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Further Informational Properties of the Nash and Stackelberg
Solutions of LQG Games

5 . /L N
G.P.Papavassilopoulos and M.Tu 3 3/ —
Dept.of Electrical Eng.-Systems 7/,,'5 ) / /
. J A
Univ.of Southern California - e ,g/ “
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.1 Imtroduction
— /,/\
In” thil paper ] we considersa two-decision-maker pro'blem

- A
ffuab
where each decision maker has his own information and uudy the

AD-A158 569
f NS
X
D)

\\\

impact of improving the information of only one decision maker.
Inif%i ar: :;;;pi; of a two-decision-maker LQG static Nash

game was considered and was shown for that particular example that,
on the one hand, if one of the decision makera. i.inproves his own
information by obtaining his opponent's information (while his
opponent’s information does not change) then he e.pd- up vitb a
higher Nash coutm on the other‘h‘a.n-é. if ixe i:—r;provea
his own information by getting an extra measurement not from his
opponent (while his opponent's informatton does not change) then

N\
he might incur lower Nash cost (Caae D of [Q,])" In this paper weQ

proves&hat in a general two-decision-maker LQG static or dynamic

OTI6 fILE wuRY

Nash game, if one of the decision makers knows all his opponent's
information, then more or better information for him alone is

f’\", o Thur S
beneficial to him. In static garmes we also prove that more - ° P,

DTIC

ELECTE it
AUG2 91985 : % i Criaribul o in it e




..............

— ‘) information for one of the decision makers alone is beneficial to

‘ him provided that such information is orthogonal to both decision
g makers' {nformation, Z/oeklx. l:{/a‘/wr Ao L A a d‘"a% )
o X a5 /é*f/ifl» ' A TV /)r'w"""""/q“"y’j"’/’f"-\ P

- The/structyre ‘of this pz—erp o8 follows: In Section .2 we
study static games, By introducing the orthogonality condition of
the information we give sufficient conditions that more information
is beneficial to one of the decision makers. In Section -\ 3 we
formulate a two-decision-maker 1QG dynamic Nash game where
one of the decision maker's information is nested in the other's.
At each stage k, decision maker ] is allowed to use a function of
estimates il(k) and i3(k) of x(k) while decision maker 2 is allowed
to use a function of il(k) only, where il(k) and 23(1() are generated
through two Kalman filters that use linear, noise-corrupted
measurements of x(k) and i3(k) is a refinement of il(k). In this
- setup the Nash solution exists, is unique and linear in il(k) and
:":3(k) under certain invertibility assumptions on some matrices.
Two nice features about the solution hold, namely, that a sort of
separation principle of estimation and control holds and the estima-
tion error is independent of the controls. In Section -'. 4 we study
the informational properties of the game formulated in Section ¢ 3.
We prove that better information for decision maker 1 alone is
beneficial. to bim. In Section 5 we extend the results obtained in
Nash games to Stackelberg games. In Section . 6 we give two
examples to illustrate the informational properties discussed in the

previous sections. Finally, in Section | 7 we present our conclu-

sions.




X. Some Informational Properties of LOG Static Nash Games

Consider a two-decision-maker LQG static Nash game. The
t

cost functional of decision maker i, i=1, 2 ie denoted by

Ji(Yi' yz) = E[x'P{ u, + —;- u!lui'l» u{Qiuj] (1)

41, 1,j=1,2
4
where x€R"™ is a Gaussian random vector, x - N(0, 1), uiER iis the

control variable of decision maker { and P‘, Qi are real constant
matrices of appropriate dimensions. The linear measurement of

decision maker i is given by

¥; T Hix+o, (2)

Hi is an m Xn real constant matnx and w‘ is a Gauuun random
’() $0)

vector, w, ~N(0, '[.i) which is independent of x. The cgntrol law Y;

is chosen from I' where I'. consists of all the measurable functions )
my .e

fromR ' to R ! such that vy, (yi) is 2 second order random vector.

A pair (yl, yz) is called a Nash solution of the game if it satisfies

the following two inequalitiea

. *x o

J,000.¥3) £ J1(vp0vp) (3a)
* % %

T(ve ) 2 TalvgeYy) (3b)
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for every ylerl and yzerz. y: is called the Nash strategy of
. decision maker i. A necessary and sufficient condition character-
izing a Nash solution of the above game was given in Theorem 1 of

[ 2] which we state below as a lemma.

..
..

Lemma 2.1. A pair (y:, y;) is a Nash solution of the game

o -

described above if and only if the following two equalities hold

Ylr) = -PE[x|y,]- QElv]ly)|y,] @)

j#i, i,j=1,2

Using Lemmma 2.1 we will show how the Nash solution is affected -
.by the information available to the decision makers and hence how
the Nash performance is affected by the information structure. We
need the following- definition of orthogonality and a lemma which

consists of several well-known facts in &stimation theory [4].

Definition 2.2. Two zero-mean Gaussian random vectors z; and

AL ELA

z, are said to be orthogonal (denoted by z,1 zz) i E[ zlz'z] =0. Two

) - ——

-Qand Zz are ort?:égbifa).l if zZ, 1z, for every zIGZl and z,€ z,.

o ———

e .
Lemma 2.3. Let z,, i=1,2, 3 be zero-mean Gaussian random

vectors, then

%

() {z, - E[ 21'32]} 1z,
(ii) E[ zll z,] = Cz, where C is a real matrix.

If, in addition, z,4 Z3, then

(iii) E[ zz|13] = 0

4
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. (iv) 2[21\12.13] ='E[zl‘zz]+E[zl|23].
Denote an extra measurement by y_,
Ve = Hx+o (5)

where He is an tne)(n real constant matrix and "e is a Gaussian

random vector, ® e ~ N(O,Ee) and is independent of X wi,w 9 -

Condition € (i) y 1 {y).y;}, (8 y, =My,

where M is an mzaun:l ma_.trix. The meaning of Condition C (i) is

that the information provided. by y, is contained in that provided by
Y3
Lemma - 2. § Under either one of Conditions C,

(Elx|y,.y.] - Elx|y,]} L { y;.7,).

Proof: Under Condition C (i), Lemma 2.3 (iv) and (ii) imply that

Elx|y,.y,]- Elx|y,] = Elx|y,]+Elx]y] - Elx|y,]

= E[x|y,] = Cy, e

The result holds since y_ | [yl,y'z} .
Under Condition C (ii),

>

Elxly;y,)- Elx|y,] = El x|y, v ]- ElEl x|y v J{7y] (D

and thus (Lemma . 2.3 (i)) { E[x]y,.y]- E[x‘yl]] 1y, and by
Condition C (ii) { E[ x|yy ye] '.E[""Vlll 1y,.

5
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The question of existence and uniqueness of the Nash solution has movl
A

been studied in [ 3 ] and [5 ] where it was shown that almost always v,
i-lu-( <

there exists a unique solution which has to be an affine function o

the information.

Theorem 2.5. Let at least one of Condition C (i), (ii) holcl? then

if there exists a Nash solution under the information pattern where
decision maker 1 knows " and decision maker 2 knows Yo then there
exists a Nash solution under the information pattera where decision
maker 1 knows (yl. ye) and decision maker 2 knows y, and vice versa.
Furthermore, the Nash strategy Yy is the same under both informa-
tion patterns., For the case where Condition C (ii) holds, a Nash
solution exists and is unique if and only if the matrix I-lez is

invertible.

Proof: (i) Let Condition C {i) hold. “ ol

When decision maker 1 knows Y3 and decision maker 2 knows
Yo i:y Lemma 2.1, a Nash solution (yl(yl), Yz(yz)) exists if and

only if

Yalyp) = QQ E[Elv,(y,) |y, lly, 1+, B E[E[x]y,]ly,)-BExl,])  (8)

When decision maker 1 knows {yl, ye} and decision maker 2 knows

Yo 8 Nash solution (Yl (yl, Ye)' Yz(yz)) exists if and only if
VZ(YZ) = QZQIE[E[YZ(YZ) !Ylo Ye”Yz]"'szlE[E[" lyl-ye]‘)’z]°p2£[xl)'z]

y (9a)
= QZQIE[E[YZ(YZ) lyll IYZ] + QZPIE[E[" |Y1] ‘Yz] - PZE[" ‘Yz] (9b)

6
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where we use Lemma 2.3 (iii) and (iv) and the fact that Y,(y,) is
affine in y,. Equations (8) and (9b) are exactly the same hence we
have the desired result.

(ii) Let Condition C (ii) hold.

When decision maker 1 knows y, and decision maker 2 knows

Yo 2 Nash solution (yl(yl), yz(yz) exists if and only if‘
Yz(Yz) = QleYz(Yz) +QzPlE[x'Y2] - PZE[x‘ Yz] (10)

When decision maker 1 knows [yl. ye] and decision maker 2 knows

Yy @ Nash solution (Yl(yl. ye), Yz(yz)) exists if and only if

Yaly2) = QQ1V,lyp) + QP Elx| y,] - PoElx|y,] 1

Equations (10) and (11) are the same and hence if a Nash solution
exists in one of the information patterns, it e‘:ﬁats in the other and
Y, is the same in both information patterns. Furthermore, a unique

Nash solution exists if and only if I- Qle is invertible. o

Theorem 2.6. Let Condition C (i) or-(ii) h‘old, then the Nash cost

incurred to decision maker 1 when the idormtiohsto laec:isicm makerx
1is [yi.ye] and to decision maker 2 is Y2 is less than or equal to
the Nash cost incurred to decision maker 1 when the information

available to decision maker 1 is Y) and to decision maker 2 is Y2

Proof: Let (y:, Y;) denote the ﬁash solution when decision maker 1
knows [yl. ye] and decision maker 2 knows y, and (y?, yg) the Nash

solution when decision maker 1 knows 14! and decision maker 2 knows

..............................

.............................................
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Yoo then by Theorem 2.¥%
x % _ * 0

0
= min Jl(Yl' Yz’
* Yilyp v IET

RLSUSTE

= 3,040, v9) (12)

. : m,+m
where l"l consists of all the measurable functions from R 1 e to -

3
R L,
D

Remark 2.7 Notice that Theorem : 2.5 and 2.6 boid regard-

less of the functional form of the costs as long as they are quadratic.

Remark 2.8 - All the results obtained in this section go through

even if we assume that x is not of zero mean. This is easy to verify,

I[. Formulation of an LOG Dynamic Nash Game and Its Solution

Consider a two-decision-maker, N-stage Nash game where the

state of the system x(-) evolves according to

x(k+1) = Ax(k) + Byu, (k) + B,u,(k) + w(k), x(0) = x, (n

b:
where k€8, = {0,1,...,N-1], x(k)€ R" and u, (k) € R ! denotes the

control variable of decision mglier,i at stage k, i=1,2. x, and
{w(k), k€8} are independent Gaussian random vectors, x, ~ N(;o. 00).

w(-) ~N(0, R).

g




m.
At each stage k, theru-p2e measurements yi(k)ER ‘, l=1.2,(\4’e_’
given by
y; (k) = H, x(k) + v, (k) (18)

where {v‘(‘k). k€ 91. i=1, 2} are independent Gaussian random vectors,
vi(-) - N(O.}.'..‘). vi'l are also independent of x4 and [ w(k), k€ 611.
The information available to the decision makers is not yi‘k)"' but

il(k), is(k), the estimates of x(k) g.';ven by two Kalman filters:

% (k) = ii(l;/k-l)+0i(k)[yiﬂ<) - HE &) (19a)

£ (k+1/k) = Ak (k) + B)u, (k) + Byu,(k), %(0/-1) =§° (19b)

G (k) = zi(i:/k-x)ni (H,T, (k/k-DH] + )" (19¢)

T, (k+1/k) = A[x-ci(k)ni] Z,(k/k-DA' +R, 2{0/-1) =, (194)

Ik = [1- Gi(k)Hi']zi(k/k-l) o (19e)
i=1,3

where ’

.H3 2 m, HY) (20a)

ya(-) 2 [yy(-)oyh(-)] (200)

. L, 8 diag (I, T, ] (20¢)

i.‘(kﬂlk) is the one-step prediction estimate and z.l(k) and 2i(k+1/k)
are the error covariance matrices associated with ii(k) and ii(ki-l).

respectively,

................................................................




T = E{[x(k) - %00][ x(k) - %,()]'} (1)
I, (k+1/k) = E{ [x(k+1) - ii(k+1/k)][x(k+l) - ii(k+1/k)]'} (22)

The information structure is defined as follows: At each stage

k, deciniog maker 1 knows Il(k) 8 {il(k),i3(k)} while decision

~maker 2 knows Iz(k) 4 [il(k)}. This information structure can be

justified by considering that there are two impartial referees 1 and
3 who compute respectively il(k) and is(k), referee 1 gives il(k) to
both decision makers and referee 3 gives 23(k) to decision maker 1
only.

The cost of diécision maker i is Ji (Q .fi(O)) where .}"i(k) denotes

the cost to go of decision maker i at stage k and is defined by

J.(k) = E{I;Z-l[x'(n)Px(n)i- u!(n)u.(n) +u!(n)Q.u.(n)]+ '(N)Px(N)} (23)
i Tk i A 510 x i
j#i, i,j=1,2 '
where Pi.Qi; 0. ui(k) is chosen as Yr(li(k)) and the y?'a are
J } [}
measurable functions, Y:‘ : R%R" =~ R ! and ylz‘: R%~R 2 with the
property that yl;(li(k)) is 2 second order random vector.
Let
A 0.1 -1
g = {Yi'Yi""'Yi }, i=1,2 (24)
A pair { g:, g;] is called a Nash solution of the game if
* % * L
Jy(g)-8;) £ J,(g).8)  Vadmissible g, (25a)
* % * ..
Jz(gl, g,) < Jz(gl, g;) V admissible g, (25b)

|0




- Before we give the Nash solution of the game, we need the following
lemma which shows an orthogonality in the information structure and

the proof is given in Appendix A.

!  Lemma 3.1 () E[&,00)]|%,00] = & (k).

Let §4(k) = i3(k) - il(k) then
(ii) i4(k) 1 il(k) and

Notice that by Lemma 3.1, the information structure Il(k) can
equivalently be considered as Il(k) = [;‘l(k)’ 5':4(k)} which consists
of two orthogonal elements.

The Nash solution of the game described above is provided in

the following theorem, the proof of which is given in Appendix B.

. Theorem ¢ 3.2, Consider the equations* =

_ =1y
L.(k) = Pi+A'[(I+BlBiLl(k+l)+BzB'zLz(k+l)) ] [Li(k+1)+Li(1<+1)BiB{ Li(k+1)
e -1. -_.
. + Lj(k+l)BjQi B.’i Lj(k+l)][I+BlBiLl(k+l)+BzB'sz(k+l)] A_ ,
LM =P, j#i, ,j=12. (26)
which evolve backwards in time. We assume the inverse of
(1+ BlBiLr(k) + BZB'ZLz(k)) exists for every k€9 , then

(i) There exists a unique Nash solution to the game which is the

following:

all) = Yo ) = B 00%, 00+ F 0%, (k) (27)

l
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upl) = *Y3(I,0) = Fy0%, 0 | (28)
where

F,,(k) = - B{L, (k¢ ) 1+ B, B{L, (k+1) + B,By L, (k+])] 1A (29)

F i) ='-B'lLl(kH)[I+BlBiLl(k+1)]-lA | . (30)

F,(k) = -B'sz(k+1)[I+BlBiLl(kﬂ)+.BZB'2LZ(k+1)]'lA (31)

(ii) The cost to go of decision maker i at stage k is

B . SOSOOMD
.ooet N
]

3,00 = E[230)L K 2;00] + K ) . (32)

where

K, (k) = tr {[A' L, (k+D)A-L,  ()+B,JE5 (k) - Lia<+;)[z3(k+1)-n] +L, 4(k)£1(k)}

(¥

+ K (kt1) Ki(N)=tr{Pi23(N)} . (33)

L, (k) = A'[(I+B, BIL, (k+1)) '] [ L, (k+1)+ L, (kc+ 1) B B{ L, (kc+1)]

[1+B, B! L (k+1)]” 1a.1L S +P (39)

L, (k) = A'[(I+B,BiL, (i+)))” l]'[LZ(1<+1)+L1(k+1)BlQZBiLl(k-)-l)]

[i+B, By L (k+ )] 1A - L,(x) + P, (35)

Remark 3.3, Notice that the control laws Fn(k), Fl4(k) and

Fz(k) in the above theorem are independent of the observation noise

11
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in the measurements (18), i.e., a sort of separation principle holds
under such information structure. Also we can see from the Kalman
filter equations (19) that the estimation error Ei(k), i=1,3 is

independent of the controls.

Remark 3.4. Compare now Theorem 3.2 (where

%[J
Il(k) = [il(k),i3(k)}, Iz(k) = {;‘l(k’]) with Theorem 2. 1Y(where

. . _o* Kk
Il(k) = {xl(k)]. L(k) = {xl(k)}-and let M=2) we see that v,(L,(k)),
the Nash strategy of decision maker 2 is the same in the two different
information structures. (W—ﬁrﬂe)—-—i-s(k)-(h-e—,—?ezﬂé-’%.

<hen-Theorem432-is-exactiy-the-same-asTheorem-3.2.- 1-with-
-M---a-) Motivated by Theorem 2.5 and 2.6 where we see that

more informa.tién to the decision maker who knows all his opponent's
information is beneficial to him, we expect that the extra information
3‘:4(1() (Il (k) compared with Ly(k) in Theorem 3.2) is beneficial to
decision maker 1, which is indeed and will be shown in the following

section.

‘Remark _3.5. The nonsingularity condition of the matrix

I= BlB'lLl(k) + BZB'sz(k) and the boundednesé condition of Li(k)' the
solution of the coupled Riccati equations (31) were discussed in

Theorem 2.32and Remark 2 a4 [1].

x Some Informational Properties of LOG Dynamic Nash Games

In this section we first give the definition of '"better information

for decision maker 1 alone,' then compare the Nash costs of both




....

decision makers resulting from two different information and then
prove that better information for decision maker 1 alone is beneficial
to him. A sufficient condition that better information for decision
maker 1 alone is beneficial to decision maker 2 is also derived.
Consider Information I and II. In Information I the estimates

il(k) and i;(k) are generated through the past controls and the

measurements
yli-) = H{x(onv:(.) , v{ - N(o,zb ’ (36)
- i=1,2,

with corresponding estimation error {(k) and E;(k). In Information
" I the estimates i?(k) and i3 (k) are generated through the past

controls and the measurements

. .
() = Hix()+vi-) . vil-neo, ) (37)
i=1,2,

. . . . I $1

with corresponding estimation error 1 (k) and 23 (k).

Definition .4.1. We say that Information I provides better ini'orma-

tion for decision maker 1 alone than Information 1I if Ei(k) = ZIII(k),

y @nd Z;(k) # ):?('k) for at least one k€9,.

An obvious fact about the definition given above is that all the

231(k) < zls'l(k) for every k€O

improvement is in the part of :“:4( .), decision maker 1's private
information while there is no improvement in the part of k,(-), the

public information of both decision makers.

Let J:(k) and K:(k). i=1, 2, be defined as in (32) and (33)

4
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corresponding to Information I and

sy o pralag oF .
Oj(k) I'I[Mj(k) x; ], j=1,3.

Similarly we define Jin(k). K?(k). i=1,2 and ﬁ?(k). j=1,3 for

Information II.

Theorem ° 4.3 The Nash solution given by Theorem 4. 3.2 has the

vproperty that better information for decision maker 1 alone does not

increase decision maker i's cost if

Pi+A‘Li(k+l)A-Li(k)-Li4(k) 2 0 for every k€ 61 . (38)

It lowers decision maker i's cost with strict inequality in (38).

Proof: From p;ft (ii) of Theorem 3.2,

7300) = E[£5(0)L,(0)23(0)] + K(0) = er {L,(0) B3(0)} + K(0) .- (39)
From the recursive expression of Ki( «) in (33) we obtain
I1(0) = tr {Li(O)ﬁg(O) +[P+A'L (DA-L, SOIEL0)+L. (DR+L, (0) ] (0) +

N-1.
z -IL[Pi+A' L, (k+1)A- L, (k)- L (k)] E5 (k) + L, (+1)R + L, (k) z{(k)'_]}
- : (40)

Similarly

19




33(0) = tx {r, 00 ?(0)+[Pi+A'Li(l)A- L (0] T3 (0)+L,(DR+L,  (0)EN(0) +

N-1 : ,
T [[ParLy A Li00- 1 M) S M L IRAL T 0I]]  (a1)

By using tﬁe fact that
P 1 )1
30) - fi5(0) = -(=310) - (00 - (42)
we obtain
3%0) -0 5 P+A'L_(k+])A-L. (k)-L. , (k)] 2= (k) - £&
£ (9)-3(0) = T tr {[BHA'L(k+DA-L, 0)- Ly ()] 25 () -Z30))

n t. .
4L [T - (43)

Suppose now that Information I provides better information for
decision maker 1 alone than Information.lI, then Lemma & .2

implies J1(0) > J1(0) if

P +A'L(k+1)A- L (k)- L (k) > 0 for every k€®, , (44)

and J{'(0) > J1(0) if the inequality is strict in (44).

Corollary 4. 4, Better information for decision maker 1 alone
does not increase decision maker 1's Nash cost. It lowers decision
maker 1's Nash cost provided that the matrices A, BIB'1 and IPl are

nonsingular,

Proof: Substituting (26) and (34) into (44), we obtain

| 6
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1
- )

P{PA'LI (k+1)A - Ll(k’ - Ll4(k)

1 ' ' -1y '
= A Ll(k‘H)A-A [(I+BIBIL1(R+I)) ] [Ll(k+l)+Ll(k+l)BlBlLl(k'l'l)]

[1+B,BIL (+1)] A
=U'VU >0 | (45)
where
U = [1+B,BiL,(+1)] 'A (46)

and

\ Ll(k-l-l)BlB'lLl(kﬂ)+Ll(k-i-l)BlB'lLl(k+1)Bl.B'1Ll(k+l) >0 (47)

Furthermore, if P1 > 0 then (26) implies that Ll‘k) > 0, hence U is
nonsingular and V > 0 provided that A, BlB'1 and P‘l are nonsingular.

Theorem 4. 3. then implies the desired result.

-

Remark 4. ¢ Notice the resemblance of equation (47) to (-3'8) of

[1]. This is so since 5':4(-) is orthogonal to decision maker
2's information, any improvement in the part of i4( ) is totally used
by decision maker 1 to optimize his performance which brings forth

the team-like benefit.

Remark 4.5/ In Corollary 4.4 we see that better information
for decision maker 1 alone is beneficial to him and this fact is
independent of the number of stages N and it is not necessary for
the "better' information to be “'"dynamically better.' In contrast

with Theorem 5:1¢}[1] the above two features reveal the essential

|t




difference between improving the decision makers' '"private"

information and '"public' information in a dynamic Nash game.

X Related Properties of Static and Feedback Stackelberg Games

In this section we extend the results obtained in Nash games to
static and feedback Stackelberg games. The difference of a
Stackelberg game and a Nash game lies partially in that the roles of
the decision makers are asymmetric in Stackelberg games while it
is symmetric in a Nash game. However, the Stackelberg solution
of a static game is also a Nash solution of the same problem under
‘explicit control sharing and a feedback Stackelberg solution of an
N-stage dynamic game is also a Nash solution of a. 2N-stage game .
(as has been observed in [6]). Hence we expect some different as
well as some similar pfoﬁertie)?é‘s“t:ik'élbefg gﬂinq;l{i’m Nash
games. N

Consider a two-decision-maker static Stackelberg game., Let
decision maker 1 be the leader and decision maker 2 the follower.
Their cost functionals are given by Jl(yl., yz) and JZ(YI'_YZ)’
respectively, where

T ¥y) = E[ Jutn, +%u;plu3+ u;QluJ+ uiS;x + ws, x| (48)

i#i, iL,j=1,2.

. L
where x€R" is a Gaussian random vector, x ~ N(0,0), uiER ! is the
control variable of decision maker { and Pi' Qi' sii and Sij are real

constant matrices of appropriate dimensions. The linear

\8
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measurement of decision maker i is given by
v = Bt . 9)

Hi is an man real constant matrix and mi is a Gaussian random

vector, w, - N(O,ti) which is independent of x. The control law Y;

is chosen from l'i where.l‘i consists of all the measurable functions

m: L
mapping from R '!to R ' such that yi(yi) is a second order randpm

vector. A pair (y:, y;) is called a Stackelberg solution with decision

-

maker 1 as the leader if Y: satisfies the following inequality

. .
sup Jivy.¥3) £ sup I1(¥40Y2) (50)

for every ylel'l and y;GRz(yr), where Rz(yl) is called the rational
reaction set of the followex; to the strategy yx_announced by the

leader, and it is defined by
v [0 0
Rolyp) = { V26T, 13,000 ¥) £ Tplvevp) . ¥vEr, b D)

Notice that if Rz(yl) is a singleton for each ylel‘l. then (50) can

equivalently be written as
* 0, * 0
Ty valv ) < Iy valyy)) . (52)
It turns out that R,(Y,) is a singleton indeed [7 ] and is given by

Yg(Ylv Yz) = -SZZE[X‘ Yz] - QZE[YI(YI) ‘ Vz] . (53)

14




A sufficient condition that a unique linear Stackelberg solution
exists was given in [7 ] which condition is determined by the
matrices Pi and Qi' i=1,2, and has nothing to do with the informa-
tion available to the decision makers. We assume, in the following
derivations that a unique linear Stackelberg solution exists under
every information we will consider. The result of the following
lernma is known but we include a short proof for reasons of

completeness.

Lemma 5.1. The leader's cost decreases if he has an extra

measurement yé available.

Proof: Let (y:, y;) and (Yg» yg) denote respectively the Stackelberg
solution before and after the leader acquires Ve After the leader
acquires y_, he can choose a suboptimal strategy yi’(yl. Ye) = Y:(yl).

then the follower will react by choosing yg(yz') = y;(yz) and hence

J ,(v‘l’(y,. Ye) Yg(yz) <7 I(Yf(yl.ye).vg(vz)

Ity Yaly) (54)
. _ o
The follower, who is in the lower level of a hierarchy, see
things different from the leader and knowing more is not necessarily
beneficiai to him. As in the Nash case, we first prove in the
following theorem that if the fol}ower acquires extra measurement
Ve which satisfies certain orthogonality conditions or the follower

knows all that the leader knows, then such Y. i8 beneficial to the

follower.

90

ST JERIE NI AT X TP TR

----------
------------------

--------------------




............

Condition T _ ()y, o (y,.y,}. (iDy, =My,

Theorem 5.2, If the follower acquires extra measurement y such

that either one of Condition € holds, then the leader's strategy

does not change.
Proof: Let Y:(yl). Vg(yl) denote the leader's strategy before and

after the follower acquires y_and y;(yl, yz), yg(yl, Y2 ye) denote

respectively the follower's reaction before and after he acquires y_,

then by (53) o _
. ) . - PR,
YZ(YI' Yz) = "SZZE[xl Yz] - QZE[ Yl(y,l) ‘)'2] ’ ._(55)
and
Yg(v 1Y2eYe) = =555Elx|y,. v 1- QElv, (v ) |yprv,] - (56)
Under either one of Conaitions < th'e following is true
E(v,(y)) |y ve] = Elv,(y,) |yp] - - (57

Hence (56) can be written as

Yg(Yl’ YZ ’ ye) = Y;(Ylo yZ) = SZZ{E["‘YZD YQ]' E[x! yZ]}

* . R
YZ(YI' YZ) - SZZY (58)

where § 8 Efx|y,.y,] - E[x‘yz]. which by Lemma 2.{ is orthogonal
toy, and Ya- The leader's strategy after the follower acquires y_ is

the following (we omit the arguments in the strategies Y:(-) and

¢\
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Y?‘ +) for a while to avoid the tedious expressions):

0 , 1 1.0, 0 0 o'
Y, =arg min E {'L-’Y'IYI+3Y2 PiYa+ viQp vt ViS5 1%t Y2 slz"}
Y {y)en

= arg min E{-l- v +1 "PY*- *ps "+l(S ¥)P(S,.y)+YIQ y*
g mi 2 W2 Y2 F1Y2 " Y2 F1°22Y T2 1P22Y) Aile22Y T M Y,
YI(YI)EI'I

=Y195227 + V15 X+ ¥ Spx- ‘ssz"stz"}
. , . * » * o
h'. - = argmin E { % Yin”% Y2P Y2 +Y)Q ¥, +yiS Y, slz"}
: Yl (yl) € rl .

3
S
- %

t'_‘ = Yl a (59)
-

where we use the orthogonality coaditions to get rid of the terms

. *t - a . . 3
o Y, PlSzzy and Y'IQISZZY in taking the expectation operations.

Theorem 5. 3 .I the follower acquires extra measureme_nt_ye

such that either one of Conditions C holds, then the follower can

do better by incurring lower cost.
Proof: The proof is similar to Theorem 2.6 and hence omitted.

:Z: : Now consider a feedback Stackelberg game with the same
formulation as in the feedback Nash game of Section I except we
consider two cases which correspond to two different information

structures. Let Ii(k) denote the information available to decision

maker i at stage k, then

Case A:  IpG) = (%(K), %300}, LK) = (%007 .

b Case B: IIB(k) f%,001, lf(k) = (%, (Kk), %,(k)]
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Let us call decision maker 1 the leader and 2 the follower. A pair

(g:. g;) is a feedback Stackelberg solution to the game if

* * K * Kk =
sup I (8,850 Y2) £ SUP k’l“lk'Yx'sz'Vz’

*
veer, (*v5)  Y3ERL(Y)

¥ admissible yl;. Where

k-1 _k+l N-1
[YilY D'.'OYi DYO ....'Yi—— ]

k(yl) is called the rational reaction set of the follower at stage k

‘to the strategy Yr anpnounced by the leader and is defined by

K, _ (ak * k * =k * k _* _k
R, (v}) = {v,_ | 5085 Y10 Bope Y2 ) S 508100 Y1+ Bper ¥2)

¥ admissible sz} G

The feedback Stackelberg solution for Cases A and B are provided in
Appendix C

Let Information I and II be defined as in Section JL and satisfy
the condition in Definition 4.1, then in Case A Informationl
provides better information for the leader alone than Information I
while in Gase B Information I provides better information for the

follower alone than Information II. We have the following theorem.

Theorem - 5.4 Under the information structure of Cases A and B,

the feedback Stackelberg solution has the following properties:

23




.................

(i) Better information for the leader alone is beneficial
to the leader.
(ii) Better information for the follower alone is beneficial

to the follower.

Proof: One way of proving this theorem is by using the connection
of the feedback Stackelberg solution to the feedback Nash solution
according to the procedure of [ £ ] where it was proved that a feed-
back Stackelberg solution of an N-ltige dynamic game is also a
feedback Nash solution of a 2N-stage dynamic game and the result
is then implied by Corollary 4.8 An independent proof of this

theorem is provided in Appendix D.

Remark 5. A similar feedback Stackelberg game was studied in

[ 8] where the expressions of the solution obtained were so compli-
cated that it was not possible to invesﬁg'ité i:ts informational
properties. The expressions of the solution'céuld have been

simplified if the authors of [ 8 ] had observed the orthogonality

condition in the information structure, i.e., Lemma 3.1 (ii) of

this pepit

Examples

Example 1 This example illustrates Theorem 2.5 and 2.§
under Condition C (i). Consider a static Nash game where all

the notations follow those defined in Section I

......................
......................................
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: 2,2
Jl(yl’ YZ) = El(x + ul+u2) + ul]

2 2
Jz(Yl, yz) = E[(x +. ul+ uz) + uZ]

Decision maker i has measurement Yo i = x+w.. x, w, and w,
are indepe'i;dent random variables with zero mean and unit variance,

This example was previously considered in [2] and the Nash
solution was given by Y:(Vl) = - % ) -and y;(yz) = - -% yé with
corresponding Nash costs Jl(y:, y;) = JZ(Y:. y;) = %—f%. Now if in
addition to Yo decision maker 2 acquires extra measurement y e’
what is the impact to his Nash cost? It was shown (Case B of [2]) _ _
that if Ye =Y, then decision maker 2 incurs higher Nash cost. In
the following we will find a Y such thaty_ 1 {y,,y,} and demon-
strate that this Ye will lower decision maker 2's N'ash cost.

Let y, = x-w;- w,, then it is easy to check thaty_ . {yl,yz}.
Denote the Nash solution after decision maker 2 acquires this Ye by

(Y(l’, Yg)- then by direct calculation we obtain

0 1
Yl(yl) = - '3 Yl

and

0 1 1
YZ(YZ’ye) = "5Y2°%Ye

The'corresponding Nash solution of decision maker 2 is

0.0
Jo(Y). v5) and

0 0, _ 315 _ 468 _ P
T2041:¥2) = 560 <900 = J2(n e Y2) -

95
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Example 2. This example illustrates Corollary 4.3.

Consider a dynamic Nash game with the general formulation given

in Section ® ftnd I Wechoose A=0.5, x. =0, 00 = 10,

0
i = Pi =R=1, Qi =20, i =1,2. Two kinds of information, I and II
are described below:

Information I, il(- )s i;(-) are corresponding to
I -
yy(-) = x(-) + vi(+)
vil-) ~ N(o, 1), i=1,2.

I I
yo(-) = x(+) +v,(+)
. I 11 .
Information I, x, (-), x3(-) are corresponding to

yi) = =) + v
vi-)= N, 1), i=1,2.

yp(+) = 0 x(+)+v(-)

It is easy to see that for Information II, illl(k) = igl(k) at every stage

k and Information I provides better information for decision maker 1
alone than Information II. We compute the Nash cost of decision
mal;;er 1 for different number of sta..gea, i.e., N from 1 to 19. The
resulting costs are shown in Table .. 6.]. Notice that Information I
is more beneficial to decision maker 1 than Information II. Two
features of this fact are: first,. 'it is independent of N, the number
of stages and second, since A = 0.5, 5':;( . ) is not dynamically better

than %3(- ).

WL 4
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Benefit of Decision

l Maker 1 Due to
. Better Information
Y Information I Information I for Him Alone
:§ 1 16. 72872 16. 98826 0.259544
4 2 19. 79963 20, 12271 0. 323073
-t 3 21, 68059 22.06824 0. 387644
| 4 23.31423 23. 76004 0. 445805
?, 5 24. 90147 25.40363 0.502162
al] 6 26.48017 27.03831 0.558140
-3 7 28.05730 28.67135 0. 614047
K 8 29. 63415 30. 30409 0. 669940
; 9 31.21094 31.93677 0.725830
- 32.78773 33.56945 0.781720
34, 36451 35.202)2 0.837610
5 35,94123 36. 83479 0. 893500
.. 37.51808 38.46747 0. 949390
8 39. 09486 40. 10014 1. 005280
F 40,67164 41, 73281 1.061170
- % 42, 24843 43, 36549 1.117060
4 43, 82521 44.99816 1.172950
3 45. 40199 46. 63083 1. 228840
;:: N=19 = 46.97877 48.26350 1.284730
: Table 6. ). Costs of decision maker 1 in Example 2 under
different information versus different number of
 stages.

¥l Conclusion

In a general two-decision-maker LQG Nash game (static or

.
CE .

dynamic) we proved that more or better information for one of the
decision makers alone is beneficial to him if he is informationally
stronger ;han his opponent, i.e., he knows all his opponent's
information. In a static game, more information to one of the
decision makers alone is beneficial to him if such information is

orthogonal to both decision makers' information. Such results are

| 93 |
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NI quite understandable. Since Nash solution is an equilibrium solution

.:?Z with consistency coastraint [ 7], any unilateral improvement of

information does not guarantee benefit to either party. A unilateral

- ~ improvement of information, l;owever, does guarantee benefit to the

N who has the improvement, if his opponent's strategy does not
change by such improvement such that he who has the improved

B information can use it to optimize his strategy without constraint,

| ' In order that his opponent's strategy does not change, his opponent

should be totally ignorant of this improved information aand which is

implied by the orthogonality condition given by Lemma 2.4.
Similar results hold in static and feedback Stackelberé games for
both the leader and the follower. The leader in a static Stackelberg
game, however, can use any extra information to his benefit. -

As we voted before, the investigation of the informational
property of the dynamic Nash game is greatly simplified by the '
formulation of the game where a sort of separation principle holds
and the estimation error is independent qf .the controls. Without
these nice prc;perties, it will be difficult .either in defining ""better
information for one decision maker alone' or in solving for the Nash
solution, Either one of the difficulties makes the problem extremely

bard.

ae

An extension of the results obtained in this pepta to N-
decision-maker Nash game is straight forward and such results

constitute a fundamental step in designing information structure

A [, 11, 1] for large scale systems.
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| APPENDIX 4
Proof of Lemma 3.1, o R
Consider the following state equation and measurements:
E(k+1) = AZ(K) + w(k) , %(0) = x5 (A1)
yk) = HE(Kk) + v,(k) , i=12. ' L (A2)
where x,, {w(k)} and {vi(k)} are defined as in Section I < By
comparing (A1) with (17) we immediately have
kel ken-l o :
x(k) = %(k) +-}:o A [Blul(n) + Bzuz(n)] o (A3)
n=
. Let
- “E00 8 E(xea|F0n.LFm) TR
[;Z
i‘ and
I ~
' £,00 2 E[20|7,00),....5,0) 500 . ., 5,0] 45

then f&i(k), i=1,3 are given exactly by the Kalman filter equations

(19) except that {19b) is replaced by

A A
T =AY 0 (A b)

.............
.........................
»
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20 = &0+ g | (4
k-1 k-n-~1 : |
LT
’ ,- ‘‘‘‘‘ Since ;‘13(1;) is a reﬁnezpeﬁt of ’:‘l(k)' “we ol:»ta.'in“

§1(k) = E[2(k)| 7,(0), ..., F,(x)]

= E[E[ i(k) ‘ ?1(0). L) o [ ?l(k). ?2(0)' ee ey ?z(k)] l;l(o’o L] 71(1‘)]

= E[£W)] 7,(0),....5,00] . - (A9)
!"!ence
. E{ £,00| &, ()] = E[E[%,0 | 5,(0), . . ., §,00] | &, (0]
-El%00) B0 = F0 . (A0
- (A7) indicates that
S E[£,0)| £,00] = E[%,00 + g | %,00 + g,]
= E 2 - = = k
; [83(k)‘xl(k)]+Qk xl( ) +¢k
= ;‘l(k) ' (All)
By the projection theorem [l ], %,(k) - E[%;(k)|%, (k)] is of zero
mean and orthogonal to il(k). i.e., E[ §4(k)] = 0 and i4(k) 1 ;‘l (k).
Finally
30




E[(%, (k) + 2, ())(%) (k) + £ (k))')

E(%,(k) %3()]

E[%, (k) &, ()] + E[2 (k) %} (k)] (812)

i.e.,

’ E[i;(k) £,00) = E[2,00 2400)] - E[%; () £)0)] -

l_ll(k) - 1i3(k)_ . . (A13)
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X ¥ _ APPENDIX B
B In this appendix we prove Theorem 3.2. The proof is
similar to that of Theorem a.rvf(uj. Since the Nash solution g'.: of
. decision maker i is a solution of the optimal control problem where-
. the decision maker j, j # i fixes his strategy at g;, we can solve
the problem by dynamic programming. Recall that Ji(k) denotes
the cost to go of decision maker i at stage k.
; At stage N,
'. J,(N) = E[x'(N)Px(N)] = E[&}(N)P,%,(N)] + tz[P,T,(N)]
= E[ZMNL,N)% 3(N)] + K (N) S (81)
i=1,2 |
where
. LN &p, x,m2er[PE,N) .
- ' At stage N-1 : .
-‘ Ji(N-l) = E[x'(N-l)Pix(N-l) + ui(N-l)ui(N- 1)+ u_'i(N-l)Qiuj(N'l) +

X(N)P x(N)] jEi, Lj=1,2. ®2)

After receiving Ii(N-l), decision maker i's objective is to minimize

ji(N- 1) given by

..................
.....................................
-------------------

-
.............




71"“' ) = E[x'(N-D)Px(N-1) + u}(N-1u,(N-1) + us(N-1)Q;u, (N-1)

+ x'(N)P;x(N) | I, (N-1)) (83)

By applying the Kalman filter equations (19) and Lemma 4.3.1 we
obtain |

'.TI(N-I) = uj(N-1)u, (N-1) +u} (N-1)Q,u, (N-1) + (A%, (N-1) + Byu, (N-1)
+ Bzuz(N-n)-Ll(N)(Ais(N-l) +Byu (N-1) + B,u, (N-1)
+ 24(N-1)P %, (N-1) + tr{ P, L,(N- 1)+L1(N)[23(N/N-l)- I,(N)]]
+K,N) (84)

and

z(N l) = E[(AX3(N 1)+Bl I(N 1)+Bz z(N 1))' z(N)(Ax3(N"l)

+ Bu 1‘N ~1)+B,u,(N-1))| L, (N- 1)]
+ E[ui(N- l)Qzul(N-l) |1, (N- )]+ i'l(N- l)Pzil(N- 1)

+ tr{Plzl(N-l) + LZ(N)[}.'.s(N/N-l) - )..‘3(N)]'3 + K,(N) (8 5)

Since ?i(N-l) is convex in ui(N-l), the Nash pair at stage N-1, *yl:'l,

%* N-
Yl; 1 is chosen such that

A

=0, i=1,2 (B 6)
a1
i * N-1 * N-1
Yi » Y2

We then have

33
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'vf“(xlm-l)) = -[1+B{L,(N)B,]" lB'lLl(N)[Ais(N-l)-r B, ") l,me)
(B7)

Vo lpm-2)) = - 1By L, 008, ) "By L, M) A%,N-1+B.E[ " 1x (v-)

| I,N-1]] | | (88)

From (87) and by Lemma 3.1 (i) we obtain

?_ J "y e | 1) = - [ B{L @08, )" BiL, (N){A% (N-1
| + B, *v3 "L, 0N-1)] | 9
h .Subatituting (89) into (B 8),

o e T
.

Y2 N-) = -[1+By L, (), !B, L, (A%, (N-1)- B, 1+ ByL )3 )]

BL (AR (N-0+ B, vy "N, -1) (510)

By applying the following formula (811) several times we obtain

(p12).
Z(1+2,2)) = (I+ zlzz)“z1 (B11)

V2T N-1) = - By L, NI{1+B,BL 0N + B,By L, 0] Ak -

= FZCN-I)S':I(N- 1) (p12)

where

F,0-1 & opyr, B BIL ) + B,BLL,MN)] 'A (513)
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Substituting (P12) into (B 7) we obtain

“Yr,N-1) = - ByL, (N)[1+B B'LI(N)]'lAi4m-l)-BiLl(N)[I-rBlBiLl(N)

+B,B) zm)] A% (N-1)

= F;,(N- 1)XI(N 1) +Fl4(N -1)x 4(N-1) (B14)
where .
A \ -1

- Fj(N-1) = -BjL (N)[1+B,BiL,(N) + B,B,L,(N)]"'A (B15) l
and

F ,(N-1) 8 & tL, (N)[1+B,BIL, ()] 'A (B16)
Notice that ( N 1,* N- l) given by (B 12) and (p14) exists and is
unique if I + BIBiLl(N) + BszLz(N)] is nonsingular.

Substituting (812) and (814) into (82) we obtain

JN-1) = E[Ry(N-DL(N-D&,(N-D] + K(N-1)  _ . (B17)

where Li(N-l) and Ki(N-l) are given by (26) and (33) respectively.
As we can see, (817) and (Bl) are of the same form. In deriving
the Nash pair ( YN 2. * N 2) at stage N-2, we will repeat what we

did at stage N-1. An inductive argument then proves the theorem.
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APPENDIX @

In this appendix we derive the feedback Stackelberg solution,

the problem was ltate& in Section 11 - -

Theorem ¢ : There exists a unique solution to the feedback

Stackelberg game, (i) the solution for Case A is

a0 = V5, R 00) = Fy L 00%,00 + F i 008,00 (c1a)

aalk) = “¥;, G0 = Fy, (0 (A% (4B EYE (10 | 12 1]} (cam)

[N}

= Fp) 5 (k)% (K) - |
-where | )
Fi;a0) = -BiZ, (k+1)[1+B,B{Z A(l—§+l)]' 1 | (c2)
fl 4a® = -?iLm(ki-l)[HBl.B'le(kﬂ)]'IA' - | (c3)
rz;(k) = -ByL,, (k+1)[1+B,ByL, A(k+1)]" - (c4)

F1a(k) = -ByL, , (k)[1+B, B, L, , (k+1)] '[14B B1Z AD] Tl (es)

' 'l' . : : '
Z,0) = [I"BszLz A(k)] (L, A)B,QBLL, A(k)+L1A(k)] o
f -1 <
(1+4B,B5 L, , (k)]
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Liak) = PppFj q00F) ) 4 (k) + F) ) (IQ)F ) () +

(A+BIF11A(k)+BZFZIA(k))' LlA(k+l)(A+BIFIIA(k)+BZF21A(k))’

LN =P . (c7)

L2aW) = PytFyy AIQ,F ) o (K045, Jk)Fp () +

(A+B,F\ (k)}+B,F,)  ())'L, ,(c+1)(A+B,F} | , (K)}+B,F, ,(k)),

La®M) =P, . (c8)

Their costs to go at stage k are respectively

1A = E{R00L, (%K) + K, , () (e
Toa®) = E(%00L,, 00330} + Ky, () (c10)
where

K4 (k) = tr[P+A'L (4)A-L, (k)] T, (_k) -L, ,(k+1)Z, (k+}) +

Llu(k)zla‘HLlA(k*nR]+pr.(k+l)' Km(N) = tr{P123(N)}.
(c11)

K,alk) = tr{[R+A'L, (k+])A-L, 4 0NZ; (k)= L, (k41T (k+1) +

Lz 4A(k)zl(k)”"z A(k+1)R]+KZ A(k+l), Kz A(N) =tr( Pzz3(N)’; .
(€12)

Ly 406) = BHF) J(K)E, J(KIHA+BIFy, 4 ())' L (K1) (A+B Fy ()= L, ()
(c13)
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L, 4 A(k)- = PZ+F1'4 A(k)QzFl 4 A(k)+(A+Bll:" 14 A(k))' Lz A(k+l) (A+Blrl 4 A(k)- Lz A(k)

(C 14)
(ii) The solution for Case B is
upp) = Vi) = Fy)p00%, 0 (c153)
G = *Y5oU700) = F,p000A%,00+8, yip 00))
= Fp gk +F g0k, ()  (e15h)
where
- F 00 = -BYZ (+)[I + B,BIZ (ct))] ‘A (¢ 16)
Fpl) = -ByL,pGkeni + B,ByL, - (k+)]"} (e17)

F, pk) = -ByL, L (et){1+B,BL L, - (kt)] (14 B BLZ (k4D)] "4  (c18)
F,,p(k)=-ByL, (H)[I+B,ByL, o (+)] T4 . 4c19) i

- ] "1' t -
yA B(k) = [I+BZBZLZB(k)] [LZB(k)BZQlBZLZB(k)-%Ll B(k)]

[14B,ByL, (] . | (c20)

Lyg(k) = Pp#Fy g(IF)) gk)+F) (k19 F oy gtk) +

_ (A+B)F ), glk)+ By Ty gk))' Ly gkt D(A+B, F)y gk} B, By k). LygiN) =F, -
\ (21)

31




L,glk) = Py+Fi g(KIQ Fy) g(k)+F5 ) (k) k) +
(A+B, Fy; k) 4B, Fp glk))' Ly gkt 1) (A+BFy, gk)+B,Fp (k)
L,giN) =P, . (c22)
Their costs to go at stage k are respectively .
7,00 = E{R4L, 5 (KIZ5()] + K,p (k) (024)

where

K, gk) = tr {[BHA' L, J0cH)A- Ly (k)]Z5 () - Ly glkH)E 5 (k1) +

Ly, g0, ()+L, fk+DR) + K| Lfk+1), KIB(N)f.tr[PlIB(N)} . (¢ 25)

K, glk) =tr { [P2+A' L, g(k+)A-L, 4B(1«:)]123(1<)- L, g(k+1)T4(k+1) +

LZ4B(k)Zl(k)+LZB(k+1)R }+KZB('k+l), KZBm) = tr{P2£3(N—)}. (€ 26)

Lyy gk} = BH+F,  oK)Q)F, (k) HA+B,Fy g pfk))' Ly fk+1)(A+B, Fy  plkc)- Ly plkc)
(c27)

L, 4 g)=Py+F;  K)F, (k) +(A+B,F, 5)' L, gfk+1)(A+B, F, , (k)= L gfk).
' (c 28)

Remark: It is easy to see that in the above theorem
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FZB(k’ = FZA(k) , LlB(k) = LIA(k)
Fo1a) = Fpatk) Log(k) = L, , (k)

Proof of Theorem B: We will prove part (i) only, the proof for part
(ii) is similar.

Feedback Stackelberg strategies have the property that they
are in static Stackelberg equilibrium at every stage of the problem.
This property can be observed from its definition and hence we can

ao.lve the problem by going backwards (a dynamic programming type

of approach).
At stage N (no more decisions to be made), the cost to go of
decision maker i is

3,(N) = E[x'(N)P,x(N)]

= E[RMN)P%,N)] + tr(P,Z,(N)}

= E[i'3(N) LiA(N)3'c3(N)] + KLA(N) (c29)

where

LaMN) =P , K ,0N) = tr{PT,M))

At stage N-1 (I?(N-l) is available), decision maker i's objective is to

minimize ji(N-l) given by

T, (N-1) = E[x' (N-1)P, x(N- ) +u! (ﬁ -1, (N-D+ul(N-1)Q;u (N-1)+x' (N) P x(N)

J1,(N-1)] (¢30)
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By applying the Kalman filter equations (19) and Lemma . 3.1 we

obtain

'51(14-1) = u} (N-1)u;(N-1)+u} (N-1)Q,u, (N-1)HA%, (N-1)+Bu, (N-1)
mzuzm-m'me)(A::3(N-1)+Blul(n-1)+nzuz(n-1))
34 (N-1)P %, (N-1)+tr (BT, (N- 141, ((N)[T,(N/N-1)-£,(N)])

+K,(N) | (e31)

and

"'5Z(N—l.) = E[(Ais(N-l)+Blul(N-l)+Bzuz(N-l))' 2 AN AR (N-)+B,u,(N-1) " "
+ B,u, (N-1) |L(N-1)] + E[u}(N-1)Q,u (N-1) |1,(N-1)]
+%,(N-1)B, %,(N-1) + tr{Pl}:l(N- D+L, J(N-1)[Z,(N/N- 1)-Z,(N)]}

+K, ,(N) - “ il (c32)

To any strategy yllq;l(rf‘ (N-1)) announced by the leader, the follower's

rational reaction set is a singleton, i.e.,

. Yoq (5 (N-1)) = -ByLya[14B,By L, )] [AMN-1)

+BiE[ Y}, (4 N-1)|1,(N-1)] (c33)

Substituting uz(N-l) given by (¢ 33) into (C 31) and optimizing Tfl(N-l)

with respect to ul(N-l) we obtain

* - ’ '
ul(N-l) = Fl 1‘,,"(N--l)‘v:l(N--l) +Fl

4A

(N-l)i4(N-l) (c34)

—~—
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where FuA(N-l) }nd FIM(N-I) are given respectively by (€C2) and

(€3). Substituting (€34) into (€33) we obtain uy(N-1) given by (c16).
Substituting u}(N-1) and u,(N-1) into J;(N-1) we obtain (H9) and

(c10) for k = N-1. The proof of this feedback Stackelberg solution

can then be concluded by an inductive argument.
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In this appendix we prove Theorem . 5.4. We will prove

part (i) only, the proof for part (ii) is similar.
From equation (C9) and (€11) of Appendix { we obtain that the

cost for the leader in Case A is

3,,(0) = tr{ L (0)13(0) + [B+A'L, ,(1)A- L, (0)]z, (0)+ Ly (DR,

... N-1
+ L 4400E,(0) + k}i . [[B+A'L, (kt])A-L, ,(k)- L, , (k)] Z4(k)

+ L) A(k+)R + L, , (K)E,(K)]) . ol ‘ i)

Let J’IIA(O) and JnlA(O) correspond to Information I and II respectively,

then

J'H(O) it (0) -N'El tr{[P+A'L, ,(k+1)A-L, ,(k)- L (k)][}:n(k) Zl(k)]
A0 T140) = T er{{B#ATLy (Ut DA- Ly (k) - Ly 00125 ()- 25

+ Ly, k) z?(k)"- zi(k)]} | (02)

If Information I provides better information for the leader alone

than Information 1I, then Lemma .2 implies Jﬁ\(O) 2 J{A(O) if

P1+A'Lm(k+l)A- Ll.A(k) - L14A(k) 2 0 for every k€6 .
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Y Substituting equation (¢ 7) and (C13) of Appendix(C into the left hand
side of the above equation we obtain

-1,q4

‘, P+A'L, (k+])A- Lyafk)-L, (k) = [Bil‘m‘kﬂ)[l*nlail‘m(“”] A}

] -1

[I+BiLLA(k+1)Bl] Bi"‘m“‘“)[”BIBi-I,‘m(k“.)]
20 | (D3)
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Impact of explicit and implicit
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A two-person one-act LQG Nash game is considered under three different information structures: explicit control sharing, implicit
control sharing and static information. The relations among the corresponding solutions and their impacts on the resulting costs are
studies.

1. Introduction

In game problems, the players have certain kinds of information; they make decisions based on this
information. We say that there is explicit control sharing (ECS) in a game if a player’s information
includes the previous control values of other players. Two previous works concerning the impact of ECS
on the optimal costs in Nash games were reported in [1] and [2]. In [1] a two-person LQG Nash game
was considered where the information structure is partially nested and each player acts once and it was
shown (theorem 2 of [1]) that the first player might do better if he reveals his control value to the
second player than he could do in a static information structure (SIS). It is known that in Nash games, if
there is ECS then in general there exist many solutions [8]. Uchida considered an example of a
two-person LQG Nash game [2] where the information is partially nested and each player acts once,
and showed that among the nonunique solutions under ECS, one of them is equivalent to the SIS
solution. Furthermore, it is claimed in [2] that this SIS solution gives a local minimum of the first
player’s cost among the linear class of the nonunique solutions. In other words, the first player might do
better at least locally in a SIS than if he reveals his control value to the second player. The claim which
Uchida did not prove and the resuit of Ho, Blau and Basar in [1] seem to contradict each other.

In this paper we consider a two-person LQG Nash game where the information is partially nested and
each player acts once. We study the impact that the first player, who reveals his control value explicitly
and implicitly to the second player, has on the first player’s Nash cost. By implicit control sharing (ICS)
we mean that player 2 has a noise-corrupted measurement which is affine in the system state and player
1's control. Our aim is to relate the Nash solutions under ECS to those under ICS and give a full view of

* This research was supported by AFOSR grant 82-0174 and by the USC Faculty Research and Innovation Fund.
** Current address: Bell Communications Research, 331 Newman Spring Road, NVC-1F255, Red Bank, NJ 07716, U.S.A.

North-Holland
Large Scale Systems 7 (1984) 219-226

0167-420X/84/$3.00 © 1984 Elsevier Science Publishers B.V. (North-Holland)
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solutions exist under certain nonsingularity conditions. Here we state the solutions and for proofs we
refer to [6]-{8). The impact of ICS and ECS is then considered by comparing the Nash costs J,(y,, v,) of
cases A and B (including the Stackelberg cost) with that of Case C.

2.1. Nash solution of Case A
Under the condition

1+ ‘hbi + ‘Izb;* $a(gy— P12g)bib, # 0 @)

the unique Nash solution of Case A is given by

Yialy) = —{1+ ‘hbzl + sz§+ ialg, - plﬂz)blbz}-l{blql +{alg,— p1g)by} - b1 + hzl)-l)H , (8a)

Yy = —(1+ qzbi)_l%bz{bﬂu()’x) + [y, + hy(y, - dyi )] - (1 + hi + hi)—l} . (8b)
where

{a=—(1+q,b3) 'q,b,h,d(1+ h3+ h3)". )]

Notice that (y,,, ¥24) depends on ¢,, which in turn depends on d. To different d's, corresponds different
pairs (y,a, Y24)4 Provided that (7) holds. Let us call M the class of all these solutions (y,. ¥24)s fOr
varying values of d.
2.2. Nash solution of Case B (linear class)
There exist uncountably many Nash solutions for Case B, with the linear ones given by:
Yi80) = —{1+ 4,07+ @:b3+ £(q1 — Pugbibd ' - {b,gy + (@, — prddbat - (1 + BY) 'y, (10a)
Y1 Y3 u) = ~(1+ 63 'q:b24b,y,16(y)) + [y, + hoy3)(1+ hi+ hY) '+ L(u, - vis(0) - (10b)
where [ is any real number such that
1+ q,bi+ qb3+ {(q,— pg)bb, # 0. ay
Let us denote by L the class of all these linear solutions (y,s. ¥:);-

2.3. Stackelberg solution of Case B

The Stackelberg solution with player 1 as the leader is denoted by (y,s. v5) and is the following:

(V15 Y2) = (Yi8s Y28)gmis s (12)
where
{s=—(1+gb) 'q.b\b, . (13)

2.4. Nash solution of Case C

The Nash solution of Case C is a special one of Case A with , = 0 in (8). It is also a special one of
Case B with ¢ = 0 in (10). Notice that (7) and (11) are satisfied when {, = { = 0.




[t e e Sege et St B ey 4

M. Tu, P. Papavassilopoulos | Two-person one-act LQG Nash game 223

AJ' (768 ’ 728 ) 4\ JG(YM’ 724 )

Sy —

— T~

1 P 1 >
| 9 Cs 0 ¢ Of dg d
Fig. 1. Impact of ECS: Ji{(y1s. 728) as a function of { where {s Fig. 2. Impact of ICS: Jy(y1a, 724) as a function of d where
denotes the Stackelberg solution and 0 denotes the SIS Nash ds= (1 + hi+ hi)b\/h; and O denotes the SIS Nash solution.
solution.
Theorem 1.

() In L, the set of uncountably many linear Nash solutions under ECS, the unique local and global
minimum of J, is given by (y.g, ¥28);-¢ Which is the Stackelberg solution.
(i) Under ECS, player 1 can do better than under SIS if

(€ 0).
(iii) Under ICS, player 1 can do better than under SIS if
de€©.(1+h3+hd)b/hj].

Remark 1. This theorem shows that Ucnida’s claim, namely that the SIS solution is a local minimum of
J, in L, remark 3.3(i) of [2], is false.

Remark 2. This theorem indicates that the Stackelberg solution is more beneficial to player 1 as should
be expected in general than all the other Nash solutions under ECS and SIS. It is not difficult to see that
the Nash solution under ECS considered in theorem 2 of [1] is actually a Stackelberg solution.

Remark 3. This theorem and Fig. 1 give a general description of the impact of ECS on J, which includes
the result of theorem 2 of [1] as one particular impact out of uncountable ones.

Remark 4. The parameter d in (3) can be regarded as a measure of the strength with which player 1
communicates his control implicitly to player 2. It can be regarded also as an incentive mechanism in a
leader—follower situation, e.g. if the leader cannot communicate his control value to the follower free
from noise, then by designing d = (1+ h2+ h3)b,/h, in (3) and playing Nash (ICS), the leader can expect
the same performance as in a Stackelberg game where the follower has perfect knowledge of the
leader’s control value.

4. Comments

In this section we give comments cor.cerning the impact of ECS on J,. In the first part we explain part
(i) of theorem 1, i.e. why a local minimum of J, among L is given by the Stackelberg solution instead of
the SIS solution as claimed by Uchida. In the second part we explain part (ii) of theorem 1, i.e. why
N player 1 can do better in a continuous range of ¢ under ECS than under SIS.

Since J,(v,, ¥;) is quadratic in y,, i,j = 1,2, J,(y,,7,) is differentiable w.r.t. y,. Furthermore, y, is
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Stackelberg solution (6) to hold [4]. Since J, and J, are convex in y, and y,, the first-order necessary
condition is also a sufficient condition for {* to be a Stackelberg solution.

It is remarkable that under ECS, although J,(y,s. v;5) depends on the statistics of the observation
noise, its ordering for different ¢ is independent of the noise, as we can see from (20). Thus, in order to
explain the ordering of J,(v,g. v;5) for different ¢, one need consider only the deterministic game. In
Section 2, if there is no observation noise in (2)-(4), then for any given u, the optimal value of u,
minimizing J, is determined uniquely by

yix, u)=-(1+ qzbg)—qubZ(blul +x). (29)

The locus of such points (u,, u,) given by (29) for all u, € R is called the reaction curve of player 2. The
reaction curve of player 1 is similarly determined. Equicost contours of J, and J, and the reaction curves
of both players are plotted in Fig. 3 for some particular values for the parameters of the game. The
Nash solutions of Case B given by (10) now reduces to:

yis(x)=-{1+ q,b§+ ‘bbg"' {(q, - szqz)bxbz}-l{‘hbl +£(q, - Pi2g)b}x, (30a)
yam(x, u)=-(1+ ‘hbi)-l%bz{bﬂla(x) +x}+ {(u, - vp(x)), (30b)

for all £ € R such that (11) holds. Notice that at each solution point of (30), the value of u, given by
(30b) is equal to that determined by the strategy

yx, )= —(1+ q:03) '@ b,(b,u, + x) . 31

Equation (31) is the same as (29), which means that all the Nash solution pairs (y,s, ¥,8); are on R,, the
reaction curve of player 2. Furthermore, since {u;} given by (30a) for all { € R such that (11) holds, is
the real line, we conclude that R, comprises all the linear Nash solutions of Case B. Point C in Fig. 3
represents (¥,c, Yoc) = (Y18 Y28);-0» the SIS solution where R, and R, intersect. Point S represents
(715 ¥5) = (18> Y28)¢=4> the Stackelberg solution, where R, is tangent to the contour of J, [1]. Fig. 3
shows clearly that point S gives a global minimum of J, on R, and point C is by no means a local
minimum of J, on R,. All the points between C and S on R, yield lower cost of J, than point C. Finally,

Contours of
#\ decreasing
Jy

Fig. 3. Hlustration of the impact of ECS on J,. R;: reaction curve of player 2; R|: reaction curve of player 1.
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ABSTRACT

We study adaptive schemes for repeated quadratic Nash games in
a deterministic and a stochastic framework. The convergence of the

schemes is demonstrated under certain conditions.
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1. INTRODUCTION

The object of this paper is the study of a static quadratic Nash game
where the players do not have knowledge of the parameters involved in the
description of the cost of their opponents and of their opponent's informa-
tion. The game is played repeatedly and at each stage the players know
the past actions of their opponents. The only dynamics involved are in the
accumulation of the information on their opponent's previous actions; apart
from this dynamic aspect, the problem considered is a repeated statis game.
We examine both the deterministic and stochastic case, consider some adaptive
schemes for updating the players decisions, and we show convergence to the
optimal decisions (in the mean square sense and with probability one for the
stochastic case), under some conditions. The scheme for the stochastic case
is actually a stochastic approximation algorithm of the Robbins-Monro type.

The underlying motivation for the present paper is to study situations
of conflict where the players do not know some of the parameters involved
in the description of the others' cost functionals, or in the state equation.
Such situations have been and are being studied for the single player - i.e.,
control problem - case and come under the name of Adaptive Control; the cor-
responding problems for situations of conflict, i.e., Adaptive Games, has
received very little attention up to now. The problem studied here can be
considered as a very simple type of adaptive game where the players adapt
their decisions so as to converge in the 1imit to the solution of a static
Nash game. It should be noted that the strategies exhibited in this paper
do not constitute a Nash equilibrium pair for the construed dynamic - dynamic
due to the dynamic information - game; but similarly, the adaptive control

strategy in the self-tuning regulator problem [5], converges in the limit
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to the optimal solution without being necessarily optimal at each stage.
Adaptive games are important for several reasons. For example, when two
players are involved in a situation of conflict, it is reasonable to assume
that each player knows his own objective, but not that of his opponent; in
addition, he might not know several of the parameters of the dynamic system
which couples him with the other. In decentralized control, we think of
decentralization as a scheme according to which each controller knows his own
objective and information but not those of the others. If each controller knew
the objectives of the others -~ as is implicitly assumed in many existing decen-
tralized schemes - then the notion of decentralization is weakened. Although
considerable progress has been achieved for the centralized controller, single
objective adaptive control [4-6], the area of adaptive games is in its infancy.
The only work that the author is familiar with in this area is [7] and [8].

In [7], adaptive schemes based on self-tuning for stochastic Nash and Stackelberg
games are considered, where the players have the same information. (In the
present paper the information of the players is different.) In [8] two
adaptive schemes are studied for repeated Stackelberg games in a deterministic
framework.

The structure of the paper is as follows. In Section 2 we consider the
deterministic case and study three simple adaptive schemes. In Section 3 we
consider an adaptive scheme for the stochastic case. The stochastic scheme is
a Robbins-Monro type of stochastic approximation algorithm. Although several
results exist for such algorithms, many of which can be used to provide conver-
gence for the scheme considered here, the conditions of convergence that they
would obtain for our scheme are more strihgent than those that we prove here.
In each section we provide several comments relating the results with previous

work, expand on their meaning and provide appropriate motivation. Finally, we

have a conclusions section.
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2. DETERMINISTIC CASE

™
Let J;, J,: R

m
2 . R be two functions defined by:

Jihﬁ,u2)=!5u%ui+u;Riqj+u%ci. i, 1,ij=1,2 (1)

m.
where u; €R 1, R], R2 are real constant matrices and Cqy» C,p are real constant

vectors of appropriate dimensions. A pair (u{,u;) is a Nash equilibrium if

it satisfies ([1],[2]):

m
J; (uf,u3) < 9y(up,u8),  Vou eR ! (2)

. m
Jo(ug,u3) < Jp(ufsuy), ¥ ouy€R 2 (3)

or equivalently if

u* 1 R ¢
R1 1|l +c=0, R-= Toe= |7 . @

*

u3 R2 1 c2

Ji and u; are the cost and the decision of player i.

Let us assume that player i knows Ri and Cio but not Rj and ¢; (3#1); then
he cannot solve (4) for u;. Consider also that this game is played repeatedly
at times t=1,2,3,... , that at time t, player i knows Ii= {u]’1....,u]’t_],

u2.1""'u2,t-1} and plays Use which is chosen as a function of I;. i.e.,

Uit

- r\.(xi t), i=1,2, t=2.3,... (5)




D W T

The question is: For what F,, F2 the recursion (5) will converge to a solution

of (4). Let us now examine three possible choices of F], FZ'

Case 1

iy - L
Fi(lt’t) = 'Riuj,t-I -c;, 1=1,2, P4 (6)

The meaning of (6) is that player 1 minimizes J](u],uz t-1)’ i.e., he reacts

only to the last announced decision of player 2. Recursion (5) assumes the form:
Uyt U1,t-1
] _(R
U2t ¥2,t-1 u

Recursion (7) will .converge to a solution of (4) for any initial condition
(u.I 1°Y7 1) if and only if all the eigenvalues of the matrix R lie within the

open disc of radius 1 centered at the point 1 in the complex plane, i.e.,
ARY-1] < (8)

((8) is equivalent to: ]A(R1R2)| < 1.) Condition (8) also guarantees that (4)

has a unique solution.

Case 2

iy t-2 1-8
Fi(lt,t) = -Ri[uj’t'l +euj’t-2+ ceot 8B Uj’]] '{F‘ - ci (9)

1>0>0, i=1,2, i#j
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The meaning of (9) is that player 1 minimizes J] with respect of uys with u,
fixed to a value that is a weighted average of Uy 4 poeeoln g where more

» 1]
weight is put on the recent values of u,. We assume that both players use the

same 8. Recursion (9) can be written equivalently:
+ c), t=z2 (10)

Recursion (10) will converge to a solution of (4) for any initial condition
(u] 1°Y2 ]) if and only if all the éigenva]ues of the matrix R lie within the
open disc of radius (1-e)" centered at the point (l-e)'] in the complex plane,

i.e.,
AR) -5 | <15 (M) |

Condition (11) also guarantees that (4) has a unique solution. (Notice that

as t=+ o, et'1- 0 and thus (1-8)R in (10) assumes the role of R in (7).)

Obviously, for 8=0, (11) reduces to (8) and (10) to (7).

Case 3

i 1
Fi(It’t) = -Ri[uj,t'1+uj,t°2+ ...+Uj’<l] 't—_'r C,i (]2)
i=1,2, it#j3.

The meaning of (12) is that player 1 minimizes J] with respect to uys with u,

fixed to the arithmetic mean of Uy 4 yseeeslp g Recursion (12) can be
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written equivalently:

Uyt U, t-1 1 U,t-1
u u
2,t 2,t-1

Recursion (13) will converge to a solution of (4), for any initial condition

(u]’1,u2 1) if and only if all the eigenvalues of R has positive real parts,

i.e.,
Re A(R) > 0 | (14)

(For proof see Appendix A, Lemma A3,) Condition (14) also guarantees that

(4) has a unique solution. Notice that as 86=1, (11) reduces to (14).

Remark 1 Obviously (8)= (11)= (14). If (8) holds, (7) converges faster
than (10) and if (11) holds, (10) converges faster than (13).

Remark 2 In all three cases we assumed that both players use the same
scheme. Nonetheless, it might happen that they use different ones. It is easy
to verify that if player 1 uses scheme 1 and player 2 uses scheme 2, the region
of convergence is larger than if both were using scheme 1 and worse than if

both were using scheme 2., Similar results hold for the other combinations.

Remark 3 If we consider (10) with 6> 1, i.e., more weight is assigned to
the old measurements, the scheme will not converge. This can be easily verified

by considering the scalar version of (10) with c=0:

.............................

...........
...........




- 1-u 1
up = Uy (- 3 LB bhu=g
which for t—+e behaves like
1- t-
e = Va1 B2

(since O0<u< 1) and is easily seen to fail to converge.

Remark 4 (8), (11) and (14) can be expressed equivalently in terms of

the eigenvalues of R]Rz.

Im2A
2J
c2
-1 ]
_ )48
o)
=23
Figure 1

(8) corresponds to IA(R]R2)|< 1, i.e., inside the unit disc, (11) corresponds to

(1-6) JA] £ 26 cos § |a]* - (1+0) <0

A(R,R,) = In]ed®
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j.e., inside the curve C2 of Fig. 1. (14) corresponds to eigenvalues of R,R2

being inside the parabola defined by
Rex + K(Im)Z< 1,  A=X(RRy) .

Remark 5 1If (8) (or equivalently |A(RyR,)| < 1) holds, the solution of (4)
is called in game theory a stable equilibrium, and the game is called stable[1].
The reason is that if player i deviates from u;, then player j(j# i) responds
according to scheme (6) and to that player i responds according to scheme (6)
and so on and eventually they both converge back to (uf.u%). Obviously the
notion of stable equilibrium depends on the reaction scheme that the players
employ. If schemes (9) or (12) are used as reaction schemes, we have an

enlarged class of stable gémes.

Remark 6 Since the scheme of case 3 (12) has the best convergence region
out of the three schemes, in the next section we will deal with the stochastic

analogue of (12).

Remark 7 A1l three schemes considered, can actually be viewed as schemes

o for solving Ru+c=0 (see (4)), by using an iteration of the form:

u

n#1 = Yp - DplRup*cl (15)

where Dn has to have the structure

..............................
.........................................
........................




(Iterative solutions of linear equations is a vast subject, see for e.g.

[16].) Scheme (13) employed: D; = % I. We can create new schemes
which converge under weaker conditions than (14) by allowing D:'==%-Di where

D‘, pz are properly chosen constant matrices. For example, if R]' R2 are

14, in (15), the

scalars, (14) is equivalent to 1> PLPY but if we use D:==E- ;

convergence condition becomes

which is equivalent to:

d, +d,>0

and can always be satisfied for some d], d2 as long as I#rﬁrz. Notice, that

1# rirs is the necessary and sufficient condition for solvability of (4) for

any c.

Remark 8 Another way of going about the problem of this section is to
consider that at each stage, each player uses a certain scheme to estimate the
R and C of his opponent and then calculates his action by solving (41) wherein
he employs the estimates of the R and ¢ of his opponent. In such a scheme,
each player should know at each stage not_6n1y the previous actions of his
opponent ~ as in our scheme - but also the rationale according to which his

opponent calculates his actions. This is necessary in order just to estimate

his opponent's parameters at each stage. Nonetheless, such an additional
9




knowledge can be permitted and the convergence of the resulting scheme
studied. Finally, it should be noted that the problem considered here
and the schemes proposed, besides having their own merit, provide a

. certain motivation for the schemes considered for th; stochastic case

of the next section.




3. THE STOCHASTIC CASE

Let x be a Gaussian random vector in R" with zero mean and unit covariance

matrix. Let
y; = Cx, =12 (16)

represent the measurements of the two players, where C], C2 are fixed real
matrices of dimensions N XN, Nyxn respectively. Let Ty be the set of all
measurable vy :Rni-+Rmi_functions with E[yi(yi)'yi(yi)]< +e. Set u; =y (y;)
and let

J

represent the costs of the two players. R], R2’ S], S2 are fixed real matrices
of appropriate dimensions. A pair (Yf;Y;)EIH XTy is called a Nash equilibrium

if it satisfies
J](Yf,yg) < J](y1,yﬁ) Vy,en (18)

Jz(YT,Yﬁ) < Jz(Y"f’Yz) v 7261‘2

For background concerning the formulation of the stochastic Nash game see [18].

(18) is equivalent to (see [2,3]):

Y'f(y]) + R] E[YE(.VZ)I.Y]] + S]E [xl-Y]] =0 (192)
v3(yp) + Ry ELy§(y ) ypd + SpE [xlyp] = 0 (19b)
1
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It is known (see [ 3]) that if no eigenvalue of R|R, equals the inverse of
any arbitrary but finite product of powers of the squares of the canonical
correlation coefficients of Yy Yo (i.e., of O1s 02,...), then (19) has a
unique solution which has to be linear in the information. The set of values
where the eigenvalues of R.lR2 should not lie is a countable isolated set of

points in [1,+®) and thus it is generically true that (19) admits a unique

solution which has to be 1inear in the information. We can assume without

loss of generality (see Lemma 1 [ 3 ]) that

o 0.
ny <Ny C]Ci = In] < n]’ CZCé= Irlzx "2’ C]Cé= Oy 0| (20)
v
LO M Ny Xxn,
1zo]zczzcn]zo
and then Y;‘(yi) = Liyi where L], l.2 are the solutions to the system:
L] + R1L2C2Ci + S]Ci =0 (21)
L2 + RZL]CICé + SZCé =0
Let us assume that player i knows Ri’ Si’ Ci’ but not RJ., Sj, Cj, it s

then he cannot solve (21) for Li' Consider also that this game is played

repeatedly at times t=1,2,3,..., that at time t player i knows
i .
1 = {u.. RESIRIU g yoeeeally ¢ ’yi,l""’yi.t-l} (22)

where Yit is the measurement of player i at time t. We assume that

12
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= C.x (23)

where the xt's are independent Gaussian vectors with zero mean and unit
covariance. At time t, player 1 employs the following scheme for finding
Uyyt

-1
] . e
et RleT I vz, ke Sifine =0 (24)

A justification of this scheme is the following: at time t player 1 has to
solve (19a) for u;, and thus he has to calculate E[u2,t'y'lt]’ E[xly]t].

If Uyy s linear in Yois then Upys¥qy aTe jointly gaussian and thus

Eup olyye] = ElUpe¥ied (Eypo¥ied) vy ¢ (25)

.
t-1

Player 1 approximates E[u,.yj,] by ?;—IT T

ki:] (uz,ky]k); a motivation for this
approximation is the following: 1If player 1 knew all the parameters of

(16), (17), he would then solve equation (19) at stage t, employing (23);
t-1
due to the independence of the x,'s, t—lT k§1 (”2ky1k) would provide a

T "

reasonable approximation of E[u2t|y'lt]’ since Usy would be independent of

é Upgs¥ig® £ # k. By overlooking the lack of independence of Upp ON Up,u¥y s
£ # k, he still employs the above approximation, hoping that things will
work out. The convergence results of Theorem 1' and 2' provide a posterior

L justification for the reasonableness of this approximation.

[r. By our assumption (20) E[y1tyit]=l and E[xt|y1t]=S]C.iy.lt. (28) yields

. that u,, 1s linear in y,,, f.2., ujy =L,,y,, where L, satisfies
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t-1
] [} [ -
Lie * Ry ler [ vadud * 5% = 0 (26)

A similar equation is satisfied by L2t' if we consider that Uye is calculated by
an equation corresponding to (24) and Upy = LZtth' The equations for th’ L2t

can be written recursively as:

_ 1 : .

% Lig = bi,ea1 = BT [y et Rl ez, e, e 56T (272)
3 - 1 ' 1

- Lot = Lot " BT Lz et Rb e e 12,0 P 5200 (270)

(27) is the recursion tha? we intend to study and show that under some con-
ditions converges to the solution of (21) in the q.m. sense and w.p.1. The
initial condition L]], L21 of (27) is taken to be an arbitrary pair of real
constant matrices and we are interested in convergence for any initial
condition. (27) defines a Markovian stochastic process (th’LZt) and is
obviously a stochastic approximation algorithm of the Robbins-Monro type [9]
for solving (21). (27) is the stochastic analogue of the scheme of case 3 of
the deterministic case.

Let us now study the convergence of (27). Let us call Ligs Migs Coo d,

the i-th columns of th, L2t’ S‘Ci, SZCé respectively, i.e.,

Lig = Dhygeeeskn eds Lop = [Mgoe e oy o]
' (28)

5,6} = [c],...cn]], 5,C5 = [dz....,dnzj

14
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Ljg = E[45¢ds My = Emyy] (29)

Using (20) and the fact that Ly, depends on yyjs...s¥qq_ysY¥pysecea¥pyeee-a¥p ¢ 1

we obtain from (27):

Lig = Zigo ’E]Tr [2; ¢ *oifymy g1+ 64 (30a)
rg = igy 5o [y g *o4Rok 4y *+ 4y (30b)
i=1,. N
and
Mig = M5 0 =) (M5 g9+ d;]
i= gt (30c)

Recursion (30c) converges for any initial condition (see Lemma A3). (30a) can

be written as

15
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and using Lemma A3 yields that (31) converges for any initial condition if and

only if

I c.R.I
Re ) >0 (32)

It is easy to see that if (32) holds for 9 then it holds for any Tis

0“’1"“1' We thus have proven:

Theorem 1' The means of L]t’ th as defined by the recursion (27) converge

to a solution of (21) for any initial condition, if and only if

Re A >0 (33)

It is easy to see that if (33) holds then (21) has a unique solution. If
we want (27) to converge to a solution of (21) not only for any initial
condition, but also for any pair of measurements, i.e., any C], C2, we have
to consider o, =1 in (33) which is exactly the condition for convergence

of case 3 of the determinstic case.

Next we will show that th’ L2t converge to a solution of (21) in the
mean square sense, under condition (33). For simplicity and w.1.0.9. we
will assume S1Ci= 0, SZCé= 0. We can write (27) component wise in terms of
Lit’ L and then form the products zitzit’ ii= 1,...,n], mitmjt’ 1331,
n, and ‘itmit i= 1,...,n], j= 1,...,n2. These products satisfy recursions
that can be easily calculated, and taking expectations of which result in a

recursion which gives the evolution of E(zittjt), E(mitmjt)’ E(2 't) in terms

it"
of E(2; 4., s.t-l)’ E(m; 4.10M5,¢-1) E(£i.t-1m3,t-1)' Before writing down

16
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this recursion we introduce some notation:

S M A - S gl -l ~he gt 2o e -

RN oo e aeme et e aede Sl AAS She s i

t . C sl
iy % EL4pi s 13 0,my (34a)
t - E[m,,m!, ) ij=1 n (34b)
ij ithjtde 27 Laeeeslly
t . . - -
ij E[‘zitmjtj’ i=1,....n J=T,...5n (34c)
[t t t t
Ayq cecoceoca A ' K §4 eocvnne K
11 in, 5 1,1 1.n,
: : - : :
L] . ' . .
: S . 3
AL A - K g eeennn K
n]l "M E " s nysNy
........................ . (35)
1
i
t t - t t
(kEy .l (k> )y MY e M
.]] n]’] E ;” ;',nz
: . ' : :
: : : :
t t - ' t
) KE o)y 0 M M
L(K] "2 ( "1"2) ‘ 2,1 R
I 0 i o 0 0 0
i
E oRy-.
]
0 1 1 o o,y 0...0
]
------------------- F Rt (36)
U]Rz 0 E I i
[}
| .
0 ‘G“IRZE 0
] .
0..... 0 1 0
: Do
: :o .
L0 . o e 0 ! I_f
17
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Then Nt satisfies:

Ne =Ny - g7 [N *QNt-IJ*(t'_lﬁ’Zi(NM) . (37)

where £(-) denotes a linear time invariant function of its argument. (For

details of this derivation, see Appendix B.)

Using Lemma A4 we conclude that N_ goes to zero for any initial condition if

t
and only if the matrix Q has eigenvalues with positive real parts which is

easily seen to be equivalent to (33). We thus have proven

Theorem 2' L]t’ L2t as defined by recursion (27) converge to a solution of (21)

for any initial condition, in the mean square sense, if and only if (33) holds.

Next, we will show that (L1t’L2t) converges under (33) for any initial
condition to the solution of (21) with probability 1 (i.e., a.s. convergence).
We again assume for simplicity and w.1.0.g. that S]Ci= 0, SZCé==0. We will use
the theorem in paragraph 3 of [11] (or Lemtma 3.5 of [13]) which we restate here
and which is an easy consequence of the martingale convergence theorem of

Doob.

Lemma 1 Let {Vt} be a sequence of random variables such that E(V]) exists.
Let A be a real number and suppose Vtz:A. Furthermore, assume that
(-]

+ ,
tzl E(E[Vt+]- Vt|V1,...,Vt] ) converges. Then the sequevce {Vt} converges with
probability 1.

(Recall that if x is a random variable: xt = 5(]x] +x).) Let Xy =

(L]t""’zn],t’m],t""’mn ,t) . We will prove that Xy converges to 0 w.p.1

or equivalently that Vt==||xt||2 does. Let A = 0. From (27) we can easily

18
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obtain (see Appendix C)
a
|E [Vt+]- VtIV],...,thl < f’vt
for some positive number a and thus
E[V, .4 -V,|V v,Jt <%y
WVen - VelVysee oV 1 s gV

In order to fulfill the assumption of Lemma 1, it suffices to show that

iy o
tE'I TE(W) <+ o (38)

It holds
E[vt]= tr Nt

and thus it suffices to show that

o tr Nt
T T <+ @ (39)

t=1

From (37) we obtain

t Nk t Nk
Nog1=N=-Qf Z - z Q'+
: (40)

19
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1f we assume that Q has eigenvalues with positive real parts (40) can be solved

t Nk
for I —?-to yield
k=1
t Nk t Nk
z =L '[Nogys Nyw 2
k=1 3 (tﬂ LR ;'2')
t Nk t Nk
Since N, converges, it 1is bounded and so is T . Thus T — is
k k=1 k2 k=1 K

uniformly bounded and thus (39) and (38) are bounded. We thus conclude that

ﬂxtH2==V converges with probability 1. thﬂz converges to 0 in the mean

t
square sense by Theorem 2' and thus in probability and thus it has a sub-

sequence converging to zero with probability one ([17], Thm. 2, 5, 3, p. 93).
Since we just showed that thﬂz converges with probability one, this limit

has to be zero. Let us now summarize the results of this section in a Theorem.
Theorem: th' L2t as defined by recursion (27) converge to a solution of (21)
for any initial condition, in the mean square sense and with probability one

if and only if

Re

(Under this condition (21) admits a unique solution.)

Remark 1 Nt’ (37), goes to zero but it does not have to converge

monotonically.

Remark 2 One can construct the stochastic analogues of the deterministic

schemes of cases 1 and 2, if a different — appropriate - approximation is used

20
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for EE"ZtIylt] in (25). A little reflection, though, will persuade the

reader that these schemes will converge under conditions more stringent than (33).

Remark 3 For a repeated Stackelberg game one can consider schemes similar to
those considered here, if one assumes that the Leader does not know the
parameters involved in the Follower's cost. An idea of this sort was recently

studied in a deterministic framework in [ 8 ].

Remark 4 It should be clear from (30) and (37) that the rate of convergence

of the means and the covariances of Ligs ms s depend on the eigenvalues of the
matrices in (32) for o; = l,c],...,cn], or equivalently of Q. Actually, a
recursion of the form (A1) with X =Re())> 0 goes to zero like (nx)"I (see [12]).
Thus if Am denotes the reél part.of the eigenvalues of Q, n1=1.....n]+n2 and

X =min Re(Am) the mean converges no slower than (ti)-1, the covariances no
slower than (tZX)-l‘ the third moments no slower than (t3x)'] and so on. Thus
if one were to consider whether te[th’LZt] converges weakly to a gaussian
random variable as t—w=, 8 should be chosen equal to X so that the second
moments converge to a nonzero constant, but then automatically all the moments
will also do so. Thus in general one cannot have asymptotic normality of
ne[L]t,th] for some 6>0. As a matter of fact, Theorem (1) of [12] cannot be
applied since it's assumption (A4) fails for the stochastic approximation
algorithm (27), considered here, as should be expected from the above

remarks. Finally, it should be pointed out that the fact that the rate of

convergence of the algorithm is given by tfx and 'c'ZX for the first and second
moments, is a useful fact when implementing it, in deciding when to stop, what is

the probability of error when stopping in a finite number of iterations, etc.

4|

..................




Remark 5 Stochastic approximation has been an object of intensive study (see

[9-15]). Several of the results available can be used to prove convergence
of the iteration (27) but they demand conditions stronger than (33), or they
are not applicable to it. For example, in [9] it is required that in the
scheme Xn41 = xn--% Yor ¥ is uniformly bounded. Assumptions III and IV of
[10] do not hold for (27). 1In proving asymptotic normality [12], he uses
Assumption (A4) which does not hold for (27). Assumptions A5, AS' of [11] do
not hold for our scheme. Lemma 3.1 and Theorem 4.3 of [13] can be applied to
(27) but result in more stringent conditions than (33). The convergence
analysis of [15] demands boundness of the second term in (27) which is

not applicable to our case. Assumption iii in Problem 1, p. 92 of {14]

does not hold for (27).

22
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4. CONCLUSIONS

There are several directions in which this research can be continued.

One of them is the corresponding problem for the Stackelberg game (see Remark 3
in éection 3). The dynamic case where the players are also coupled through the
evolution of a discrete time equation is obviously important and useful. We

hope that the analysis presented here will be helpful in such further research.

23
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APPENDIX A
Lemma A1 Consider the scalar recursion
x.1=0-2)x, n=1,2,3 (A1)
n+] n’"n’ PEITae e

where A and X, are complex numbers. Then xn-'O for any X, if and only if

S|=—

Re(A)>0. (If we set t = 1+...4+—, we see that (A1) is a discrete approxi-

mation of x=-Ax and thus Re())> 0 is expected in order to have asymptotic

stability of (Al).)

Lemtma A2 Consider the scalar recursion
X =(1-l+0(]))x n=1,2,3
n+1 n 2 '’ 2aTne s

where x and X, are complex numbers. Then xn-°0 for any X if and only if

Re(r)> 0.
Proof
It is an immediate consequence of Lemma Al since % dominates 0(]—2). o
n
Lertma A3 Consider the recursion
x 0= (I-3 A+0(35))x., n=1,2,3 (A3)
n+1 n pl om? 2EaTaee

where A is a real square matrix and Xy is a vector. Then Xn =0 for any x, if

and only if Rex(A)> 0.
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Proof We bring A to it's Jordan form and apply Lemma A2. It is helpful to

notice that if P is a real symmetric matrix

- 1 [} ) ]
xr'MPan = XPx -4 Xp [PA+A'P] Xpt Xn 0(;2')xn

and thus if A has Rer(A)> 0, we can find a positive definite P so that A'P+PA>0.

Therefore if n is sufficiently large

1 ' ' ' _]_
o xn[PA+A P] X > X 0(n2 ) Xp

n+l
fact that the % term dominates in (A3). D

and thus x Pxn< x"1Pxn and consequently X is bounded. This justifies the

Lemma A4 Consider the recursion
- 1 ' 1 <

where Nt’ Q are square matrices. Nt-oo for any initial condition if and only

if Re A(Q)>0.

Proof Let X¢ be the vector composed of the columns of Nt’ We can write the

recursion equivalently as

1 1
Xea) = Xy - g Mg Tz lxe)

It can be checked that Re A(A)>0 if and only if Re A(Q) >0 and thus Lemma A3

can be applied. o
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It should be pointed out that if X0 evolves as in Al, and A is real, X

behaves Tike n™ (see [12], eq. 2.3). If A is complex, then (A2) implies that |x |2

behaves like n-22 and thus |xn| behaves like n”2, i.e., n'Re)‘ . Consequently
Xn4) in (A3) behaves like n'x. where X =min ReX (A) and L in (A4) behaves like
t-ZX where A=min Re A (Q).
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APPENDIX B

et £, My, €5, d; be as in (28). For convenience, let

[~ = - -
N 4
Vit * sl o Yot : (1)
y z
n n,
I |
(27) can be written as

N,

_ 1
Lit = 45 01 T TT L4 00 Y YRy & 2 +c,] (B2)

. i=1,...,n-|

n
1
1
it "Mt T [Mea AR 2 Vit et (83)
i=1, -sNy

For convenience, let us drop the subscript t-1 from “i £-1° M g1 From (B2),
L] 9

(B3), we obtain:

n n
2 2
= ' 1 [ [
‘titzsjt ‘i‘j T [2£i£3+yj .GE'I Z 4mRy 4y Ry kE'l zk"'k‘j*

n
2
' ' | ' , ™
+ “icj"ci‘ij [;ci,ljnfj ;1 zz"‘i"'zk'l +
"2 "2 .
+ y"i!1 kEI zkmklj"yiyjkl 5 )2"1 zkzlmkm£R1+
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BRI L T

.
g Y

+yiR1 I zkmkc'.+y. z zc.m'R'+.¢ic3+ci.¢3+c‘.c3]

k=1 J 7 4

i.jglg-..,n]

n n
| 1

[ ] = ] - 1 [] L} [ ]
MmsgM5e =mym3 - gy [2mgms + 2, ARt R T

n
1
1 ) ] ] ] '
+ midj+d’.mj]+(—t:—)-2- [mimj+zj ‘tf] ‘y,@mizLR2+
™ ™
+2zR, T ystmi+z.2R I Yo Y. L, LR, +
172, 7KK i k,£=1 K27k x2

n n

1
z
k=1

1

+ 2z_R

72 JL,__]£1!,2 J

i,j=1,...,n2

n n
1 2
1 - ) 1 tpt
LigMse = 45 - T [2.e,l.mj+zj ,zz'l Y4 Ro+ ¥Ry k>=:1 z

n
1
[} L} ] [} ) [}
+ L.d.+c.m. ]+ M. +2Z, . +
!'TdJ c1mJ] m [£1mJ ZJ ‘;1 y‘Z‘LLRZ

n2 N2 M
+y.Ry T zmmi+y.z.R, I T 2z, ym4L'R,+
LIRS S S RS I i e A X

) 2
md.+2

+ y,R C.L'R.+ 2.4

i=1.....n],- j=1,....n2

ykzkdj+z. I y,d.g'R +m1.d.+dimj+d1.dj]

+cmi+c.d!
R A B e A L R AL

Let A:j. M}j, K:J be defined as in (34), let c,, d, =0 for simplicity and

w.1.0.9.. We take expectations in (B4)-(B6) and drop for convenience the

t-1 t-1

superscript t-1 from A:?. Mij . Kij in the right hand side.
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-~ - et 2 2 or s . o T e v —
PR PR A ol et e e gt it iatt e st i S/t e el Tt e st gt IR AP b IS i it St TR T T T T T 4y

.............

t-1

expectations, we use the fact that 4.7, m:.:" are independent of y, , |,

785 .) We obtain:

t 1 ' '
A'ij=A'ij-ETT [ZAij'*o.K..R] +°iR](Kij) ]

Ju
1 ] '
Fen? Mt ek ot k)t (67)

°i°jR1(Mij + Mji)Rl s, ifit]

R(n22: M, +E(y222)M RY, i £
1oy kT EVEE T J
k#i )

i,j='|....,n1
\

t 1 . :
Mig=Mig-oor (M5 + 05K 4Ra+ o3Ry(Ky5)'d

1 '

i,j=1,....n2 and °i=0 if i>n.|

c.=0 ifj>n]
J

t 1 ' h
Kij = Kij T [ZKij+ojA”R2+oiR.|Mij]

] ey
ez Bttt (89)

1-1.....n1, 0180 if i>n.l

j"l,....nz, oJ'O if §>n,
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Defining N, and Q as in (35), (36) we see that (B7)-(B9) can be written in

compact form as in (37).
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APPENDIX C

Let x, = (‘;t""’zﬁ],t’mi,t""’maz,t).' Using (27) or the equivalent
(B2), (B3) we have

o
X =% - 1 [RUYyeo¥pe)%e ] (cn)
'ﬁ where the definition of R(y;, ¥p4) =Ry is obvious from (B2), (B3). From
- (C1) we obtain
¥
{ 2 2 2 ., 1 s
[‘ Ixel ™ =lx 'f"th"t+:Z"thRtxt (€2) k
3 It holds
2 2 2 2
E lxg gl “=0x 0 il %seenl X173 = (c3)
2 2 2 2
= E LEDDxe gl “-Dxd Sl %ae sl x 1530 %g 500 0%
E DxRox x 2 e ) %3 =
= £ LEDR S 23y ek ] = (ca)
t t t ] "0.’ t ]’...’ t

2

E [E[x,'thxtlx1,....xt]|x.!,,,.xt]||| aqlZeec e

) 2 2
E [xtE[Rt|x].....xt]xt|“x]“ seeesx17]

: 2 2
E [xgRyx lxgl %eeeoal X173

----------------

------
'''''''''''''
-----




PASL A e Jae e et e e Bent meg - e et e

Chaf At -tk S Saadt Aok w—vrrtvvv"T-_

Since Rt depends only on Yier Yot which are independent of x1,...,xt and

where R] is a constant matrix defined by
Similarly

|R R 2 2 -
E DxiRRex Xyl % calixg] 73 = (ca)

. 2 2

= E DxRX Jxg) Sen sl xg) 3
where R2 is a constant matrix defined by
E [R'(.Y] ,t° yZ‘t)R(}’]t, y2t)] = Rz (CS)
From (C3)-(C5) we obtain:

2 2 2 2

E Ll xgaql "= 0xed THxql s eeeal g 7 = (cé)

e x(- 2y *;]E R )X, [ %) 2ol 24 23

It holds
o 2 1 o] .
-?Is-fR]+?st-tI (C7)

for some positive constant a and thus
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2 2 2 2
S S Ixd 2% dad 22 = Sy
Let Vt=|l xtllz; then from (C6) and (C7) we obtain

o
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