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s ABSTRACT

;-"- " Parameter values of nonlinear statistical models are typlcally estimated from data
- using Iterative numerical procedures. The resulting joint sampling distribution of the
o parameter estimators Is often Intractable, resulting In the use of approximators or Monte
:ﬁ-‘ Carlo simulation to determine propertles of the sampling distribution.

‘ This paper develops methods, using llnear and quadratic approximators as control
e variates, that reduce the varlance of the Monte Carlo estimator by orders of magnitude.

,-::: Estimation of means, higher order raw moments, variances, covariances, and percentiles
Yol Is consldered.

) 7T

.'_ff.; Keywords: Control varlates; Monte Carlo; Nonlinear estimation;
- Simulation; Swindle; and Varlance reduction.
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1. INTRODUCTION

Syaiistlcal models are used In many flelds to relate dependent variables to
independent varlables. For llnear models with additive independent and normally
distributed errors and for a few extensions, the statistical theory Is well-established and
fitting the model to data Is stralghtforward. For nonlinear models or for models without
normally distrlbuted errors the theory Is less complete and iteratlve numerlcal
procedures are needed for fitting, which 1s the price pald for a better Atted model with
assoclated better predictions and inference.

Both the precision of predictions and the statistical significance of Inferences
depend upon the sampling distribution of the estimators of the model parameters. This
typlcally multivariate sampling distributlon Is often summarized by statistlcal properties
such as means, higher order moments, variances, covarlances, percentlles and quantlles.

For nonllnear models these propertles are usually unobtainable analytlcally.
Methods for approximating these propertles have followed three approaches: asymptotlc
results, serles expanslons, and Monte Carlo sampling. The usual advantages and
disadvantages of these approaches hold here: Asymptotic results are often easy to
obtaln but can have large error for small sample sizes; approximations based on serles
expanslons have fixed accuracy and can be difficult to obtaln, partlcularly In
multlvariate cases; and Monte Carlo sampling Is easy to Implement but requires large
sample slzes to be accurate.

In thls paper the efliclency of the Monte Carlo sampling approach 1s improved by
using serles expanslon approximations as control variates. Roughly, the Improvement
results from sampling to estimate the error of the approximation rather than to estimate
the property of Interest directly. The resuiting methods require few assumptlons and
are stralghtforward.

The theory developed here s orlented toward providing the methodology for
efficlent Monte Carlo study of statistical models. In particular, the results are oriented
toward development of a computer package that, glven only the description of the
model of Interest, automatically and efficlently evaluates the model. Such a
methodology Is Important since the use of nonlinear models Is growing, due to advances
In both computer hardware and In software for fitting nonlinear models. But these
computer advances, while adequate for fittlng, often are not sufficlent for the Monte
Carlo studles necessary to study nonlinear models, particularly gilven the Increasing use
of mlcrocomputers In interactive environments. In addition, automation 1s Important
since most analysts lack the time and/or tralning to develop varlance reduction methods
manually. Swaln (1982) and Swaln and Schmelser (1983) reduce varlance by orders of
magnitude for a varlety of models using the varlance reduction methods developed here.

Section 2 Introduces notation, terminology, and problem statements. Sectlon 3
surveys approximation methods for nonlinear models. Monte Carlo sampling in the
context of nonlinear statistical models, with emphasls on control variates for varlance
reduction, 1s developed in Sectlon 4. Sectlon 5 develops these ldeas for the cases of
estimating means, higher order moments, variances and covariances, and percentlles.
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2. NOTATION, TERMINOLOGY, AND PROBLEM STATEMENTS

The followlng notation I1s used. Random variables are denoted by upper-case
Roman letters, upper-case Greek letters, or lower-case Greek letters augmented with
carets and bars. Reallzations of random varlables are denoted by lower-case letters, as
are constants and functions. Varlables are vectors or matrices with scalar components.
Exceptlons are specifically 1dentifiled. Vectors are columns, with row vectors denoted by
the transpose of a vector. Powers of a vector, V!, denote componentwise
exponentiation. The kth moment about the origin 1s denoted by E (V*]. Cov[V,W]
denotes the pxg covarlance matrix E {(V-E [VI]XW-E [W])T] of the p- component random
vector V and the g-component random vector W. The varlance of V, Cov [V,V], I8 also
denoted by Vvar (V].

Conslder the nonlinear g¢-dimenslonal response function deflned over an r-
dimenslonal domaln, ’

E[Y;]=n"(X"0%)

where Y; =(Y;,, Yi5, - -, Y, ) Is the measured response, X;'=(X;}.X;3. ---. X;}) Is the
actual deslgn polnt, and ¢° =(4,", 6;, ---,46,) 1s the actual parameter value for the
surface. Y; has the assoclated error random variable

E; =Y -n"(X 6°)
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where E; = (E;,, E;3, ., E4). These errors arise from four sources: error In controlling
X;, error In measuring X;, error In measuring Y;, and random variation In the system.
Reflecting these sources of error, the model can be specified by {n°.¢°, G°,H"}, where
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G’ Is the multivarlate cdf assoclated with the deslgn matrix and H’ Is the multivarlate 'r,.':
cdf assoclated with the errors. There are three design matrices of Interest: (1) X', the &

4
L. 1

nominal deslgn matrlx, (2) X°, the actual design matrix, and (3) X, the measured design
matrix. Correspondingly, G° has three components: (1) Gy, (2) G;., and (3) Gx. G,. Is
conditlonal on the outcome of Gx.,, and Gy Is conditlonal on the outcomes of both Gy,
and G,.. Simllarly, H® Is the multlvarlate cdf of the two types of error terms, E° and
E/, whose Individual cdfs are denoted by H:. and Hg. The error term E 1Is the
convolution of the (possibly dependent) error terms E‘, the random varlation in the
system, and E’, the error in measuring Y. H;. is condltlonal on the outcome of Gy. . Hg )
I1s condltlonal on the outcome of Gy and H... These relatlonshlps among G° and H*

are stated 1n algorithm form In the dliscussion of the Monte Carlo method at the
beginning of Sectlon 4.
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5 A surface n Is fitted by determining an estlmate & of 4° as a functlon of observed
! data (z,y), where 2 = (z,,2, - -,z,)7 and y =(y,. 92 - -.9s)7, Which arise from the
actual model {»°,0°, G’, H*}. Since the actual model 1s unknown, the analyst must
assume a family of models, denoted here by {n. 7. G, H}, and referred to as the unfitted
assumed model. G and H are analogous to G° and H’ of the true model. The feasible
reglon for 2 is denoted by T CR ?, which arlses from inherent propertles of » or from the
context of the appllcation.

3

Denote the (typlcally teratlve) procedure used to determine # by A,, where s 1s a
short notation for s(4;n, G, H,z,y), a scalar function of the data and the unfitted
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assumed model. Such procedures almost always depend upon the residuals
e(0)=1(c,(0), ex(0), - --. e (0)T, where ¢;(§) =y, ~n(z;; §) for 6€T. The two most common
examples of ¢ are the sum of squared reslduals and the likellhood of the residuals.
Procedures 4, minlmize the former and maximize the latter.

Palnt estimatlion Is then

POINT: Glven the unfitted assumed model
{n. T. G, H}, data (z, y), and procedure A,, determine J.

In general, POINT is a nonlinear programming problem, with an objective function s
and with constralnts # € T, that is solved by procedure 4,. Whether or not A, results In
the optimal nonllnear programming solution 1s irrelevant. However, excluded from dis-
cusslon In this article are procedures that can return a different estimate on different
applications to the same data with the same unfitted assumed model, such as sometimes
occurs when the analyst provides inltlal values to the procedure.

Having solved POINT, the practitioner i1s faced with the problem underlylng this
paper: evaluating the quality of the estimator .

DIST: Given the assumed unfitted model {3, T, G, H}
and procedure A, used In POINT, and the true fitted \
model {n°, 8°, G°, H'}, determine properties of the mul-
tivarlate distribution of 6.

An !mportant application of DIST is to study the effect of assuming the wrong model,
which occurs when one or more of n=1n°, G =G*, or H = H*’ do not hold. For exam-
ple, H  H* when testing sensitivity of the sampling distribution to departures from the
assumed error distribution H, which 1s typlcally Independent, identlcally-distributed,
Zero-mean normal.

Unlike the linear case, In the general noniinear case the distribution of é depends
In a nontrivial way on ‘. Although the researcher knows the value of 6°, the practl-
tloner, who cannot know #°, can only solve DIST for several values of ¢° in a region of
Interest. :

DIST 1s a very general problem — much more general than typically consldered In
research on noniinear models. Monte Carlo methods alone have the abllity to analyze
all speclal cases of this general problem. However, the extenslve literature of approx!-
matlons for subsets of this problem are useful as the baslis for variance reduction tech-
nlques for Monte Carlo solutions, as developed In this paper.
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3. APPROXIMATION METHODS

Approximations are cruclal to both the estimation problem POINT and the distrl-
bution problem DIST 1n nonllnear models. The solution procedure A, In POINT often
uses low-order approximations as the basls of iterating to an Improved solution. In
DIST, approximations sometimes provide easy to compute, falrly accurate approxima-
tions to the distributlon of é. This section discusses a Illnear approximation
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corresponding to the least squares estimator In the context of both POINT and DIST.
This approximation and the analogous quadratic approximation are good, but not the
only possible, cholces for use In the control varlate vartance reduction technlques
developed later In this article.

Conslder a procedure A, based on minimizing the (welghted) sum of the squared
residuals for a scalar (¢ =1) response,

e@)=cT(O) W c(0)

where W Is a matrix of welghts. When the reslduals depend upon a nonlinear function
of the data the normal equations require solution of silmultaneous nonllnear equatlons.
One approach Is to linearize the residuals at the current iterate, 3}, using

e() =~ y - n(z, ¥ - F @ y0-0"))

where F()) 1s the nxp Jacoblan matrix of first derlvatives 9 n(z; .0)/30, (i =1,2,-- - .n
and k =1,2, - - -,p) evaluated at § = #), This approximation leads to the Gauss update
of the Newton algorithm

PN — o) 4 [FT(O(J')) w F(a(i))]—l FT(&(J')) w e(a(i)) .

This approximation can also be viewed as using only the leading first-order terms In the
second derivatlives (the square brackets, above) In the Newton update.

There 1s little speclal about the cholce of this llnear approximator or about least
squares. When higher derivatives can be computed, higher-order approximations are
sometimes used for greater accuracy or for numerical stabllity. Serles approximations
can also be used to create algorithms to solve estimation problems with maximum llkell-
hood and other loss functions.

Now conslder llnear approximations applled to DIST. For example, conslder a
welghted least squares estimation problem with 5 =19°, a deterministic design matrix,
and welght matrix W= var(E]. In the Gauss update formula, replacing ¢° with
ylelds the residuals £(¢°) = E and the llnear approximator A

A=0" + [FT@O )W F@')*FT@')WE .

The approximator A has readlly determined propertles. When £ ~ N(o,W), then A ~
N(8°.,var [A]), where Var[a] = [FT(8°) W F(0°)". The distribution of A Is an approxima-
tlon of the sampling distribution of 6, although 1t provides no Information about the
blas of & as an estlmator of ¢°. Gallant (1975) uses such a llnear approximator to con-
struct approximators to the llkellhood ratlo test. The generallzatlon for multliple
responses (¢ >1) Is discussed In Bard (1974).

Agaln this llnear approximator and least squares are just examples. In the mul-
tiparameter quadratic case conslderable Ingenuity (and perhaps further approximation)
must be exercised to speclfy the approximator as a function of the appropriate derlva-
tives and the error vector, E. Approximators are also often based on asymptotic pro-
pertles. Both the least squares and maximum likellhood estimators have asymptotic
normal distributions under general conditions (Chambers, 1977; Crowder, 1976; Willks,
1962; and Wu, 1981). Shenton and Bowman (1977) discuss maximum likelthood In

detall.
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The llnear approximation 1s useful in both POINT and DIST. In POINT, the reall-
zatlon § approximates 9. In DIST, the distribution of the random variable A approxi-
mates the distribution of 6. Both are referred to as the delta approzimation throughout
the rest of this paper. The analogous quadratic approximation, with assoclated random
varlable denoted by r and reallzatlons ~, 1s referred to as the gamma approzsmation.
The gamma approzimation for DIST is based on results for the least squares estimator 1n
Box (1971) and Clarke (1980), who provide expressilons for the blas and varlance matrix.
The corresponding quadratlc approximation for POINT 1s developed 1n Swain (1985),
who extends Clarke's result to the specific context of Monte Carlo studles.

The accuracy of approximations 1s fixed by the true model {»°,8°, G°, H*} and
the unfitted assumed model {n, T, G, H}, although occaslonally Increased accuracy 1s
possible by extending the order of the approximation. Measures cf nonlinearity (Beale,
1660; Bates and Watts, 1980) glve an Indlcatlon of the accuracy of approximations, but
the measures can be misleading, as when errors are nonnormal (Glllls and Ratkowsky,
1978).

4. MONTE CARLO SAMPLING AND CONTROL VARIATES

Unlike approximations, Monte Carlo methods can provide any level of accuracy
with sufficlent sampling effort. The most stralghtforward Monte Carlo simulation
analysls, termed direct Monte Carlo, and the ldeas underlying reduclng Monte Carlo
sampling error via contrl varlates are dlscussed In thls sectlon.

Consider the direct Monte Carlo sampling analysis of DIST: m repeated observa-
tions of &, denoted by 9,.% =1,2 - - .,m, are generated and the propertles of the sam-
pling distribution are estlmated from the sample. In the direct experlment, quantitles
with subscript s:s are scalar components of vector quantities denoted by subscripts :s.
This direct experiment deflnes the class of problems conslidered In thils artlcle. Corre-
lated errors are not excluded. Extenslons such as multlplicative errors are stralghtfor-
ward but not consldered.

The Direct Monte Carlo Experiment
1. Foru =12, --.m

a. Generate z/, from Gy

4

Generate z;, from G,. glven z.,’

Generate z., from Gy glven z.,/z.

a o

Generate ¢, from HZ. glven z

For ¢ = 1,2, - - - ,n; calculate g%, = n°(2;%:0°) + €’

e

Generate ¢, from Hg. glven z., z.., z.,, and y

o

. Fori =1,2, ---.n; calculate y., = g% + €.¢

g
h. Solve POINT using A, on (z.,.y.) assuming {n. T, G, H}, which leads to 3,
possibly through the residuals ¢ () =y., - 2. . 0)




2. Compute estimates of Interest from d.,, s =12, - .,m

The usual estimates of the marginal raw moments and the variance matrix of © are

B! =m™! z-: (" )‘ k=13, --

and

26 = (m-1)" Z-: (8 "ﬂl')(ozo ‘pl')r

[ X33
respectively.

While the direct Monte Carlo method 1s conceptually simple to Implement and
provides consistent estimates of the desired distrlbution, standard error decreases only
with m'/3, Thus large Monte Carlo sample sizes are needed to obtaln preclse estimates
with the direct experiment. Worse, each observation 2., is expenslve, not because of the
sampling from G° and H’, but because A, In step 2 Is typlcally a nonlinear program-
ming algorithm In p varlables. Therefore, variance reduction technlques are lmportant
when using Monte Carlo methods to analyze DIST .

Vartance reduction technlques are almost as old as Monte Carlo sampiing; In fact
the term Monte Carlo was once reserved for sampling methods in which some sort of
swindle was used to reduce varlance. Consequently, a large Illterature exists; Hartley
(1977), Kahn (1856), McGrath and Irving (1973), and Wlison (1984) are interesting sur-
veys. Examples of varlance reductlon In Monte Carlo studles in statistical settings
include Andrews, Blckel, Hampel, Huber, Rogers, and Tukey (1872), Arnold, Bucher,
Trotter, and Tukey (1958), Gallant (1980), KlelJnen (1877), Koehler (1981), Relles
(1974), and Schruben and Margolln (1978). Nelson (1983) and Nelson and Schmelser
(1984a, 1984b, 1985) propose a framework for varlance reduction.

The varlance reduction methods developed in the next sectlon use the delta or
gamma approximations, discussed In the last section, as control varlates. The remalnder
of thls section reviews control varlates, drawlng from Lavenberg and Welch (1981),
Cheng (1978), and Rubilnsteln and Marcus (1985). The method of control varlates Is
treated In most Monte Carlo texts (Hammersley and Handscomb, 1964) and advanced
simulation texts (Klelynen, 1974; Fishman, 1978; Law and Kelton, 1982; Bratley, Fox,
and Schrage, 1983).

Conslder for now a primary estimator Z, a p random vector, and a control varlate
C, an ! random vector, whose mean is known. The control variate estimator Is

Z((B)=2-B(C-E[C))

where B 1s a px! welght matrix. Z(B) has the same expected value as Z = Z(0)If B 1s a
constant or Is independent of C. The variance of Z (B) Is the matrix

Var(Z (B) = Var[Z |+ BVar{C )BT -BCov[C.Z |-Cov[2.C|BT
whose determinant 1S minimized by the setting B equal to
' B® =Cov[Z,C|Var™[C] .
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In addition to minimlzing the generallzed varlance, |[Var[Z (B)]|, this set of control
welghts also minlmizes the trace of the variance matrix. Rublnsteln and Marcus (1985)
. show that

14
| Var(Z (B) | = | var[Z @) | L (1-5})

- where the p; are the canonlcal correlations between Z and C (Anderson, 1958).

Ezxternal control varlates are random varlables analogous to Z but from another
system. This other system !s simulated so as to lnduce a correlatlon between C and Z,
thereby reduclng the varlance from that of Z to that of Z(B). The correlation Is
induced by subjlecting both systems to the same unlform (o0,1) random number streams,
generating random varlates using the inverse distribution function, and coding the simu-
lation to provide a monotonlc transformation between the inputs and outputs — in thls
case between the Inputs z.,! 25, z,, ¢4, ¢, and the output d.,.

Often when the control C Is external, setting B = [,, the p dimenslonal ldentity
matrix, 1s close to optimal (Hammersley and Handscomb, 1964); but even In the external
control varlate case, estlmating B° s sometimes worthwhlle when studying DIST
{ (Swaln, 1982; Swaln and Schmelser, 1984), especlally when the errors are nonnormal
' (Swaln, 1984). The most common estimator Is the regression estimator, obtalned by
substituting sample values for the covarlance and varlance terms In the defilnition of B*.
Swaln (1982) studles a varlety of estimators of B*.

Estimating B* glves rise to Issues of both blas and efliclency. Blas can be avolded
by using a splitiing estimator, as dlscussed In Kahn (1958), Tocher (1963), and Swaln
and Schmelser (1983). Efficlency depends upon the cholce and number of control varl-
ates employed, as discussed by Lavenberg and Welch (1981), Porta Nova (1985), Rubln-
steln and Marcus (1985), and Venkatraman and Wlison (1985). The loss In efficlency for
each additional control variate used when B’ Is estimated may or may not be offset by
the additlonal Informatlon carried In the correlatlon between the new component of C
and Z. Fortunately, In thls sense, DIST glves rise to only a limited number of natural,
high-quallty control variates.
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r.- The control variate technlque is not the only slmulation swindle that is possible
g for DIST, but an advantage of control varlates Is that they can be applled slmultane-
ously to several estimators. In contrast, many other variance reduction technlques lead
: to varlance reduction for one estimator while leadlng to a varlance Increase for another
estlmator.

s 5. APPLICATION OF CONTROL VARIATES TO DIST

Control varlate estimators for DIST are developed in this sectlon based on the
delta and gamma approximations. Estimation of arbltrary propertles of the distributlion
of & s consldered. Means, higher-order marginal moments, the varlances and covarl-
'{" ances, and percentlles of the sampling distributlon of & are given speclal attentlon. The )
= new algorithm 1s identlical to the direct Monte Carlo method stated earlled, with the .
modification of step 2 to replace the direct estimators with the control variate estima- .
o tors and the addition of step 11:
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11. Compute §, or v, from z.,, y..

The definitlon of 6., and +, was given In Sectlon 2. In the general case, defined by the
direct Monte Carlo procedure of Sectlon 4, some care and modificatlon Is necessary for
implementing step 11.

BK)
.
L »
ecdndinnliondd M e

When n 7 n°, care should be taken to use n rather than n° when computing F.

When nsn°’, 0° 1s inappropriate In the definltlon of A, since for example the dimen-
sionality of A may be different than that of 4°. In this case, replace ° with 9, the
estimator from the direct experlment. Then é, can not be calculated until after all
the direct sampling 1s completed. No extra sampling 1s required.

el

o

When the weight matrix W 1s unknown, replace W with [Var [E]]”, where the estl-
mate 1Is agaln from the direct sampllng experiment and calculation of
s 6...8 =12, - - m,]ls delayed untll later.

When ns4n°, the deslgn matrix X 1s not deterministic, or W 1s unknown the sampling
- distribution of A Is unknown. In these and other sltuatlons In which the distribution of
' A 1s unknown, a supplementary Monte Carlo experiment Is run to obtain the needed
propertles of A to negligible error. The observations of A are much cheaper to obtaln
than observations of €, so thls supplementary run could obtaln the negligible error with
a large sample slze. However, varlance reductlon can be applied to the supplementary
- experiment as well. The most obvlous method 1s to use conditional expectations, which
means that rather than calculating the propertles of Interest from the observed values of
s A, the sample average of the propertles of Interes? Is calculated.

NORL LT W SRR ISPy W

Zadion Kubundk

g There 1s an optlon to the supplementary experiment — perturb the direct Monie k
Carlo observatlons to obtaln a control system for which the propertles of A are known.
For example, set the deslgn matrix to the mean (or median) value, and transform acu-
normal error terms to normallty using

‘ '. €,' = VarV (E] @' (H(e.q))

where @ 1s the p-dimensional N(o, /) distribution function. Unfortunately, setting the
design matrix to a constant decreases the correlation Induced between the system. In
addition, the first author has noted emplrically that very nonnormal errors (e.g., unl-
form) also result In substantlally less varlance reductlon. Therefore, the supplemental
experiment seems to be the preferred general method for determining propoerties of A.

However, In many cases the supplemental run Is unnecessary because the proper- :

. tles of A are known analytically. In particular, assume the design matrix 1s determinls- o

’ tlc, n = n°, and the errors are homogeneous normal with zero mean. The control varlate <
- estimators with the values of the known mean of A are given In the next four sectlons
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for means, higher order marginal moments, the varlance matrix, and percentlles.

5.1 Control Variate Estimators for the Mean

Since the estimators for nonllnear models are blased, estimating the mean of é Is
of Interest. The direct estimator for the mean vector, u' = E [8], IS

which Is unblased. The delta approximation sample mean 1s

A=m" i a
] 4

sm]

which has mean ¢‘. The gamma approximation sample mean Is

— »m
r‘ = m-l E F:- .
s =]
whose mean is glven by Box (1971), Clarke (1980), and Swaln (1985). The general form
of the control estimator for the mean Is

A'(B)=p-B(C-E[C]) .

where ¢ =A or C =T.

5.2 Control Variate Estimators for Marginal Moments

Control varlates for estimating E [é"] are developed In this sectlon based on two
generallzations of the approach Just described for estimating the mean. The first, the
approzimator power control, 1s based on the sample average of appropriate powers of the
delta or gamma approximators using the origlnal parameterization. The second, the
power transformation control, uses the estimators from Sectlon 5.1 directly, except that
the delta and gamma approxlmatlons arlse from the new parameterization ¢(k) = ¢* of
the same surface .

In the approximator power control,
_ P RN
Ak)=m™ 3 At , I

S m}
and -

T(k)y=m" § r: .

e m]

The approximator power control variate estimator for the moments Is
§(B)=p-B(C-E[C]) .

where C = A(k) or C =T(k). The mean E [A(k)] is provided In Appendix A. The mean
E [l-‘(k )] 1s conceptually straightforward, but not algebralcally appealing.

In the power transformation control,

k) =m" T AL k) .
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. and
: (k) = m™ 3 T4 (k) ,
By :
where
Al (k) =9°(k)+ (FT( (k)WF($ (kN FT($* (k) W E,,
where F(¢(I:))-F(0)[a¢(k)] , i

Clarke (1980) derlves the more complicated expresslons for 1Y, (k) as well as for any arbl-
trary transformation.

The equatlon for A’ (k) .follows dlrectly from the chaln rule. The matrix of ’
derlvatlves Is the dlagonal matrix whose 1th dlagonal element Is k™ (6,9**) , so applica- :
tlon of the chaln rule Is stralghtforward.

The power transformatlion control varlate estimator 1s
MB)=p -B(C-E[C)) .

where C = A'(k) or C =T'(k). E[a’(k)]=(8")*. The mean for the gamma approxima-
tion estimator is given In Swaln (1985). >

T_Teere - -

5.3 Control Estimator for the Variance Matrix of é :

This section concentrates on control variates for estimating Var [8]. Although varl-
ances and covarlances could be estimated by differences of raw moments, such estima-
tors are blased and have been found (Swaln 1982) to have greater varlance than the con-
trol varlate estimators developed here. The two approaches of the last sectlon reduce to
the same method here, since the random varlable of Interest Is ¢(1) = 6. :

Conslder £4 and £¢, the usual unblased estimators of the variance matrices Var [©]
and Vvar [C]. Since these matrices are symmetric, let Sy and S; be the p(p +1)/2 element :
vectors contalning the lower triangular portlons of £4 and £, stored rowwlse. Let S, :
and S; denote the direct Monte Carlo estimators. Then a control varlate estimator for
Var [6] Is :

S8¢(B)=84-B(Sc -E[Sc)) .
Elther §; = 8, or 8¢ = S8, the sample estlmators of Var [A] and Var [I']. When the
delta approximation Is used,
E[Ea =[FT@ )W F@ )'FT@')W Var [E| W F(@*)(FT(@)W F@°)" .
The mean of the gamma control variate 1s glven In Swaln (1985).

For the first tlme estimation of the control welghts B Is not stralghtforward via
regression. Other than using the ldentit;” matrix, the other obvious optlon Is to group
the m Monte Carlo observations into k independent batches from which an estimator

'
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can be formed.

5.4 Control Estimation of the Percentiles ;

The direct Monte Carlo estimator of P(& < 1), where P(é <) and r are p-
component vectors, 1Is

L'; ". I"- ,|' . ." o

PO <n=m" )5 I1(8.,) .

s=1 3

y where I{6.,) Is the p-component indicator function with elements 1
:' { 1 0 <7 _
: I,..(ﬂ,) — L 0 otherwise . -i
The delta and gamma approximatlon control variates are P(A<r) and P(I'<r), the !

observed fractions of the control samples less than r. The Cornish-Fisher expansion can .

be used to approximate these probabllities for the gamma approximation control. The
form of the control varlate estimator 1s

Y

Pé<rnB)y=P(O6<n-B (P(C<n-P(C<D
where C = A or C =T.

Indlcator functions and control varlate estlmators are defined analogously for
estimating probabllities of confldence Intervals and reglons.

Other control variate methods based on the delta or gamma approximations are
possible. One method, suggested by Rothery (1982) In a different context, Is to con-
struct a 2x2 contingency table on é and A falling above and below thelr critical polnts =
The maximum llkellhood estimator 1s then the control variate. The efficlencles obtalned
by this method are comparable to the linear control formulation.

AN g SRS aal A EARAL

2 Estimation of the a* quantlle of 6, é(a) satisfylng P (6 <é(a)) = a, 1s more dificult
than estimation of percentlles, desplte the close relatlonshlp between percentlles and
quantlles. &(a) can be estimated using Interpolation based on percentlle estimates, order

a"l'l:

v,
.
NI P

statlistics, or stochastic approximatlion. Control varlate methods based on these estima-
‘ tors can be formed In the usual way, although agaln the mean of the control varlable tr
- must be known or a supplemental experiment performed. Some detalls are glven In
. Swaln (1982). =
‘ APPENDIX: LINEAR POWER-CONTROL EXPECTATIONS '
.. The kth power of the llnear power control varlate required In Sectlon 5.2 Is L
- A' = (0 + JE]*, where componentwise exponentiation Is Indicated, and
~ J={FT@")WF(@°)* FT(6°) W 1s the transformation for the linear approximation. The
N 1tA component of the vector A" Is
l . . .
3 ol =07+ LEI = 5 (5) 07Y (LEW i=13,- .9, (A1) 3
» ,'-o :-
Z where J; Is the 1th row of J. If J is constant and E~N (0, [¢%), then t
N 13
A R
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E{(LE)) =0,

E((LEY =03 2,

5 =t
E(LE)] =o,

and

jmijtemg 4l i=

E[(J.-E)’]=c7’[6'2-l Z’) -’.-}-’.-,"-Paél.r,’ ,

where J;; 1s the Jth component of J;. Substitutlon Into equation (A.l) ylelds for
f = 1,2, - - P

E(a;] =46

E(af = (0P + AV JE

§=1

E (87 = (67 ) + 36,7 33 Jif,

=1
and
[ 4 | S » | 4
E[0Y]=(0")+60/ VLIl +e'|6 35 S +3% Je.’] .
Fm=1 Jum1jlmg 41 w1
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