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1 Introduction

in this paper I we consideri two-decision-maker problem

where each decision maker has his own information and atudy the

impact of improving the information of only one decision maker.

Intlj an example of a two-decision-maker LOG static Nash

game was considered and was shown for that particular example that,

on the one hand, if one of the decision makers improves his own

information by obtaining his opponent's information (while his

* -opponent's information does not change) then he ends up with a

higher Nash cost (Case B of J); on the other hand, if he improves

his own information by getting an extra measurement not from his

LAJ opponent (while his opponent's information does not change) then

he might incur lower Nash coat (Case D of [C])! In this paper

provesehat in a general two-decision-maker LOG static or dynamic

C. Nash game, if one of the decision makers knows all his opponent's

information, then more or better information for him alone is

*. beneficial to him. In static games we also prove that more --- .
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- -) information for one of the decision makers alone is beneficial to

him provided that such information is orthogonal to both decision

makers' information. , ' _ ! , a -7j,~ .-- A *4-~/4

Thek/mtructe'of this pa(Per p s follows: In Section . 2 we
[:,

study static games. By Introducing the orthogonality condition of

the information we give sufficient conditions that more information

Is beneficial to one of the decision makers. In Section .*. 3 we

formulate a two-decision-maker LOG dynamic Nash game where

one of the decision maker's information is nested In the other's.

At each stage k, decision maker I Is allowed to use a function of

estimates iI(k) and 1 3 (k) of x(k) while decision maker 2 is allowed

to use a function of x1 (k) only, where II(k) and i3 (k) are generated

through two Kalman filters that use linear, noise-corrupted

measurements of x(k) and A3 (k) Is a refinement of il(k). In this

- -. setup the Nash solution exists, is unique and linear in il(k) and

R (k) under certain invertibility assumptions on some matrices.

Two nice features about the solution hold, namely, that a sort of

separation principle of estimation and control holds and the estima-

tion error is independent of the controls. In Section -.. 4 we study

the informational properties of the game formulated in Section t. 3.

We prove that better information for decision maker 1 alone is

beneficial to him. In Section 5 we extend the results obtained in

Nash games to Stackelberg games. In Section . 6 we give two

examples to illustrate the informational properties discussed in the

previous sections. Finally, in Section 7 7 we present our conclu-

sions.

+ ' -." .-.-......-.- .....--, , .,. -, ..-.." , .', .., , ...' .., .,z. .



Some Informational Properties of LOG Static Nash Games

Consider a two-decision-maker LOG static Wash game. The

cost functional of decision maker i, itl, 2 i denoted byt

3' 1 U

"1(ij Y2 ) a E[X'Plui + ui iu 4 J (1)

J01. t.J=1,2

* where xERn Is a Gaussian random vector, x - N(O )), ui ER is the

Scontrol variable of decision maker I and Pis Q are real constant

matrices of appropriate dimensions. The linear measurement of

decision maker i is given by

= Hix+Wi (2)

Hi Is an m. xn real constant matrix and w. is a Gaussian random

vector, w- N(O. E.) which is independent'of x. The cntrol law y

is chosen from r where r. consists of all the measurable functions
k1 1

from R to R such that yi(y) is a second order random vector.

A pair (y 1 " y2 ) is called a Nash solution of the game if it satisfies

the following two inequalities

3z('4. z < zi. Yz) __ (3b)
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for every y1 EF1 and y2Er 2. y* is called the Nash strategy of

decision maker I. A necessary and sufficient condition character-

izing a Nash solution of the above game was given in Theorem I of

. ' which we state below as a lemma.

Lemma 2. 1. A pair (y*, y*) is a Nash solution of the game

described above if and only if the following two equalities hold

Y'(yi) = -Pi[ EXyI] - E[ y(yj) I y.] (4)

j 0 , ~j =1, 2

Using Lemma 2. I we will show how the Nash solution is affected -

by the information available to the decision makers and hence how

the Nash performance is affected by the information structure. We

need the following definition of orthogonality and a lemma which

consists of several well-known facts in e'stimation theory [4].

Definition 2. Z. Two zero-mean Gaussian random vectors z I and

z are said to be orthogonal (denoted by zl. z2 ) if E[ zl z] = 0. Two

sJt -'Z and Z are orthogbnal if z1 J. Z for every z E Z1 and zEZz 2 .

Lemma 2. 3. Let zi, i=1,2,3 be zero-mean Gaussian random

vectors, then

I) 1  E[z1 z 2 ]) J z Z

(ii) E[ ZI 221 = C:2 where C is a real matrix.

If, in addition, z 2 L z 3 , then

(it) E[ Z z 31 = 0

* ~as.~s~ d. 1
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(iv) E[z I Zz, z3] E[ z, 1 Z I + E[z 1 51"

Denote an extra measurement by ye.

Y= HeX+ (5)

where H e i an m.xn real constant matrix and w e Is a Gaussian

random vector, we - N(O,E ) and is independent of x IV1w .

'Condition C (1) ye.j. ( yl"y2) " (ii) 2 = MyI

where M is an m 2 Xm 1 matrix. The meaning of Condition C (a) is

that the information provided by y2 is contained In that provided by

7i"

Lemma 2. . Under either one of Conditions C,

( E[ = yiy.j - E[xIyi]] x r yl" y2 ].

Proof: Under Condition C (i), Lenmma 2. 3 (iv) and (it) imply that

, E[ x yl'ye]-E[xy 1 ] E[xly1]+E[ ly.] "E[Ex y]

=E[zly * = ys (6,

The result holds since ye j (y 1 , y 2 ]"

Under Condition C (ii),

E[ xyl ye -[ x yl] =E[ xlyl ye - [E[ x ly. ye] yl (7)

and thus (Lemma - 2.3 (i)) (E[.xjy 1 ,ye] - E[x1y1] 3 y, and by

Condition C (it) E[ xly I, ye -'E[Xlyl]] ± Y2 .
0



The question of existence and uniqueness of the Nash solution has -- 7

been studied in (3] and [ ] where It was shown that almost always

there exists a unique solution which has to be an affine function oy

the information.

Theorem 2.3. Let at least one of Condition C (i), (ii) hold, then

if there exists a Nash solution under the information pattern where

decision maker I knows yl and decision maker 2 knows y 2 then there

exists a Nash solution under the information pattern where decision

maker I knows (y,. y) and decision maker 2 knows Y2 and vice versa.

Furthermore, the Nash strategy Y2 is the same under both informa-

tion patterns. For the case where Condition C (ii) holds, a Nash

solution exists and is unique If and only if the matrix I-0 Q is

invertible.

Proof: (i) Let Condition C (i) hold.

When decision maker I knows y, and decision maker 2 knows

y2, by Lemma 2. 1, a Nash solution (yl(y 1 ), y2 (y 2 )) exists If and

only if

Y2 (y2 ) Q2 Q1 3EE[1Y2 (y2 ) Iy111Y 2]+0Q2 pFE[X[xly 1] y2 ]-P 2 E[x Y2) (8)

When decision maker I knows (y,, Vej and decision maker 2 knows

a Nash solution (yl(yl, ye). y2 (y,)) exists if and only if

Y2 (y2 ) = CQQiEE[Yz(y 2) yl Ylly 2J+ 02 PIE(E[ex 1yj 1.YJ 2J- E x1y2]

(9a)
= a 1 E[E[ Y2(y 2 ) lyl] Y2]+ Q2 P1E[Ey[xly 11 yt 2 l Z y21 (9b)

J2 1
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where we use Lemma 2. 3 (iii) and (tv) and the fact that Y2 (y2 ) is

affine in y.. Equations (8) and (9b) are exactly the same hence we

have the desired result.

(it) Let Condition C (ii) hold.

When decision maker I knows y, and decision maker 2 knows

y2' a Nash solution (Y1 (Y'yl),(y 2 ) exists if and only if

" z(Yz)  O 2 QlYZ(Y) +QPPIE[XIYZ] " P2E[X Y?] (10)

When decision maker I knows jy, Yel and decision maker 2 knows

y?. a Nash solution (Y1(yl, ye , Yzy)) exists if and only if

,z(yz) = 0 2 0 1 ( yZ) + QzPiE[xI 721 - P2E :1y2 ] (11)

Equations (10) and (11) are the same and hence if a Nash solution

exists in one of the information patterns, it exists in the other and

iZ Is the same In both information patterns. Furthermore, a unique

Nash solution exists if and only if I- QIQ2 is invertible.

Theorem 2. ,. Let Condition C (I) or(ii) hold, then the Nash cost

incurred to decision maker 1 when the Informatin to ecision maker

I In [y I, ye) and to decision maker 2 is y2 Is less than or equal to

the Nash cost incurred to decision maker I when the information

available to decision maker I is y, and to decision maker 2 is Y2"

Proof: Let (y4. y) denote the ?gash solution when decision maker Ii,0 0
knows I Yl'yel and decision maker 2 knows Y. and (yl, y ) the Nash

solution when decision maker I knows Yl and decision maker 2 knows

a-.__,,: .. := - .... . .. ... . . ., .... .. ..a _a .. - a _...., .... ., .-. a a... -a. .



"Y then by Theorem 2.

00
-,= rai Jl1(y 1 ,y 2., (yl, Y*)ErF'

min 0

;.. whre. 1 cnit faltemaual ucin rmR n ~ e t0 0
" RJI" D

Remark 2.7. Notice that Theorem 2. "and 2.6 hold regard-

less of the functional form of the costs as long as they are quadratic.

Remark 2. ,. -.All the results obtained in this section go through

even If we assume that x is not of zero mean. This is easy to verify.

111 Formulation of an LOG Dynamic Nash Game and Its Solution

Consider a two-decision-maker, N-stage Nash game where the

state of the system x(- ) evolves according to

x(k+l) Ax(k) + BuI ) + B2 u2 (k) + w(k). x(O) =z (17)

iiwhere kE8i= .0f,,...,N-l], x(k)E Rn and u.(k) ER denotes the

control variable of decision maker l at stage k, i=l, 2. x and

(w(k), kE 0 are independent Gaussian random vectors, x0 - N(x 0 , nl0 ),

.) -N(O,R).

S
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... .- , , -

mi
At each stage k, thevt-oe measurements y.(k)ER , I-l, c V

given by

y i(k) = H ix(k) + v(k) (18)

- £ where [ v,(k). kEG0 1=1 , 2) are independent Gaussian random vectors,

v,(-) - N(O, :). v Is are also independent of x and to s(k), kE8l .

The information available to the decision makers is not yi(k)'s. but

*(k), S3 (k), the estimates of x(k) given by two Kalmnan filters:

x = i(/k-1) + Gi(k)[y(k) - Hizi(k/k-1)] (19a)

. .(k+lI/k) - AL(k) + B Q (k)+ B U2(k) . x'l)-- 0 (19b)

G (k) = E (k/k-1)H (H I.(k/k- _ )HI + Ej)- (19c)
i' t

Y i(k+l/k) = A[I-Gi (k)Hi]Ei(k/k-l)A' +R, (0/-1) - 0 (19d)

E (k) = [I- Gi(k)H]t.i(k/k-1) (19e)

i =1,3

where

bIH 3 = i [', Hy (2Oa)

., (zob)

E = diag [El1 , E ( lZOc)

- X(k+l/k) is the one-step prediction estimate and E (k) and 1: (k+l/k)

are the error covariance matrices associated with x(k) and A (k+l).

. - respectively,

24

......................
. . . . .. . . . . . . . . . . . . . . . . .



i(k) = E[[x(k) - .(k)][x(k) - i.(k)1') (21)

E |(k+l/k) z E( [x(k+l) - 11 (k+l/k)l[xk+l) - A. (k+l/k)J') (22)

The information structure is defined as follows: At each stage

k, decision maker 1 knows (k) il(k),x3(k)) while decision

maker 2 knows 12 (k) _ (i 1 (k)]. This information structure can be

justified by considering that there are two impartial referees I and

3 who compute respectively i1 (k) and 1 3 (k), -referee I gives il(k) toIz:
both decision makers and referee 3 gives I 3 (k) to decision maker 1

only.

The cost of decision maker is i ( 3i(0)) where .i(k) denotesiI
the cost to go of decision maker i at stage k and is defined by

N-I
* J.(k) E1 [x'(n)Px(n)+U!(n)ux(n)+u!(n)OQu.(n)]+x'(N)P. x(N)I (23)

Sn=k 1. 1 I 3 13 1
j Ai, i,j = 1, 2

where PV Q. > 0. u.(k) is chosen as Y k(I(k)) and the y kt are

1I = I . (I.) y.

measurable functions, y k: RnXRn -- R and k: R n ,R2 with the

kIproperty that -(ylI~k)) is a second order random vector.

Let
-N- b 0O 1 N-I

gi= Y' , i"". ) , i= 1,2 (24)

A pair i gl is called a Nash solution of the game if

J 4) 3l(gl, g 2 ) V admissible g, 125a)

: g 4) = J , gz) V admissible g. (25b). (J b)

a o . .!.~-



Before we give the Nash solution of the game, we need the following

lemma which shows an orthogonality in the information structure and

the proof is given in Appendix A.

Lemma 3. 1 (i) E( 1 3 (k) I il(k)] = i1 (k).
-9

.| Let i 4 (k) = i 3 1k) - il(k) then

(ii) x 4 (k)J. i(k) and

(ii Ei(k)] =0, Ei(k), il(k)] 1: E(k) -T.(k).

Notice that by Lemma 3.1, the information structure Il(k) can

equivalently be considered as Il(k) = (xl(k), I 4 (k)) which consists

of two orthogonal elements.

The Nash solution of the game described above is provided in

the following theorem, the proof of which is given in Appendix D.

-" ' Theorem , 3.2. Consider the equations" -

L.(k) = P+A'[(I+B BIL (k+l)+B B'L?(k+l) 'I]'[Li(k+l+Li(k+I)BiB!L.(k+l)
1 I 1 1 2 i

+ L.(k+l)B.Q. B! L.(k+l)[I+B1 BILI(k+l)+B BiL2 (k+l)] A ,

Li(N) = P. j 0i, i,j = l,Z. (26)

which evolve backwards in time. We assume the inverse of

(I+ BIB 1 LI(k) + B BLz(k)) exists for every kE e , then

(i) There exists a unique Nash solution to the game which is the

following:

u I(k) = Iy(I1 I(k)) = F 1 1 (k) +F 4 k)(k) (7)

- . 9



u2 (k) *YZ(1 2 (k)) 2

where

F1 1 (k) = -B' 1L1 (k+1)[ I+ B1BIIL(k+1) +BBEL -'1WA (29)

F k)-BjL (k+l)[ I1+ B BIIL(k+1)]~ 1  (30)14111

F 2 k W -BiL2 (k+1)[1+ B1 BIL 1 (k+1) + BiL 2 (k+l)] 'A (31)

(it) The cost to go of decision maker i at stage k is

Ji(k) =f E1i(kLIL(k) i 3 (k)J + K i(k) (32)

where

Kk)=tr .t(A' L (k+l)A- L.4 (k)+P.]IZ 3 (k) - Li(+1[ (k+l)-R] +L. 4 (k)Z(k)}

4 i 1 . ') 3i

+ K kl.K(N) tr(P E3 (N)} (33)

L 14 (k) =A AIf (I+B IBIIL1 (k+l)) 1]([Ll(k+l)+Ll(k+)B 1 BIL1 (k+l)]

L 2 4 (k) =A' [(I+B1 BOLI(k+l))- I] [L 2 (k+1)+Ll(k+1)B 1Q2 BILI(k+l)]

[i+B1 BIIL1 (k+l)]V1 A - L 2 (k) + P 2  (35)

Remark 3. 3. Notice that the, control laws F1 1 (k). F1 4 (k) and

F (k) in the above theorem are independent of the observation noise

22



- ....

in the measurements (18). 1. e., a sort of separation principle holds

under such information structure. Also we can see from the Kalman

filter equations (19) that the estimation error T. (k), I=1, 3 is

independent of the controls.

j Remark 3.4. Compare now Theorem 3. 2 (where

II(k) = (II(k), 3(k)). I 2 (k) = [(i(k)3) with Theorem 2. I (where

. 11 (k) = [ 1 1 (k)). 12 (k) = 11(k)]-and-let M=Z2) we see that yk(12 (k)),

the Nash strategy of decision maker 2 is the same in the two different

information structures. (In ---- I"k) -o 3 44) (i. e., - ) "='-Ci,

then Theore~m 4. 3.2 Ws exacly the a sm The arsm 3. 7. 3 Nait6h

Motivated by Theorem 2. " and 2.4 where we see that

more information to the decision maker who knows all his opponent's

information is beneficial to him, we expect that the extra information

4 (k) (Iik) compared with 12(k ) in Theorem 3.2) is beneficial to

decision maker 1, which is indeed and will be shown in the following

section.

* Remark 3. S. The nonsingularity condition of the matrix

I= BIB 1 LI(k) + B 2 BjLz(k) and the boundedness condition of L.(k), the
II

solution of the coupled Riccati equations (31) were discussed in

Theorem 2.1tand Remark 2 o [,].

Some Informational Properties of LQG Dynamic Nash Games

In this section we first give the definition of "better information

for decision maker 1 alone," then compare the Nash costs of both

13
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decision makers resulting from two different information and then

prove that better information for decision maker I alone is beneficial

to him. A sufficient condition that better information for decision

maker 1 alone ts beneficial to decision maker 2 is also derived.

Con.ider Information I and U1. In Information I the estimates

l(k) and x3(k) are generated through the past controls and the

measurements

H1 ix(.) + VI IV (O (36)

with corresponding estimation error 1 1(k) and T.3 (k). In Information

11 the estimates 1 (k) and III(k) are generated through the past

controls and the measurements

) H X(.) + vi (), . (3

1=1,2,

with corresponding estimation error I'I(k) and U(k).

Definition .4. 1. We say that Information I provides better informa-

tion for decision maker 1 alone than Information U if E(k) = M(k),

EIk) I E )for every kE, and E Ik) T )for at least one kEG1 .

An obvious fact about the definition given above is that all the

improvement is in the part of i 4 (•), decision maker l's private

Information while there is no improvement in the part of the

public information of both decision makers.

IILet J3(k) and K(k), i=1, 2, be defined as In (32) and (33)

* t t" t * * . *A • "i ,w. 
,
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corresponding to Information I and

C1W Ef i^(k) A. (k)]. .,3.

Similarly we define 3. (k). 0() 1=1. 2 and Vk.j =1. 3 for

Information 11.

Theorem 4.3 The Nash solution given by Theorem 4. 3. 2 has the

property that better information for decision maker 1 alone does not

increase decision maker i's cost if

P.+A'Li(k+l)A-Li(k)- L 4 (k) 0 for every kE 0 . (38)

It lowers decision maker i's cost with strict inequality in (38).

Proof: From part (i) of Theorem 3.2,

3~!0)= ~i(0) L(0i0) x K0) =tr L. (0) C1 (0)) + K (0) .(39)

31. 0) E [ " , (0 I,(0) K!

From the recursive expression of KX(.) in (33) we obtain

.1 (0) = tr { L.(0)51(0)" +[P.+A'L.()A-L 4 (0)]z I(0)+L.(l)R+L 4(0) E (0) +

N-1,

E[.AL. (k+l)A-L L(k)- L. (k)]E £+)L 1 (k+l)R + L1 (k) t,(ki3 }
k=' U i 14 (k) i4(40)

Similarly

d.

1m



1N-

x P(0 ztr L(,f()+[+'l)A- - ]L()]L E(O)R+L.()+i(~1O

k-I (k R)3)Lk)L(k)EI(k)J (41)

By using the fact that

we obtain

N-i
3. (0) -J(O) =E tr {[P.+AtL.(k+1)A-L.(k)-L. 4 k]k=O

+ L 1 (k)[4O(k) - .(k)]J (43)

Suppose now that Information I provides better information for

decision maker 1 alone than Information.H,- then Lemma 4- . Z

implies 3.7(0) > Ti(O) if

Pi+A'L (k+I)A- Li(k)- L14 (k) > 0 for every kE0 1 . (44)

n Iand 3J i( 0 ) > Ji(O) If the inequality is strict in (44).

Corollary 4.4. Better information for decision maker 1 alone

does not increase decision maker l's Nash cost. It lowers decision

maker l's Nash cost provided that the matrices A, B B and P are

nons ingular.

Proof: Substituting (26) and (34) into (44), we obtain

* l-.. . . . -.. _ to .. .. . . . . .. . ..



.1

• * . PL+A' L (k+I)A- L 1 (k)- L1 4(k)

= A'LI(k+I)A-A'[(I+BIBiLI(k+))°']'[LI(k+l)+L,(k+I)BB,1 Ll(k+l)]

[+BIB LI(k+l)]- A

Z = U'VU > 0 (45)

where

U - [I+ B B1,L(k+l)]'A (46)

and

- V = L1 (k+I)BBtLI(k+l) + Ll(k+I)BIB1,L(k+I)B1 B L(k+I) 0 (47)

Furthermore, if PI > 0 then (26) implies that L (k) > 0. hence U is

nonsingular and V > 0 provided that A, B I B and PI are nonsingular.

Theorem 4. 3. then implies the desired-result.

Remark 4. t. Notice the resemblance of equation (47) to ( of

[ ,) . This is so since to.) i orthogonal to decision maker

2's information, any improvement in the part of i 4 (. ) is totally used

by decision maker I to optimize his performance which brings forth

the team-like benefit.

Remark 4. b In Corollary 4.4 we see that better information

for decision maker I alone is beneficial to him and this fact is

independent of the number of stages N and it is not necessary for

the "better" information to be J"dynamically better. " In contrast

with Theorem S.14[v] the above two features reveal the essential

- ' - •. * .:<.-.:.:x. :..• : .-m, , ,,,qa-m ',+ .sm l+Vl+~ -I...Pl'l .ri a+,l,",'em, ,*"-IYl~l+ .."I""PJ~I'P '', :e  +""-'"'-. 4 ~ ~ .. * ' , ,'..-,.-. . .. .. .. .. . ~. -.b g . .. .a ":WIJ - w .".~ W • .• N .i-i-



difference between improving the decision makers' "private"

information and "public" information in a dynamic Nash game.

.Related Properties of Static and Feedback Stackelberg Games

In this section we extend the results obtained in Nash games to

static and feedback Stackelberg games. The difference of a

- Stackelberg game and a Nash game lies partially in that the roles of

the decision makers are asymmetric in Stackelberg games while It

is symmetric in a Nash game. However, the Stackelberg solution

*c  of a static game is also a Nash solution of the same problem under

explicit control sharing and a feedback Stackelberg solution of an

N-stage dynamic game is also a Nash solution of a 2N-stage game

*" (as has been observed in [6 ]). Hence we expect some different as

well as some similar properties i Stack1eberg s pin Nash

games.

Consider a two-decision-maker static Stackelberg game. Let

decision maker 1 be the leader and decision maker 2 the follower.

Their cost functionals are given by J(y 1 , -y2 ) and J 2 ( Yl.t y 2 ),

,' respectively, where

. Pl, Y> E [1 u'u.+! u.P.u.+ uWO.+ u!S..x + u!S (48)

2 ILi2 Jj j t

j 0 i, i,j = 1,2.

where xER is a Gaussian random vector, x - N(0,0l), uiER is the

control variable of decision maker I and P1 V, Qi S.. and S.. are real

. constant matrices of appropriate dimensions. The linear

%4 -&..*a .l' OWL^



measurement of decision maker i is given by

yi = H x+ Wi," (49)

.,His an m xn real constant matrix and I so a Gaussian random

vector. in. - N(O,E1 ) which is Independent of x. The control law yi

Is chosen from r where.r consists of all the measurable functions

mapping from R to R such that y1 (yt) is a second order random

vector. A pair ( '.Y2) is called a Stackelberg solution with decision

maker I as the leader if y satisfies the following inequality

sup< sup 1 (y. 2 YS) (SO)

Y2 yER 2 (y 1) N 2 ER 2 (yl)-- n

- for every yIEr I and y 2 yER (1 ), where R{(I) is called the rational

- ,reaction set of the follower to the strategy y, announced by the

leader, and it is defined by

R2 (.Y) 2 21 "2(yl* Y0 5 2 (Yl Y2) 2" fy 2 6r 2  ~ (1

Notice that if R 2 (y1 ) is a singleton for each -yErl, then (50) can

equivalently be written as

-, il(-f*. 0 '1, )) j = (Yl 'Y 0(y i1 1  .(52)

It turns out that R2 (yl) is a singleton indeed [7] and is given by

Y°(y 1 , y2 ) = -S 2 2 E[x y2 ] - Q2 [y 1 (y1 ) y2 ] . (53)

I7e
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A sufficient condition that a unique linear Stackelberg solution

exists was given in 7 3 which condition is determined by the

matrices Pi and Qi 1=1,2, and has nothing to do with the informa-

* tion available to the decision makers. We assume, in the following

derivations that a unique linear Stackelberg solution exists under

every information we will consider. The result of the following

lemma is known but we include a short proof for reasons of

completeness.

Lemma 5. 1. The leader's cost decreases if he has an extra

measurement y available.

Proof: Let (yr, Y) and (0I" 02) denote respectively the Stackelberg

solution before and after the leader acquires ye. After the leader

acquires y he can choose a suboptirnal strategy y,(yl, ye) = y (Yl),

then the follower-will react by choosing ( - (y.) and hence

= 1(yl(Y1), (y2)) (54)

The follower, who is in the lower level of a hierarchy, see

things different from the leader and knowing more is not necessarily

beneficial to him. As in the Nash case, we first prove In the

following theorem that if the follower acquires extra measurement

Ye which satisfies certain orthogonality conditions or the follower
knows all that the leader knows, then such ye is beneficial to the

follower.
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Condition M (i) ye . (Yl.Y 2 1 (iy) . 1 = Myz

• Theorem 5. 2. If the follower acquires extra measurement ye such

that either one of Condition " holds, then the leader's strategy

1 ,"does not change.

Proof: Let y11(y 1 'Y(y 1 ) denote the leader's strategy before and

after the follower acquires ye and y2(y 1 , y2 ), y((l, y2 , ye) denote

respectively the follower's reaction before and after he acquires ye,

then by (53)

Yz(y'y) "-zzE[ x I y] - ASE[y1 (y 1 )Iy], (S)

and

y e) = -S 2 2 E[x y?. yej- QzE[yI(Y1 ) jy. ye]. (56)

Under either one -of Conditions C thle following i true

E[: y1(y)yZ.y] = E[,yl(yl) jyz] (57)

Hence (56) can be written-as

y(Y 2,ye) = 'Y( , *N9 z) - Sz,["I[x E[x I yz

* = 'yzei Z)* - Szz9(58)

where E - ly E y2[yZ - E[y [ . which by Lemma 2.4 is orthogonal

to y, and yZ. The leader's strategy after the follower acquires ye is

the following (we omit the arguments in the strategies y .) and
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for a while to avoid the tedious expressions):

=arg min E {.Y 1 y1 .[Py+'Q + Y I 1x yS 2 x}

1 7, ~N1 Is+ I YZ S11x+ YI'SgxY (Sll' Y 12

=arg main E *

* Y1(y,)Er1  Y Y Y 10 ''~l"Y, ZIJ

-Y 1 (59)

where we use the orthogonality conditions to get rid of the terms

12 S., and y' QIS22 9 in taking the expectation operations.

Theorem 5. -If the follower acquires extra measurementy

such that either one of Conditions holds, then the follower can

do better by incurring lower cost.

Proof: The proof is similar to Theorem 2. & and hence omitted.

* Now consider a feedback Stackelberg game with the same

formulation as in the feedback Nash game of Section 3EL except we

consider two cases which correipond to two different information

structures. Let I (kW denote the information available to decision

maker i at stage k, then

Case A: A k k,() r-k k

B BCase B: I I(k) I ii(k)1 12 (k) I I 1 (k),A 3 (k))



.ri.
,. Let us call decision maker I the leader and 2 the follower. A pair

(4*.4g) is a feedback Stackelberg solution to the game if

* k * k"i, ~sup J(g~, S~,)- sup Jllk " 0 k 1Z

'I *kg 2k"Y 'l~~kJ(glk NPl g~k 2

k 0k - k k-

:_E ¥,-k( ¥1P Y2 fRk(-Y1 )

Vadmissible Y,, Where

=ik Yt Y "'."". N yi ,...,N1 i

kRk(y ) is called the rational reaction set of the follower at stage k

to the strategy Nk announced by the leader and is defined by

k I= Y *T Ik ~*k 2 k * 1 k

Sadmisible y S -

The feedback Stackelberg solution for Cases A and B are provided in

Appendix C

Let Information I and II be defined as in Section = and satisfy

the condition in Definition 4. 1. then in Case A Information I

provides better information for the leader alone than Information Il

while in Case B Information I provides better information for the

follower alone than Information II. We have the following theorem.

Theorem • 5.4 Under the information structure of Cases A and B.

the feedback Stackelberg solution has the following properties:

Nt
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(i) Better information for the leader alone is beneficial

to the leader.

(ii) Better information for the follower alone Is beneficial

to the follower.

Proof: One way of proving this theorem is by using the connection

of the feedback Stackelberg solution to the feedback Nash solution

according to the procedure of [ ]where it was proved that a feed-

back Stackelberg solution of an N-stage dynamic game is also a

feedback Nash solution of a ZN-stage dynamic game and the result

is then implied by Corollary 4. 1. An independent proof of this

theorem is provided in Appendix D.

Remark 5. A similar feedback Stackelberg game was studied in

8] where the expressions of the solution obtained were so compli-

cated that it was not possible to investigate its informational

properties. The expressions of the solution could have been

simplified if the authors of (8] had observed the orthogonality

condition in the information structure, i.e., Lemma 3. 1 (ii) of

this "-ept

Examples

Example I This example illustrates Theorem 2. r and 2.6

under Condition C (I). Consider a static Nash game where all

the notations follow those defined in Section I

... .



3 (Ylz uE[(x+'u +u ) 2 + UZI

(Y IsY 2 ) = U [(+U + u )2 +

Decision maker i has measurement y,, Y1 = x+W. X, and w

are indepej*"dent random variables with zero mean and unit variance.

This example wag previously considered in [21 and the Nash

solution was given by y (y1 ) -an y 1.wt

corresponding Nash costs J (Y*. j~ 3(Y,, Y2) -±-. Now if in

addition to y 2 , decision maker 2 acquires extra measurementy.

what is the impact to his Nash cost? It was shown (Case B of [z]~)--

that if y e=Y then decision maker 2 incurs higher Nash cost. In

the following we will find a y~ such that y _L ( yl y.) and demon-

strate that this y will lower decision maker 2's Nash cost.

-. Let y~ = x-w1 W2 then it is easy to check that y~ aLr .V

Denote the Nash solution after decision maker 2 acquires this y~ by

0
NO.' y2  then by direct calculation we obtain

Y1(Y1 ) S Y

and

01 1
Y2 (y2 'ye) 5 Z6Y

The- corresponding Nash solution of decision maker 2 is

o0

J( 0 y 0 318 468
j2 Y = J(y*.Y*)

1 oo 90



" Example 2. This example illustrates Corollary 4..

Consider a dynamic Nash game with the general formulation given

inSection 7 and It We choose A = 0.5, .0 =, 10,

B P = R 1, Q. = 20, 1 = 1,2. Two kinds of information, I and I

are descrIbed below:

Information I, xi(.), Ix 3 .) are corresponding to

X( .+ v+,.,

I
- N(0, 1), 1=1,2

yI +vI
2 x()+ 2 (.

Information fl, xI(•), R3 (-) are corresponding to

y = x() +v H

ii v -) NCO, 1). i=l,1.

y O.x(.)+v .)

It is easy to see that for Information , (k)= x (k) at every stage

*l k and Information I provides better information for decision maker 1

alone than Information T1. We compute the Nash cost of decision

maker 1 for different number of stages, i.e., N from 1 to 19. The

resulting costs are shown in Table . .1. Notice that Information I

is more beneficial to decision maker 1 than Information H. Two

features of this fact are: first,. it is independent of N, the number

of stages and second, since A = 0. 5, i3(.) is not dynamically better

than AII,x3.)

77



Benefit of Decision
Maker 1 Due to
Better Information

Information I Information I for Him Alone

N= 1 16.72872 16.98826 0.259544
1= 2 19.79963 20.12271 0.323073
N= 3 21.68059 22.06824 0.387644
N= 4 23.31423 23.76004 0.445805
N= 5 24.90147 25.40363 0.502162
N= 6 26.48017 27.03831 0.558140
N= 7 28. 05730 28. 67135 0. 614047
N= 8 29.63415 30.30409 0.669940
N= 9 31.21094 31.93677 0.725830
N=10 32.78773 33. 56945 0. 781720
N=11 34.36451 35.20212 0.837610
N=12 35. 94123 36. 83479 0. 893500
N=13 37. 51808 38.46747 0. 949390
N=14 39.09486 40. 10014 1.005280
N=15 40.67164 41.73281 1.061170
N=16 42.24843 43.36549 1. 117060
N=17 43.82521 44.99816 1.172950
N=18 45.40199 46.63083 1.228840
N=19 46. 97877 48. 26350 1. 284730

Table 6. I. Costs of decision maker I In Example 2 under
different information versus different number of
stages.

l In a general two-decision-maker LOG Nash game (static or

dynamic) we proved that more or better information for one of the

decision makers alone is beneficial to him if he is informationally

stronger than his opponent, i. e., he knows all his opponent's

information. In a static game, more information to one of the

decision makers alone Is beneficial to him if such information is

.1 orthogonal to both decision makers' information. Such results are

-* . S L . , . - . L.. .. . "o ". -, 9 . " - -. %. s 9. .- *•me .



quite understandable. Since Nash solution is an equilibrium solution

with consistency constraint [ ], any unilateral improvement of

information does not guarantee benefit to either party. A unilateral
.C

improvement of information, however, does guarantee benefit to t4

who has the improvement, if his opponent's strategy does not

change by such improvement such that he who has the improved

information can use it to optimize his strategy without constraint.

In order that his opponent's strategy does not change, his opponent

should be totally ignorant of this improved information and which is

Implied by the orthogonality condition given by Lemma 2. '.

Similar results hold in static and feedback Stackelberg games for

both the leader and the follower. The leader in a static Stackelberg

game, however, can use any extra information to his benefit.

As we noted before, the investigation of the informational

property of the dynamic Nash game is greatly simplified by the

formulation of the game where a sort of separation principle holds

and the estimation error is independent of the controls. Without

these nice properties, it will be difficult either in defining "better

information for one decision maker alone" or in solving for the Nash

solution. Either one of the difficulties makes the problem extremely

hard.

An extension of the results obtained in this P to N-

decision-maker Nash game is straight forward and such results

constitute a fundamental step in designing information structure

10, I.] for large scale systems.
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. ., APPENDIX 4 .. .

Proof of Lemma. 3. 1.

" . Consider the following state equation and measurements:

ik+1) = AR(k) + w(k) , I1O=x 0  (Al)

Yk) = H.Ik) +v(k) 1 1,2. (AZ)

where xO. (w(k)) and r vi(k)) are defined as in Section IX -ByiI

" comparing (A 1) with (17) we immediately have

k- I

x(k) = (k) +"- E kn- [Bul1 (n) + Bzu(n)] (A 3)
n=O

Let

and

then Ii(k), i = 1.3 are given exactly by the Kalnan filter equations

(19) except that (19b) is replaced by

":',' ;t+,+ I$ = , + ,

f3~V6 I~t '&k(& 4 (k) ,1,3, LI~ UL1  s

ARA t4
...................... .i.

.. . . . . . .... .. . . . . . . . . . . . . . . . . . . ... . . . i-l,



(k) I i(k) +~ (Q7)

* where

k- I
x A Ak-- 1 [B u (n) + B U,(n)J (A 8)

n0 .

Since i23 (k) to a refinement of ic,(k), we obtain

i k 3E[ I(k) I (O),...V 1 (k)J

*=E[E[ 1(k) I VIM~. 9 , 1(k). 92(0)p 0 0 Y2()] I (O). V* . )

E[ (k)](A 9)

Hence

E[ i 3 (k) I (k)] =E([E[ x3(k) NlO).. Y (k)] 15I (k)]

=Elk (k) I (k)] I i(k) *(Al10)

Q7t) indicates that

E[ (k)j i(k)] =Ei 3 (k + x1 k

3 ~~ E1 3 (k) + l(k)+~ =)+'k

- i(k) (All1)

By the projection theorem [a x] i 3 (k) - E~ 3 ( lix) s fzr

mean and orthogonal to i (k), i. e.,. E[ I (k)] 0 and x(k) i1 ()

Finally

5Vx.A--L o



7" Z. F

E 3 (k) %'(k)] E[(il(k') + 1()(lk

=E[I 1 (k) 11 (k)] + E:[" (k) ! (k)j (SiZ)

E1 - E1*4 (k) Vk)] = E~I 3 (k) '3(k)] -Ei (k) (k))

= 'El(k) -E Z(k) (4 13)
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" "-APPENDIX

In this appendix we prove Theorem 3. 2. The proof is

similar to that of Theorem tl-,"Since the Nash solution gi of

decision maker i is a solution of the optimal control problem where-.

the decision maker j, j # I fixes his strategy at gj, we can solve

the problem by dynamic programming. Recall that Ji (k) denotes

the cost to go of decision maker I at stage k.

At stage N,
.I

" (N) = E[x'(N)Pix(N)] = E[ i(N)Pi 3 (N)J + tr[Pi 3 lN)]

f= E[i(N)Li(N) 3 (N)] + Ki(N) (Bi)

i =1,2
* . wherew e e Li(N) -a pit Ki(N) -§ tr [P .1: (N)]

At stage N-i

. (N-1) = E[x'(N-I)P x(N-I) +u (N-l)u.(N-) + u(N-1)Q.u.(N-1) +

x(N)Pix(N)] j i i, i,j = 1,2 . (BZ)

After receiving I.(N-1), decision maker i's objective is to minimize
i

.(N-1) given by

..

o32
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'ji~-l)E[x$(N-i)Pix(N-i) +u!(N-i)u (N-1) + W!(N-I)Q) U.(N-i)

+ x'(N)P ix(N)( M~I~~ b)

By applying the Kalman filter equations (19) and Lemma 4. 3. 1 we

obtain

=INI uil(N-l)uIa(N- 1) + uj(N-)Q~u2 (N -1) + (AA3 (N-i1) + Blul(N - 1)

-+ B2 u 2 (Ni))L(N)(Aic3 (Nd)+Bu(N4)+B 2 ux2 (N- ))

+IVN- i)2Pli 3 (N- 1)+ tr[P E3 (N-i1) + Lj(N)1E 3 (N/1N - )-E 3 (N)]]

+ K (N) (64)

and

2 (N-1) = !(Ai 3 (N- i)+Blu1 (N- i)+B~u2 (N-l))' L2 (N)(A 3 (N- 1)

+ B eu1 (N-l)+B2 u 2 (N-l))11 2 (N-1)].

E~uI(N -l)Qu 1 (N- 1) (N2 ~~-1)] + ik(N-l)P 2ixN- 1)

+ tr(PjIt1 (N-l) + L z(N)[E 3 (N/N-1) - 1:3 (N))1 + 2 (N) (B 5)

Since L(~)in convex in u.(N-l), the Nash pair at stage N-1, *N-
NIis chosen such that

=,i=1.2 (86)

t N-i I N-1

We then have
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*N-1 ~ ~ . il, , N-Y, (I1(N -1))= - LI+B 1 ILI )B IF 3ILI(N)[Al 3 N 1)+ (12 (N -1))]

(87)

*y N-I (17(N-2))= +i L(N ])- 
1BzL 2(N)[Ai 1(N I)+B 1E[*Y N 1((N )

From (7) and by Lemma 3. 1 (i) we obtain

E[Y,~ l(II(N+i) I (N- 1)] W -,[I+BIL (N)BlV 'BjL1 (N)[AA1 (N- 1)

+B 2 YZ (1 (N-1))] (9)

Substituting (859) Into (9 8).

Y2  (I 2 (N-i)) =-LI+BjL B I BLN)Ax^ (N -1)- Bi(I+BLi(N)B)'

BIL 1(N)(Ai1 (N- 1) + EzY.i1(.1) (810)

By applying the following formula ($11) several times we obtain

(~12).

I"(I+ Z2 ZI) = (1+ Z1 ZfZ (I1

*N-1 
1L()I3B',N BZZN]'i(-1

Y2 (Iz(N-)) BLZNlIBBL 1 )+ B 2 BLNfAi()

-F 2 (N-I)i1 (N-1) (1 Z)

where

F2 (N-l) - BiL2 (N)[l+B1 B1IL1 CN)+ B2 BjL2 ()YA (13)
V ()



Substituting (DIZ) into (17) we obtain

y" (II(N- 1)) = - B L1 (N)(I+BIB L1 (N1j- 1Ax 1 - 1) - BjLl(N)[I+B 1 BjL(N)

+ B2 B L2 (N)]" -.i(N-1)

--= FI(N-I)"I(N-1) + F 1 4 (N-i)i 4 (N-1) (Ji4)

where

FB(N.I) = .B LI(N)[I+BIB 1L(N)+B 2 B2L 2 (N)]-A (15)

and

IF (N-1) - -BIL (N)[I+B BL(N) 1 Ai)
14111

Notice that y Y ven by (112) and (p14) exists and is

unique if (I + BIB1 Ll(N) + B BjL,(N)j is .onsingular.

Substituting (612) and (014) into (52) we obtain

J (N-1) = E[;c (N-1)Lj(N-l)i3(Nl)] + K.(N-i) (P017)

where Li (N-1) and K.(N-1) are given by (26) and (33) respectively.

As we can see, (817) and (81) are of the same form. In deriving
the Nah-pai

N-2 *2 ) at stage N-2, we will repeat what we

did at stage N-i. An inductive argument then proves the theorem.



-J APPENDIX 1

In this appendix we derive the feedback Stackelberg solution,

the problem was stated in Section 1f a

Theorem C.: There exists a unique solution to the -eedback

Stackelberg game, (i) the solution for Case A is

UlA(k) k (I,{(k)) = FllA(k)J(k) + Fl 4 A(k) 4 (k) (cla)

* *kA *k AA(k) (j~) = F,(k)(A- (k)+B 1E[y(I, (k)) ' (k)]) (C.1b)2A Y2AA k11,kY A
F 21A (k)il(k)

. where

F (k) B, -BZA(k+l)[I+ B BBZA(k+ l )] A (c)

F14A(k)- B1.LA(k+1)[i+BIB.LLA(k+l)] ]A (C 3)

F2(k) = -BIL2A(k+)[I+B BL2A (k+l)]-I (C4)

S.F2 A(k) -Bj L2A(k+I)[I+B2B2LA'k+I)]-I[I+BIBZA(k+)]-'A (C5)

(ZA)k) = B2L A(k)] [L2(k)B QB2L2A(k)+LA(k)]

[I+BB A2A (k)]"

36



L 1 ~)=P+iA)lAk (k)Q F 2 (k) +

(A+B IFIIA(k)+BZF2ZLk))' LI(k+l)(A+BIFIIA (k)+B2F2Z(k)),

L N (C 7)

L2A(k) '= +'I~kQFl (k+21~)2Ak +

(A+B IFllA(k)+B 2Fzj(k))' L2Ak+I) (A+B lFllA(k)+B2F2z(k)),

Their costs to go at stage k are respectively

= Ak E[ i3(k)L IA(k)i 3 (k)]+K IA (k) (C.9)

j2A (k) E Ei(k) L A(k)A3 (k)] + K2A(k) (CIO0)

where

K IA (k) =trffP+A'I(k+)A-L 4 A(k)JEr3 (k) - LI(k+1)Z3 (k+l) +

L1 4P)Z (k)+L(k+l)R]3+ KAk+l), KI(N) =tr PIE3 (N).

KZA(k) =trQP2+A'L A(k+l)A-L 4 AL(k)JI: (k)-L LA(k+l)E (k+l) +

Lz()l(k)+L2A(k+l)R 3+K2A4k+l), K ZA(N) =tr (Pz' 3 (N) I.

Ll4 (k) =Pl+-Fi'4 A(k)Fl4 Ak)+(A+Bl~ 4 k) LIAgk+l) A+B l )4A -~LA (k)

* (Cl13)

. .3q



ZL ;:1T: Q::CA)A+ B F14A(k))' LZA(k+l) (A+ B l4A(k)1?AVk)

* *k B
(I~k 2B' (k)) F (kl()( a

FZlB(k).Il(k) +F x~4 (k) I 15b)

where

F (k) =-BI Z (k+1)[I + B B'Z (kl]A (c 16)lIE B 1 1 Z

FZB(k) = B21LzB 1[ + B2BjLzBk1Y (17)

FZB) =- ~BL B [+)I+B BI Lz(k+1)V1 [I+ B B I (k+l)] 'A Cc18)

F 24 B (k) = BjL B(k+1)[I +B2BjL 2B (k+1)] A k- 1 c9)

Z3 (k=(IB2 BLzBk)Y[LB(k)B QlBf Lz(k)+LlB(k)]

[I+B I L(C20)

LIB~k) =Pl+F'IIB(k)FllB(k)+F21B 1)Ql2zB(k) +

(A+B1 F1 1 B~)+BZF2ZI-)) LlB(k+l)(A+BlF 1 B~k)+BZFZlB(k)). LIB(N) =P1 .

(C 2 1)
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LZB~k) =P 2 +'F1 1 B(k)QZFUBk)+FilB (k)F21B~k) +

(A+1 F 1 ~k+BF2,B(k))# ZB (k+l) (A+Bl 1 1B~)+B2F2lBk))P

L LZB (N) = P 2  (C-22)

Their costs to go at stage k are respectively

J2 (k) =Efl(k)L 23 CB 3 () + (k) (*24)

where

KIB(k) = tr ((P1 +A'LjB +l)A- 4 ()Ek-Ll(k+) 3 kl +

LL4 B(k)YZI~k)+LlB(k+l)R) +xl~~) KLBN)tr[P (N)). (C 25)

K2 3 k tr f [P 2 +A' L2B(k+l)A- L2 4 ~)E (k)-L L2 (k+l) r(k+l) +

* - LzL4 B(k)l(k)+L2B(k+l)R]44 CZB(k+l). KBN = rP~(N)). (C 26)

L14 B(k) =PI+F; 4 B(Ik)QlFz4 (k)+(A+B2FZ 4 B(k))' LlB(k+l) (A+B 2F24 B(k)- LlB(kl

(c 27)

LZ '2)PzF 4 k) zB(k)+(A+BZ 2  ) 'L2Z(k+l) (A+B2 2  (k)- LZB~).

]Remark: It is easy to see that in the above theorem



F l(k) F FiAk) ZE(k) Z Z(k)

Fz3 (k) =Fl ck) LlBk LiAk

F ZIB(k) = F ZIA(k) L LZB (k) L LZA (k)

Proof of Theorem C: We will prove part (i) only, the proof for part

(ii) is similar.

Feedback Stackelberg strategies have the property that they

are in static Stackelberg equilibrium at every stage of the problem.

This property can be observed from its definition and hence we can

solve the problem by going backwards (a dynamic programming type

of approach).

At stage N (no more decisions to be made), the cost to go of

decision maker i is

J.i(N) =Efx'(N)P ix(N)]

=E[I'(N)P x (N)] + tr[P E (N))

=E[R (N)L i(N) 3 (N)] + K iA(N) (C..29)

where

LiA3N) =Pi KiA(N) =trIPJ 3()

At stage N-1 (IA(N-l) is available), decision maker i's objective is to

minimize J.i(N-1) given by

J (N-1) E11NlPxNl+!NIu (N-fl+u!(N-1)Q u.N-1)+x'(N)P x(N)
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By applying the Kalmnan filter equations (19) and Lemma 3. 1 we

obtain

_11(N- 1) u (- )u,(N- l)+ul,(N- l)OIuz(N- l)4{Ai3 (N - )+ lu1 (N -1)

Jz(N 4 U) =[(i(N-l)+BLA(N((N'+~N l))iL(N)(Ai32(N... )Bu(.

+ i1 (N- l)Pli1 (N-l) +tr(P3(N- l)+LzA(N~ )[ 3 (N IN-)- 3 (N))

+KI(N)(3)

';(N-I)== E:(i(-)B lLz(Il+BzBuz(N)Y'[ZA(N)N1BI l-)

+B BZNl)1 (N y)j(j(N-l)Q 1(N-l)jI (C 33)

u1 (.-l = FlIA2(Nl)l(N:1)+l 4 (N)X(N 1)( N '13(C)

N14
Toaysrtg IN1)anucdb h edr h follwr's, ~

£SW~a~t'.. I
raioa recto e is. a sigetn i.



where FIIA(N-1) and FI4A(N-I) are given respectively by (CZ) and

(C3). Substituting (C34) into (C33) we obtain u*(N-1) given by (016).

Substituting u(N-1) and u (N-1) into Ji(N-1) we obtain (H9) and

(C 10) for k a N-1. The proof of this feedback Stackelberg solution

can then be concluded by an inductive argument.
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APPENDIX P

In this appendix we prove Theorem 5.4.. We will prove

part (i) only, the proof for part (ii) i similar. -

From equation (C9) and (d11) of Appendix we obtain that the

cost for the leader in Came A is

J(O) = tr[ L(0)I() + [P+A'LAI)A- 14 A(O)] 3 (0)+ L I~1)R"

N-1
+ L -4 AO)El(0) + T- [[P+A' LIA(k+l)A- LM5k)- L 14A(k)] M3 (k)

k=l

+ LIA(k+l)R + LI 4 A(k)l:(k)]) " " ")

Let .T' (0) and J 11O) correspond to Information I and II respectively,

then

N-1
0j()-YI(O) = E tr([P+A#LA,(k+l)A-LL(k) - L14 A(k)][E3 (k)-E 3 (k)

k=O

+ LI 4 A(k)[ 15(k)- :l(k)])

If Information I provides better information for the leader alone

than Information IM, then Lemma .. 1 implies 3(> JO) If

P1 +A' LI (k+I )A-LI(k) - Ll4 A(k) 0 for every kEe

,,. .. ... ..-.. . .,.. . . .. . .. . .- .. * . - - - . . - , . :. ..
. . .* -. * * . * - . -*** *. * .* . . . - . r - . . •°-." " . ° °. - % °° ° ° " - "°°° .° " °. '- .°.- °



a Substituting equation (c 7) and (C 13) of Appendix C into the left hand

aide of the above equation we obtain

P1 +A' LA(k+)A- LIA ()- L 1 4(k) "" [ BLIAfk+)[I+ BB[Lr(k+1)]' A)'

(I +Bg L4 (+I) B BjL AkI+B LjAkI" I+
n

>0.°P3

-a.

-I

L/I

_'2-. -. v
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* Impact of explicit and implicit
I control sharing on the performance
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A two-person one-act LOG Nash game is considered under three different information structures: explicit control sharing, implicit
control sharing and static information. The relations among the corresponding solutions and their impacts on the resulting costs are
studies.

1. Introduction

In game problems, the players have certain kinds of information; they make decisions based on this
information. We say that there is explicit control sharing (ECS) in a game if a player's information
includes the previous control values of other players. Two previous works concerning the impact of ECS
on the optimal costs in Nash games were reported in [11 and 12]. In [1] a two-person LOG Nash game
was considered where the information structure is partially nested and each player acts once and it was
shown (theorem 2 of 111) that the first player might do better if he reveals his control value to the
second player than he could do in a static information structure (SIS). It is known that in Nash games, if
there is ECS then in general there exist many solutions [8]. Uchida considered an example of a
two-person LOG Nash game [21 where the information is partially nested and each player acts once,
and showed that among the nonunique solutions under ECS, one of them is equivalent to the SIS
solution. Furthermore, it is claimed in 121 that this SIS solution gives a local minimum of the first
player's cost among the linear class of the nonunique solutions. In other words, the first player might do
better at least locally in a SIS than if he reveals his control value to the second player. The claim which
Uchida did not prove and the result of Ho, Blau and Basar in (11 seem to contradict each other.

In this paper we consider a two-person LOG Nash game where the information is partially nested and
each player acts once. We study the impact that the first player, who reveals his control value explicitly
and implicitly to the second player, has on the first player's Nash cost. By implicit control sharing (ICS)
we mean that player 2 has a noise-corrupted measurement which is affine in the system state and player
I's control. Our aim is to relate the Nash solutions under ECS to those under ICS and give a full view of

* This research was supported by AFOSR grant 82-0174 and by the USC Faculty Research and Innovation Fund.
** Current address: Bell Communications Research, 331 Newman Spring Road, NVC-IF255. Red Bank, NJ 07716, U.S.A.

North-Holland
Large Scale Systems 7 (1984) 219-226

0167-420X/84/$3.00 © 1984 Elsevier Science Publishers B.V. (North-Holland)
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M. Tu, P. Papavassilopoulos / Two-person one-act LOG Nash game 221

solutions exist under certain nonsingularity conditions. Here we state the solutions and for proofs we
refer to [61-[8). The impact of ICS and ECS is then considered by comparing the Nash costs Ji(Y,, Y2) of
cases A and B (including the Stackelberg cost) with that of Case C.

2.1. Nash solution of Case A

Under the condition

1 + qlb'+ q2b'+ CA(q, - p2q2)blb 2  0 (7)

the unique Nash solution of Case A is given by

,IA(Y) = -{1 + q1b q2b2 + CA(q2 - p12q2)b b2 }{bq+ PA(q-p2)b2} h(I + h)(8a)

"2A(y, Y2) = -(1 + h2(y2 - dA(Yv))] (1 + h' + h )'}. (8b)

where

CA = -(I + 2 'q2b2 h2d( + hi + h2)' (9)

Notice that (,IA, -2A) depends on CA, which in turn depends on d. To different d's, corresponds different
pairs (VIA, V2A)d provided that (7) holds. Let us call M the class of all these solutions (VIA, V2A)d for

varying values of d.

2.2. Nash solution of Case B (linear class)

There exist uncountably many Nash solutions for Case B, with the linear ones given by:

'rn(Yl)= -{1 + qlb + q2b2+ C(q,-p 12q2 )bjb 2} -{bjqj + C(q -p 1,.q2)b}-h,(l + h2)'y 1 . (lOa)

""2(yi, yo, u,) = -(1 + q2b 2)'q 2 b2{bjyB(y) + [hjy1 + hy]1(1 + h2 + + (u,- ")'0)) (10b)

where C is any real number such that

1+ q1bI+ q2b2+ C(q, - pj2q2)bjb 2 0. (t)

Let us denote by L the class of all these linear solutions (YiB Y2a).

2.3. Stackelberg solution of Case B

The Stackelberg solution with player 1 as the leader is denoted by (Ys. V'2s) and is the following:

(YIS. V2S) = (ViB' V2)C-S ' (12)

where

Cs = -0 + qb)- qbjb2 (13)

4 2.4. Nash solution of Case C
The Nash solution of Case C is a special one of Case A with CA 0 in (8). It is also a special one of

Case B with C = 0 in (10). Notice that (7) and (11) are satisfied when CA =C = 0.

-......- ..--.. :....................................................... ,,f "'h:" '- -
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Jt (Y'Y 2  4 )J(Y,A' 72A)

! -* - I I

g 0 0 ds  d

Fig. I. Impact of ECS: J(YIB, yB) as a function of I where s Fig. 2. Impact of ICS: JI(yjA, y2A) as a function of d where
denotes the Stackelberg solution and 0 denotes the SIS Nash ds = (I + hi + hI)b1h2 and 0 denotes the SIS Nash solution.
solution.

Theorem 1.
(i) In L, the set of uncountably many linear Nash solutions under ECS, the unique local and global

minimum of Ji is given by (yB, y2s)g-s which is the Stackelberg solution.
(ii) Under ECS, player I can do better than under SIS if

E [es, 0).

(iii) Under ICS, player I can do better than under SIS if

d E (0, (I + hI+ hjb,/hj.

Remark 1. This theorem shows that Ucnida's claim, namely that the SIS solution is a local minimum of
J, in L, remark 3.3(i) of 121, is false.

Remark 2. This theorem indicates that the Stackelberg solution is more beneficial to player I as should
be expected in general than all the other Nash solutions under ECS and SIS. It is not difficult to see that
the Nash solution under ECS considered in theorem 2 of [1] is actually a Stackelberg solution.

Remark 3. This theorem and Fig. 1 give a general description of the impact of ECS on J, which includes
the result of theorem 2 of [11 as one particular impact out of uncountable ones.

Remark 4. The parameter d in (3) can be regarded as a measure of the strength with which player 1
communicates his control implicitly to player 2. It can be regarded also as an incentive mechanism in a
leader-follower situation, e.g. if the leader cannot communicate his control value to the follower free
from noise, then by designing d = (1 + h'+ I')b,/h2 in (3) and playing Nash (ICS), the leader can expect
the same performance as in a Stackelberg game where the follower has perfect knowledge of the
leader's control value.

*I 4. Comments

In this section we give comments concerning the impact of ECS on J,. In the first part we explain part
, (i) of theorem 1, i.e. why a local minimum of J, among L is given by the Stackelberg solution instead of
*-" the SIS solution as claimed by Uchida. In the second part we explain part (ii) of theorem 1, i.e. why

" player I can do better in a continuous range of C under ECS than under SIS.
Since J,.(y., y2) is quadratic in y,, i,:j 1,2, J,(Y1, Y2) is differentiable w.r.t. y,. Furthermore, y2 is

.*\
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Stackelberg solution (6) to hold [4]. Since J, and J2 are convex in y, and Y2, the first-order necessary
condition is also a sufficient condition for C* to be a Stackelberg solution.

It is remarkable that under ECS, although J,(y,, Y2,) depends on the statistics of the observation
noise, its ordering for different C is independent of the noise, as we can see from (20). Thus, in order to

Sexplain the ordering of J,(YB, y2B) for different ', one need consider only the deterministic game. In
Section 2, if there is no observation noise in (2)-(4), then for any given u, the optimal value of u2

* j minimizing J2 is determined uniquely by

l 2(X1 
U ) = -(1 + q2b 2)- q2b2blu + x). (29)

The locus of such points (u1, u2) given by (29) for all ul E R is called the reaction curve of player 2. The
reaction curve of player I is similarly determined. Equicost contours of J, and J2 and the reaction curves
of both players are plotted in Fig. 3 for some particular values for the parameters of the game. The
Nash solutions of Case B given by (10) now reduces to:

ya(x) = -{l + qb b+ q2b2+ C(q - pl2q2)blb-'{qb + C(q, - p12q2)bJx, (30a)

y2B(x, u) = -(1 + q2b2- q2b2{bly,,(x) + x} + C(u, - y(x)), (30b)

for all C E R such that (11) holds. Notice that at each solution point of (30), the value of u2 given by
(30b) is equal to that determined by the strategy

y 2(x, u) = -(1 + q2b -'q2b2(bu. + x). (31)

Equation (31) is the same as (29), which means that all the Nash solution pairs (yB, y"2), are on R 2, the
reaction curve of player 2. Furthermore, since {uj} given by (30a) for all " E R such that (11) holds, is
the real line, we conclude that R 2 comprises all the linear Nash solutions of Case B. Point C in Fig. 3
represents (Yc, Y2c) = (YIa, Y2)1- 0, the SIS solution where R, and R 2 intersect. Point S represents

(YIs, Y2s) = (Y/a, Y2,)C-1s, the Stackelberg solution, where R 2 is tangent to the contour of J, [1]. Fig. 3
shows clearly that point S gives a global minimum of J, on R2 and point C is by no means a local
minimum of J, on R 2. All the points between C and S on R 2 yield lower cost of J, than point C. Finally,

U2
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1. INTRODUCTION

The object of this paper is the study of a static quadratic Nash game

where the players do not have knowledge of the parameters involved in the

description of the cost of their opponents and of their opponent's informa-

tion. The game is played repeatedly and at each stage the players know

the past actions of their opponents. The only dynamics involved are in the

accumulation of the information on their opponent's previous actions; apart

from this dynamic aspect, the problem considered is a repeated statis game.

We examine both the deterministic and stochastic case, consider some adaptive

schemes for updating the players decisions, and we show convergence to the

optimal decisions (in the mean square sense and with probability one for the

-stochastic case), under some conditions. The scheme for the stochastic case

is actually a stochastic approximation algorithm of the Robbins-Monro type.

The underlying motivation for the present paper is to study situations

of conflict where the players do not know some of the parameters involved

in the description of the others' cost functionals, or in the state equation.

* Such situations have been and are being studied for the single player - i.e.,

control problem - case and come under the name of Adaptive Control; the cor-

responding problems for situations of conflict, i.e., Adaptive Games, has

* received very little attention up to now. The problem studied here can be

considered as a very simple type of adaptive game where the players adapt

their decisions so as to converge in the limit to the solution of a static

Nash game. It should be noted that the strategies exhibited in this paper

do not constitute a Nash equilibrium pair for the construed dynamic - dynamic

due to the dynamic information - game; but similarly, the adaptive control

strategy in the self-tuning regulator problem [5], converges In the limit

m1



* to the optimal solution without being necessarily optimal at each stage.

Adaptive games are important for several reasons. For example, when two

players are involved in a situation of conflict, it is reasonable to assume

* that each player knows his own objective, but not that of his opponent; in

addition, he might not know several of the parameters of the dynamic system

which couples him with the other. In decentralized control, we think of

decentralization as a scheme according to which each controller knows his own

objective and information but not those of the others. If each controller knew

the objectives of the others - as is implicitly assumed in many existing decen-

tralized schemes - then the notion of decentralization is weakened. Although

* considerable progress has been achieved for the centralized controller, single

objective adaptive control [4-6], the area of adaptive games is in its infancy.

The only work that the author is familiar with in this area is [7] and £8].

In [7], adaptive schemes based on self-tuning for stochastic Nash and Stackelberg

games are considered, where the players have the same information. (In the

present paper the information of the players is different.) In [8] two

adaptive schemes are studied for repeated Stackelberg games in a deterministic

framework.

The structure of the paper is as follows. In Section 2 we consider the

*deterministic case and study three simple adaptive schemes. In Section 3 we

consider an adaptive scheme for the stochastic case. The stochastic scheme is

* a Robbins-Monro type of stochastic approximation algorithm. Although several

results exist for such algorithms, many of which can be used to provide conver-

gence for the scheme considered here, the conditions of convergence that they

would obtain for our scheme are more stringent than those that we prove here.

In each section we provide several comments relating the results with previous

*work, expand on their meaning and provide appropriate motivation. Finally, we

have a conclusions section.
". 2
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2. DETERMINISTIC CASE

Let J1, J2 : R x R 2  R be two functions defined by:

"J i(Ul'U2 =  uiui+ u"Riuj+ u'ci ,  i j, i j 1,2 (1)

m.

where ui ER , Rl, R2 are real constant matrices and c1, c2 are real constant

vectors of appropriate dimensions. A pair (u*,u*) is a Nash equilibrium if

it satisfies ([l][2]):

:J(uj,u*) j J(ulUl), V u ERm  (2)

J2 (ulu2) J2 (u1,u 2 ), V u2 ER (3)

or equivalently if

U. 1 Rl  1

R L +, R= L ], c= (4)

" and ui are the cost and the decision of player i.

Let us assume that player i knows Ri and ci, but not R. and c. (ji); then

* he cannot solve (4) for ut. Consider also that this game is played repeatedly

" at times t=1,2,3,... , that at time t, player i knows I i=, "'" ,t-'
t i

u2 ,1 ,...,u2 ,t_) and plays uit which is chosen as a function of It, i.e.,

u it Fi(I t), i=-1,2, t--2,3,... (5)

3



The question is: For what Fl, F2 the recursion (5) will converge to a solution

of (4). Let us now examine three possible choices of Fl, F2.

Case l

Fi(Ii,t) = -Riu -  i=l,2, i # j (6)

The meaning of (6) is that player 1 minimizes Jl(ulu2,t -1 ), i.e., he reacts

only to the last announced decision of player 2. Recursion (5) assumes the form:

* [:2 =R L1u + c) , t 2 (7)

Recursion (7) will converge to a solution of (4) for any initial condition

(ulu 2 1 ) if and only if all the eigenvalues of the matrix R lie within the

open disc of radius 1 centered at the point 1 in the complex plane, i.e.,

, X(R) -11 < 1 (8)

((8) is equivalent to: IJ(R1R2)I < 1.) Condition (8) also guarantees that (4)

has a unique solution.

Case 2
0

Fi(I1,t) = -Ri+u,tI+euj,t 2 + ... + et 2  c (9)

•I > e >0, 1=1,2, i j

4
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The meaning of (9) is that player 1 minimizes J with respect of u 1 , with u2

fixed to a value that is a weighted average of u2 ,t-1,.. .u 2 ,1 where more

- weight is put on the recent values of u2. We assume that both players use the

N samee. Recursion (9) can be written equivalently:

[:2 ] = l t -LR: : * T (R l t -] + c) , t 2 (10)

Recursion (10) will converge to a solution of (4) for any initial condition

(u ,l'u2 ,l ) if and only if all the eigenvalues of the matrix R lie within the

open disc of radius (l-0-l centered at the point (-0) -1 in the complex plane,

- i.e.,

,. X(R) - 1 l-e

Condition (11) also guarantees that (4) has a unique solution. (Notice that

as t-'+ e, et-l -, 0 and thus (l-e)R in (10) assumes the role of R in (7).)

Obviously, for e=O, (11) reduces to (8) and (10) to (7).

Case 3

Fi ,t)= -Ri[u ,t.TU(,t.2 )...+uj,1 ] 1

1 1,2, i j.

The meaning of (12) is that player 1 minimizes J with respect to u, with u2

fixed to the arithmetic mean of u2 ,t-I... ,u2 ,1. Recursion (12) can be

,~~~~~~~~~.} ......... ... .... .,..........-: ..-.-..., ......... .. .... ....-... •..,..-.- .-.........



written equivalently:

= [1~:~]- ..(R L ti]+c) .ta2 (13)

Recursion (13) will converge to a solution of (4), for any initial condition

(ul,l,u2, 1 ) if and only if all the eigenvalues of R has positive real parts,

*i.e.,

Re X(R) > 0 (14)

(For proof see Appendix A, Lemma A3.) Condition (14) also guarantees that

(4) has a unique solution. Notice that as e-l, (11) reduces to (14).

Remark I Obviously (8)= (ll)= (14). If (8) holds, (7) converges faster

than (10) and if (11) holds, (10) converges faster than (13).

Remark 2 In all three cases we assumed that both players use the same

scheme. Nonetheless, it might happen that they use different ones. It is easy

to verify that if player 1 uses scheme I and player 2 uses scheme 2, the region

of convergence is larger than if both were using scheme 1 and worse than if

both were using scheme 2. Similar results hold for the other combinations.

Remark 3 If we consider (10) with 6>1, i.e., more weight is assigned to

the old measurements, the scheme will not converge. This can be easily verified

by considering the scalar version of (10) with c-0:

6
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which for t-+- behaves like

y= i.~l rtl

(since O<i P< 1) and is easily seen to fail to converge.

Remark 4 (8), (11) and (14) can be expressed equivalently in terms of

the eigenvalues of Rl R 2

igur 1

(8 crrspnd t j(RR 2 J<, ~e, nid te ni dsc (1)corepodst

(1-B ~ C2cs -(1)O

)dR1R2)1

1+7

Y. .



LIW7-7-
i.e., inside the curve C2 of Fig. 1. (14) corresponds to eigenvalues of R1R2

being inside the parabola defined by

l2

ReX + (ImX)2 <1, X = X(R1R2)

Remark 5 If (8) (or equivalently IX(R1R2 )1< 1) holds, the solution of (4)

is called in game theory a stable equilibrium, and the game is called stable [1].

The reason is that if player i deviates from u, then player j(j i) responds

according to scheme (6) and to that player i responds according to scheme (6)

and so on and eventually they both converge back to (uu*). Obviously the

notion of stable equilibrium depends on the reaction scheme that the players

employ. If schemes (9) or (12) are used as reaction schemes, we have an

* enlarged class of stable games.

Remark 6 Since the scheme of case 3 (12) has the best convergence region

out of the three schemes, in the next section we will deal with the stochastic

analogue of (12).

Remark 7 All three schemes considered, can actually be viewed as schemes

for solving Ru+c=O (see (4)), by using an iteration of the form:

un+l =un Dn[Ru + c] (15)

where D has to have the structure

n .

IDl 0

= 0  DJ

8



(Iterative solutions of linear equations is a vast subject, see for e.g.
i 1

.- [16].) Scheme (13) employed: Dn = I. We can create new schemesnn
which converge under weaker conditions than (14) by allowing D.t D where

D1 , D2 are properly chosen constant matrices. For example, if R1, R2 are

* scalars, (14) is equivalent to 1> rr 2; but if we use Dn=1 d in (15), the
an n

convergence condition becomes([o o] [2rl])
" ReX 0 d r > 0

which is equivalent to:

d1 + d2 >0

d1d2(1 - rlr 2 )> 0

and can always be satisfied for some dI , d2 as long as 1f rIr 2. Notice, that

1 rr 2 is the necessary and sufficient condition for solvability of (4) for

* any c.

Remark 8 Another way of going about the problem of this section is to

consider that at each stage, each player uses a certain scheme to estimate the

R and C of his opponent and then calculates his action by solving (40 wherein

he employs the estimates of the R and c of his opponent. In such a scheme,

each player should know at each stage not only the previous actions of his

-i opponent - as in our scheme - but also the rationale according to which his

opponent calculates his actions. This is necessary in order just to estimate

his opponent's parameters at each stage. Nonetheless, such an additional

9
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knowledge can be permitted and the convergence of the resulting scheme

studied. Finally, it should be noted that the problem considered here

and the schemes proposed, besides having their own merit, provide a

certain motivation for the schemes considered for the stochastic case

of the next section.

10



* 3. THE STOCHASTIC CASE

Let x be a Gaussian random vector in R n with zero mean and unit covariance

- matrix. Let

=i C iX, i 1,2 (16)

*represent the measurements of the two players, where Ci, C 2 are fixed real

*matrices of dimensions n 1 x n, n 2x n respectively. Let ri be the set of all

measurable yi :R -R 'functions with E~y1 (yi )'yi (y1)]< + G. Set u~ i Oi(yi.)

* and let

Ji(YvY2 ) E[ uui + uRiu +u's x], i tj, i,j=1,2 (17)

represent the costs of the two players. RV, R 21 S1 are fixed real matrices

*of appropriate dimensions. A pair (y*,y*) Er xr2 is called a Nash equilibrium

* if it satisfies

J1 (Y* 9Y*) JI J(Y1 9Y*) V Yl Er1  (18)

J2(4yl*) J 2(y~lY 2) V Y2 e r2

For background concerning the formulation of the stochastic Nash game see [18).

* (18) is equivalent to (see [2,3]):

Y*y)+ R, E[y* (y2)ly1) + S1E [xly 1) 0 (09a)

Y*2(y 2) + R 2 E[yt(yl)1y2J + S2ExyJ 0(1b



It is known (see [ 3]) that if no eigenvalue of R1R2 equals the inverse of

any arbitrary but finite product of powers of the squares of the canonical

correlation coefficients of yI' Y2 (i.e., of a1, a2 ,...). then (19) has a

unique solution which has to be linear in the information. The set of values

where the eigenvalues of R1R2 should not lie is a countable isolated set of

points in [1,+-) and thus it is generically true that (19) admits a unique

- solution which has to be linear in the information. We can assume without

"" loss of generality (see Lemma 1 [ 3 ) that

al 0•

n n- CCi In 2  CI= 2 . .0 (20)1 2 IC InI x n, C2C 2 x n 2 '  2
0 "anl n1 x n2

v.Z 1 >a 1 ka2lanl k 0

- and then yt(yi)= LiY i where L,, L2 are the solutions to the system:

L + R L2C2 Ci + S Ci = 0 (21)

L2 + R2L1CICi + S2C = 0

Let us assume that player i knows Ri , Si , C1, but not R., Si, Ci, i j;

then he cannot solve (21) for Li . Consider also that this game is played

* repeatedly at times t = 1,2,3,..., that at time t player i knows

". I =  ,u 'Yl (22)
- = ui,.."" ,t-1 u2 ,1,. .u2,t-'Yi,l.",Yi t (2

where Yit is the measurement of player i at time t. We assume that

12
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S(23)
l,)i Yit " Cit (

where the xt s are independent Gaussian vectors with zero mean and unit

covariance. At time t, player 1 employs the following scheme for finding

i Ult:

[-..-.Ult+RU 1 tt

t-l
uit+R1 (- r u2 ,kikyt+liW (24)

k I

A justification of this scheme is the following: at time t player 1 has to

solve (19a) for Ult and thus he has to calculate E[u 2A lYlt], E[XlYlt ] .

- If u2t is linear in Y2t' then u2t,ylt are jointly gaussian and thus

E[u 2,t Ylt ] = E[u 2tyjtJ (E[yltYit])' yl,t (25)

.1 t-1

* Player 1 approximates E[u t] by I T2tlbyi t- (U2,kYlk) ; a motivation for this

k=1
* approximation is the following: If player 1 knew all the parameters of

(16), (17), he would then solve equation (19) at stage t, employing (23);
1t-1

. due to the independence of the xtOs, t1 T would provide a

-.*" reasonable approximation of E[u 2tIYlt], since U2k would be independent of

u21,Yl, A # k. By overlooking the lack of independence of U2k on u2  ,Yl,

1 0 k, he still employs the above approximation, hoping that things will

- work out. The convergence results of Theorem 11 and 2' provide a posterior

justification for the reasonableness of this approximation.

By our assumption (20) E[yltyit]=I and ExtlYlt]J=SiCiylt. (24) yields

that ult is linear in Ylt' i.e., Ult=LltYlt where Lit satisfies

13
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Lit + -1  u ' ici  o (26)
k=l 2kYik] + =

A similar equation is satisfied by L2t, if we consider that u2t is calculated by

an equation corresponding to (24) and u2t-L2 ty2 t. The equations for Llt, L2t

can be written recursively as:

Lit Li t_1 - [L1  _ + RiL ty ty t + SCI] (27a)
i - 1 2,t-I2,t-l,t-I

=[ -R L 2 (27b)

L2t L2,t-i t-l L2,t+ R2Ll,t lyl,t-il2,t-l+ S2 2

(27) is the recursion that we intend to study and show that under some con-

• ditions converges to the solution of (21) in the q.m. sense and w.p.l. The

initial condition LWl, L21 of (27) is taken to be an arbitrary pair of real

constant matrices and we are interested in convergence for any initial

condition. (27) defines a Markovian stochastic process (L t,L2t) and is

obviously a stochastic approximation algorithm of the Robbins-Monro type [9J

for solving (21). (27) is the stochastic analogue of the scheme of case 3 of

the deterministic case.

Let us now study the convergence of (27). Let us call tit, mit, ci' di

the i-th columns of L t, Lzt, SICi , S2Cj respectively, i.e.,

Lt = [it,..,nlt] L2t [mit,...,mnzt]
(28)

S1 C = [c,...c = ...d

i n 2c 2, nd

14
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Let

iit = E[Lit]' it = E[mit] (29)

Using (20) and the fact that Lit depends on Yll""'Ylt-l'Y21""'Y21""Y2,t-l'

we obtain from (27):

Zit= it-1 - [Ii't-1 +GiRli t-1 + ci (30a)

m-t mit-i-T [n i- +CiR 2i i +di] (30b)

.. ~I= .. n

and

'.- - 1 - + i

m mit - i ,t-i "t-T [mi , t-I +d

i = nl+l,...,n 2  
(30c)

" Recursion (30c) converges for any initial condition (see Lemma A3). (30a) can

be written as

= ~ ~L I oiRl] Lc::-. oI

it i ,t-I OiR 2  1I l-

(31)

15
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and using Lenna A3 yields that (31) converges for any initial condition if and

only If

Re > 0 (32)
(L1R2 I

It is easy to see that if (32) holds for a, then it holds for any ri,

SOzai zoI. We thus have proven:

Theorem l' The means of Lit, L2t as defined by the recursion (27) converge

to a solution of (21) for any initial condition, if and only if

I R2 lR1

ReX > 0 (33)IR 2 1

It is easy to see that if (33) holds then (21) has a unique solution. If

we want (27) to converge to a solution of (21) not only for any initial

condition, but also for any pair of measurements, i.e., any C1, C2, we have

to consider a1 = I in (33) which is exactly the condition for convergence

*, of case 3 of the determinstic case.

Next we will show that Lit, L2t converge to a solution of (21) in the

mean square sense, under condition (33). For simplicity and w.l.o.g. we

will assume SIC = O, S2Ci= 0. We can write (27) component wise in terms of

lit, mit and then form the products tit.t , i,j= 1,...,n 1, mitmjt, i,j= 1,...,

n 2 and £titmt i=l,...,n,, j=l,...,n2. These products satisfy recursions

that can be easily calculated, and taking expectations of which result in a

recursion which gives the evolution of E(,it Lt), E(mitm't), E(litmt) in terms

of E(fi t.l t ,' E(m',t..1 ,t_.l E(ttm' t ). Before writing down

16



this recursion we introduce some notation:

At = E[i ' ], i,j= 1.,n, (34a)

Mij = E[mitmt ] , i,j = 1,...,n (34b)

Kt =E[ mt ] '  = 1,. .. ,n j=,...n (34c)
itt

At . . . . . . . . . A t Kt .......
11 .. In 1,1 1,n 2

A A ...... Kt
1 n nl 1  n1,1 n1 ,n 2

- Nt  -- -- -- -- -- - - - 4 -.-..-..-..-.--.--.--.--.-....... - (35)

t =
.-. (K l ' ...... ( Kt  ' M . . .. . l n

11 n Il 11,1

I t  t t Mt
NO 2l ... (Kn nM 1. .. ....... . 1nn

(,') 2 n2,1 2 ,n 2

I 0aR 1  0 0

0
Ro 0 .oo. . . 0

------------ ------.ni-.I---.------- (36)0

'- ol
01R "~ .aniR2 " . 0

* .° I
*o . I

0........0 I
L
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" Then Nt satisfies:

1 1
Nt=NtI- [ NtIQ'+QNt l J+ I -e(Nt . (37)

t- tT t-i) 2

- where z(-) denotes a linear time invariant function of its argument. (For

details of this derivation, see Appendix B.)

Using Lemma A4 we conclude that Nt goes to zero for any initial condition if

and only if the matrix Q has eigenvalues with positive real parts which is

easily seen to be equivalent to (33). We thus have proven

Theorem 2' Llt, L2t as defined by recursion (27) converge to a solution of (21)

for any initial condition, in the mean square sense, if and only if (33) holds.

Next, we will show that (LltL 2t) converges under (33) for any initial

* condition to the solution of (21) with probability 1 (i.e., a.s. convergence).

. We again assume for simplicity and w.l.o.g. that S1Ci O, S2 C2 - . We will use

the theorem in paragraph 3 of [li] (or Lemma 3.5 of [13]) which we restate here

and which is an easy consequence of the martingale convergence theorem of

". Doob.

Lemma 1 Let {Vt  be a sequence of random variables such that E(V ) exists.

Let A be a real number and suppose Vt kA. Furthermore, assume that

r E(E[Vt+1 - VtiV l ,... ,Vt+) converges. Then the sequence V t) converges with
t=lt

_. probability I.
• 2 +

(Recall that if x is a random variable: x = (jxj+ x).) Let xt

,...,m' 't) We will prove that xt converges to 0 w.p.1- ,t n 1 ,t:,t n ~ t egst ~~

or equivalently that Vt=Ixj 2 does. Let A = 0. From (27) we can easily

18
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obtain (see Appendix C)

for some positive number a and thus

In order to fulfill the assumption of Lemma 1, it suffices to show that

SE(V) < + -(38)
t-l t

It holds

EEVt]= tr Nt

and thus it suffices to show that

tr N
t t < +(39)

t=l

From (37) we obtain

( t N t)

k k19

**~~ Q.. .. E.. ... - . .*.~
t+1 N :-

t 1.k..



If we assume that Q has eigenvalues with positive real parts (40) can be solved
t Nk

for Z - to yield
k=l k

tNk t Nk\'Z '" t + l , N .k

k\L k=l k
t N k  t N k

Since Nk converges, it is bounded and so is t N Thus=I k is
k=1 k k=1

uniformly bounded and thus (39) and (38) are bounded. We thus conclude that

2 2
llxtIl -- V t converges with probability 1. 1Ix t) converges to 0 in the mean

square sense by Theorem 2' and thus in probability and thus it has a sub-

sequence converging to zero with probability one ([17], Thm. 2, 5, 3, p. 93).

Since we just showed that lixt1l2 converges with probability one, this limit

has to be zero. Let us now summarize the results of this section in a Theorem.

Theorem: Lit, L2t as defined by recursion (27) converge to a solution of (21)

- for any initial condition, in the mean square sense and with probability one

. if and only if

Re)( > 0
CT. I R 2  1

* (Under this condition (21) admits a unique solution.)

Remark 1 Nt, (37), goes to zero but it does not have to converge

monotonically.

Remark 2 One can construct the stochastic analogues of the deterministic

schemes of cases 1 and 2, if a different- appropriate -approximation is used

20

-_:. ...... ... ..o ... . .. ... .. . . .. .. ... . . . . . . . . . . . . . . . . . . .. . .
-. "" . .... . . . . *. ..:: - '. *..- - '-''' ,,":'' ". '' .- -,-.-"-'""



for E[u 2tlylt) in (25). A little reflection, though, will persuade the

reader that these schemes will converge under conditions more stringent than (33).

Remark 3 For a repeated Stackelberg game one can consider schemes similar to

those considered here, if one assumes that the Leader does not know the

parameters involved in the Follower's cost. An idea of this sort was recently

studied in a deterministic framework in [ 8 ].

i- Remark 4 It should be clear from (30) and (37) that the rate of convergence

. of the means and the covariances of tit, mit depend on the eigenvalues of the

matrices in (32) for ai = ll1 ... ,n, or equivalently of Q. Actually, a

recursion of the form (Al) with X= Re(X)> 0 goes to zero like (n ) (see [12]).

Thus if X denotes the real part of the eigenvalues of Q, m=l,...,nl+n2 and

X=min Re(Am ) the mean converges no slower than (t )" , the covariances no

2X 1 3X -1
• : slower than (t2f " , the third moments no slower than (t )- and so on. Thus

,%*]i=" if one were to consider whether t [LltL2t] converges weakly to a gaussian

random variable as t-=, e should be chosen equal to X so that the second

moments converge to a nonzero constant, but then automatically all the moments

"" will also do so. Thus in general one cannot have asymptotic normality of

n t[Li,L2t for some e> O. As a matter of fact, Theorem (1) of [12] cannot be

applied since it's assumption (A4) fails for the stochastic approximation

algorithm (27), considered here, as should be expected from the above

remarks. Finally, it should be pointed out that the fact that the rate of

- convergence of the algorithm is given by t" and t2X for the first and second

.. moments, is a useful fact when implementing it, in deciding when to stop, what is

the probability of error when stopping in a finite number of iterations, etc.

21
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Remark 5 Stochastic approximation has been an object of intensive study (see

[9-15]). Several of the results available can be used to prove convergence

of the iteration (27) but they demand conditions stronger than (33), or they

are rot applicable to it. For example, in [9] it is required that in the
1

scheme Xn 1 Xn- Yn' Yn is uniformly bounded. Assumptions III and IV of

[10] do not hold for (27). In proving asymptotic normality [12], he uses

Assumption (A4) which does not hold for (27). Assumptions A5, A5' of [11] do

not hold for our scheme. Lemma 3.1 and Theorem 4.3 of [13] can be applied to

(27) but result in more stringent conditions than (33). The convergence

analysis of [15] demands boundness of the second term in (27) which is

* not applicable to our case. Assumption iii in Problem 1, p. 92 of [14]

does not hold for (27).

22
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4. CONCLUSIONS

There are several directions in which this research can be continued.

One of them is the corresponding problem for the Stackelberg game (see Remark 3

in Section 3). The dynamic case where the players are also coupled through the

evolution of a discrete time equation is obviously important and useful. We

hope that the analysis presented here will be helpful in such further research.
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APPENDIX A

Lenia Al Consider the scalar recursion

n nll 1) x n.n (Al)

* where X and x1 are complex numbers. Then x 0 for any x, if and only if
1n

Re(X)>O0. (If we set tn= 1+ ...+j ,we see that (Al) is a discrete approxi-

mation of ;=-)x and thus Re(X)> 0 is expected in order to have asymptotic

* stability of (Al).)

* Lemma A2 Consider the scalar recursion

X 1
Xn+l 0 (- n + O(-7))Xng n= 1.2,3,,...

n

where x and x I are complex numbers. Then x n-00 for any x1 if and only if

SReX) > 0.

* Proof

It is an immiediate consequence of Lemmia Al since 1 doiaeO(-L). o
n

* Lemmna A3 Consider the recursion

Xn~ (I -i.!A+ 0 1 )x n 1 92,93 ... (M3)

*where A is a real square matrix and x1 is a vector. Then x n."O for any x, if

* and only if ReX(A)> 0.
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Proof We bring A to it's Jordan form and apply Lema A2. It is helpful to

notice that if P is a real symmetric matrix

". 1.A ()
X""'= x1Px - x' [PA+ A'P] xn +XX n( n

n

and thus if A has ReX(A)> O, we can find a positive definite P so that A'P+PA>O.

* Therefore if n is sufficiently large

I x1 > 0( 1 xnn n[AAP xn >x n  2

n

- and thus x+.PX n < xn'Pxn and consequently xn is bounded. This justifies the

fact that the 1 term dominates in (A3).

Lema A4 Consider the recursion

Nt+l = Nt - f [NtQ' +QNt] + - (Nt), t= 1,2,... (A4)
t

where Nt, Q are square matrices. Nt-O for any initial condition if and only

: if Re ,(Q)> O.

Proof Let xt be the vector composed of the columns of Nt. We can write the

.- recursion equivalently as

x t+l  xt - Ax t + a(xt)

It can be checked that Re X(A)> 0 if and only if Re X(Q)> 0 and thus Lemma A3

can be applied. o

25

- .*. . *&.Jt. * *.* . ..... ** ** * . ~ % m . * . * .

: ::.,- :z:,': -::;.:;; ;:::';.-......................................... -"",... ... ' ".'p



It should be pointed out that if xn evolves as in Al, and ) is real, xn

behaves like n-x (see [123, eq. 2.3). If X is complex, then (A2) implies that IXn
12

behaves like n 2a and thus IxnI behaves like na, i.e., n"ReX . Consequently

Xn+ 1 in (A3) behaves like n"-, where X=min ReX (A) and Nt in (A4) behaves like
_2

t where X= min ReX(Q).

26
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APPENDIX B

Let I it, mit, c , di be as in (28). For convenience, let
w

o
1

yl zI

yit- = Y Znt_12  )

" (27) can be written as

In 2

Fit ovt-lnt- uist-l ri t=,l froz m' t i]  F ( 2),

Sn

mt ME+. z R  + di (B3)it ~t- -tT it-l i 2J=l ,At-1

c ) i n 2 n£

,. For convenience, let us drop the subscript t-I from A i't-l' mi't-l" From (B2),

m (B3), we obtain:

n2  n2
t Ii "t --T [kl zk i + Yj RY I kJ zkmkzmm+

mn
n2+ 1, c + c, j + +y r z.A m ,,R' +

" n2  n2

2 27
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n2  nz

+ MI. 1 MI. Z mMI + zS z cYf i + iR :yA + )
it1 it i £1 t-1 i3 ii i ~jl

+M1i di +M 3 Z +Y1. (Mim + E zycl . .c (B4)

t, l A-,..-,

n 1 n+ d 1 R'E+-MI +n 1mz+R. A T R +

ni n

1*

+mZ =mRm E I y2mi'm+zzR jYijR+ + m' 

Sk=1 Ykkj 1=

ni n.

1n

+ I.d + mt+dm +  [AM+
+z."[mim*= R +jd YmR+

D2 n1 n2
+ziR 2  E YZkmm+zYiz jR2  Z kyk' 'j+ (B6

.. k~ k,=l k~klRn2 n

+ ziR2 E~ y  d'+zj E d~c "'"'+ J- d im 1+ cd_-~~ ~~ k k j ,Xl "' i &2 m d + .'](5

1 1 = n 2

nl n8

- Jttmt= 2m'.- [2Limj+ z£L='R'+y 1 R1  = Zkmkmni+

nll1
+.id'.+cti mi ] + 1 [Em +  "y"-R'+

i. rJ2"2 nl

Yil klZkmkm + YiZjRl k=1 = zky "k £R" (B6)

n2 n2
+ YiRl k~ Zkmkdi+ zj I: y R+£ d'cm'+cld']

.: Let Atj Mt5 Ktj be defined as in (34), let ct, diu O for simplicity and

w.1.o.g.. We take expectations in (B4)-(B6) and drop for convenience the

suercrptt- fo , t Kt in the right hand side. (When taking
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expectations, we use the fact that A. m. are independent of

y2 .tI- We obtain:

A 2A + a1R (1 ij *tJ ii i ji+ ili

1 (87)

a i y~ Mj+mj R if i t j

kkI1r M kk +E(yizi )Mii )Ri, if ifi1

M1  M1  [ 2M1 + ojKi + ,iR,( j

+ - 2 OP(A ~s) (B8)

ij I .. nand a 0if i >n1

a.=O if j>n

Ki ii Kj t-i [2K ii + ajA i j +o M1i I

(t-1),m3AjMjis)(9

1~ ~ -1 ..nI *i,0 if >n1

~ 9 * ... n2 j-0 If J>n 2
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Defining N t and Qas in (35). (36) we see that (B7)-(B9) can be written in

compact form as in (37).
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APPENDIX C

Let x= (2ts ..., 21 O'*~" Using (27) or the equivalent
2'

(B2). (B3) we have

x x !*E* R(yit,y~t)xt] jl

where the definition of R(y t~y2t)= pt is obvious from (B2), (B3). From

(Cl) we obtain

11x~I = tI2 2 x i (C2)
=11 xiii + -. t XN tt

t

It holds

E [1 t+I 2 1 tI2 [1 ,12.. .1 x 2 =(C0)

E E E[11 xt+II 2 _1 tI21,x1 2 A tl2 II..,t

E [x~x I x12 AXi 2 3

2 2
= E EEiExtltIxil . ..tx tl X(C4)1Xtl

=~ 2

=E CxiRixtllx . IIxij I
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Since Rt depends only on Ylt' Y2t which are independent of xl ,...,x t and

where R is a constant matrix defined by

E [R(ylt, Y2t ] =R (C4)

Similarly

E [xiltltxtlllx1 1, 2,. 1 2 = (C4)

E [xjR2xtIII xl11 2 1 xtl12I

where R is a constant matrix defined by

E [R'(yl,t, Y2,t)R(ylt, Y2t ) ]  R2  (C5)

From (C3)-(C5) we obtain:

E [lIXt+lI 2_lxt1 2 1 2X =2 . . . , l x t l 2 - (c6)

ii,= E [xj(- -Z R, + Rz~tl~ l 2 "l 2I

2 + 1 2 2

It holds

2 +1R (C7)
- I J 2 t

for some positive constant a and thus
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lCE~x( 2 J 2 )xtlxI 2 xIJ

t t

Let Vt =I1h x 1; then from (C6) and WC) we obtain
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