UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

			REPORT DOCU	MENTATION PA	AGE				
24. SECURITY CLASSIFICATION DAVIDAGINY 25. SECURITY CLASSIFICATION DAVIDAGING SCHEDULE 25. DATEMPTORMA DESCRIPTION REPORT NUMBERION APPROVALE OF REPORT NUMBERION NORDA Technical Note 259 4 Performing drawization Report NUMBERION NAVALABLY OF REPORT NAVALABLY NAVALABLY OF REPORT NAVALABLY NAVA	1a REPORT SECURITY CLASSIFICATION Unclassified			1b. RESTRICTIVE MARKINGS None					
28. DECLASSIFICATION DOWNARIONS SCHEDULE Approved for public release; distribution is unlimited. 4. PERFORMING DRAMIZATION REPORT NUMBERIS; NORDA Technical Note 259 NORDA Technical Note 259 4. MARE OF PERFORMING DRAMIZATION E. MONTORING ORGANIZATION NORDA Technical Note 259 e. MARE OF PERFORMING DRAMIZATION Naval Ocean Research and Development Activity Naval Ocean Research and Development Activity Rev of PERFORMING DRAMIZATION Naval Ocean Research and Development Activity Naval Ocean Research and Development Activity Rev of PERFORMING DRAMIZATION Naval Ocean Research and Development Activity Decent Science Directorate NSTL, Mississippi 39529-5004 Noncomposition Directorate NSTL, Mississippi 39529-5004 as NAME OF FUNCING SERVICES STANDORNE ORGANIZATION Sandia National Laboratories Bb. OPPICE SYMBOL (If accidant) PROCUREMENT INSTRUMENT INSTRUMENT IDENTIFICATION NUMBER FAO No. 58-5880 8c. ADRESS (DV, Same, and 2P Code) 10. OPPICE SYMBOL (If accidant) PROCURE PROCURM NOS If accidant is instrument IDENTIFICATION NUMBER FAO No. 58-5880 11. TITLE Incluster 13. TITLE CODES 14. DATE OF REPORT NO. If accidant is instrument INST	2a. SECURITY CLASSIFICATION AUTHOR	RITY		3. DISTRIBUTION/AVAILABILITY OF REPORT					
PERFORMENTS ORGANIZATION REPORT NUMBER(S) NORDA Technical Note 259 MARE OF PERFORMEND ORGANIZATION NAVAI Ocean Research and Development Activity NAVAI Ocean Research and Development Activity Acoress (Giv, Bate, and 2P Code) Ocean Science Directorate NSTL, Mississippi 39529-5004 Assissippi	2b. DECLASSIFICATION/DOWNGRADING	SCHEDULE		Approved for public release; distribution is unlimited.					
NORDA Technical Note 259 NORDA Technical Note 259 NAME OF PERFORMING ORGANIZATION Naval Ocean Research and Development Activity Ta: NAME OF MONITORING ORGANIZATION Naval Ocean Research and Development Activity Naval Ocean Research and Development Activity Ta: NAME OF MONITORING ORGANIZATION Naval Ocean Research and Development Activity Received Directorate NSTL, Mississippi 39529-5004 Ta: ADDRESS (GV, State, and 2P Code) Code an Science Directorate NSTL, Mississippi 39529-5004 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER FAO No. 58-5880 Rec. ADDRESS (GV, State, and 2P Code) as: OFFICE SYMBOL (If applicable) PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER FAO No. 58-5880 Rec. ADDRESS (GV, State, and 2P Code) Development Activity Alburquerque, New Mexico 10 SOURCE OF FUNDING NOS THTLE (Include Security Classification) PROSEMM PROSEMM THTLE (Include Security Classification) Proce Pressure Response to Probe Insertion and Thermal Gradient: ISIMU-II 11 State Covert THE (Include Security Classification) 12 SUBJECT TERMS (Continue on reverse if necessary and dentify by block number) T	4 PERFORMING ORGANIZATION REPOR	T NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S)					
In NAME OF PERFORMING ORGANIZATION Ta: NAME OF PERFORMING ORGANIZATION Naval Ocean Research and Development Activity Naval Ocean Research and Development Activity 6c. ADDRESS (DV, State, and ZP Code) Ocean Science Directorate NSTL, Mississippi 39529-5004 7b: ADDRESS (CV, State, and ZP Code) Corean Science Directorate NSTL, Mississippi 39529-5004 8b: OFFICE SYMPOL (If applicable) 9: PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Sandia National Laboratories 8b: OFFICE SYMPOL (If applicable) 9: PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Alburquerque, New Mexico 9: OFFICE SYMPOL (If applicable) 9: PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 11. TITLE (Include Beachty Classification) POTE Pressure Response to Probe Insertion and Thermal Gradient: ISIMU-II 10: SOURCE OF FUNDING NOS. 12: PERSONAL ANTORING 13b TME COVERCD From 14: DATE OF REPORT (IV, Ma., Day) July 1982 15: PAGE COUNT 80 17: COSATI CODES 13: SUBJECT TERMS (Confinue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Doserved sediment radial cracking on the sensors, Proper prediction of the dissipation of inserviting bas no identifiable	NORDA Technical Note	259		NORDA Technical Note 259					
Naval Ocean Research and Development Activity Naval Ocean Research and Development Activity 6: ADDRESS (City, State, and 2IP Code) Cocan Science Directorate NSTL, Mississippi 39529-5004 75. ADDRESS (City, State, and 2IP Code) 8: NAME OF FUNDING SEPONSONG DRANKATION Sandia National Laboratories 8b. OFFICE SYMBOL (#applicable) 9. PROUMEMENT IDENTIFICATION NUMBER 8: NAME OF FUNDING SEPONSONG DRANKATION Sandia National Laboratories 8b. OFFICE SYMBOL (#applicable) 9. PROUMEMENT IDENTIFICATION NUMBER 8: ADDRESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NOS. 9. PROUMEMENT IDENTIFICATION NUMBER 7: ATTLE (include Security Case) 10. SOURCE OF FUNDING NOS. 10. SOURCE OF FUNDING NOS. 7: TITLE (include Security Case) 11. STATE COVERD 10. SOURCE OF FUNDING NOS. 7: TITLE (include Security Case) 13b. TME COVERED 14. DATE OF REPORT 15. PAGE COUNT 13b. TYPE OF REPORT 13b. TME COVERED 14. DATE OF REPORT (NY, Mo., Dey) 15. PAGE COUNT 14: SUBPLEMENTARY NOTATION 19. SUBJECT TERMS (Continue on reverse II necessary and identify by block number) Prof pressure, plezometer, probes, sediment cracking 19: ADSTRUCT (Continue on reverse II necessary and identify by block number) Prof pressure described experiment and the evaluation of its results were designed to assess the significance of the sedi- ment cracking occurring by block number)	6 NAME OF PERFORMING ORGANIZATIO	ON		7a. NAME OF MONITORING ORGANIZATION					
Bec. ADDRESS (City, State, and ZIP Code) 70: ADDRESS (City, State, and ZIP Code) Ocean Science Directorate NSTL, Mississippi 39529-5004 Ocean Science Directorate NSTL, Mississippi 39529-5004 Ba. NAME OF FUNDING SPONSORING ORGANIZATION Sandia National Laboratories 8: OFFICE SYMBOL (If applicable) 9: PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER FAO No. 58-5880 Bc. ADDRESS (City, State, and ZIP Code) 10: SOLREC OF FUNDING NOS. 74: ADDRESS (City, State, and ZIP Code) Alburquerque, New Mexico 10: SOLREC OF FUNDING NOS. 74: ADDRESS (City, State, and ZIP Code) 11: 11TLE linebude Security Classification: Pore Pressure Response to Probe Insertion and Thermal Gradient: ISIMU-II 75: ADDRESS (City, Math. ALTHORIS) 11: 20 PERSONAL AITHORIS) 11: DIME COVERED Final 14: DATE OF REPORT (Y, Mo., Day) July 1985 15: PAGE COUNT 80 12: SUPPLEMENTARY NOTATION 13: SUBJECT TERMS (Continue on reverse If increasary and identify by block number) Final 15: PAGE COUNT 80 13: SUBPLEMENTARY NOTATION 18: SUBPLECT TERMS (Continue on reverse If increasary and identify by block number) Final 15: PAGE COUNT 80 14: DATE OF REPORT 14: DATE OF REPORT (Y, Mo., Day) July 1985 15: PAGE COUNT 80 14: SUBPLEMENTARY NOTATION 15: DAGE COUNT 80 16: SUBPLEMENTARY NOTATION 16: SUPPLEMENTARY NOTATION 16: DIPEC DECOST 17: Mo., Day </td <td colspan="3">Naval Ocean Research and Development Activity</td> <td colspan="5">Naval Ocean Research and Development Activity</td>	Naval Ocean Research and Development Activity			Naval Ocean Research and Development Activity					
Ocean Science Directorate NSTL, Mississippi 39529-5004 Ocean Science Directorate NSTL, Mississippi 39529-5004 #* MME OF FUNDIGSIPPONSORING ORGANIZATION Sandia National Laboratories #: OFFICE SYMBOL (If applicable) P. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER FAO No. 58-5880 #c. ADDRESS (Civ, State, and ZIP Code) 10. SOURCE OF FUNDING NOS PROJECT TASK NO. Alburquerque, New Mexico PROJECT TASK NO. WORK UNIT NO. 11. TITLE include Security Deskitation) Pore Pressure Response to Probe Insertion and Thermal Gradient: ISIMU–II 15. PAGE COUNT NO. NO. 12. PERSONAL AUTHORIS) M. Directoreta NO. 10. SOURCE OF FUNDING NOS NO. 13. TITLE include Security Deskitation) Pore Pressure Response to Probe Insertion and Thermal Gradient: ISIMU–II 12. PROVING NOS NO. 13. THE of REPORT Tab. Tab. 14. DATE OF REPORT (1/1, Mo., Day) July 1985 15. PAGE COUNT 80 14. DATE OF REPORT Final SUB_GR Pore pressure, piezometer, probes, sediment cracking 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking was estimated to penetrate to about one-half penetrator diameter (Measured penetrator insertion pore pressure and thermal fields to be meas	6c. ADDRESS (City, State, and ZIP Code)			7b. ADDRESS (City, State, and ZIP Code)					
Bain NAME OF FUNDING SPONSORING ORGANIZATION Sandia National Laboratories B: DEFICE SYMBOL (If applicable) 9: PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER FAO No. 58-5880 Bc ADDRESS (CIV; State, and ZIP Code) 10: SOURCE OF FUNDING NOS FAO No. 58-5880 Alburquerque, New Mexico 10: SOURCE OF FUNDING NOS WORK UNIT NO. 11: ITTLE include Security Glassification) Pore Pressure Response to Probe Insertion and Thermal Gradient: ISIMU–II TASK NO. WORK UNIT NO. 12: PERSONAL AUTHORIS) M: Riggins, P. J. Valent, H. Li, and J. T. Burns 14: DATE OF REPORT Final 15: PAGE COUNT BID 15: PAGE COUNT BO 13: TYPE OF REPORT Final 13: TIME COVERED 14: DATE OF REPORT (Yr., Mo., Day) July 1985 15: PAGE COUNT BO 14: SUBJECT TERMS (Continue on reverse if necessary and identify by block number) DOE pressure, piezometer, probes, sediment cracking 19: ABSTRACT (Continue on reverse if necessary and identify by block number) DOE pressure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed Sediminent radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures dissipation indicate that sediment cracking has no identifiable influence at the penetration of the sensors. Proper prediction of the dissipation of insertion pore pressure at the penetratin depth of the sensors. Proper prediction o	Ocean Science Directo NSTL, Mississippi 3952	Ocean Science Directorate NSTL, Mississippi 39529-5004							
Sandia National Laboratories (If applicable) FAO No. 58-5880 Bc ADDRESS (GN, State, and ZP Code) 10. SOURCE OF FUNDING NOS. Alburquerque, New Mexico PROGRAM PROJECT NO. NO. NO. 11. 1TLE (include Security Classification) Pore Pressure Response to Probe Insertion and Thermal Gradient: ISIMU–II TASK WORK UNIT 12. PERSONAL AUTHOR(S) M. Riggins, P. J. Valent, H. Li, and J. T. Burns 14. DATE OF REPORT Final 15. PAGE COUNT 13. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT final 15. PAGE COUNT 14. DUPLEMENTARY NOTATION 13. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Pore pressure, piezometer, probes, sediment cracking 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sedi-ment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment racking accurring during piezometer and heater prove insertion pore pressure and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the subseabed Disposal Prog	8a NAME OF FUNDING SPONSORING OF	GANIZATION	8b. OFFICE SYMBOL	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER					
Bit ADDRESS (City, State, and ZiP Code) 10. SOURCE OF FUNDING NOS. Alburquerque, New Mexico PROGRAM PROJECT TASK WORK UNIT 11. TITLE (Include Security Obselification) Prope Pressure Response to Probe Insertion and Thermal Gradient: ISIMU–II Image: Comparison of Comparison Comparison of Comparison of Comparison of C	Sandia National Laboratories			FAO No. 58-5880					
Alburquerque, New Mexico PROGRAM ELEMENT NO. PROJECT NO. TASK NO. WORK UNIT NO. 11 TITLE (Include Security Classification) Pore Pressure Response to Probe Insertion and Thermal Gradient: ISIMU–II 11	8c. ADDRESS (City, State, and ZIP Code)			10. SOURCE OF FUNDING NOS.					
11. TITLe (Include Security Classification) Pore Pressure Response to Probe Insertion and Thermal Gradient: ISIMU–II 12. PERSONAL AUTHORS; 13a. TYPE OF REPORT 13b. TIME COVERED Final 13b. TIME COVERED Final 13b. TIME COVERED 16. SUPPLEMENTARY NOTATION 14. DATE OF REPORT (Yr., Mo., Day) 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) PIELD GROUP SUB_CR pore pressure, plezometer, probes, sediment cracking 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during plezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment racking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remoking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a simear factor, accounting for sediment remoking at the piezometer wall. An	Alburquerque, New Mexico			PROGRAM ELEMENT NO	PROJECT NO.	TASI NO	<	WORK UNIT NO.	
Profer Pressure Response to Probe Insertion and Thermal Gradient: ISIMU–II 12 PERSONAL AUTHOR() M. Riggins, P. J. Valent, H. Li, and J. T. Burns 13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Mr., Mo., Day) 15. PAGE COUNT 80 16. SUPPLEMENTARY NOTATION 11. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 10. Profer Pressure, piezometer, probes, sediment cracking 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) pore pressure, piezometer, probes, sediment cracking 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Alboquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressures due to sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation of a signation radially away from the heat source is described and the results of its appl	11. TITLE (Include Security Classification)						i_		
M. Riggins, P. J. Valent, H. Li, and J. T. Burns 13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Yr., Mo., Day) 15 PAGE COUNT 80 16. SUPPLEMENTARY NOTATION 14 DATE OF REPORT (Yr., Mo., Day) 15 PAGE COUNT 80 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) pore pressure, piezometer, probes, sediment cracking 18. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking as no identifiable influence at the penetration depth of the esensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 21. ABSTRACT SECURITY CLASSIFICATION UNCLAS	12 PERSONAL AUTHOR(S)	se to Prob	e Insertion and T	hermal Gradie	nt: ISIMU-II				
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT Final To July 1985 80 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Pore pressure, piezometer, probes, sediment cracking 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Pore pressure, piezometer, probes, sediment cracking 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to ponetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the res	M. Riggins, P. J. Valent	t. H. Li. ar	d J. T. Burns		ುಣಿ ತಿ.ಎ.				
Final From To July 1985 80 16. SUPPLEMENTARY NOTATION 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverses if necessary and identify by block number) POPE pressure, piezometer, probes, sediment cracking 19. ABSTRACT (Continue on reverse if necessary and usentify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to ponetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT ECUPTY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22. TELEPHONE NUMBER (Include Area Code) <t< td=""><td>13a. TYPE OF REPORT</td><td>13b TIME CO</td><td>VERED</td><td colspan="5">14 DATE OF REPORT (Yr. Mo. Day)</td></t<>	13a. TYPE OF REPORT	13b TIME CO	VERED	14 DATE OF REPORT (Yr. Mo. Day)					
16. SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Pore pressure, piezometer, probes, sediment cracking 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressures due to asediment recaking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNUMITED SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL <td< td=""><td>Final</td><td>From</td><td> To</td><td colspan="3">July 1985</td><td colspan="2">80</td></td<>	Final	From	To	July 1985			80		
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB_GR. 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFIED 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBO	16. SUPPLEMENTARY NOTATION								
FIELD GROUP SUB_GR. 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL P. J. Valent 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL Code 363 DEORM 1473. 83 APB EDITION OF 1 JAN 73 IS OBSOLETE Code 363	17 COSATI CODES		18. SUBJECT TERMS (Contr	nue on reverese if nec	essary and identify by blo	ck number)			
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL Code 363 DECEM 1473. 83 APB EDITION OF 1 JAN 78 IS ORSOLETE Code 363	FIELD GROUP SUB	GR.							
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL Code 363 DECEM 1473, 83 APR EDTION OF 1. JAN 78 IS OBSCULTE			pore pressure	e, piezometer,	, probes, sedim	ent crac	cking		
ment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 22. TELEPHONE NUMBER (Include Area Code) 22. OFFICE SYMBOL 22. TELEPHONE NUMBER (Include Area Code) 22. OFFICE SYMBOL 22. DECIM 1473, 83 APB EDITION OF 1 JAN 73 IS OBSOLITE	19. ABSTRACT (Continue on reverse if nec The described experimen	essary and ident t and the e	ify by block number) Valuation of its res	ults were desid	aned to assess th	ne sianif	icance	of the sedi-	
Subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. P. J. Valent 22b. TELEPHONE NUMBER (Include Area Code) (601) 688-4621 22c. OFFICE SYMBOL Code 363	ment cracking occurring du	ring piezo	meter and heater	probe insertion	n, and the influer	nce of th	ne crac	king on the	
(IGHTE): The IGHTE is part of the Subseabed Disposal Program (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS DTIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) P. J. Valent COde 363 D FORM 1473, 83 APR EDITION OF 1. JAN 73 IS OBSOLETE	Subsequent excess pore presure and thermal fields to be measured in the In Situ Heat Transfer Experiment								
to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS DITIC USERS DITI	Albuquerque (SNLA) and funded by the Department of Energy Observed and a National Laboratories								
pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS DTIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) P. J. Valent (601) 688-4621 22b. TORE 1. JAN 73 IS OBSOLETE	to penetrate to about one-half penetrator diameter. Measured penetrator insortion pero processing was estimated								
sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL P. J. Valent COde 363	pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the								
Sinear factor, accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL DTIC USERS Code 363 P. J. Valent EDITION OF 1. JAN 73 IS ORSOLETE Code 363	sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a								
P. J. Valent P. J. Valent D FORM 1473, 83 APR EDITION OF 1. JAN 73 IS ORSOLETE	describe the rise in excess pore pressures due to and impact heating and the								
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL P. J. Valent (601) 688-4621 Code 363	from the heat source is described and the results of its application to the experiment data evaluated								
UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS Unclassified 22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL P. J. Valent (601) 688-4621 Code 363 D FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE	20. DISTRIBUTION/AVAILABILITY OF ABST	RACT		21. ABSTRACT SEC	CURITY CLASSIFICATION	uala	evalua	aleu.	
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL P. J. Valent (601) 688-4621 Code 363 D FORM 1473, 83 APR EDITION OF 1. JAN 73 IS OBSOLETE		E AS RPT.	DTIC USERS	Unclassifie	ed				
P. J. Valent (601) 688-4621 Code 363 D FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE Code 363	22a NAME OF RESPONSIBLE INDIVIDUAL	22b. TELEPHONE N	22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL						
D FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE	P. J. Valent			(601) 688	(601) 688-4621 Code 363			Code 363	
	D FORM 1473 83 APR								

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE Naval Ocean Research and Development Activity NSTL, Mississippi 39529 LIBRARY RESEARCH REPORTS DIVISION NAVAL POSTGANDUATE SCHOOL MONTERI A STORIJA 93940

NORDA Technical Note 259

Pore Pressure Response to Probe Insertion and Thermal Gradient: ISIMU–II

Approved for Public Release Distribution Unlimited Michael Riggins, Philip J. Valent, Huon Li, John T. Burns Ocean Science Directorate Seafloor Geosciences Division

Charles E. Hickox Sandi National Laboratories Albuquerque, New Mexico

July 1985

Fore Pressure Response to Probe Insertion and Thermal Gradient: ISIMU-II

by

*Michael Riggins, Philip J. Valent and Huon Li. Naval Ocean Research and Development Activity. NSTL, MS

Charles E. Hickox, Sandia National Laboratories, Albuquerque, NM,

and John T. Burns, Naval Ocean Research and Development Activity, NSTL, MS

sponsored by

Sandia National Laboratories, Albuquerque, NM, under FAO No. 58-5880

November 1984

Naval Ocean Research and Development Activity
NSTL, Mississippi

*Fresently Assistant Professor, Colorado School of Mines, Golden, CO

ABSTRACT

The described experiment and the evaluation of its results were designed to assess the significance of the sediment cracking occurring during piezometer and heater probe insertion, and the influence of the cracking on the subsequent excess pore pressure and thermal fields to be measured in the In Situ Heat Transfer Experiment (ISHTE). The ISHTE is part of the Subseabed Disposal Frogram (SDP) managed by Sandia National Laboratories Albuquerque (SNLA) and funded by the Department of Energy. Observed sediment radial cracking was estimated to penetrate to about one-half penetrator diameter. Measured penetrator insertion pore pressures and excess pore pressure dissipation indicate that sediment cracking has no identifiable influence at the penetration depth of the sensors. Proper prediction of the dissipation of insertion pore pressures was found to require incorporation of a smear factor. accounting for sediment remolding at the piezometer wall. An analytical model to concurrently describe the rise in excess pore pressures due to sediment heating and the pore pressure dissipation radially away from the heat source is described and the results of its application to the experiment data evaluated.

i

1.0 INTRODUCTION

	1.1	Furpose	1
	1.2	Background	1
	1.3	Approach	4
2.0	TEST	ARRANGEMENT	5
	2.1	Sediment Sample Freparation	5
	2.2	Condition of Sample at Testing	6
	2.3	Pore Fressure Probes	6
	2.4	Insertion Experiment	7
	2.5	Heater Experiment	.9
	2.6	Data Reduction	10
3.0	GENE	RAL THEORY AND MODEL DEVELOPMENT	11
	3.1	Fore Pressure Equalization	11
	3.2	Thermally Induced Fore Pressures	14
4.0	TEST	RESULTS AND MODEL VERIFICATION	= 17
	4.1	Sediment Cracking	17
	4.2	Pore Pressure Dissipation	18
	4.3	Thermally Induced Pore Pressures	21
	4.4	Sample Evaluation	23
	4.5	Strength Frediction from Insertion Pore Pressures	25

5.0 SUMMARY AND CONCLUSIONS

6.0 ACKNOWLEDGMENTS

7.0 REFERENCES

8.0 ADDENDUM I. Unadjusted Data, ISIMU-II Experiment

26

28

29

9.0 ADDENDUM II. Reduced Data, ISIMU-II Experiment

10.0 ADDENDUM III. Excess Pore Pressure Prediction Program MENUD0 1.0 INTRODUCTION

1.1 Furpose

This report presents the results of a laboratory simulation, conducted at atmospheric pressure, of the planned In Situ Heat Transfer Experiment (ISHTE). The purposes of this laboratory simulation were to:

a) determine the depth of sediment cracking resulting from the insertion of probes into the sediment,

b) measure and evaluate the excess pore pressures generated during the insertion of probes into the sediment, and

c) measure and evaluate the excess pore pressures generated by the application of a thermal gradient in the sediment.

1.2 Background

The Subseabed Disposal Program (SDP) is studying the feasibility of sequestering high level nuclear waste in fine-grained deep-sea formations of the world ocean basins (Hollister et al., 1981). The ISHTE field test will provide data on the thermal, fluid dynamic and thermochemical response of in-situ seabed sediment for use in verification of laboratory experimental approaches and computer models of waste/sediment thermal interaction. During the

test, the sediment response will be studied by conducting the following series of measurements (Percival, 1983):

a) Thermal conductivity;

- b) Temperature, to develop a "picture" of the thermal field;
- c) Excess pore water pressure;
- d) Ion migration;
- e) Sampling of pore water constituents;
- f) Vane shear strength; and
- g) Permeabilities and undrained shear strengths of core samples.

These tests will be performed from the ISHTE platform; both before and after implant of an isotopic heat source.

To prepare for design of the ISHTE experiment, the ISHTE Simulation Experiment (ISIMU) was performed on a 0.287:1 scale model of the platform. The first test (ISIMU-I) was conducted from November 2 thru December 15, 1981, at the David Taylor Naval Ship Research and Development Center (Miller et al., 1982). In ISIMU-I, the various sensors were implanted in a re-constituted illitic "red clay" sediment (Silva et al., 1983). The sensors and sediment sample were placed in a large pressure vessel and pressurized to 55 MPa, to simulate the deep sea environment, for a one month period. The primary objectives of the experiment included (Percival, 1983):

 a) Determination of the transient temperature distribution in the sediment;

- b) Measurements of the thermal conductivity of the sediment;
- c) Measurements of transient pore pressures;
- d) Measurements of transient sediment response to the applied pressure;
- e) Measurements of the sediment shear strength;
- f) Studies of the pore water chemistry; and
- g) Post-test studies of the sediment mineralogy, chemistry, and structure.

ISIMU-I produced two unexpected results. First, for a given heater power level, the maximum temperature of the surrounding sediment was approximately 25 percent lower than that predicted based on pretest measurements of the sediment properties (Percival, 1983). The second unexpected result was that the excess pore pressure developed on insertion of the pore pressure probe in the near-field (15 mm from heating element) was approximately one half that of the far-field pore pressure probe (342 mm from heating element) (Bennett et al., in press). Cracking of the sediment surface was noted to accompany the insertion of the Electric Heat Source (EHS), the pore pressure probes, and the geochemistry sampler. These sediment cracks were <u>hypothesized</u> to penetrate to the vicinity of the heater source and the pore pressure sensors and

to be responsible for the unexpected temperature and excess pore pressure dissipation results. ISIMU-I also produced information on the impact of sediment heating on the excess pore pressures. Upon heating, the near-field piezometer displayed a very short term lag in response (<4 min) followed by a short term (<40 min) increase in pressure with a subsequent long-term (~90 hrs) exponential decrease in pressure. The far-field piezometer showed a significant short term lag (~8 hrs) followed by a long term (~120 hr) pressure increase. The two pressures for the very long term (> 120 hrs) leveled off at approximately the same values.

ISIMU-I then, while providing answers to many questions, also left questions unanswered and raised new ones. This report describes a follow-up experiment designed to help resolve some of the questions remaining after ISIMU-I.

1.3 Approach

To further evaluate the ISIMU-I results, an additional simulation experiment (ISIMU-II) was performed. This test was conducted from April 2 to April 5, 1984, at Sandia National Laboratories in Albuquerque (SNLA). Since only the thermal and pore pressure response characteristics of the sediment were of interest. ISIMU-II did not involve pressurization to the deep-sea environment or the same level of instrumentation as ISIMU-I. Two pore pressure probes were placed within 15 mm of a heating probe in a 0.46 m diameter tank filled with re-constituted illite sediment (the same sediment used in ISIMU-I). The heater probe and the tank walls were instrumented with thermocouples. Pore pressures were monitored

during the individual probe insertions, and during subsequent heating.

This report, describing ISIMU-II and its results, is arranged in four sections. The first section describes the test arrangement and data reduction. The next section discusses the development of models to predict: (1) the excess pore water pressure dissipation following probe insertion and (2) the excess pore pressure build-up due to thermal effects. The third section presents the results of the experiment and the application of the proposed prediction models. The last section summarizes the study.

2.0 TEST ARRANGEMENT

2.1 Sediment Sample Preparation

The sediment sample used in the ISIMU-II experiment was prepared at SNLA. The sediment used was the same pelagic clay from MEG-I, of primarily illitic composition, used in the ISIMU-I experiment. This material had been shipped from NSRDC, Annapolis, MD, to SNLA in 55-gallon drums and stored. This material was reconstituted in a plaster mixer into a thick slurry state and poured into the sediment tank in 0.15 m layers. Vacuum was applied after each layer had been placed to de-air the material. The sediment tank used in ISIMU-II was a glass cylinder with a sand filter at the bottom (Figure 1), burlap fabric filters on the sides, and a fiber filter sheeting between the sediment and the burlap to limit clogging of the burlap. The slurry sample was loaded in increments, using deadweights, to duplicate the consolidation state

achieved in ISIMU-I. The resulting sample was 0.43 m (17 in) in diameter and 0.71 m (28 in) in height.

2.2 Condition of Sample at Testing

Cores were taken at the conclusion of the test and water contents and miniature vane shear strengths measured on those cores. The results of these tests on the cores are reported and discussed later in this report. Tests on the peripheral cores show the sediment sample to be of fairly uniform water content (average 88.0 percent) and undrained shear strength (average 4.1 kPa) with depth. Sufficient samples and tests were not conducted to provide for evaluating the variability in water content and strength across the diameter of the test tank; however, prior experience with this sample preparation technique for ISIMU-I suggests this variation will not be significant (Silva et al., 1983).

2.3 Pore Pressure Probes

The pore pressure probes are of the same design as those used in ISIMU-I and to be used on the ISHTE platform. The probe sensing element is mounted on a 7.94 mm (5/16 in.) diameter titanium tube about 1 m in length. The probe tip is a cone 100 mm in length and 7.9 mm diameter at its base (5.3 degree cone angle), designed to induce two-dimensional, or lateral, deformation during penetration into the sediments (Bennett et al., 1981 and in press). The excess pore pressures are sensed at a 13 mm long (1/2 in.) cylindrical porous corundum stone located 160 mm from the probe tip. The pore pressures sensed at this porous stone are transmitted through the

titanium tube to a variable reluctance differential pressure transducer located 1 m above the porous stone (Bennett et al., 1980, 1983, and in press).

2.4 Insertion Experiment

ISIMU-II was intended to duplicate the heater probe and nearfield pore pressure probe insertions performed in ISIMU-I. In ISIMU-I, the near-field pore pressure probe was positioned 15 mm, wall-to-wall, from the heater probe, and it had been planned to position the porous stone at the same elevation as the center of the heating element. However, post-test inspection revealed that the near-field piezometer had not attained the planned penetration, but had stopped 101 mm short (Miller et al., 1982). Therefore, in order to duplicate the original test conditions, the porous stones of the probes used in ISIMU-II were both positioned 101 mm above the midplane of the heat source (Figure 2).

The original plan of ISIMU-II called for installation of the heater probe at the center of the tank. A 100 mm (4-in.) thick block of Teflon, with 3 bored guide holes for the heater and two pore pressure probes, was fixed over the top of the tank. The first piezometer was saturated by first immersing the probe tip including porous stone in the 150 mm (5-3/4 in.) of water overlying the sediment surface. A partial vacuum was then applied to the positive bleed port of the transducer, standing some 0.7 m above the water surface, and water thus drawn up into the transducer to saturate the system. On installation, this first probe exhibited a response time of 3 minutes, which was considered to be too long for a properly

saturated pore pressure probe. This probe was removed the following day and replaced with a dummy, pointed, 7.94 mm (5/16-in.) diameter stainless steel rod, to fill the hole.

To minimize the disturbance and the discontinuity of the dummy rod, the Teflon guide block was reoriented 90 degrees and the proposed location of the heater moved 44 mm (1-3/4 in.) off tank center. For the first pore pressure probe, denoted as P-3, the saturated porous stone and cone tip were attached under the water surface to facilitate system de-airing. A saturation sleeve was installed over the porous stone and water was driven through the sleeve and stone and up the probe tube/shaft to fill/saturate the transducer positive side. This probe was then inserted over a period of 8 seconds and exhibited a response time of 40 seconds to peak insertion pressure, which was considered indicative of a satisfactorily saturated system. The excess pore pressures generated by this pore pressure probe were allowed to dissipate for 156 minutes (analysis of the data shows that 95% dissipation occurred at about 90 minutes). The heater (23.7 mm diameter) was then inserted, again guided by the Teflon block, with the heater wall 15 mm from the pore pressure probe wall (Figure 2). Insertion pressures generated by the unpowered heater probe were allowed to dissipate over 19 hours. The second piezometer probe, designated F-2, was saturated in the same manner as P-3, was installed on the opposite side of the heater from P-3 (Figure 2), also exhibited a 40 sec response time to peak insertion pressure, and was allowed 118 minutes for excess pore pressure dissipation.

Seven thermocouples were located in the sediment filled tank in the positions noted in Figure 2. The number and location of each are as follows:

- 0. At the tank wall in the sediment, 280 mm below mudline.
- 1. On the heater element, 50 mm below mid-plane.
- 2. On the heater element, at mid-plane.
- 3. On the heater element, 50 mm above mid-plane.
- 4. On the heater element, at mid-plane.
- 5. At the tank surface, in air, at ambient temperature.
- 6. At the tank wall in the sediment, 280 mm below mudline.

After the excess pore pressures from the insertion of piezometer probe P-2 had dissipated, the heater probe element was energized to about 29.4 watts. This power input was maintained for 251 minutes while developing/dissipating excess pore pressures were monitored on pore pressure probes P-3 and P-2. The heater response portion of the experiment was terminated after 251 minutes due to a power failure. Even though the power was restored within 5 minutes, the hiatus in the energized condition was sufficient to adversely impact the analysis of subsequent data (given the existing analytical models) therefore continuing the experiment after the power failure was without merit. However, sufficient data were collected during the 251 minutes, before the power failure, to make the heater response portion of the experiment meaningful.

2.6 Data Reduction

The test data were recorded using a Fluke data logger and a Hewlett-Packard strip chart recorder. The raw data consisted of the time (days, hours, minutes, and seconds) at which the measurements were made, voltage output for each transducer and temperature indicated by each thermocouple. A tabulation of the data is given in Addendum I.

The data were stored on a floppy disc and reduced using a Hewlett-Packard model 85 computer. The times were adjusted to reflect the total elapsed time since the beginning of the test. The voltages were transformed to pressures using the following equations:

for probe P-3,

Pressure (psi) = 0.0111 + 3.9982 * (volts + 0.1505) . . . (1)

and for probe P-2,

Fressure (psi) = 0.0391 + 3.9950 * (volts + 0.1071) (2)

The values 0.1505 and 0.1071 volts represent the zero offset correction for the probes inserted in the sediment.

The variation in pressure for the two probes over the duration of the test are shown in Figure 3. The pressures for the individual test events are shown in Figures 4 to 7. It should be noted that

the small peak at the end of Figure 4 is an actual event. A lucite collar on the pore pressure probe (P-3) had to be removed in order to provide clearance for insertion of the heater probe. During removal of this collar the probe P-3 was twisted gently and only slightly. Disturbance of the sediment during this slight movement resulted in a 0.31 kPa (0.045 psi) excess pore pressure. The beginning of Event 2, the heater probe insertion, was postponed about 18 minutes to allow for dissipation of the excess pore pressure pressure generated by the disturbance.

In addition, it should be noted that the initial pore pressure drop shown in Figure 7 is a result of the time lag between the initiation of heating and the pore pressure response at the probe 15 mm away. The pressure drop is a result of pore pressure dissipation carried over from Event 3 (second pore pressure probe insertion). A complete listing of the reduced data is given in Addendum II.

3.0 GENERAL THEORY AND MODEL DEVELOPMENT

3.1 Pore Pressure Dissipation

Several theories (Acar et al., 1982; Baligh and Levadoux, 1980; Levadoux and Baligh, 1980; Randolph et al., 1979; Soderberg, 1962; Torstensson, 1977; Tumay and Acar, 1984, and Wroth et al., 1979) have been advanced pertaining to the dissipation of excess pore water pressures induced by the expansion of a cylindrical cavity. The governing differential equation in two dimensions is as follows:

$$\frac{\partial u}{\partial t} = c_h \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) \right]$$

11

where,

u = excess pore pressure,

t = time,

r = radial distance, and

c_h = horizontal coefficient of consolidation.

Due to the usual lack of horizontal coefficient of consolidation data, c_h , the constant c_h is usually replaced by the coefficient of vertical consolidation, c_v ; which is normally equal to or less than c_h (Soderberg, 1962). The coefficient of vertical consolidation is defined as:

where,

k = permeability e = void ratio, a_v = coefficient of vertical compressibility, and γ = unit weight of water

The most commonly used method of solving Equation (3) involves expressing the excess pore pressure in terms of a dimensionless dissipation factor U (u/u_{max}) which then becomes a function of a dimensionless time factor expressed as,

$$\Gamma_{r} = \frac{c_{h}t}{r_{o}^{2}} \qquad ((f_{f}) f_{f}) f_{f} f_{f}$$

where,

 r_{o} = radius of the embedded cylinder.

The functional relationship between U and T_r depends primarily on how one characterizes the sediment. Past pore pressure probe studies (e.g., Bennett et al., 1984) have relied on the solutions of Soderberg (1962) and Randolph et al., (1979), which were developed for a foundation pile embedded in either: (a) an elasto-plastic medium or (b) a viscous medium. Using the general form of the solution one can obtain T_r values for various levels of dissipation. The most common procedure uses the fifty percent dissipation level which yields a T_r approximately equal to one. Then Equation (5) can be rewritten as,

where t represents the actual time at which fifty percent dissipation has occurred, as obtained from a U versus log t plot.

With c_h thus determined from Equation (6), U can be defined in terms of an exponentially decreasing function of T_r . This method normally employs a series (Scott, 1963); however, for the sake of simplicity only the first term in the series will be used. In addition, the expression is written in terms of real time as,

where,

The value of m depends upon the assumptions used in the theory. Scott (1963) introduced the concept of a "smear" factor for which the parameter m is used to reflect the reduction in permeability at the boundary due to remolding. This concept can be used to account for the disturbance between the probe and the surrounding sediment.

3.2 Thermally Induced Pore Pressures

An induced thermal field can have a pronounced effect on the pore pressure response of a sediment. If the temperature increase is rapid, a significant excess positive pore pressure can develop, due to the greater volumetric expansion of the sediment pore water than that of the mineral solids. The thermally induced pore pressure change for the undrained condition can be expressed in terms of the following equation developed by Mitchell (1976):

where,

- ΔT = temperature change,
- m = coefficient of compressibility of the soil structure from the rebound-reloading curve of a one-dimensional consolidation test,

n = porosity,

\$ coefficient of volumetric expansion for the
mineral solids,

 ∞_{W}^{α} = thermal coefficient of expansion of the pore water, and α_{st}^{α} = thermal coefficient of expansion for the soil structure.

In considering the problem of the pore pressures at the pore pressure probe, one can think of the transient thermal flux, i.e., when the temperature "front" first contacts the probe, as being of

the undrained case. However, in the long term case, as temperatures attain the "steady state" condition significant spatial temperature gradients form in the sediment medium (Percival, 1983). These gradients result in a dissipation of the excess pore water pressure in the direction of decreasing temperature, i.e., to zones of lower pore water pressures. Therefore, in developing a model for the thermally induced pore pressures at the probe one must consider not only the gain in pore pressure with respect to temperature and time, but also the loss. In lieu of a more rigorous dissipation model involving temperature, the proposed model will involve a superposition of the pore pressure gain and loss, viz.;

where u_{gain} and u_{loss} are represented by Equations (9) and (7), respectively. The physical significance of u_{gain} and u_{loss} , as a function of time, can be observed from Figure 8 and the following time sequence:

$$t = 1: u_{gain} = \Delta u_1$$
$$u_{loss} = \Delta u_1 - \Delta u_1 e^{-\overline{\beta}(t_1 - t_1)}$$

$$t = 2: \quad u_{gain} = \Delta u_1 + \Delta u_2$$
$$u_{loss} = (\Delta u_1 - \Delta u_1 e^{-\overline{\beta}(t_2 - t_1)}) + (\Delta u_2 - \Delta u_2 e^{-\overline{\beta}(t_2 - t_2)})$$

$$t = 3: u_{gain} = \Delta u_1 + \Delta u_2 + \Delta u_3$$
$$u_{loss} = (\Delta u_1 - \Delta u_1 e^{-\overline{\beta}(t_3 - t_1)}) + (\Delta u_2 - \Delta u_2 e^{-\overline{\beta}(t_3 - t_2)})$$
$$+ (\Delta u_3 - \Delta u_3 e^{-\overline{\beta}(t_3 - t_3)})$$

hence the following series for any time, k:

Substituting Equations (lla and llb) into Equation (10) and cancelling the like terms yields the total excess pore pressure at time t_{μ} :

It should be noted that in the above formulation, Δu was used in place of u_{max} in Equation (7). This substitution is physically correct in that Δu represents the maximum pore pressure being dissipated for a <u>specific</u> time increment. Thus, Equation (12) can account for thermally induced pore pressures, as well as the time dependent dissipation of these pore pressures.

Note here that the coefficient $\overline{\beta}$ is not the same as the coefficient β defined in Equation (8). The coefficient β describes

the excess pore pressure dissipation at the surface of the piezometer probe and/or heater probe: β describes dissipation radially away from the cylindrical surface of radius r_0 . However, during Event 4, that period with the heater turned on, the pore pressure field radially around the piezometer probes is quite non-symmetric and probably not described by Equation (8). The form of the dissipation function, Equation (7), was assumed to remain reasonable, and a new coefficient, $\bar{\beta}$, adopted to describe the dissipation performance at the piezometer resulting from heater heating. A function for $\bar{\beta}$ has not been identified.

4.0 TEST RESULTS AND MODEL VERIFICATION

4.1 Sediment Cracking

One purpose of the ISIMU-II experiment was to estimate the depth of sediment cracking resulting from probe insertion and to assess the impact of this cracking on the excess pore pressure dissipation and on the thermal field. Insertion of the pore pressure probes and the heater probe did result in cracking of the sediment surface. Radial cracks occurred at 30-60° spacing around each probe extending outward to about 2-1/2 probe diameters. These cracks appeared to extend to a sediment depth of about one-half probe diameter. The crack pattern suggests an outward displacement of shallow, pie-shaped wedges of sediment during the initial stages of penetration followed by a less-obvious heave of the local area during continued penetration. The shallowness of the crack system suggests that it will have a negligible influence on the excess pore pressure dissipation and temperature gradient in the vicinity of the

heat source and the pore pressure sensors. The similar dissipation responses of the two piezometers, one installed before the heater, the other after, demonstrates that cracking due to heater installation has not measureably influenced the response of the second piezometer, P-2.

4.2 Fore Pressure Dissipation

This section will deal with application of the theory developed in Section 3.1 to data presented in Section 2.6. In order to determine the horizontal coefficient of consolidation, c_h, it is necessary to plot the data shown in Figures 4, 5, and 6 on a semilog plot to evaluate t_{100} and then t_{50} (c.f. Equation (6)). The excess pore pressure data were first normalized by dividing by the maximum observed pore pressure value. These data are plotted against log time as shown in Figures 9 and 10 for pore pressure probes P-3 and P-2, respectively. The tests were interrupted at 95 to 98 percent dissipation; therefore, a lower, asymtotic value, i.e., complete dissipation of excess pore water pressures, was not attained. Thus, a lower bound value was interpreted and is shown as the coarse dashed lines in Figures 9 and 10. The value of t_{50} corresponds to the time at which u/u_{max} is slightly greater than 0.5. An exact value of 0.5 was not used since the lower asymptote did not reach 0.0. The t_{50} times are 8.3 and 11.4 minutes for probes F-3 and F-2, respectively. The c_h values obtained from Equation (6) using a probe radius of 0.4 cm are 3.21 x 10^{-4} and 2.34 x 10^{-4} cm²/sec for the respective probes.

Figure 11 is the same type of plot, with the exception that it is for the excess pore pressure dissipation at probe P-3 due to the insertion of the heater probe. The t_{50} time for this event, measured at probe P-3, is 53 minutes as compared to t_{50} times of 8 and 11 minutes for the probe insertions. The longer dissipation time for the heater probe insertion is due primarily to the larger cross-sectional area of the heater probe as compared to the area of the pore pressure probes, with dissipation time at the probe surface being directly proportional to the probe radius squared (from Equation (6)). Further, the t_{50} measured at the pore pressure probe is somewhat longer than the t_{50} that would be measured at the heater probe surface because the dissipation rate decreases as one moves away from the probe surface. An additional point of interest is the prediction that the pore pressure decreases inversely with the radial distance away from the probe (Soderberg, 1962), viz.;

where

 u_i = excess pore pressure in the sediment at a radial distance r_i from the probe,

 u_0 = excess pore pressure at the probe of radius r_0 Assuming the maximum excess pore pressure generated during heater probe insertion to be the same as that resulting from the insertion of probe P-3 (11.6 kPa or 1.69 psi), one obtains a predicted value of 5.2 kPa (0.75 psi) at probe P-3 due to heater insertion (using r_0 = 12 and r_i = 15 mm). (The above statement assumes that the

change in tip shape, very sharp (pore pressure probe) versus blunt (heater probe) and the change in probe diameter from 7.9 mm to 23.7 mm, have no influence on the excess pore pressure generated during insertion. This predicted value compares favorably with the observed value of 5.8 kPa (0.84 psi). The predicted pressure response at probe P-3 due to the insertion of P-2 is 0.69 kPa (0.10 psi) (using $r_0 = 4$ and $r_1 = 54$ mm) as compared to the observed value of 0.97 kPa (0.14 psi). This comparison ignores the influence of the heater probe, located between the pore pressure probes, on the generated excess pore pressure at P-3.

The above c_h values are used in the dissipation model (Equation (7), assuming m = 1) to predict the dissipation rates shown in Figures 12 and 13 for probes P-3 and P-2, respectively. Also shown in these figures is the least squares exponential curve fit to the data ("*" represents data point). The fit is less than ideal, because the intercept value is forced to be unity, leaving only one parameter (the slope) to be evaluated. The important point to note in Figures 12 and 13 is the very close agreement between the predicted and observed values for the short term (< 5 minutes) behavior. However, in terms of medium to long-term behavior the two curves differ considerably, with the predicted curve showing a much higher dissipation rate. Between the predicted and least squares curves the latter will be considered the more correct in predicting the overall dissipation behavior. Therefore, it becomes necessary to "slow down" the dissipation rate as calculated from Equation (7). This can be achieved through the use of the m value in Equation (8). Figures 14 and 15 show the effects of the m parameter in shifting the predicted curves for probes P-3 and P-2, respectively. The

corresponding m values which resulted in curves closest to the least squares curves are 4.6 and 2.3 for the respective probes. Thus, of the two probes, the dissipation curve for probe P-3 is affected to a greater extent (higher m value) due to insertion. This finding is consistent since P-3 was inserted in "virgin" sediment, whereas, P-2 was inserted in sediment disturbed by the prior insertion of the heater probe.

4.3 Thermally Induced Pore Pressures

The thermally induced excess pore pressures at probes F-3 and P-2 were previously shown in Figure 7. The salient features to be noted from this figure are as follows:

- 1) the initial 4 minute lag in the pore pressure response,
- 2) the significant pore pressure decay for times greater than
- 75 to 100 minutes,
- 3) the reduced pore pressure response of probe P-2, and
- 4) the hyperbolic shape of the initial portion of the curves.

The first factor can be directly attributed to the thermal diffusivity of the sediment. The same 4 minute response lag was observed during the ISIMU-I simulation (see Section 1.2). Shifting the curves toward the origin compensates for this factor. The second and third factors are a result of the previous insertion event. Figure 3 clearly shows that pore pressure dissipation during this event had not attained the asymptotic minimum prior to heater "turn-on". Thus, the previous dissipation history must be taken into account. This is achieved by fitting a least squares

exponential curve to the "tail" portion of the curves shown in Figure 6. The correction is added to the original data as is shown in Figures 16 and 17 for probes P-3 and P-2, respectively. The fourth factor is a result of the rate of temperature increase as described by Equation (9). Equation (9) predicts the rate of pore pressure build-up to be directly related to the rate of temperature The temperature-time curves, as recorded by thermocouples change. located on the heater probe, are shown in Figure 18. One observes from this figure the hyperbolic shape of the curves. The actual temperature-time relationship at the piezometer probes was not recorded. However, the thermocouples at the tank wall, 200 mm from the probes, recorded no significant temperature change. Therefore, the actual heating rate must lie somewhere between that shown in Figure 18 and zero. Since the actual curve is not known, the hyperbolic form will be used with assumed parameters.

The hyperbolic relationship is used to calculate the change in temperature for a unit time step which is then substituted into Equation (9) to determine the rate of pore pressure increase. As mentioned in Section 3.2, the pore pressure increase is affected by dissipation into the surrounding sediment, therefore, the unit pore pressure increase must be substituted into Equation (12) and summed over the entire record to obtain the actual pore pressure response. This response is shown in Figures 19 and 20 for probes P-3 and P-2, respectively. In these figures an asterisk, "*", represents <u>corrected</u> data, as described previously, "+" represents the thermally induced pore pressures as obtained from the assumed temperature-time relationship and Equation (9), and "0" represents the predicted pore pressure build-up using the thermally induced

pore pressure data and Equation (12). For this calculation, as a first approximation, the coefficient $\bar{\beta}$ was assumed equal in value to the coefficient β from Equation (8). The fit of prediction to measured data shown in Figures 19 and 20 was achieved without further adjustment to the value of $\bar{\beta}$. The computer program "MENUDO" used to create these figures is given in Addendum III. The program listing gives the typical values for the sediment structural properties, as well as, the thermal properties of illite (Bennett et al., 1984; Mitchell, 1976; and Silva et al., 1982).

The authors note that much work remains before the temperaturepore pressure response model described herein is accepted as a reliable, effective model. The present model uses a number of soil behavior parameters, e.g., c_v , c_h , m_v , at stress and temperature levels where these behavior parameters are only vaguely understood. Back-calculations of the sediment temperature at the piezometer yield calculated temperatures ranging from one order of magnitude higher to one order of magnitude lower than the measured temperatures at the heater surface, all for reasonable assumptions for input parameter values. Continued effort is required to improve our understanding of the temperature-excess pore pressure generation-dissipation phenomena to the working level.

4.4 Sample Evaluation

After completion of the test program, Dr. Les Shepherd, of Sandia National Laboratories, obtained push cores of the tank sediment near the periphery of the tank in sediment believed least disturbed during the experiment. These peripheral core tubes were

inserted before any of the test probes were withdrawn to minimize possible lateral deformations and disturbance of the sediment during coring. The peripheral cores and probes were then withdrawn and the area of the heater probe was then over-cored. Two of the peripheral cores and the heater overcore were then tested at SNL, and one peripheral core transported as handcarried luggage, was tested at NORDA.

Water contents measured on two cores tested at SNL (without transportation) show the water content to be reasonably constant with depth, varying from 85 to 90 percent with an average for the two cores of 87.6 percent (Figure 21). Water contents on the one core tested at NORDA, after transport by plane and auto, were essentially the same ranging from 87 to 90 percent with an average of 88.8 percent. The water contents measured on the sediments adjacent to the heater probe (sampled by the over-core and tested at SNL) were 2 to 3 percent below the water contents measured in the peripheral cores. These lower water contents may be due to drying during the delay between splitting the core for radiography and subsampling for water content. The water content at the mid-point of the heater element (0.25 m) was measured as 6 to 7 percent below the water content values at 0.20 and 0.30 m (Figure 21). This low value may reflect a thermally-induced consolidation effect (Shephard, 1984).

Radiographic examination of the over-core was performed in order to look for sediment cracking resulting from heater probe insertion. The results of this examination were inconclusive. Cracks developed when the 0.13 m (5 in.) diameter over-core was

split making it very difficult to differentiate between probe implant cracks and core splitting cracks (Shephard, 1984).

The undrained shear strength measured by the miniature vane was noted to be reasonably consistent in the peripheral core tested at SNL, averaging about 4.1 kPa (Figure 22). The core tested at NORDA, after plane and auto transport, reflected a decrease in vane strength with depth from 4.3 kPa near the top to 2.8 kPa near the bottom, probably reflecting sediment disturbance due to transport. Sediment sensitivities as measured by the vane are 4 and greater.

4.5 Strength Prediction from Insertion Pore Pressures

If the sediment is assumed to be properly modeled as an elastic perfectly plastic material, then the maximum excess pore pressure at the probe surface is given by Randolph et al. (1979) as:

Esrig et al. (1977), noting that the ratio G/s_u can often be predicted based on soil type, suggested a value of 6 for the factor $ln(G/s_u)$ in Equation (14), for lean inorganic soils of moderate to high sensitivity, resulting in:

 $u_{\text{imax}} = s_u \times 6$ (15)

In ISIMU-II, piezometer probe P-3 measured on insertion-induced excess pore pressure of 11.6 kPa, and vane shear strengths measured

at SNLA on a peripheral core were 4.03 kPa near the piezometer sensor elevation. The resulting pressure-to-strength ratio is:

 $u_{imax}/s_u = 11.6/4.03 = 2.9 \ v \ 3....(16)$

This low value of the u_{imax}/s_u ratio is measured on a sample of reconstituted sediment, and, therefore, it is not considered highly significant.

5.0 SUMMARY AND CONCLUSIONS

The surficial sediment crack pattern observed in the ISIMU-II experiment does not suggest significant penetration of the cracks to a depth where the excess pore pressure and heat dissipation might be measureably altered by the cracking. The measured similar insertion and dissipation excess pore pressure histories for the two piezometers, one inserted before the heater probe insertion, the other inserted after, lends support to this position.

The ISIMU-II simulation involved the collection and analysis of data pertaining to induced excess pore water pressure build-up and subsequent dissipation as a result of probe insertion and thermal effects. The rate of dissipation predicted is dependent upon material properties as well as the dissipation model used. The horizontal coefficients of consolidation, c_h , obtained using Soderberg's (1962) method, were found to be consistent with the ISIMU-I results, as well as with oedometer test results (Silva et al., 1982). The c_h values were used in a first order exponentially decreasing dissipation function and found to model short term

behavior. However, the same function when considered in terms of long-term performance predicted a significantly higher dissipation rate. The predicted behavior was "slowed down" using Scott's (1963) "smear" factor in such a fashion as to agree with a least-squares approximation to the data.

The thermally induced pore pressures were modeled using Mitchell's (1976) equation. This expression involves the change in pore water pressure as a function of temperature change and thermal properties of the sediment. The actual rate of temperature change at the probe was not known; however, these data were available for the heating element and container walls. Therefore, the general shape of the curve was known with the parameters defining the curve assumed a priori. The thermally induced pore pressure model was combined with the dissipation model into a single expression, with the former serving as a forcing function for the gain in pore pressure and the latter as a loss term. The proposed equation was found to be a good model in predicting the observed thermally induced pore pressure response.

The temperature increase calculated from the temperature-excess pore pressure model was found to be significantly different than that which would have been predicted from ISIMU-I results. Possible causes for this discrepancy are as follows:

- a) Improper prediction of the overall behavior of the sediment by the first order dissipation model,
- b) Excessive "slowing down" of the dissipation model resultingin a lower dissipation rate,

- c) An over estimate of the thermally induced pore pressures due to errors in the selection of thermal coefficients,
- d) Differing heating rates and temperatures between ISIMU-I and ISIMU-II simulations,

e) Differences in the thermal properties and response characteristics of the pore pressure probes, and

f) A change in material properties as a function of temperature, namely, changes in c_h.

6.0 ACKNOWLEDGMENTS

The authors thank Drs. C. Mark Percival, Joel Lipkin, Les E. Shephard, and David F. McTique, all of Sandia National Laboratories, for their assistance during conduct of the experiment. We also thank Dr. Richard H. Bennett and Mr. Douglas N. Lambert, Naval Ocean Research and Development Activity (NORDA) for their review of the manuscript. The efforts of Ms. Dianne Morris (typing) and Ms. F. Lee Nastav (illustrations), NORDA, are gratefully acknowledged. The subject work was completed under Federal Agency Order 58-5880 issued by Sandia National Laboratories, 23 February 1984. Prof. Riggins participation in the analytical model development, data analysis, and documentation was supported by the U.S. Navy-ASEE Summer Faculty Research Program.

Acar, Y. B., M. T. Tumay, and A. Chan, 1982. Interpretation of the Dissipation of Penetration Pore Pressures, Proceedings from the International Symposium on Numerical Models in Geomechanics, Zurich, Switzerland, pp 353-358.

Baligh, M. M. and J. M. Levadoux, 1980. Pore Pressure Dissipation after Cone Penetration, MIT Sea Grant Report No. 80-13, 368 p.

Bennett, R. H., J. T. Burns, and D. N. Lambert, 1981. Design and Development of a Deep-Water Piezometer for the Sandia Disposal Program, Subseabed Disposal Program Annual Report: January to December 1980, V. II Appendices (P.I. Progress Reports), Kennetth R. Hinga, Editor, Sandia National Laboratories, Albuquerque, NM, pp 897-904.

Bennett, R. H., J. T. Burns, J. Lipkin, and C. M. Percival, 1983. Piezometer Probe Technology for Geotechnical Investigations in Coastal and Deep-Ocean Environments, Transactions of the 12th Transducer Workshop, Melbourne, FL, 32 pp.

Bennett, R. H., H. Li, P. J. Valent, J. Lipkin, and M. I. Esrig, 1984. In Situ Undrained Shear Strengths and Permeabilities Derived from Piezometer Measurements, ASTM Specialty Conference on In Situ Testing of Marine Soils, San Diego, CA (in press).

Esrig, M. I., R. C. Kirby, and R. G. Bea, Initial Development of a General Effective Stress Method for the Prediction of Axial Capacity for Driven Piles in Clay, 9th An'l. OTC, Houston, TX. May 2-5, 1977, OTC 2943, pp. 495-501.

Hollister, C. D., D. R. Anderson, and G. R. Heath, 1981. Subseabed Disposal of Nuclear Wastes, <u>Science</u>, V. 213, pp 1321-1326.

Levadoux, J. N. and M. M. Baligh, 1980. Pore Pressures During Cone Penetration, MIT Sea Grant report No. 80-12, 310 pp.

Miller, J. B., V. W. Miller and L. O. Olson, 1982. ISHTE Simulation: APL-UW Engineering Report, Sandia National Laboratories Contracts 74-1121 and 16-3128, Applied Physics Laboratory, University of Washington, Seattle, WA., 80 p.

Mitchell, J. K., 1976. Temperature-Volume Relationships, in Fundamentals of Soil Behavior, John Wiley Series in Soil Engineering, John Wiley and Sons, New York, N.Y., pp 274-281.

Percival, C. M., 1983. The Subseabed Disposal Program In Situ Heat Transfer Experiment (ISHTE), Sandia Report SAND80-0202, Sandia National Laboratories, Albuquerque, NM, 47 p.

Randolph, M. F., J. P. Carter, and C. P. Wroth, Driven Piles in Clay - the effects of installation and subsequent consolidation, Geotechnique, Vol. 29, No. 4, pp 495-393.
Scott, R. F., 1963. Transient Flow: Mathematical Analysis, Principles of Soil Mechanics, Addison-Wesley Publishing Company, Reading, Mass, pp. 188-206.

Shephard, L. E., 1984. Letter from Shephard, Sandia National Laboratories, Albuquerque to P. J. Valent, NORDA, dated 15 May 1984.

Silva, A. J., S. A. Jordan, and S. J. Criscenzo, 1983. Report of Simulation Experiment for In Situ Heat Transfer Experiment Project, Sandia National Laboratories Subseabed Disposal Program, University of Rhode Island, Kingston, RI, 51 p.

Silva, A. J., S. A. Jordan, and W. P. Levy, 1982. Geotechnical Studies for Subseabed Disposal of High Level Radioactive Wastes, Annual Progress Report No. 9, Departments of Ocean and Civil Engineering, University of Rhode Island, Kingston, RI, 138 p.

Soderberg, L. O., 1962. Consolidation Theory Applied to Foundation Pile Time Effects, Geotechnique, V. 12, 1962, pp 217-225.

Torstensson, B. A., 1977. The Pore Pressure Probe, Nordiske Mote, Bergmekanikk, Paper Nol 34, Oslo, Norway, pp 1-15.

Tumay, M. T. and Acar, Y. B. Piezocone Penetration Testing in Soft Cohesive Soils, ASTM Specialty Conference on In Situ Testing of Marine Soils, San Diego, CA, (in press), 16 p.

,											
DATA	SET 1	: IN9	STALLAT	ION OF	PIEZO Thermi	METER	3, DAT	A APPE	ARS IN	COLUMN 7 -3	P-2
Hours 11	Min 52	Sec 10	0 23 9	1 23. 2	2 23. 2	3 23. 2	4 23. 3	5 24. 3	6 23. 0	-0. 2534	-0.
11	52 52	20 30	23.9	23. 2 23. 2	23. 2 23. 2	23.2	53 5	24.3 24.2	23.0	-0.2188	-0 -0
11	52	40	23.8	23.2	23.2	23.2	23 2	24.3	23.0	0.2129	-0.
11	52	50	23.8	23.2	23.1	23 2	23.3	24.3	23.0	0.2530	
11	53 53	10	23.8	23. 2 23. 2	23. 2	23.2	23.2	2413	23.0	0 2682	-0
11	53	20	23.8	23.2	23.2	23.2	23.3	24 3 24 7	23.0	0.2438	-0. -0
11	53 53	40	23.7	23. 2 23. 2	23.2 23.2	23.2	23.3	24 3	23 0	0.2485	-0
11	53	50	23.8	23.3	23.2	23.2	23. 2	24.3	23.0	0.2402	-0
11	54 54	10	23.9	23. 2 23. 2	23. 2	23:2-	23.3	24.3	23.0	0, 2233	-0
11	54	20	23.9	23.2	23.2	23.2	23.3	24.3	22.9	0 2153	-0
11	54 54	40	23.9	23. 2 23. 2	23. 2	23. 2 23. 2	23 3 23 3	24 3	23.0 23.0	0. 2003	-0
11	54	50	23.9.	23.2	23.1	23 2	23.3	24.3	23.0 23.0	0.1934	-0
11	55	10	23.9	23.2	23.1	23. 2 23. 2	23.3	24.3	23.0	0. 1805	-0
11	55	20	23.9	23.2	23.2	23 2	23.3	24 3	23.1	0.1745	-0
11	55	40	23.9	23.2	23.2 23.2	23. 2 23. 2	23. 3 23. 3	24.3	23.0	0.1636	-0
11	55	50	23.9	23.2	23.2	23.2	23.3	24.2	23.0	0.1584	-0
11	56 56	10	23. B 23. 9	23.2	23.2	23. 2	23.3	24.2	23.0	0.1489	-0
11	56 57	20	23.9	23.2	23.2	23.2	23.3 22.2	24.3	23.0 23.0	0.1445	-0
11	56 56	40	23.7	23. 2 23. 2	23.2	23.2	23.3	24.2	23. O	0.1408	-0
11	56	50	23.9	23.2	23.2	23.2	23 2	24.2	23.0	0.1322	-0
11 11	57 57	10	23.8 23.9	23.3 23.3	ಕನ. ಕ 23. 2	ರು. ದ 23. 2	≓⊿. 3 23 3	24.3	23.0	0. 1249	-0
11	57	20	23.9	23.3	23.2	23.1	23.3	24 3	23.0	0 1215	-0
11 11	57 57	40	23.9	23. 2 23. 2	ಷ. ಶ 23. 2	ಷ. ಸ 23. 2	23.3 23.3	24.3	23.0	0. 1150	-0
11	57	50	23.9	23. 2	23.2	23.1	23.3	24.3	23.0	0.1118	-0
11 11	58 58	10	23.9	23. 2 23. 3	ರ್ಷ. ರ 23. 2	ಷನ. ದ 23. 2	23. 3 23. 2	24.3	23.0 23.0	0.1088	-0
11	58	20	23.9	23. 2	23.2	23.2	23.3	24.3	23.0	0.1030	-0
11 11	ರಕ 58	30 40	24.0	23. 3 23. 2	23. 2 23. 2	23.1 23.1	∡ು. ನ 23. 3	24.3 24.3	23.0	0.0976	-0
11	58	50	24.0	23. 2	23. 2	23. 2	23.3	24.3	23.0	0.0951	-0
11 11	59 59	10	23.9 24.0	23. 2 23. 2	23. 2 23. 2	23. 2 23. 2	ರ್ಷ. ನ 23. 3	24.2	23.0	0.0720	-0
11	59	20	23.9	23.2	23.2	23.2	23.3	24.3	22.9	0.0879	-0
11 11	59 59	30 40	23.9	23. 3 23. 2	23, 2 23, 2	23, 2 23, 2	ರು. ವ 23. 3	24. 3 24. 3	23.0	0.0833	-0
12	01	00	23. 9	23. 2	23. 2	23.1	23.3	24.3	23.0	0.0675	-0
12	06	00 00	23.9 23.8	23.3	23.3	23. 2 23. 2	23.3	24. 3 24. 2	23. 1 23. 1	0.0003	-0
12	16	00	23.4	23.3	23.3	23 2	23.4	24 0	23. 2	-0.0188	-0

.

				Therm	nistors_	<u> </u>		_			
Hours 12 12 12 12 12 12 12 12	Min 2261641655000116226466678	Sec 00 00 00 00 00 00 00 00 00 00 00 00 00	0 23.290369011121864411092554991011223 222332900111223 2224444443 22244443 222333901109255499101100011 2233393 222339393 2233939 2233939 22339393 2233939 22339 2233939 22339	1 22222223 3333 3333 2333 2333 2333 233	2 233333333333333333333333333333333333	3 23.111223333333333333333333333333333333	4 3323232333445555554443347700288787777038 332222222222222222222222222222222222	5 3 3 4 4 4 4 4 4 4 4	$\begin{array}{c} 6\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	P-3 -0.0337 -0.0456 -0.0555 -0.0638 -0.0712 -0.0775 -0.0832 -0.0885 -0.0728 -0.0728 -0.0728 -0.0728 -0.0728 -0.0728 -0.1037 -0.1037 -0.1037 -0.1037 -0.1042 -0.1084 -0.1107 -0.1124 -0.1172 -0.1172 -0.1172 -0.1184 -0.1172 -0.1184 -0.1217 -0.1213 -0.1217 -0.1217 -0.1220 -0.1223 -0.1224 -0.1227 -0.1228 -0.1232 -0.1232 -0.1232 -0.1233 -0.1233 -0.1234	P-2 -0.0080 -0.0079 -0.0079 -0.0083 -0.0083 -0.0097 -0.0097 -0.0097 -0.0097 -0.0045 -0.0064 -0.0065 -0.0064 -0.0063 -0.0063 -0.0063 -0.0063 -0.0063 -0.0064 -0.0063 -0.0064 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0065 -0.0051 -0.0071
Data	Set	2: IN D4	NSTALLAT	ION OF	HEATE	R. 1N 7.					
14 14 14 14 14 14 14 14 14 14 14	28 28 28 29 29 29 29 29 29 29 29 29 29 20 30	10 20 30 40 50 00 10 20 30 40 50 00	23. 1 23. 0 23. 1	22.072 21.223 22.234 22.234 22.2355 22.232 22.232 22.23 22.2	22. 22. 22. 22. 22. 22. 22. 22. 22. 22.	24, 2 23, 6 23, 1 23, 1 23, 1 23, 1 23, 1 23, 1 23, 1 23, 1 23, 1	22.7 22.5 22.2 22.2 22.2 22.2 22.2 22.2	23.7 23.6 23.6 23.6 23.6 23.5 23.5 23.5 23.5 23.4 23.4	23. 0 23. 1 23. 1 23. 1 23. 1 23. 0 23. 0 23. 1 23. 0 23. 1 23. 0	-0. 1237 -0. 0184 -0. 0066 0. 0111 0. 0231 0. 0315 0. 0377 0. 0419 0. 0461 0. 0489 0. 0508 0. 0525 0. 0538	-0.0071 -0.0071 -0.0071 -0.0071 -0.0071 -0.0071 -0.0071 -0.0071 -0.0070 -0.0070 -0.0070 -0.0070 -0.0070

•

*

					Thermis	tors					
Hours	Min	Sec	0	1	[,] 2	3	4	5	6	P-3	P-2
14	30	20	23. 0	22.6	22.7	23.0	22.8	23.4	23. 0	0. 0548	-0 0070
14	30	30	23.1	22.7	22.7	23.0	22.8	23.4	23.1	0.0557	-0.0070
14	30	40	23.0	22.7	22.7	23.0	22.8	23.5	23.1	0.0564	-0 .0071
14	30	50	23. 1	22.7	22.7	23.0	22. 8	23.4	23 1	0.0569	-0.0070
14	31	00	23.1	22.7	22.7	23.0	22.9	23.4	23.1	0.0570	-0 0070
14	31	10	23.1	22.7	22.7	23.0	22.8	23.4	23.1	0 0573	-0.0071
14	31	20	23.1	22.7	22.7	23.0	22.8	23.3	23.1	0.0575	-0.0070
14	31	30	23.1	22.7	22.7	23.0	22.8	28.3	23.1	0.0577	-0.0070
14	31	50	<i>ಟ</i> ವ. ⊥ ದಾಡ ∢	<i>iii. /</i>	22.8 66.7	23.0	22.8	23.3	23.1	0.0577	-0.00/1
14	34 77	10	23.1 77.0	ee./	121. / 27. 0	23. U	22.7	<i>ಕ</i> ನ ನ ೧೧೧೧	23. V	0.0575	
14	32	20	23.U 77.1	55./ 77.7	ಲಿ ಜೆ. ಜೆ. ಇಂ. ಇ	23.0	11.0 11.0	<i>ಟಿವ. ವ</i> ಇಂ. ಇ	ರ್ವ.1 ಇಇ +	0.0574	-0 0071
1Δ	30	30	23.1	22.7	22.0	23.0	50 D	2 3.3 7 7 7	23.1	0.0071	-0.0071
14	32	40	23.1	22 7	20 G	23.0	22.0	20.0 27 7	23.1	0.0567	-0.0071
14	32	50	23 1	22.7	22.8	23.0	22.0	23.3	23.1	0.0564	-0.0070
14	33	00	23.1	22.8	22.8	23.0	22.8	23.8	23 1	0.0562	-0.0070
14	33	10	23.1	22.7	22.7	23.0	22.9	23.7	23.0	0.0559	-0 0071
14	33	20	23.0	22.8	22.8	22.9	22.8	23.6	23.1	0.0556	-0.0070
14	33	30	23. 0	22.8	22.8	23.0	22.9	23.5	23.1	0.0552	-0.0071
14	33	40	23.0	22.8	22.8	22. 9	22. 8	23.5	23.1	0.0549	-0.0070
14	33	50	23.1	22.8	22. 8	23.0	22.9	23.5	23.1	0.0544	-0.0071
14	34	00	23.1	22.8	22 8	22.9	22. 9	23.5	23.1	0.0541	-0.0070
14	34	10	23.1	22. 8	22.8	23.0	22.9	23.4	23.1	0.0535	-0.0071
14	34	20	23. 1	22. 8	22.8	22.9	22. 9	23.4	23.0	0.0532	-0 0070
14	34	30	23.0	22.8	22.8	22.9	22.9	23.4	23.1	0.0529	-0.0670
14	34	40	23.1	22.8	22.8	22.9	22.9	23.3	23.1	0.0524	-0.0070
14	34	50	23.1	22.9	22.9	22.9	22.9	23.3	23.2	0.0521	-0.0070
14	35	10	23.1	22.8	22.8	22.9	22.9	23.3	23.0	0.0516	
14	30	10	പ്പ്. L മോ - K	22.8 22.0	12. U 17. U	ದೆದೆ. 7 ಇಂತರ	22.7	ಟಿ ರಾಜರಾ	23.1	0.0512	-0 0070
14	30	20	23.1 73.1	66.0 77 7	22.0 77.0	500 B	ರ್ಷ. 7 ಇಂ ರ	ലാ. ാ നാന	ಷ್ಟ. ಇಂಡು 1	0.0506	-0.0070
14	35	40	23.1	22 7	22.0	22.7	22.0 72.9	20.2 27.7	23.1	0.0503	-0.0070
14	35	50	23 1	22.9	22.8	23.0	22 9	20.0 D0 D	23.0	0.0497	-0.0070
14	36	00	23.0	22.9	22.8	22.9	22.8	23.2	23.0	0.0492	-0.0070
14	36	10	23.1	22.8	22.8	22.9	22.9	23.2	23.0	0.0488	-0.0070
14	36	20	23.1	22.8	22.8	22.9	22.9	23.2	23.1	0.0483	-0.0069
14	36	30	23.1	22.9	22. 9	22.9	22.9	23. 2	23.1	0.0478	-0.0070
14	36	40	23. 1	22.8	22.8	22.9	22. 9	23.1	23. 1	0.0475	-0 0070
14	36	50	23. 1	22. 9	2 2. 8	22. 9	22.9	23.1	23. 1	0.0471	-0.0069
14	37	00	23.1	22.8	22. 8	22.9	22.9	23.1	23. 1	0.0465	-0.0070
14	37	10	23.1	22.8	22.8	22.9	22.9	23. i	23. 1	0.0462	-0 0069
14	37	20	23.1	22.8	22.9	22.9	22.9	23. 1	23.1	0.0459	-0 0069
14	37	30	23.1	22.8	22.8	22.9	22.9	23.1	23.0	0.0454	-0.0069
14	37	40	23.1	22.9	22.8	22.9	22. 9	23.0	23.0	0.0448	-0.0065
14	37	50	23.1	22.8	22.8	22.9	22.9	23.0	23.0	0.0445	-0.0069
14	38 20	10	23.1 77 t		12.7 17.0	ല്ല്. 7 നന മ	22.7	23.U 77.4	23.1 77 A	0.0440	-0.0065
14	30	20	23.1	227	50 Q	27 9	22.9	23 1	23.0	0 0430	-0.0067
14	38	30	23.1	22.9	22.0	22.9	22.9	23.0	23.0	0 0427	-0.0069
14	38	40	23.0	22.8	22.9	22.9	22.9	23.0	23.2	0.0422	-0,0065
14	38	50	23.1	22.8	22.8	22.9	22.9	23.0	23.0	0.0418	-0.0069
14	39	00	23.0	22.8	22.9	22.9	22.9	23.0	23.0	0.0414	-0.0065
14	39	10	23.1	22.8	22.8	22.9	22. 9	23.0	23.1	0.0409	-0.0068
14	39	20	23. 1	22.8	22. 8	22. 9	22. 9	23.0	23. 0	0.0404	-0.0059

			 		Iner	mistors					
Hours	Min	Sec	0	1	2	3	4	5	6	P-3	P-2
14	39	30	23. 1	22. 8	22. 8	22. 9	22. 9	23. Ŭ	23, 1	0.0400	-010069
14	39	40	23.1	22. 8	22.8	22.9	22.9	23.0	23.1	0.0294	-0.0059
14	39	50	23.1	22.8	22.8	22. 9	22. 9	23.0	23.1	0.0389	-0.0068
14	40	05	23.1	22. 8	22.8	22. 9	22. 9	23 0	23.1	0.0383	-0.00a5
14	41	00	23. 1	22.8	22.9	22.9	22.9	22.9	23.1	0.0359	-0,0069
14	46	00	23.1	22. 8	22.8	22.9	22. 9	22.8	23. 1	0.0234	-0, 00 6 8
14	51	00	23. 0	22.9	22.9	22.9	22.9	22.6	23.1	0.0123	-0.0005
14	56	00	23. 1	22.8	22.8	22. 9	22.9	22.5	23.0	0 0025	-0.0065
15	01	00	23.0	22.8	22.8	22.8	22. 9	22.4	23.0	-0.0063	-0.0063
15	60	00	23.0	22.9	22.8	22.9	23.0	22 4	23.0	-0.0140	-0.0061
15	11	00	22.9	22.8	22.8	22.8	22.9	22.2	23.0	-0.0214	-0.0080
15	16	00	23.0	22.8	22.9	22.8	22.9	22.3	23.0	-0.0278	-0.0059
15	21	00	23.0	22.9	22.9	22.8	23.0	22.4	23 0	-0.0339	
10	20	00	23.0	55.7 77.0	50 D	22 B	E3.0	22.0	23.U	-0.0373	-0.0008 -0.0040
10	31	00	23.0	22.7 77 0	52. 7 77 0	52.0 57.0	23.0	22.7 77 0	23.U 77.0	-0.0444	-0.0020
10	30 44	00	23.0		22.7 77 0	<u> ಜ</u> . ೮ ೧೧ ರ	23.0	44.0 77 P	23.0 77.6	-0.0574	-0.0081
15	41	00	23.0	22.0	22.0 22.0	22.0	23.0	22.7 77.7	23.U DR 1	-0.0535	-0.0063
15	40	00	23.0	22.0	<u>22.7</u> 77 0	10 1000	<u>22.7</u>	20.E	20.1 22.2	-0.0577	-0.0084
15	54	00	22.9	22.9	50 B	22 8	22.7	20.1	22.0	-0.0617	-0.0066
16	01	00	22 9	22.0	22.0	22 8	20 9	23 0	27.0	-0.0689	-0.0055
16	06	00	23.0	22.0	22 8	22.8	52 9	23.0	23.0	-0.0722	-0.0065
16	11	00	23.0	22 8	22.0	20 B	22.9	20.2	23.0	-0.0752	-0.0065
16	16	00	22.9	22.8	22 8	22.8	22.9	22.6	23.0	-0.0782	-0.0067
16	18	42	22.9	22.9	22.8	22.8	22.9	22.6	23.0	-0.0795	-0.0067
16 16	18	56	23.0	22.9	22.8	22.8	22. 9	22.6	23.0	-0.0798	-0.0066
16	24	09	23.0	22.8	22.9	22.8	22. 9	22.5	23.0	-0.0822	-0.0066
16	30	00	23.0	22.9	22.8	22.8	22. 9	22.4	23.0	-0.0850	-0.0064
.16	40	00	23. 0	22.9	22.9	22.8	23.0	22.2	23.0	-0.0890	-0.0062
16	50	00	23. 0	22.8	22.8	22.8	23 0	22 4	23.0	-0.0926	-0.0062
17	00	00	23.0	22.8	22.8	22.8	22.9	23.1	23.0	-0.0963	-0.0064
17	10	00	23.0	22.8	22.8	22.8	22.9	23.4	23.0	-0 1001	-0.0068
17	20	00	23.0	22.8	22. 8	22.8	22.9	23.4	23. O	-0.1038	-0.0069
17	30	00	23. 0	22.8	22.9	22.8	22. 9	23.5	23.1	-0.1072	-0.0071
17	40	00	23. 1	22. 8	22. 9	22.8	22.9	23.6	23.1	-0.1102	-0.0073
17	50	00	23. 0	22.8	22 8	22.8	22. 9	23.6	23. Ö	-0.1132	-0 0074
18	00	00	23.1	22.8	22.8	22, 8	22.9	23.7	23.1	-0.1159	-0.0075
18	10	00	23.1	22.8	22.8	22.8	23.0	23.7	23.1	-0 1183	-0.0076
18	20	00	23.1	22.8	22.8	22.8	22.9	23.8	23.1	-0.1205	-0 00/6
18	30	00	23.1	22.8	22.8	22.8	22.9	23.8	23.1	-0.1227	
18	40	00	ಷ. U ೧೧ ಕ	ee. /	. ಜ ೧೧ ೧	22.0 77.7	22.7	23.7	23.1	-0.1247	-0.0077
18	50	00	23.1 70.1	22. /	22. B	ee. /	. <u>ನ</u> ದಿ	23.8 50.0	23.1		
17	10	00	<u> ಜ</u> ರ. 1 ೧೧ ೧	ನ್ನು ರ ೧೧ ರ	22.0 77.0	<u>ಷ</u> ್ಟೆ. ರ ೧೧೧೧	22.7	23.7 CO D	<i>ಟ್</i> ರ. ದ		-0.0079
10	20	00	ലാ.ല നനന		ನ್ನು ರ ಗಾಗ್ ರ	ಷ್ಟ. 0 	23.V 77.0		23. E		-00078
10	20	00	23.2	50 D	77 0		10 10 10 10 10 10 10 10 10 10 10 10 10 1	23.7	23.E		-0.0079
19	40	00	23.5	22.0	22 P	22.0	22 0	24 0	23.3	-0 1334	-0 0079
19	50	00	23.2	22 R	22.0	22.0	22 0	23.9	23.2	-0 1344	-0 0078
20	00	00	23.2	22 R	22.8	22 8	22 9	23.8	23.2	-0 1354	-0_0078
20	10	00	23 1	22.8	22.8	22.8	22.9	23 9	23.2	-0.1366	-0.0078
20	20	00	23.1	22.8	22.8	22.8	22.9	23.9	23.2	-0.1376	-0.0078
20	30	00	23. 2	22.9	22.8	22.8	22.9	24.0	23.3	-0.1385	-0.0079
20	40	00	23.2	22.9	22.8	22.8	22.9	24.0	23.3	-0.1394	-0.0075
20	50	00	23.2	22.9	22.8	22.8	22.9	23.9	23.3	-0.1402	-0.0075

Hours	s Min	Sec	0	1	2	3	4	5	6	P-3	P-2
21111112222222222222222222222222222222	00 10 20 40 00 20 40 00 20 40 00 20 40 00 20 20 20 20 20 20 20 20 20 20 20 20		$\begin{array}{c} \mathbf{A} \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} A$	$\begin{array}{c} 9 \ 9 \ 9 \ 8 \ 9 \ 9 \ 8 \ 9 \ 9 \ 9 \$	$\begin{array}{c} 3 \otimes 7 \otimes 3 \otimes 3 \otimes 3 \otimes 7 & 7 \otimes 7 \otimes 7 \otimes 3 \otimes 7 \otimes $	$ \begin{array}{c} \textbf{B} \otimes \textbf$	$\begin{array}{c} \mathbf{P} \ $	9999889800900999988875548389997779704018 99998897779704018 99998897779704018 9999887779704018 9999887779704018 999987779704018 999987779704018 999987779704018 999987779704018 999987779704018 999987779704018 999987779704018 999987779704018 999987779704018 999987779704018 99977797704018 9997779779704018 9997779779704018 9997779779704018 9997779779704018 9997779779704018 9997779779704018 9997779779704018 9997779779704018 9997779779779704018 9997779779779779704018 9997779779779779779779704018 9997779779779779779779779779779779797979	$\begin{array}{c} 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 $	$\begin{array}{c} -0. 1408 \\ -0. 1415 \\ -0. 1421 \\ -0. 1424 \\ -0. 1428 \\ -0. 1431 \\ -0. 1435 \\ -0. 1445 \\ -0. 1445 \\ -0. 1454 \\ -0. 1454 \\ -0. 1458 \\ -0. 1454 \\ -0. 1458 \\ -0. 1464 \\ -0. 1464 \\ -0. 1464 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1468 \\ -0. 1457 \\ -0. 1457 \\ -0. 1458 \\ -0. 1388 \\ -0. $	-0.0078 -0.0078 -0.0078 -0.0078 -0.0077 -0.0077 -0.0077 -0.0077 -0.0078 -0.0076 -0.0076 -0.0076 -0.0076 -0.00855 -
DATA	SET	3: I A	NSTALLAT PPEARS I	IGN OF N COL.	SECON 8, DA	D PIEZ TA FRD	OMETER M ist	. DAT (P-3)	A FROM APPEAR	2nd (P-2 S IN COL) 7.
09 09 09 09 09 09 09 09 09 09 09 09 09 0	24 24 24 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	20 30 40 50 10 20 30 40 50	23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	22.9 23.0 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1	23.0 23.0 23.0 23.0 23.1 23.0 23.1 23.0 23.1 23.0 23.0 23.0 23.0	23.090 22.090 23.090 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.0000 20.0000 20.0000 20.0000 20.00000000	23. 1 23. 0 23. 1 23. 1 23. 1 23. 1 23. 1 23. 1 23. 1 23. 1 23. 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23.0 23.0 23.0 23.1 23.1 23.1 23.1 23.1 23.1 23.2 23.1 23.1	-0. 1405 -0. 1390 -0. 1291 -0. 1237 -0. 1196 -0. 1166 -0. 1142 -0. 1124 -0. 1110 -0. 1098 -0. 1088 -0. 1082	-0.2259 -0.1737 0.2112 0.2403 0.2441 0.2424 0.2385 0.2335 0.2335 0.2293 0.2293 0.2230 0.2177 0.2124

Thermistors

Part of the second s

					The	rmistor	s				
Hours	Min	Sec	0	1	2	3	4	5	6	P-3	P-2
09	26	20	23. 0	23. 1	23. 0	23. 0	23. 1	23. 5	23. 1	-0.1076	0.2074
09	26	30	23.0	23.1	23.0	23.0	23.1	23.4	23.1	-0.1071	0.202c
09	26	40	23. 1	23. 2	23.0	23.1	23. 2	23.5	23.1	-0.1067	0.1979
09	26	50	23.1	23.2	23.0	23.0	23. 2	23.5	23.1	-0.1065	0.1934
09	27	00	23.0	23. 2	23.1	23.0	23.2	23.5	23.1	-0.1062	0.1891
09	27	10	23.0	23.1	23.0	23.0	23 1	23.5	23.1	-0.1061	0.1849
09	27	20	23.1	23.2	23.1	23.0	23.1	23.5	23.1	-0.1060	0 1810
09	27	30	23.1	23.1	23.1	23.0	23 1	23.5	23 1	-0.1059	0.17/1
09	2/	40	23.1	23.1	23.0	23.1	23.2	23.5	23.1	-0.1058	0.1/35
09	27	50	23.1	23.2	23 1	23.0	23.2	23.5	23.1	-0.1058	U. 1699
09	28	00	23.1	23.2	23.1	23.0	23.2	23.5	23.1	-0.1058	0.1661
09	28	10	23.0	23.1	23.1	23.0	23 1	23.5 DD E	23.2	-0.1057	0 152/
09	28	20	23.V 77.0	23.1 22.1	ಷ್ಟ. 1 ೧೧ ಕ	<i>ಷ</i> ವ. V	23.1	ವನ. ಇ ಇದ ಕ	- £3.1	-0.1057	0.1074
09	28	30	23.0	23.1 77 0	23.1 00 t	23.1	23.1	ವವ. ಶ ಶಾಶ ಕ	ed.1	-0.1057	0 1564
09	28	40	23.1 22.0	23.2 77.4	23.1 22.1	23. U	23.1	<u> ಜಿ</u> ವ. ಶ ರಾಗ ಕ	23.1 77.1	-0.1057	0.1034
07	20	50	23.V	23.1	<u> ದವ.</u> 1 ೧೧ ಕ	23. U	<u> ದ</u> ವ. ದ	<i>ಟಿ</i> ವ. ೪ ೧೧೯	ao. 1	-0.1058	0.1008
09	27	10	23.V 77.0	23.1 77.1	23.1	23.V	23.1 77.1	23.0 77 5	<u> ಜ</u> ವ. 1 ಇಇ 1	-0.1058	0.1470
07	27	20	23.U 77.0	23.1 77.7	23.1 95.1	23.I 73.A	<u> ಜ</u> ು. ಸ ೧೧ ಕ	<u> ಜ</u> ು. ೧ ೧೯ ೯	20.1 DD 1		0.1400
07	27	20	23.0	23.2 77.1	ಷ್ಟು. L ಇಇ ಕ	23.0	23.1 72.7	ಷ್ಟ. ನ ಗಾಗಾ ಕ	23.1	-0.1059	0 1709
07	20	40	23.1	23.I 273.I	23.1 77 A	23. V 77. A	20.2 77.0	23.5	23 1	-0.1059	0.1374
09	29	4 0 50	23.0 27.0	23.1	22 1	22.0	23.2 27.2	23.5	23.1	-0.1060	0 1349
09	30	00	23.0	23.1	23.1	23.0	23.1	23.5	23.1	-0 1060	0 1327
09	30	10	23 1	23.2	23 1	23.1	23.2	23.5	23.2	-0 1061	0 1304
09	30	20	23 1	23.1	23 1	23.0	23 1	23.5	23 1	-0.1061	0:1282
09	30	30	23 0	23 1	23 1	23.0	23.2	23.6	23.1	-0.1061	0.1261
09	30	40	23.0	23.2	23.0	23.0	23.2	23.5	23.1	-0.1062	0.1239
09	30	50	23.1	23.1	23.0	23.0	23.2	23.5	23.1	-0.1063	0 1219
09	31	00	23.0	23.1	23.0	23.0	23.1	23.5	23.1	-0.1062	0.1197
09	31	10	23.0	23.1	23.1	23.0	23.1	23 5	23.1	-0.1063	0.1180
09	31	20	23.1	23. 1	23. 0	23. 0	23.2	23.4	23.1	-0.1064	0.1150
09	31	30	23.1	23. 2	23. 1	23.1	23. 2	23.5	23. 1	-0.1064	0.1141
09	31	40	23.1	23. 2	23.1	23.1	23 2	23.5	23.1	-0.1064	0 1123
09	31	50	23.1	23. 2	23.1	23.0	23.1	23.4	23. 2	-0.1064	0.1105
09	32	00	23.0	23.1	23 0	23.0	23 1	23.4	23.1	-0.1064	0.1087
09	32	10	23.1	23. 2	23.1	23.0	23. i	23.4	23.1	-0.1065	0.1071
09	32	20	23.1	23. 2	23. 1	23.0	23.1	23.4	23.1	-0.1065	0.1054
09	32	30	23.1	23. 2	23.1	23.0	23.2	23.4	23.1	-0.1066	0.1035
09	32	40	23.1	23. 2	23.0	23.1	23.2	23.3	23.1	-0.1066	0.1021
09	32	50	23. 1	23. 2	23. 0	23.0	23.2	23.3	23.1	-0.1066	0.1005
09	33	00	23.1	23. 2	23.1	23.0	23.1	23. 3	23. 1	-0.1066	0.0990
09	33	10	23.1	23. 2	23.1	23.0	23.1	23. 2	23.1	-0.1066	0.0975
09	33	20	23. 1	23. 2	23. 1	23. 0	23.1	23. 2	23.1	-0.1067	0.0959
09	33	30	23. 1	23. 2	23. 1	23.0	23.1	23.2	23. 1	-0.1067	0.0944
09	33	40	23.1	23. 2	23.1	23.0	23. 2	23.1	23.1	-0.1067	0.0930
09	33	50	23.0	23. 2	23.1	23.0	23.1	23. i	23.1	-0.1067	0.0917
09	34	00	23.1	23. 2	23.0	23.0	23.2	23.1	23.1	-0.1068	0.0903
09	34	10	23.1	23.2	23, 1	23.0	23.2	23.0	23.1	-0.1068	0.0889
09	34	20	23.1	23.1	23.0	23.0	23.1	23.0	23.1	-0.1066	0.0876
09	34	30	23.0	23.1	23.1	23.0	23.1	22.9	23.1	-0.1069	0.0851
09	34	40	23.0	23.1	23.1	23.0	23.1	22.9	23.1	-0.1069	0.0848
09	34	50	23.1	23.2	23.1	23.0	23.2	23.0	23.2	-0.1069	0.0835
09	35	00	23.1	23.1	23.1	23.0	23.1	22.8	23.1	-0.1069	0.0823
07	35	10	23.0	23.1	23.1	23.0	23.1	22.8	23.1	-0.1069	0.0810

۲.

l

				<u></u>		Ther	mistors_					
Но	urs	Min	Sec	0	1	2	3	4	5	6	P-3	P-2
05 05 05 05 05 05 05 05 05 05 05 05 05 0	999993944990011100994455001110000	3555666050505050505050505050212	20 30 40 50 00 10 00 00 00 00 00 00 00 00 00 00 00	23. 1 23. 2 23. 2 23. 2 23. 2 23. 2 23. 2 23. 2 23. 2 23. 2 23. 1 23. 1		$\begin{array}{c} 23.1\\ 23.0\\ 13.0\\ 23.0\\$	$\begin{array}{c} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$		$\begin{array}{c} 8 & 8 & 7 & 8 & 7 & 7 & 9 & 0 & 0 & 9 & 4 & 4 & 5 & 1 & 4 & 1 & 5 & 9 & 1 & 0 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3$	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 $	$\begin{array}{c} -0.\ 1069\\ -0.\ 1070\\ -0.\ 1070\\ -0.\ 1070\\ -0.\ 1070\\ -0.\ 1071\\ -0.\ 1074\\ -0.\ 1074\\ -0.\ 1078\\ -0.\ 1078\\ -0.\ 1096\\ -0.\ 1096\\ -0.\ 1109\\ -0.\ 1109\\ -0.\ 1121\\ -0.\ 1135\\ -0.\ 1149\\ -0.\ 1149\\ -0.\ 1145\\ -0.\ 1149\\ -0.\ 1185\\ -0.\ 1185\\ -0.\ 1185\\ -0.\ 1223\\ -0.\ 1223\\ -0.\ 1223\\ -0.\ 1244\\ -0.\ 1253\\ -0.\ 1260\\ -0.\ 1281\\ -0.\ 1281\\ -0.\ 1284\\ -0.\ 1284\\ \end{array}$	$\begin{array}{c} 0. \ 0795\\ 0. \ 0785\\ 0. \ 0774\\ 0. \ 0762\\ 0. \ 0751\\ 0. \ 0751\\ 0. \ 0751\\ 0. \ 0751\\ 0. \ 0751\\ 0. \ 0290\\ 0. \ 0113\\ -0. \ 0250\\ -0. \ 0250\\ -0. \ 0250\\ -0. \ 0250\\ -0. \ 0250\\ -0. \ 0411\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0474\\ -0. \ 0532\\ -0. \ 0532\\ -0. \ 0545\\ -0. \ 0845\\ -0. \ 0856$
DA	TA S	SET 4	4: HE	ATER P	ROBE TU	IRNED C)N					
$111\\111\\111\\111\\111\\111\\111\\111\\111\\11$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13344555678901234567913	00 30 30 30 30 30 30 30 30 00 00 00 00 0	23. 3 23. 4 23. 4 23. 2 23. 3 23. 5 23. 5 23. 5 23. 2 23. 5 23. 2 23. 2 23. 2 23. 2 22. 8 22. 2 22. 2 22. 2 22. 8 22. 4 22. 3 22. 3 22. 4 22. 3 22. 3 22. 4 22. 3 22. 3	23.34 24.4 25.22 27.59 29.78 29.78 29.78 29.78 32.33 34.43 35.35 36.54 38.95 36.54 38.95 38.95 39.38 39.52 340.41 39.41.3	$\begin{array}{c} 22.7\\ 24.8\\ 27.2\\ 9.0\\ 30.1\\ 31.5\\ 32.6\\ 34.5\\ 36.2\\ 37.8\\ 38.9\\ 40.6\\ 41.6\\ 42.1\\ 43.1\\ 44.9\\ 45.1\\ 44.9\\ 45.1\\ 44.9\\ 45.1\\ 46.8\\ 9\\ 45.9\\ 9\\ 8.9\\ 9\\ 8.9\\ 9\end{array}$	$\begin{array}{c} 22.8\\ 25.1\\ 27.2\\ 8.5\\ 7\\ 30.7\\ 33.4\\ 34.9\\ 34.9\\ 34.1\\ 39.5\\ 40.7\\ 41.5\\ 43.4\\ 43.4\\ 44.6\\ 45.2 \end{array}$	$\begin{array}{c} 23.4\\ 25.2\\ 7,0\\ 27,0\\ 30.1\\ 31.5\\ 34.8\\ 35.3\\ 34.3\\ 35.5\\ 39.5\\ 40.6\\ 42.\\ 43.4\\ 43.4\\ 45.8\\ 45.8\\ 45.8\\ 47.9\\ 47.9\\ 47.9\end{array}$	7428157330002240440469093 22222222222222222222222222222222222	$\begin{array}{c} 0 & 0 & 0 & 0 & 9 & 9 & 0 & 0 & 9 & 1 & 9 & 1 & 0 & 9 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	-0. 1285 -0. 1284 -0. 1288 -0. 1296 -0. 1291 -0. 1299 -0. 1299 -0. 1290 -0. 1282 -0. 1273 -0. 1262 -0. 1253 -0. 1262 -0. 1253 -0. 1241 -0. 1234 -0. 1222 -0. 1209 -0. 1203 -0. 1294 -0. 1175 -0. 1163 -0. 1147	-0.0893 -0.0897 -0.0898 -0.0903 -0.0908 -0.0909 -0.0910 -0.0914 -0.0913 -0.0908 -0.0907 -0.0905 -0.0905 -0.0905 -0.0891 -0.0883 -0.0877 -0.0877 -0.0870 -0.0843 -0.0854 -0.0854

						Ther	mistors_				
Hours	Min	Sec	0	1	2	3	4	5	6	P-3	P-2
$ \begin{array}{c} 11\\ 11\\ 11\\ 11\\ 12\\ 12\\ 12\\ 13\\ 13\\ 13\\ 14\\ 14\\ 14\\ 14\\ 14\\ 15\\ \end{array} $	45 47 50 54 57 19 39 99 44 34 50 45 44 44 44 44 44 44 44 44 44 44 44 44	00 00	22.854 23.47 23.21	42.51 43.11 45.22 45.20 45.20 45.20 45.20 52.37 55.37 55.10 57.03 57.55 58.88 57.555 57.555 57.555 57.555 57.555 57.5555 57.5555 57.55555 57.55555555	50. 1 3 5 3 6 2 1 5 5 3 . 6 2 1 5 5 5 3 . 6 2 1 5 5 5 5 5 5 5 5 6 2 . 7 8 0 0 6 7 4 4 3 8 2 7 0 1 3 0 6 7 4 4 3 8 2 7 0 1 3 0 6 7 6 8 8 . 9 0 1 3 0 6 7 6 8 8 . 9 0 1 3 0 6 7 6 8 8 . 9 0 1 3 0 0 6 7 6 8 8 . 9 0 1 3 0 0 6 7 6 8 8 . 9 0 1 3 0 0 6 7 6 8 8 . 9 0 1 3 0 0 6 7 6 8 8 . 9 0 1 3 0 0 6 7 6 8 8 . 9 0 1 3 0 0 6 7 6 8 8 . 9 0 0 6 7 6 8 . 9 0 0 6 7 6 8 . 9 0 0 6 7 6 8 . 9 0 0 6 7 6 8 . 9 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 6 7 6 8 . 9 0 0 0 0 6 7 6 8 . 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.9 46.77 48.77 48.77 51.38 55.57 55.57 57.58 59.77 59.75 59.75 59.75 59.75 59.75 59.75 59.59 59.59 50.63 62 62 62 62 63 77 62 63 65 28 37	$\begin{array}{c} 49. \\ 0 \\ 50. \\ 51. \\ 52. \\ 25. \\ 53. \\ 55. \\ 57. \\ 40. \\ 51. \\ 52. \\ 55. \\ 57. \\ 40. \\ 10. \\ 41. \\ 20. \\ 44. \\ 72. \\ 89. \\ 29. \\ 44. \\ 45. \\ 84. \\ 45. \\ 65. \\ 64. \\ 45. \\ 64. \\ 67. \\ 84. \\ 64. \\ 67. \\ 84. \\ 64. \\ 67. \\ 84. \\ 64. \\ 67. \\ 84. \\ 64. \\ 67. \\ 84. \\ 64. \\ 67. \\ 84. \\ 64. \\ 67. \\ 64. \\ 6$	9 8 9 1 4 3 3 0 7 5 4 8 5 7 7 8 5 5 3 0 7 5 c	$\begin{array}{c} \textbf{3} \\ $	-0. 1141 -0. 1132 -0. 1118 -0. 1101 -0. 1089 -0. 1051 -0. 1036 -0. 1033 -0. 1033 -0. 1033 -0. 1033 -0. 1033 -0. 1033 -0. 1039 -0. 1052 -0. 1052 -0. 1066 -0. 1071 -0. 1080 -0. 1084 -0. 1093 -0. 1101 -0. 1110 -0. 11123 -0. 1123	-0.0835 -0.0827 -0.0827 -0.0827 -0.0795 -0.0795 -0.0783 -0.0783 -0.0771 -0.0769 -0.0749 -0.0785 -0.0792 -0.0809 -0.0823 -0.0852 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.08552 -0.0955555555555555555555555555555555555
15 15 15	14 24 34	00 00 00	23, 4 23, 9 23, 9	59, 9 59, 9 59, 9 60, 4	67.0 69.4 69.2 69.8	63. 7 63. 6 64. 2 63. 9	68.8 69.6 69.4	22.3 22.9 22.6 23.2	23, 6 23, 6 23, 4 23, 5	-0. 1132 -0. 1144 -0. 1148 -0 ₁ 1158	-0.0915 -0.0923 -0.0927 -0.0935
07 07 07 07 07	10 20 30 40 50	00 00 00 00 00	23, 8 23, 8 23, 7 23, 6 23, 6	24, 3 24, 4 24, 3 24, 3 24, 3	24.3 24.3 24.3 24.3 24.3 24.3	24 3 24 3 24 2 24 2 24 2 24 2	24.4 24.5 24.4 24.4 24.4	20.8 21.0 21.2 21.0 20.8	23.9 23.9 23.8 23.7 23.7 23.7	-0. 1460 -0. 1440 -0. 1424 -0. 1410 -0. 1398	-0. 1197 -0. 1198 -0. 1198 -0. 1196 -0. 1192 -0. 1187

.

ADDENDUM II. Reduced Data, ISIMU-II Experiment

DATA SET NUMBER = 1

CBS.	HR.	MIN.	SEC.	ELLAPSED TIME (MIN)	AMBIENT TEMP	P-3 (PSI)	P-2 (PSI)
234567890+-234567890+-284567890+2890+284567890+-284567890+284567890+28455555555		22222288888888888888888888888888888888	10000000000000000000000000000000000000	$\begin{array}{c} 0.00\\ .17\\ .330\\ .567\\ .007\\ .3507\\ .007\\$	0023833338333333333333333202822233333333	4003 2620 1.0542 1.4640 .6244 1.6787 1.6851 1.6676 1.6400 1.6076 1.5732 1.5388 1.5056 1.4736 1.4425 1.4425 1.4425 1.4425 1.2881 1.3597 1.3345 1.2881 1.2881 1.2270 1.2082 1.2082 1.2085 1.2270 1.2082 1.2085 1.2270 1.2082 1.2085 1.2270 1.2082 1.2085 1.2270 1.2085 1.2288 1.2270 1.2082 1.2085 1.2270 1.2082 1.2085 1.2270 1.2085 1.2270 1.2082 1.2085 1.2270 1.2082 1.0282 1.0282 1.0282 1.0246 1.0134 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0246 1.0282 1.0278 1.0282 1.0278 1.0282 1.0278 1.0282 1.0278 1.0282 1.0278 1.0278 1.0278 1.0277 1.0282 1.0278 1.0277 1.0282 1.0278 1.0278 1.0278 1.0278 1.0278 1.0277 1.0282 1.0278 1.0277 1.0282 1.0282	$\begin{array}{c} 4358\\ 88888888888888888888888888888888888$

55789012345678901234567890123456 6666666677777777778888888888	222333333333333333333333333333333333333	451616161616161616161344555666678	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	53.83 53.83 63.83 63.83 73.83 93.83 93.83 93.83 93.83 122.53 153.87 153.87 155.83 155	12222440876554689569909099999999977 2444444222222222222222222222	.3030 .2802 .2590 .2418 .2262 .2118 .1982 .1982 .1786 .1702 .1626 .1506 .1442 .1394 .1266 .1250 .1238 .1266 .1238 .1266 .1238 .1220 .1238 .1220 .1203 .1203 .1203 .1203 .1203 .1203 .1203	$\begin{array}{c} .4338\\ .4354\\ .4354\\ .4354\\ .4354\\ .4394\\ .4394\\ .4394\\ .4394\\ .4406\\ .4416\\ .4416\\ .4416\\ .4416\\ .4426\\ .4416\\ .4426\\ .4426\\ .4426\\ .44398\\ .4396\\ .4396\\ .4396\\ .4396\\ .4396\\ .4386\\ .$
--	---	-----------------------------------	---	--	---	---	---

OBS.	ΗŔ.	MIN.	SEC.	ELLAPSED TIME (MIN)	AMBIENT TEMF	P-3 (PSI)	P-2 (PSI)
78901234567890123456789012345678901234567890123456789012345678901	$\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 $	88888899999999000000000000000000000000	10000000000000000000000000000000000000	55.007 156.307 156.6.307 1566.6.3007 1566.6.3007 15566.6.3007 15566.6.3007 15566.6.3007 15577.7.3007 15577.8.8.8.8.007 15599.999.8007 15500.0.307 1557307 15588.8.8.007 15599.807 15500.0.307 15000.0.307 15000.0.307 15000.0.307 15000.0.307 15000.0.307 15000.0.307 15000.0.307 15000.0.307 15000.0.307 15000.0.3007		$\begin{array}{c} 1333422\\ 558542\\ 7775864\\ 77778877799799533079755731953353309775332222221953307979953334444235731953330917553311159199997177963366666666666666666666666666$	$\begin{array}{c} 4386\\ 44380\\ 44386\\ 44386\\ 44386\\ 443886\\ 443886\\ 443886\\ 443886\\ 443886\\ 443886\\ 443886\\ 443890\\ 44380\\$

4444567890123456789012345678901234567890123456789012345678901234567890123456789012322
44444444444444444444444444555555555555
77778888889999999999990146161515151614616151616168840000000000000000000000000000000
345000000000000000000000000000000000000
$\begin{array}{c} 165.17\\ 165.5683\\ 1655.683\\ 1655.683\\ 1655.683\\ 1655.683\\ 1655.683\\ 1655.683\\ 1655.683\\ 1655.683\\ 1655.683\\ 1655.683\\ 1657.7.557\\ 1657.7.677\\ 1683.883\\ 1993.8383\\ 8383.8383\\ 8383.8383\\ 8383.8383\\ 8383.8383\\ 8383.8383\\ 8383.8383\\ 19222222222222222222222222222222222222$
10001110000000000000000000000000000000
$\begin{array}{c} .7943\\ .79907\\ .78872\\ .78852\\ .78852\\ .78836\\ .78836\\ .778836\\ .778836\\ .77884\\ .777884\\ .777684\\ .777684\\ .775664\\ .775664\\ .552777\\ .4455335\\ .552777\\ .4455332422\\ .3324222\\ .3324222\\ .33293420\\ .229342\\ .229782\\ .24788\\ .13122\\ .16038357\\ .0707\\ .0938357\\ .0707\\ .0008\\ $
$\begin{array}{c} . 439944\\ . 4399444\\ . 433994488\\ . 433999488\\ . 433999488\\ . 4433999488\\ . 44339998844\\ . 44339998844\\ . 4433999888\\ . 4433999888\\ . 4433999888\\ . 4433999888\\ . 4433999888\\ . 4433999888\\ . 44444443388\\ . 4444444439888\\ . 44444444444\\ . 4444444444\\ . 44444444$

ľ

22222222222222222222222222222222222222
20000111111122222222222222222222222222
10 20 30 50 10 30 00 10 30 00 10 30 00 10 30 00 10 30 00 20 20 20 20 20 20 20 20 20 20 20 20
000000000000000000000000000000000000000
497.67 507.67 527.67 527.67 527.67 547.67 5677.67 5677.67 5677.67 587.67 507.677.67 6277.67 6277.67 6477.67 6477.67 6477.67 6477.67 6477.67 6477.67 6477.67 6477.67 6477.67 6477.67 6477.67 6477.67 6477.67 7477.67 987.67 9877.67 9877.67 917.67 1047.67 1047.67 1047.67 1127
9990099999889980090099999888755433209997779006018 222443333333333449444999998887554332099977790066018 2224222222222222222222222222222222222
.0667 .0627 .0591 .0555 .0523 .0499 .04471 .0447 .0435 .0419 .0447 .0367 .03511 .03511 .03511 .03511 .0399 .02991 .02875 .02559 .02559 .02559 .02675 .02675 .02675 .02675 .02675 .02675 .02675 .02835 .03355 .03855 .03855 .03871 .03871 .03871 .03551 .0387 .0387 .0387 .0387 .03871 .05751 .05755 .05755
$\begin{array}{c} 4358\\ 44354\\ 44354\\ 443554\\ 443554\\ 44335588\\ 443355888\\ 443355888\\ 443355888\\ 443355888\\ 443355888\\ 443355888\\ 443355888\\ 443355888\\ 443355888\\ 443355888\\ 443355888\\ 4433668\\ 4433668\\ 4433668\\ 4433668\\ 4433668\\ 4433668\\ 4433668\\ 443368\\ 443388\\ 44388\\ 44$

•

DATA SET NUMBER = 3

ḋBS.	нR.	MIN.	SEC.	ELLAPSED TIME (MIN)	AMBIENT TEMP	P-3 (PSI)	P-2 (PSI)
56785012345678901234567890123456789012345678901234567890123422222222222222222222222222222222222	ຓຑຠຠຠຠຉຑຑຑຑຑຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨ	244445555556666677777778888889999999000011111111222222222222222	20 30 50 100 300 100 1	1227.67 1227.83 1228.00 1228.17 1228.33 1228.50 1228.67 1228.83 1229.00 1229.17 1229.33 1229.67 1230.67 1230.67 1230.67 1230.67 1230.67 1230.67 1231.67 1231.67 1232.00 1232.17 1232.00 1232.67 1232.67 1233.67 1233.67 1233.67 1233.67 1233.67 1233.67 1233.67 1233.67 1233.67 1233.67 1233.67 1233.67 1233.67 1233.67 1233.67 1234.67 1234.67 1234.50 1234.67 1234.67 1234.67 1234.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67 1235.67	$\begin{array}{l} 555555555555555555555555555555555555$	0511 0571 0967 1346 1346 1466 1562 1690 1738 1826 188702 188702 188702 18894 189948 188944 188866 18886 188874 188744 188744 188744 18870 188666 18866 186	$\begin{array}{c}4355\\2270\\ 1.3107\\ 1.4270\\ 1.4270\\ 1.4270\\ 1.4270\\ 1.4270\\ 1.4270\\ 1.4270\\ 1.4354\\ 1.3790\\ 1.33755\\ 1.227566\\ 1.331555\\ 1.227566\\ 1.223922\\ 1.223922\\ 1.223922\\ 1.225922\\ 1.225922\\ 1.225922\\ 1.225922\\ 1.225922\\ 1.225922\\ 1.225922\\ 1.225922\\ 1.22592\\ 1.2$

ł

00123456789011234567890123456789012330333333333333333333333333333333333		ລຫກຸລຸກຸລຸກຸລຸກຸລຸກຸລຸກຸລຸກຸລຸກຸລຸກຸລຸກຸ	3333444445555555660505050505050505050505050 112223344555 112223244555 11222222	30000000000000000000000000000000000000	$\begin{array}{c} 1236.83\\ 1237.00\\ 1237.17\\ 1237.33\\ 1237.50\\ 1237.67\\ 1237.83\\ 1238.00\\ 1238.33\\ 1238.50\\ 1238.50\\ 1238.50\\ 1238.50\\ 1239.00\\ 1239.17\\ 1239.33\\ 1239.33\\ 1239.50\\ 1239.33\\ 1333.33\\ 1343.33\\ 1343.83\\ 1343.83\\ 1344.83\\ 1345.$	233.1 233.2 232.2 232.2 232.2 2		.8448 .833726 .8226 .22235 .8246 .22235 .8440 .22235 .8440 .22235 .8440 .22235 .8440 .22235 .8440 .22235 .8440 .22235 .8440 .22235 .8440 .22235 .8440 .22235 .121755 .121755 .121755555555555555555555555555555555555
---	--	--	---	--	--	--	--	--

DATA SET NUMBER = 4

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ADDENDUM III. Excess Pore Pressure Prediction Program MENUDO

: PROGRAM "MENUDO" 20 ! THIS PROGRAM PLOTS CALCULATES EXPECTANT PORE PRESSURES BASED ON THERMAL TIME EFFECTS 30 OPTION BASE 1 40 ! PRINTER IS 701.80 50 DIM M(50).T(50).U1(50).U2(50).U3(50).U4(50).X(50).Y1(50).Y2(50) 60 DIM D(50), T4(50), U(50), P(50) 70 M=8 80 N=47 90 ! A1&B1 ARE CURVE FIT PARAMETERS FOR TEMP.=f(TIME) RELATIONSHIP 100 A1=210 110 B1=.25 120 ! TOFINITIAL TEMPERATURE 130 T0=22.8 140 ! NI-INITIAL POROSITY 150 N1=.74 160 ! A2=THERMAL COEFFICIENT OF EXPANSION FOR SOIL SOLIDS 170 A2=.000001 180 ! A3=THERMAL COEFFICIENT OF EXPANSION FOR SOIL STRUCTURE 190 A3=-.00005 PER °C 200 ! M!=Mvs COEFFICIENT OF VERTICAL COMPRESSIBILITY FOR REBOUND 210 M1=-.00025 220 ! C1=C∨ COEFFICIENT OF CONSOLIDATION/HYDRAULIC DIFFUSIVITY 230 ! FOR PROBE P-3 IN CM 2/MIN 240 C1=.019277 250 ! FOR PROBE P-2 IN CM 2/MIN 260 ! C1=.014035 270 ! R1=PROBE RADIUS 280 R1=.4 290 ! M2=SMEAR FACTOR/INTERFACE DISTURBANCE FOR PROBE P-3 300 ! 310 M2=4.6 320 ! FOR PROBE P-2 M2=2.3 PORE PRESSURE PARAMETERS DUE TO PREVIOUS HISTORY 330 340 350 ! FOR PROBE P-3 360 A4=.1898 🖲 B4=-.006193 🖲 T4=100 370 ! FOR PROBE P-2 380 : A4=.5856 @ B4=-.01726 @ T4=100 390 C4=A4*EXP(B4*T4) 400 ! READS IN PREVIOUSLY STORED DATA 410 FOR Q=M TO N 420 ASSIGN# 1 TO "PROBEDATA4:D701" 430 READ≠ 1.Q : M(Q).T1.T2.T3.T4(Q).T5.T6.T7.U1(Q).U2(Q) 440 ASSIGN# 1 TO * 450 NEXT Q 460 GOTO 530 470 DISP "DO YOU WANT TO CHANGE A&B PARAMETERS Y/N" . BEEP 480 INPUT BS 490 IF BS="N" THEN 1200 500 DISP "INPUT A&B" @ BEEP 510 INPUT A1.B1 520 PRINT A1:B1 530 0=0 540 U=0 550 FOR I=M TO N 560 0=0+1 570 X(0)=M(1)-M(M) 580 ! PROBE P-3 VOLTAGE-TO-PRESSURE CONVERSION 590 Y1(0)=.0111+(U1(I)+.1505)*3.9982 600 ! PROBE P-2 VOLTAGE-TO-PRESSURE CONVERSION

```
610 ! Y1(D)=.0391+(U2(I)+.1071)*3.995
 620 ! TEMPERATURE AS A FUNCTION OF TIME
 630 T(D)=X(D)/(A1+B1*X(D))+T0
 640 ! AO=THERMAL COEFFICIENT OF EXPANSION FOR SEA WATER
 650 A0=.000064809+.000010474*T(D)-.000000056+T(D) 2
 660 IF 0=1 THEN T2=0 ELSE T2=T(0)-T(0-1)
 670 ! U3=PORE PRESSURE INCREASE DUE TO THERMAL EFFECTS
 680 U3(0)=T2/M1*(N1*(A2-A0)+A3)
 690 ! U4=PORE PRESSURE INCREASE CORRECTION DUE TO PREVIOUS HISTORY
 700 U4(D)=C4-A4+EXP(B4+(T4+X(D)))
 710 U=U3(0)+U
 720 U(0)=U+U4(0)
 730 ! P1=PORE PRESSURE DISSIPATION AS A FUNCTION OF TIME
 740 B0=-(C1/R1^2/M2)
 750 P=0
 760 FOR L=1 TO 0
 770 IF L=1 THEN P1=0 ELSE P1=U3(L-1)*EXP(B0*(X(0)-X(L-1)))
 780 P=P+P1
 790 NEXT 1
 800 IF D=1 THEN P(D)=Y1(1) ELSE P(D)=U3(D)+P+Y1(1)
 810 IMAGE DD.2X.DDD.DD.2X.D.DDD .2X. D.DDD.2X.D.DDD
 820 ! PRINT USING 810 : 0.X(0).Y1(0).U(0)+Y1(1),P(0)+Y1(1)
 830 IMAGE D.DDDD.2X.D.DDDD.2X.D.DDD
 840 ! PRINT USING 830 ; U3(D), U4(D), P(D)
 850 ! PRINT
 860 NEXT I
 870 DEG
 880 PLOTTER IS 705
 890 LIMIT 10.230.10.180
 900 LUCATE 10.125,10.95 .
 910 SCALE 0.300.0.1.2
 920 FXD 0.1
 930 LAXES -25,.1,0.0.2,2
 940 CSIZE 4
 950 SETGU
960 MDVE 68.5 @ LDRG 5
970 LABEL "TIME (MIN.)"
980 MDVE 3.53 @ LDIR 90
990 LABEL "PRESSURE (PSI)"
1000 SETUU @ LORG 2 @ LDIR 0
1010 MOVE 150,1.2 @ LABEL "PORE PRESSURE PROBE P-3"
1020 ! MOVE 150,1.2 @ LABEL "PORE PRESSURE PROBE P-2"
1030 MOVE 150,1.15 @ LABEL "* - DATA"
1040 MOVE 150,1.1 @ LABEL "* - THERMALLY INDUCED PORE PRESSURE"
 1050 MOVE 150,1.05 & LABEL "O - THEORY PREDICTION"
 1060 LORG 5 @ CSIZE 2
 1070 FOR J=1 TO 0
 1080 MOVE X(J), Y1(J)+U4(J)
 1090 LABEL
              *****
 1100 NEXT J
 1110 FOR K=1 TO 0
 1120 MOVE X(K),U(K)-U4(K)+Y1(1)
 1130 LABEL "+"
 1140 NEXT K
 1150 FOR L=1 TO 0
1160 MOVE X(L),P(L)
1170 LABEL "D"
 1180 NEXT 1
 1190 GOTO 470
1200 DISP "ADIDS SENOR RIGONES"
 1210 END
```


Figure 2. PLAN VIEW OF TEST ARRANGEMENT (SCALE 1 :4)

DUALE (:4)

Figure 8. GRAPHICAL REPRESENTATION OF PORE PRESSURE GAIN-LOSS MODELS

THE LOG (TIME) DISSIPATION CURVE AT PROBE P-3 DUE TO THE INSERTION OF HEATER PROBE

Figure 13. THE DISSIPATION CURVE AT PROBE P-2

Figure 15. THE PREDICTED DISSIPATION CURVES AT PROBE P-2 AS A FUNCTION OF THE SMEAR FACTOR, m

WATER CONTENT (UNCORRECTED FOR SALT) (PERCENT)

Figure 22, UNDRAINED SHEAR STRENGTHS OF TEST TANK SEDIMENTS AT CONCLUSION OF ISIMU-II EXPERIMENT

U219053