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g Summary A modified Rao-Rubin condition for damage models gives rise to a re-
:{7 currence relation which is somewhat different from that considered by Shanbhag
= (1977). A complete solution to the new recurrence relation is obtained and its
*if applications are indicated.
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1. INTRODUCTION
Let (X,Y) be a 2-vector of non-negative integer valued random variables such
that P(X> Y) =1 and the conditional distribution of Y given X=n is binomial with
index n and probability of success w. In such a case, the Rao-Rubin condition

(see Rao and Rubin (1964))
P(Y= y)=P(Y= ylx= Y), y=0,1,... (1.1)

characterizes the distribution of X as Poisson. Shanbhag (1977) considered a

more general convolution type conditional distribution of Y given X, in which case

the condition (1.1) gives rise to the recurrence relation

v = z Von¥a® n=0,1,... . (1.2)
n=0

He obtained a complete solution of (1.2) in the form
AR L) bnwns 1 (1.3)
n=0
provided vn# 0 for some n> 1 and w,>0. Shanbhag's lemma proved a useful tool in
solving a variety of characterization problems (see Rao and Shanbhag (1984) and
the references cited in the paper).
A question has been raised by Srivastava and Singh (1975) as to whether the

Rao-Rubin result on the Poisson distribution holds under the modified Rao-Rubin

condition
P(Y=y)=P(Y=y|X-Y=k), k>0, y=0,1,... . (1.4)

Patil and Taillie (1979) showed that the Rao-Rubin result may not hold in such a

case, but two conditions of the type (1.4) for k and k+k1 where kl> 0 provide a

unique characterization of the distribution of X. Shanbhag and Taillie (1979)
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(1979) extended the result of Patil and Taillie to a more general conditional
distribution of Y given X. It is seen that a single conditon of the type (1.4)

leads to the recurrence relation

Vo T zvm-i-nwn’ m=0,1,... (1.5)

where k> 0 is a fixed number. In such a case, the solution is not so simple,
We obtain the complete solution to (1.5) and consider some applications.
The continuous analogues of the equations (1.2) and (1.5) have been considered

by Lau and Rao (1982, 1984).

2. THE MAIN LEMMA
Let {(vn,wn): n=0,1,...} be a sequence of vectors such that at least one

vn# 0 and L/ % 0. Further let k be a positive integer such that the least common

divisor of k and those n for which v.> 0 be 1, and T be a non-negative matrix
(in the sense of Senata (1973)) such taht the corresponding state space is

{0,1,2,...} and the (i,j)-th element is

Gij if i,j-O,...,k—l(Gii-l and <Sij=0, i#3),

wj-i+k if i=k,k+l,... andj:_'i-k,

ij

0 otherwise.

Define by {fi " i>k, r=0,...,k-1} the sequence of absorption measures correspond-
?

ing to T and by Tig), the n-step transition measure corresponding to the transition

i+ j. Let

D={b: b>0, b = wa}
n=0

.
3
-
{




LEMMA The sequence {(vn,wn): n=0,1, ...} as defined above satisfies the re-

currence equations j
© .
Vork ™ anvm, m=0,1,... (2.1 :
n=0 3
iff D is non-empty, f eoof are finite, and one of the following hold.

m,0°’" "’ "m,k-1

(i) D has only one point, ; (n-k)bbwn< 0 for be D, and
n=0

v = f v +...+f

m, m’o 0 m,k—lvk-l' m= k5k+lo oo o

(ii) D has only one point, z (n—k)bnwn=0 for be D and for some c> 0 ;
n=0

v o=f 0(vo-c.o.b9)+...+f ck=1)b5"1) + cmb®,

m ‘m, m,k-1Vk-1"
o=k, k+l,...,

with be D.

(111) D contains two points and for some c¢> 0

0 k-1 m
Vo fm 0(vQ-cb Y+, 4 vk_l-cb Y+cb, m=k,k+1,...,

’ m,k—l(
with b as the larger of the two members of D.
Proof The 'if' part of the theorem follows by a straight-forward verification.

We shall now establish the 'only if' part of the theorem. Let V = (vo,vl,...)'.

Clearly we have V = TV and hence

Vv=T%, n>l. (2.2)
Observe that {Ti?)} is an increasing sequence in n for each i>k and j=0,1,...,k-1.
Consequently, lim Tigl) exists for each i>k and j=0,1,...,k-1. These are given
n- %
" by fi j defined earlier. Then (2.2) implies that
- ,

i
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Y v vt .4f v 4 lim T 'r(“) m=k,k+l (2.3)
"\-.2: m m,o 0 vt m,k"l k-1 n*> o j‘k ’ o e ’
’{- Since at least one vn# 0, it is clear that there exists an noik such that v. >0,
TR ;
3::: Given any je {0,1,...,k-1}, clearly (2.3) is valid with {vm} replaced by {V;J)} where
w\;:
vlgj) = vmo_j, m>0 .
Consequently, it follows in view of (2.3) that fm j< = for each m> k and
. j=0,1,...,k=1. Replacing vo in (2.3) by Vor-k® Ve 8et for m=k
¥-uglie
AN
::._:t - (n)
e Ve f Vet M Vel limm jZkT jr-kr T2EK- (2.4)
_—. Define
i (@) _ § @), .
- Em Z ki j+m x* B 0,1,2,...
=k
and 5 = 1lim 5:’). In view of the dominated convergence theorem, the existence
.-.., n> o
,-:::f of lim F,lfln) for m=0,1,...,k-1 follows inductively from the fact that the
AR o>
- sequence {5( )} is a non-negative real sequence satisfying (2.1) for each n.
.)' By considering t to be the minimum of the states in the passage from k to j,
5‘3_:'. we get
0ty
Y
Z T(n)
- o K Vi+m-k
Rch
o © -1 f+k
oo T “Z Pe § 2=l |
= ~t+H +m-k
e gm0 o0 ek fgek,r et ©dTEFR S
e ® n-1 2+k
e (r) (n-r-1) 2.5)
'.'_'. = z wl+k tf Enﬂ-t—k [} ( ¢
Oy 2=0 r=0 t=k L+k,t
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o
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e
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(r)

£
L+, t
avoiding states lower than t takes place at time r. The term following w

where t is the measure of the set that the first passage from f+k to t

Ltk

under the summation on the right hand side of (2.5) is bounded by v“_m. ]

Consequently, the dominated convergence theorem implies that

* ©  g+k

Iw ) P
=0 V™K 120 pak  fa,e WPtk

¥
|

(r)
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From Shanbhag's lemma, we can then conclude that

€n = ab™ , m=0,1,2,...,

for some non-negative a and b. (For the case w2= 0 for all 2> k+1, the result

is tirvial; otherwise this is a corollary of Shanbhag's lemma.) Using (2.4),

it follows that

m
v, = fk,Ovm-k+' "+fk,k-1vm—l+a b, m>k. (2.6)
If 6> 0 such that
k 0 k-1
8 = fk’oe +"'+fk,k-le . 2.7
then clearly by induction (in view of the fact that £ f are respectively

k,o,--o, k,k-l

the first passage measures for the transition m—+ m-k+j avoiding the states

lower than m until then for j=0,1,...,k-1).

m m=k m=-1 y
g = fk,oe +...+fk’k_le ;

-fm’06°+...+fm ol mek,ktl,...,

- - e e -
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which implies 8¢ D. Thus D is non-empty. If a# 0 and b#0, then be D. If D

is a singleton and o,b# 0, then b satisfies (2.7) and there exists a c¢> 0 such

that

k_ 0 k-1, .k
ckb = C'Ofk,ob +...+c(k-1) fk,k-lb +ab .
Consequently (2.6) implies that
v —cmb® = £, (v, - c(m-iOb™ ) +.,.+f (v_ =c(@-1b™ 1)
m k,0" ‘m-k Tk, k-1 mel

fl oo«

(v, =ek-Db*Y),  w>k,

0
fm,O(VO-C'O'b Y. . Hf

m,k-1""k-1

which, in turn, implies that {cmb™} satisfies (2.1) and hence in view of the fact

that be D yields that ) (n-k)bnwn= 0. On the other hand, if D is a doubletron and
n=0

«,b# 0, then essentially an argument the same as the above implies that b cannot

w0

satisfy (2.7) since z (n-k)bnwn = 0 implies D to be a singleton. The b in
n=0

question is a point of D and hence we have

k 0 k-1
k,0° *-- '+fk,k—lb

which implies that there exists a c¢> 0 such that

k 0 k-1 k

cb c. b fk,0+...+cb fk,k—l +ab .
J
¥ or ;
Z:Zj d
o —eh®a _nmk _anme1 -
[.,}: Vo cb fk,O(vm—k cb )+"'+fk,k-1(vm-1 cb ) .
-
:4, ¢ o . 0 k-1
E. = fm,O (vo-cb )+"'+fm,k-l(vk-1-Cb ), m>k.
»
2"

The result is now obvious. [Note that if D is a singleton and be D, then it is

-]
! impossible that ) (n-k)bnwn =0.]
' n=0
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Recently Lau and Rao (1984) considered a continuous analogue of (2.1),

Ade Bua s 8. &

which is a modified version of the integrated Cauchy functional equation discussed

in Lau and Rao (1982), and obtained a general solution using a random walk approach. 1

2.0

2

Corollary If the sequence (2.1) is such that

e mibesa A

)‘Vn-i-k =vn_4_k , n=0,1,...,k, ]
1

for some integer k1> k and some real A, then

n/(kl-k)
V.= VA ,n=0,1,... .

Proof The result of the main lemma (in particular, the relation (2.6)) implies

that

vn+kl-k = Avn for all n>0 2.8

with A> 0. Reducing the system of equations in (2.6) to the one in Shanbhag's

v roa s v g 3

lemma by appropriate substitutions via (2.8) we arrive at the required result,

d
Note 1. It is also possible to prove the result of the corollary by using Perron-

b

k
Frobenius theorem given in Seneta (1973, pp. 1-2). For details, the reader 3
is referred to Alzaid (1983). ;

3

Note 2. Let Yl n:"':yn n denote ordered boservations in a smaple of size n from
’ 14

a non-degenerate distribution F concentrated on non-negative integers. Arnold

(1980) raised the question whether the independence of the r.v. Y2 n;Yl n and
] 9

the event {Yl n- m} for a fixed m> 1 implies the distribution F to be geometric.
’

[T W ol ol 3 W W |

N

It is easily seen that this property leads to a recurrence relation of the type

)

(2.1). Hence an application of the main lemma shows that the distribution is not

necessarily goemetric. However, it can be shown that if the stated independence
holds for two fixed values of m, then under some mild conditions, F is indeed

geometric.
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Note 3. In view of the result of our main lemma, it is seen that Theorem 4 of
Krishnaji (1974) is not correct. This also follows from the counter example

given by Patil and Taillie (1979). The error in Krishnaji's argument appears

in the last sentence of the proof in which it is claimed that since X= lexp{A(3-1)}
is degenerate, A has to be degenerate. We may however point out here that
Krishnaji's theorem with the portion "G(t) is non-negative for all real t" in

it replaced by "G(t) is infinitely divisible" is valid.

Note 4. The result of our main lemma could also be applied to obtain certain
conclusions concerning stationary queue length distributions in GI/Ek/l

queueing systems and also in their modifications when the arrivals are in

batches of random size. 1In particular, the result implies that the queue

length distribution corresponding to such a system exists if andonly if the rela-
tive traffic intensity of the system is less than 1 and also that the stationary
queue length distribution for the system GI/M/1 is geometric.

Note 5. Let (X,Y) be a random vector variable with non-negative integer valued

components such that the conditional distribution of Y given X=x is given by

ab
Nyh)=-lﬁtz,y=0J,“.J

X
for almost all x, where {cn} is the convolution of {an} and {bn}, a > 0 for all

n, by>1 and bnz_O, n> 1 with the least common divisor of n for which bn> 0 equal

0

to 1. Then, according to the corollary to the main lemma, the conditions

P(Y=y) = P(Y=y|X'Y=ko), y =0,1,... ,

P(Y=y X-Y=kj) = P(Y=y X-Y=k+k;), y = 0,1,...,k;,

s me e C e el e el = s
. T T S T T e T T T T G e e e T I S
RO ST T N LR SRR Y
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01
the assertion that Y and X-Y are independent. This implies that

for some Q< k0< k.+k, < = with P(X—Y=k0)> 0 and P(X—Y-ko+k1)> 0 is equivalent to

Sl e Sendd

ot

P(X=x)= cxex, x =0,1,2,...

for some 98>0,

The above result extends an unpublished characterization given by Shanghag

and Taillie (1979) of a distribution {gx} of the type
X
By ™ cxe , x=0,1,... (2.9)

with 6 as some positive constant, based on two modified Rao-Rubin conditions.
Our lemma proves that there exist infinitely many distributions other than that
of the form (3.9) for which one modified Rao-Rubin condition holds and impli-

citly identifies the class of such distributions.
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