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RECURSIVE PARTrrIONING USING RANKS

Mark Robert Segal

Department of Statistics

Stanford University

Abstract

/Replacing the conventional splitting rules used in constructing regression trees by rules

based on two sample rank Statistics affords many advantages and equally poses some problems.

Among the former are (1) computational ease, (2) invariance under monotone transformations

of the response and (3) worthwhile extension to censored data. The difficlties involve de-

vising good pruning strategies in the absence of within node loss. These are addressed us-

ing look-ahead, bottom-up techniques. Some real-world and simulation performances of the

methodology are presented. --
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1. I troductlon.

This paper proposes some modifications to the conventional regression-tree methodology

with the primary motivation of facilitating an extension to censored data. However, 'he sug-

gested changes have merit in their own right and comparisons with the existing techniques

plus some additional extensions are also presented. The basic alteration is the replacement of

the goodness-of-split criterion with a measure of node separation as opposed to within node

homogeneity. The measures used are various two-sample statistics (principally rank statistics).

Their introduction further necessitates changing the pruning algorithm used to determine de-

sirable tree size. The next section is a brief overview of current regression-tree (or recursive

partitioning) methodology. Section three deals with the new splitting criteria and in particu-

lar addresses the censored data issue. Section four indicates how the new pruning strategies

work. The fifth section comprises some examples, both real-world and simulated, and the sixth

discusses properties and potential of the new approach. A means whereby tree-structured tech-

niques can be used in multi-response situations is also proposed.

Repeated allusion is made to the definitive reference "Classification and Regression Trees"

by Breiman, Friedman, Olahen and Stone (1984), which is referred to as CART, and in which

stand alone section numbers should be sought.

2. Regression Mree Methodology.

A simplified description of regression-trees is presented in this section, so that the subse-

quent reformulations can be understood. Attention here is restricted to the familiar regression

setting - there are p predictor variables X,X 2,..., X. and a (continuous) response Y. No

comment is made with respect to issues such as the treatment of missing values (§5.3.2). or

variable importance (§5.3.4) for which carry over from the standard methods is straightfor.

ward. However, to the extent that neither ranks nor censoring pertain to categorical responses,

no extensions to classification trees or class-probability trees (§4.6) exist.

In order to construct a regression-tree four constituent components are required. These

are:

1. A set of (binary) questions of the form
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'Is i e A?' where A C Z, the predictor space.

The answer to such a question induces a partition, or split, of the predictor space. The

*, subsample associated with region A is called a node.

2. A goodness-of-split criterion 0(8, t) that can be evajuated for any split 8 of any node t.

The criterion is used to assess the worth of the competing splits, where (in CART) worth

pertains to within node homogeneity.

3. A means for determining the appropriate tree size.

4. Summaries for the terminal nodes of the selected tree.

What follows is an elaboration of these aspects.

SThe number of possible splits in I above, is reduced to a computationally feasible number

,k by constraining that:

. (a) each split depends upon the value of only a single predictor variable [note: this restriction

" can be loosened; the software (CARTTM, 1984) permits splits on linear combinations of

predictors).

- (b) for ordered predictors X,, only splits resulting from questions of the form "Is Xi !5 c?"

are considered.

(c) for categorical predictors all possible splits into disjoint subsets of the categories are

- allowed.

'. The tree is grown as follows: for each node (the initial or root node comprises the entire

- sample)

1. examine every allowable split on each predictor variable.

2. select and execute (create two new children nodes) the best of these splits.

Steps 1 and 2 are then reapplied to each of the children nodes, and so on.

"Best" in 2 above, is assessed in terms of the goodness-of-split criterion. Two such criteria

are espoused in CART and available in the associated software. These are Least Squarea (LS)

. §8.3, 8.4 and Lea.t Absolute Deviations (LAD) §8.11. Both afford a comparison based on

- subadditive 'between/within" decomposition, where between alludes to the homogeneity or

" loss measure applied to the parent node. This paper is concerned with the replacement of these

3
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by various two-sample statistics, that detect node separation and why such a substitution is

warranted. For point of reference and specificity the definition of the LS criterion is presented

here. The obvious changes give rise to LAD (or any other between/within criterion such as is

used in §6.4).

Let t designate a node of the tree. That is, t contains a subsample {(L, v1 )}. Let N(t)

be the total number of cases in t and let

g Nt = Vi
Noel

be the node response average. Then the within node sum-of-squares is given by

SS(t) = -- (t))
.E#

Now suppose a split a partitions t into left and right daughter nodes tL and in. The LS

criterion is

0(s,t) = SSlt) - SS(tL) - SSOtR)

and the best split s' is the split such that

0(s% t) = ma- #(e, t)

where the maximum is taken over all permisible splits s.

A LS regression-tree is constructed by recursively splitting nodes so as to maximize the

above 0 function. The criterion is such that we create smaller and smaller nodes of progressively

increased homogeneity. It remains unresolved as to what constitutes an appropriate sized tree

Originally (the AID program, Morgan and Sonquist (1963)) this was determined by use of

stopping rules: if a node became too small or the improvement (#(s", t)) resulting from the

best split was not sufficient (to surmount some preset threshold), then the node was declared

terminaL This proved unsatisfactory on account of the rigidity of the thresholds. In some

instances overfitting via too large a tree would occur. In others, underfitting would result

from rejection of a split precluding the emergence of subsequent worthvhile splits. There

is an analogy to step-wise versus subset regression in terms of failure to capture important

interactions. The problem was redressed by

4
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1. initially growing a very large tree

2. iteratively pruning this tree all the way back up (to the root node), thereby creating a

nested sequence of trees

3. selecting the best tree from this s,!quence using cross-validation

*i This procedure is detailed in Ch.3 CART. The means for performing the pruning in 2 is called

"minimal cost-complexity pruning" §3.3. This paper presents some alternatives to this when

no within node cost is available (for LS the within node cost is just SS(-)).

The fourth item - summaries for the terminal nodes - is not dwelt on here. The point

behind such measures is primarily predictive. In the LS and LAD situations the node mean

and median respectively constitute natural measures. However, for splitting based on two-

sample statistics, no such quantities arise. Thus, it is left as a user-specifed option as to how

a terminal node is summarized. More on this is said when censored data is discussed. Bloch

and Segal (1985) deal with claisifcation-trees in a setting where non-standard statistics are

used.

3. Two Sample Statistic Splitting.

Instead of gearing our splitting criteria to optimizing within-node homogeneity, we could

reward splits that resulted in large between-node separation. The magnitude of any two-sample

statistic affords such a goodness-of-split measure. Such a change constitutes more than just a

rephrasing of the problem. Whilst it is generally the case that splitting based on two-sample

t statistics with unpooled variance estimates gives results strongly resembling those obtained

from LS splitting as outlined in section 2, there is no algebraic equivalence and problems can

be contrived where results are dissimilar.

The fact, that in all the cases analysed, splitting using t statistics and splitting using

LS gave comparable results, supports the usage of two-sample statistics: given that the two

techniques produce analogous results and LS gives worthwhile answers the new approach must

be doing something reasonable. But why replace a proven method with one that is harder

to motivate and offers no computational savings? The answer lies in the advant.ages r-ovided

by using two-sample rank statistics (TSRS). These include all the conventional desiderata of

5
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ranks plus some additional benefits:

1. Invariance under monotone transformation of the response Y. The regression-trees cre-

ated by using LS or LAD possessed such invariance only with respect to monotone trans-

formations of the (ordered) predictors X1,X2," Xp. This means, for instance, that

the optimal split is the same regardless of whether we use X, or X, = g(X) for some

monotone g. If the optimal split on X, is X, < e then the optimal split using t 1 will be

±1 :5 9(e) (12.7). However, it is only through the use of TSRS that such properties will

hold under monotone transformations of Y to " - h(Y). This is clearly a worthwhile

property when there is no natural response scale in which to work.

2. Insensitivity to outliers in the response space. The use of LS, and to a lesser extent LAD,

is subject to the familiar sensitivity to extreme Y observations. This, in the regression-

treesetting, is not necessarily a drawback, since such outliers will be isolated into their own

(single case) terminal nodes. Still, the influence on overall tree topology can be distorting

and the interpretation of splits leading to the isolation of the outlier can be problematic.

Friedman (1979) regards the presence of outliers as weakening the LS procedure by wasting

splits. Using TSRS amounts to a down-weighting of extrema. It would equally be possible

to achieve this end by using resistant averages. Indeed, it is found that the trees resulting

from LAD splitting agree far more closely with those obtained from using TSRS splitting

than do the corresponding LS trees. However, it is computationally easier and perhaps

more natural to employ rank3.

Note: none of the methods address outliers or homogeneity or clustering in the predictor

space.

3. Computational feasibility. The actual compuational details for evaluating the multitude

of competing splits are presented later, with respect to a specific two-sample rank statistic

(Wilcoxon). But, the attack and updating strategy apply to any two-sample linear rank

statistic (Randles and Wolfe §9.1). Suffice it to say, for now, that the updating available

makes for an 0(n) algorithm, that is as simple as the 0(n) LS algorithm. The story is

not quite so simple when it comes to dealing with t statistic splitting and even less so

for the censored analogues of the TSRS. Nevertheless, efficient algorithms can be devised

6. S6



with the right organization. These are outlined below.

4. Extension to censored response. The original motivation for changing the splitting cri-
terion was to enable tree techniques to be used for censored data. In fact, the notion of

I-. using a censored analogue of TSRS in a tree context had been advocated by Ciampi and

• "Hogg (1982), but only in the situation where the predictors were dichotomous and no

pruning algorithms were proposed. The carry-over to censored data is straightforward:

the only change is the replacement of the TSRS with a censored version. Any member of

the Tarone-Ware class (which includes both the Gehan and Mantel-Haenzel) was allowed

as a user-specified option. Miller (1981) or Tarone and Ware (1977) have details on the

statistics and their properties.

*U The computational ease alluded to in 3 above is now detailed with reference to splitting

r. based on the two-sample Wilcoxon statistic. Again, suppose a split s partitions a node t into

tL and tR, We now take O(j, t) to be the value of the Wilcoxon statistic where tL constitutes

the first sample and tR the second. The split a' that maximizes this 0 can be viewed as best

separating the samples. The following pseudo-code demonstrates the ease of the update and

the manner in which the best possible split for a given node is found. The first loop simply

determines the mean and variance of the Wilcoxon for each possible split.

Wilcoxon Splitting Algorithm:

For each node t

Initialize BestStat = BestPred = BestSplitPoint = 0

Loop over all possible N(tL) values (left sample sizes)

m- N(tL)

n -N(tR) : N(t) - N(t4)

Ave(m) - m(m+n4.)

Var( M) - "(m+n+l)
12

-* End

Loop over all p predictors: X 1 , X 2, Xp

.nitialize the rank sun: RSum 0

..... ................... ....-.................. ,- .......-



Sort the node with respect to Xurn

Reorder the Y's according the sorted Xcrrn values

Attach ranks to the Y's: R(m) - rauk(Y.)

Loop over all potential split points which is equiv-alent to incrementing in

M~um - Rs'um + R(m)

TwoSam, - (RSum - Aem)V~rm

If abs(TwoSam) > BestStat Then

BestStat - TwoSam,

BestPred 'Xeur,.ent

BestSplitPoint -m

etc.

End If

End

End

Important but simple issues such as not splitting on tied predictor values and efficient means

for sorting and ranking have not been highlighted for clarity.

The same strategy would be used for splitting based on two-sample linear rank statistics.

The form of such a statistic is

S a(Rti)
j=1

Here R(.) is as above -the rank assigned to Y(.) E tL where the ranking itself is done with

respect to Y(.) E t =t tUtit. The a(.)a are scores satisfying a nondecreasing and nonconstant

Condition, namely,

The Wilcoxon corresponds to wsing a(j) = j. The null expectation and variance for S are

m+n

Eo[SJ md Varo(S] inn - )

(m+n)(m~n-l) (a
j=1

8



where a is the average of the scores. Thus the only modifications to the above algorithm are

* (i) multiplying Ave(m) and Var(m) by constants in the first loop and (ii) using RSum -

"" sum-+ a(R(m)) in the inner loop. The choice of the scores a(-) is left as a user specified option.

If we make distributional assumptions, then Randles and Wolfe present formulae for opt:mal

", scores and expected scores, in the context of locally most powerful rank tests.

An issue that warrants comment here is the usage of large sample approximations in

comparing the competing splits. That is, we have 8tandardized TwoSam above, as opposed to

ordering the statistics in terms of exact significance achieved (the best split corresponding to

-* the greatest significance / smallest P value). There are compelling reasons for proceeding in

this manner:

1. Exact significance results will only be available for small samples. Hollander and Wolfe

- (1973) tabulate P values only for m + n < 25.

2. Even in the instances where exact values are available it is difficult and inefficient to

automate comparisons amongst competing splits.

3. We are not in the least interested in actual P values. All that is of consequence is the

"- ordering of the statistics so that the best split can be ascertained.

4. Item 3 notwithstanding, the convergence to normality of such rank tests is very rapid.

. Such tests are intimately related to permutation tests (Randles and Wolfe §11.1) and the

*" latter are known to be approximately normal for sample sizes as small as 10. Thus the

ordering in 3 is being performed on appropriate quantities.

The implementation for the two-sample t is equally simple. The statistic itself is

m n

* where PL and PR are means for the left and right subsamples and likewise $2 and a' are the left

respectively right unbiased estimates of variance. Also m = N(tL) and n = N(tR) as above. So

we again take 0(a, t) to be the value of the statistic. As before a splits t into tL and t1 and "e

seek the split that maximizes 0. There is no immediate way to update T itself corresponding to

updating the split point (incrementing m and decrementing n). However, it is straightforward

to update the mean and variance for the left subsample and correspondingly dowudate the

. ° ° .- . ° "oo . °" , .' .' m
°
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right subsample quantities and then recompute the new T. The variance up and downdating

was achieved using formula from Chan, Golub and LeVeque (1983). If, analogously to the

weighted rank statistics presented above, a weighted t statistic was desired then the formulae

in West (1979) for up and downdating weighted sums of squares could be used.

The form of the two-sample statistics for censored response (Gehan, Mantel-Haenszel,

Tarone-Ware) are found in Miller Ch. 4. Details on the algorithm implemented for construct-

ing a regression-tree using such statistics are available from the author. As with t statistic

splitting, there is no immediate update for the statistics. Here efficiency is achieved by effec-

tively managing the updating of the constituent quantities of the statistics (nisksets, sample

membership indicators). Gordon and Olshen (1985) also pursue tree-structured schemes when

censoring is present. Their splitting criteria involve measures of distance between Kaplan-

Meier survival curve estimates and certain point masses. No analyses are presented and so

comparisons between the methods are precluded.

4. Revised Pruning Strategies.

An important difference between LS (or LAD) splitting as outlined in section 2 and any

two-sample statistic splitting (section 3) is that the former provides a within node estimate

of error viz. SS(t): the within node sum of squares. Such is not the case for two-sample

statistic splits, which only afford a measure of goodness of split. In general, these measures

cannot be decomposed to attribute a within node error. This is consequential, since the within

node errors form a key component of the pruning algorithm advocated in CART Ch. 3. The

algorithm, therefore, does not carry over to the present situation and inasmuch as tree size is

a fundamental issue, alternate approaches must be sought.

Initially, the focus of the modifications to the regression-treemethodology. was to facilitate

a tree schema suitable for analysing censored data. Thus, the notion of using two-sample

statistics as splitting rules was by no means sacred. In order to circumvent the problems posed

by the absence of within node loss, an attempt to revert back to the original criteria was made.

Specifically, LAD splitting was tried. Using LS was not entertained because of the unstable

nature of the mean when estimated from survival curves. The intention was to account for
the censoring by using medians based on the Kaplan-Meier surviva curve estimated for each

10
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node and then consider absolute deviations about these. There were a variety of difficulties

associated with this attack that rendered it useless:

(a) Computationally this method was very slow. Even for LAD splitting in the uncensored re-

sponse context, the program can be very slow unless some update algorithm .rr evaluating

the absolute deviations is available (see §8.11.3). Whilst such an algorithm was written

for the uncensored case, it appears too cumbersome for deviations about Kaplan-Mcier

medians.

(b) The actual splits obtained using this criterion on simulated data with known structure

* "were not convincing. The method did not uncover the important variables or split points.

* (c) The hope behind resurrecting LAD splitting was the inheritance of the pruning algorithm

• used in standard CART. However, even this did not materialize. An unstated necessity

for the minimal cost-complexity algorithm (§3.3) to work is that the splitting criteria be

convex. Let v(t) be any sample median for the node t. Then in the uncensored case we

have

,IVl,. -V(01l 2!> IV,. - V~tl + , , - ,(tR)I
-'mIEl I,,EIL 5,,,EIA

But this does not hold for censored Vs and v(.) t! the Kaplan-Meier median.

In fact, using deviations or functions thereof, will always be problematic when one of the

quantities being differenced is subject to censoring.

The next attempt also involved trying to inherit the standard pruning algorithm. This

time the tactic was to pursue a within node error measure whilst persevering with rank based

splitting. The device was to use one-sample rank statistics (for example, Wilcoxon Signed

Rank) as a method for generating measures for goodness-of-split. But before an attempt was

made with respect to censored data it was deemed necessary to determine the performance of

such a criterion on uncensored data. Again, the method failed. Each of the criticisms levelled

-. in (a), (b) and (c) above still applied. The poor performance of using one-sample statistics in

this manner can be understood simply in terms of what the statistic tests, namely, symmetry.

It is possible to have within node symmetry but not homogeneity. So there is no a priori reason

to exect this sort of splitting to do well. However, a worthwhile spinoff was the develcpmeLt

.* . .. . . . . .. ....



of a one-sample analogue to the Wilcoxon Signed Rank for censored data; see Segal (1985).

So what was needed was an altogether different tack. It was decided to preserve the con-

cept of initially growing a very large tree and subsequently pruning this. What was sacrificed

was the selection of a particular tree from the generated sequence by cross-validation. Further,

the minimal cost-complexity pruning algorithm itself was replaced with some new pruning

schemas.

The loss of cross-validation as a selection mechanism was not tragic. While the method

had performed well its usage had several recognized flaws. The more detracting of these include:

(i) inaccuracies and instabilities of the cross-validation estimates §8.7 and (ii) failure of the

tree selected as optimal to preclude noisy splits §8.6. Indeed, the authors of CART promote

user selection of the right-sized tree §3.4.3, §6.2. This should be done in an exploratory fashion

and aided by the incorporation of subject matter knowledge.

But for such user selection, the user must be provided with a tree sequence and hopefully

one that contains good candidate trees. It was to this end that the new pruning algorithms

were created. Before expounding on these, it is important to reiterate what is being acquired

from the CART approach - protection against the deficiencies of stopping rules, as highlighted

in section 2. This protection derives solely from the tactic of growing a big tree and pruning

it and is independent of the algorithm used to achieve this collapsing.

The first new method of pruning worked as follows. Recall that for each split we have

stored the value of the statistic that led to that split.

e prescribe some threshold value (for comparison against the statistics)

* starting at the bottom of the tree, step up and

collapse nodes (make terminal) that arose from splits whose statistics did not sur-

mount the threshold

retain nodes and all their ancestors where the improvement was sufficient i.e. the

threshold was exceeded

Whilst the performance of this procedure in practise was passable. a couple of objections

exist. Firstly, the prechosen cutoff - critical in determining the tree sequence -suffers from

12

. ,, , ,lt~ll~m.. . .... am,,ln... ... ... ... ... ..... .... .. ,- .,,,- . .



all the rigidity associated with specifying such levels. Secondly, there is a tendency for very

large branches to be retained. If, perhaps fortuitously due to small sample size, a split near

*the bottom of the tree achieved large significance then the entire branch leading to that split

will be kept in all subsequent trees. The next method overcomes both these drawbacks.

• .The second technique implemented was motivated by a need to redress the above liabili-

- ties. Again the starting point is a very large tree. The basic idea was the following:

e sequentially examine every internal node, starting with the one associated with the least

significant split statistic and proceeding through to the most significant

* examine the subtree (possibly null) emanating from the node under consideration i.e. look

at all the descendent nodes from the current position in the tree

- if the subtree contains no consequential splits, prune it away

- alternatively, if there are worthwhile splits, preserve the subtree

This was reworked into the framework below:

* step up the tree, assigning to each internal node the mazmum split statistic contained

in the subtree of which the node under consideration is the root

- collect all these maxima and place them in increasing order

* the first pruned tree of the sequence corresponds to locating the highest node in the tree

possessing the smallest maximum and removing all its descendents

* the second tree of the sequence is then obtained by reapplying this proc-3s to the first

tree and so on until all that remains is the root node

This procedure is illustrated as part of the examples in the next section. The associated

output is also displayed. Essentially, each internal node is linked with the maximum split

statistic contained in the subtree for which the node is the root. The pruning sequence is thea

determined by the order of these maxima. This is equivalent to the look-ahead proposed in

the above formulation but obviates the need to contrive a definition (in terms of thresholds)

for consequence. In practise it has been found to perform well, one basis for assessment being

that comparable tree sequences to those yielded by the CART technique of minimal cost-

*" complexity pruning are extracted.

13
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S. Examples.

The first example analysed by the new regression-tree techniques is the simulation model

discussed in §S.6. By generating data in accordance with a known model it is possible to

assess whether the methods are performing reasonably. It was important to establish this in a

familiar setting, before leaping into the unknown world of censored response. We take p = 10

and impose that X 1, X2,..., X 10 be independent. Also

Pr(X = -) = = Pr(X = 1)

Pr(Xi = -1) = Pr(Xi = 0) = Pr(X i = 1) =

j=2,3,..., 10.

Let Z be independent of X 1,X 2,...,X 10 and Z N(O,2). Then if X,= I set

Y= 3+3X2 +2X 3 +X 4 +Z,

and if X, = -1 set

Y =-3 + 3X + 2X, + X7 + Z.

Variables Xs, Xs, Xi 0 are noise. The learning sample comprized 200 cases generated from this

model.

The example consists of two distinct regression equations, with the choice of equation

dictated by the binary variable X1. This should be reflected by having X, chosen as the

first splitting variable. Then predictors should be emerge as splitting variables in order of the

magnitude of their coefficients i.e. in the subtree corresponding to the top equation we would

expect X2 to enter ahead of X3 which in turn would enter before X4 and similarly for the

subtree corresponding to the bottom equation. Examination of the tree diagram (Figure 1)

reveals that everything is as it should be. This tree and the associated sequence (Table 1) were

obtained using Wilcoxon splitting. However, analogous results are achieved using t statistic

splitting and these in turn agree with the output obtained from LS or LAD. The way to read

Figure I is as follows: the cases for which the condition below a given node holds true go down

the left branch of the diagram and those for which the condition is false go down the right.

Thus, of the 42 cases contained in node 4, the 29 having Xe values of -1 or 0 get assigned to

14



node 8 and the remaining 13, whose X4 value is I go to node 9. The squares represent terminal

nodes and the numbers below these are the medians of the Ys in that node.

The first split is on the binary variable X, and separates the 94 cases generated from the

bottom equation from the 106 cases generated from the top equation. Then the left side splits

repeatedly on XG and X1 with one split on Xy. The right subtree splits repeatedly on X2 and

*- X3 with one split on X4 . AMl of these splits occur in the correct order. Note how user selection

of the "optimal" tree enables the devious exclusion of noisy splits. The tree so chosen - number

18 in Table I - has 14 terminal nodes, which agrees with the range obtained by conventional

CART of 12 to 16. Also note the tendency for the pruning process to take off two terminal

*. nodes at a time (indicated by the total number of terminal nodes decreasing by one). This

again is in accordance with CART regression findings and is explained in §8.5. Note that the

node numbers quoted as subtree roots pertain to the initial large tree, so that some of them

cannot be interpreted from the tree actually selected. Finally, the rationale for the apparent

discrepancy between the size of the largest CART tree (200 terminal nodes) and the largest

tree resulting from the two-sample method (32 terminal nodes), lies in the fact that differing

* minimum node size parameters were used.

Other uncensored examples were subject to analysis by both the new and old tree schemas.

- Illuminating aspects emerged from both analyses and the results reinforced the reasonableness

of the new approach. The examples attacked were the Swiss Fertility (Mosteller and Tukey,

1977) and Boston Housing (Belsley, Kuh and Welsch, 1980) datasets; for details see Segal

(1985).

The canonical example for illustrating the performance of any regression technique where

the response is subject to censoring is the Stanford Heart Transplant data; see Miller (1976),

- Buckley and James (1979) and the more recent "nonparametric" treatments of Tibshirani

(1984), Doksum and Yandell (1982) and Owen (1985) for instance. The celebrated Proportional

Hazards Model, Cox (1972), has also been applied.

A brief data description is now given. The response Y is log10 survival time, where the

survival time is the time (in days) until death due to rejection of the transplant heart. There

are p = 2 predictors: X, the age of the recipient and X2 a tissue mismatch score measuring
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recipient and donor tissue compatability. 157 cases were analysed, there being a 35% censoring

rate.

What has consistently emerged from the plethora of analyses is that age is the more

significant predictor. Further, the nonparametric approaches have revealed a cutoff value of

roughly 50 years, in that the subpopulations so detized (:5 50 and ? 50 say) have distinct

survival characteristics. A scatterplot of loglo survival against age is shown in Figure 2. The

cutoff is not overly apparent to the naked eye, presumably because of the nonuniform censoring

pattern.

Regression trees, using two-sample statistic splitting, were used to analyse the data. In

particular, the Gehan statistic was used in conjunction with subtree maximal statistic pruning

to produce both the tree schematic in Figure 3 and the tree sequence in Table 2. Figure 3 is to

be read in the same manner as Figure 1, except now the values below the square terminal nodes

are Kaplan-Meier medians. It is worth recording that neither the initial large tree, nor the

pruned sequnce were substantially altered by using other splitting statistics from the Tarone-

Ware class. In fact, the key first split was identical in the cases examined. What is immediately

evident from the tree diagram is the confirmation of the previous findings. Firstly, age clearly

emerges as the more consequential predictor (though see CART §5.3.4 for an automated means

for predictor ranking that overcomes possible maiking - this is not an issue here since there

are only two predictors). Secondly, the cutoff at around 50 is reflected by the value of the first

split point. The value of the statistic for this split is 4.91 and this, being a standardized z

indicates the significance of the division.

However, the analysis can proceed further. A natural first summary for a terminal node

when we have a censored response is the estimated Kaplan-Meier survival curve S (Kaplan

and Meier, 1958). The program also provides the user with the possibility of extracting certain

derived quantities, such as the Kaplan-Meier median § (0.5) as node summaries or predic-

tions. Figure 4 features superposed survival curves for each of the 4 terminal nodes. The curve

corresponding to node 3 in the tree schematic of Figure 3 lies appreciably below the curves for

nodes 4 and 6. Node 3 contains the > 50 agegroup. Their survival prospects are noticeably

worse than the bulk of the :5 50 group, contained in nodes 4 and 6, as would be expected. But,
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the survival characteristics for node 7 resemble those for node 3. Node 7 contains patients who

" are middle-aged (41 -50) as opposed to young and who also have high tissue mismatch scores.

Thus it is not surprising that they possess equally poor survival prospects. It is the extrication

of precisely such local interactions that make tree techniques so powerful. Of course caution

must be exercised in interpreting survival curves based only on 8 cases. The tree structured

* approach affords many other compelling advantages. Some, such as the easily understood

;- and interpretable nature of the output have hopefully emerged unstated from these examples.

Others, such as the exploitation of information contained in missing values and purposeful

dimensionahty reduction, have not been illustrated. A partial itemization of tree virtues is

compiled in CART §2.7.

6. Discussion.

' Much remains to be done in refining and toward better understanding the regression-

treetechniques introduced in this paper. One route being pursued, with a view to greater

appreciation of the methodologies performance, is an extensive simulation study. This is

particularly geared to the censored response situation. It is hoped to elucidate the effect of

varying censoring distributions, establish what sorts of splits are selected and how 'significant"

these are. Additional real-world data sets are also being analysed. The performance of the trees

to date has been very encouraging. Another line of attack involves determining the asymptotic

behaviour of such models. CART §12.3 demonstrates the consistency of regression-trees under

mild regularity conditions and it is projected that similar results hold for the new tree schemas.

Indeed CART concludes by asserting that no theoretical justification has been obtained for

any of the specific splitting rules used, pruning strategies or cross-validation. To the extent

that these are the aspects that have been altered, consistency follows immediately. This even

extends to the situation where the response is subject to censoring as asserted by Gordon and

Olshen (1985).

One other extension being developed is to multi-response situations. The only envisaged

change is the rcpl -ement of LS, say, with some multivariate analogue. The splitting criterion

- would then take the form

"(,t) = SS(t)- SS(tL)- SS(tR)

17

, ..-............. . o . ........ . . .



where now

SS() = ((1-,.)' A (¢- p.)).

The sum is over cases contained in the appropriate node and u(.) designates the mean for

that node. A is a diagonal matrix used to weight predictors. Alternatively, the two-sample

statistic splitting approach could be extended by, for instance, maximizing the Mahalanobis

distance between the two subsamples. Nothing is sacrosanct about the covariance matrix, so

other metrics could be used. Note, however, that due to the absence of an order in Rq, for

q > 1: the dimension of the response, rank methods are not applicable.

The thrust of CART was to develop a method that, despite not possessing any theoret-

ical optimality properties or rich large-sample results, performed well in practise. The exam-

pies presented throughout the monograph establish that legitimacy. Likewise, the regression-

treeprocedures involving rank based splitting rules have displayed their validity "in the field"

and have the potential to constitute a good analysis tool.

ps
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Table 1

Pruiing by S'zbtree Mazunal Statistics

Simulation Study

Tfree Terminal Subtrec Subezree
Nunbtr Nodes Root Node Maximal Statistic

1 32 .1 0.00
2 31 30 0.73
3 30 47 1.04
4 .9 34 1.14
6 28 36 1.27
6 27 60 1.38
7 26 21 1.40

825 9 1.42
9 24 12 1.43

10 23 22 1.44
11 22 46 1.76
12 21 26 1.78
13 20 17 1.86
14 18 29 2.01
15 17 20 2.05
16 16 282.26
17 1s 16 2.29
1s 14 is 2.40
19 13 14 2.49
20 12 13 2.61
21 11 3 2.65
22 10 10 2.66
23 8 11 3.21
24 7 4 3.52
25 6 6 3.68
26 5 5 4.00
27 .4 7 4.50
23 3 3 6.20
29 2 2 6.59
30 1 1 9.29

21



.--.--.---.---- ~--

x0

3=a
c~c) 0 x x If

x w x a3=

a3 3x 20xxx

41 a x
c 0 0 3 3 3

c xa 0 a ' 0

C 0 0 3

L3 0 0a

3 x

I0 0 0
0 3

0 0
3

0 c'0
a x

303

0 
to

10

IAVAJSOCt

22



Tree Diagram for Stanford Heart Transplant Data

6.4 61

Figure 3
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Table 2

ruing by Subtree Maximal Statistics
Stanford Blean Trwsplant Data

1Tee Termninal Subtree Subte
Number Nodes Root Node Mwemal Statistic

1 14 .1 0.00
2 13 14 0.60
3 12 10 0.99
4 11 6 1.17
5 10 16 1.25
6 9 3 17
7 6 13 2.43
8 4 a 2.48
9 2 2 2.79

10 1 1 4.91
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