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d This report covers the period from October 1, 1984 through March 31,
1985. The research discussed here is described in more detail in several pudb-
lished and unpublished reports cited below.

Several fundamental bounds on the complexity of network architecture,

parallel computation, VLSI design, and slgorithms have been established and/or
“. improved during this period. The grid-matching problem, of importamce to
vafer—scale integration, is close to solution. Improved algorithms for two—
layer chanmel routing have been developed.

The Yfat-tree” imterconnection network has been studied further, and a
better algorithm for on-line routing of messages in this network has been
® developed. There is continued interest in compaction, and s provably fast
algorithm for solving constraint systems has been devised.

The CAD frame Schems has been solidified in several ways during this per—
iod. It is now possible to use Schema as a schematic capture and data storage
system. There is better support being developed for PC-board designs. Some
advanced ideas in describing waveforms qualitatively are being imncorporated.

A novel PROM device that is UV-emabled for writing has been designed and
tested. The tradeoff between speed and fault probability in A/D converters
has been viewed from a new angle. ,The same tradeoffs have been investigated
P for inverters, im an emdbriomic st of reliability software. Development of

CAD tools for the IBM PC has continuund.

The previously reported dbounds for\intercommect delay in MOS circuits
have been improved in several ways. Some bounds now pertain to RC meshes
rather than RC trees; some hold with resistors to ground. Tighter bounds have

® been found by exploiting slew-rate limits onnode voltages.
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“ THE DESIGN OF SCHEMA

During the past six months, Schema has been solidified in a aumber of
wvays. The database and schematic capture tools have stabilized to the point
that people are now being to use Schema to enter and store designs which will
be maintained for lomg periods of time. Our colleagues at Harris are confi-
dent emough ia the architecture that they are developing the first application
tool to be built on top of Schems rather tham az integral part of Schema. 1Ia
addition a aumber of the interasl components that are needed for VLSI design
are being put iato place.

»
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- Anuja Kohli has emhanced the schematic capture portiom of the system so
.- that it caz handle logic symbols with am arbitrary number of imputs, and is

. developing a basic spatiacl management system for schematics. This tool will
permit the creatioa of routiag programs for schematics and may aslso be used
for gate arrays. Is sdditios they are used to manage the placement of text on
the screem and gemerally improve the sesthetics of the designs as entered bdy
hand.

Our colleagwes at Harris, Ymc. are developing a wirewrap/PC board devel-
. opment tool on Schema. This package makes use of Schema’s newly enhanced
- ability to deal with logic disgrams and hierarchical designs. There are three
phases to the project. First, the logic schematic is comverted to technology
specific diagrem by binding gates to particular implementations, e.g. a NAND
gate is converted to s 74800. Second, the gates are partitionmed into packages
and the packages are placed. At this point a wire wrap board can be created.
Finally, a more detailed adjustment of the placement is made and the signals
are assigned layers snd routed. This last phase is being done by Don Becker
here at MIT.
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Brian Williams has been refining his temporal constraint propogation
tools in preparation for their incorporationm into Schema. Margaret St. Pierre
has begun specifying the waveform representations and simulation interface for
: Schema. Unlike previous versions of these representations, Margaret's will
- permit qualitative values to be used both for the time specification and for
the value. The basic ides is that a waveform is a mapping between time and
. some value space. The value space can be a continuous quantitative domain as
- is used by Spice for voltages and a curreats, a discrete quantitative domain
- as is used in logic simulation, or a qualitative domain as is used by Briaen
. Williams qualitative reasoning system. Vhen a waveform is asked for the value
S at some time, the time value csn be any open or closed interval, including a
: point. If the time value is not a point, the value returned may be a
qualitative value. This mechanism will ease greatly the effort reguired to
> incorporate qualitative reasoning mechanisms to Schema.
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THE WAVEFORN BOUNDING APPROACH TO TINING ANALYSIS

Our work since October 1, 1984 has been concentrated on bounds for signal
delay in linear RC models for on—chip interconmect. Taking as a starting
point the work on Rubinstein, Penfield, and Horowitz (IEEE Trans. CAD, July,
1983), we have been able to include more gemeral networks than RC trees drivenm
by voltage step inputs. Ve have also sovcceeded in reducing the region of ua-
cortainty in the original bounds for certain classes of networks of practical
interest.

One- extension we have completed is a method of bounding the response of
RC meshos, which are more general than RC trees in that resistor loops are
allowed. These networks are important in practice 1) as models for the gates
of large MOS pad driver tramsistors, 2) whenever linear resistor models are
used for transistors in logic gates or CMOS pass gates, as in Chris Terman's
program RSIM, and 3) to model interconmect metworks with closed loops some-
times created by automatic routing programs. Another successful extemsion is
to netvorks with resistive paths to ground, which are appropriate models for,
e.g., interconnect to bipolar logic gates.

Tighter bounds have been achieved for unbrancheed lines and certain
classes of RC trees by exploiting slew rate limits on the node voltages and
exploiting the spatial convexity of interconmect voltage during tramsients in
a novel way.

Two master’'s level graduate students, Ray Schnitzler and David Standley,
are deing supported by this contrsct.
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HIGR PERFORNANCE CIRCUIT DESIGN
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Progress was made in four areas: PROMs, A/D converters, understanding
noise margin/speed/reliability tradeoffs, and PC microtools.

' We have recently demonstrated a new type of programmable read-oaly memory
. (PROM). The invention allows users of comventional nNOS and CMOS processes,

: such as those avsilable through MOSIS, to place several hundred bits of elec-
trically alterable read-only memory om any custom VLSI chip. Typical applica-
tions might include the storage of cryptographic codes, special addresses,
calibrastion data, or repair locations for fault—-tolerant systems.

The size of the new non—-volatile PROM cell is about twice the size of a
conventional static—but volatile——memory cell. The programming process,
while it does not require the use of high voltages or specisl processing, must
- be done in the presemce of ultraviolet (UV) light. Each cell can be individu-
- ally written while the UV light floods the entire chip.

The experimental chips were fabricated through MOSIS in 4 micron nMOS.
Write times on the order of tem minutes woere observed. So far, the cells have
retained their state for months, and years of storage is projected. We hope
the new PROM, which is not seen as replacing commercial EEPROMs built with
special processes, will find wide system application where the use of exotic
and expensive processes for just a few bits of field programmable, non-
volatile storage is uneconomical or infeasible.

In the area of A/D convertion, we examined the fundamental limits onm the

- speed of A/D converters as a function of the probability of a fault. This

) fault problem is completely analogous to the synchromizer problem in digital
circuits. After all, if one could build a perfect A/D conmverter, one could
build a perfect synchromizer. Ve have found that, for extremely high levels
of reliability, flash and self-timed successive approximation converters are
equally slow becsuse they both spend virtually all their time resolving the
one hard bit,

We have continued our investigation of tradeoffs between speed and
reliability. We have discovered that the lower bound on ianverter pair delay
increases by 50% as the noise margins are incressed from zero to their maximum
values of half the power supply rail. Ve have also investigated the tramsient
step response of inverters and seen tradeoffs between the reliability measure
(the noise margin divided by the worst-case noise) and the ultimate speed.

Ve have continued our back-burner effort om VLSI microtools—s set of
programs for helping with the early design stages of a VLSI chip. These tools
run on IBMN PCs and either use LOTUS 1-2-3 or TKiSolver. They solve such prod-

. lems as finding the temperature rise in a metal line or its fringing capaci-
- tance as & function of the wire geometry. They also do characteristic imped-
X ance calculations for PCBs. Community members may have copies of these pro-
. grams for free, and at their own extreme risk, by sending me a diskette. We
promise bugs for sall.
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ARCHITECTURAL DESIGN

b Professor Leighton is continuing research on several problems iavolving
novel network architectures, parallel computation, VLSI design and the devel-
opment of algorithms for NP-complete problems which provably work well oa the
average. Advances have been made in several areas during the past siz months.
Highlights are described inm the following paragraphs.

k In the algorithms ares, Professors Leighton and Sipser, Thang Bui and
Soms Chandhuri (University of Washington at Seattle) have developed graph
bisection algorithms which (provadly) slmost always find the minimum bisection
of graphs with small bisections. These algorithms perform dramatically better
than known techniques for large classes of relevant graphs. The work will
form an important part of Thang Bui’s PhD thesis, which should be completed by
this summer.

In the area of fault—tolerant comstruction of VLSI networks, Professors
Leighton and Rosenberg (Duke University) and Dr. Chung (Bell Communications
Research Labs) have developed efficient slgorithms and bounds for representing
useful networks as a small number of "stacks” of wires. As the stacks are
easily implemented in VLSI, the results mske possible the efficient configura-
tion of fault—free networks in enviropments that comtain defective componments.

In related work, Professor Leighton and Peter Shor (who is expected to
finish his PhD thesis this summer) are close to solving the grid matching
problem. Roughly stated, the problem is to determine the expected minimum
maximuom edge length over all perfect matchings of N random points to N
fized points that are srranged in an N1/2 x N1/2 grid with ovnit spacing
between consecutive rows and columns. Professors Leighton and Leiserson
proved an upper bound of O(log N) and a lower bound of 0Q(log N1/2  gor
this problem in their work on wafer—scale integration of systolic arrays in
1982. Determination of the precise bound has remained a difficult and impor-
tant open problem ever since. It now appears that the exact bound for the
grid matching problem is 0(1033/4 N), improving both the upper and lower
bounds. As a direct result of this work, it will be possible to improve the
best bounds knowh for the average case behavior of algorithms for wafer—scale
integration as well as for a variety of other packing and assignment problems.

Professor Leighton and Johan Hastad (a first yesr graduate student) are
developing efficient circuits for parallel division. Currently, the only
known circuit that can compute the N most significant bits of a quotient in
O(log N) parallel steps requires O(N5) processors. Preliminary work by
Leighton and Hastad indicates that the number of processors can be decreased
to O(NM*%) where ¢ is an arbitrarily small positive constant. Although
not yet practical, the improvement im hardware requirements is significant.

Professor Leighton and Bonnie Berger (amother first year graduste stu-
dent) are developing improved algorithms for 2-layer channel routing. Imitial
progress in this area suggests that it may be possidle to achieve the persfor-
mance of the Baker-Bhatt-Leighton Manhattan routing algorithm and the Rivest-




Baratz-Miller knock-knee routing algorithm with a single, simpler algorithm.
More importantly, it appesrs that the new slgorithm can be exteaded to the
unit-vertical-overlap model (in which wires can overlap oamly for unit distance
and only in the vertical direction) where a factor of two in channel width can
be saved. The factor of two is significant because the new algorithm always
routes 2-point net chanmels with width d+0(d) instead of the best previously
known bound of 2d-1. Here d denotes the density of the channel which, of
course, is a lower bound on chanmel width. The results also hold for multi-
point net problems, except that am additional factor of two im channmel width
is required.

Peter Shor has beenm investigating the average—case behavior of bin psck-
ing algorithms. In the case where the item sizes are uniformly distributed,
he has derived much tighter bounds on the wasted space produced by the algo—
rithm First Fit than were previously kmown, and has the exact answer, up to a
constant, for the wasted space produced by the algorithm Best Fit. He has
slso doerived a lower bound for any on—line that shows that on—line algorithms
cannot do as well as off-line algorithms, and that Best Fit comes within &
smsll factor of being optimal among on—line algorithms.

Charles Leisorson and Ron Greenberg have further improved their algorithm
for on~line routing of messages in the "fat—tree” intercommection network.
This probabilistic algorithm is novel in that it does not randomize in the
choice of message paths or in the operation of the switches, but rather in the
choice of whether or not to send a particular message in a particular delivery
cycle. The algorithm ensures that s set of messages, M, can be routed with
high probability within O(lamdbda(M)loglMl) delivery cycles, where lambda(M) is
the maximum over all communication links of the ratio of the number of mes—
sages in M which must pass through the link to the capacity of the link. This
work may also have some applicadbility to routing networks other tham “fat-
trees.”

Miller Maley has developed a provably fast algorithm for solving con-
straint systems in VLSI layout compaction. Constraint solving is usuvally done
by the Bellman~Ford algorithm, which has O(IVIIEl) running time in the worst
case. Heouristics have been developed which allow the system of comstraints
arising in compaction to run much more quickly than this bound. The new algo-
rithw runs in O(|El+Ivl1oglVl) time in the worst case.

Susmita Sur is currently writing up the work on channel stretching in the
PI project.
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Time Optimal Trajectories Associated with Voltage Bounds in RC Tree Networks*

Han~-Ngee Tan and John L. Wyatt, Jr.

ABSTRACT

Linear RC tree networks are appropriate models for branching interconnect
lines in MOS integrated circuits. Bounds on the step response of these
networks, first derived in Rubinstein, Penfield, and Horowitz (1983), are
useful in timing analysis as bounds on the signal delay in MOS interconnect.
Those results become more transparent if the bounds are derived in terms of
the payoff function for associated minimum-time and maximum-time linear
optimal control problems with state constraints. This approach, first
introduced in Yu and Wyatt (1984), provides a natural way of incorporating new
information, such as bounds of the form v () 2 -vw (t)/T_ on the slew rate
of node voltages, and yields tighter bounﬁs on signal delay than were given in
the work by Rubinstein et al. above. This report gives a simple and rigorous
derivation of the solutions to this class of optimal control problems with
slew rate limitationms.

*This work was supported by the National Science Foundation under Grant
No. ECS-8310941 and by the Air Force Office of Sponsored Research under
Contract No. F49620-84-C-0004.

**Address inquiries to Wyatt: Department of Electrical Engineering and
Computer Science, M.I.T., Room 36-865, Cambridge, MA 02139; (617) 253-6718.

Copyright () 1984, M.I.T. Memos in this series are for use inside M.I.T.
and are not considered to be published merely by virtue of appearing in this
series. This copy is for private circulation only and may not be further
copied or distributed. References to this work should be either to the
published version, if any, or in the form "private communication.” For
information about the ideas expressed herein, contact the author directly.
For information about this series, contact Microsystems Program Office,

Room 36-575, M.I.T., Cambridge, MA 02139; (617) 253-8138.

MICROSYSTEMS PROGRAM OFFICE, Room 36-57% Telephone (617 253-8138
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Time Optimal Trajectories Associated with
Voltage Bounds in RC Tree Networks
®
Han-Ngee Tan and John L. Wyatt, Jr.
Ho
Abstract
® Linear RC tree networks are appropriate models for branching interconnect lines in

MOS integrated circuits. Bounds on the step response of these networks, first derived in (1],
are useful in timing analysis as bounds on the signal delay in MOS interconnect. The resuits
in [1] become more transparent if the bounds are derived in terms of the payoff function
) for associated minimum-time and maximum-time linear optimal control problems with state
constraints. This approach, first introduced in {2], provides a natural way of incorporating
new information, such as bounds of the form i.(t) > - v.(t)/T,. on the slew rate of node
voltages. and yields tighter bounds on signal delay than were given in [1]. This report gives
® a simple and rigorous derivation of the solu.tions to this class of optimai control problems

with slew rate limitations.
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This work was supported by the National Science Foundation under Grant No. ECS-3310941
and the Air Force Othce of Sponsored Research under Contract No. F45620-84-C-0004.
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1. Introduction

The work of Rubinstein et. al. [1] and Horowitz [3] on bounds for the step response of
a linear RC tree concerns the system (for the case ot a falling transient)

N
3 ReCrie=-vy, wl0)=1,k=1,.,N. (1.1)
2]

it was shown that for an RC tree,

Riljn - RecRji >0 (1.2)

~%(t)>0, Vve>0. ' (1.3)

It follows from (1.2) and (1.3) that

TR:”:(‘) < g-(t) < Tp”c(t)» (1'4)

ge(t) é /‘ v..(r) dr, . (1.5)

N
A3 RuC, (1.6)
kam|

Using (1.1) - (1.7), upper and lower bounds for v,(t),0 < ¢t < so were derived.

Charles Zukowski of M. |I. T. made the remarkable observation that these bounds can
be interpreted as solutions of certain optimal control problems. Consider, for example, the #
lower bound. Suppose v (¢} solves the following minimum-time problem in which an input
u(-} is introduced to represent the unknown waveform 2, (.) :

Minimize ¢,
with

2.(0)= =w(), g (0)=Tp,, | (1.8)

?',(I) = u(l), v () == 1, (1.9) ‘
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vit))=V, 0<V.<]1, (1.10)
u(t) <0, vt >0, (1.11)

Tieve(t) < 9(t) < Tpve(t), ve20. (1.12)

We denote this minimum time t...(V.). since it depends on the “target” voltage V:.

Since v.(0) > V, and v.() is continuous, v,(¢t) > V., ¥ t € [0,tmin(V])] : in particular v,
+ i a lower bound on v(tm(V.)). Thus the inverse of the function tmin(V.), denoted here
v..mun(t), i @ lower bound on all solutions . (¢) of (1.8) - (1.12).

This interpretation allows a particularly simple derivation of the bounds in [1). We can
H. also use the optimal control approach to derive tighter bounds that result from imposing

additional constraints on the control u(-}. Yu [2] has shown that for any RC tree and any
node e there exists a 7,. > 0 such that

() !
-0 < T vtz (1.13)

in terms of (1.9) and (1.11), (1.13) transiates into a new constraint on the control,

() > - %:v.(t). (1.14)

The nature of the optimal trajectory for the minimum-time problem with the additional
constraint (1.14) is discussed in [2] for some special cases. The purpose of this memo is to
provide a complete and rigorous derivation of the solutions of the optimal control problems
for both maximum-time (upper bound) and minimum-time (lower bound) and for all values
of T,.. without invoking Pontryagin's maximum principle [4]. The problem of deriving a
numerical value for 7., for a given tree was studied in detail in [2] and will not be discussed
here.
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2. Minimum-Time Trajectory

Problem Statement (Minimum-Time Problem) :
For each “target” voltage V.,0 < V, < I, determine

wy
with
System Dynamics :
de(t) = — velt),  9c(0) = Toe; (2.1)
De(t) = u(t), v, (0) = 1; (2.2)
Target :
vlt;))=V,, 0<V,<| (2.3)

Admissible Control Set :

u_é.{All piecewise continuous u()| - 7_‘-—::.(:) <ut) <0, 0<t< t,} (2.4)

State Constraints :
TRcvt(‘) < g.(t) < T,”c(‘)- (2'5)

The solution of the minimum-time problem can be derived from the following two
lemmas, without resorting to optimal control theory.

Lemma 2.1

Let u'(¢t),0 < t < t; be the optimal control of the minimum-time problem without the
state constraints (2.5). If the solution g,(t) and v,(t) of (2.1) and (2.2) with control u(t) = u"(t)
does not violate the state constraints (2.5), then u’(t) is also the optimal control for the
minimum-time problem with state constraints (2.5). .

The proot of Lemma 2.1 is trivial and is omitted. Its value is that the optimal strategy for
the problem without state constraints is particularly simple : to drive »,(t) from 1 to V, < |
as fast as possible, simply decrease ».(t) at the maximum aillowable rate at each ¢, i.e.

w(t) = - T'l—v:(!). (2.6)

(To see this rigorously, assume «(-), piecewise continuous and that «(¢) > u'(t), V
1€ ./ where / C |0.1;] is a nonzero time interval. Therefore (1) = u(t) > ~ v (1)/T., =9
Tuh () v o (t)=0a(1) 20 Vie O] andaft) >0 Vg .. By integration. we obtain
v (1) = v (0)esp{-t/T.}+ L,' - rYexp{ - #/T Yz > v (0)esp{=1/T.,} .+ (1). siNCe both
»{t) and the unpulse response »p{ 1'T., } are positive over J)




..................

Morecver the trajectory under the action of u’() is a straight line with slope T, in the
4 — » plane because

dg; _ a.(8) _ ~wi(e) T, (2.7

Lemma 2.2 '

Consider two trajectories / and // with common initial and final states A and B, such
that / lies entirely above // as shown in Fig. 2.1. Then the time taken to reach B from A
along / is strictly longer than that along /1.

Proof :
Since ‘{;t = - v,, the time taken.to reach B from A along any path P in the plane is

given by

t:_3=/;—%dg.

Since path / lies above /! . path [/ must lie to the right of /, as shown in Fig. 2.1. Therefore

! /’ 1 il
t —_g = - - = ——
a-8=J=3%=], o) %
fa 1
> / dg (since v''") > o'’ for each fixed g.)
28 v(l')

1 "
= - ={ .
/” v“'q A~B

B
2.1. Case A:0< T, < The
See Figs. 2.2(i - iii).
Proposition 2.1
R . Tn,= T,
() For 1>V, > Jeemfu,
t; = Toeln|—]|. 2.8
! [v:] .
(i) For ee=qle > v} > Tuem e,
.
!; = TUC - an - (’I'F - TM )V: + T. I“l;}_.] (2q)
(iii) For Tr-=le > v 7 >0,
. " 1 1'"' - "'-' 'r" ° 'r" 1
ty = T = Taw v T =2 00 e T "m0 210
Lo o "[v.' o 1. ] * "[ T '.-J )
5
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Proof :

(i) From Fig. 2.2(i). V. can be reached from A by decreasing v.(t) at the maximum
allowable rate, without violating the state constraints (2.5) This is in fact the optimal
strategy for the minimum-time problem without the state constraints (2.5). Hence path
AB is the optimal trajectory by Lemma 2.1. Therefore

P PSS

'.!J a

< bi(t)=u'(t) = - TLv:, v.(0) =1,

- v,(t) = exp{- 7.‘:‘}

- - t; =Teln [—‘-—]
: v,
(ii) We claim that trajectory ABC in Fig. 2.2(ii) is Optimal. To see this. consider any other
trajectory which is has the same initial condition (1. T,.) and terminates at the target
) set, but different from ABC on some portion of its path. Such a trajectory either lies
- entirely above ABC, such as /, or meets ABC at some point. say B’, such as /I. [ is
: nonoptimal by Lemma 2.2. [/ is also nonoptimal because along // AB’ takes longer
than AB8’' by Lemma 2.2 and B'C’ takes longer than B'C by Lemma 2.1. Adding the
times along AB and BC yields (2.9).

(iii) Path ABCD in Fig. 2.2(iii) is optimal by the same reasoning in part (ii). Adding the
times along AB, BC and CD yieids (2.10).

2.2. Case B : The < Toe < Toe
See Figs. 2.3(i - ii).

Proposition 2.2
(i) For 1 > v > Zp==Tu, the optimal trajectory is AB ( Fig. 2.3(i) ) and

. 1
t, =T, In|—]|. (2.1
! [v:] )

(i) For 1’.,._-.,21. > V. > 0, the optimal trajectory is ABC ( Fig. 2.3(ii) ) and
t;=Toe= Tee= V(To= Tue)+ To ln[‘—f:]. (2.12)

The proof of Proposition 2.2 is exactly the same as that of Propasition 2.1 and is omitted.

2.3. Case C: Ty, < T.e

In this case, the minimum value of V_ attainable from »,(0) = | using admissible
controls u(.) « & without violating the state constraints (2.5) s (T, = T..)/(Ti. - T..). as is
apoarent from Fig. 2.4. No trajectory can satisly all the constraints and tend asymptoticaily
to the origin as 1 -» co. In terms of the RC tree problem. case C can only arise through a *

L"-."- "1_{-. M

modelling error. so we will not prusue it further.

Lt
»
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3. Maximum-Time Trajectory

Problem Statement (Maximum-Time Problem) :
For each “target” voltage V_,0 < V. < 1, determine

o
with
System Dynamics :
5:(‘) = - "t(t)t ‘ge(u) = TD«; (3”
Oelt) = u(e), v,(O) =l (3.2) .
Terminal Time Constraint :
velt/) 2V, 0<V,< (33)
Admissible Control Set :
:.'_é{AII piecewise continuous u(-)| — F‘-v,(t) <u(t) <0, 0<t< :,} (3.4)
. se
State Constraints :
Tieeve(t) < g6(t) < Tyvelt). (3.5)

The maximum-time problem is easier than the minimum-time problem and its sofution
for different values of 7,, and V. can be derived using Lemma 2.2 only. We state the
solutions below. Proofs are omitted.

3.1. Case A : 0 < T\ < Tie
See Figs. 3.1(i - ii).

Proposition 3.1
(i) For1> V. > 1';.'-_:.,1'- the optimal trajectory is AB ( Fig. 3.1(i) ) and

t; =T, In -'- - —'-.{'(7'., - TV, + (Toe = T.)} (3.6)
Vv V¢
(ii) For Z;c:;,,f-:'. > V. > 0. the optimal trajectory is ABCD ( Fig. 3.1(ii) ) and
. [ - T I Tp = T,
PR L .,. ‘ ”,l _1____!. T,l L iy = e . 3.7
r=1- Tu.+ T, "!7.," Ty + T, "[V: T (3.9)

3.2. Case C: T, < T\

The results here are identical to those in section 2.3.

3 '
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4. Conclusion

We invert, where possible, the expressions derived in Props. 2.1 - 2.3 and Props. 3.1
- 3.2 to obtain the final expressions below, for the upper and lower waveform bounds. For
the case of T\, < ... where not all values of V. < I are attainable, the upper and lower
bounds are not meaningful and therefore are omitted here.

4.1. Lower Bounds

4.1.1. Case A:0< T,, £ Tre

To= Tse

() Foro< ¢t < T, lﬂ[rL—'r:;]-

Vi) = cxp{— -T-f-} (1.1)

. r
(i) For T..n [1?7,—"!“] <t < Tpe= Toe+ Toeln [.,.-;T,-] there is no explicit function ‘or

V.(t). because (2.9) is not invertible.

('“) For ¢ > Tl)c - Tn + Tu In [1'—1;".‘]'

- - TRe- Tn. { t— (Tnc - u)— Tu l"[(rl- T“)/(TR'— T")I}
V (t) = ————————cxp { - . 1.2
) = g ox T (4.2)

4.1.2. Case B : Ty, S T.e s Tre
(l) For0< t < T“,lﬂ 1!."—1‘;.':_. '
V.t)=c {- L} (1.3)
e xP 7'.‘ * -

(i) Fort > T,.In [.,TJ—’-',-— there is no explicit expression for V' _(t). because (2.12) is not

invertible.

4.2. Upper Bounds

4.2.1. Case A:0< T.. £ Tie

(i) For0 <t < Ty= Tre+ Tac Iy l.,v—- } there is no explicit expression tor V' (t). because
(3.6) is not invertible.
(iyFore > Ty~ Ty, + T, ln[ e :1.',.'_

= Lo T D e T e

T»

I‘n. -1, { ¢ = Tp = T )= Tl - TT0, - T )!} (1.1)

.................

......
............
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to a reasonable set. Thus the rules of my circuit grammar provide constraints
which allow the approximate qualitative analysis of partially instantiated

© circuits. Later, more careful analysis in terms of more concrete components
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Macromodeling of Digital MOS VLSI Circuits

Abstract

This paper presents a method for modeling MOS combinational logic gates. Analyses are given for
power consumption, outgut response delay, output response waveshape, and input capacitance.
The models are both computationally efficient and accurate, typically lying within 5% of SPICE
estimates. They are pertinent to simulation and optimization applications. A general macromodeling

software support package is &escribed. A companion paper discusses a circuit optimizer based on
these models.




1. Introduction

This paper discusses accurate, computationally efficient models for MOS logic gates. The models
are well suited for simulation and optimization of high performance VLS! circuits. The models are
based on device equations, and acquire much of their accuracy through careful consideration of

waveshape effects.

The significance of waveshape effects has been investigated by other workers. Crystal [1], a timing
simulator, modeis transistors as resistors, but uses different values for transistor resistances
depending on input waveform. While this leads to good accuracies (typically withir 10% of SPICE
predictions), the approach does have some limitations. For example, the tables of eHective transistor
resistances depend on a uniform trigger voltage (the point on a logic gate’s transfer curve where Vour
= v,,) and can produce substantial errors if this restriction is removed, for instance by varying beta
ratios. Moreo('er the table interpolations can generate jagged delay functions; this can make the
optimization task more difficult.

For these reasons we chose to base our modeis entirely on device equations. Horowitz [2] pursued
a similar strategy in modeling the delay of a MOS inverter. He derived equations for the gate's
response and then obtained estimates of parameters from the gate's drive curves (curves of Vour
versus v, for different values of load current).

in this paper we describe more general and sophisticated models. We develop equations for power
consumption, output wavetorm, and input capacitance of a general MOS logic gate. To obtain high
accuracy in the model, we wrote a macromodeling support package to determine the equations’
parameters. The package curve fits the model equations to SPICE simulation results and finds the
parameter set which provides the highest accuracy.

Section 2 discusses the basic principles of the macromodeling approach. Section 3 presents
modeis for MOS inverters. We begin with a resistor-capacitor model and discuss its limitations. We
then deveiop a more elaborate model, one accounting tor waveform shape eftects. The analysis is
extended to more general logic gates in section 4. The theory gives us the form of the macromodel
equations. [n section 5 we describe how the equations' parameters are determined with a

sophisticated macromodeling support package.
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2. Motivation and Intent )
Circuit optimization is a computationally expensive process. It is an iterative procedure, requiring *

multiple simulations at each step to evaluate delays and their gradients. Moreover, high performance

circuit design requires fairly accurate delay estimates, but using a device level simutator would be out

of the question for all but small circuits.

Since it is too time consuming to compute circuit responses during the optimization, we instead
pursue an approach where much of the work is performed prior to the optimization. We divide a large
. circuit into many small pieces. This partitioning is done such that the pieces have limited, well
understood interactions, while the elements inside the pieces have strong, complex interactions.
Thus computing the interactions among elements within a piece would be very expensive, and it
behooves us to characterize the behavior of the pieces belorehand to avoid having to compute it
during the optimization.

This approach is called macromodeling. In the digital MOS domain, candidates for pieces would be
cells such as logic gates and storage elements. We model the attributes of the cells as functions of
the cell's internal description and boundary conditions. In particular, we are concerned with a cell's
power, input load, and output waveform attributes. The cell's internal description consists of its ,
transistor sizes, layout parasitics, and process parameters. Boundary conditions are imposed on the
cell by external agents. These include input waveforms from drivers and output loading from
receivers and wiring capacitances. We characterize waveforms as time-shifted ramps with
exponential tails. This waveshape is representative of those found in digital MOS circuits. Figure 1
displays an example. The chain of inverters is driven by a falling input waveform; the figure shows the
output waveform of each gate. Here T denotes the time shift, and Tsw the time constant of the

DU N N

exponential portion. Conceptually TBE is the time until the output begins to mave in response to an
input transition, and Tsw is a measure of how quickly the output switches once it does begin to
change. We curve fit actual circuit waveforms to the time-shifted ramps with exponential tails. From
the figure we see that the output waveform of the chain of inverters is described by

n
R chainTgp, = }:l Tae,
=

]
e chainT g o= Tswourn

We characterize output loads in terms of an effective capacitance, dividing charge transferred by

:_', 'Ac(ual circuit wavetorms begin more smoothly than our approximation. However the error is negligibie because the logic ’
gate driven by the waveform does not really begin to switch untit the wavetorm unti! the wavetorm reaches Vt 1gger (the point
" on the dc transier curve where Vm =V out) and i3 therefore insensitive to the shape of the first part of the wlve{o«a:




—> time

Figure 1: Waveform Characterization

change in voltage. This allows us to model RC interconnection networks, since the effective
capacitance can be a function of waveform slope.

¢
We "black-box" the cell as shown in Figure 2. The cell is affected by its environment via the
boundary conditions Tswm and C, . It interacts with its neighbors via its interface attributes C.m and
_ Tswm' The internal attributes power and TBEM are isolated from the environment and have no
¢ influence on the attributes of the cell's.neighbors.
3. Inverters
c We begin our macromodeling analysis with the ubiquitous inverter, illustrated in Figure 3. The
results will be extended to more general gates in a subsequent section. For the sake of conciseness,
our analysis is only shown for rising input, falling output nMOS gates. The macromodel equations for
the opposite transition and for CMOS are similar. We will present the actual macromodel equations
¢ (for both transitions) in the section on general logic gates.
L[]
.y
.
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3.1. Objective Function

The practicing engineer typically must design circuits such that they satisfy delay specifications.
The engineer also desires to minimize some objective function subject to those delay constraints.
Power dissipation is a major concern in ratioed nMOS technology. We accordingly choose to
minimize power dissipaiion, which for nMOS is dominated by static power consumption. The static
power consumed by an nMOS inverter is roughly proportional to the shape factor of the pullup; that

s 1

ChEN '-.4'-..'- HA0
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Power = q, + a, Sn

where a, and a,are constants that depend on the fabrication process and power supply voltage.

The choice of an objective function for CMOS circuits is not as clear. Typically a designer wishes to
minimize area, power dissipation, or some combination of the two. Characterizing the area
consumption is difficult because it is highly dependent on layout style. However we can easily
describe the contribution of the transistors. This is simply

R
Area = Poly Pitch x Z stack m‘dlh,
=]
where we have omitted the transistor lengths because for CMOS they are set to the minimum channel
length.

3.2. Output Wavelomi

3.2.1. Resistive Model

Computational limitations mandate the use of a simple delay model. The simplest transistor
representation that provides tolerable accuracy is a switched resistor. The MOS transistor is modeied
with a capacitor from the gate to ground and a switched linear resistor from drain to source. The gate
to source voltage controls whether the resistor is switched on or off. The delay characteristics of the
model, along with their implications for circuit optimization, have been analyzed in [3] and (4]. The
principal advantage of the model is its simplicity, which allows one to derive closed form expressions
for the optimal transistor sizes, leading to fast run times. Unfortunately the model can be alarmingly
inaccurate. Moreover the errors can be exacerbated by the optimization. For a chain of similar gates
where the capacitive loading on each stage is dominated by the input capacitance of the next stage
{rather than the wiring capacitance), pushing the chain for speed resuits in equal stage delays. 'For’
nMOS this virtually guarantees that while for rising outputs the stage is insensitive to input
waveshape, for falling outputs the stage is highly sensitive to input slope. This sensitivity means that
the transistor cannot be accurately modeled as a resistor, and the effect on total chain delay is
significant because the stage delays are equal. Rising output stage delays, for which the resistive
model tends to be valid, do not dominate the total delay. The model exhibits errors of up to 70%,

clearly unacceptabie for serious circuit design.




3.2.2. Extended Model . (]

Faced with the inability of the resistive model to account for waveshape éffects. we are compeiled to
derive a more elaborate model. Ever mindful of computation time limitations, we pursue the simplest
possible extensions that will provide the needed accuracy. We begin by studying the inverter's
response to different input waveform slopes. paying particular attention to the different regions of
transistor operation.

As the inverter's input rises and its output falls, the pullup and pulidown transistors sequence
through different regions of operation. These regions are summarized in Table 1. For the fast input
responsez the bulk of the delay accrues from the last states where the pulldown is in its linear region.
Hence the pulldown can be approximated by a resistor, and the resistive model works well here.
However for slow inputs the pulidown is saturated for a significant portion of the transition, causing
the inverter to behave like an amplifier. in this mode the inverter is highly sensitive to the input
waveform and consequently the resistive model breaks down.

Fast Input Response Slow Input Response '
pullup ) pulidown pullup pulldown
linear off linear off
linear sat linear sat
linear linear sat sat
sat linear sat linear

Table 1: Pullup/Pulldown Regions of Operation

We seek a simple model that includes both amplifier and resistor behavior. We are especially
concerned with the middle and latter parts of the input transition, for it is here that the inverter's
output is sinking the most current. The beginning of the transition is not as crucial. For siow inputs
the inverter can be modeled as an amplifier when the pulldown is saturated, and as a resistor to VoL
when the pulldown is in its linear region. As the input transition becomes faster, the inverter spends
proportionately less time as an amplifier and more as a resistor. The mapping of the inverter to an
amplifier and resistor is shown in Figure 4. For continuity of Vout and iou1' when the model changes

from an amplifier to a resistor, we use the resistor model when 0 2 fog i caps * Vour

The ac model used for the amplifier behavior clashes with traditional engineering philosophy.

2-Fast” means that the input transition time is fast relative to the output transition time.
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Figure 4: Delay Mapping
Normally one creates an ac model by linearizing a circuit about a quiescent operating point. Here
(4 however we are interested in large signal behavior. Consequently, while we can perturb the system
from an initial point (in this case (v "ou*r) = (V|L. VOH)). we have no easy method to calculate the
model's parameters such as Sm and R We cannot simply evaluate the parameters at a quiescent
operating point because we have none. We instead view the problem at a more objective-oriented
9 level, and seek to determine which values of 9. TL etc., will provide the closest approximation to
observed response times. Moreover, rather than using the same set of parameter values for the rising
input and falling input responses (which would correspond to using a single group of drive curves to
characterize the inverter), we desire to acquire additional accuracy by using distinct sets for each
¢ transition's begin and switch responses. This leads us to the following strategy: analytically derive
expressions for the form of the macromodel equations, then curve fit t¢ observed data to solve for the
\
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constants in the equations.

Closed form expressions for the model's response to difterent input wavetorms can be derived.
Here we will outline the basic concepts; the actual equations will be given at the end of section 4. For
very fast inputs the inverter changes from an amplifier to a resistive form immediately. In other words,
the first order resistive model is valid. Figure 4 shows the model. For fast inputs the inverter model
does not change immediately, but does change before the output transition completes. We use the
amplifier mode! of Figure 4 but omit the resistor r,. The output switches quickly enough that the

L
current in the total capacitance Cmtal (= CL +C N) dominates that of r, , allowing us to neglect the
resistor. For moderate inputs the input waveform is slow enough that the model changes after the
output has fallen. The current in me still dominates that of r.- For siow inputs, the current through

n

closed form exbressions for TBE and Tsw. For very siow inputs, the input and output waveforms have

can no longer be neglected. Unfortunately this leads to equations which cannot be soived for

slowed to the point where the current through C‘ otal
The ampiifier system reaches steady state, exhibiting a constant tracking error to the ramp input,
being entirely limited by the speed of the input [5].

is almaost negligible compared to that through o

Having described a method for determining the inverter's response to various input slopes, we now
seek a means of combining the results into one conglomerate expression. It is common o use
smoothing functions to effect this combination. However many workers fail to consider the
computational overhead incurred with these functions. We instead create simple functions that
exhibit the desired behavior in each of the input slope regimes. To avoid placing any unnecessary
burdens on the optimization algorithms, we choose functions that are twice continuously
differentiable. Although optimization algorithms exist for solving probjems with ill-behaved (eg.
discontinuous) functions, because of their added generality these algorithms tend to be slower.
Moreover we prefer functions that do not contain multiple maxima or minima; ie. that are unimodal.
This helps eliminate cusps that could trap an optimizer's iterative solution technique. The resulting
inverter equations are fully described and analyzed in {6].

3.3. Input Capacitance
Calculating a gate's delay requires knowledge of the input capacitances of the gates that it drives.
In this section we study an inverter’'s input capacitance. Qur resuits will be extended to more general

logic gates in a later section.

We begin by considering the components of the input capacitance. Figure 5 shows our model. The

input capacitance has two constituents: the gateto drain and gate to source transistor capacitances.
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Figure 5: Input Capacitance Model

The input capacitance presented to the driver can change during the course of the input transition.
This etfect is largely due to the input to output coupling capacitance Coa' Consider a rising input
transition of moderate speed. During the beginning portion of the input waveform—that is, before the
input voitage has reached VIL—the inverter's output has not yet moved significantly. The input
capacitance is therefore simply c“s + ch' Both terms are proportional to the pulldown transistor's
width.

As the input voltage passes V, , the inverter begins to pull its output low. Consequently the driver

i
must supply more current to charge ch than it would have had the output voltage remained fixed.
This is called the Miller effect [7]. The effective input capacitance has increased. Note that the total

voltage switch across ¢ is always V,, - V, . while that across Caa is 2 (Vg - Vo ) but we are only

interested in the capa’::itance seen during the beginning and switching portions of the input
waveform. For very fast input transitions the output will not have moved until after the input has fully
switched; hence the driver will not have seen any Miller capacitance during the actual transition. As
we slow the speed of the input transitions, more of the output's switching time overlaps with the
input's and we see more Miller capacitance. Eventually all of the output's switching time overlaps
with the input's and Cswm reaches a plateau. The expected behaviors of the effective input

capacitances CBEin and CSWm appear in Figure 6.

The analysis is complicated slightly by the fact that since ng and ¢ os are functions of Vas and Vo'
they not only vary as the gate switches, but their average value during the input transition changes as
the input transition slows down. The outcome of this change in Cod is that for rising inputs the Miller

effect is significant, while for falling inputs the Miller effect is scarcely noticeable.




T

T 2t et e St e e el didi

C
in
N
cswm
cBEIn

\ 4

T
SWin

Figure 6: Expected Input Capacitance

4. General Logic Gates

inverters are but one of a myriad of logic gates found in circuit designs. In this section we will
extend our discussion to cover a more general class of logic gates. We limit our analysis to logic
gates with a single active input, as shown in Figure 7. Transitions at multiple inputs are not supported
by our abstract model; accurate evaluation of their effects requires a low level simulator that
computes node voitages and brancﬁ currents. We feel that this represents an excessive computation

cost and therefore choose a worst case gate state with a single active input to model muitiple input
transitions.

We will derive macromodel equations for the general logic gate by extending our inverter equations.
As regards the objective function—be it power or area—the equations are basically unchanged. The
power consumption of an nMOS gate is still proportional to the shape factor of the pullup, and the
power or area consumption of a CMOS gate is still dependent on the stack widths. However the
equations for the output waveform and input capacitance require moderate extensions.
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Figure 7: General Logic Gate

1’ 4.1. Output Waveform

Additional transistors in a logic gate introduce two complications. |f they are part of the path that
switches the output by forming a path to VD") or ground, their resistance and capacitance impedes the
output transition. If they are included in a side path that does not connect the output to a supply rail,
o their channel capacitance could add to the load capacitance and hinder the output transition. During
the output switching transient, transistors with high inputs are bredominantly in their linear region.
Hence we model them as RC lines formed of their drain to source resistance and channel to gate and

substrate capacitance.
(S
Figure 8 contains an example, Note that while the top transistor in the right pulldown branch is not
in the conducting path, its capacitance adds to the total load. The general situation is depicted in
_ Figure 8.
e

The additional transistors affect the gate's response in two ways. For fast inputs, the switching
transistor can still be modeled as a resistor with its c“ and c“. but a closed form expression for the
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Figure 8: Example of a General Logic Gate

output waveform cannot be derived. We instead find the approximate response by using an approach
first proposed by Elmore [8] and now used in waveform estimation and bounding work in MOS circuits
[9, 10]. This approximates the true response as a single time constant exponential. For slower inputs
the speed of the output transition is limited by the slope of the input and transconductance of the
switching transistor. Consequently, transistors in the conducting path which are electrically after the
switching transistor have smali Vos and we can neglect their voltage drops. However we must add
their capacitances {(along with those of any transistors connected to them) to the total load
capacitance. Transistors which are before the switching transistor do not impose any additional load
since their capacitances are already discharged; nonetheless their resistance will decrease the
switching transistor's effective Om if they are in the conducting path, impeding the output transition.
This effect is illustrated in Figure 10. The effective Om has been reduced to 9, /(1+9 mrb).

Combining our results, we obtain the following equations for the output response of the general ﬂ
nMOS logic gate. For each equation, the macromodeling support package finds the parameters a, b,

etc. that provide the closest agreement with SPICE data.
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Let Wt = width of the switching device

W adtoral = effective total Wog of devices in the conducting path
(treat as if wn's were conductances)
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Switching time of rising output transition

Tswro= Tswao)
T swRows = + Tswro + My

Tswro = Tswro + ™Tspre

)
Tswro =9, + Eimore delay approximation with A~ _i
S d d
m=d +dL+C, (—+——)
" Y adicpore
Tswro=4* & Tswro

4.2. input Capacitance

As we have seen, the addition of extra transistors to form more complicated logic functions has an
effect on a gate's output response. We have examined the effective capacitance of an nMOS inverter .
during the beginning and switching phases of the rising and falling input. Of these four modes, only
one depended on the output waveform. The input capacitances during the beginning portion of the
input transition had no dependence because the output was still stationary. The capacitance during
the switching portion of a falling input had none because the average input to output coupling
capacitance dropped as the input waveform slowed down, leading to no net Miller effect. Hence the
input capacitance for these three modes depends only on the pulldown transistor's size, being
proportional to the transistor's width (assuming a fixed channel length). Only the switching portion of
the rising input possesses a significant output waveform dependence. To account for this
dependence we must analyze the conducting path containing the switching transistor. Figure 11
shows an abstract gate model along with its circuit level representation. We model 'on’ transistors as
resistors (linear region approximation) and have added the appropriate capacitances from
nonconducting paths to the total load capacitance.

We find that r, causes 8 significant drop in the input capacitance. This fact has been expioited for
many years by amplifier designers to raise input impedance and thereby improve the transfer
characteristic. For very fast inputs, the contribution of Coa is reduced by a factor (1 + g rb). For very
slow inputs node a will have dropped to Voc. by the completion of the input transition; hence the input
capacitance is identical to that of an inverter. For moderate inputs the input capacitance is in the
transition region from fast to siow input behavior. Since the total capacitance increase during the
transition region from fast to slow inputs grows, the siope of the transition increases.

AN A0 Aan At IIE T




......

Figure 11: Circuit Model for Input Capacitance

Our analysis yields the following equation for CSWRin:

mT
SWRin
Cowrin = Cowrom + BCewnial )
WR SWRO SWR
SWhin " " BCsypin T MTgypiy

8Csurin = Cswreoin = Cswroin

..... e e s . . L., S me e e e e e e e e LN e
P " R PR I LI PP YT TR T S SR BT ST S S S R S A L U S SRSl o R N M DU D 4

. S o S R ST S U M PR ) PR S ST LT TR R D AP P LA .~ . . “® .

. A . M . = . - L) . - P Wl DA S SR W o o

" P ST I A A A U A AL I R . Sl i . 2

.........
..........
.....................
-------




v & e RTTe T ke T e T AT ™ oW s e T g
-~ T AV Lo R g S g g e p—

...........

17

c _ (A
SWROIR™ | 4+ g

zw’d/ wﬂkfﬂ"

Cswreomn = 8 Y

w w
m= "pd(‘x + E:.i[c’ + c,%—-?;'])

5. Implementation

We have developed a general purpose macromodeling software package. The modeler takes as
input cell template files, a macromodel control file, and macromode! equations. Each cell template
file contains a logic ceil's general topology. The macromodeler inserts values for device sizes,
capacitive loads, and input waveforms into the template, and then runs SPICE on the resulting circuit.
The values of the input capacitance and output waveform are extracted from the SPICE output and
stored. This process repeéts for every combination of device sizes, loads, and input waveforms
specified in the contro! file. At present 216 SPICE runs are performed for the general logic gate
analyzed in this section. The particular logic cells used are inverters and NAND gates. Owing to the
simplicity of the cells, the SPICE simufations are quite fast, each requiring about ten cpu seconds on a

DEC 20/60.

Once the data points have been obtained the macromodeler soives for the constants in the
macromodel equations by using nonlinear curve fitting algorithms. We minimize the sum of squared
error; minimizing the maximum error might aiso be acceptable but it is too sensitive to noise in the
data. The curve fitter uses a Davidon-Fletcher-Powell algorithm [ﬁ] with modifications to accept
upper and lower bounds on the parameters [12]. This is essential for ensuring that the final equations
make physical sense. Otherwise local minima in the error function could draw the curve fitter toward
nonphysical values for the constants. Local minima in the error function also mandate that higher
order effects be successively included in the model equations. That is, we solve for the first order
terms in the equations first and then progressively solve for higher order terms. For example, when
curve fitting the macromodel equation for output switching times, we first start with the simple RC
model. We select a subset of data points with fast inputs and large capacitive loads — those points
for which the model is most accurate — and solve for the RC terms in the equation. We lock these
parameters and then solve for the waveshape terms. Next we solve for self capacitance terms. Finally
we uniock alf parameters and curve fit again. This technique helps to ensure that we reach the global
minimum of the error function and adds very little to the total computation time because the time is

e




dominated by the SPICE runs.

The modeler is written in a computer language called CLU [13]. It consists of SPICE interface,
minimization, and matrix manipulation program modules. These modules contain 3200, 1800, and
1000 lines of code, respectively. All toid, the modeling support routines comprise about 6000 lines of
CLU code; the modeling programs specific to the general logic gate discussed in this section
represent an additional 1700 code lines.

Pertinent curve fit statistics are shown in Table 2. The macromodel equations are typically within
several percent of the SPICE predictions, a major improvement over RC models. These benefits
come at a small price in computational overhead because we have modeled the response of the entire
i cell, rather than using a more sophisticated transistor model and then having to compute the
}_ transistors' interactions to obtain the cell's response. The accuracy and computational speed of the
macromodels make them well suited tor both simulation and optimization applications;

Rising Input, Falling Qutput " Falling Input, Rising Output
Model Egn % Error Model Eqn % Error
ave max ave max
Cacn: 1.5 5.6 C 1.5 6.9
BERin ) BEFin
Cswmn 3.7 123 CSWFM 1.3 9.7
TBEFout 57 183 TBER“' 46 13.2
TSWFM 86 278 SWRout 3.0 106

Table 2: Macromodel Curve Fit Accuracies
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Optimization of Digital MOS VLSI Circuits

Abstract

Power consumption and signal delay are crucial to the design of high performance VLS! circuits.
This paper presents a CAD tool for optimizing digital MOS designs.. The tool determines the transistor
sizes that minimize circuit power consumption subject to constraints on signal path delays.
Computational efficiency is obtained through macromodeling techniques (described in a companion
paper) and a specialized optimization algorithm. The macromodels are based on device equations,
and encapsulate logic gate behavior in a set of simple yet accurate formulas. The optimization
algorithm exploits properties of the digital MOS domain to convert the primal optimization problem
into a dual form which is much easier to solve. The result is a CAD too! which can optimize a circuit in

roughly the amount of time needed to perform a transistor level simulation of the circuit.




1. Introduction
The design of a VLSI circuit is an enormous task. Sophisticated CAD tools are essential if designers

b are to take full advantage of the power offered by fabrication technology. We describe a tool for
optimizing the pertormance of digital MOS circuits. This tool finds the transistor sizes that minimize
power consumption subject to constraints on signal path delays. The principle advantage is an
increase in designer productivity. At present, designers size transistors based on intuition and
b numerous SPICE simulations. This process is so time consuming—for both man and machine—that
designers are hard pressed to arrive at any circuit that meets delay specifications and can rarely
alford the extra effort needed to minimize pbwer consumption as well. This not only hinders the
design of the circuit at hand, it makes it difficult to compare alternate topologies for implementing
j® functional blocks, as the performance benefits offered by different topologies cannot be truly
ascertained unless the corresponding circuits have been optimized.

Another application is automatic module generation for silicon compilers. The module's transistors

. must be properly sized in order to meet system performance specifications, but it would be
unthinkable to have a human perform the sizing. The task could involve thousands of transistors,
making it too mundane and complicated. A special purpose optimizer can accomplish the chore far

more efficiently.

Several authors have studied optimization work of this nature. General purpose optimization
packages such as DELIGHT {1] and APLSTAP [2] perform much of the work in the optimization
process. They iteratively improve the design solution as a designer would, but by employing
nonlinear optimization algorithms, choose the next solution point more accurately and efficiently than
a human could. The key advantage is that an optimal solution is reached. However the optimization
process tends to be computationally expensive for a number of reasons. First, since the optimization
package is general purpose in nature, it cannot exploit properties of digital MOS logic and use
algorithms which would be more problem specific and hence potentially faster. Second, because the
optimization package is isolated from the circuit's data base, communicating solely via the simulator,
there is no provision to embed additional information in the data base which could assist the
optimization, either to allow one to access information more readily or to apply a more efficient

» algorithm. Third, the circuit's signal path delays must be determined fairly accurately; this generally
entails the use of a device level simulator such as SPICE, which is rather expensive computationally.
The consequence of these three factors is that general purpose optimizers are typically restricted to
circuits with at most about thirty design parameters.

In an effort to address larger designs, other workers have investigated more specialized techniques
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[3). By using a resistive model for transistors and neglecting the changes in a logic gate's input
capacitance induced by sizing its transistors, these workers were ablé to greatly simplify the
optimization problem. They reformuiated the original problem, a minimization subject to nonlinear
constraints, as an unconstrained minimization. This aliows for much simpler optimization algorithms,
leading to fast convergence times. Nonetheless, the simplifications needed to reformulate the
problem seriously reduce the accuracy of both the power minimization and the satisfaction of the
delay constraints, making the approach inappropriate for high performance circuit designs.

Other authors have aimed for fast computation times by simplitying both the logic gate models and
the optimization techniques. Examples are TV [4] and Andy [S]. These tools use resistor models for
transistors instead of the computationally expensive device level models. Heuristics, rather than
nonlinear optimization algorithms, guide the sizing of transistors in critical paths. In particular, TV
speeds up paths by widening the transistors of slow logic gates, while Andy uses a fixed sizing ratio
from gate to gate when a chain drives a large capacitive load. Although these approaches are
computationally fast enough to be applied to large circuits, our problem domain requires more
accuracy and efficiency. The resistor model is not accurate enough for high performance Jesign,
and iteratively applying heuristics is not as efficient as nonlinear optimization algorithms that
simultanegusly consider all critical paths.

2. Overview of Paper

This paper presents a novel approach to the transistor sizing problem. We attack the competing
needs for accuracy, computational speed, and a nearly optimal solution by combining the benefits of
the previous approaches we examined. Like TV and Andy, we work at a higher leve! of ahstraction
than SPICE, transcending the details of actual transistor operation. However we acquire additional
computational speed by modeling entire logic cells rather than just individual transistors. Like the
general purpose optimizers, we employ nonlinear optimization techniques. This helps to assure that

we reach an optimal solution in an efficient fashion. We exploit properties of digital MOS circuits and
apply a specialized algorithm to the problem, yielding striking improvements in computational speed.

Section 3 outlines the special features of the optimization problem, describing the properties of the
objective and constraint functions. Section 4 presents the theory of the optimization algorithms. We
choose a method particularly suited to our problem, taking advantage of the properties of the digital
MOS domain, and of our ability to create a circuit data base customized for the transistor sizing
problem, Our approach, called duality, allows us to partition the problem into many simpler, smaller
subproblems, and to transform the nonlinear delay constraints into box constraints (eg. constraints of




(\

the form x 2 0). Section 5 discusses the implementation of the optimizer. We describe the
organization of the software and study the optimizer's performance on some example circuits.

3. Properties of Qur Problem

We begin by choosing an optimization technique which is appropriate to our problem. Selection of
the technique is highly problem dependent, as "appropriateness” in nonlinear optimization is nearly
synonymous with fast computation times, requiring that the optimization technique be closely
matched with the problem's characteristics. We therefore commence by considering the properties
of our optimization problem.

We desire to minimize a circuit's power consumption subject to constraints on signal path delays
and transistor sizes. The objective function, power, is the linear sum of the power consumptions of
each circuit ceil. For nMOS the power consumption of each cell is linear in the shape factor of the
pullup transistor. For CMOS the power consumption is linear in the capacitive ioads which must be
driven, which are due 1o the area of the transistor gates and interconnect capacitance, but also
depehds somewhat on the input waveforms. Hence for nMOS, and nearly for CMOS, the power
consumption of a circuit is a separable function of the form

n
Pmmlr'zlPi
I=

where P, is a function of cell i only.

© The problem's constraints are of two varieties: delay specifications and transistor size design rules.

The delay along a signal path is a nonlinear function of the circuit's transistor sizes, and is nonlocal,
being composed of contributions from each cell along the signai path. Fortunately transistor sizing is
very nearly a separable operation, because both waveshape and capacitive loading effects die oft

* rapidly with electrical distance. Consider an inverter chain. Whether the input signal is slow or fast,

by the time the waveform has propagated to the chain's output its shape will be predominantly
determined by the last gate in the chain. Fast inputs put the gate in an RC response mode where the
output waveform's switching time is governed by the gate's effective output resistance and capacitive
load. Slow inputs place the gate in a gain limited mode where the gate's gain increases the sharpness
of the waveform's transition. Thus a gate behaves as a crude wave shaper.

Capacitive loading effects also attenuate quickly with electrical distance. Suppose the chain is
driving a large capacitive load. The last gate will have to be fairly wide in order to drive the load. The

second 1o last gate will in turn have to be somewhat large to drive the wide pulidown transistor of the
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last gate. We need progressively less widening as we work our way backwards from the load. Within
a few gates we reach a point where we are fully shielded from the size of the load.

Design rules restrict the minimum transistor size. For nMOS there is also a minimum beta ratio (ratio
of pulldown to pullup shape factors) requirement. The former is a box constraint; the latter is a linear
constraint. The constraints on a circuit's transistors are entirely iocal to each cell, and are therefore
separable.

Accuracy requirements are also important, and exhibit a peculiar ambivalence in our problem. The
delay specifications on the signal paths must be met to the full accuracy afforded by the
macromodels. However the power minimization is less critical. We can tolerate a fair amount of error
in minimizing the circuit's power consumption, especially it the inaccuracies are minor and are
accompanied by large savings in computation time. In fact, at present designers use only crude
heuristics or mostly ignore the power consumption issue.

in summary, the proﬁlem embraces characteristics ranging from the trivial to the extremely difficult.
The objective function is a simple summation of contributions from each logic cell, each contribution
being linear in the cell's transistor sizes. On the other hand, we anticipate hardship with the delay
constraints, since they are global and nonlinear. Fortunately there are only a few of them; typically a
designer will specify delays for only about ten critical paths through a functional block. In contrast,
the transistor size constraints are quite simple, consisting of linear and box constraints. However
there are a large number of them, at least one for every transistor in the circuit, carrying the potential
for huge run times. The objective and constraint functions are essentially separable, linearly
composed of nearly independent contributions from the circuit's cells. We would prefer a nonlinear
optimization algorithm that can exploit this separability, pursuing a divide and conquer strategy where
the problem is partitioned into many smailer subprobiems. This segmentation is beneficial because

with most optimization algorithms, run times grow superfinearly with the number of design variables.
Thus by breaking up a large problem, faster run times can be achieved. In particular, if the problem
could be partitioned down to the cell level, the size of tr;e vector space for each subprobiem would be
the number of transistors in each cell. Small vector spaces usually imply fast run times. ‘+

4. Duality

We carefully studied several optimization techniques, including feasible directions and penaity
methods. Neither of these methods is capable of exploiting the near separability of the problem. ]
Since we felt that partitioning was vital to achieving fast run times, we chose a technique called
duality, a fairly exotic approach in comparnson to the other two methods. We shall see that the




EMBEDDING GRAPHS IN BOOKS: A LAYOUT PROBLEM
WITH APPLICATIONS TO VLSI DESIGN

Fen R K Qhung®
F Frank Thomson Leighton *°

Arnold L. Rosenberg **°

® ABSTRACT

We study the graph-theoretic problem of embedding a graph
in a book with its vertices in a line along the spine of the book and
its edges on the pages in such a way that edges residing on the
same page do not cross. This problem abstracts layout probiems
< arising in the routing of multilayer printed circuit boards and in
the design of fauit-toierant processor arrays. In devising an
embedding, one strives to minimize both the number of pages used
and the "“cutwidth” of the edges on each page. Our main results
(1) present optimal embeddings of a variety of families of graphs:
(2) exhibit situations where one can achieve small pagenumber
() only at the expense of large cutwidth. and conversely; and (3)
establish bounds on the minirnum pagenumber of a graph based
on various structural properties of the graph. Notable in this last
category are proofs that (a) every n-vertex valence-d graph can
be embedded using 0(dn!/?) pages, and (b) for every valence 4>2,
for all large n, there are n-vertex valence-d graphs whose
pagenumber is at least '
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computational efficiency that it affords more than compensates for its conceptual complexity. The
basic idea of duality is to form a so-called dual problem which can be siqnifiéantly easier to solve than
the original, or primal, problem. In our case the primal is difficult to solve because of the global,
nonlinear delay constraints and large number of transistors to size.

Duality offers several major advantages. First, the primal probiem need not be feasible. This is a
L. strong possibility because high performance designs often push circuit topologies to the limits of their
performance. It is likely that a designer will specily delays for some signal paths which cannot be met.
In this event we desire that our CAD tool do its best to meet those speed specifications while
optimizing the power consumption of the other paths whose delay constraints can be met. Duality
® achieves this goal. Second, inactive constraints pose no difficulty for duality. A designer specifies
maximum delays along signal paths. Due to paths sharing common portions, it is possible that one
path’s delay specification will be exactly met while a companion path will be faster than required, and

yet this situation minimizes power consumption. This is essentially a recasting of the critical path
problem; the first path is one of the circuit's critical paths. Third, and perhaps most importantly,
duality can be extremely efficient computationaily. This is due to two factors. Duality converts the
nonlinear delay constraints into simple box constraints, allowing us to apply fairly simple optimization
; algorithms (which implies robustness as well) with quasi-Newton methods. The quasi-Newton

© methods lead to fast convergence. Alsa, the dual approach permits us to exploit the separability of
the power and delay functions, enabling us to use a divide and conquer strategy where each cell is
optimized separately. Partitioning affords significant computation speed advantages.

Like any nonlinear optimization approach, the advantages are balanced by drawbacks. Duality is
not applicable to all problems; it works best for those satisfying a certain convexity requirement, a
property which digital MOS circuits possess. Another drawback is due to our partitioning approach
rather than duality itself. Although exploiting separability provides run time improvements, it
necessitates the maintenance of additional data in the circuit's data base, along with a ciose
interaction between the control structure and the data base. Partitioning the circuit into cells implies
incremental optimization of each cell in succession. This mandates a sophisticated data base, and
places profound requirements on the pragramming language used to implement the optimizer.

4.1, Lagrange Multipliers

Lagrange multipliers are the key to understanding duality. We shall explain their use and
significance through a simple example. Consider a chain of two inverters. The input is driven by a
source v, through a resistor Rq: the output connects to a load capacitance CL. We wish to constrain
the maximum delay of the chain. | we fix the width of the pullup transistor, the length of the pulldown, 1
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and the beta ratio of the inverters, then we can treat the power consumptions of the inverters as the

only free variables because specifying the power cohsumption of either logic gate determines the

gate’s transistor sizes. Let p, be the power consumed by the first gate and p, be that consumed by

the second, and suppose we desire the total delay Ttotal = T1 + T2 to be less than or equal to some

T.

This maximum delay specification places restrictions on the allowable power consumptions of the
gates. Certain regions in (p,, pz) space will not meet the speed specification. For instance if the

shape factors of the transistors in the second inverter are too small, the inverter will not be able to

charge the capacitor CL quickly enough to satisty the delay constraint. On the other hand, if the

shape factors are too large, implying a wide pulldown and hence a large input capacitance, the first

inverter will not be able to drive the second quickly enough. Of course the first inverter's shape

factors can be made larger to drive the extra load, but after a certain point the first inverter's input

capacitance becomes so large that the delay through Rs preciudes meeting the defay specification.

Since power consumption is linearly related to shape factor, the bounds on the shape factors imply

bounds on the power consumption. Similar reasoning applies to the power consumption of the first

inverter, giving us the forbidden zones (dashed lines) shown in Figure 1.

We can more precisely characterize the feasible set of power consumptions. We do this by

employing a simple RC model tor the inverters, allowing us to derive an analytic expression for the

delay through the gates as a function of their power consumptions. The resulting constraint surface
T

il ® T4 + Ty = T iselliptical as depicted in the figure.

Figure 1 aiso shows the correlation between total power and path delay. The dotted lines are

contours of constant power. To meet the delay constraint we must stay within the circular region, but

the total power dissipation varies with position in the region. As we move toward the upper right of

the feasible set, the power dissipation increases. At the point Max we have reached the maximum

power consumption that will still allow us to satisfy the delay constraint. Here the delay and power
contours are tangent, and their gradients point in the same direction. !f we instead work our way
toward the lower left of the feasible set, the total power dissipation decreases. When we reach the 4
point Min the dissipation will be at its lowest level that will still satisty the delay constraint. Here the
delay and power contours are again tangent, but now their gradients point in opposite directions;
mathematicaily this can be expressed as
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VP=~uVT
or V(P+uT)=0 .
where u>0

The variable u is called a Lagrange multiplier, and offers the key to solving our nonlinear optimization

problem.
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Figure 1: Contours of Delay and Power

4.2. Finding the Optimum
We can acquire an understanding of how to find the optimum by applying a graphical approach to
the inverter chain. We are interested in the possible total power and total delay combinations that the

circuit can exhibit. In other words, we desire the locus of points (T ) that will be generated if

total* Ptotal
we substitute all valid transistor size combinations into the circuit. This locus of points is denoted the
set of all possible pairs, &, and is displayed in Figure 2. The set's lower left boundary is the classic
power-delay tradeoff curve (bold line); it represents designs that offer propagation delays with the
lowest possible power consumption for those delays. Points toward the left of the curve are in the

high speed, high power region. As we move down the curve to the right, we trade off speed for
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Figure 2: Set of Possible Points

reduced power consumption, and eventually enter the low power, low speed region.

Points that are not on the tradeoff curve correspond to nonoptimal circuits. These circuits either
consume more power than an optimal circuit with the same delay, or are slower than an optimal
circuit with the same power consumption. For example, suppose the inverter chain is driving a large
capagcitive load. We should make the second inverter's shape factors relatively large in order to drive
the load, and then make the first inverter slightly large to drive the wide pulidown of the second
inverter. If we reverse the ordering, making the first inverter very large rather than the second, the
circuit will still consume the same amount of power as the optimai one, but will be considerably
slower.

Our delay specification restricts the points that we can accept to those having a total delay less than
or equal to T°. We can focus our attention on this subset by shifting the vertical axis as shown in

Figure 3. Points to the left of the axis have delays which are faster than T this subset is called the 1
:I: feasible region. The optimum is the point in this region with the lowest power consumption, and is
.. located at (0, P’) in the figure.

We must somehow reach this optimum point starting from an arbitrary point in the set ¢ The




approach duality takes can be thought as a two step process, iliustrated in Figure 3. The lirst step is
to move to and remain on the fower boundary of 2. The second is to walk along this boundary to the
optimum. Note that while conceptualily this process may be interpreted as two steps, it must be
implemented as an inner loop embedded in an outer loop. Step one corresponds to the inner loop,
and step two to the outer. This forces the search to follow along the lower boundary of the set.

P

total
A/
feasible
region 4
optimum
— ! > 9" T T
T T 1+ T «T°
total . totai

Figure 3: Reaching the Optimum

We will now describe the implementation of each loop. Figure 4 gives a graphical representation of
the inner loop. Suppose that we begin at some arbitrary assignment x of transistor sizes, with some
arbitrary nonnegative Lagrange multiplier vector u. The transistor sizes x map to point (g(x), P(x)) in
g-P space. We can move from this point to the iower boundary of the achievable set by sliding the
solid line down until it is tangent to the bottom of ¢, while preserving the siope of the line. By
geometry we know that a line through a point (g(x), P(x)) with normal (u, 1) intersects the vertical axis
at P(x) + pg(x). The multiplier u fixes the slope of the line. Hence this sliding operation is equivalent

to bringing the vertical intercept down while holding u fixed. We must perform the minimization

min {Ax) + u g(x)}
subject to x ¢ ., the set of valid transistor sizes




(g(x), P(x))

Figure 4: Inner Loop Minimization

We shall denote this intercept as ¢(u), the dual functional.

The outer loop walks along the lower boundary toward the optimum. We can gain insight into how
this might be accomplished by contemplating the effect of different Lagrange multipliers on the inner
loop's minimization. Figure 5 provides an illustration. We see that as we move toward the optimum
point (0, P') the intercepts lp(p.i) increase in value until they reach P Conversely, if we move away
from the optimum in either direction, the intercepts w(pi) decrease. This is a maximization:

P’ = max ()
subjectto p 20

This maximization gives us the Lagrange multiplier u of the optimum, while the inner loop
minimization provides the optimal transistor size assignments,

We can now grasp the intuitive significance of the Lagrange multiplier. From Figure 5 it is apparent
that as u increases, the line becomes more vertical, and we move up and toward the left. Power

consumption increases whereas delay decreases. We are generating transistor size assignments that
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Figure 5: OQuter Loop Maximization

push the circuit topology harder for speed. The fact that the multiplier has a concrete, practical
meaning is quite important, because it allows a designer to follow our CAD tool's "intent" as it
optimizes a circuit, showing the signal paths that are the most troublesome in meeting the delay
specifications. This knowledge is vital for directing efforts to improve the circuit, such as reduction of
interconnect capacitance and modification of circuit topologies (eg. the insertion of super butlers).

4.3. Degenerate Cases

it is crucial that optimization aigorithms perform properiy even when faced with certain degenerate
conditions in the deiay constraints, such as inactive or infeasible constraints. (nactive constraints can
come from one of two sources: (1) a delay specification on a signal path that is so {oose that
minimum size transistors along the path will satisty it, or (2) interactions among paths give rise 10 a
situation where meeting one path's constraint causes another's to be inactive. Of these two
possibilities, the second is the most likely, and occurs frequently in practice. An inactive constraint
arises because the point of minimum power lies to the left of the constraint’s vertical axis in power-
constraint space; the dual algorithm will converge to the optimum by driving the constraint's

Lagrange multiplier to zero.
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Another important degenerate condition comes from infeasible delay constraints, where the
designer requests a maximum signal path delay that cannot possibly be met. These cases occur »
frequently in high performance circuit design, as the designer pushes a circuit topology and

‘-. ... -' 4-. -' .‘1. r.r. r.'-

fabrication process to the limits of their performance. Under these situations we desire that the
optimizer do the best that it can, sizing those paths with infeasible constraints such that they switch
as fast as possible, and sizing paths with feasible constraints such that their power consumption is

SR

optimized. The dual algorithm will drive the former paths' Lagrange multipliers towards infinity, sizing
the transistors for maximum speed. Thus the algorithm gives useful feedback to the designer,
indicating the maximum speed the circuit topology can provide.

4.4. Restrictions

As we mentioned at the beginning of our discussion, although duality does offer significant
advantages ovér other optimization methods, it is limited in the scope of objective and constraint
functions that it can solve. In particular, certain objective and constraint functions can produce a
condition known as a duality gap. These functions give rise to nonconvexities in the lower left
boundary of the set &, leading to a gap between the solution found by the dual algorithm and the true
optimum P_. We have never encountered a duality gap for any of the circuits we have optimized. The
power and delay equations describing digital MOS gates, and the separability inherent in the digital ).-’)
MOS domain, make the occurrence of a gap unlikely and imply a small gap even if one should appear.
It a gap ever occurs the circuit will still meet delay specifications, with a bounded amount of excess
power dissipation.

5. Implementation

We have seen that duality maps the nonlinear delay constraints into simple box constraints on
Lagrange multipliers. This mapping leads to simple, computationally efficient control structures. The
outer loop maximization uses a Davidon-Fletcher-Powell quasi-Newton method [6] with modifications
for the box constraints [7]. The inner loop minimization is more compiicated since it must handle 4
linear as well as box constraints; it uses an algorithm due to Bard [8]. Since both loops work in smali
vector spaces and use second derivative information, the optimizer runs very fast.

The language chosen to impiement the optimizer embodies many of the principles of data J
abstraction and object oriented programming. These features were essential owing to our
incremental optimization approach and the hierarchical nature of VLS| design. We needed a
language that supported automatic dynamic data structure allocation, abstract data types, implicit
pointers. and recursive procedure calls and data structures. We chose the CLU programming ) -
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) language [8), which runs on DEC 20's and VAX's. The language system has extensive compile time
type checking and an outstanding interactive debugger. Both greatly facilitate program development.
Another good choice would have been Zetalisp on a Symbolics 3600. The optimizer consists of
generic nonlinear minimization and maximization routines, a circuit optimization support package,
and routines for optimizing generic nMOS logic gates. These program modules represent 3500, 7400,
® and 2700 lines of CLU code, respectively.

We have applied our optimizer to many circuits; here we present two representative cases. Our first
exampie is a chain of three inverters. (The circuit is simple in order to allow a comparison with
DELIGHT.) We began with minimum size transistors and requested maximum rise and fall delays of
8.0 ns. Optimization statistics appear in Table 1. In the table, TB&,,ut is the time until the output begins
to move in response to an input transition and Tsw out is a measure of how quickly the output switches
once it does begin to change. The optimizer reached a solution in slightly over 15 cpu seconds on &

C DEC System 20/60.

Optimization Accuracy:

3 cpu time [sec]
optimizer set up optimization power
DELIGHT (VAX 750) 133.7 3018.0 2.02
Present Work (DEC 20/60) 1.1 15.2 2.08
Delay Accuraciles:
© predicted [ns] SPICE [ns]
Path Tocour Tswour  TBEour Tswour 70T [%]  p[mW/ns]
in — out, rise 4.06, 3.85 3.80, 3,76 +5 0.403
in — out, fall 5.23, 0.84 5.53,0.77 +7 0.000
¢ Total SPICE veritication time (DEC 20/60 running FORTRAN): 16.5 cpu sec

Table 1: Optimization Statistics for the inverter Chain

An attempt was made to run DELIGHT on the inverter chain and compare its results to those of our

(
optimizer, but the effort met with only partial success. The complex interactions among objective and
constraint functions overwheimed DELIGHT's direction finding routine, causing the program to hang
up in infinite loops.1 This illustrates how general purpose optimization algorithms can fail when taced

4

L

<

‘gin Nye. the suthor of DELIGHT, believes that the probiem lies in the direction finder's quadratic programming subroutine.
Me is investigating more robust routines.
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with a problerri of this nature; special purpose algorithms are essential. To assist the direction finder,
we eliminated the maximum beta ratio and minimum shape factor constraints, and started DELIGHT at
an initial set of transistor sizes that was fairly close to the optimal solution. The problem was also
simplified by not evaluating the chain's rising input, falling output response. This did not affect the
final solution since this transition's delay constraint was not active, but it halved the number of SPICE
runs needed and reduced the strain on DELIGHT's direction finder. DELIGHT required five iterations
to converge to within five percent of the optimum, consuming 3018 cpu seconds on a VAX 11/750.
Table 1 gives the statistics.

The performances of the circuits produced by the two optimizers are quite similar. Both have falling
input, rising output delays of 8.0 ns as requested, with power consumptions of 2 mW. The power
consumption of DELIGHT's circuit is less than ours by about three percent, but this is mainly due to

the removal of the minimum S ou constraint on the second inverter.

Our optimizer runs considerably faster than DELIGHT with SPICE. It is difficult to make an exact
comparison of how fast DELIGHT would run on the DEC 20/60, had it been able to handie the inverter
chain without simpiifications, but we can make fairly accurate estimates. A DEC 20/60 will run
Fortran code about three or four times faster than will a VAX 750. DELIGHT only evaluated one path
transition, with fewer transistor size constraints and an initial set of sizes that was fairly close to the
optimum. These simplifications halve the number of SPICE simulations per iteration and reduce the
number of iterations needed to reach the optimum, leading to about a factor of five improvement in
run time. Hence we believe that DELIGHT would require about 4000 cpu seconds to size the inverter
chain on our DEC 20. This is about 300 times slower than our optimizer. We also feel that our run
times scale better than DELIGHT's as circuit complexity increases. The partitioning scheme used by
our optimizer leads to approximately linear growth, while the growth rates of DELIGHT's feasible
directions algorithms and SPICE's simulation algorithms are more rapid.

We now discuss the optimization of .a more complicated example, a four bit adder. One bit of the
adder is shown in Figure 6. The adder is comprised of sixteen logic cells having a total of 72
transistors. Path delay constraints were piaced on five of the signal paths. Table 2 gives the
optimization statistics. Starting with minimum size transistors, the optimizer required only 520 cpu
seconds to optimize the adder. In contrast, considerably more time was needed for SPICE runs to just

verify the accuracy of the predicted delays.
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4 _Mixed-Integer Linear Programming Problen
Which is Ffficientlv Solvable®

Charles E. Leiserson and James B. Saxed®

ABSTRACT

Efficient algorithms are known for the simple linear programming problem

| & where each inequality is of the form x, - x, £ a,,. Furthermore, these
techniques extend to the pure integer ﬁrogranmingjvariant of the problem where
all the unknowns are required to be integers. This paper gives an efficient
solution to the mixed-integer linear programming variant where some, but not
necessarily all, of the unknowns are required to be integers. The aigorithm we
develop is based on a graph representation of the comstraint system and runs in

-] O(JVIIEilgiV) time. It has several applications including optimal retiming of
synchronous circuitry, VLSI layout compaction in the presence of power and
ground busses, and PERT scheduling with periodic constraints.
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1. Introduction

Much research has centered on the problem of finding shortest paths in graphs. It is well
known that there is a direct correspondcnce between the single-source shortest-paths problem and
the following simple linear programming problem.

Let S be a set of linear inequalities of the form z, — z, < a,,, where the z, are unknowns and
the ¢,, are given real constants. Determine g set of values for the z, such that the inequalities
in S are satisfied, or determine that no such values ezist.

This paper considers the mized-integer linear programming variant of this problem in which some
(but not necessarily all) of the z, are required to be integers. The problem arises in the context
of synchronous circuit optimization (8], but it has applications to PERT scheduling and VLSI
layout compaction as well. ’

Before formally defining the mixed-integer programming problem, we restate the linear pro-
gramming problem above in another form.

Problem L. Let G = (V, E,a) be an edge-weighted, directed graph, where V = (1,2,...,|V|}
is the vertez set, the set E of edges i3 a subset of V' X V, and for each edge (i, j) € E the edge
weight a, is a real number. Find a vector z = (1,,13,..., Z)v|) satisfying the constraint that

Ty =2y < Gy

Jor all (¢, 5) € E, or determine that no feasible vector ezists.

The graph G is called a consiraint graph for the linear programming problem. There are
three advantages in adopting a graph representation of the probiem. First, an adjacency-list
representation [1, p. 200) of the constraint graph G is more economical than, for example, a linear
programming tableau or, when the graph has relatively few edges, a matrix of the a,,. Second,
Problem L {requently arises in situations that are naturally described by a graph. Finally, the
graph-theoretic formulation belps in understanding the algorithms that solve this kind of problem.

A method for solving Problem L was discovered in the late 1950's by Ford and Bellmaa [T, p.
T4]. Yen [12] gave some improvements to the Bellman-Ford aigorithm as well as a cogent analysis
showing that its running time is O(|V|®). This bound is easily improved to O(|VI|E|) by using
an adjacency-list representation for the constraint graph.

The Bellman-Ford algorithm can also be used to solve the integer linear programming variant
of Problem L, in which all the z; are required to be integers. If the edge weights a,, all happen to
be integers, the Beliman-Ford algorithm will produce integer values for the z,. If the a,; are not
integers, however, but the z, are required to be integers, each edge weight @iy may be replaced
by |a,,] without affecting the satisfiablity of the inequalities.

The focus of this paper is the mized-integer variant of Problem L.

Problem ML Let G = (V,V}, E,a) be a “mized-integer,” edge-weighted, directed graph, where
V = 1,2,...,|V| ts the vertez set, the set V; is a subset of V, the set E of edges is g subset

of V X V, and for each edge (i,7) € E the edge weight a,, is o real number. Find g vector
T = (z;, 22,..., Z)v|) sotisfying the constraints that

z;—3z2, < Gyy

1
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Jor all(i,j) € E and that z, € Z for all i € V;, or determine that no feasible vector ezists.
The vector z = (z,,1,,...,2)v,) is called a solution to graph G, and if graph G has a solution,
we say that G is satisfiable. When it is clear from context, we use the same terminology for
Problem L.

In addition, we shall refer to the vertices in V as the initeger vertices of G and the vertices in
Va = V — V; as the real vertices of G. We also partition the set of edges into two sets depending
on whether the vertex at the head of the edge is integer or real:

El={(‘9J)GE'J€VI}v
Er={(,J)€EE|j€EVR}.

This paper presents two algorithms to solve Problem MI. The first, which runs in O(|V'|*|E|)
time, is a straightforward extension of the Bellman-Ford algorithm. The second is more sophis-
ticated and has a running time of O(|V||E|1g|V|) for arbitrary graphs and O(|V||E}) for dense
graphs. We conjecture that the O(|V'||E|) running time achieved by the Bellman-Ford algorithm
for the pure linear programming and pure integer programming versions of the problem is not
achievable in general for Problem MI.

The remainder of this paper is organized as follows. Section 2 reviews the Bellman-Ford
algorithm. Section 3 presents a simple relaxation algorithm for solving Problem MI. Section
4 discusses two techniques— Dijkstra’s algorithm and reweighting—which are used in Section 5
to construct an asymptotically efficient algorithm for Problem MI. We discuss applications and
present some concluding remarks in Section 6.

2. Shortest paths and the Bellman-Ford algorithm

This section reviews how the Bellman-Ford algorithm solves Problem L. Although the resuits
of this section are well known and can be found in most textbooks on combinatorial optimization
(see, for example, {7, p. 74]), we repeat the material here for the reader’s convenience.

There is a natural correspondence between Problem L and the graph-theoretic single-source
shortest-paths problem. Let G = (E,V,a) be an instance of Problem L. Suppose that for each
vertex 1 € V, there is a path to ¢ from vertex 1, and let d, be the weight of shortest (least-weight)
path from vertex 1 to vertex i. (At the end of the section, we shall discuss the case in which some
vertices are not reachable from vertex 1.) Then for any edge (i, j) € E, we have d; — d, < ayy
since the edge (%, 7) can be appended to a shortest path from vertex 1 to vertex i to produce a
path from vertex 1 to vertex j of weight d, + a,,. Thus the shortest-path weights d are a solution
to G.

Whenever G is satisfiable, there are infinite number of solutions. For example, il z is a solution
to G, then uniformly adding any constant k to cach z, yields another solution y, where y, =
z, 4+ k for each 1 € V. The assignment z, « d, gives each z, its largest possible value subject to
the constraint that z, = 0. To sce this, cohsider any path p of weight d, from vertex 1 to vertex
t. If the inequalities associated with the edges of p are summed, the unknowns associated with
the intermediate vertices cancel and the result is the inequality z, — z; < d,.

Whenever the graph G contains some cycle ¢ whose weight is negative, the shortest path
weight from vertex 1 to any vertex i on cycle ¢ is undefined because the weight of any path
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to vertex ¢ can be diminished by appending a traversal of ¢. In this case the graph G is not
satisfiable. If the inequalities associated with the edges of ¢ are summed, all the unknowns z,
cancel, and the resulting inequality asserts that 0 is less than or equal to the weight of ¢, which
is false.

The Bellman-Ford algorithm, which is given below, solves Problem L by finding the weight
of the shortest path to each vertex from vertex 1. Should the graph contain a negative-weight
cycle, the algorithm reports that the graph is unsatisfiable by calling the procedure Fail, whose
scmantics we leave unspecified.

Algorithm BF (Beliman-Ford algorithm).
BFl. z; -0
BF2. fori« 2to|V|do z, ~ oo;
BF5. forind«~—1to |V|—1do

BF4. foreach (i,7) € E do

BF'S. if z, > z, + g,y then z, «~ z, + ayj;
BF6. foreach (1,5) € E do

BF7. - ifz; > z, + a4, then Fail

For each vertex j € V, the Bellman-Ford algorithm iteratively updates the weight z; of a
tentative shortest path from vertex ! to vertex j. After initialization, the algorithm makes |V |—1
passes through the edges in E and relazes each edge (¢, j) by computing z, ~ min(z,, z, 4 a,,).

A simple analysis due to Yen [12] indicates why the Bellman-Ford algorithm works. The
weight z, converges to the weight d, of a shortest path from vertex 1 to vertex j if the edges on
the path are relaxed in order along the path. The sequence of edges relaxed by the Bellman-Ford
algorithm consists of |V] —1 copies of some ordering of E, and therefore contains every vertex-
disjoint path as a subsequence. If there are no negative-weight cycles in G, then every shortest
path is vertex disjoint, so ecach z, converges to the shortest-path weight d,. On the other hand,
if there is a negative-weight cycle in the grdbh, the algorithm detects this condition by iterating
once more through all edges to see whether any of the inequalities remain unsatisfied.

The Bellman-Ford algorithm as given above determines the weight of the shortest path from
vertex 1 to each vertex, and therefore solves Problem L whenever all vertices of G are reachable
from vertex 1. The code can be adapted to solve Problem L on arbitrary graphs by simply
changing the initialization step (lines BF1-BF2). In particular, if each z, is assigned a finite
initial value u,, the relaxation in lines BF3-BF5 sets each z; to its maximum value subject to.the
constraints that z, — z, < a,, for each edge (¢, ;) € E and that z; < u, for each vertex i € V.,
Notice that whenever the constraint graph G is satisfiable, it is satisfiable subject to the additional
constraints z; < u,. Should the inequalities be inconsistent because there is a negative-weight
cycles in the graph, the relaxation will not converge to a solution, and the inconsistency will be
detected by the test in lines BF6-BF7.

3. Simple relaxation algorithms. for Problem MI

As was mentioned in the introduction, Problem MI can be solved dircctly. by the Bellman-
Ford algorithm when all unknowns are real (Problem L) and when all unknowns are integer.
The combination of integer and real unknowns, however, seems to make the problem harder.
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In this section, we gain some intuition about the structure of Problem MI by introducing two
algorithms that solve. it in much the same way as the Bellman-Ford algorithm solves Problem

. L. The asymptotically efficient algorithm from Section 4 is derived from the second of these
> algorithms.
. A natural approach to solving Problem MI is to see whether the Bellman-Ford relaxation }

approach can be made to work. Since we have both integer and real vertices in the graph,
however, we must modify the relaxation step BF5 in the Beliman-Ford algorithm to produce an
integer value whenever j is an integer vertex (line R6). This approach does in fact work, but
it requires more iterations than the simple Bellman-Ford algorithm. The next algorithm solves
Problem MI. The number of iterations n in line R2 will be determined in the analysis following
the algorithm.

Algorithm R. (Relazation.)

R1. foreachi €V doz, ~0;
R2. forinde~—1tondo

R3. foreach (i,7) € E do _
R4. begin '
3 RS. z, « min(z,, 2, 4 a;,);
- RS. if j € V; then z; «~ |z,;
- R7. end;
- R8. foreach (t,7) € E do
= R9. if z, > z, + a,, then Fail;

. In order to determine a value of n such that Algorithm R works, we introduce the notion of
a reducing path. Let p be a path starting at some vertex k, and suppose that z; is initially set to
0 and that all the remaining z, are initialized to co. Suppose the edges in path p are traversed
in order starting from k, and each edge ({, j) along the path is relaxed as in statements R5-R6.
II each relaxation of an edge (3, j) reduces the value z,, the path p is called a reducing path.

Whenever a sequence of edges contains all reducing paths as subsequences, the relazation of
each edge in the sequence in order yields a solution. (The proof is analogous to Yen's analysis
[12] of the Bellman-Ford algorithm.) The Bellman-Ford algorithm solves Problem L because in a
satisfiable graph with only real vertices, each vertex occurs at most once on any single reducing
path. (And in fact, every shortest path is a reducing path.)

When some unknowns are integer and some are real, however, it is possible for a reducing
path to visit the same vertex more than once, even il the graph is satisfiable. For example, in the
graph shown in Figure 1, the reducing path p = 3 —<+2—1—2—3 —4— 32 visits vertices
2 and 3 three times each. If all the z, are initially set to 0, the edges of p must be relaxed in
their order along the path to achieve convergence. Moreover, relaxing the entire edge set in some
arbitrary order only 3 = |V| — 1 times might not achieve convergence. Since the value of n in
line R2 must be at least the maximum number of edges in any reducing path, the value |V]|—1,
which was used in Algorithm BF, will not suffice.

Fortunately, reducing paths are never very long in satisfiable graphs because of the following
lemma.

Lemm: 1. Suppose G = (V,V;, E,a) is satisfiable. If p is a reducing path in G, then
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1.  p uisils no wnteger vertes more than once, and
2.  p never visits the same real vertez twice without visiting some integer vertez in
between.

Proof. If either condition is violated, then the reducing path p can be extended indefinitely by
repeating the cycle that causes violation. §

Lemma 1 allows us to determine a value for n in line R2 of Algorithm R such that the z
converges to a solution whenever G is satisfiable. Any reducing path contains each integer vertex
at most once and each real vertex at most |Vj| 4 1 times. Since the number of edges in a path is
one less than the number of vertices, any reducing path for a satisfiable graph can have no more
than |Vi] 4+ ([Vi| 4+ 1)|VR]| = 1 = |V[||VR]| + |V| — 1 edges. Thus the limit n of the outer loop
in Algorithm R should be set to |V;||VR|+ [V|—1.

This analysis suggests the following algorithm which is slightly more efficient than Algorithm
R, and which forms the basis of the asymptotically efficient algorithm presented in the next
section.

Algorithm M. (Modified relazation.)

M1, foreachi €V do z.~'-- 0;
M2. for ind — 1 to |Vg| do

M3. foreach (¢,5) € Er do

M4. z, ~ min(z,, 2, + 8);
Ms. for ind2 «~1 to |V;| do

Ms. begin

M7. foreach (i, j) € E; do

Ms. z, ~— min(z,,|z, 4+ a,,]);
M9. for ind — 1 to |Vg| do

M10. . foreach (i,7) € Ep do
M11. ‘ z, «~ min(z;, 2, + a,);
M12. end;

M13. foreach (i,j) € E do

Mi4. if z; > z, + a,, then Fail;

The only difference betweesn this algorithm and Algorithm R is that it treats the edges in E;
separately from the edges in Eg. In lines M7-M8 of Algorithm M, each edge in E; is relaxed once.
There are {V}| such pauses over E; which are preceded, followed, and separated by ezhaustive
relazations of the edges in Eg (lines M2-M4 and M9-M11). In each exhaustive relaxation of Epn,
edges are relaxed until no further changes in the values of z, are possible for j € Va. (Actually,
the relaxations in lines M2-M4 and M9-M11 are only guaranteed to be exhaustive if there are
no negative-weight cycles in Eg. If there are cycles of negative weight, however, this condition
is detected at the end by the convergence test in lines M13-M14.)

4. Dijkstra's algorithm and reweighting

Section 5 gives 3 more efficient algorithm to solve Problem MI than either Algorithm R
or Algorithm M. Two important techniques are used in the algorithm. The first is Dijkstra's
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algorithm which finds shortest paths in a graph from a single source in the case when all the edge
weights are nonnegative. The other is reweighting, which is a technique due to Edmonds and
Karp [3} and used by Johnson [6] in his efficient algorithm for solving the all-pairs shortest-paths
problem.

Given a graph G = (V,E,a) such that all edge weights a,, are nonnegative, Dijkstra's
algorithm computes for each vertex 7, the weight d, of the shortest path from vertex 1. Because
each cdge is relaxed exactly once, this algorithm is faster than the Bellman-Ford algorithm which
solves the same problem for arbitrary edge weights. Dijkstra's'algorithm derives its efficiency from
the observation that along any shortest path from vertex 1, the shortest-path weights d, form a
nondecreasing sequence if all the edge weights are nonnegative. Thus, a sequence consisting of all
edges (1, 7) € E in nondecreasing order of the distances d, contains as subsequences shortest paths
from vertex 1 to all vertices in V. Furthermore, such a sequence of edges can be computed on
the fly using a priority queue. {The textbook [1] gives a proof of correctness for this algorithm.)

Algorithm D (Dijkstra’s algorithm).

D1. I+~ 0;

D2. fori« 2to|V|do z; ~ o0;

D3. Q -— V;

D4.  while @ # 0 do '
Ds. begin

Dé6. Choose i € Q such that z; = min,eQ Z;;

D7. Q—Q—{ik

Ds. foreach j € Vg such that (i,j) € Er do

D3. z, — min(z;, Z; + 64y);

D10. end;

If the set @ in the algorithm is implemented as a standard priority queue, each extraction
(lines D5-D6) and update (line D8) costs O(lg|Q|) = O(lg|V]) time. Thus the total running
time of Dijkstra’s algorithm is O(|E|1g|V'|). Johnson [6] shows that by implementing @ as a
fixed-height heap [5], the running time can be brought down to O(h|E| + hlvPHY "), where h is
an integer constant that may be chosen after the input is presented. The choice h = [ig|V'|] gives
the bound O(|E|1g|V’|). For families of dense graphs where |E| = Q(|V|'+') for some constant
€ > 0, the choice h = [1/¢] gives an O(]E|) bound. .

Since Dijkstra’s algorithm is equivalent to the Bellman-Ford algorithm on graphs with non-
negative edge weights, it can be used to solve Problem L on such graphs. This is not very
interesting in itself, since any graph G = (V, E,a) in which all edge weights are nonnegative
can be trivially satisfied by setting z; to 0 for each ¢ € V. Our interest in Dijkstra’s algorithm
comes from a stronger property of the solutions it finds. Suppose the initialization step (lines
D1-D2) is changed so that each variable z, is initialized to a finite value u,. Then the relaxation
procedure in lines D3-D10 will set each z, to its largest possible value consistent with the con-
straints that z; — z, < a,, for each ¢dge (i,5) € E and that z, < u, for each vertex § € V.In
other words, lines D3-D10 of Dijkstra's algorithm are functionally equivalent to lines BF3-BFS
of the Bellman-Ford algorithm provided that all the cdge weights a,, are nonnegative. Since a
graph with only nonnegative edge weights can never contain a negative-weight cycle, no test for
convergence is necessary in this case.
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The efficient algorithm we shall present to solve Problem Ml is a modification of Algorithm
M. Notice that lines M9-M11 of Algorithm M exhaustively relax the edges in Er in a2 manner
similar to lines BF2-BF4 of the Bellman-Ford algorithm. In Algorithm M, however, this code is
executed many times. The efficient algorithm to soive Problem MI uses a trick to replace this
code with code based on the more efficient relaxation procedure in lines D3-D10 of Dijkstra’s
algorithm. This trick is the technique of reweighting due to Edmonds and Karp (3].

Lemma 2. LetG = (V, E, a) be an edge-weighted graph, for eachi € V let r; be o real number,
and let H = (V,E,b) where by, = a,; + r; — r, for cach edge (i,5) € E. For each vertez
i € V let z, be a real number and let y; = 2, — 7. Thenz; —z; < a;, for all(i,5) € E if
and only if y; — yi < bys for all (1, 5) € E (that is, z is a solution to G ff andonly ify s a
solution to H.) .

Proof. Trivial. §
We call the vector r = (ry,r3,...,7v)) a reweighting of the graph G.

5. An asymptotically efficient algorithm for solving Problem MI

This section shows how Dijkstra’s algorithm and reweighting can be incorporated into Algo-
rithm M to yield a faster algorithm for solving Problem MI. Given a graph G = (V,V}, E, a), the
idea is to find a reweighting r such that the reweighted graph H = (V, V;, E, b) bas edge weights
by, = 64y + 7, —r, > 0 for all edges (1, j) € Er. Lemma 2 guarantees that G is satisfiable if and
only if H is satisfiable and also that a solution y to A can be converted into a solution z to G by
setting z, = y, + 1, for each ¢ € V. The advantage gained by transforming the probiem on G to
a problem on H is that the relaxation portion of Dijkstra's algorithm (lines D3-D10) can replace
the Beliman-Ford relaxation (lines M8-M11), which is the most expensive part of Algorithm M.

The first stage of the algorithm is to determine the reweighting values r, for all { € V and
the new edge weights b; = g + r; ~ 7, for all (i,j) € E. We must choose the values r; such
that b, > 0 for all (i, 5) € ER. Since this is equivalent to requiring that r; — r; < a,; for all
(1, 7) € ER, values for the r; can be found by applying the Bellman-Ford algorithm to the graph
(V,ER,a). The first few lines of the algorithm are: :

Algorithm T. (Efficient algorithm.)

T1. fori€V dor «0;
T2. for ind — 1 to |Vg| do

Ta. for (i,7) € Er do

T4. r; « min(r,, 7, + a;,);
TS5. for(i,7) € Eg do

TS. it r; > r; 4 ay then Fail
TT. for(i,j)€ E do

T8. Biy = 8ijF i =145

If the algorithm fails in line T6, then there is a cycle of negative weight among the edges ia
Epg, and hence granh G is unsatisfiable even in the absense of integer constraints. Otherwise, the
values b;; computed in line T8 are nonnegative for all (¢, 5) € Ex.
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The next stage of Algorithm T is to solve the mixcd-integer problem on the graph H =
(V, V1, E,b) by alternately relaxing the edges in E; and the edges in Eg as in Algorithm M. We
begin by initializing the values y,, which will converge to a solution to H if H is satisfiable.

T9. fori€V doy, ~0;

This initialization has the added fortune of subsuming the first exhaustive relaxation of Er (lines
M2-M4 in Algorithm M). After the execution of line T9 we have y;, — y; = 0 —0 < b,, for all
(i, j) € Er, which means that the edges in E are already exhaustively relaxed.

The next portion of Algorithm T parallels lines M5-M11 of Algorithm M and is where most
of the computing gets done.

T10. for ind — 1 to |V;| do

Til. begin
T12. for (i,j) € Er do
T13. y; « min(y;, [ys + bis));
T14. Q—V;
T15. while Q@ #% 0 do
T16. begin
- T17. Choose i € Q such that y; = min,eqQ yy;
T18. Q—~Q—{ik '
T19. for j € Vg such that (i,j) € Er do
T20. y; — min(y;, % + bj;);
T21. end;
T22. end;

This code solves the problem on graph H in almost exactly the same way that Algorithm M
would. The only difference is the method by which the edges of Er are exhaustively relaxed.
Whereas lines M9-M11 of Algorithm M perform the exhaustive relaxation using the Bellman-
Ford algorithm, lines T14-T21 of Algorithm T take advantage of the nonnegativity of the b,, for
(1,7) € Er and use Dijkstra’s algorithm.

The final part of Algorithm T is to check the convergence of the y and to apply Lemma 2 to
produce a satisfying assignment z for the original graph G.

T23. for (i,7) € E; do

T24. if y; > yi + by, then Fail;
T25. for (i,j) € E do :
T26. i~y

Lines T23-T24 check the convergence of y by testing the inequalities associated with the edges
in E;. The incqualities resulting from edges in Eg need not be checked because the relaxation
in lines T14-T22 is guaranteed to be exhaustive. (If there were negative-weight cycles in Eg, we
would have detected this in lines T5-T6.)

Lines T25-T26 convert the solution y to graph H into a solution z to graph G. Lemma 2
ensures that the inequalities z; — z, < a,, are satisfied, but we must also show that the z; are
integers for all ¢ € V;. For each { € V the value y, is an integer, however, and furthermore, the




- values of the 7, produced in lines T1-T4 are zero for all 1 € V. Thus for all the integer vertices,
| the z, are integers.
In summary, we have proved the following theorem.

Theorem 3. Algorithm T solves Problem MI.

The running time of Algorithm T is O(|V'||E|1g|V]). (Johnson's techniques (6] (5] can be used
to reduce the actual running time to O(|V||E|) for dense graphs by implementing the priority
queue Q as a fixed-height heap.) Tighter analysis in terms of the sizes of the sets V;, Vg, E;, and
ER is possible, however. In particular, the closer bound O(|VR||Er| + |VIIIE/ + [Vi|ER] g [VI)
indicates that the aigoritbm performs even better when the number of integer vertices is small.

6. Applications, extensions, and conclusions

The solution to Problem MI was demanded by a problem concerning optimization of sychronous
circuitry by retiming [8]. This section briefly reviews this application, and gives two other
L problems—compaction of VLSI circuits in the presence of power and ground busses and PERT

scheduling with periodic constraints—which can be reduced to Problem L. We also consider an
extension of Problem Ml where multiple sets of periodic constraints must be satisfied. (For ex-
ample, some of the z; are required to be integers, and others to be exact multiples of a constant
¢.) This section is abbreviated in the extended abstract.

| Cireyit optimisation by retiming
This application is omitted. (The interested reader is refered to [8}.)

PERT scheduling

Suppose we have a constraint graph representing milestones in a project, the edge-weights
indicate the timing constraints between milestones. Generally, the Bellman-Ford algorithm can
be used to provide an optimal scheduling of the milestones. If a work day is from 9:00 a.m. to
5:00 p.m., however, we may not wish to schedule a one-hour job to start at 4:30 p.m. Advancing
the job to the next day, however; may cause another job to be advanced as well if the two jobs are
constrained to fall near each other. The problem of PERT scheduling with periodic constraints
can be cast as Probiem ML .

Intuitively, the mixed-integer formulation allows one to include for each job 1. a (real) variable
representing the starting time of fhe job, and 2. an (integer) variable representing, say, noon on
the day the job occurs. Thus one can include constraints which say, “This job must finish before
5:00 p.m. on the day it occurs,” and “These two jobs must start on the same day.”

We also can solve certain problems when there are additional periodic constraints using an
algorithm that runs in O(|V|3) time. As an example, we may wish to have not only variables
representing noon on the day that a job starts, but also variables representing the week that a
job starts. Thus constraints involving weekends could be taken into consideration.

Circuit compaction ° *

Optimal (one-dimensional) compaction of VLSI circuit layouts {4] is another application of the
Bellman-Ford algorithm. Each layout feature is given a variable representing an z-coordinate,
and the design rulcs are enforced using constraints of the form z, — z,; < a,,. It may be desirable,
however, to allow feature i to be to the left of feature j or vice versa, but not to allow them




to occupy the same position. Unfortunately, if one wishes to allow this kind of transposition of
layout features, either optimality or performance must be sacrificed because the problem becomes
NP-complete [9]. But for certain compaction problems arising in practice, transposition of layout
features can be allowed.

Some design methodologies enforce the placement of power, ground, and clock to be at regular
intervals. For example, one signal processing system [10] requires that these wires be repeated
every 200\, and that the width of all cells in the system be integer multiples of this distance.
The designer is then constrained to build a new cell so that the layout features are tightly packed
among the global wires. In this context, where some layout features may go on one side or the
other of some global wire but may not overlap, the compaction problem can be formulated as
Problem MI.
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Abstract

Computacionally simple bounds for signal pro-
pagation delay in linear RC tree models for MOS
interconnect were derived in (1] and have proved
useful in timing analysis of digital MOS IC's (2-4].
We show that these bounds can be derived quite
simply as the payoff functions for a certain linear
optimal control problem and that they apply not only
zo RC trees but to more general RC mashes as well.
Finally, two methods are given for tightening the
original bounds given in (1].

I. Introduction

In digital integrated circuits, signal pro-
pagation delay through conducting paths with dis-
cributed resistance and capacitance is frequently a
significant part of the total delay and grows in
relative 1mportance as feature sizes shrink. Timing
analysis of digital IC's can be spesded up by using
aporoximate delay formulas, e.g., the "Elmore delay”
5], an place of detailed numerical simulation for
interconnect paths. Bounds on the delay, applicable
<0 those paths that can be modelled as linear,
nonuniform branched RC ladder networks, i.e., "RC
trees,” were derived in (l]. But, as discussed in
[6-8], certain circuits used in MOS logic cannot be
modelled as RC trees because they contain one or more
loops of resistors, as shown in Fig. 1. Several
examples of such circuits, called "RC meshes,”
arising in MOS logic networks are given in [6~7].

As used in this paper, the term RC mesh includes RC
trees as a special case. :

This paper 1is concerned with bounds on signal
propagation delay in linear, lusped RC tree and sash
networks driven by an ideal voltage source. Since
the meaning of “delay” is somewhat application-
dependent, we bound the delay by bounding the zero-
state step response at any output node of interest.

II. VNetwork Differential Equations for RC Meshes

¢ @

@ v, Q

" (ORN

T 1°
"T +TIT

Fig. 1: This linsar RC mesh differs from an RC
tree because of the resistor loop.

et}

Node Numbering Convention

The ground node is not numbered. The node
connected to the voltage scurce is numbered O.

The remaining nodes are numbered in any order from
1 to N, where N is the total number of capacitors,
as in Pig. 1.

We isolate the resistor subnetwork R containing
all the resistors and assign reference directions
to the capacitor currents ij,.... iy as shown in
Fig. 2. Let node 0 serve as the datum node of R.
The node voltages with raspect to datum are given
in terms of the capacitor currents by the resistance
matrix R as shown below.

-e cee i

1 i fi2 IN 1
Vz'C - 821 222 ces !2“ 12
vN-c er 2“2 rw li“ (L

Of course R is symmatric since R is reciprocal, and

R is positive definite because all resistors are

agssumed positive. )
Consider the step response of the network with

zero initial conditions. Substituting e=1 and

iy ® =Cy¥y into (1), we cbtain the network

differential equations

(t), im=1,...,N, &t > O,

N
1-v(t)= | £ cC¥
RPN

(2)
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Fi3. 2: The resistor subnetwork R extracted from

tne Sircult in Fig. 1l is described by a resistance
matrix as in (1).

which are identical in form to eq. (9) of [l]: the
only difference is that in (1] certain resistances
Rj< appear in place of the zi"s above. The
resistances R;; were defined specifically in terms
a¢ the topology. of a tree in (1), while the r;,'s
“ere are defined for an arbitrary mesh as the
ajements of the resistance matrix. The reader can
easily verify that the two definitions agree in the
sgecial case of a tree.

I:I. 2stimal Control Method for Datermining Bounds
sn ke Stez Resjonse

The original derivation of -step response bounds
1a [1], chough entirely correct, is somewhat obscure
ard applies only to RC trees. The alternate deriva-
zi1on outlined below yields essentially the same
results, but it applies to meshes as well and also
1f£fcrds a natural way to incorporate additional
information and thereby obtain tighter bounds, as
snown 1n Secticn IV. Facts l-4 below parallel the
development in (1) and are given here for complete-
~=35. Fast 3 will be examined more closely in
32z%10n V.

Tace 1

Tor any three nodes, i, j, k of an RC mesh,

T.. (3

Fii Ty > ki By

Tre proof of (1)), given in (7], generalizes the
arsument for the special case of a tree in (1l].
Taze 2 =

The zero-state step response of an RC mesh is
ssmcletely monoctone, 1i.e.,

6)(:) 29, i=l,...,N, ve > 0. (4)

The :troof 1s in [9].

For anv two nodes i and k of an RC mesh and any
instant t during the step rssponse,
rii(l-vk(t)) 2

'ki‘l'vi(t)) (S)

T, (1v (D) € r (1ev (8)) . e

Gaven Facts 1 and 2, the derivation of (5) and
(6) 13 identical to that in Appendix D of (l], i.e.,
tor (5) note that r;;(l-vy) =~ rgi(l-vy) = (using
2)), N

N ('1irkj - tkitij) cjvj 20,
where the last inequality follows from Facts 1 and
2. The proof of (6) is similar.

At this point the strateqdy becomes one of
reduced order modelling with time-domain error
bounds. Choosing a distinguished node i as the
output node of interest, we seek to describe the
system in terms of only two state variables, the
distance to equilibrium (l-v;(t)) and its intesgral

-
a4
€. (¢) = J T (lev, (t')]lde’ = ) £ C (l-v_(t)],
i . b3 E ik"k k N

where the last equality follows upon substituting

(2) inte the integral and evaluating. Using (5)

and (6) im (7) yields the following inequality ¢
batween these two state variables:

2
‘é Tk G /'1%] (l=v ) < £.(2) <

k
i1
Ry
S| (-
fi TexCk] (E=vi(e)), ve 2 0. (8)
L’f?"\d
- TP
From (7) one initial condition is
a
£ (0) = E TSy ® rDi . (9)

It was shown in (1] that step response bounds
can be obtained by appropriate manipulations of
(4,5) and (7-2) above, but the methodology is some=-
what obscure. We Delisve a clearer view emerges
from recasting the calculations into the form of a
linear minimum=- (and maximum-) <.me optimal control
problem with state constraints, in winich an input
u(t) is introduced to represent the unknown wave-
form vi(:):

Minimize (or maximize) T

for the dynamical system
£,(8) = ~(l-v (t)) ’ (10)
1
d
FE (Aev (e = ue (11)
with initial conditions

ti(O) =T (l-vi(O) =1, (1)

.’
i

state constraints

T, (1-v,(t)) < € () < T _(l-v.(t)), V& > 0 ,
R - - -
it : P an

input constraint: ul{t)

ia

0, ve > 0, 14)

and terminal condition




.
J s~ v ~ 1. (15)
P

vi=v ),
i

-—mgme  fastest

—f— Slowest ,

L " L/

Fig. 13: Fastest and slowest trajectories from the
inizial state to the target region, subject to the
state constraints indicated by dotted lines.

The optimal trajectories can be determined by
inspection without recourse to Pontryagin's maxigum
srinciple, since the time duration of any path in
the (l-v,! - £, plane can be found by rearranging
and i1ntegrating (1)) to y:ield

I3 3
I “init 1
Ts= wd ti . (16)
) i
f!inul

Thus the fastest trajectory from the initial point
to the target interval is the one for which both the
reqion of integration [feina;. finiz] and the inte-
jrand (l-v;}7* are minimized, and the slowest
trayectory 1s found similarly. See Fig. 3. The
|LaLUM ang maximum tames depend on.:he "target” .
voltage »; and are denoted Tp;n(v{ ) and Tpay(v; ).
The inverse functions, denoted respectively U;(t)
and v, !, are readily seen to be the upper and lower
counds. respectively, for all feasible soluzions to
zne optimal control problem and hence for the step
resyonse of the mesh. Furthermore., these are the
cest cossitle bounds we could construct using the
information contained in (10)-(15), since they are
attained by feasible trajectories. The algebraic
form of v;(t) and ¥;(t) obtained in this way can be
sasily read off from Fig. 3 and agrees with the
results 1n [(1l]: tne exact expressions are omitted
for =he sake of crevity. They approach a well-
iefined limit in the case of a distributed network,
2.3., =he simrie 2xample in F1g. 4, for which they
are clotted in Fi3z. 3.

Tig. 4: The bounds approach a well-defined limit

for a distributed network such as this one, for
= 2.0 ns,

4nich Tp, = 1.33 ns., Tp; = 1.5 ns., Te

and TRi = 0.3) ns. .

— OriQinal Bounds (1)
p—— 11 I

caceaftthods A and §
tins

Y 2 3 .

Fig. $: Step response bounds for the network in
Fig. 4, with output taken at node i.

The reader can check that the "Elmore time
constant” TDi is the first moment of the impulse
response and therefore a reasonable estimate of the
delay. The step response estimate v~'.,t(:) s
l - exp (-t/Tp.), discussed in (8,10], corresponds
to a straight tine trajectory from the initial
condition to the origin in Fig. ) and is therefore
a feasible (but not optimal) solution to the optimal
control problem, i.e., ¥i(t) < v;i .ge(t) £ ¥, (2),
¥t > 0, for every mesh. It is readily seen that
TRi £ Tp; < Tp alvays and that the sstimate and
boiinds répresent an effort to approximate the
dynamics of a higher order network by one with a
single time constant Tbi‘ they are exact only in that
case. Whenever (Tp - Tki’ <X 701' the wedge-shaped
region in Fig. 3 is quite narrow and the bounds will
be quite tight. Chapter 3 of (8] gives examples of
networks for which the bounds are good and others
where they are poor.

IV. Method "A" for Bounds Improvement: Limits on
the Maximum Slew Rate of Node Voltages

The optimal trajectories shown in Fig. 3
include horizontal segments along which v; changes
while f; remains constant. Since f; = -(l-v;) <0,
these segmants correspond to instantaneous jumps
in v, and cannot occur in practice. We can tighten
the bounds by adding constraints eliminating such
trajectories. The simplest form for such a
constraint is a "minimum slope bound” in the
(1-v;)~f; plane of the form

d !i

—

d(l-vi) -1
This rules out both trajectories in Fig. ) as
feasible solutions. The new optimal trajectories
are as shown in Fig. 6, and the corresponding
algebraic form for v, (t) and 0;(t) is qiven in {11}.

The inequality (17) corresponds to a “slew=
rate bound,” i.e., a bound on the derivative, for

Vi . Since

nn

s . o

v, . d{lev )

i i 1
vy "® -(l-vt)/(l-vi) - (I'V‘)/fx alrrar T

i i i
(18)




Lt

Fig. 6: The sloge constraint (17) alters the optimal
trajectories in Fig. 3 as shown.

For any mesh we know that T, 2 Ty, since

1

c.¥

ley, = ivi' from (2) and (4).

7. >

R 1555 2 Tis
Using ), = r;;C; can significantly tighten the
oounds whenever the mesh contains only a small num-
ber of lumped capacitors, as is commonly the case
in reasonably accurate circuit models for distributed
interconnect [12]. But as progressively more R's
and C's are used to model a given section of inter-
connect, C; = 2 and (17) becomes useless with
T FsSye

Fortunately, values of t; qreater than riiCy
can be found for many RC trees. Space constraints
limit us to mentioning only one of the results in
this direction cbtained in {13). Consider an RC
line with the nodes numbered in increasing order as
one moves away from the source. It was first noted
in (8] that for such a network

v () v (t)
= 1

: il v '
v, 10 = I-v (&) vigi, ve >0 (19)

a rigorous troof was jiven in [14], and the resuit
axtended in [13] to include all nodes of an RC tree
UT %0 the first branch point. Using (19) and (5)
in {2), one can show that if i is any node of an
RC line, or any node of an RC tree between the
source and the first branch point, then

2 4 -
1riJ cj/rii = TRi . (20)

h ¢ >
1 -

1~

=
P

The dark curve in Fig. 5 shows the original bounds
in [l] for the network in Fig. 4, along with the
improvement one obtains from using the slew-rate
Sound (2)).

V. Method "B" for Bounds Impovement: Spatial

Sonvexity of Node Voltages

At any instant during the step response of an
RC line or tree, the node voltages are a convex
function of distance from the source. This is a
consequence of the monotone charging of capacitors,
indicated in (2). For the network in Fig. 4, a
characteristic voltage profile is plotted .in Fig.
7, wnere the "distance” from a point x to the
source is represented by the resistance 'x,' The

1 — 8C2UAL 1rf1 L
...... wrer ound (G
_____ lowrr nound (6}

Fig. 7: Typical :-onvex spatial voltage profile for
the network in Fig. 4, along with the bounds (5)
and (6).

inequalities (5) and (6) bound the node voltages
elsewhere in the network in terms of the node
voltage v; of interest and are also plotted in
Fig. 7 for this RC line. They are quite different
in character: (5) gives a spatially convex profile
in this case but (6) does not. Considerable
improvement over (6) is possible since a convex
curve is bounded below by any tangent line, i.e.,

ie
l-v_ < (1-v,) rl . lﬂ - 1-! (21)
k - i r. .
SO
for some X ¢(0.1]. Substituting (21) into the right
hand side of (7) and taking the maximum over A yields
r.r
ik~ kk
£, 8 Uov) max (1, , ] =5 ¢t e Tv
ik ii

(22)

thus reducing the effective value of Tp (from 2.00
ns. to 1.83 ns. for the network in Fig. 4) and
further improving the voltage bounds as shown in
Fig. 5. Current research includes extending this
technique to trees.

VI. Concluding Remarks

The research in this paper was stimulated by
recent work that appeared in [1,8). The new
developments reported here are 1) two lemmas
{7,9] that provide a rigorous basis for extending
the theory from RC trees to RC meshes, 2) the
optimal control formulation of the problem [13],
3) an extension and rigorous proof [13] of a bound
on nade voltage slew rates, 4) a systematic method
{11} for finding tignter step response bounds using
slew rate limits, and 5) method "B" for bounds
improvement.,
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This paper describes a simple model for the cost of implementing a circuit
¢ in a multilayer integrated circuit (MLC) technology relative to the cost
required for a conventional single-plane version. The model indicates that MLC
technologies can be used to cost-effectively implement circuits that have
significantly more transistors than can be obtained with a single-plane
technology only if the availability of the third dimension for device placement
and interconnect results in a significant reduction in the total silicon area
HGD used. A potential application for MLC technology is improving the speed of
circuits of moderate size by using the third dimension to reduce the length and
associated resistance and parasitic capacitance of interconnect lines. Examples
of these types of applications are discussed, as is the applicability of the
model to other three-dimensional integrated circuit technologies currently under

investigation.
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Generalized Planar Matching

Fran Berman!
Tom Leighton?
Peter W. Shor3
Larry Snyder®

! Computer Science Department
Purdue University
West Lafayette, Indiana 47907

2 Mathematics Department and
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

3 Computer Science Department
University of Washington
Seattie, Washington 98195

Abstract: In this paper, we prove that mazimum planar H-matching (the problem of determining
the maximum number of node-disjoint copies of the fixed graph H contained in a variable planar
graph G) is NP-complete for any connected planar graph H with thrce or more nodes. We also
show that perfect planar H-matching is NP-complete for any connected outerplanar graph H
with three or more nodes, and is, somewhat surprisingly, solvable in linear time for triangulated
H with four or more nodes. The resuits generalize and unifly several special-case results proved
in the literature. The techniques can also be applied to solve a variety of problems, inciuding the
optimal tile salvage problem from walcr-scale integration. Although we prove that the optimal tile
salvage problem and others like it are NP-complete, we also describe provably good approximation
algorithms that are suitable for practical applications.
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