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ABSTRACT . ..1

Consider a broadcast network of N nodes in which each binary digit

" : transmitted by each node is received by each other node via a binary

symmetric channel whose crossover probability is independent over

- transmitters, rece'vers, and time. Each node has a binary state and

- the problem is to construct a distributed algorithm to find the parity

of the set of states with some given reliability. It is shown that this

. can be done with 0(in ln N) bits of communication from each node. Com-

municating all the node st-'tes to one node can be accomplished with

only marginally more communication.
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FINDING PARITY IN A BROADCAST NETWORK

by Robert G. Gallager

1) INTRODUCTION

Consider a broadcast network of N41 nodes in which each binary digit
transmitted by each node is received by each other node via a binary
symmetric channel whose crossover probability e < 1/2 is independent over
transmitters, receivers, and time. Each node has a binary state, and the
problem under consideration is for one special node, called the receiver, to
determine the parity of the set of node states. In particular, we want to
minimize the number of binary digits that must be sent by each node in
order for the receiver to determine parity within some allowable error
probability, P. We assume that whatever algorithm is used for transmitting
the required information, all nodes know the algorithm and there is no
contention between transmissions; thus each binary digit transmitted is
received and identified by all other nodes, subject to the noise introduced
by the binary symmetric channels.

The above problem was first formulated by A. El Gamal [I], and is of
interest because it is one of the simplest distributed algorithm problems
involving noise. A closely related problem that we treat is for the receiver
to find the state of each other node. Note that the conventional ideas of

*: information theory cannot be used here because each node has only one bit
.' of information to communicate. This situation of communicating a limited

amount of information is common in network protocols and more generally
in the control of distributed systems. The particular character of the
problem here comes from the independence of the noise at each receiver for
a given transmission. This means that when a node transmits a single
digit, the other nodes collectively could make a good decision on that digit
sirce they have N independent noise samples of it; unfortunately, the nodes
cannot act collectively without using up their own valuable transmissions,
which are also noisy.

The straightforward approach to this problem is for each node to
broadcast its own state j times for some integer j. The receiver will make
an error in decoding a given node's state with a probability ej closely upper

bounded (21 by



i where - 4e( l-)l- 2  (I)

The probability P that the receiver will make an error in calculating
the parity of the states is then upper bounded by N oc-'. Since this bound is
quite tight for N oc-i small, we see that j must grow as In(N) in this
approach for a constant P.

2) FINDING PARITY WITH Olin(In(N))] BITS PER NODE

The approach we take here for more efficient communication is to

partition the nodes (other than the receiver) into subsets each with

approximately the same number of nodes. In particular, it is always
possible to partition N nodes into subsets of k or k-I nodes each for any k
satisfying (k-i)2 i N. Each node again broadcasts its own state j times,
but then makes a decision on the state of each of the other nodes in its
subset using the j receptions from that node. The node adds these decisions

* modulo 2 to estimate parity for its own subset, and then broadcasts this
estimated parity exactly once. The receiver will then receive k or k-I
different estimates for the parity of each subset, and, as we shall see, this
allows the receiver to obtain a highly reliable decision on a subset's parity

-.: with a relatively small value of j. Given the parity of each subset, the
* -parity of the entire set is found by addition modulo 2 of the individual

subset parities.

Note that the parity estimate that the receiver obtains from a given
. node can be wrong either because of noise in the transmission of the parity
. or because of decision errors at the sending node. In particular, a given

received estimate Is Incorrect if an odd number of errors occur, counting
-both the sending node's transmission of parity and its decision on each of

the other states in the subset; the probability of this is upper bounded by
= [1 - (-ej)k'(I-2)V2, (2)

This upper bound is met with equality for a reception from a node in a
subset of size k, and with inequality for size k-i. 8 also upper bounds the
probability that the receiver's Internal estimate of a subset's parity Is
incorrect. Finally the receiver decides on the parity of a subset by taking a
majority vote among the received estimates and its own internal estimate.

* Since the errors in these estimates are independent, the probability that



half or more of the estimates are erroneous is upper bounded by

Psubset [4,$(I-$] k/ 2 .  (3)

Combining (2) and (3),

Psubset i D - (I-2Ej)2(k-I)(I-6)2 1k/2 (4)

The receiver next adds the parities of all the subsets (of which there
are at most N) and adds its own state, all modulo 2. The probability P that
this decision on parity for the entire set Is incorrect is upper bounded by
the probab IIity of an error on one or more of the subsets, which is further
upper bounded by N Psubset. Thus

P i N[I - (I-2oc-j)2(k-I)(1-2e)2]k/2 (5)

in going from (4) to (5), we have used (1) to upper bound Ej by .
The right hand side of (5) first decreases and then increases with
increasing k, and the minimizing integer k is a complicated function of
and j. It is sufficient for our purposes, however, to simply restrict k to be
small enough to satisfy

(I -2o<-J) 2(k-1) 1 1/4 (6)

With this restriction,

P i N Zk/2 where Z = I - (I-2E)/4 (7)

This is essentially the solution we are looking for; we choose k large
enough to make the error probabilIty suff iciently small in (7) and then
choose j large enough to satisfy (6). As N is varied, we see that k must
increase logarithmically with N, and then j Increases logarithmically with
k. Since j and k must be integers, however, a little fussing Is required to
get a valid bound on J. We start by defining real number approximations,
and ', to k and j for a given number of nodes N and a given requirement P"
on error probability:

Z = [2 ln(N/)/ln Z'1; : [In(2) - in(l-2" /k')Vin(o) (8)

• % -o . -. - • -° - . - oo - . o ° . - . °, =. . . .. % , • - • ,. . .. o ° -. o . . . .-. .o . ..- "- .'- -.'. ' ." ..." ..' -. .. .' .- . -.-.. ' .., -.". ' ." -.. -.. .-. ..."- .-, -.' .- . -. .' .. .. -': " .." .-' ..: .."



k =kl j= rfl

We have used the notation [x- to mean the smallest integer greater
than or equal to x. We now show that with k and j chosen according to (8),
the resulting error probabilitg will be at most P• Note that the equation for

•- T"in (8) can be rearranged to

(I -2c -);q 1/4 (9)
Since "> k- I and "I j. (6) must be satisfied. This means that (7)

must be satisfied, yielding

P i N Zk/2 I N Z /2  P (10)

The second inequalitg above is valid because k i k, and the equalitg is
a rearrangement of the definition of k'. One final simplification will now be
useful in obtaining our final bound. Assume that kc, as giyen by (8),

*:. satisfies ki 1. Then it Is not hard to verify that I - 2
-I k 1/(2).

Substituting this into the definition of j we obtain

j I In(4k-) / In(oc) (I I)

The number of digits transmitted per node is m = j+1, which is at
most j +2. Substituting this into (11) and using (8) for , we obtain our
final bound,

m i [In(ln(N/P)) + Al/In(o<) 2 where (12)

A = In(8/in(1/Z)) (13)

Recall that we have imposed two restrictions on k In deriving this
result. First N I (k-l) 2 , which Is satisfied If N 1 R2, and second 1 1.
From the definition of , these restrictions are

N 1 [2 ln(N/P)/In(I/Z) 2 ; N I I"Z-1/2  (14)

The second restriction Is alwags satisfied for N > 1, but the second
restriction is more substantive. Note first that (14) is always satisfied
for large enough N given any P and E, and thus (12) shows that
asymptotically, m increases at most as ln(ln(N)) On the other hand, for
given N and E, (14) is alwags violated for small enough P. Thus (12)



(subject to (14)) does not show that m asymptoticallU varies with P as
In(ln(i/P)). This is reassuring, since even if all nodes other than the
receiver knew the parity of the states, the error probability could not
decrease faster than 0 -NM. Actually, by changing the strategy somewhat
and making all subsets of size k except for one subset of size between I
and k, the restriction N i (k-1) 2 could be relaxed to N I k. In this case,
some of the nodes would have to transmit an extra digit to help resolve the
parity of the small subset, and the bound on m would be somewhat
weakened. We omit the details of this since it is tedious and doesn't
improve the asymptotic behavior with N.

It is also possible to reduce the value of A for large values of E by
having each node transmit an estimate of parity for several subsets rather
than just its own subset. Again we omit the analysis since it is tedious
and does not materially improve the result.

3) FINDING THE STATE OF ALL NODES

In this section we show that the receiver can determine the state of
all nodes with very few more transmissions per node than are required to
determine parity. Our strategy in doing this is to form a set of N subsets
of the N nodes (not counting the receiver) in such a way that each subset

- contains k-1 or k nodes for some k and each node is contained in k-1 or k
, subsets. Furthermore, we constrain the choice of subsets so that no pair of

nodes appear together In more than one subset. In the appendix, we show
that such a set of subsets can always be constructed if

N i 2k(k- 1)2  (15)

We next associate each node with one subset In a one to one fashion
so that each node is associated with a subset containing it and each subset
has one of Its contained nodes associated with it. The appendix also shows
how this association can be constructed. Each rode then sends its own
state j times and then each node estimates the parity of its associated
subset in the same way as before. Finally each node sends the parity of its
associated subset and the receiver uses this information, plus its own

receptions of the node states, to determine the state of each node. Thus
each node sends m = j4I binary digits as before.

Now consider how the receiver can decode the state of each node from
the received information. First the receiver makes an internal decision on



the state of each digit from the j noisy receptions of that digit. The
probability of error for each of these Internal decisions Is Ej i a-j as

before. In order to make a final decoding of the state of a given node, sag
node i, the receiver considers each of the subsets, say S,1 , Si,2. ..., 5 i,k, or

.,- i,k-1 that contain node I. For a given subset, sag 51,2 , the

receiver modulo 2 adds its internal decisions on the nodes In Si,-, - (i) to

l the received parity estimate of si,2r. Note that If the receivers Internal

decisions on these nodes are all correct, and if the transmitting nodes
decisions on the nodes In the subset are all correct, and If the transmission
of that parity is correct, then this modulo 2 sum Is simply the state o
node i since all other node states are added twice. Thus this sum is in
some sense an estimate of the state of node I. More particularly, the
probability that this estimate is incorrect Is the probability of an odd
number of errors in the transmission of parity, in the receiver's internal
decisions on the nodes in Si,-, and in the transmitting node's decisions on

. the nodes of the subset other than itself. If the subset contains k nodes,
- then we are looking at k-I decisions at the receiver, k-I at the

transmitting node, and one transmission of parity. The probability that this
estimate is incorrect is then

[I - (1-2Ej)2(k'Ik1-2e)V2 (16)

If the subset contains k-I nodes, then k-I would be replaced by k-2 in
the above equation, so that 0' is an upper bound on the probability of an
incorrect estimate in that case. Finally, $' also upper bounds the
probability of an error in the receiver's internal estimate of the state of
node I. The receiver now has its internal decision of node i's state plus
either k or k-I estimates from the different subsets containing i. Since no
two subsets contain more than one node in common, Si. I-(i), Si,2 -(i), ... are

*: all disjoint and all of these estimates are based on mutuallg Independent
* errors. Thus when the receiver takes a majority vote on its k or k.1
* estimates, the probability of error In this final decision on node i is upper
" bounded by

P, i [4$-(1 "$.)k/2 (17)

Combining (16) and (17) and upper bounding cj with ot-J, we get

* * * * .*



Pi [1 - (l- 2o-J)4(k-I'(I-2e)2]k/2 (t81

The probability that any node state will be decoded incorrectly is now
upper bounded by P i N Pi. We now restrict k to be small enough that

(l-2oc-J)4(k'1) 1 1/4 yielding (19)

P i N zk/ 2; Z I - (1-2E) 2  (20)

As in the analysis of finding the parity of the states, we now consider
a required error probability, P', and choose k and j to meet the requirement.

k= 2 ln(N/P)/1n(1/Z); ' = [ln(2) - ln(1-2"1/(2)1/In(o) (21)

k: rkl; J : ri

As before, this guarantees that (19) is satisfied and that the error
probability is at most P. If 2k 1, we can upper bound "by In(4k)/In(oc).
Since the number of digits per node is at most V.2, we can use this bound
on J with the definition of k to obtain

m K [ln(in(N/P))+ A']/ln(o) * 2 where (22)

A' ln(16/ln(i/Z)) (23)

Note that the required number of transmission here exceeds that for
finding parity only by In(2)/In(oc). Recall that the construction here
required N i 2k(k-1) , which is valid for N 2 202(k'+l). From (21), we see
that this is satisfied, for any given P and E for all sufficiently large N. As

*: before, for fixed N and e, the restriction is always violated for small
enough P.

An interesting question raised by these results is whether strategies
. exist for which m can grow asymptotically even more slowly than as

ln(ln(N)). We conjecture that the answer is no.

. * ..o



APPENDIX

We start with a set of N nodes and want to construct N subsets of k or
k- I nodes each with the property that each node is in k or k-I subsets and no
two subsets contain any pair of nodes In common. Assume that N I 2k(k-1 )2.
Let L = rN/k1 and let N' = Lk. We first construct N' subsets of k nodes
each from a set of N' nodes and then delete N'-N nodes and subsets.

Consider the problem in terms of an N' by N' matrix of O's and 1's.
The columns correspond to nodes and the rows to subsets. The I's in a row
correspond to the nodes in the corresponding subset, so our problem is to
construct an N' by N' matrix in which each row and each column contains k
I 's and for any two rows, there is at most one column for whict both rows
contain 1's. We construct such a matrix by first considering the N' by N'
matrix as partitioned into k2 L by L permutation matrices. The fact that
each L by L matrix is a permutation matrix guarantees that each, row and
each column of the entire matrix contains k ones. The figure below shows
such a partitioned matrix where L = 3 and k = 3; note that no two rows
contain more than a single 1 in common.

1 00 1 00 1 00

0 1 0 0 1 0 0 1 0

010 0 1 0 0 1

1 0 0 0 1 0 0 0 1

0 1 0 0 01 1 0 0
O0 0I 1 0 00 1 0

1 0 00 I 0 1 0

010100 01

001 010100

Figure I

Next consider the construction of the L by L permutation submatrices.
Suppose we have already selected some of them and are selecting a new

" one. For a given row, there are at most k-I l's already in that row (in the
S

" I . . . .. . .. .



other submatrices), and for each of those l's, there are at most k-I other
rows that have I's in the same column. Each of these (at most (k- 1)2)

rows have at most a single one in the colums of the new permutation
submatrix being constructed, and these columns are unavailable for the
given row of the permutation matrix; if a 1 was placed in one of these
columns in the given row, then that row and another row would have two
1's in common. Using the same argument on columns, we see that each
column of the submatrix has at most (k-I) 2 row positions unavailable for
l's. The constraint N ) 2k(k-1) 2 Implies that L I 2(k-1) 2 , and thus each
row and column has at least L/2 positions available for I's without
violating the condition that no two rows have two I's in commo.

Now suppose we mark all the available positions in the new
submatrix and start to construct a permutation matrix using only available
positions for I's; the problem then is to place a single I in each row and
column, using only available positions. We place l's into the submatrix one
at a time, and after each 1 Is placed, the corresponding row and column are
considered as blocked. Thus at each step, we look for an available position
for which the row and column are unblocked. If the procedure terminates
with a 1 in each row and column, the permutation submatrix is complete
and we proceed to the next submatrix until all submatrices are complete.

Suppose, however, that at some point there is at least one unblocked row
and column with no available unblocked positions in either. This row and
column each have at least L/2 available but blocked positions. The

submatrix at this point contains at most L-1 I's. Thus at least one of the
l's in the submatrix must be blocking both an available position in the given
row and an available position in the given column. Thus by removing this
single 1, we can add two I's, one in the given row and another in the given
column. By repeating this procedure if need be, the given permutation
submatrix can be completely constructed. The figure below illustrates this
procedure. An A indicates a position that is available but in a blocked row
or column and a U indicates an unavailable position.

The constraint L i (k- 1)2 that we have imposed appears to be stronger
than necessary in many cases. For example, if L is prime and L = k, it is
possible to construct a matrix with the required properties as follows: let
Pi denote the cyclic L by L permutation matrix that is shifted i places from

.  the identity matrix. Then for the mth row and nth column submatrix, use Pi

where i (m- I)(n- 1).

......... :..:.......-.,--~~~~.... ..... .. .,:, :.,........... .... ,,....,. ,,..... .. ,........... .,.
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Remove I l4I U U A A U
I,° A A I U U

U A U A U A

A U A U U A *--GivenRow

-Given Column

Add I's

Figure 2

The above paragraphs show how to construct an N' by N' matrix where
N' k L N. By removing the first N'-N rows and columns, we have an N by
N matrix. Since N'-N < L, we have removed at most a single 1 from each
row and column, so the remaining matrix satisfies the required properties
and has either k or k-i l's in each row and column. Finally, we can make
the top left submatrix be an identity matrix in the original construction.
We then associate each column of the N by N matrix with the row for which
the main diagonal of submatrices contains a 1. Each row is clearly chosen
once and only once by this construction.
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