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ABSTRACT

Parameter values of nonlinear statistical models are typically estimated from data
using iterative numerical procedures. The resulting Joint sampling distribution of the
parameter estimators is often Intractable, resulting In the use of approximators or Monte
Carlo simulation to determine properties of the sampling distribution.

This paper develops methods, using linear and quadratic approximators as control
variates, that reduce the variance of the Monte Carlo estimator by orders of magnitude.
Estimation of means, higher order raw moments, variances, covariances, and percentiles
is considered. -

Keywords: Control variates; Monte Carlo; Nonlinear estimation;
Simulation; Swindle; and Variance reduction.
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.LINTRODUCTION

S-.a stical models are used In many fields to relate dependent variables to
independent variables. For linear models with additive independent and normally
distributed errors and for a few extensions, the statistical theory is well-established and
fitting the model to data Is straightforward. For nonlinear models or for models without
normally distributed errors the theory Is less complete and Iterative numerical
procedures are needed for fitting, which is the price paid for a better fitted model with
associated better predictions and Inference.

Both the precision of predictions and the statistical significance of Inferences
depend upon the sampling distribution of the estimators of the model parameters. This
typically multivariate sampling distribution is often summarized by statistical properties
such as means, higher order moments, variances, covariances, percentiles and quantIles.

For nonlinear models these properties are usually unobtainable analytically.
Methods for approximating these properties have followed three approaches: asymptotic
results, series expansions, and Monte Carlo sampling. The usual advantages and
disadvantages of these approaches hold here: Asymptotic results are often easy to
obtain but can have large error for small sample sizes; approximations based on series
expansions have fixed accuracy and can be difficult to obtain, particularly In
multivariate cases; and Monte Carlo sampling Is easy to implement but requires large
sample sizes to be accurate.

In this paper the efficlency of the Monte Carlo sampling approach Is Improved by
using series expansion approximations as control varlates. Roughly, the Improvement
results from sampling to estimate the error of the approximation rather than to estimate
the property of Interest directly. The resulting methods require few assumptions and
are straightforward.

The theory developed here Is oriented toward providing the methodology for
efficient Monte Carlo study of statistical models. In particular, the results are oriented
toward development of a computer package that, given only the description of the
model of interest, automatically and efficiently evaluates the model. Such a

methodology Is Important since the use of nonlinear models Is growing, due to advances
In both computer hardware and In software for fitting nonlinear models. But these
computer advances, while adequate for fitting, often are not sufficient for the Monte
Carlo studies necessary to study nonlinear models, particularly given the Increasing use
of microcomputers In Interactive environments. In addition, automation Is Important
since most analysts lack the time and/or training to develop variance reduction methods
manually. Swain (1982) and Swain and Schmelser (1983) reduce variance by orders of
magnitude for a variety of models using the variance reduction methods developed here.

Section 2 Introduces notation, terminology, and problem statements. Section 3
surveys approximation methods for nonlinear models. Monte Carlo sampling In the
context of nonlinear statistical models, with emphasis on control variates for variance
reduction, Is developed In Section 4. Section 5 develops these ideas for the cases of
estimating means, higher order moments, variances and covarlances, and percentiles.
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2. NOTATION, TERMINOLOGY, AND PROBLEM STATEMENTS

The following notation Is used. Random variables are denoted by upper-case
Roman letters, upper-case Greek letters, or lower-case Greek letters augmented with
carets and bars. Realizations of random variables are denoted by lower-case letters, as
are constants and functions. Variables are vectors or matrices with scalar components.
Exceptions are specifically identified. Vectors are columns, with row vectors denoted by
the transpose of a vector. Powers of a vector, h, denote componentwlse
exponentiation. The kth moment about the origin Is denoted by E[Vb]. Coy [V,W]
denotes the p xq covarlance matrix E [(V-E [V]XW-E [W]) r ] of the p- component random
vector V and the q-component random vector W. The variance of V, Coy [V.V], is also
denoted by var [V].

Consider the nonlinear q-dimenslonal response function defined over an r-
dimensional domain,

E [Y1J - rj"(X ; g")

where Y =-(Y,.1, Yj,2 , Y,) Is the measured response, X'=-(X , ., , X) Is the
actual design point, and " = (0g 02', .0,') Is the actual parameter value for the
surface. Y, has the associated error random variable

E= - Y -q'(X; )

where Ej = (Eil Ej,. . E,E). These errors arise from four sources: error In controlling
X., error In measuring X., error In measuring Y., and random variation In the system.
Reflecting these sources of error, the model can be specified by {. 0° , Ge° H}, where
G ° Is the multivariate cdf associated with the design matrix and H ° Is the multivariate
cdf associated with the errors. There are three design matrices of interest: (1) X', the
nominal design matrix, (2) X ° , the actual design matrix, and (3) X, the measured design
matrix. Correspondingly, Ge has three components: (1) G;,, (2) G;., and (3) G,. G,. is
conditional on the outcome of G,, and G; is conditional on the outcomes of both Gj,
and G; . . Similarly, H Is the multivariate cdf of the two types of error terms, EC and
E, whose Individual cdfs are denoted by H;. and Hj,. The error term E Is the
convolution of the (possibly dependent) error terms EC, the random variation In the
system, and E, the error In measuring Y. H;. Is conditional on the outcome of G; . . H-"
Is conditional on the outcome of G; and H;.. These relationships among G" and HC
are stated In algorithm form in the discussion of the Monte Carlo method at the
beginning of Section 4.

A surface tj Is fitted by determining an estimate 0 of 0" as a function of observed
data (z, y), where z -- (XI, z, • , )r and y -(. v. ., ,)r, which arise from the
actual model (C*' 09, G', H°}. Since the actual model Is unknown, the analyst must -.
assume a family of models, denoted here by {, T, G. H), and referred to as the unfitted
assumed model. G and H are analogous to G" and H of the true model. The feasible
region for I Is denoted by T CR ', which arises from Inherent properties of q or from the
context of the application.

Denote the (typically Iterative) procedure used to determine I by A,, where a Is a
short notation for s (0; P1, G. H, z, j), a scalar function of the data and the unfitted
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assumed model. Such procedures almost always depend upon the residuals
. (G)= (.(G). .(G). .••e,(0))7, where e;(f)= pI -9((i; 0) for ET. The two most common
examples of # are the sum of squared residuals and the likelihood of the residuals.
Procedures A, minimize the former and maximize the latter.

PQint estimation Is then

POINT: Given the unfitted assumed model

(i, T. C. H), data (z, V), and procedure A, determine 0.

In general, POINT is a nonlinear programming problem, with an objective function a
and with constraints 0 E T, that is solved by procedure h,. Whether or not h, results In
the optimal nonlinear programming solution is irrelevant. However, excluded from dis-
cusslon in this article are procedures that can return a different estimate on different
applications to the same data with the same unfitted assumed model, such as sometimes
occurs when the analyst provides initial values to the procedure.

Having solved POINT, the practitioner is faced with the problem underlying this
paper: evaluating the quality of the estimator 6.

DIST: Given the assumed unfitted model (. TG, H)
and procedure A, used in POINT, and the true fitted
model {', 9°. C , H *), determine properties of the mul-
tivarlate distribution of 6.

An important application of DIST is to study the effect of assuming the wrong model,
which occurs when one or more of G, C G 0', or H ==H do not hold. For exam-
ple, H A H ° when testing sensitivity of the sampling distribution to departures from the
assumed error distribution H, which Is typically independent, identically-distributed,
zero-mean normal.

Unlike the linear case, In the general nonlinear case the distribution of 6 depends
in a nontrivial way on 0'. Although the researcher knows the value of 0° , the practi-
tioner, who cannot know 0°, can only solve DIST for several values of 0 in a region of
interest.

DIST is a very general problem - much more general than typically considered in
research on nonlinear models. Monte Carlo methods alone have the ability to analyze
all special cases of this general problem. However, the extensive literature of approxi-
mations for subsets of this problem are useful as the basis for variance reduction tech-
niques for Monte Carlo solutions, as developed in this paper.

3. APPROXIMATION METHODS

Approximations are crucial to both the estimation problem POINT and the distri-
bution problem DIST in nonlinear models. The solution procedure A, In POINT often
uses low-order approximations as the basis of iterating to an improved solution. In
DIST, approximations sometimes provide easy to compute, fairly accurate approxima-
tions to the distribution of 6. This section discusses a linear approximation
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corresponding to the least squares estimator In the context of both POINT and DIST.
This approximation and the analogous quadratic approximation are good, but not the
only possible, choices for use In the control varlate variance reduction techniques
developed later In this article.

Consider a procedure h, based on minimizing the (weighted) sum of the squared
residuals for a scalar (q =i) response,

e 0 : r (0) W a (0),

where W Is a matrix of weights. When the residuals depend upon a nonlinear function
of the data the normal equations require solution of simultaneous nonlinear equations.
One approach Is to linearize the residuals at the current Iterate, W') using

e (9) I y - q(z, ?()) - F (0j))(04"J)

where F(ii)) Is the n xp Jacoblan matrix of first derivatives 8 i(X ,9)1a ok (i = 1,2..,,

and k = 1.2, • ,p ) evaluated at 0 - . This approximation leads to the Gauss update
of the Newton algorithm

-J +,) = O() + [F(D') W F(U))' FT( 9)) W c(V')

This approximation can also be viewed as using only the leading first-order terms In the
second derivatives (the square brackets, above) In the Newton update.

There Is little special about the choice of this linear approximator or about least
squares. When higher derivatives can be computed, higher-order approximations are
sometimes used for greater accuracy or for numerical stability. Series approximations
can also be used to create algorithms to solve estimation problems with maximum likeli-
hood and other loss functions.

Now consider linear approximations applied to DIST. For example, consider a
weighted least squares estimation problem with q 9, a deterministic design matrix,
and weight matrix W -1 iVar [El. In the Gauss update formula, replacing 0° with r)
yields the residuals E(# ° ) - E and the linear approximator A

A = 9' + [FT(9') W F(9)]-l FT(9" ) W E

The approxImator A has readily determined properties. When E N(o.W), then A
N(#°,Var (A]), where Var [A] = [FT(9° ) W F(9)1'. The distribution of A Is an approxima-
tion of the sampling distribution of 6, although It provides no Information about the
bias of 6 as an estimator of '. Gallant (1975) uses such a linear approximator to con-
struct approximators to the likelihood ratio test. The generalization for multiple
responses (q >i) Is discussed In Bard (1974).

Again this linear approximator and least squares are Just examples. In the mul-
tiparameter quadratic case considerable ingenuity (and perhaps further approximation)

must be exercised to specify the approximator as a function of the appropriate deriva-
tives and the error vector, E. Approximators are also often based on asymptotic pro-
perties. Both the least squares and maximum likelihood estimators have asymptotic
normal distributions under general conditions (Chambers, 1977; Crowder, 1978; WClks,
1982; and Wu, 1981). Shenton and Bowman (1977) discuss maximum likelihood In

*. detail.
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The linear approximation Is useful In both POINT and DIST. In POINT, the reall-
zation 6 approximates 0. In DIST, the distribution of the random variable A approxi-
mates the distribution of 4. Both are referred to as the delta approximation throughout
the rest of this paper. The analogous quadratic approximation, with associated random
variable denoted by r and realizations y, Is referred to as the gamma approximation.
The gamma approximation for DIST Is based on results for the least squares estimator In
Box (1971) and Clarke (1980), who provide expressions for the bias and variance matrix.
The corresponding quadratic approximation for POINT Is developed In Swain (1985),
who extends Clarke's result to the specific context of Monte Carlo studies.

The accuracy of approximations Is fixed by the true model (q 9, G °. H') and
the unfitted assumed model (ti, T. G. H), although occasionally Increased accuracy Is
possible by extending the order of the approximation. Measures of nonlinearity (Beale,
1980; Bates and Watts, 1980) give an Indication of the accuracy of approximations, but
the measures can be misleading, as when errors are nonnormal (Gillis and Ratkowsky,
1978).

4. MONTE CARLO SAMPLING AND CONTROL VARIATES

Unlike approximations, Monte Carlo methods can provide any level of accuracy
with sufficient sampling effort. The most straightforward Monte Carlo simulation

analysis, termed direct Monte Carlo, and the Ideas underlying reducing Monte Carlo
sampling error via contr'1l varlates are discussed In this section.

Consider the direct Monte Carlo sampling analysis of DIST: m repeated observa-
tions of 4, denoted by .. 12. .m, are generated and the properties of the sam-
pling distribution are estimated from the sample. In the direct experiment, quantities
with subscript i:u are scalar components of vector quantities denoted by subscripts :u.

This direct experiment defines the class of problems considered In this article. Corre-
lated errors are not excluded. Extensions such as multiplicative errors are straightfor-
ward but not considered.

The Direct Monte Carlo Experiment

1. For u = 1,2, ,m

a. Generate z.', from G;,
b. Generate z. from G;, given x:o'

c. Generate z:. from G; given z:,. x

d. Generate e:. from H;. given z.:

e. For i - 1,2. ,n; calculate '.. = q"(', 9) + ,

f. Generate c.. from Hi,. given z:. ., 2:,, and ,

g. For i = 1,2, • n ; calculate V:, = yi.. + ei,.

h. Solve POINT using A, on (z:,, 1:,) assuming ({q, T, G, H), which leads to I.,

possibly through the residuals e (0) = V. -y: Z.. U)
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2. Compute estimates of Interest from P:.. u = 1.2,

The usual estimates of the marginal raw moments and the variance matrix of 6 are
U

tA' = - (.)h k-=1,2,•

and

-= (m-1)" (D. - p'(- - D,)r

(M -I)-

respectively.

While the direct Monte Carlo method Is conceptually simple to Implement and
provides consistent estimates of the desired distribution, standard error decreases only
with m /2. Thus large Monte Carlo sample sizes are needed to obtain precise estimates
with the direct experiment. Worse, each observation 0:, Is expensive, not because of the
sampling from G * and H ° , but because A, In step 2 Is typically a nonlinear program-
ming algorithm In p variables. Therefore, variance reduction techniques are important
when using Monte Carlo methods to analyze DIST.

Variance reduction techniques are almost as old as Monte Carlo sampling; In fact
the term Monte Carlo was once reserved for sampling methods In which some sort of
swindle was used to reduce variance. Consequently, a large literature exists; Hartley
(1977), Kahn (1958), McGrath and Irving (1973), and Wilson (1984) are interesting sur-
veys. Examples of variance reduction In Monte Carlo studies In statistical settings
Include Andrews, Bickel, Hampel, Huber, Rogers, and Tukey (1972), Arnold, Bucher,
Trotter, and Tukey (1958), Gallant (1980), KleUnen (1977), Koehler (1981), Relies
(1974), and Schruben and Margolin (1978). Nelson (1983) and Nelson and Schmelser
(1984a, 1984b, 1985) propose a framework for variance reduction.

The variance reduction methods developed In the next section use the delta or

gamma approximations, discussed In the last section, as control variates. The remainder

of this section reviews control varlates, drawing from Lavenberg and Welch (1981),
Cheng (1978), and Rubinstein and Marcus (1985). The method of control varlates Is
treated In most Monte Carlo texts (Hammersley and Handscomb, 1904) and advanced
simulation texts (KleUnen, 1974; Fishman, 1978; Law and Kelton, 1982; Bratley, Fox,
and Schrage, 1983).

Consider for now a primary estimator Z, a p random vector, and a control varlate

C, an I random vector, whose mean Is known. The control varlate estimator is

Z (B)=- Z -B(C -E [fC)

where B is a pxl weight matrix. Z(B) has the same expected value as Z- Z(o) If B Is a
constant or Is Independent of C. The variance of Z (B) is the matrix

vat ( Z (B) =i Var [ Z I + BVar [ C) B r - BCov [ C.Z -Coy Z,C I B r

whose determinant Is minimized by the setting B equal to

B= Cov Z,C Va-' [C

8



In addition to mlnlmlzlng. the generalized variance, I var Z (B)]I, this set of control
weights also minimizes the trace of the variance matrix. Rubinstein and Marcus (1985)
show that

pIVar [z(B)J I Z Valz(o)] I n,(-pi)

where the p, are the canonical correlations between Z and C (Anderson, 1958).

External control varlates are random variables analogous to Z but from another
system. This other system Is simulated so as to Induce a correlation between C and Z,
thereby reducing the variance from that of Z to that of Z(B). The correlation Is
Induced by subjecting both systems to the same uniform (o1) random number streams,
generating random varlates using the Inverse distribution function, and coding the simu-
lation to provide a monotonic transformation between the Inputs and outputs - In this
case between the Inputs z., z.;., C:j, C:1 " and the output 0:..

Often when the control C Is external, setting B = I,, the p dimensional Identity
matrix, Is close to optimal (Hammersley and Handscomb, 1084); but even In the external
control varlate case, estimating B * Is sometimes worthwhile when studying DIST
(Swain, 1982; Swain and Schmelser, 1984), especially when the errors are nonnormal
(Swain, 1984). The most common estimator Is the regression estimator, obtained by
substituting sample values for the covarlance and variance terms In the definition of B0.
Swain (1982) studies a variety of estimators of B.

Estimating B ° gives rise to Issues of both bias and efficiency. Bias can be avoided
by using a splitting estimator, as discussed In Kahn (1950), Tocher (1983), and Swain
and Schmelser (1983). Efficiency depends upon the choice and number of control varl-
ates employed, as discussed by Lavenberg and Welch (1981), Porta Nova (1985), Rubin-
stein and Marcus (1985), and Venkatraman and Wilson (1985). The loss In efficiency for
each additional control varlate used when B * Is estimated may or may not be offset by
the additional Information carried In the correlation between the new component of C
and Z. Fortunately, In this sense, DIST gives rise to only a limited number of natural,
high-quality control variates.

The control varlate technique Is not the only simulation swindle that Is possible
for DIST, but an advantage of control varlates Is that they can be applied simultane-
ously to several estimators. In contrast, many other variance reduction techniques lead
to variance reduction for one estimator while leading to a variance Increase for another
estimator.

5. APPLICATION OF CONTROL VARIATES TO DIST

Control variate estimators for DIST are developed In this section based on the
delta and gamma approximations. Estimation of arbitrary properties of the distribution
of 6 Is considered. Means, higher-order marginal moments, the variances and covarl-
ances, and percentiles of the sampling distribution of 6 are given special attention. The
new algorithm is Identical to the direct Monte Carlo method stated earlied, with the
modification of step 2 to replace the direct estimators with the control varlate estima-
tors and the addition of step 11:

g
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II. Compute 6., or -f, from Y., 1:,

The definition of 6. and . was given In Section 2. In the general case, defined by the
direct Monte Carlo procedure of Section 4, some care and modificatlon Is necessary for
Implementing step 11.

When t y , care should be taken to use q rather than y" when computing F.

When t °, 0 Is Inappropriate In the definition of a, since for example the dimen-
slonallty of A may be different than that of 0° . In this case, replace 0° with 0, the
estimator from the direct experiment. Then 6:. can not be calculated until after all
the direct sampling Is completed. No extra sampling Is required.

When the weight matrix W Is unknown, replace W with [Var [Ell - ', where the esti-
mate Is again from the direct sampling experiment and calculation of
6:,u =1,2, m, Is delayed until later.

When o7', the design matrix X Is not deterministic, or W Is unknown the sampling
distribution of & Is unknown. In these and other situations In which the distribution of
A Is unknown, a supplementary Monte Carlo experiment Is run to obtain the needed
properties of A to negligible error. The observations of A are much cheaper to obtain
than observations of 4, so this supplementary run could obtain the negligible error with
a large sample size. However, variance reduction can be applied to the supplementary
experiment as well. The most obvious method Is to use conditional expectations, which
means that rather than calculating the properties of Interest from the observed values of
A, the sample average of the properties of Interest Is calculated.

There Is an option to the supplementary experiment - perturb the direct Monte
Carlo observations to obtain a control system for which the properties of A are known.
For example, set the design matrix to the mean (or medlan) value, and transform non-
normal error terms to normality using

e:1 Var '[E] -* (H(c:o))

where 0 Is the p-dimenslonal N(o, I) distribution function. Unfortunately, setting the
design matrix to a constant decreases the correlation Induced between the sy3tem. In
addition, the first author has noted empirically that very nonnormal errors (e.g., uni-
form) also result In substantially less variance reduction. Therefore, the supplemental

experiment seems to be the preferred general method for determining propoertles of A.

However, In many cases the supplemental run Is unnecessary because the proper-
ties of A are known analytically. In particular, assume the design matrix Is determinis-
tic, P 1 e and the errors are homogeneous normal with zero mean. The control varlate
estimators with the values of the known mean of a are given In the next four sections

10

* ' .'. - . -. , . , . - ' - - --- -.- . . . . . . .. .. . .



for means, higher order marginal moments, the variance matrix, and percentiles.

5.1 Control Variate Estimators for the Mean

Since the estimators for nonlinear models are biased, estimating the mean of e is
of Interest. The direct estimator for the mean vector, i' = E [S, is

-r =, __M-, 6:., ,-
0-1

which Is unbiased. The delta approximation sample mean is

which has mean 0. The gamma approximation sample mean Is

I'= m- 6r:
*I$= M

whose mean Is given by Box (1971), Clarke (1980), and Swain (1985). The general form
of the control estimator for the mean is -

A'(B)-=f-B(C-E[C])

where C=-- or C =F.

5.2 Control Variate Estimators for Marginal Moments

Control varlates for estimating E [4k] are developed In this section based on two
generalizations of the approach Just described for estimating the mean. The first, the
approzimator power control, Is based on the sample average of appropriate powers of the
delta or gamma approximators using the original parameterizatlon. The second, the
power transformation control, uses the estimators from Section 5.1 directly, except that
the delta and gamma approximations arise from the new parameterization #(k) W #k of
the same surface q.

In the approximator power control,

Z(k) m-1 E- A:% I

and
StF(k) = - r:. •

The approximator power control varlate estimator for the moments Is

A/((S)=Aj-B (C-E[C]).

where C = A(k) or C = r(k). The mean E [3(k )) Is provided In Appendix A. The mean
E [r(k )] Is conceptually straightforward, but not algebraically appealing.

In the power transformation control,

,(k ) .- A, (k)
* -3|



do - . - , -r--v- -T _ • , .r. .- -- -. rz. rv. -. : q. _-: _--. C , . . . r L

and

Fl(k)- rm-' (k)
SI

where

a!.(k) = 0,"(k) + [FTr(,0. (k)) WV(0,"(k))]- F r(O,.(k)) W E:.

where F ((k ))-F (0 O(k)

Clarke (1980) derives the more complicated expressions for 1'. (k) as well as for any arbl-
trary transformation.

The equation for A',(k) .follows directly from the chain rule. The matrix of
derivatives Is the diagonal matrix whose Ith diagonal element Is k-1 (8,') - k , so applica-
tion of the chain rule Is straightforward.

The power transformation control varlate estimator Is

f4(B) =pi -B (C-E[ C ])

where C = A'(k) or C =-r'(k). E [&'(k)] = (0")k. The mean for the gamma approxima-
tion estimator Is given In Swain (1985).

5.3 Control Estimator for the Variance Matrix of 6

This section concentrates on control varlates for estimating Var [6]. Although vari-
ances and covarlances could be estimated by differences of raw moments, such estima-
tors are biased and have been found (Swain 1982) to have greater variance than the con-
trol varlate estimators developed here. The two approaches of the last section reduce to
the same method here, since the random variable of interest Is 40(1) = 09.

Consider :b, and tc, the usual unbiased estimators of the variance matrices Var lei
and Var [C]. Since these matrices are symmetric, let S§ and SC be the p (p +1)/2 element
vectors containing the lower triangular portions of bg and .c stored rowwise. Let S,
and S¢ denote the direct Monte Carlo estimators. Then a control varlate estimator for
Vat [6 is

S~B)S 4 B (9c -E[Sc 1)

Either Sc S or Sc = Sr, the sample estimators of Var [a] and Vat [r]. When the

delta approximation Is used,

E [E-I = [FT(0) W F(O')]-'F( ") W Var [E] W F(O') [FT(9" ) W F(0*)]-'

The mean of the gamma control varlate Is given In Swain (1985).

For the first time estimation of the control weights B is not straightforward via
regression. Other than using the Identity matrix, the other obvious option Is to group
the m Monte Carlo observations into k Independent batches from which an estimator

12
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can be formed.

5.4 Control Estimation of the Percentiles

The direct Monte Carlo estimator of P(4 < r), where P(6 < r) and r are p-
component vectors, is

(4 < ) = 14 ,6: ) .

where 1,6:, Is the p -component indicator function with elements

I, (A - 0 otherwise

The delta and gamma approximation control varlates are P(A<r) and P(i<r), the
observed fractions of the control samples less than r. The CornIsh-Fisher expansion can
be used to approximate these probabilities for the gamma approximation control. The
form of the control varlate estimator is

P(4§<r, B) = P(§<-r) -B (,P(C<r) -P(C <r)

where C=Aor C =r.

Indicator functions and control varlate estimators are defined analogously for
estimating probabilities of confidence intervals and regions.

Other control varlate methods based on the delta or gamma approximations are
possible. One method, suggested by Rothery (1982) In a different context, is to con-
struct a 2X2 contingency table on 6 and A falling above and below their critical points T.

The maximum likelihood estimator Is then the control varlate. The efficiencies obtained
by this method are comparable to the linear control formulation.

Estimation of the cxA quantlle of 5, 6(a) satisfying P(6<4(a)) = a, Is more difficult
than estimation of percentiles, despite the close relationship between percentiles and
quantIles. 4(a) can be estimated using Interpolation based on percentile estimates, order
statistics, or stochastic approximation. Control varlate methods based on these estima-
tors can be formed in the usual way, although again the mean of the control variable
must be known or a supplemental experiment performed. Some details are given In
Swain (1082).

APPENDIX: LINEAR POWER-CONTROL EXPECTATIONS

The kth power of the linear power control varlate required In Section 5.2 Is
Al - [0' + J E ] , where componentwise exponentiation is Indicated, and
J = [F7 (0') WF (')-' F r (O) W Is the transformation for the linear approximation. The
ith component of the vector Ak Is

k
*~[0,'( + jiEIh = 0 (k) (,')(j ,)h- i-(1- -.. , (A.1)

where Ji Is the ith row of J. If J Is constant and E-.-N(o, Jo0), then
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-° , _- . . . . . - = = - = i _ , - 1 - , - . % = J : = 
,  

i = --. - - - - - - . - V V- .

E I(J E)'j =0,

E [(JiE)2] ='Jj,

E [(JE) = 0,

and

E [(J, E )11f a~ 1; JqJ.7. + 3 Jf

I-." where J Is the jth component of J,. Substitution Into equation (A.1) yields for
i 1,2, " P

E [,A] = 9,..

E [,I _ (0,1)2 + a2 > jj',

E [A] (01 )3 + 309;, 2 E , J.

and

[A,' ffi ,")" + sC0,')2 a,2 + " 6 ,*'a, + 3 ,
i-,, Lf-Ij'-j+I J
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