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ABSTRACY

Target Tracking and 3-D Scene Analys:s are two research areas in Computer
Vision which in the past have been considered separately. However, there are
many idvantages in combining the two problems. One such advantage would be
the ability to analyze and build a model of a stationary scene/environment .
through which dynamic objects move. This is possible through tracking the mov-
ing objects and detecting instances of occlusion. This work is based on such an
idea and is concerned with the design of an Intelligent Target Tracking System
(ITTS) which combines the above two problems into ome. In this papeér we
present an experimental ITTS which generates a perspective and ground map of
"a stationary environment.

The support of the Defence Advanced Researeh Pfo:em Agency and th US. Amy Night Vision
Lab?:dszo under Contract D.«\.\i\ 0-83-1(-00[8 (DARPA Order 3208) gratefully acke
nowledy .
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1- INTRODUCTION

_ Target Tracking and Scene Apalysis are two research areas in Computer

Vision which,in the past, have been déalt with as separate problems. Most target
—_—

tracking systems [3,5,0,10,1823,26,27,30] have the relaﬁvely modest 'goal of

detecting and identifying moving objects and tracking them, using prediction and
correlation techniqué, as long as they move unobscured across the field of view.
Most of ‘these systems have been develooed with a set of stringent real time
constraints which, given current hardware technology, constrains them to employ
a set of computationally sirhple algorithms.
. ’ ! | \ .

Most scene analysis/segmentation systems [11,17,19,25] analyze a given scene

based on the static properties of objects such as shape/structure and texture,

where the class of objects are generally predefined. These systems tend to be slow

whenever the scene is complex, containing many objects.

There are advantages to com'binin'g the two problems into one. This paper is

based on such an xdea and is concernied with the dwgn of an Iutelhgent Target

*’)’P\r ~mer LG‘

Tracking System (lT'I'S) This Asystem tracks targets bas»d not only on models for

targets (shape, motion, etc) but also.on models of the environment through which

the targets navigate and of the sensing system(s) employed to acquire thé time-

var‘ying images on which the analysis is based. - <] “ N
In this pape\“ we utilize the dynamic occlusion of moving»and stationary ‘»im ‘«X~
objects by one axiotheg to pliée bounds on distance andlangulvar extent of. 3_'“:0:‘_’__’
loeation of the stationary 6bjepts. Ocelusion of ix:oviqg object by a Stationla‘ry. h 2’:}
S o ‘ TR A
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object yieldsia'n upper bo_und’ou the distance for that particular stationary
object, while occlusion of this stationary object by another moving object yields a
lower distance bbund for it. We detect occlusion'using object models and
perspective information. Figure 1 illustrates an 'ex'ample ‘whete an-occhiding
object, such as a tree, can be detected by tracking a moving object as it moves
behind the tree. During the course Iof iracking ihe moving object, we are able to
segment the stationary scene via the‘dynamic occlusion. This allows us to

construct a perspective map and a scaled ground map of the environment.

 The l'l‘TS is'composed of a number of processes which can be divided into

three processing stag&s target recognmon seg'mentatlon of time-varylng images,

and scene model generation. '»/ / ;J- é‘?‘ SRV U/ ”"fr-w~ A

- _— /
Target recognition iz an interactive process (in the current version of our - '

ITTS) where the distance and orientation of a moving target with respect to the ' -

viewer, at a particular instant, is computed from a zoom picture. The

segmentation stage is composed of a series of processes, including image

_differencing, noise cleaning, connected component detection, and region extraction

from a wide angle picture. . : o : -

The scene model generation stage is the main part of the system and is

composed of a vatiety of processes :

1- the *‘main program” which controls the system, -

2--a “matcher” which matches the predicted appe.rance of moving
targets to their actual appearance in a given frame (instancej, '
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3- a “predictor”, which given two or more instances of a moving object’s
appearauce, predicts its appearance in the next frame,

4 an ‘“‘analyzer”, which corrects and updates all ‘the data structures
based on the closeness of a match between prelicted and: actual
appearance of a moving target, -

5- a “‘map generator’”’ which generates two kinds of maps, a perspective
map which segments the scene perspectively into open spaces and
stationary portions (where there are stationary objects), and a scaled

ground map of the environment which indicates where the moving .

targets have been observed and where the stationary objects are located.




2- AN EXPERIMENTAL SYSTCM

In this section we present an experimental ITTS. The principal goal is to
" build a model of the stationary scene by tracléing the known moving targets. We
accomplish this by detecting instances of occ'usion,' of which there are ﬁvo kinds,
, “occlusion from the front”, where a target moves behind a stationary object, and

“occlusion from behind", when the target moves in front of the stationary object.

2.1- Problem Domain Definition ,

The shapes of dynamic objects are modeled as rectangular parallelepipeds of
constant gray level (color); their images are riodeled as rectangles. Three
parallelepipeds of different sizes were used to represent our targéts.

A targgt'; mobility was represented by its veiocjty. An object at an}; instant -
of. time was representea by its type, size, location, oriéntation, velccity,
trajectory, and information‘ about related (occluding) st'at.i‘onary objects.

Stationary objects were modeled as tall, elongated, rectangular.

- parallelepipeds in 3-D, and as recf:méla in 2-D. Their appesrances were
rcpres_énted by size and locatipn. The 3-D location -of” a ,sta,tioﬁary object is
rcpresuﬁed byA a pair of intervals | { a,. , &2 ), (dy, da)] where the ;rue line of .
sight to the stationary object 13 included in the inteﬂ;'ai (a;,as) and the true

range'is included in ( 4, , dy ); see Figure 2.

.‘4.'




We adopt a two camera system model. One has a wide angle lens (10 mm),
viewing the scene from a fixed perspective, and another has a zoom lens (25 mm)
capable of panning around the Y axis. Figure 3 illustrates the camera model.

Images taken by the first camera are used by the segmehtation algorithm. Images

" taken by the zoom lens camera are used, in conjunction with object models, to

determine the distance and orientation of moving objects in a particular frame.
The motivation for using a zoom lens camera is that the high angular resolution
aliows accurate computation of the distance and orientation. It is assumed that

all the camera parameters are known.

2.2- Data Representation

Our system includes two different groups of data structures, one symbolic

and the other iconic. The symbolic data structure includes s pair of graphs, one

for represenping the &ynamic part. of the scene and another for representing the
stationlarj part of the scene see Figure 4. The two are linked to each other at the
region and object level The g}aph representing the Aynamic objects in the scene
is intefptjeted 'a,sf follonf An;alysis.of the observe‘_d data over a period of F fll;ama

has result>d in the detection and tfacking of N dynamic objects, where object “i"

* has been seen for a sequence of X; frames, and in each frame the object has

appeared to consist of one or more dynamic regions.

The interpretation of the stationary component for the same period is as

follows : Tracking the N moving objects bas resulted in recognition of a

obe




stationary scene (environment) composed of M stationary objects, exch consisting

of one or more stationary regions; see Figure 4.

vIt should be noted that the degi'ee of the APRANC node (which specifies the
number of .regions comprizing the object at each frame) for a.n); moving object in
. the most recent frame {where the APRANC initially represents a prediction) can
be'changed due to a detailéd' an.lysis of the appearance of that "object By‘ the
matching process. Of course an APRANC node of degree two represents “middle
occlusion™ explicitly. For‘examble , the object in F igure l.c is represented by
node “A” of Figure 4, indicatir g the fact .that object A in the first frame \v;'as

occluded in the middle, and therefore represented by two regions.

Oéclusion, in ggner‘al', is represented in the symbolic data structure by
establishing links between the dynamic and stationary region and object nodes.
For 'examp!e the two dynamic regions of Figurc l.c are represented by nodes
DYNREG#1 and DYNREG#Q in Figure 4 and the node APRANC #1 represenlts
the fac£ th;xt this object is occluded in the middle. The stationz;ry region between
the two dynamic regions of F igure L.c is represented by the node STNREG#1.
Thi# particular instagce of occlusion is represented by the explicit links between

- STNREG#1 and DYNREG#1 and STNREG#1 and DYNREG#2. -

The second Symbolic data structure is a two dimensiond array wntiix;ing
the range ipforma;ion for the detected stationary objects. Every_row of this array
represents a detécted stationary object Qith enough information to place's bound
on the area in the scene: where the: st,atiohary object midju. There are hi-
directional liﬁks between every row of this amy and thg appropri;h DYNOBIJ

oB




and STNOBJ. nodes of the graph p:'x:ir (described .ea.rlier in this Section). This
array is used and updated by the predictor and the analyzer. The ground map
generator also uses this array. The third symbolic data structure is also a two
dimeasional array containing the 3-D info,rmation concerning the m‘oving targets,

which results from the target recognition stage.

The iconic data structures (maps) are the other class of data structures that

are empioyed. Our ITTS incorporates two diﬂ'_erent maps, a perspective map and

a ground map. The perspective map represents the detected stationary regions

and in turn the stationary objects. It also represents the detected visible portion

(space) of the énvironment, indicating the paths traveled (in perspective) by the

moving objects.

The visible space content of ‘the perspective map is accumulated by the
maiching process,” and the staﬁonary, region portion is accumulated by the
' predictor and the ertor analyzer. Figure-’l‘t shows some examples of the
. perspective map. The light regions represent the visible portions of ti:e scene,
,while the darker regions represént the ‘stationary pértions of the scene (the

stationary objects). -

The ground map répresei:ts a scaled map of the scene, where each target at
any given f{rame (time instant) is represented by its location, trajcctory, and
velocity. - The accumulation of these for any target represents the path along

which the target has been mcving. The ground map also represents the aressjof

the ground where the stationary objects reside. This map is coastructed by the

“map generator’. Figure 15 gives some ?xampln of the ground map. The map

.é.
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represents a 70" by 70" sceﬁe and each side of a square in.the grid represents
approximatelyy 2.5 inches of the real world. The bright vectors represent
instances of the moving objects and their velocity , while the darker vectors (in
some cases making up polygons) ‘represent regions of the grouﬁd where stationary
objects have been found to reside. The bottom of Figure 15 indicates the
location of the camera (origin of the world and camera coordirate ;ystem). The
two dark vectors ‘pointing towards the upper sides'of the image rcpreseﬁt the

angular field of view of the wide angle lens.

2.3- Process Deftnition

This Section describes the processing components of the ITTS individually.

Figure 5 illustrates these processes schematicai.y.

2.3.1- Target Detector

, Inimt to this process is a set of gray level,im;gm and a mask frame'(an
image of thg stationary environment only), all taken by the wide asgle lens
camera. It processes ‘one image at a time and produces a set of r?gion
descriptors (in our ’éése parameters ‘describing. a reétangle) represesting  the -

dynamic regions. The target detector consists of the following processes:

1- take the difference between an image and the mask frame,
2- apply thresholding to the difference picture,

N
N
N
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3- apply shriLk and expard operations (nonse cleamng) to the image
obtained in step 2 :

4- apply connected components analysis to the image obtained from step
3, :

5- Fit upright bounding rectangles to components remainicg after step
4.

6- apply local image differencing to a window surrounding each detected
region to refine the estimates of the shapes of the dynamic regions (in

this step the thresholding process, aftnr differencing, uses a threshold
value much lower thaa in step ")

'Figurev 8 shows an example of the target detector’s outpdt.

2.3.2- Target Recognition

In order to generate a model of the stationary scenc and approximate areas
of the scene where stationary objects reside based oa occlusion by/of moving

objects, we need to estimate the location and orientation of these moving objects

in the scene. This is done based on the known ‘physical .dimensions and measured

imagé heights of the moving objects. To better resolve the height. of a target in

the image we use pictures of the targets taken by a zoom lens éa;nera.

'Give‘n any- of these bictura; the user in;eractively segment; a face of the
target {i)r,efembly the one in the ceniér of the iniage) by positioning four points
two on the bottom edge of the face and two on the upper edge. This wnll fit a
polygon to this part:cular fase as shown in Flgure 7. Next we descnbe tbe actual

estimation of distance.
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Figure 8 shows a target in the world ccordinate system and its relationship
with the image coordinate system. The vertices A,B,C, and D map into the points
a,b,e, -.and d on the image plane, respectively, and from the relation between these
vertices and points we can easily compute the distance and orientation. It is easy

to show that

v fH . '
..Z=—-—‘— . ) ’{A
"=y (1)

where |7 is the desired distance, H is the height of the target and Ay’ is

Ya- Y.
-2,

¥~
=

=) +

ywp’ - ybot‘ = (yc - yc) - xc( z

@

To compute the orieﬁtation,_ p of the planer face, we average the orientation

of the top and the bottom edge of the face. The orientation, p, is given hy

Ya- Y /Y
p = 'L ( ‘ 4 + (] [}
2 Ti¥. — Z.94 ZyYe ~ T

)

2.3.3- Scene - Model Generation

The components of the scenc-model generation process are described in the .

following subsections. -

<10-
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2,3.3.1- Matcher

This process comlpares the predicted appearance of c'iynamié objécts for
frame n wita the actual observed data in. the n-th frame. Since both the
predicted and actual appearance ;)f the dynamic obje'cts are represented as
regions (in thel image plane)l which in turn are_rgpresented by bounding
rectangles, the matching is done amcng these rectanglé. These reciangla are
repi'esented by the four parameters <c,r,nc,nr> where ¢ = column, r = row, nc
= number of columns, ar = n\;mber of rows. The first two indicate the location

and the other two the size of a rectangle.

The matching process. measures the similarity between a predicted

bappearance R, and a region R, in the set of dynamic regions in the current

frame. The followings steps are taken during the matehing of an R, with an R,:

1- Find all R's from the set of all R, s such that
cap=1¢,- egl < tvaluey, rgp=|r,- r,| < tvalue,
ncd,”-l ne, - ney | < tvaluey, nrl,,,--l nr, - nry | < tvalue,
5\11 the “tvalues are predeﬁned threshold values.

2- Choose the Rd. ‘such that c‘,,, v T nc&”,and nr iy are
minimum for it and TR = TR, where
TR, and TR, are two trajectories computed as follows
TR = DIRECTOR (R, R,);
TR" == DIRECTOR( R.,, ) R‘) ;

where R, is the last appearance of the object repmented -
by R,

Note : director returns one of the following directions : N , S , E,
W, NE, NW, SE, S\ based on the comparisons between ¢,z ne,
and nr. ' S
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should be realized, however, that the process generally matches n R,

(]
L
. 4.

The above steps describe the matching process between any R, and R, It

mR,;’s (or vice versa). Depending on the relation between n and m, different

cases may arise. Some of these cases are as follows :

1- Success : This is the case where n = m and every R, is matched to
one and only one R,

2- An R has no corresponding R, : This is typically due to an incorrect
predxcted decomposition; the system had predicted two regions
(R,, and R») representing an object, but only one R, is matched to
elther R, orR, or both, resulting in an ambiguily indicating an
incorrect prediction.

Another possible cause of this case is that the object is curr- tly totally
occluded, but the system had predicted that it would see sor -fit. In
our set of image frames this case did not occur.

3- An R, has no corresponding R, : There are two possibilities. Either a
new object has entered the scene, or Jn ob]ect has been decomposed
unexpectedly(middle occlusion).

a) An object is classified as new if either of the following is

true:
1- ¢y < C+e Target entering from LEFT
2-ry; < R+e . Target entering from BOTTOM
3 ey + ney > NC-e Target entering from RIGHT
4 ry+ nry > NR-e Target entering from TOP

Pncture frame <C,R,NC,NR> and e is some puce!
count threshold{i.e. in our case e==50).

If this is the case the count for the dvnamxc objects is increased
by one, and corresponding DYNOBJ FRAME, APRANC, and
DYNREG nodes of Figure 4 are generated This new rectangle
R, is painted as visible space in the iconic data structure.

b) If R, does not représent a new incoming object, then indeed
it must represent part of an existing moving object. We assume
that to whichever.object, X, this R, belongs, the other part of
X has already been matched to some other region, say R - .

12
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The following steps will find an R ¢ which in combination with
R, represents object X :

for k=I1,N do
Rem : N = # of regions extracted from the current

‘0 'l' . * '... * -‘.l.l o - I'l}.'
AOREES  IPARARTRY » - OO,

frame.
‘ Find an R‘ which has already been matched to
an R,
if ¢y - (e +nep) < avgtrccw:dth and|r;-rl<e
X or,
if ¢g- (¢g + ney) < avgtreewidthand | ry - ry| < e
.' then R, to point to whichever object
O the R, points to.
- _ -endif
- : ‘endif
- endo
? ‘ endfor
N ‘ After finding R,, update the symbolic and iconic data
NI structures to indicate this decomposition of object X. More
i‘ _ specifically the degree of the APRANC node is changed from 1
: to 2.

4- An R, has multiple corresponding R,’s : This is a special instance of
the second case . .

i 5An R, has multiple correspondmg Rds This is a special instance of
o ’ the thlrd case.
o~ S '
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2.3.3.2- Predictor

This module predicts tﬁe future appearance of a dynamic object (in 3-D and

then in 2-D) based on its type and :

1 its current 3-D status (location, orientation, velocity, and trajectory),
2- its previous 3-D status, and, -
3- the accumulated information aboat the stationary w~rld.

The location of a target in the real world is the location of a reference point

on that target in the real world. This reference point is chosen to be the

.intersection of the optical axis of the zoom lens camera system and the center of

a particular face. of the target. We modeled the targets so that the origin would -

lie in the center of either a Right or Froct face of the target.

If P, (X, Z;) denotes the location of a target in the scene at time t where
X, = d,xsin , and 2, = d,Xcos 8, )

d : the distance to the target computed by the procedure of Section 2.3.2 -

3: the ban angle by wbich this particular zoom picture was taken,

then P,,, will represent the location of the target at time t<+1, and is computed -

Py = P, + AAt + BAS, . (3)

where the second and third terms on the right haﬁd side represent velocity ax;d

lde




acceleration/deceleration rate of that target, respectively. Writing (5) in

cowponent form yields

Xip1 =X, + AAt + BAB, (8)

Zp1 = Z,+ AAL + BAL. " (1)
In order to use (6) and (7) we need to compute the coefficient A and'B. It is

easy to show that

A K- 4%, +3X)

2 ®
g Nea- 2-;‘}-1 + 4 (9)
or, equiva'llem.ly, that
i (z,_‘2 - 422',_. + 32,), (10).
B;_ (z,_; - 25,-. + 2.). (11)
Sub;t?tuting (8) and (9) -int‘o (6),‘and (10) aﬁd ( il) into (7 Kiveg. |
om0 e B, Bt
m g Gzt 32) P2z

2 . 2
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and simple algebra yields

X1 = 3N, - 3N, + X, R (14)
1 =R% =32 + Zpa - (19)

It should be realized that (14) and (15) are true for t > 2; for the case where

= 2 the following simpler equations are used:
X1 =2X- Xy, ' (16)
2 =22,- 2y - ‘ (17)

Equations (14) and (15) or {18) and (17) give the translational components of (5);
next we compute the rotational component. Let a, represent the orientation of a
target at time t with respect to the X-axis of the real world coordinate system.

Associated with (5) is a rotational component computed by
a; = o, + AAt + BAP, ' L (18)

where the second and third terms of the right hand side rebmént change in
orientation and rate of change in orientation respectively. Solving for A and B (as

we did for the case of X and Z) and substituting them in (18) we get
upe| = 30' -y <+ - ] for l>2, ) (19)
| Oppy = 20y - Ay for =2, ' o , (20)

~-which completes the ‘t'ralislo‘m;azion a target will go through from the time t to

. «10e




t4-1. In order tc complete the 3-D prediction process, all the vertices of a target

(its model) should go through the computed transformations.

Let P,_ (X,

vy * Zw,,,) TEPresent a point (preferably a vorner) of a target in

the real world at time t+1, and P,(X,,, Z,) represent the corresponding point
on the target's model. Then the 3-D prediction for a target is computed for every

corner of the model according to

Xon, cosayy -sina”;‘ X A4l
Z,,., = |-sinayy, oSy i Z| T 2 (21)

J .

This completes the first step of the prediction process. Next we compute the
perspective projection of the points computed by (21). This is accomplished using

the following equations :

\’Unl '
T = 55—/, , (22)
L TN
. (Y'n-l :- L)
Yee1 = Z [ (23)

Yot

where pyy(Tuy1 , py) is & point on the image corresponding to P, _(X,.., Zu..),
L is the camera height, and [ is the foeal lengtb of the wide angle leqs.

The above procedure wm give us cight points (the e:ght corners of a
rectnngular pamllelepiped), to which we next it the best rectangle, R,,; which
lreptesent‘s a region on the ima;e at time t+1 for which we predict the presence of

a particular target.

217
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Having predicted R,,,, we ci;éck for possible occlusion, for which if one
exists, R,,, is modified appropriately. To check for possible occlusion, we need to

compute the angle along which the target is predicted to be seen. This angle is

~ simply computed using (14) and (15) orw(lﬁ) and (17) as follows :

Bray = arctan (=) | (24)
R 2T o ‘

Next we compare fJ;,; Wwith entries in the symbolic data structure

representing the range information regarding the detected stationary objects (see

Section 2.2). If a match .exists, then the-target may be occluded depending on the
accumulated distance information for thnt particular stationary object and the
predicted distance for this target It dlstance companson yields an occlusion, then

R, is modxﬁed based on the region R, representmg the stationary object.

This modification is done in one of the following tw§ ways: either the size of
R, gets smaller (thé case when the tuget will be occluded on one side), or li,ﬂ
splits into two pieces R},, and R?,, (tix'e 'casevv)here the target will be occluded
somewhere'in ihe.‘mid.dle). See Cigure 0. . -

'The above modxﬁcatxons ‘would bold if the statxonary object 'was known to

"have been completely detected Othem.se, R,ﬂ and R are modxﬁed on the

assumption that this stationary object is as widn as’ poss:ble. For example, if a

stationary object (represented by R,) is partly detected and its observed width is

w, then it is poss:ble that we have not yet detected the remaining part of the

object, r,. wath a w1dth equal to W-w (lf W is the maxxmal wxdtk of aay

- : . o 18 . A R




stationary object). Therefor, R,,; would be modified as il it was occluded by a

region of width W. See Figure 10.

The last steb in the predictidu process is the updating of the graph pair data

structures, range information data structure, and the p_erspectvive and ground

maps. The graph pair is updated by generating DYNREG node(s), con;rmponding

STNREG node (if any r, is predicted), and FRAMES nqde' and labeling all these |

nodes as P (Prediction). These predictions will be chééked against the actual data

'by the analyzer at time t+1.

2.3.3.3- Analyzer:

The analyzer examines the reports from the matching process. If the errors
(mismatches) are below some predefined threshold, then the predictions are
. accepted and all data structures are updated appropriately. Otherwise a search is

" initiated to determine the cause of the failure.

;T_hc search can be best described by giving an ekimple. Figure' 11.a shows a
predicted target’s image X with‘ an associated kx;own part of ; staeioix_ary obj-‘ect‘
A. ,F'igure' ll.p sh’owsv the actual appearancé (;I the object. éy 'conxparingilthescl:
two (a and b) and-conside'ri.ng the values of different parameters, different
conclusions ca_n'be made.’ For example, if P1 = P2 andv 11 == 12, then t;he
j hypopaper about the stationary object to be extended ipefsi:ectiv)ely) by width A

from the right is wrong, and ';the actual width of the stgt'io'n'afy object is B. Or, if

el
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if X13£X2, then we conclude that the previous estimate of this terget’s velocity is

incorrect and should be corrected by the value X2 - X1.

The analyzer is also responsible fcr the detection of unpredicted stgtionary
regions (and in turn stationary objects). This is done as follows : Suppose a
predicted region R-p is matched to 3 region R, of the current frame with an above
threshold error. Furthermore assume, that one of the two ends of R, z;nd Ry
match ( ie. ¢;=cq OR (c,+nc))=(cstney)) and the length of R, is larger than
the length of R, (i.e. ne,<ncy) . Then it is hypothéized that there exists a piece
of a stationary region ( representing part of a stationary object) with width
Inc,-ney| located to the left or right of the targe:, depending on the trajectory of

the moving object.

. 2.3.3.4- Map Generatbr

|
“The map generator is responsible for constructing/updating the perspective

and the grounq rﬁap. Both <I)f these maps are 510 by 510 8-bit/pixel pictures. The
| perspective m;p is constructed and updéted by painting regions (rectangles)
- corrésponding'to the dynamic re‘gions (li ¢"9) and stationary regions (R, s) whose
parameters are take‘n from the symbolic graph pair data structure (;ee Section |

| 3.‘.’).'Figure 14 contains some examples of the perspective map.

The map generator is also responsible for the construction and maintenance
of the ground map. For every instant of a moving target a vector is drawn

representing its location (in 3-D), orientation, and velocity. All of the areas on

f!D-




the ground (in 3-D) where stationary objects have been detected to reside are also
indicated by drawing vectors bounding them. Figure 15 contains examples of the

ground map.

2.3.3.5- Occlusion From Behind Detector

- This procedure detects all those stationary objects which are occluded by the
moving targets, by taking the difference between every dynamic region R,
corresponding to DOBJ;, and the same region in the mask frame, resulting in a

difference region R ;.

The region Rd,-” is then thresholded based on the predeﬁned gray level
values' corresponding to the dynamic and stationary objects, yielding the
thresholded region Ryy,.,4 If, in fact, there exists a stationary object behina this
dynamic bbject DOBJ;, then the region Ry;,,,, would contain non-zero elements,
to which we th"'n’ﬁt a rectangle R,. R, is then entered i !to the symbolic data
Structures. and the iconic’ data ,strﬁctures. vll'lxnmplea 1

this detection are

iﬁustrated in Figures 14.5, 14.c, 15.¢, and 5.e.
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3- EXPERIMENTAL RESULTS

.This section includes results of processing a sequence of twenty ricture
frames by our ITTS. The images are 510 'by‘ 510, eight bit pixels. Dark objects
represent the staﬁonary objects and bright objects represent the moving targets.
Tﬁere were three diﬂ'érent sizes of moving target;, and a variety of stationary

objects.

The scene covers an area of approxxmately 70" by 70". Figure 12 shows the
sequence of twenty frames plus the mask frame where, in on{er to save space, the
510 by 5io images have b'een clipped into 510 by 175 segments (areas of interest).
Figure 13 illt;strates the scene layout with the paths aloﬁg which targets move.
F igure 14 shows some snapshots of the perspective map where, again to save
space, the‘imaga are élip;I)ed into 510 bf 175 pieces. The bright regiots represent
the visible portions of the scene (where the targets have been seen) and the dark
regions represent the stationary objects.. 'The perspective map changes as.more

picture frames are processed.

It should b'ev noted that the stationary objects are not represeated By their

full henght due to the altitude of the camera with respect to the ground plage, '

the tops of stationary objects cannot .nteract with dynamie ob]e-:ts. More

accurate mtxmnte of heights could be detected if the cameras were looking down

at the scene so that the targets at different d:stances pass behmd and are

occluded by the stanonary objects.

ozzo




.Figure 14.a shows the perspective map: after prolcessing one frame. The
stationary region detected in this frame is due to the procedure for detecting
occlusion fro: I. behind (see Section 2.3.3.5 f(:’( getails); this is also indicated in the
ground map, as shown in Figure 15.a. ther instanées of tkis kind of occlusion

detection are shown in Figure 14.c and 16.c where in each, the rightmost

stationary region is detected by tha above proéedure.

Figufe 12 not only shows sequence of the 20 frames, but also shows the
results of the predictor. What is shown xn this ﬁgurel are different frames, with
the prediction for that particular frame overlaid on it. For instance, Figure 12.a
shows .the third frame; 'the rectangles represent predictions for this frame,
obtained in the second frame. Since the predictor in the second frame knew about
the existeﬁce of the Ale'ftmost stationary objec‘t\ in thle' scene, which would be
occluding the topmost mo#iné target at the third framé, two regions wgie

predicted to represent this particular moving target. '

'Another‘example of such double region prediction is shown in Figure l2.§ for
the bottom target. It is evident that this particular prediction is wroné. As 'can
.'b.e seen in Figuré lS:eﬁéﬁsonting the ground map (explained fully later in this
Sertioﬁ), after processing the tenth frame ther> is only a maximd distance .
asséciated with the second stationary objgct. from the bletft. At this time, lal,l the
ITTS knows abbui this particular stationary objeét is_ that it is lpcated
somépvhere between the yiewer and its maximal distance point. Now, sincg the
precicted location of the _moﬁng target is within thisint'ervai, the predictor 'after |

considering the possibilities of occlusion, predicts two regions. However at the
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twelfth frame the analyzer detects this mistake and corrects all data structures.

Figure 15 shows examples of the ground map (as described in Section 2.2)
generated by the map generator of Section 2.3.5. Figure 15.a shows the groimd
map after processing the first frame and Figure 15.j the result after twenty

frames, where the difference between them is apparent. It should be noted that

one of the goals for our ITTS was producing a map which would resemble andl

approximate the map shown in Figure 13. This task was accomplished through

the generation of the ground map shown in Figure 15.j.

'i‘he an#lyzer is one of the processes responsible for producing the
information used in generating the ground map. We nowy'give some examples of
how Lh; analyzer works. The ﬁrsi example concerns the case of tite predictor’s
mistake, which was discussed earlier in this Section. At the eleveath frame, the
analyzer detects this mistake by realizing that 1) the two pre&icted R,’s match
only one R, 2) the R, bounds the two R,’s, and 3) that the predictor's decision
based on the maximalldiétance for thé corresponding stationary object was
incorrect. Th‘is' leads the analy.er to realize that tbe moving ‘target should be ip
front of this particular stationary object, yielding a bound on th; minimal
distance to the stationary object. This is reflected i1‘x shortening. ‘he vector
representing'the interval ih which thevsmcionary objgct is located, as skown in
Figura 15.[. A similar analysis is done at the sixteenth frame, for the moving

object at the bottom.
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\" " The analyzer is also responsible for tightening the intervals and regions
- representing the location of the stationary objects; this is illustrated in Figures -
15.a thfough 15.).
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the viewer and the target.
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Figure 7.

An example of range detection; a polygon is
fitted to a face of a moving target in a picture’
taken by the zoom lens camera.
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“a) predicted apperance (region).

'Figure 11.

°-

P o 22, 12) \\\\,

'b) actual appearance (rogion).

An example of an incorrect prediction.




Figure 12.

..

The sequence of 20 frames (our input data),
where the black and white windows represent
the predictions for each moving target. a)

shows the mask frame; b) through u) show the

sequence of 20 frames. It should be noted that

. at the 9th and 12th frames, the .leftmost
~moving objects are just entering the scene.
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Figure 12 (cont.) -
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Figure 13.

This figure represents the grouhd map where

all the points are measured. “X" represents

location of each moving target with the

particular frame number above it. The black
circles represent the location of the stationary
objects. ,
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Figure 14.

Smnﬂ

» snapshots of the Perspective Map.
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Figure 15.

‘Some snapshots of ‘the ¢

Tt wr Mup gt e

priswhr g Tle beonng

round Map.
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