segmentation stage is composed of a series of processes, including image

differencing, noise cleaning, connected component detection, and region extraction

from a wide angle picture.

The scene model generation stage is the main part of the system and is

composed of a variety of processes:

1- the "main program" which controls the system,

2. a "matcher" which matches the predicted app..aaace of mowving
targets to their actual appearance in a given frame (instance),
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3- a "predictor", which given two or more instances of a moving object's
appearauce, predicts its appearance in the next frame,

4- an "analyzer", which corrects and updates all the data structures
based on the closeness of a match between prelicted and actual
appearance of a moving target,

5- a "map generator" which generates two kinds of maps, a perspective
map which segments the scene perspectively into open spaces and
stationary portions (where there are'stationary objects), and a scaled
ground map of the environment which' indicates where the moving
targets have been observed and where the stationary objects are located.
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2- AN EXPERIMENTAL SYSTEM

In this section we present an experimental ITTS. The principal goal is to

build a model of the stationary scene by tracking the known moving targets. We

accomplish this by detecting instances of occlusion, of which there are two kinds,

"occlusion from the front", where a target moves behind a stationary object, and

"occlusion from behind", wl'hen the target moves in front of the stationary object.

2.1- Problem Domain Definition

The shapes of dynamic objects are modeled as rectangular parallelepipeds of

constant gray level (color); their images are m1odeled as rectangles. Three

parallelepipeds of different sizes were used to represent our targets.

A target's mobility was represented by its veiocity. An object at any instant

of. time was represented by its type, size, location, orientation, velocity,

trajectory, and information about related (occluding) stationary objects.

Stationary objects were modeled as tall, elongated, rectangular

parallelepipeds in 3-D, and as rectangles in 2-D. Their appeirances were

represented by size and location. The 3-D location of' a stationary object is

represented by a pair of intervals[ a 02) , ( d1 , d:) ] wher the true line of

sight to the stationary object is included in the interval ( a& 02) and the true

range is included in dt , d ); see Figure 2.



We adopt a two camera system model. One has a wide angle lens (10 mm),

viewing the scene from a fixed perspective, and another has a zoom lens (25 mm)

capable of panning around the Y axis. Figure 3 illustrates the camera model.

Images taken by the first camera are used by the segmentation algorithm. Images

taken by the zoom lens camera are used, in conjunction with object models, to

determine the distance and orientation of moving objects in a particular frame.

The motivation for using a zoom lens camera is that the high angular resolution

allows accurate computation of the distance and orientation. It is assumed that

all the camera parameters are known.

2.2- Data Representation

Our system includes two different groups of data structures, one symbolic

and the other iconic. The symbolic data structure includes'a pair of graphs, one

for representing the dynamic part of the scene and another for representing the

stationary part of the scene see Figure 4. The two are linked to each other at the

region and object level The graph representing the dynamic objects in the scene

is interpreted as follows: Analysis of the observed data over a period of F frames

has result.-d in the detection and tracking of N dynamic objects, where object 'i'

has been seen for a sequence of x;- frames, and in each frame the object has

appeared to consist of one or more dynamic regions.

The interpretation of the stationary component for the same period is as

follows Tracking the N moving objects has resulted in recognition of a
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stationary scene (environment) composed of M stationary objects, each consisting

of one or more stationary regions; see Figure 4.

It should be noted that the degree of the APR.ANC node (which specifies the

number of regions comprizing the object at each frame) for any moving object in

the most recent frame (where the APRANC initially represents a prediction) can

be changed due to a detailed an:,lysis of the appearance of that object by the

matching process. Of course an APRANC node of degree two represents "middle

occlusion" explicitly. For example , the object in Figure L.c is represented by

node "A" of Figure 4, indicati:' the fact that object A in the first frame was

occluded in the middle, and therefore represented by two regions.

Occlusion, in general, is represented in the symbolic data structure by

establishing links between the dynamic and stationary region and object nodes.

For example the two dynamic regions of Figure 1.c are represented by nodes

DYNREG#I and DYNREG#2 in Figure 4 and the node APRANO' #1 represents

the fact that this object is occluded in the middle. The stationary region between

the two dynamic regions of Figure 1.c is represented by the node STNREG#I.

This particular instance of occlusion is represented by the explicit links between

STNREG#1 and DYNREG#1 and STNREG#1 and DYNREG#2.

The second symbolic data structure is a two dimensional army containing

the range information for the detected stationary objects. Every row of this array

represents a detected stationary object with enough information to place'a bound

on the area in the scene where the, stationary object resides. Ther nie hi-

directional links between every row of this armay and the appropriate DYNOBJ
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and STNOBJ nodes of the graph pair (described earlier iii this Section). This

array is used and updated by the predictor and the analyzer. -The ground map

generator also uses this array. The third symbolic data structure is also a two

dimensional array containing the 3-D information concerning the moving targets,

which results from the target recognition stage.

The iconic data structures (maps) are the other class of data structures that'

are employed. Our ITTS incorporates two different maps, a perspective map and

a ground map. The perspective map represents the detected stationary regions

and in turn the stationary objects. It also represents the detected visible portion

(space) of the environment, indicating the paths traveled (in perspective) by the

moving objects.

The visible space content of the perspective map is accumulated by the

matching process,' and the stationary region portion is accumulated by the

'predictor and the error analyzer. Figure. 14 shows some examples of the

perspective map. The light regions represent the visible portions of the scene,

while the darker, regions represent the 'stationary portions of the scene (the

stationary objects).

The ground map represents a scaled map of, the scene, where each target at

any given frame (time instant)is represented by its location, trajcetory, and

velocity. ,The accumulation of these for any target represents the path along

which the target has been mcving. The ground map also represents the areas of

the ground where the stationary objects reside. This map is constructed by' the

"map generator". Figure 15 gives some examples of the ground map. The map

• . 7'-
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represents a 70" by 70" scene and each side of a sq.are in the grid represents

approximately 2.5 inches of the real world. The bright vectors represent

instances of the moving objects and their velocity , while the darker vectors (in

some cases making up polygons) represent regions of the ground where stationary

objects have been found to reside. The bottom of Figure 15 indicates the

location of the camera (origin of the world and camera coordinate system). The

two dark vectors 'pointing towards the upper sides of the image represent the

angular field of view of the wide angle lens.

2.3- Process Definition

This Section describes the processing components of the ITTS individually.

Figure 5 illustrates these processes schematicaLy.

2.3.1- Target Detector

Input to this process is a set of gray level ,images and a mgu frame (an

image of the stationary environment only), all taken by the wide angle lens

camera. It processes -one image at a time and produces a set of region

descriptors (in our case parameters describing. a rectangle) representing, the

dynamic regions. The target detector consists of the following processes:

1- take the difference between an image and the mask frame,

2- apply thresholding to the difference picture,
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3- apply shriLk and expand operations (noise cleaning) to the image
obtained in step 2,

4- apply connected components analysis to the image obtained from step
3,

5- Fit upright bounding rectangles to components. remaining after step
4.

6- apply local image differencing to a w;ndow surrounding each detected
region to refine the estimates of the shapes of the dynamic regions (in
this step the thresholding process, after differencing, uses a threshold
value much lower thaa in step 2).

Figure 6 shows an example of the target detector's output.

2.3.2- Target Recognition

In order to generate a model of the stationary scene and approximate areas t

of the scene where stationary objects reside based on occlusion by/of moving

objects, we need to estimate the location and orientation of these moving objects
r

in the scene. This is done based on the known physical dimensions and measured

image heights of the moving objects. To better resolve the height. of a target in

the image' we use pictures of the targets taken by a zoom lens camera.

Given any. of these pictures; the user interactively segments a face of the

target (preferably the one in the center of the image) by positioning four points,

two on the bottom edge of the face and two on the upper edge. This will fit a

polygon to this particular face as shown in Figure 7. Next we describe the'actual

e•timation of distance.

4., :.



Figure 8 shows a target in the world coordinate system and its relationship

with the image coordinate system. The vertices A,B,C, and D map into the points

a ,b,c, and d on the image plane, respectively, and from the relation between these

vertices and points we can easily compute the distance and orientation. It is easy

to show that

fH()

where IZo is the desired distance, H is the height of the target and AV' is

S • ( Y ,- Y&- + Z( d- Y(2)

To compute the orientation, p of the planer face, we average the orientation

of the top and the bottom edge of the face. The orientation, p, is given by

Yd •- Ye + Yb - Y4)€3
2 ( zy,- xyd zby, - (3yb

2.3.3- Scene - Model Generation

The components of the scenc-model generation process are described in the

following subsections.
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"2,3.3.1- Matcher

This process compares the predicted appearance of dynamic objects for

frame n witii the actual observed data in the n-th frame. Since both the

predicted and actual appearance of the dynamic objects are represented as

regions (in the image plane) which in turn are represented by bounding

rectangles, the matching is done amcng these rectangles. These rectangles are

represented by the four parameters <c,r,nc,nr> where c = column, r = row, nc

"" number of columns, nr = number of rows. The first two indicate the location

* and the other two the size of a rectangle.

"The matching process measures the similarity between a predicted

"appearance RP and a region Rd in the set of dyaamic regions in the current

frame. The followings steps are taken during the matching of an R, with an Rd:

1- Find all Rd,'s from the set of all Rd's such that
C'1 ef= 1 P- cd. I < tvauel , ri rp - ri, I < tvdaue2

fled;ff = ! .W,- ned I < tvalue3 , nrf; ffi I ir, ,- nrtd < t"vale 4"All the "tvalues" are predefined threshold values.

"2- Choose the Rd, 'such -that e, ?iq/,&ff nci,and nrjqy are
minimum for it and TR, = TRd, where

TTR, and TRd, are two trajectories computed as follows:
, TRP DIRECTOR (Rk, RP);

TRI? DIRECTOR ( R 4, R, ;

w here Rk is the last appearance of the object represented
U.! by Rr

Note: director returns one of the following directions : N , S, E,
W , NE NW, SE , SW based on the comparisons between c,r,ne,
and nr.
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The above steps describe the matching process between any Ra and Rd. It

should be realized, however, that the process. generally matches n RP's with

m, Rd 's (or vice versa). Depending on the relation between a and m, different

"cases may arise. Some of these cases are as follows:

1- Success : This is the case where n = m and every R. is matched to
one and only one Rd.

S2- An RP has no corresponding Rd: This is typically due to an incorrect
predicted decomposition; the system had predicted two regioDs
"(RP, and R,) representing an object, but only one Rd is matched to,
either RP or R,1 or both, resulting in an ambiguity indicating an
incorrect prediction.

Another possible cause of this case is that the object is curr tly totally
occluded, but the system had predicted that it would see sor .r it. In
our set of image frames this case did not occur.

3- An Rd has no corresponding R.: There are two possibilities. Either a
new object has entered the sceDe, or ,n object has been decomposed
unexpectedly(middle occlusion).

f...

"a) An object is classified as new if either of the following is. true:

1- Cd < C+e Target entering from LEFT
2- rd < R+e Target entering from BOTTOM
3- C• + nCd > NC-e Target entering from RIGHT
4- ri + nrfd_ NR-e Target entering from TOP

Picture frame- <C,R,NC,NR> and e is some pixel
count threshold(i.e. in our case e=50).

If this is the case the count for the dynamic objects is increased
by one., and corresponding DYNOBJ, FRAME, APRANC, and

. DY'NREG nodes of Figure 4 are generated. This new rectangle
Rd is painted as visible space in the iconic data structure.

b) If Rd does not represent a new incoming object, then indeed
it must represent part of an existing moving object. We.assume
that to whichever-object, X, this Rd belongs, the other part of
X has ilready been matched to some other region. say R 4-
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"The following steps will find an R. which in combination with
Rd represents object X

"!-or k--1,N do
Rem : N # of regions extracted from the current
"frame.

Find an Rd which has already been matched to
"an Rr
"It ci . - (d + ncd.) < avgtreewidth and I r, - rd I _ e
or'

.i cd - (Cd- + ncd) • avgtreewidth and I rd- - rd < e
then Rd to point to whichever object
the Rd points to.

endif
endif

endo
endfor

After finding Rd-, update tt.e symbolic and iconic data
structures to indicate this decomposition of object X. More
specifically the degree of the APRANC node is changed from 1
to 2.

4- An Rd has multiple corresponding R.'s : This is a special instance of
the second case

5-An R. has multiple corresponding Rd's : This is a special instance of
the third case.

S.

U ;

U
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1 2.3.3.2- Predictor

This module predicts the future appearance of a dynamic object (in 3-D and

I then in 2-D) based on its type and

".1- its current 3-D status (location, orientation, velocity, and trajectory),
2- its previous 3-D status, and,
3- the accumulated information aboat the stationary w,%rld.

The location of a target in the real world is the location of a reference point

on that target in the real world. This reference point is chosen to be the

intersection of the optical axis of the zoom lens camera system and the center of

a particular face. of the target. We modeled the targets so that the origin would

I . lie in the center of either a Right or Frorat face of the target.

"If Pt (At,Zt) denotes the location of 3 target in the scene at time t where

I - d Xsin 1, and Z, = dXcos 3, (4)

d : the distance to the target computcd by the procedure of Section 2.3.2

g ;i3: the pan angle by which this particular zoom picture was taken,

then P,+, will represent the location of the target at time t+l, and is computed

"by

Pt. I Pt + A.t + BA-*, P5)

where the second and third terms on the right hand side repruest velocity and

"-14-
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acceleration/deceleration rate of that target, respectively. Writing (5) in

colponent form yields

Yt+l =-Xt + AAt + BAPf, (6)

Zt+= Zt + Alt + BAP. (7)

In order to use (6) and (7) we need to compute the coefficient A and B. It is

easy to show that

A t(X_2 - .Xc, 1 + 3X,) (8)
2

B ( X_ - 2X,., + X ,)

2,

or, equivalently, that

A __ (z,.-2 - 4Z-I,, + 3ZU)(
2

B (4- 2 -
2Zt-j + Zt) (1

2 ''( o

2

Substituting (8) and (9) into (8), and (10) and (11) into (7) gives

(X,2 -. 4X•., + 3Xt) (X,. - 2X-., + X,)
,+ 2..... 2 . ... .... . ... ... 2 (12)

(t 2 f- + 't

(Z:- - 4Z,. + 3z,) (Z4 2 24, + Z,)
.;t÷+:z22 1 4 + .. ' (13)
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and simple algebra yields

.t+1= 3.\; - 3.\t-_I + .\;_2 , (14)

Z, .+I , - 3z,_I + z,. (15)

It should be realized that (14) and (15) are true for t > 2; for the case where

t = 2 the following simpler equations are used:

,= 2X,'- X.\; 1 , (16)

z,+= 2Z, - Z,_. (17)

Equations (14) and (15) or (16) and (17) give the translational components of (5);

next we compute the rotational component. Let at represent the orientation of a

target at time t with respect to the X-axis of the real world coordinate system.

Associated with (5) is a rotational component computed by

+ AA + B ,(18)

where the second and third terms of the right hand side represent change in

orientation and rate of change in orientation respectively. Solving for A and B- (as

we did for the case of X and Z) and substituting them in (18) we get

, = 3*1 - at-, + at-. for 1>2, (10)

at+ I 2at - At., for t=2, (20)

which completes the transformation a target will go through from thi time t to
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t+I. In order tc complete the 3-D prediction process, all the vertices of a target

(its model) should go through the computed transformations.

Let PV• 1(XUI , Z,,+,) represent a point (preferably a !orner) of a target in

the real world at time t+1, and Pm(XM, Z.) represent the corresponding point

on the target's model. Then the 3-D prediction for a target is computed for every

corner of the model according to

fX'2 rcost+, sina,+ 1 1 rx-l rx'+i]
*j~,,~ jsincrf+1 coso +~ [Zj ± zt+ (21)zwt+ I. [ L Z-1 Z+"{,

This completes the first step of the prediction process. Next we compute the

perspective projection of the points computed by (21). This is accomplished using

the following equations

Zt+t- = " (22)

(y-,., 7 L)
- .L (23)

Ye+g -" .,., ,,

where p,+i,(.T+i, ;,÷) is a point on the image corresponding to PJ(X 4.,, Z,,,v,)

L is the camera height, and f is the focal length of the wide angle lens.

The above procedure Will give us eight points (the eight comers of a

rectangular parallelepiped), to which we next fit the best rectangle, R,+1 which

represents a region on the image at time t+I for which we predict- the presence of

a partictlar target.



jHaving predicted Rt+[, we clieck for possible occlusion, for which if one

exists, Rt+1 is modified appropriately. To check for possible occlusion, we need to

compute the angle along which the target is predicted to be seen. This angle is

simply computed using (14) and (15) or (16) and (17) as follows:

SXt÷+!
3c+1 arctan -- (24)

Next we compare 0t,+1 with entries in the symbolic data structure

representing the range information regarding the detected stationary objects (see

Section 2.2). If a match exists, then the tarvet may be occiuded depending on the

accumulated distance information for that particular stationary object and the

predicted distance for this target. If distance comparison yields an occlusion, then

Rt+1 is modified based on the region R. representing the stationary object.

This modification is done in one of the following two ways: either the size of

Rt+I gets smaller (the case when the target will be occluded on one side), or Rt+1

splits into two pieces R' I and R2÷I (the case where the target will be occluded

somewhere in the, middle). See Fvigure 0.

The above modifications would hold if the stationary object'was known to

'have been completely detected. Othernv!e, Rt+÷ and R, are modified on the

assumption that this stationary object is as wid'ý as, possible. For example, if a

stationary object (represented by R.) is -partly detected and its observed width is

"" w, then it is possible that we have not yet detected the remaining part of the

object, r,. with a width equal to W.w. (if W is the maximal width of any

10.-



stationary object). Therefor, Rt+1 would be modified as if it was occluded by a

region of width W. See Figure 10.

The last step in the prediction process is the updating of the graph pair data

structures, range information data structure, and the perspective and ground

maps. The graph pair is updated by generating DYNREG node(s), corresponding

STNREG node (if any r, is predicted), and FRAMES node and labeling all these

nodes as P (Prediction). These predictions will be checked against the actual data

by the analyzer at time t+1.

2.3.3.3-.Analyzer'

The analyzer examines the reports from the matching process. If the errors I

(mismatches) are below some predefined threshold, then the predictions are

accepted and all data structures are updated appropriately. Otherwise a search is I
initiated to determine the cause of the failure.

-The search can be best described by giving an example. Figure 11.a shows a

predicted target's image X with an associated known part of a stationary object

A. Figure 11.b shows the actual appearance of the object. By comparing- these

two (a and b) and considering the values of different parameters, different

conclusions ean be made. For example, if P1 P2 and 11 12, then the

hypopaper about the stationary object to be extended (perspectively) by width A

from the right is wrong, and the actual width of the stationary object is B. Or, if

.10.
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if X.•3X2, then we conclude that the previous estimate of this target's velocity is

incorrect and should be corrected by the value X2 - XI.

The analyzer is also responsible fcr the detection of unpredicted stationary

regions (and in turn stationary objects). This is done as follows : Suppose a

predicted region R, is matched to a region Rd of the current frame with an above

threshold error. Furthermore assume, that one of the two ends of RP and Rd

match ( i.e. c,=cd OR (c,+nep)=(cd+ncJ)) and the length of Rp is larger than

the length of Rd (i.e. ne,< nc). Then it is hypothesized that there exists a piece

of a stationary region ( representing part of a stationary object) with width

me,- ncnIl located to the left or right of the target, depending on the trajectory of

the moving object.

2.3.3.4- Map Generator

The map generator is responsible for constr cting/updating the perspective

and the ground map. Both of these maps are 510 by 510 8-bit/pixel pictures. The

perspective map is constructed and updated by painting regions (rectangles)

* corresponding to the dynamic regions (Rd's) and stationary regions.(R.',) whose

parameters are taken from the symbolic graph air data structure (see Section

3.2). Figure 14 contains some examples of the pe pective map.

The map generator is also responsible for th construction and maintenance

of the ground map. For every instant of a mi wing target a vector is drawn

representing its location (in 3-D), orientation, an velocity. All of the areas on
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the ground (in 3-D) where stationary objects have been detected to reside are also

indicated by drawing vectors bounding them. Figure 15 contains examples of the

ground map.

2.3.3.5- Occlusion Fro)m Behind Detector

This procedure detects all those stationary objects which are occluded by the

moving targets, by taking the difference between every dynamic region Rt

corresponding to DOB.4,, and the same region in the mask frame, resulting in a

difference region ,Rdil.

The region Rd!ff is then thresholded based on the predefined gray level

values' corresponding to the dynamic and stationary objects, yielding the

thresholded region RtAe&. If, in fact, there exists a stationary object behind this

dynamic object DOBJ3 , then the region R~tA. would contain non-zero elements,

to which we thn fit a rectangle Rr R, is then entered into the symbolic data

structures. and the iconic' data strictures. Examples oa this detection are

illustrated in Figures 14.a, 14.c, 15.c, and 05.e.

o31.



3- EXPERIMENTAL RESULTS

This section includes results of processing a sequence of twenty picture

frames by our ITTS. The images are 510 by 510, eight bit pixels. Dark objects

represent the stationary objects and bright objects represent the moving targets.

There were three different sizes of'moving targets, and a variety of stationary

objects.

The sceup covers an area of approximately 70" by 70". Figure 12 shows the

sequence of twenty frames plus the mask frame where, in order to save space, the

510 by 510 images have been clipped into 510 by 175 segments (areas of interest).

Figure 13 illustrates the scene layout with the paths along which targets move.

Figure 14 shows some snapshots of the perspective map where, again to save

space, the images are clipped into 510 by 175 pieces. The bright regions represent

the visible portions of the scene (where the targets have been seen) and the dark

regions represent the stationary objects. The perspective map changes as.more

picture frames are processed.

It should be noted that the stationary objects are not repiesonted by their

full height; due to the altitude of the camera with respect to the ground plane,

the' tops of stationary objects cannot 9nteract with dynamic objects. More

accurate estimate of heights could be detected if the cameras were looking down

at the scene so that the targets at different distances pass behind and are

occluded by the stationary objects.
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Figure 14.a shows the perspective map, after processing one frame. The

stationary region detected in this frame is due to the procedure for detecting

occlusion fro'i behind (see Section 2.3.3.5 for ~tails); this is also indicated in the

ground inap, as shown in Figure 15.a. Other instances of this kind of occlusion

detection are shown in Figure 14.c and 16.c where in each, the rightmost

stationary region is detected by the above procedure.

Figure 12 not only shows sequence of the 20 frames, but also shows the

results of the predictor. What is shown in this figure are different frames, with

the prediction for that particular frame overlaid on it. For instance, figure 12.a

shows the third frame; -the rectangles represent predictions for this frame,

obtained in the second frame. Since the predictor in the second frame knew about

the existence of the leftmost stationary object, in the scene, which would be

occluding the topmost moving target at the third frame, two regions were

predicted to represent this particular moving target.

Another example of such double region prediction is shown in Figure 12.g fot

the bottom target. It is evident that this particular prediction is wrong. As can

be seen in Figure 15:e 'representing the ground map (explained fully later in'this

Seetion), after processing the tenth frame therz! is only a maximal disiance

associated with the second stationary object, from the left. At this time, all the

IMT knows about this particular stationary object is that it is to.cited

somewhere between the viewer and its maximal distance point. Now, since the

pr&.icted location of the moving target is within this-interval, the predictor after

considering the possibilities of occlusion, predicts tWo regions. However at the
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tw-lfth frame the analyzer detects this mistake and corrects all data structures.

Figure 15 shows examples of the ground map (as described in Section 2.2)

generated by the map generator of Section 2.3.5. Figure 15.a shows the ground

map after processing the first frame and Figure 15.j the result after twenty

frames, where the difference between them is apparent. It should be noted that

one of the goals for our ITTS was producing a map which would resemble and

approximate the map shown in Figure 13. This task was accomplished through

the generation of the ground map shown in Figure 15.j.

The analyzer is one of the processes responsible for producing the

information used in generating the ground map. We now give some examples of

how the analyzer works. The first example concerns the case of the predictor's

mistake, which was discussed earlier in this Section. At the eleventh fraune• the

analyzer detects this mistake by realizing that 1) the two predicted R,'s match

only one Rj, 2) the Ri bounds the two R.'s, and 3) that the predictor's decision

based on the maximal distance far the corresponding stationary object was

incorrect. This leads the analy'er to realize that the moving-target should be in

front of this particular stationary object, yielding a bound on the minimal

distance to the stationary object. This is reflected in shortening -he vector

representing the interval in which the stationary object is located, as shown in

Figure 15.f. A similar analysis is done at the sixteenth frame, for the moving

object at the bottom.
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The analyzer is also responsible for tightening the intervals and regions

representing the location of the stationary objects; this is illustrated in Figures

15.a through 15.j.
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a) no interaction b) target occluded on the right side c middle occlusion

A

a') no interaction b') right occlusion c) target occluded in the middle

Figure 1.
a, b, .c'and c, show instances of a target in 3-D;
a ,b , andc show its 'corresponding regions.
One can hypothesize (at or after '12) that there
exists an occluding object somewhere between

4 ~the viewer and the target.
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An exampleIV 6f tairget dletection; preprocessing
jIct~ureh taiken .',y the wide angle Io~ns Ca'inera.
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Figure 7. An example of range detection; a polygon is

fitted to a face of a moving target in a picture
taken by the zoom lens camera.
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"-.1 b)
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f)

Figure 12.,
"The sequence of 0 frames. (our input data),
where the black and white w 'indows represent
the predictions for each moving target. a)
shows the mask frame' b) through u) show the
sequence. of 20 frames. It should be noted th at

* At the 9th and 12th frames, the leftmost[ moving objects are just entering the -scene.
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This figure represents the ground map where
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Figure 15'.
'Somf- snapshots of the Cround Map.
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