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Mean Rcsidual Life: Thecry and Appiicaticus

by

Frank Guess and Frank Preschan

Abstract

This is a chapter for the Handbock of Statistics, Volume 7, Quality Control

and Reliability, edited '-y P. R. Krishnaiah. We survey the rich theory and

important applications of the concept of mean residual life.
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1. Introduction xnd Sumary.

The mean residual life (IML) bas been used as far back as the third century

A.D. (cf. Deevey (1947) and Chiang (1968)). In the last two decades, however,

reliabilists, statistician%, and others have shown intensified interest in the MRL

and derived many useful results concerning it. Given that a unit is of age t, the

remaining life after time t is randon. The expected value of this random residual

life is called the mean residuza life at time t. Since the ML is defined for each

time t, we also speak of the M4L function. (See Section 2 for a more formal defi-

nition.)

The M4L function is like the density function, the moment generating function,

or the characteristic function: for a distribution with a finite mean, the MRL

completely deter'ines the distribution via an inversion formula (e.g., see Cox

(1962), Kotz and Shanbhag (1980), and Hall 'and Wellner (1981)). Hall and Wellner

(1981) and Bhattacharjee (1982) derive necessary and sufficient conditions for an

arbitrary function to be a MRL function. These authors recommend the use of the

MRL as a helpful tool in model builling.

Not only is the M4L used for parametric modeling but also for nonparametric

modeling. 'Hall and Wellner (1981) discuss parametric uses of the MRL. Large non-

parametric classes of life distributions such as decreasing mean residual life

(DMRL) and new better than used in expectation (NBUE) have been defined using 1L.

Barlow, Marshall, and Proschan (1963) note that the DM4L class is a natural one in

reliability'. Brown (1983) studies the problem of approximating increasing mean

residual life (IMRL) distributions by exponential distributions. He mentions that

certain IMRL distributions, "..' arise naturally in a class of first passage time

distributions for Markov processes, as first illuminated by Keilson." See Barlow

and Proschan (196S) and Hollander and Proschan (1984) for further comments on the
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nonpsreaetric use of ML.

A fascinating aspect about MRL is its tremendous range of applications. For

ex~aple, Watson and Wells (1961) use MJL in studying burn-in. Kuo (1984) presents

further referenes on MRL and burn-in in his Appendix I, as well as a trief history

on research in burn-in.

Actuaries arply MRL to setting rates and benefits for life insurance. In the

biomedical setting researchers analyze survivorship studies by L.L. See Elandt-

Johnson and Johnson'(1980) and Gross and Clark (1975).

Morrison (1978) mentions IMRL distributions have been found useful as models

in the social sciences for the lifelengths of wars and strikes. Bhattacharjee

(1982) observes MUL functions occur naturally in other areas such as optimal dis-

posal of an asset, renewal theory, dynamic programming, and branching processes.

In Section 2 we define more formally the HRL function .nd survey some of the

key theory. In Section 3 we discuss further its wide range of applications.

2. Theorj of mean residual life.

Let F be a life distribution (i.e., F(t) .0 for t O) with a finite first

,moment. ' Let F(t) i1 - F(t). X is the random life with distribution F. The near.

residual life fuiction is defined as

.at) -j E~- tlX >. t) for iTO) > 0
(2.1)

for F(t) 0

for t• 0. Note.thatwe can express m(t) J F(x + t) dx: J U du when F(t)( .
0 F(t) t F(t)

If F also has a density f we can write m(t) - uf(u)dulF(t) -t.
t



Like the failure rate function (recall that it is defined as r(t)= f(t)/T(t)

when F(f.) 3 0), the MRL function is a conditional ccncept. Both functions arz con-

ditioned on survival to time t.

While the fa-'lure rate function at t provides informativn about a small inter-

val after time t ("just after t," see p. 10 Barlow and Proschan .(96S)), the MRL

function at t considers information about the whole interval after t ("all after

to). This intuition-explains, the difference between the two.

Note that it is possible for the MRL function to exist but for the failure

rate function not to exist (e.g., consider the standard Cantor ternary function,

see Chung (1974) p. 12). On the other hand, it is possible for the failure rate

function to exist but the MRL function not to exist (e.g., consider modifying the

2Cauchy density to yield f(t) I(, + t') for t a 0). Both the MRL and the failure

rate functions are needed in theory and in practice.

When i and r both exist the following relationship holds between the two:

(2.2) m'(t) -m(t)r(t) - 1,

for a differentiable. See Watson and Wells (1961) for further comments on (2.2)

and its uses.

If the failure rate is a constant (>0) the distribution is an exponential.

If the MRL is, a constant (>0) the distribution is also an exponential.

Let u E(X). If F(0)=O then m(O)-;A. If F(O) >0 then m(O)u u/T(0) u. For

simplicity in discussions and definitions in this section, we assume F(O) -0. Let

F be right continuous (not necessarily continuous). Knowledge of the MRL function

completely determines the reliability ftrnction as.fol'lows:
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(3 0• o(u) for 0 t cF (1)
i (2.3)

S0 for t 2 ,f-1 (1),

where F"1 (1) dfsup(tlF(t) < 1).

Cox (1962) assigns as an exercise the demonstration that MRL determines the

reliability. Neilijson (1972) gives an e!egant, simple proof of (2.3). Kotz and

Shanbhag (1980) derive a generalized inversion, formula for distributions that are

not necessarily life distributions. P&Il and Wellner (1981) have an excellent dis-

cussion of (2.3) along with further references.

A natural question to ask is: what functions are I4L functions? A character-

ization is possible which answers this. By a function f being increasing (decreas-

ing) we mean that x S y implies f(x) S(Z) f(y)..

Theorem 2.1. Co'Asid•r the following conditions:

"i. 8: [0, -1÷(0, -).

ii. S(0 > 0.

iii. a is right continuous (not necessarily continuous).

defiv. d(t)d I u(t) + t is increasing on(0,.).

v. Ifen there exists to such that m(t0 ) Ila Im(t) =0, then m(t) =0 holds
t~t0

00

for te [tO, [ ). Otherwise, when there does not exist such a to with

M(to) %0, then j-L-du," holds.

0

A function a satisfies i- v if and only if a is the NRL function of a nondegenerate

at 0 life distribution.

See Hall and Wellner 1981) 'for a proof. See Bhattacharjee (19•2) for another
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characterization. Note that condition ii rules out the degenerate at 0 distribu-

tion. For iy note that d(t) is simply the expected time of death (failure) given

that a unit has survived to time t. Theoren 2.1 delineates which functions can

serve as XRL functions, and hence, provides models for lifelengths.

We restate several bounds involving HRL from Hall and Wellner (1981). Recall

a a if aa0, otherwise a .0.

Theorem 2.2. Let F be nondegenerate. Let U .Exr %- for r >1.

i. m(t) £ (F"1(1) - t) for all t. Equality holds if and only if

F(t) -F((F- 1 (1))") or 1.

ii. m(t) u (i./F(t)) - t for all t., Equality holds if and only if F(t) =0.

iii. m(t) < (uJF(t)) - t for all t.

iv. m(t) a (u- t)÷/F'(t) for t <F'(1). Equality holds if and only if F(t) =0.
v. re(t) > fu - Ft)C(pr/F(t)), /r ]/•(t) - t frt<FI()

vi. m(t)zC(i-t) for all t. Equality holds if and only if F(t) =0 or 1.

Various nonparametric classes of life distributions have been defined using

MRL. (Recall, for simplicity we assume F(O) -0 and the mean is finite for these

definitions.)

Definition 2.3. PMRPL. A life distribution F has decreasing mean residual 1ffe if

its MRL m is a decreasing function.

Definition 2.4. NBUE. A life distribution F is new better than used in expectation

if m(O)zm(t) for all ta0.
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Definition 2.S. I•IRL. A life distribution F has 4ncreasing then decreasing mean

residual life if there exist T 0 such that a is increasing on (0, r) and decreas-

ing on [T' u).

Each of these classes above has an obviou:. dual class associated with it, i.e.,

increasins mean residual life, new worse than used in expectation (NWJE), and

decreasing then increasing mean residual life (DDIRL), respectively.

The OML class models aging that is adverse (e.g., wearing occurs). Barlow,

Marshall, and Proschan (lwo3) note that the E•MRL class is a natural one in relia-

bility. See also Barlow and Proschan (196S). The older a DMRL unit is, the shorter

is the remaining life on the average. Chen, Hollander and Langberg (1983) contains

an excellent discussion of the uses of the DMRL' class.

Burn-in procedures aze needed for units with IMRL. E.g., integrated circuits

have been observed empirically to have decreasing failure rates; and thus they

satisfy the less restrictive condition of IRL. Investigating job mobility, social

scientists refer to IMRL as inertia. See Morrison (1978) for example. Brown (1983)

studies approximating IMRL distributions by exponentials. He comments that certain

IRL distributions, 11... arise naturally in a class of first passage time distribu-

tions for .arkov processes, as first illuminated by Keilson."

Note that DMRL implies NBUE. The NBUE class is a broader and less restrictive

class. Hall and Wellner (1981) show for NBUE distributions that the coefficient of

variation a/u S 1, where o2 = Var(X). They also comment on the use of NBUE in

renewal theory. Bhattacharjee (1984b) discusses a new notion, age-smoothness,, and

its relation to NSUE for choosing lif distribution models for equipment subject to

eventual wear. Note that burn-in is appropriate for NWUE units.

For relationships of DRL, IMRL, NBUE. and rAWS with other classes used in

9%,
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reliability see the survey paper Hollander and Proschar (1984).

The ILNRL class models aging that is initially beneficial. then adverse. Sit-

uations where it is reasonable to postulate an IfWL model inclvle:

i Length of time employees stay with certain companies: An

employee with a corpany for iour years has more t~me and career

invested in the company than an employee of only two months.

The MRL of the four-year employee is likely to be longer than

the MRL of th2 two-month emplovee. After this initial IMRL

(this is called "inertia" by social scientists), the processes

of aging and retirement y:eld a M4RL period.

ii Life lengths of humans: High infant mortality explains the

initial IMRL. Deterioration and aging explain the later WNRL

stage.

See Guess (1984) and Guess, Hollander, and Proschan (1983) for further examples and

discussion. Bhattacharjee (1983) comments that Gertsbakh and Kordonskiy (1969) -I

graph the MRL function of a lognormal distribution that has a "bath-tub" shaped IRL

(i.e., DIMRL).

Hall and Wellner (1981) characterize distributions with ?4RL's that have lincar.

segments. They use this characterization as a tool for choosing parametric models.

Morrison (1978) investigates linearly' IMRL. He states and proves that if F is a

mixture of exponential then F has linearly IMRL if and only if the mixing distribu-

tion, say G, is a gamma. Howell (1984) studies and lists other references on lin-

early DMRL.
".4

In renewal theory MRL arises naturally also. For a renewal process with under-

lying ,'Istribution F, let G-(t) a (Tr(u)du)/u. G is the limiting distribution of both
t

"1
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the forward and the backward recurrence times. ee Cox (1162) for more details.

Also if the renewal process is in equilibrium then G is the exact distribution of

the recurrence times.* G(t)- (m(t)F-(t))/u. The failure rate of G, rG, is inversely

related to the MRL of F, mF.. I.e., rG(t) = I/yF(t). Note, however, that

rF(t) *I/mF(t) is usually the case. See Hall and Wellner (1981), RoIski (1975),

Meilijson (1972), and Watson and wells (1961) for related discussions.

Kotz and Sha.bhag (1980) establish a stability result concerning convergence

of an arbitrary sequence of MRL functions to a limiting MRL function. (See also,

Bhattacharjee (1982)). They show an analogous stability result for hazard measures.

(When the failure rate for F exists dnd vF is F's hazard measure, then vFCB)

= F rF(t)dt for B a Borel set.) Their results imply that M.U functions can provide
B

i•ore stable and reliable information than hazard measures when assessing noncontin-

uous distributions from data.

In a multivariate setting, Lee (1985) shows the effect of dependence by total

positivity on MRL functions.

3. Applications of mean residual life.

A mean is easy to calculate and explain to a person not necessarily skilled

in statistics. To calculate the empirical MRL function, one does not nerd calculus.

Details of computing the empirical MRL follow.

Let X1 . X2 . X. be a random sample from F. For simpler initial notation,

we assume first no ties. Later we allow for ties. Order the observations as

Lt 0X ln i defined. a

Let Xu = O. The empirical MRL finctioit is defined as



to ( X l n - t
0.2) %(t) , ik.1 for t c Xkn, Xck~lln),

~3.2)n-k

and k.C, 1, ... , n- 1. mn Ct) O for tzXnn

Note that (3.2) is simply

(3.3) % (t) Total time on test observed after t
.3Nu) ex of units observed after t

df n

The empirical MRL function at 0, mn (0)= n X ( .)/n is just the usual sample

mean when no unit fails at time 0. If a unit fails at 0 then n (0) >X
n n

If ties .,xist let

(3.4) o Ot < it I 2t <" <I t

be the distinct ordered times of failure,

j
(3.S) n. =number of observed failures at timelit, si=n- o2.j =0

for i=O , IV ... <n. Note that n. 00, i-l, ... , t, while no.=O is allowed.

-- •. . n. it. t),+ ,
-ik+t for t e

(3.6)

Man 0 for t z I.

for k-0,1, t..., -. Note that (3.6) is simply notation for (3.3).

We' illustrate in the following example,

E3.1. Oje.kedal (1960) studies the lifelengths of guinea pigs injected with

different amounts of tubercle bacilli. Guinea pigs are known to have a high stus-'

ceptibility to human tuberculosis, which is one reason for choosing this species.
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Ile describe the only study (M) in which animals in a single cage are under the same

regimen. The regimen number is the common log of the number of bacillary units in

.5 ml of the challenge solution, e.g., regimen 4.3 corresponds to 2.2x 104- bacil-

lary units per .5 ml (Iogi 0 (2.2 x 104) = 4.342). Table 3.1 presents the data from,

regimen 3.5 and the empirical MRL.

Graphs of MRL provide useful information not only for data analysis but also

for presentations. Commenting on fatigue longevity and on preventive maintenance,
!4

Gertsbakh and Kordonskiy (1969) recommend the MRL function as another helpful tool'

in such analyses. They graph the MRL for different distributions (e.g., Weibull, I
lognormal, and gamma). Hall and Wellner (i979) graph the empirical NRL for

Bjerkedal's (1960) regimen 4.3 and regimen 6.6 data. Bryson and Siddiqui (1969)

illustrate the graphical use of the empirical MRL on survival data from chronic

granulocytic leukemia patients. Using the standard Kaplan-Meier estimator (e.g.,

see Lawless (1982), Nelson (1982), or Miller (1980)), Chen, Hollander, and Langberg

(1983) graph the empirical MRL analogue for censored lifetime data.

Gertsbakh and Kordonskiy (1969) note that estimation of MRL. is more stable

than estimation of the failure rate. Statistical properties of estimated means are .

better than those of estimated derivatives (which enter into failure rates).

Yang (1978) shows that the empirical MRL is uniformly strongly consistent.

She establishes that inn suitably standardized, converges weakly to a Gaussian pro-

cess. Hall and Wellner (1979) require less restrictive 'conditions to apply these1

results. They derive and illustrate the use of 54imultaneous confidence bands for

m. Yang (1978) comments that for t >0, m n(t) is a slightly biased estimator.
nSpecifically, E(mn(t)) om(t)(I- Fn(t)). Note, however, that limE(n (t)) sm(t).

Th-, £Zr larger samples m (t) is practically unbiased. See also Gertsbakh and

Kordorskiy (1949).

-'3
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TABLE 3.1.I
Empirical mean residual life in days at the unique

times of death for the 72 guinea pigs under regimen 5.S.

"(We include the empirical, MRL at time 0 also.)

Number of Ties Time of Death Empirical MRI.

Iii X. M(.in n in

0 0 141.85,
: 1 .43 100.24

1 45 99.64
1 53 92.97
"2 56 92.66

1 57 93.05
1 58 93.46
1 66 86.80
1 67 87.16
1 73 82.47

1 74' 82.80
1 79 79.10

. 2 80 80.79
3 81 84.15
1 82 84.69

"2 83 86.90
1 84 87.59
1 88 85.26
1 89 85.98
2 91 87.55

2 92 90.40
1 97 87.34
2 99 89.40
2 100 92.83
1 101 94.18

3 102 100.94
1 103 102.80
1 104 104.79
1 107 104.88
1 108 107.13

1 109 109.55
1 113 109.07
1 114 111.79
1 118 111.64
1 121 112.67

, . .I, • i
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Table 3.1 (,ontinued)

Number of Ties Time of Death EMirical MRL
n. . (CX.1 in n in

1 123 114.921 126 116.40
1 128 119.17
1 137 114,96
1 138 119.14

139 123.76
144 124.70
145 130.21

1 147 135.33
1 1S6 133.76
1 162 135.731 174 132.07
1 178 137.14
1 179 146.62
1 184 153.42
1 191 159.73
1 198 168.00
1 211 172.221 214 190.381 243 184.43
1 249 208.17
1 329 153.80
1 380 128.50
1 403 140.67
1 511 49.00
1 522 76.00
1 * s98 0.00
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Yang (1977) studies estimation of the i.RL function when the data are randomly

censored. Joe and Proschan (1991) develop isotonized estimators of MRL and of the

life distribution under the assumption of Dt4RL. Both the complete data model and

the randomly censored data iodel ere treated.

For parametric modelirg Hall and Wellner (1981) use the empirical MRL plot.

They observe that the empirical MR function is a helpful addition to other life

data techniques, Such as total time on test plots, empirical (cumulative) failure

rate functions, etc. The ML. plot detects certain aspects of the distribution more

readily than other techniques. See Hall and Wellner (1981), Hall and Wellner

(1979), and Gertsbakh and Kordonskiy (1969) for further comments.

Vv'hen a parametric approach seems inadvisable, the MRL function can still be,

used as a nonparametric .tool. Broad classes defined in terms of MRL allow a more

flexible approach while still incorporating preliminary informktion. For example,

to describe a wear process, a DMRL is appropriate. When newly developed components

are initially produced, many may fail early (such early failure is nalled infant

mortality and this early stage is called the debugging stage). Another subgroup

tends to last longer. Depending on information about this latter subgroup, we

suggest IHRL (e.g., lifelengths of integrated circuits) or IDMRL (e.g., more com-

plicated systems where there are iifant mortality, useful life, and wear out

stages).

Objective tests exist for these and other classes defined in terms of MRL.

E.g., see Hollander and Proschan (1984) and Guess, Hollander, and Proschan (1983).

To describe "burn-in" the 4RL is a natural function to use. KuoIs (1984)

.Appendix 1 presents an excellent brief introduction to burn-in problems and appli-

cations of MRL.

Actuaries apply ?4RL, to setting rites and benefits for lifo insurance. In the

biomedical setting researchers analyze survivorship studies by MRL. For example,
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see Elandt-Johnson and Johnson (198c) and Gross and Clark (197S).

Social scientists use IMRL for studies on job mobility, length of wars, dura-

tion of strikes, etc. See Morrison (1978).

In economics MRL arises also.' Bhattacharjee and Krishnaji (1981) present

applications of MRL for investigating landholding. Bhattacharjec (1984a) uses NBOE

for developing optimal inventory policies for perishable items with random shelf

life and variable supply.

Bhattacharjee (1982) observes MRL functions occur naturally in other areas

such as optimal disposal of an asset, renewal theory, dynamic programming, and

branching processes.
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