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1 RESEARQ OVERVIEW

This report covers the period from October 1. 1984 through March 31,
1985. The research discussed here is described in more detail in several pub-

lished and unpublished reports cited below.

Several fundsmental bounds on the complexity of network architecture,
parallel computation, VLSI design, and algorithms have been established and/or
improved during this period. The grid-matching problem, of importance to
wafer-scale integration, is close to solution. Improved algorithms for two-
layer channel routing have been developed.

The vfat-tree interconnection network has been studied further, and a
better algorithm for on-line routing of messages in this network has been

0 developed. There is continued interest in compaction, and a provably fast
algorithm for solving constraint systems has been devised.

The CAD frame Schema has been solidified in several ways during this per-
iod. It is now possible to use Schema an a schematic capture and data storage
system. There is better support being developed for PC-board designs. Some
advanced ideas in describing waveforms qualitatively are being incorporated.

A novel PROM device that is UV-enabled for writing has been designed and
tested. The tradeoff between speed and fault probability in A/D converters
has been viewed from a now angle..-The same tradeoffs have been investigated
for inverters, in an embrionic st of reliability software. Development of
CAD tools for the IBM PC has continu d.

The previously reported bounds for interconnect delay in NOS circuits
have been improved in several ways. Som bounds now pertain to RC meshes
rather than RC trees; some hold with resis rs to ground. Tighter bounds have
been found by exploiting slew-rate limits on\o4*de voltages.
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THE DESIGN OF SCHEMA

During the past six months, Schema has been solidified in a number of
': ways. The database and schematic capture tools have stabilized to the point

that people are now being to use Schema to enter and store designs which will
.- be maintained for long periods of time. Our oolleagues at Harris are confi-

dent enough In the architecture that they are developing the first application
tool to be built on top of Schema rather than as integral part of Schema. In
addition a number of the internal omponents that are needed for VLSI design
are being put Into place.

Anuja Kohli has enhanced the schematic capture portion of the system so
that It can handle logic symbols with am arbitrary umber of inputs, and is
developing a basic spatial management system for schmatica. This tool will
permit the creation of routing programs for schematics and may also be used
for Sate arrays. In addition they are used to manage the placement of text on
the screen and generally improve the aesthetics of the designs as entered by
hand.

Our colleagues at Baris, Tu. are developing a wirewrap/PC board devel-
opment tool on Schema. This pachage makes use of Schema's newly enhanced
ability to deal with logic diagrams and hierarchical designs. There are three

.. phases to the project. First, the logic schematic is converted to technology
- specific diagram by binding gates to particular implementations, e.g. a NAND
" Sate is converted to a 74300. Second, the Sates are partitioned into packages

and the packages are placed. At this point a wire wrap board can be created.
Finally, a more detailed adjustment of the placement is made and the signals
are assigned layers and routed. This last phase is being done by Don Becker
here at MIT.

Brian Williams has been refining his temporal constraint propogation
tools in preparation for their incorporation into Schema. Margaret St. Pierre
has begun specifying the waveform representations and simulation interface for

-. Schema. Unlike previous versions of these representations, Margaret's will
permit qualitative values to be used both for the time specification and.for
the value. The basic idea is that a waveform is a mapping between time and

"" some value space. The value space can be a continuous quantitative domain as
-- is used by Spice for voltages and a currents, a discrete quantitative domain

as is used in logic simulation, or a qualitative domain as is used by Brian
*Williams qualitative reasoning system. When a waveforn is asked for the value
- at some time, the time value can be any open or closed interval, including a
" point. If the time value is not a point, the value returned may be a

qualitative value. This mechanism will ease greatly the effort required to
incorporate qualitative reasoning mechanisms to Schema.

.1
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IE WAVEFORM BUNDING APPROACH 70 TIMING ANALYSIS

0 Our work since October 1, 1984 has been concentrated on bounds for signal
delay in linear RC models for on-ohip interconnect. Taking as a starting
point the work on Rubinstein, Penfield, and Horowitz (IEEE Trans. CAD, July,
1983), we have been able to include more general networks than RC trees driven
by voltage step inputs. To have also succeeded in reducing the region of an-
certainty in the original bounds for certain classes of networks of practical
interest.

One extension we have completed is a method of bounding the response of
RC meshes, which are more general than IC trees in that resistor loops are
allowed. These networks are important in practice 1) as models for the gates
of large NOS pad driver transistors, 2) whenever linear resistor models are

* used for transistors in logic gates or CNOS pass gates, as in Chris Terman's
program RSr1, and 3) to model interconnect networks with closed loops some-
tines created by automatic routing programs. Another successful extension is
to networks with resistive paths to ground. which are appropriate models for.
e.g., interconnect to bipolar logic gates.

CTighter bounds have been achieved for unbrancheed lines and certain

classes of RC trees by exploiting slew rate limits on the node voltages and
exploiting the spatial convexity of interconnect voltage during transients in
a novel way.

Two master's level graduate students, Ray Schnitzler and David Standley.
are being supported by this contract.

(
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HIGH PERFORMAN(Z CIRCUIT DESIGN

Progress was made in four areas: PROMs, A/D converters, understanding
* noise marsin/speed/reliability tradooffs, and PC microtools.

T Wo have recently demonstrated a new type of programable read-only memory
(PROM). The invention allows users of conventional nMOS and CMOS processes.
such as those available through NOSIS. to place several hundred bits of leco-
trically alterable read-only memory on any custom VLSI chip. Typical applica-
tions sight include the storage of cryptographic codes, special addresses,
calibration data, or repair locations for fault-tolerant systems.

The size of the now non-volatile PROM cell is about twice the size of a
conventional static-but volatile-memory cell. The programming process,
while it does not require the use of high voltages or special processing, must
be done in the presence of ultraviolet (UV) light. Each cell can be individu-
ally written while the UV light floods the entire chip.

The experimental chips were fabricated through NOSIS in 4 micron ENOS.
* Write times on the order of ten minutes were observed. So far, the colls have

retained their state for months. and years of storage is projected. We hope
the new PROM, which is not seen as replacing ommercial EEPROMs built with
special processes, will find wide system application where the use of exotic
and expensive processes for just a few bits of field programmable, non-
volatile storage is uneconomical or infeasible.

In the area of A/D convertion. we examined the fundamental limits on the
* speed of A/D converters as a function of the probability of a fault. This
" fault problem is completely analogous to the synchronizer problem in digital

circuits. After all. if one could build a perfect AID converter. one could
build a perfect synchronizer. We have found that, for extremely high levels
of reliability, flash and self-timed successive approximation converters are
equally slow because they both spend virtually all their time resolving the
one hard bit.

We have continued our investigation of tradeoffs between speed and
reliability. We have discovered that the lower bound on inverter pair delay
increases by 50% as the noise margins are increased from zero to their maximum
values of half the power supply rail. We have also investigated the transient
step response of Inverters and seen tradeoffs between the reliability measure
(the noise margin divided by the worst-case noise) and the ultimate speed.

We have continued our back-burner effort on VLSI microtools-a set of
progras for helping with the early design stages of a VLSI chip. These tools
run on IBM PCs and either use LOTUS 1-2-3 or TKISolver. They solve such prob-
less as finding the temperature rise in a metal line or its fringing capaci-
tance as a function of the wire geometry. They also do characteristic imped-
anco calculations for PCBs. Community members may have copies of these pro-
&ras for free. and at their own extreme risk. by sending me a diskette. We
promise bugs for all.



ARCITECIURAL DESIGN

Professor Leighton is continuing research on several problems involving
novel network architectures, parallel computation, VLSI design and the devel-
opment of algorithms for NP-couplet, problems which provably work well on the
average. Advances have been made in several areas during the past six months.
Iighlights are described in the following paragraphs.

In the algorithms area. Professors Leighton and Sipser, Thang Bui and
Soma Chaudhuri (University of Washington at Seattle) have developed graph
bisection algorithms which (provably) almost always find the minimum bisection
of graphs with small bisections. These algorithms perform dramatically better
than known techniques for large classes of relevant graphs. The work will
form an important part of Thang Bui's PhD thesis, which should be completed by
this sumer.

In the area of fault-tolerant construction of VLSI networks. Professors
Leighton and Rosenberg (Duke University) and Dr. Chug (Bell Communications
Research Labs) have developed efficient algorithms and bounds for representing
useful networks as a small number of "stacks" of wires. As the stacks are
easily implemented in VLSI. the results make possible the efficient configura-
tion of fault-free networks in enviromments that contain defective components.

In related work. Professor Leighton and Peter Shor (who is expected to
finish his PhD thesis this smmmer) are close to solving the grid matching
problem. Roughly stated, the problem is to determine the expected minimum
maximum edge length over all perfect matchings of N random points to N
fixed points that are arranged in an N1/2 x N1 / 2 grid with unit spacing
between consecutive rows and columns. Professors Leighton and Leiserson
proved an upper bound of O(log N) and a lower bound of G(log N)1/2  for
this problem in their work on wafer-scale integration of systolic arrays in
1982. Determination of the precise bound has remained a difficult and impor-
tant open problem ever since. It now appears that the exact bound for the
grid matching problem is 0(log3/4 N), improving both the upper and lower
bounds. As a direct result of this work, it will be possible to improve the
best bounds knowh for the average case behavior of algorithms for wafer-scale
integration as well as for a variety of other packing and assignment problems.

Professor Leighton and Johan eastad (a first year graduate student) are
developing efficient circuits for parallel division. Currently, the only
known circuit that can compute the N most significant bits of a quotient in
O(log N) parallel steps requires 0(H) processors. Preliminary work by
Leighton and lastad indicates that the number of processors can be decreased
to O(N1 "a) whore a is an arbitrarily small positive constant. Although
not yet practical, the improvement in hardware requirements is significant.

Professor Leighton and Bonnie Berger (another first year graduate stu-
dent) are developing improved algorithms for 2-layer channel routing. Initial
progress in this area suggests that it may be possible to achieve the perfor-
nance of the Baker-Bhatt-Leighton Manhattan routing algorithm and the Rivest-

-*** * * .V * . * O* *****



Barats-Miller knock-knee routing algorithm with a single, simpler algorithm.
More importantly, it appears that the new algorithm can be extended to the
unit-vertical-overlap model (in which wires can overlap only for unit distance
and only in the vertical direction) where a factor of two in channel width can
be saved. The factor of two is significant because the new algorithm always
routes 2-point net channels with width d+O(d) instead of the best previously
known bound of 2d-1. Here d denotes the density of the channel which, of
course, is a lower bound on channel width. The results also hold for multi-

*" point not problems, except that an additional factor of two in channel width
is required.

Peter Shot has been investigating the average-case behavior of bin pack-
* Ing algorithms. In the case where the item sizes are uniformly distributed,
-" he has derived much tighter bounds on the wasted space produced by the also-

rithm First Fit than were previously known, and has the exact answer, up to a
constant, for the wasted space produced by the algorithm Best Fit. He has
also derived a lower bound for any on-line that shows that on-line algorithms
cannot do as well as off-line algorithms, and that Best Fit comes within a
small factor of being optimal among on-line algorithms.

Charles Leiserson and Ron Greenberg have further improved their algorithm
for on-line routing of messages in the "fat-tree" interconnection network.
This probabilistic algorithm is novel in that it does not randomize in the

* choice of message paths or in the operation of the switches, but rather in the
choice of whether or not to send a particular message in a particular delivery
cycle. The algorithm ensures that a set of messages, M, can be routed with
high probability within O(lambda(M)loglMI) delivery cycles, where lambda(M) is
the maximum over all communication links of the ratio of the number of mes-
sages in M which must pass through the link to the capacity of the link. This
work may also have some applicability to routing networks other than "fat-
trees."

Miller Maley has developed a provably fast algorithm for solving con-
straint systems in VLSI layout compaction. Constraint solving is usually done

* by the Bellman-Ford algorithm, which has O(IV1IEI) running time in the worst
case. Heuristics have been developed which allow the system of constraints
arising in compaction to run much more quickly than this bound. The new also-
rithm runs in O(IEI+JV~logIVI) time in the worst case.

Susmita Sur is currently writing up the work on channel stretching in the

PI project.
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Time Optimal Trajectories Associated with Voltage Bounds in RC Tree Networks*

Han-Ngee Tan and John L. Wyatt, Jr.

ABSTRACT

• Linear RC tree networks are appropriate models for branching interconnect
lines in MOS integrated circuits. Bounds on the step response of these
networks, first derived in Rubinstein, Penfield, and Horowitz (1983), are
useful in timing analysis as bounds on the signal delay in MOS interconnect.
Those results become more transparent if the bounds are derived in terms of
the payoff function for associated minimum-time and maximum-time linear
optimal control problems with state constraints. This approach, first
introduced in Yu and Wyatt (1984), provides a natural way of incorporating new
information, such as bounds of the form (t) > - v (t)/T on the slew rate
of node voltages, and yields tighter bounas on-signal delay than were given in
the work by Rubinstein et al. above. This report gives a simple and rigorous
derivation of the solutions to this class of optimal control problems with
slew rate limitations.

*This work was supported by the National Science Foundation under Grant
No. ECS-8310941 and by the Air Force Office of Sponsored Research under
Contract No. F49620-84-C-0004.

**Address inquiries to Wyatt: Department of Electrical Engineering and
Computer Science, M.I.T., Room 36-865, Cambridge, MA 02139; (617) 253-6718.

Copyright @1984, M.I.T. Memos in this series are for use inside M.I.T.
and are not considered to be published merely by virtue of appearing in this
series. This copy is for private circulation only and may not be further
copied or distributed. References to this work should be either to the
published version, if any, or in the form "private communication." For
information about the ideas expressed herein, contact the author directly.
For information about this series, contact Microsystems Program Office,
Room 36-575, M.I.T., Cambridge, MA 02139; (617) 253-8138.
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Time Optimal Trajectories Associated with

Voltage Bounds in RC Tree Networks

Han-Ngee Tan and John L. Wyatt, Jr.

Abstract

* Linear RC tree networks are appropriate models for branching interconnect lines in

MOS integrated circuits. Bounds on the step response of these networks, first derived in (1],

are useful in timing analysis as bounds on the signal delay in MOS interconnect. The results

in [1] become more transparent if the bounds are derived in terms of the payoff function

for associated minimum-time and maximum-time linear optimal control problems with state

constraints. This approach, first introduced in (2], provides a natural way of incorporating

new information, such as bounds of the form t,(t) > - v(t)/T.. on the slew rate of node

voltages, and yields tighter bounds on signal delay than were given in [1]. This report gives

*• a simple and rigorous derivation of the solutions to this class of optimal control problems

with slew rate limitations.

This work was supported by the National Science Foundation under Grant No. ECS.3310941

and the Air Force Office of Sponsored Research under Contract No. F4,620-84.C-0004.
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1. Introduction

The work of Rubinstein et. al. [1] and Horowitz [3] on bounds for the step response of

a linear RC tree concerns the system (for the case of a falling transient)

", N

" = - vA, Ah(O) = 1,k -- ,, ..,N. (I)• ~ ~ ~ ~~mIt~(t,

It was shown that for an RC tree,

"..1ii - > 0 (1.2)

and

d-t(t) 0, vt > 0. (1.3)

It follows from (1.2) and (1.3) that

" T /z. u(t) <_ g ,(t) S T PV (t), (1.4 )

where

'" ge(t) 4,-- Ir) d,,( .)
",J

and

N-. " (,.6)

k=l

T, (1.7)

. Using (1.1) - (1.7), upper and lower bounds for ?,(t),0 < t < 0o were derived.

Charles Zukowski of M. I. T. made the remarkable observation that these bounds can
be interpreted as solutions of certain optimal control problems. Consider, for example, the
lower bound. Suppose :(t) solves the following minimum-time problem in which an input

.) is introduced to represent the unknown waveform vj):

Minimize il

with

2
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7-7= 7 C -- V*.7 T *

(tv:, 0o , (1.11)

, W _5 0. V 9 > 0, (~

7 1, V,,( t _< M t) _< r ,,,(t), V t > o 0 .~t

We denote this minimum time t,,,,,(V:), since it depends on the "target" voltage V:.
Since u,(O) _ V; and ,,(.) is continuous, t,.(t) 2 V;, V t E 10, t,,,,,(V;) : in particular v:
is a lower bound on v.(t,,,(V:)). Thus the inverse of the function t,,,,(V:), denoted here
V.,,,,,(t) is a lower bound on all solutions ,,,(t) of (1.8) - (1.12).

This interpretation allows a particularly simple derivation of the bounds in [1]. We can
also use the optimal control approach to derive tighter bounds that result from imposing
additional constraints on the control u(.). Yu (2] has shown that for any RC tree and any
node e there exists a rT, > 0 such that

6,(t) Vt > 0.(

In terms of (1.9) and (1.11), (1.13) translates into a new constraint on the control,

,,(t > - I. ,,-0). (.4

The nature of the optimal trajectory for the minimum.time problem with the additional
constraint (1.14) is discussed in (2] for some special cases. The purpose of this memo is to
provide a complete and rigorous derivation of the solutions of the optimal control problems
for both maximum-time (upper bound) and minimum.time (lower bound) and for all values
of T,,. without invoking Pontryagin's maximum principle [4). The problem of deriving a
numerical value for r, for a given tree was studied in detail in [2] and will not be discussed
here.

3
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2. Minimum-Time Trajectory

Problem Statement (Minimum-Time Problem):

For each "target" voltage V, 0 < V, : 1, determine

usin t1

with

System Dynamics:

Mt - V-(0). 94() To.; (2.1)

=- -UQ), VA() = ;(2.2)

Target:

ive(t) = V:. 0 < V: : 1; (2.3)

Admissible Control Set:

~~All piecewise continuous t4.I - -LVdt): <U(t) :5 0, 0 < t < tf} (2.4)

State Constraints:

The solution of the minimum-time problem can be derived from the following two
lemmas, without resorting to optimal control theory.

* Lemma 2.1
Let u*(t),O < t < t1 be the optimal control of the minimum-time problem without the

state constraints (2.5). If the solution g:(t) and v:(t) of (2.1) and (2.2) with control u~t) = u'(t)
does not violate the state constraints (2.5), then u"(L) is also the optimal control for the
rninimum-time problem with state constraints (2.5).

The proof of Lemma 2.1 is trivial and is omitted. Its value is that the optimal strategy for
the problem without state constraints is particularly simple : to drive ~()from 1 to V: < I
as fast as possible, simply decrease i'r(t) at the maximum allowable rate at each t. i.e.

U - v( (2.6)

(To see this rigorously, assume it(.), piecewise continuous and that m(l) > tt(t), 'V
i E J1 where J1. if OI is a nonzero time interval. Therefore 7% ()= )>-w'(/T, .

Tr.., A(1) . 0,()= ~ V t f-- :0. ifI and AsQ) > II V t C .1. By integration, we obtain

A~) and the iinpul~e response CT7, }are positive over d1.)

4
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Morecver the trajectory under the action of u*(.) is a straight line with slope T., in the
- plane because

dj, f;(, M _ W (2.7)

Lemma 2.2
Consider two trajectories I and /I with common initial and final states A and B. such

that I lies entirely above 11 as shown in Fig. 2.1. Then the time taken to reach B from A
along I is strictly longer than that along 11.

Proof :
Since ~ ithe time taken- to reach B from A along any path P in the plane is

given by

Since path I lies above 11 path 11 must lie to the right of 1, as shown in Fig. 2.1. Therefore

tA8 f 1 g=PA -d

> jf~ -- dg (since v(") > v(') for each fixed g.)

IVd

2.1. Case A : 0 < , 5T1

See Figs. 2.2(i - iii).

Proposition 2.1
(i) For I > V: r

=T., In j.J (2.8)

(ii) For #L V.,

=m - T., - (t, - T.,) V, + T., li[jt(~l

(iii) For mz'.> > 0

To, ~ ~ ~ I T. ',,IlT. i

5
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* Proof:
(i) From Fig. 2.2(i), V,* can be reached from A by decreasing 1),(t) at the maximum

allowable rate, without violating the state constraints (2.5) This is in fact the optimal
strategy for the minimum-time problem without the state constraints (2.5). Hence path

- AB is the optimal trajectory by Lemma 2.1. Therefore

(= u() = - v,(O) = 1,

"" " ; 1 0 = p i - t ".

.I

(ii) We claim that trajectory ABC in Fig. 2.2(ii) is eptimal. To see this, consider any other
trajectory which is has the same initial condition (I. Ti,) and terminates at the target
set, but different from ABC on some portion of its path. Such a trajectory either lies
entirely above ABC, such as 1, or meets ABC at some point, say B', such as II. I is
nonoptimal by Lemma 2.2. 11 is also nonoptimal because along Ii AB' takes longer
than ABB' by Lemma 2.2 and S'C' takes longer than B'C by Lemma 2.1. Adding the
times along AB and BC yields (2.9).

(iii) Path ABCD in Fig. 2.2(iii) is optimal by the same reasoning in part (ii). Adding the
times along AB, BC and CD yields (2.10).

2.2. Case B: Tit, _ T., :5. TD,

See Figs. 2.3(i - ii).

Proposition 2.2
(i) For I > V > the optimal trajectory is AB (Fig. 2.3(i)) and

"T.,n ]
::V:

(ii) For T L > V: > 0, the optimal trajectory is ABC ( Fig. 2.3(ii ) and

t'l=,' , - V,.V (Ti"- T..)+ . , 1',n i./ (2.12)

The proof of Proposition 2.2 is exactly the same as that of Proposition 2.1 and is omitted.

2.3. Case C : "', < T..

In this case, the minimum value of V; attainable from #,,(0) - I using admissible

*5m'Q controls ,,(.) - without violating the state constraints (2.5) is (1), - 7'.. ),('rT) - .,), as is

apparent from Fig. 2.4. No trajectory can satisfy all the constraints and tend asymptotically

to the origin as I -, oo. In terms of the RC tree problem, case C can only arise through a

*. modelling error, so we will not prusue it further.

6

- - - - - - - - -

%-L



3. Maximum-Time Trajectory

Problem Statement (Maximum-Time Problem):

For each "target" voltage V:,O < V; < I, determine

mZaX tf

with

System Dynamics:

O- " -90 *~() = To;(3.1)

u,(t) = ,(,), ,(O) = 1; (3.2)

• Terminal Time Constraint:

>.(tf) 2- V:, 0 < V; : 1; (3.3)

Admissible Control Set:

Z: {AII piecewise continuous u() --- "(t)u(t) 0, < t < t} (3.4)

State Constraints:

T:5v(t 9- :5t) < Tov*( ). (3 ,5)

The maximum-time problem is easier than the minimum-time problem and its solution
for different values of 7,, and V; can be derived using Lemma 2.2 only. We state the

solutions below. Proofs are omitted.

• 3.1. Case A : 0 <_ T..<.T,:).

See Figs. 3.1(i - ii).

Proposition 3.1
(i) For I > V: > -. the optimal trajectory is AB ( Fig. 3.1(i) ) and

= T,. II I -q- {(T.. - ( , )v . - 7.)). (: .G)

(ii) For ' V > 0. the optimal trajectory is ABCD ( Fig. 3.1(ii) ) and

7, - 1*1. + T. o ,l t ,,, T 13..]
(t) TV - If -

3.2. Case C : T,, < T.,

a The results here are identical to those in section 2.3.

7
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4. Conclusion

We invert, where possible, the expressions derived in Props. 2.1 - 2.3 and Props. 3.1

- 3.2 to obtain the final expressions below, for the upper and lower waveform bounds, For

the case of Tn," < 7*., where not all values of V; < I are attainable, the upper and lower

bounds are not meaningful and therefore are omitted here.

4.1. Lower Bounds

4.1.1. Case A : 0:< T,, _ TR,

(i) For 0 < t < T,, In Lr-

V:(t) = exp {- .}. (4.1)

(ii) For T, In rL T;.. < t < TD, - T.. + T., In [r-;.,r there is no explicit function for

V;(t). because (2.9) is not invertible.

(iii) For t > 1)., - r., + T., In _r___._,_

V T : -t) ex p { -(To' - T..)- T.. I,,[(T, - T..)/[TH - T..)! } (4.2)

Tp T..

4.1.2. Case B : T,, <_ T,, : ) ,,

• r T,--,,..I
(i) For0 < t < T--7In;t ,

V:(t) Mexp{- - }. (4.3,)

For > T. In r~ ,I there is no explicit expression for V,(), because (2.12)is not

invertible.

4.2. Upper Bounds

4.2.1. Case A : 0 < T., < 'le
r ,._i..

(i) For 0 < t < 7',- 71",,+ T., In ['j.o-..J there is no explicit expression for V,(t). because

(3.6) is not invertible.

(ii) For t > 1,- I1,. + T., lI'r" - r.

(r, ,- 7%. 7.. ,,,(', T. ( 7,,. - ",..

0.1
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Macromodeling of Digital MOS VLSI Circuits

Abstract

This paper presents a method for modeling MOS combinational logic gates. Analyses are given for

power consumption, output response delay, output response waveshape, and input capacitance.

The models are both computationally efficient and accurate, typically lying within 5% of SPICE

estimates. They are pertinent to simulation and optimization applications. A general macromodeling

software support package is described. A companion paper discusses a circuit optimizer based on

these models.
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1. Introduction
This paper discusses accurate, computationally efficient models for MOS logic gates. The models

are well suited for simulation and optimization of high performance VLSI circuits. The models are

based on device equations, and acquire much of their accuracy through careful consideration of

waveshape effects.

The significance of waveshape effects has been investigated by other workers. Crystal (1], a timing

simulator, models transistors as resistors, but uses different values for transistor resistances

depending on input waveform. While this leads to good accuracies (typically within 10% of SPICE

predictions), the approach does have some limitations. For example, the tables of effective transistor

0 resistances depend on a uniform trigger voltage (the point on a logic gate's transfer curve where vouT

= yIN) and can produce substantial errors if this restriction is removed, for instance by varying beta

ratios. Moreover the table interpolations can generate jagged delay functions; this can make the

optimization task more difficult

For these reasons we chose to base our models entirely on device equations. Horowitz [2] pursued

a similar strategy in modeling the delay of a MOS inverter. He derived equations for the gate's

response and then obtained estimates of parameters from the gate's drive curves (curves of Vou T

* versus VIN for different values of load current).

In this paper we describe more general and sophisticated models. We develop equations for power

consumption, output waveform, and input capacitance of a general MOS logic gate. To obtain high

accuracy in the model, we wrote a macromodeling support package to determine the equations'

parameters. The package curve fits the model equations to SPICE simulation results and finds the

parameter set which provides the highest accuracy.

*, Section 2 discusses the basic principles of the macromodeling approach. Section 3 presents

models for MOS inverters. We begin with a resistor-capacitor model and discuss its limitations. We

then develop a more elaborate model, one accounting for waveform shape effects. The analysis is

extended to more general logic gates in section 4. The theory gives us the form of the macromodel

16 equations. In section 5 we describe how the equations' parameters are determined with a

sophisticated macromodeling support package.

.... ........
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:5- 2. Motivation and Intent )
Circuit optimization is a computationally expensive process. It is an iterative procedure, requiring

multiple simulations at each step to evaluate delays and their gradients. Moreover, high performance

circuit design requires fairly accurate delay estimates, but using a device level simulator would be out

of the question for all but small circuits.

Since it is too time consuming to compute circuit responses during the optimization, we instead

.* pursue an approach where much of the work is performed prior to the optimization. We divide a large

. circuit into many small pieces. This partitioning is done such that the pieces have limited, well

understood interactions, while the elements inside the pieces have strong, complex interactions.

Thus computing the interactions among elements within a piece would be very expensive, and it

behooves us to characterize the behavior of the pieces beforehand to avoid having to compute it

during the optimization.

This approach is called macromodeling. In the digital MOS domain, candidates for pieces would be

cells such as logic gates and storage elements. We model the attributes of the cells as functions of

the cell's internal description and boundary conditions. In particular, we are concerned with a cell's

power, input load, and output waveform attributes. The cell's internal description consists of its

transistor sizes, layout parasitics, and process parameters. Boundary conditions are imposed on the

cell by external agents. These include input waveforms from drivers and output loading from

receivers and wiring capacitances. We characterize waveforms as time-shifted ramps with

exponential tails. This waveshapie is representative of those found in digital MOS circuits.1 Figure 1

displays an example. The chain of inverters is driven by a falling input waveform; the figure shows the

output waveform of each gate. Here TBE denotes the time shift, and Tsw the time constant of the

exponential portion. Conceptually T55 is the time until the output begins to move in response to an

input transition, and Tsw is a measure of how quickly the output switches once it does begin to

change. We curve fit actual circuit waveforms to the time-shifted ramps with exponential tails. From

the figure we see that the output waveform of the chain of inverters is described by

chain TEow = TE.

chain Tsw,, =Tswo,,e

We characterize output loads in terms of an effective capacitance, dividing charge transferred by

fActual circuit waveforms begin more smoothly than our approximation. However the error is negligible because the logic
gate driven by the waveform does not really begin to switch until the waveform until the waveform reaches V (the point
on the dc transfer curve where Vin a V out) and as therefore insensitive to the shape of the first Part of the wavec1)191r
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change in voltage. This allows us to model RC interconnection networks, since the effective

capacitance can be a function of waveform slope.

We "black-box" the cell as shown in Figure 2. The cell is affected by its environment via the

boundary conditions Tsw1 , and CL. It interacts with its neighbors via its interface attributes Cin and
TSVThe internal attributes power and TBE,, are isolated from the environment and have no

influence on the attributes of the cell's neighbors.

3. Inverters
C We begin our macromodeling analysis with the ubiquitous inverter, illustrated in Figure 3. The

results will be extended to more general gates in a subsequent section. For the sake of conciseness,

our analysis is only shown for rising input, falling output nMOS gates. The macromodel equations for
the opposite transition and for CMOS are similar. We will present the actual macromodel equations

(for both transitions) in the section on general logic gates.

) im
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Figure 3: A Depletion Load nMOS Inverter

3.1. Objective Function

The practicing engineer typically must design circuits such that they satisfy delay specifications.

The engineer also desires to minimize some objective function subject to those delay constraints.

Power dissipation is a major concern in ratioed nMOS technology. We accordingly choose to

-"* minimize power dissipaion, which for nMOS is dominated by static power consumption. The static

"* power consumed by an nMOS inverter is roughly proportional to the shape factor of the pullup; that

is,

.. .. . . . . . . . . . . .. . . . . . . . . . .

. . . .. . . . . . . . . . . . . . . . .
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Power= a, + a S

where a1 and a2 are constants that depend on the fabrication process and power supply voltage.

The choice of an objective function for CMOS circuits is not as clear. Typically a designer wishes to

minimize area, power dissipation, or some combination of the two. Characterizing the area

consumption is difficult because it is highly dependent on layout style. However we can easily

describe the contribution of the transistors. This is simply

X

Area = Poly Pich x E stack width
ani

where we have omitted the transistor lengths because for CMOS they are set to the minimum channel

length.

3.2. Output Waveform

3.2.1. Resistive Model

Computational limitations mandate the use of a simple delay model. The simplest transistor

representation that provides tolerable accuracy is a switched resistor. The MOS transistor is modeled

with a capacitor from the gate to ground and a switched linear resistor from drain to source. The gate

to source voltage controls whether the resistor is switched on or off. The delay characteristics of the

model, along with their implications for circuit optimization, have been analyzed in (31 and (4]. The

principal advantage of the model is its simplicity, which allows one to derive closed form expressions

for the optimal transistor sizes, leading to fast run times. Unfortunately the model can be alarmingly

inaccurate. Moreover the errors can be exacerbated by the optimization. For a chain of similar gates

where the capacitive loading on each stage is dominated by the input capacitance of the next stage

(rather than the wiring capacitance), pushing the chain for speed results in equal stage delays. For

nMOS this virtually guarantees that while for rising outputs the stage is insensitive to input

waveshape, for failing outputs the stage is highly sensitive to input slope. This sensitivity means that

the transistor cannot be accurately modeled as a resistor, and the effect on total chain delay is

significant because the stage delays are equal. Rising output stage delays, for which the resistive

model tends to be valid, do not dominate the total delay. The model exhibits errors of up to 70%,

clearly unacceptable for serious circuit design.

...............



3.2.2. Extended Model

Faced with the inability of the resistive model to account for waveshape effects, we are compelled to

derive a more elaborate model. Ever mindful of computation time limitations, we pursue the simplest

possible extensions that will provide the needed accuracy. We begin by studying the inverter's

response to different input waveform slopes, paying particular attention to the different regions of
transistor operation.

As the inverter's input rises and its output falls, the pullup and pulldown transistors sequence

through different regions of operation. These regions are summarized in Table 1. For the fast input

response the bulk of the delay accrues from the last states where the pulldown is in its linear region.

Hence the pulldown can be approximated by a resistor, and the resistive model works well here.

However for slow inputs the pulldown is saturated for a significant portion of the transition, causing

the inverter to behave like an amplifier. In this mode the inverter is highly sensitive to the input

waveform and consequently the resistive model breaks down.

Fast Input Response Slow Input Response
pullup pulldown Pullup pulldown

linear off linear off
linear sat linear sat
linear linear sat sat

sat linear sat linear

Table 1: Pullup/Pulldown Regions of Operation

We seek a simple model that includes both amplifier and resistor behavior. We are especially

concerned with the middle and latter parts of the input transition, for it is here that the inverter's

output is sinking the most current. The beginning of the transition is not as crucial. For slow inputs

the inverter can be modeled as an amplifier when the pulldown is saturated, and as a resistor to VOL

when the pulldown is in its linear region. As the input transition becomes faster, the inverter spends

proportionately less time as an amplifier and more as a resistor. The mapping of the inverter to an

amplifier and resistor is shown in Figure 4. For continuity of vouT and iOUT when the model changes

from an amplifier to a resistor, we use the resistor model when 0 2 r:d 'caps V

The ac model used for the amplifier behavior clashes with traditional engineering philosophy.

V2.

"2Fas" means that the input transition time is fast relative to the output transition time.

'V4
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Figure 4: Delay Mapping

Normally one creates an ac model by linearizing a circuit about a quiescent operating point. Here

F however we are interested in large signal behavior. Consequently, while we can perturb the system

from an initial point (in this case (VyN. VOUT) = (VIL, VO)), we have no easy method to calculate the

model's parameters such as g. and rL. We cannot simply evaluate the parameters at a quiescent

operating point because we have none. We instead view the problem at a more objective-oriented

level, and seek to determine which values of g., rL, etc., will provide the closest approximation to

observed response times. Moreover, rather than using the same set of parameter values for the rising

input and falling input responses (which would correspond to using a single group of drive curves to

characterize the inverter), we desire to acquire additional accuracy by using distinct sets for each

transition's begin and switch responses. This leads us to the following strategy: analytically derive

expressions for the form of the macromodel equations, then curve fit to observed data to solve for the

i P r ' le. 'Qo.. p ., .......'.-...".............. ".... ".."...'..... ""."........."....'.." ".'* " ".° **"q°" "* ° -



constants in the equations.

Closed form expressions for the model's response to different input waveforms can be derived.

Here we will outline the basic concepts; the actual equations will be given at the end of section 4. For

very fast inputs the inverter changes from an amplifier to a resistive form immediately. In other words,

the first order resistive model is valid. Figure 4 shows the model. For fast inputs the inverter model

does not change immediately, but does change before the output transition completes. We use the

amplifier model of Figure 4 but omit the resistor rL. The output switches quickly enough that the

current in the total capacitance C~ota (u CL + c ) dominates that of rL, allowing us to neglect the

resistor. For moderate inputs the input waveform is slow enough that the model changes after the

output has fallen. The current in Ctota still dominates that of rL. For slow inputs, the current through

rL can no longer be neglected. Unfortunately this leads to equations which cannot be solved for

closed form expressions for TBE and Tsw. For very slow inputs, the input and output waveforms have

slowed to the point where the current through Cttal is almost negligible compared to that through rL.

The amplifier system reaches steady state, exhibiting a constant tracking error to the ramp input,

being entirely limited by the speed of the input (5].

Having described a method for determining the inverter's response to various input slopes, we now

seek a means of combining the results into one conglomerate expression. It is common to use

smoothing functions to effect this combination. However many workers fail to consider the
computational overhead incurred with these functions. We instead create simple functions that

exhibit the desired behavior in each of the input slope regimes. To avoid placing any unnecessary

burdens on the optimization algorithms, we choose functions that are twice continuously

* differentiable. Although optimization algorithms exist for solving problems with ill.behaved (eg.

discontinuous) functions, because of their added generality these algorithms tend to be slower.
Moreover we prefer functions that do not contain multiple maxima or minima; ie. that are unimodal.

This helps eliminate cusps that could trap an optimizer's iterative solution technique. The resulting

inverter equations are fully described and analyzed in [6].

*] 3.3. Input Capacitance

Calculating a gate's delay requires knowledge of the input capacitances of the gates that it drives.

In this section we study an inverter's input capacitance. Our results will be extended to more general

logic gates in a later section.

We begin by considering the components of the input capacitance. Figure 5 shows our model. The

input capacitance has two constituents: the gateto drain and gate to source transistor capacitances.

".- .. . .. "... . . " " ' " ", " ' *:
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Figure 5: Input Capacitance Model

The input capacitance presented to the driver can change during the course of the input transition.

This effect is largely due to the input to output coupling capacitance c o. Consider a rising input

transition of moderate speed. During the beginning portion of the input waveform-that is, before the

input voltage has reached VIL-the inverter's output has not yet moved significantly. The input

capacitance is therefore simply cg + c d. Both terms are proportional to the pulldown transistor's

width.

As the input voltage passes VIL, the inverter begins to pull its output low. Consequently the driver

must supply more current to charge cgd than it would have had the output voltage remained fixed.0
This is called the Miller effect [7]. The effective input capacitance has increased. Note that the total

voltage switch across cgs is always VOH - VOL, while that across cgd is 2 (VoH - VOL), but we are only

interested in the capacitance seen during the beginning and switching portions of the input

waveform. For very fast input transitions the output will not have moved until after the input has fully

switched; hence the driver will not have seen any Miller capacitance during the actual transition. As

we slow the speed of the input transitions, more of the output's switching time overlaps with the

input's and we see more Miller capacitance. Eventually all of the output's switching time overlaps

with the input's and Cswin reaches a plateau. The expected behaviors of the effective input

capacitances CBEin and Cswin appear in Figure 6.

The analysis is complicated slightly by the fact that since cod and c are functions of vGS and vGO,

they not only vary as the gate switches, but their average value during the input transition changes as

the input transition slows down. The outcome of this change in c gd is that for rising inputs the Miller

effect is significant, while for falling inputs the Miller effect is scarcely noticeable.

...........
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4. General Logic Gates
Inverters are but one of a myriad of logic gates found in circuit designs. In this section we will

extend our discussion to cover a more general class of logic gates. We limit our analysis to logic

gates with a single active input, as shown in Figure 7. Transitions at multiple inputs are not supported

by our abstract model; accurate evaluation of their effects requires a low level simulator that

computes node voltages and branch currents. We feel that this represents an excessive computation

cost and therefore choose a worst case gate state with a single active input to model multiple input

transitions.

We will derive macromodel equations for the general logic gate by extending our inverter equations.

As regards the objective function-be it power or area-the equations are basically unchanged. The

power consumption of an nMOS gate is still proportional to the shape factor of the pullup, and the

power or area consumption of a CMOS gate is still dependent on the stack widths. However the

equations for the output waveform and input capacitance require moderate extensions.

JI,
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Figure 7: General Logic Gate

4.1. Output Waveform

Additional transistors in a logic gate introduce two complications. If they are part of the path that
switches the output by forming a path to V0 or ground, their resistance and capacitance impedes the
output transition. If they are included in a side path that does not connect the output to a supply rail,

4; their channel capacitance could add to the load capacitance and hinder the output transition. During
the output switching transient, transistors with high inputs are predominantly in their linear region.
Hence we model them as RC lines formed of their drain to source resistance and channel to gate and

substrate capacitance.

Figure 8 contains an example. Note that while the top transistor in the right pulldown branch is not
in the conducting path, its capacitance adds to the total load. The general situation is depicted in
Figure 9.

The additional transistors affect the gate's response in two ways. For fast inputs, the switching
transistor can still be modeled as a resistor with its c 9s and cd' but a closed form expression for the

- - -
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Figure 8: Example of a General Logic Gate

output waveform cannot be derived. We instead find the approximate response by using an approach

first proposed by Elmore [8] and now used in waveform estimation and bounding work in MOS circuits

[9, 10]. This approximates the true response as a single time constant exponential. For slower inputs

the speed of the output transition is limited by the slope of the input and transconductance of the

switching transistor. Consequently, transistors in the conducting path which are electrically after the

switching transistor have small vos and we can neglect their voltage drops. However we must add

their capacitances (along with those of any transistors connected to them) to the total load

capacitance. Transistors which are before the switching transistor do not impose any additional load

since their capacitances are already discharged; nonetheless their resistance will decrease the

switching transistor's effective gm if they are in the conducting path, impeding the output transition.

This effect is illustrated in Figure 10. The effective g. has been reduced to gm / (1 + gmr).

Combining our results, we obtain the following equations for the output response of the general

nMOS logic gate. For each equation, the macromodeling support package finds the parameters a., bi,

etc. that provide the closest agreement with SPICE data.

,oV

. . . . . . ..* .*. *.**"** ~ ~ . ~ ~ x .
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Let w. = width of the switching device

wd,010/ = effective total wP of devices in the conducting path

(treat as if wm 's were conductances)
pdbev ft= effective total wpd of devices before the switching

transistor in the signal path

Ctotl = dhi + L,, + CL
Cepd ., = CIw.,

Cpdft = E C WdI
efu.

Delay until output begins to tail

TBEFou = TEEFO + M TSWi,

TBEO = a + b C
Wpd

i M = d, + d ,2 + dc,

• . Switching time of falling output transition

- rSWrou, = SWFO + 'n rSW ,n

:."TSw,,o = a, + Elmore delay approximation with r = for each conducting pulldown

S C.mWpd

., ~~ r"d, + d2L U + crot, + -,)

°1

iDelay until output begins to rise

BTSWRout = TBsRO + m TSWRn

--s o = a + brm wf a n g d

S d d

1 ~total
Pnd+ d + d beor

S C
m=p

.- .. ... ., .. -. , .- ..,-:,,.,,. < . ; ,. . ., .. , . ... .-,.t_.ot. , .a l Pd. ., , . ... -
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Switching time of rising output transition

+(Tswao + -r +(rstw , =- "SWO +o +rm + mswrli

* TSWR~O = a, + Elmore delay approximation with r- -

S d d4M = d + dm: +. .i.Wa( A + )

S 7 SWRO = el + el st o

4.2. Input Capacitance

As we have seen, the addition of extra transistors to form more complicated logic functions has an

effect on a gate's output response. We have examined the effective capacitance of an nMOS inverter

during the beginning and switching phases of the rising and falling input. Of these four modes, only

one depended on the output waveform. The input capacitances during the beginning portion of the

input transition had no dependence because the output was still stationary. The capacitance during

the switching portion of a falling input had none because the average input to output coupling

capacitance dropped as the input waveform slowed down, leading to no net Miller effect. Hence the

input capacitance for these three modes depends only on the pulldown transistor's size, being

proportional to the transistor's width (assuming a fixed channel length). Only the switching portion of

the rising input possesses a significant output waveform dependence. To account for this

dependence we must analyze the conducting path containing the switching transistor. Figure 11

shows an abstract gate model along with its circuit level representation. We model 'on' transistors as

resistors (linear region approximation) and have added the appropriate capacitances from

nonconducting paths to the total load capacitance.

We find that rb causes a significant drop in the input capacitance. This fact has been exploited for

many years by amplifier designers to raise input impedance and thereby improve the transfer

characteristic. For very fast inputs, the contribution of cd is reduced by a factor (1 + gn rb). For very

slow inputs node a will have dropped to VOL by the completion of the input transition: hence the input

capacitance is identical to that of an inverter. For moderate inputs the input capacitance is in the

transition region from fast to slow input behavior. Since the total capacitance increase during the

transition region from fast to slow inputs grows, the slope of the transition increases.

V................................---..,.-....-'.--,- -...-...........
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Our analysis yields the following equation for CSWRin:

CSWR~~~~~~ ,,=SRT+CW~C SWRMa
Cs~ti s~tom+ 116S1RD? SW + m TSW"a

6Acswmmz CSWROM - CSwROiI
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5. Implementation
* We have developed a general purpose macromodeling software package. The modeler takes as

input cell template files, a macromodel control file, and macromodel equations. Each cell template

file contains a logic cell's general topology. The macromodeler inserts values for device sizes,

capacitive loads, and input waveforms into the template, and then runs SPICE on the resulting circuit

, The values of the input capacitance and output waveform are extracted from the SPICE output and

stored. This process repeats for every combination of device sizes, loads, and input waveforms

specified in the control file. At present 216 SPICE runs are performed for the general logic gate

analyzed in this section. The particular logic cells used are inverters and NAND gates. Owing to the

Ssimplicity of the cells, the SPICE simulations are quite fast, each requiring about ten cpu seconds on a

DEC 20/60.

Once the data points have been obtained the macromodeler solves for the constants in the

* macromodel equations by using nonlinear curve fitting algorithms. We minimize the sum of squared

error; minimizing the maximum error might also be acceptable but it is too sensitive to noise in the

data. The curve fitter uses a Davidon.Fletcher.Powell algorithm [11] with modifications to accept

upper and lower bounds on the parameters [12]. This is essential for ensuring that the final equations

make physical sense. Otherwise local minima in the error function could draw the curve fitter toward

nonphysical values for the constants. Local minima in the error function also mandate that higher

order effects be successively included in the model equations. That is, we solve for the first order

terms in the equations first and then progressively solve for higher order terms. For example, when

curve fitting the macromodel equation for output switching times, we first start with the simple RC

model. We select a subset of data points with fast inputs and large capacitive loads - those points

for which the model is most accurate - and solve for the RC terms in the equation. We lock these

parameters and then solve for the waveshape terms. Next we solve for self capacitance terms. Finally

we unlock all parameters and curve fit again. This technique helps to ensure that we reach the global

minimum of the error function and adds very little to the total computation time because the time is

IA
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dominated by the SPICE runs.

The modeler is written in a computer language called CLU [131. It consists of SPICE interface,

minimization, and matrix manipulation program modules. These modules contain 3200, 1800, and

1000 lines of code, respectively. All told, the modeling support routines comprise about 6000 lines of

CLU code; the modeling programs specific to the general logic gate discussed in this section

represent an additional 1700 code lines.

Pertinent curve fit statistics are shown in Table 2. The macromodel equations are typically within

several percent of the SPICE predictions, a major improvement over RC models. These benefits

come at a small price in computational overhead because we have modeled the response of the entire

cell, rather than using a more sophisticated transistor model and then having to compute the

transistors' interactions to obtain the cell's response. The accuracy and computational speed of the

macromodels make them well suited for both simulation and optimization applications.

Rising Input, Failing Output Failing Input, Rising Output

Model Eqn % Error Model Eqn % Error
ave max ave max

CBERin 1.5 5.6 CBEln 1.5 6.9
CSWRin 3.7 12.3 CSWFin  1.3 9.7

TsEFout 5.7 18.3 TBEROut 4.6 13.2
TSWFout 8.6 27.8 TswRout 3.0 10.6

Table 2: Macromodel Curve Fit Accuracies
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Optimization of Digital MOS VLSI Circuits

Abstract

Power consumption and signal delay are crucial to the design of high performance VLSI circuits.

This paper presents a CAD tool for optimizing digital MOS designs.. The tool determines the transistor

sizes that minimize circuit power consumption subject to constraints on signal path delays.

Computational efficiency is obtained through macromodeling techniques (described in a companion

paper) and a specialized optimization algorithm. The macromodels are based on device equations,
and encapsulate logic gate behavior in a set of simple yet accurate formulas. The optimization

algorithm exploits properties of the digital MOS domain to convert the primal optimization problem

into a dual form which is much easier to solve. The result is a CAD tool which can optimize a circuit in

roughly the amount of time needed to perform a transistor level simulation of the circuit.
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1. Introduction
The design of a VLSI circuit is an enormous task. Sophisticated CAD tools are essential if designers

are to take full advantage of the power offered by fabrication technology. We describe a tool for

optimizing the performance of digital MOS circuits. This tool finds the transistor sizes that minimize

power consumption subject to constraints on signal path delays. The principle advantage is an

increase in designer productivity. At present, designers size transistors based on intuition and

numerous SPICE simulations. This process is so time consuming-for both man and machine-that

designers are hard pressed to arrive at any circuit that meets delay specifications and can rarely

afford the extra effort needed to minimize power consumption as well. This not only hinders the

design of the circuit at hand, it makes it difficult to compare alternate topologies for implementing

functional blocks, as the performance benefits offered by different topologies cannot be truly

ascertained unless the corresponding circuits have been optimized.

Another application is automatic module generation for silicon compilers. The module's transistors

must be properly sized in order to meet system performance specifications, but it would be

unthinkable to have a human perform the sizing. The task could involve thousands of transistors,

making it too mundane and complicated. A special purpose optimizer can accomplish the chore far

more efficiently.

Several authors have studied optimization work of this nature. General purpose optimization

packages such as DELIGHT [1] and APLSTAP [21 perform much of the work in the optimization

process. They iteratively improve the design solution as a designer would, but by employing

nonlinear optimization algorithms, choose the next solution point more accurately and efficiently than

a human could. The key advantage is that an optimal solution is reached. However the optimization

process tends to be computationally expensive for a number of reasons. First, since the optimization

package is general purpose in nature, it cannot exploit properties of digital MOS logic and use

algorithms which would be more problem specific and hence potentially faster. Second, because the

optimization package is isolated from the circuit's data base, communicating solely via the simulator,

there is no provision to embed additional information in the data base which could assist the

optimization, either to allow one to access information more. readily or to apply a more efficient

6 algorithm. Third, the circuit's signal path delays must be determined fairly accurately; this generally

entails the use of a device level simulator such as SPICE, which is rather expensive computationally.

The consequence of these three factors is that general purpose optimizers are typically restricted to

circuits with at most about thirty design parameters.

In an effort to address larger designs, other workers have investigated more specialized techniques

..............................
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[3]. By using a resistive model for transistors and neglecting the changes in a logic gate's input

capacitance induced by sizing its transistors, these workers were able to greatly simplify the

optimization problem. They reformulated the original problem, a minimization subject to nonlinear

constraints, as an unconstrained minimization. This allows for much simpler optimization algorithms,

leading to fast convergence times. Nonetheless, the simplifications needed to reformulate the

problem seriously reduce the accuracy of both the power minimization and the satisfaction of the

delay constraints, making the approach inappropriate for high performance circuit designs.

Other authors have aimed for fast computation times by simplifying both the logic gate models and

the optimization techniques. Examples are TV [4] and Andy [5]. These tools use resistor models for

transistors instead of the computationally expensive device level models. Heuristics, rather than

nonlinear optimization algorithms, guide the sizing of transistors in critical paths. In particular, TV

speeds up paths by widening the transistors of slow logic gates, while Andy uses a fixed sizing ratio
- from gate to gate when a chain drives a large capacitive load. Although these approaches are

computationally fast enough to be applied to large circuits, our problem domain requires more
accuracy and efficiency. The resistor model is not accurate enough for high performance Jesign,
and iteratively applying heuristics is not as efficient as nonlinear optimization algorithms that

simultaneously consider all crilical paths.

- 2. Overview of Paper
This paper presents a novel approach to the transistor sizing problem. We attack the competing

needs for accuracy, computational speed, and a nearly optimal solution by combining the benefits of

the previous approaches we examined. Like TV and Andy, we work at a higher level of abstraction
than SPICE, transcending the details of actual transistor operation. However we acquire additional

computational speed by modeling entire logic cells rather than just individual transistors. Like the

general purpose optimizers, we employ nonlinear optimization techniques. This helps to assure that

we reach an optimal solution in an efficient fashion. We exploit properties of digital MOS circuits and

- apply a specialized algorithm to the problem, yielding striking improvements in computational speed.

Section 3 outlines the special features of the optimization problem, describing the properties of the

objective and constraint functions. Section 4 presents the theory of the optimization algorithms. We

choose a method particularly suited to our problem, taking advantage of the properties of the digital

MOS domain, and of our ability to create a circuit data base customized for the transistor sizing

problem. Our approach, called duality, allows us to partition the problem into many simpler, smaller

subproblems, and to transform the nonlinear delay constraints into box constraints (eg. constraints of

.-
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the form x 2> 0). Section 5 discusses the implementation of the optimizer. We describe the

organization of the software and study the optimizer's performance on some example circuits.

3. Properties of Our Problem
We begin by choosing an optimization technique which is appropriate to our problem. Selection of

the technique is highly problem dependent, as "appropriateness" in nonlinear optimization is nearly

synonymous with fast computation times, requiring that the optimization technique be closely

matched with the problem's characteristics. We therefore commence by considering the properties

of our optimization problem.

* We desire to minimize a circuit's power consumption subject to constraints on signal path delays

and transistor sizes. The objective function, power, is the linear sum of the power consumptions of

each circuit cell. For nMOS the power consumption of each cell is linear in the shape factor of the

pullup transistor. For CMOS the power consumption is linear in the capacitive loads which must be
( driven, which are due to the area of the transistor gates and interconnect capacitance, but also

depends somewhat on the input waveforms. Hence for nMOS, and nearly for CMOS, the power

consumption of a circuit is a separable function of the form
ft

0,,otal = P,
where Pi is a function of cell i only.

o The problem's constraints are of two varieties: delay specifications and transistor size design rules.

The delay along a signal path is a nonlinear function of the circuit's transistor sizes, and is nonlocal,

being composed of contributions from each cell along the signal path. Fortunately transistor sizing is
very nearly a separable operation, because both waveshape and capacitive loading effects die off

. rapidly with electrical distance. Consider an inverter chain. Whether the input signal is slow or fast,

by the time the waveform has propagated to the chain's output its shape will be predominantly

determined by the last gate in the chain. Fast inputs put the gate in an RC response mode where the

output waveform's switching time is governed by the gate's effective output resistance and capacitive

( load. Slow inputs place the gate in a gain limited mode where the gate's gain increases the sharpness

of the waveform's transition. Thus a gate behaves as a crude wave shaper.

Capacitive loading effects also attenuate quickly with electrical distance. Suppose the chain is

driving a large capacitive load. The last gate will have to be fairly wide in order to drive the load. The

second to last gate will in turn have to be somewhat large to drive the wide pulldown transistor of the

...( . . . . . . . . . . . .; . . . . . : ' . . - . - .. . . . . . . -: - . . .. ' - ' . . . . . . .- . ' - - -. . . , . ' . . . .+' . ' . . ' . . ,, - - . ' ,, . . . , , , . -. , " . . . : , . ' ,
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last gate. We need progressively less widening as we work our way backwards from the load. Within

a few gates we reach a point where we are fully shielded from the size of the load.

Design rules restrict the minimum transistor size. For nMOS there is also a minimum beta ratio (ratio

of pulldown to pullup shape factors) requirement. The former is a box constraint; the latter is a linear

constraint. The constraints on a circuit's transistors are entirely local to each cell, and are therefore

separable.

Accuracy requirements are also important, and exhibit a peculiar ambivalence in our problem. The

delay specifications on the signal paths must be met to the full accuracy afforded by the

macromodels. However the power minimization is less critical. We can tolerate a fair amount of error

in minimizing the circuit's power consumption, especially if the inaccuracies are minor and are

accompanied by large savings in computation time. In fact, at present designers use only crude

heuristics or mostly ignore the power consumption issue.

* In summary, the problem embraces characteristics ranging from the trivial to the extremely difficult.

The objective function is a simple summation of contributions from each logic cell, each contribution

being linear in the cell's transistor sizes. On the other hand, we anticipate hardship with the delay

constraints, since they are global and nonlinear. Fortunately there are only a few of them; typically a

designer will specify delays for only about ten critical paths through a functional block. In contrast,

the transistor size constraints are quite simple, consisting of linear and box constraints. However

there are a large number of them, at least one for every transistor in the circuit, carrying the potential
for huge run times. The objective and constraint functions are essentially separable, linearly

composed of nearly independent contributions from the circuit's cells. We would prefer a nonlinear

optimization algorithm that can exploit this separability, pursuing a divide and conquer strategy where

the problem is partitioned into many smaller subproblems. This segmentation is beneficial because

with most optimization algorithms, run times grow superlinearly with the number of design variables.

-Thus by breaking up a large problem, faster run times can be achieved. In particular, if the problem

could be partitioned down to the cell level, the size of the vector space for each subproblem would be

the number of transistors in each cell. Small vector spaces usually imply fast run times.

4. Duality
We carefully studied several optimization techniques, including feasible directions and penalty

methods. Neither of these methods is capable of exploiting the near separability of the problem.

Since we felt that partitioning was vital to achieving fast run times, we chose a technique called

duality, a fairly exotic approach in comparison to the other two methods. We shall see that the
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computational efficiency that it affords more than compensates for its conceptual complexity. The

basic idea of duality is to form a so-called dual problem which can be significantly easier to solve than

the original, or primal, problem. In our case the primal is difficult to solve because of the global,

nonlinear delay constraints and large number of transistors to size.

Duality offers several major advantages. First, the primal problem need not be feasible. This is a

strong possibility because high performance designs often push circuit topologies to the limits of their

performance. It is likely that a designer will specify delays for some signal paths which cannot be meL

In this event we desire that our CAD tool do its best to meet those speed specifications while

optimizing the power consumption of the other paths whose delay constraints can be met. Duality

achieves this goal. Second, inactive constraints pose no difficulty for duality. A designer specifies

maximum delays along signal paths. Due to paths sharing common portions, it is possible that one

path's delay specification will be exactly met while a companion path will be faster than required, and

yet this situation minimizes power consumption. This is essentially a recasting of the critical path

problem; the first path is one of the circuit's critical paths. Third, and perhaps most importantly,

duality can be extremely efficient computationally. This is due to two factors. Duality converts the

nonlinear delay constraints into simple box constraints, allowing us to apply fairly simple optimization

algorithms (which implies robustness as well) with quasi-Newton methods. The quasi-Newton

methods lead to fast convergence. Also, the dual approach permits us to exploit the separability of

the power and delay functions, enabling us to use a divide and conquer strategy where each cell is

optimized separately, Partitioning affords significant computation speed advantages.

Like any nonlinear optimization approach, the advantages are balanced by drawbacks. Duality is

not applicable to all problems; it works best for those satisfying a certain convexity requirement, a

property which digital MOS circuits possess. Another drawback is due to our partitioning approach

rather than duality itself. Although exploiting separability provides run time improvements, it

necessitates the maintenance of additional data in the circuit's data base, along with a close

interaction between the control structure and the data base. Partitioning the circuit into cells implies

incremental optimization of each cell in succession. This mandates a sophisticated data base, and

places profound requirements on the programming language used to implement the optimizer.

4.1. Lagrange Multipliers

Lagrange multipliers are the key to understanding duality. We shall explain their use and

significance through a simple example. Consider a chain of two inverters. The input is driven by a

source VIN through a resistor RS; the output connects to a load capacitance CL. We wish to constrain

the maximum delay of the chain. If we fix the width of the pullup transistor, the length of the pulldown,
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and the beta ratio of the inverters, then we can treat the power consumptions of the inverters as the

only free variables because specifying the power consumption of either logic gate determines the

gate's transistor sizes. Let p, be the power consumed by the first gate and P2 be that consumed by

the second, and suppose we desire the total delay T1,, = TI + T2 to be less than or equal to some

T .

This maximum delay specification places restrictions on the allowable power consumptions of the

gates. Certain regions in (p,, p2) space will not meet the speed specification. For instance if the

shape factors of the transistors in the second inverter are too small, the inverter will not be able to

charge the capacitor CL quickly enough to satisfy the delay constraint. On the other hand, if the

shape factors are too large, implying a wide pulldown and hence a large input capacitance, the first

inverter will not be able to drive the second quickly enough. Of course the first inverter's shape
factors can be made larger to drive the extra load, but after a certain point the first inverter's input

capacitance becomes so large that the delay through Rs precludes meeting the delay specification.

Since power consumption is linearly related to shape factor, the bounds on the shape factors imply

bounds on the power consumption. Similar reasoning applies to the power consumption of the first

inverter, giving us the forbidden zones (dashed lines) shown in Figure 1.

We can more precisely characterize the feasible set of power consumptions. We do this by

employing a simple RC model for the inverters, allowing us to derive an analytic expression for the

delay through the gates as a function of their power consumptions. The resulting constraint surface

TtaT 1 + T2 = T" is elliptical as depicted in the figure.

Figure 1 also shows the correlation between total power and path delay. The dotted lines are

contours of constant power. To meet the delay constraint we must stay within the circular region, but

the total power dissipation varies with position in the region. As we move toward the upper right of

the feasible set, the power dissipation increases. At the point Max we have reached the maximum

power consumption that will still allow us to satisfy the delay constraint. Here the delay and power

contours are tangent, and their gradients point in the same direction. If we instead work our way

toward the lower left of the feasible set, the total power dissipation decreases. When we reach the

point Min the dissipation will be at its lowest level that will still satisfy the delay constraint. Here the

delay and power contours are again tangent, but now their gradients point in opposite directions;

mathematically this can be expressed as

:*/ ... . :. . . . ....- ,.... .,,.,..' : , , . .. ,
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VP= -i&VT
or V(P +/IT)= 0
where J > 0

The variable j& is called a Lagrange multiplier, and offers the key to solving our nonlinear optimization

problem.

p
2

. . ... I.
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IN2

(C 2tom
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I -- ------
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small CIN I

F Igure 1: Contours of Delay and Power

4.2. Finding the Optimum

We can acquire an understanding of how to find the optimum by applying a graphical approach to

the inverter chain. We are interested in the possible total power and total delay combinations that the

circuit can exhibit. In other words, we desire the locus of points (Tt0w,1, Ptotai) that will be generated if
we substitute all valid transistor size combinations into the circuit. This locus of points is denoted the

set of all possible pairs, 9. and is displayed in Figure 2. The set's lower left boundary is the classic

power-delay tradeoff curve (bold line); it represents designs that offer propagation delays with the

lowest possible power consumption for those delays. Points toward the left of the curve are in the
high speed, high power region. As we move down the curve to the right, we trade off speed for

#A• ,. o o ' .o
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Figure 2: Set of Possible Points

* reduced power consumption, and eventually enter the low power, low speed region.

S.Points that are not on the tradeoff curve correspond to nonoptimal circuits. These circuits either

. consume more power than an optimal circuit with the same delay, or are slower than an optimal

circuit with the same power consumption. For example, suppose the inverter chain is driving a large

*U capacitive load. We should make the second inverter's shape factors relatively large in order to drive

the load, and then make the first inverter slightly large to drive the wide pulldown of the second

* inverter. If we reverse the ordering, making the first inverter very large rather than the second, the

circuit will still consume the same amount of power as the optimal one, but will be considerably

slower.

Our delay specification restricts the points that we can accept to those having a total delay less than

,* or equal to T*. We can focus our attention on this subset by shifting the vertical axis as shown in

Figure 3. Points to the left of the axis have delays which are faster than T*; this subset is called the

feasible region. The optimum is the point in this region with the lowest power consumption, and is

". located at (0, P) in the figure.

-* We must somehow reach this optimum point starting from an arbitrary point in the set . The

.



9

approach duality takes can be thought as a two step process, illustrated in Figure 3. The first step is

to move to and remain on the lower boundary of 1. The second is to walk along this boundary to the

optimum. Note that while conceptually this process may be interpreted as two steps, it must be

implemented as an inner loop embedded in an outer loop. Step one corresponds to the inner loop,

and step two to the outer. This forces the search to follow along the lower boundary of the set.

P
total

feasible
region

* initial
,' point

optimum P"

o o
mumm

tow

T <T " T <Ttotal total

Figure 3: Reaching the Optimum

4 We will now describe the implementation of each loop. Figure 4 gives a graphical representation of

the inner loop. Suppose that we begin at some arbitrary assignment x of transistor sizes, with some

arbitrary nonnegative Lagrange multiplier vector p. The transistor sizes x map to point (g(x), P(x)) in

g-P space. We can move from this point to the lower boundary of the achievable set by sliding the

solid line down until it is tangent to the bottom of 9, while preserving the slope of the line. By

geometry we know that a line through a point (g(x), P(x)) with normal ()L, 1) intersects the vertical axis

at P(x) + /tg(x). The multiplier & fixes the slope of the line. Hence this sliding operation is equivalent

to bringing the vertical intercept down while holding ;L fixed. We must perform the minimization

min {P(x) + A (x)}
subject to x e M., the set of valid transistor sizes
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Figure 4: Inner Loop Minimization

We shall denote this intercept as 4(p(/), the dual functional.

The outer loop walks along the lower boundary toward the optimum. We can gain insight into how

this might be accomplished by contemplating the effect of different Lagrange multipliers on the inner

.. loop's minimization. Figure 5 provides an illustration. We see that as we move toward the optimum

. point (0, P) the intercepts qD(u i) increase in value until they reach P. Conversely, if we move away

from the optimum in either direction, the intercepts 9(;L) decrease. This is a maximization:

P =max p(u)
subject to/L p_ 0

This maximization gives us the Lagrange multiplier pu of the optimum, while the inner loop

minimization provides the optimal transistor size assignments.

We can now grasp the intuitive significance of the Lagrange multiplier. From Figure 5 it is apparent

that as u increases, the line becomes more vertical, and we move up and toward the left. Power

consumption increases whereas delay decreases. We are generating transistor size assignments that

.............................................
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Figure 5: Outer Loop Maximization

push the circuit topology harder for speed. The fact that the multiplier has a concrete, practical
meaning is quite important, because it allows a designer to follow our CAD tool's "intent" as it

optimizes a circuit, showing the signal paths that are the most troublesome in meeting the delay

specifications. This knowledge is vital for directing efforts to improve the circuit, such as reduction of

interconnect capacitance and modification of circuit topologies (eg. the insertion of super buffers).

4.3. Degenerate Cases

It is crucial that optimization algorithms perform properly even when faced with certain degenerate

conditions in the delay constraints, such as inactive or infeasible constraints. Inactive constraints can

come from one of two sources: (1) a delay specification on a signal path that is so loose that

minimum size transistors along the path will satisfy it, or (2) interactions among paths give rise to a

situation where meeting one path's constraint causes another's to be inactive. Of these two

possibilities, the second is the most likely, and occurs frequently in practice. An inactive constraint

4. arises because the point of minimum power lies to the left of the constraint's vertical axis in power-

constraint space; the dual algorithm will converge to the optimum by driving the constraint's

Lagrange multiplier to zero.

........................................................ .. ......... *. .*
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Another important degenerate condition comes from infeasible delay constraints, where the

designer requests a maximum signal path delay that cannot possibly be met. These cases occur

frequently in high performance circuit design, as the designer pushes a circuit topology and

fabrication process to the limits of their performance. Under these situations we desire that the

optimizer do the best that it can, sizing those paths with infeasible constraints such that they switch

as fast as possible, and sizing paths with feasible constraints such that their power consumption is

optimized. The dual algorithm will drive the former paths' Lagrange multipliers towards infinity, sizing

the transistors for maximum speed. Thus the algorithm gives useful feedback to the designer,

indicating the maximum speed the circuit topology can provide.

4.4. Restrictions

As we mentioned at the beginning of our discussion, although duality does offer significant

advantages over other optimization methods, it is limited in the scope of objective and constraint

functions that it can solve. In particular, certain objective and constraint functions can produce a

'- condition known as a duality gap. These functions give rise to nonconvexities in the lower left

boundary of the set 9, leading to a gap between the solution found by the dual algorithm and the true

optimum P . We have never encountered a duality gap for any of the circuits we have optimized. The

- power and delay equations describing digital MOS gates, and the separability inherent in the digital

*. MOS domain, make the occurrence of a gap unlikely and imply a small gap even if one should appear.

If a gap ever occurs the circuit will still meet delay specifications, with a bounded amount of excess

power dissipation.

5. Implementation
We have seen that duality maps the nonlinear delay constraints into simple box constraints on

Lagrange multipliers. This mapping leads to simple, computationally efficient control structures. The

. -outer loop maximization uses a Davidon-Fletcher.Powell quasi-Newton method [6] with modifications

* for the box constraints [7]. The inner loop minimization is more complicated since it must handle

linear as well as box constraints: it uses an algorithm due to Bard [8]. Since both loops work in small

vector spaces and use second derivative information, the optimizer runs very fast.

The language chosen to implement the optimizer embodies many of the principles of data

abstraction and object oriented programming. These features were essential owing to our

incremental optimization approach and the hierarchical nature of VLSI design. We needed a

language that supported automatic dynamic data structure allocation, abstract data types, implicit

pointers, and recursive procedure calls and data structures. We chose the CLU programming -'

........... ..... .... .. . . . ...
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) language [9), which runs on DEC 20's and VAX's. The language system has extensive compile time

type checking and an outstanding interactive debugger. Both greatly facilitate program development.

Another good choice would have been Zetalisp on a Symbolics 3600. The optimizer consists of

generic nonlinear minimization and maximization routines, a circuit optimization support package,

and routines for optimizing generic nMOS logic gates. These program modules represent 3500, 7400,

and 2700 lines of CLU code, respectively.

We have applied our optimizer to many circuits; here we present two representative cases. Our first

example is a chain of three inverters. (The circuit is simple in order to allow a comparison with

DELIGHT.) We began with minimum size transistors and requested maximum rise and fall delays of

8.0 ns. Optimization statistics appear in Table 1. In the table, TBEout is the time until the output begins

to move in response to an input transition and Tswout is a measure of how quickly the output switches

once it does begin to change. The optimizer reached a solution in slightly over 15 cpu seconds on a

U. DEC System 20/60.

Optimization Accuracy:
cpu time [sec]

optimizer set up optimization power
DELIGHT (VAX 750) 133.7 3018.0 2.02
Present Work (DEC 20/60) 1.1 15.2 2.08

Delay Accuracies:o predicted [ns] SPICE Ins]
Path TBEouI , Tswut TBEout Tswou t  error [%] i [mW/ns]

in -- out, rise 4.06, 3.85 3.80, 3.76 +5 0.403

in -- out, fall 5.23, 0.64 5.53, 0.77 +7 0.000

Total SPICE verification time (DEC 20/60 running FORTRAN): 16.5 cpu sec

Table 1: Optimization Statistics for the Inverter Chain

An attempt was made to run DELIGHT on the inverter chain and compare its results to those of our

optimizer, but the effort met with only partial success. The complex interactions among objective and

constraint functions overwhelmed DELIGHT's direction finding routine, causing the program to hang

up in infinite loops.1 This illustrates how general purpose optimization algorithms can fail when faced

(

19ill Nye. the author of DELIGHT. believes.hat the problem lies in the direction finder's quadratic programming subroutine.

He i investigating more robust routineS.

.,......., ,.............................................................................................................-,..-',.-."-
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with a problem of this nature; special purpose algorithms are essential. To assist the direction finder,

we eliminated the maximum beta ratio and minimum shape factor constraints, and started DELIGHT at )
an initial set of transistor sizes that was fairly close to the optimal solution. The problem was also

simplified by not evaluating the chain's rising input, falling output response. This did not affect the

final solution since this transition's delay constraint was not active, but it halved the number of SPICE

runs needed and reduced the strain on DELIGHT's direction finder. DELIGHT required five iterations

to converge to within five percent of the optimum, consuming 3018 cpu seconds on a VAX 11/750.

Table I gives the statistics.

The performances of the circuits produced by the two optimizers are quite similar. Both have falling

input, rising output delays of 8.0 ns as requested, with power consumptions of 2 mW. The power

consumption of DELIGHT's circuit is less than ours by about three percent, but this is mainly due to

the removal of the minimum S constraint on the second inverter.

Our optimizer runs considerably faster than DELIGHT with SPICE. It is difficult to make an exact

comparison of how fast DELIGHT would run on the DEC 20/60, had it been able to handle the inverter

chain without simplifications, but we can make fairly accurate estimates. A DEC 20/60 will run

Fortran code about three or four times faster than will a VAX 750. DELIGHT only evaluated one path

transition, with fewer transistor size constraints and an initial set of sizes that was fairly close to the

optimum. These simplifications halve the number of SPICE simulations per iteration and reduce the

• "number of iterations needed to reach the optimum, leading to about a factor of five improvement in

run time. Hence we believe that DELIGHT would require about 4000 cpu seconds to size the inverter

chain on our DEC 20. This is about 300 times slower than our optimizer. We also feel that our run

times scale better than DELIGHT's as circuit complexity increases. The partitioning scheme used by

. our optimizer leads to approximately linear growth, while the growth rates of DELIGHT's feasible

directions algorithms and SPICE's simulation algorithms are more rapid.

* We now discuss the optimization of a more complicated example, a four bit adder. One bit of the

adder is shown in Figure 6. The adder is comprised of sixteen logic cells having a total of 72

transistors. Path delay constraints were placed on five of the signal paths. Table 2 gives the

optimization statistics. Starting with minimum size transistors, the optimizer required only 520 cpu

seconds to optimize the adder. In contrast, considerably more time was needed for SPICE runs to just

verify the accuracy of the predicted delays.

"..
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. Introduction

Much research has centered on the problem of finding shortest paths in graphs. It is well
known that there is a direct correspondence between the single-source shortest-paths problem and
the following simple linear programming problem.

* Let S be a set of linear inequalities of the form zx - X, < a,,, where the z, are unknown. and
the a, are given real constants. Determine a set of values for the :, such that the inequalities
in S are satisfied, or determine that no such values exist.

This paper considers the mized-integer linear programming variant of this problem in which some
(but not necessarily all) of the z, are required to be integers. The problem arises in the context
of synchronous circuit optimization (81, but it has applications to PERT scheduling and VLSI
layout compaction as well.

Before formally defining the mixed-integer programming problem, we restate the linear pro-
gramming problem above in another form.

* Problem L. Let C = (V,E,a) be an edge-weighted, directed graph, where V = (1, 2,..., IVI}
is the vertex set, the set E of edges is a subset of V X V, and for each edge (i, j) E E the edge
weight a,, is a real number. Find a vector z = (z,, :2,..., x:Vi) satisfying the constraint that

• - x, :_ a,!

for all (i,j) E Z, or determine that no feasible vector exists.

The graph G is called a constraint graph for the linear programming problem. There are
three advantages in adopting a graph representation of the problem. First, an adjacency-list
representation 11, p. 200] of the constraint graph G is more economical than, for example, a linear
programming tableau or, when the graph has relatively few edges, a matrix of the a,.. Second,
Problem L frequently arises in situations that are naturally described by a graph. Finally, the
graph-theoretic formulation helps in understanding the algorithms that solve this kind of problem.

A method for solving Problem L was discovered in the late 1950's by Ford and Bellman 17, p.
741. Yen 1121 gave some improvements to the Bellman-Ford algorithm as well as a cogent analysis
showing that its running time is O(IV 1i). This bound is easily improved to O(IVItEI) by using
an adjacency-list representation for the constraint graph.

The Bellman-Ford algorithm can also be used to solve the integer linear programming variant
of Problem L, in which all the z, are required to be integers. If the edge weights a,, all happen to
be integers, the Bellman-Ford algorithm will produce integer values for the z,. If the a,3 are not
integers, however, but the x, are required to be integers, each edge weight a,3 may be replaced
by La,,J without affecting the satisfiablity of the inequalities.

The focus of this paper is the mixed- integer variant of Problem L.

Problem ML Let G = (V, V1t, E, a) be a "mixed-integer,I edge.weighted, directed graph, where
V = 1, 2,..., IVl is the vertex set, the set V1 is a subset of V, the set E of edges is a subset
of V X V, and for each edge (i,3 ) E E the edge weight a,3 is a real number. Find a vector
x - (Zt, z2,..., XIVI) satisfying the constraints that

-; =, a,

Ii
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for all (,j) E E and that Z, E Z for all i E Vi, or determine that no feasible vector exists.
The vector z = (z,, Z2,..., Z!VI) is called a solution to graph G, and if graph G has a solution,

we say that G is satisfiable. When it is clear from context, we use the same terminology for
Problem L.

In addition, we shall refer to the vertices in V1 as the iriteger vertices of G and the vertices in
VR = V - V as the real vertices of G. We also partition the set of edges into two sets depending
on whether the vertex at the head of the edge is integer or real:

El = {(i,3 ) E E Ii E V,,
ERt ={(i,j) E ElIi E VR}.-

This paper presents two algorithms to solve Problem NIf. The first, which runs in o(IVlIJEt)
- time, is a straightforward extension of the Bellman-Ford algorithm. The second is more sophis-
'- ticated and has a running time of O(JVIIEI Ig IVI) for arbitrary graphs and O(IVIIEI) for dense

graphs. We conjecture that the O(IVIIEI) running time achieved by the Bellman-Ford algorithm
for the pure linear programming and pure integer programming versions of the problem is not
achievable in general for Problem NO.

The remainder of this paper is organized as follows. Section 2 reviews the Bellman-Ford
algorithm. Section 3 presents a simple relaxation algorithm for solving Problem hI. Section

-* 4 discusses two techniques- )ijkstra's algorithm and reweighting-which are used in Section 5
to construct an asymptotically efficient algorithm for Problem Ml. We discus.. applications and
present some concluding remarks in Section 6.

*- 2. Shortest paths and the Bellman-Ford algorithm

. This section reviews how the Bellman-Ford algorithm solves Problem L. Although the results
of this section are well known and can be found in most textbooks on combinatorial optimization
(see, for example, IT, p. 741), we repeat the material here for the reader's convenience.

There is a natural correspondence between Problem L and the graph-theoretic s$ngle-soure
shortest-paths problem. Let G = (E, V, a) be an instance of Problem L. Suppose that for each
vertex i E V, there is a path to i from vertex 1, and let d, be the weight of shortest (least-weight)
path from vertex I to vertex i. (At the end of the section, we shall discuss the case in which some
vertices are not reachable from vertex 1.) Then for any edge (i, j) E E, we have d, - d, < ai3
since the edge (i,j) can be appended to a shortest path from vertex 1 to vertex i to produce a
path from vertex 1 to vertex j of weight d, + a,,. Thus the shortest-path weights d are a solution

" to G.
Whenever G is satisfiable, there are infinite number of solutions. For example, if z is a solution

to G, then uniformly adding any constant k to each z, yields another solution y, where y, -
., + k for each i E V. The assignment x, - d, gives each z, its largest possible value subject to
the constraint that Zi = 0. To see this, cobsider any path p of weight d, from vertex I to vertex
i. If the inequalities associated with the edges of p are summed, the unknowns associated with
the intermediate vertices cancel and the result is the inequality z, - x, _< d,.

Whenever the graph G contains some cycle c whose weight is negative, the shortest path
weight from vertex I to any vertex i on cycle c is undefined because the weight of any path

* 2
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C to vertex i can be diminished by appcnding a traversal of c. In this case the graph G is not
satisfiable. If the inequalities associated with the edges of c are summed, all the unknowns z,
cancel, and the resulting inequality asserts that 0 is less than or equal to the weight of c, which
is false.

The Bellman-Ford algorithm, which is given below, solves Problem L by finding the weight
of the shortest path to each vertex from vertex 1. Should the graph contain a negative-weight
cycle, the algorithm reports that the graph is unsatisfiable by calling the procedure Fail, whose
semantics we leave unspecified.

Algorithm BF (Bellman-Ford algorithm).

BF1. zt-0;
BF2. for i .- 2 to IVI do z, - oo;
BF. for ind *- i to IVI - I do
BF4. foreach (i, j) E E do
BF5. if zy > z, + a, then z, + ai3 ;

0 BF6. foreach (i, j) E E do
BF7. ift x > x. + a,3 then Fail

For each vertex j E V, the Bellman-Ford algorithm iteratively updates the weight z3 of a
tentative shortest path from vertex I to vertex j. After initialization, the algorithm makes IV-I
passes through the edges in E and relaxes each edge (i,j) by computing x. -- min(z:, x, + ai).

A simple analysis due to Yen [12] indicates why the Bellman-Ford algorithm works. The
weight z converges to the weight d, of a shorteit path from vertex I to vertex j if the edges on
the path are relaxed in order along the path. The sequence of edges relaxed by the Bellman-Ford
algorithm consists of IVI - 1 copies of some ordering of E, and therefore contains every vertex-
disjoint path as a subsequence. If there are no negative-weight cycles in G, then every shortest
path is vertex disjoint, so each z, converges to the shortest-path weight d,. On the other hand,
if there is a negative-weight cycle in the grhh, the algorithm detects this condition by iterating
once more through all edges to see whether any of the inequalities remain unsatisfied.

The Bellman-Ford algorithm as given above determines the weight of the shortest path from
vertex 1 to each vertex, and therefore solves Problem L whenever all vertices of G are reachable
from vertex 1. The code can be adapted to solve Problem L on arbitrary graphs by simply
changing the initialization step (lines BF1-BF2). In particular, if each z, is assigned a finite
initial value u,, the relaxation in lines BF3-BF5 sets each z, to its maximum value subject to. the
constraints that xy - z, : a,3 for each edge (i,j) E E and that z, < u, for each vertex i E V.
Notice that whenever the constraint graph G is satisfiable, it is satisfiable subject to the additional
constraints z, :5 u,. Should the inequalities be inconsistent because there is a negative-weight
cycles in the graph, the relaxation will not converge to a solution, and the inconsistency will be
detected by the test in lines BF6-BF7.

3. Simple relaxation algorithms for Problem MI

As was me,'ioned in the introduction, Problem hIl can be solved directly by the Bellman-
Ford algorithm wLen all unknowns are real (Problem L) and when all unknowns are integer.
The combination of integer and real unknowns, however, seems to make the problem harder.

3
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In this section, we gain some intuition about the structure of Problem I by introducing two
algorithms that solve it in much the same way as the Bellman-Ford algorithm solves Problem
L. The asymptotically efficient algorithm from Section 4 is derived from the second of these
algorithms.

A natural approach to solving Problem MI is to see whether the Bellman-Ford relaxation
approach can be made to work. Since we have both integer and real vertices in the graph,
however, we must modify the relaxation step BF5 in the Bellman-Ford algorithm to produce an

* integer value whenever j is an integer vertex (line R6). This approach does in fact work, but
it requires more iterations than the simple Bellman-Ford algorithm. The next algorithm solves
Problem MI. The number of iterations n in line R2 will be determined in the analysis following
the algorithm.

Algorithm R. (Relaxation.)

R1. foreach i E V do - 0;
R2. for ind.- I to n do

R3. foreach (i, j) E E do
R4. begin
R5. -- -- rnin(z, z, + aj);
R6. if j E Vi then zj +- LzJ;
R7. end;
R8. foreach (i, j) E E do
Rg. if xy > x, + a,. then Fail;

In order to determine a value of n such that Algorithm R works, we introduce the notion of
a reducing path. Let p be a path starting at some vertex k, and suppose that zi, is initially set to
0 and that all the remaining z, are initialized to oo. Suppose the edges in path p are traversed
in order starting from k, and each edge (i,j) along the path is relaxed as in statements R5-R6.
If each relaxation of an edge (i, j) reduces the value z, the path p is called a reducing path.

Whenever a sequence of edges contains all reducing paths as subsequences, the relaxation of
each edge in the sequence in order yields a solution. (The proof is analogous to Yen's analysis
[121 of the Bellman-Ford algorithm.) The Bellman-Ford algorithm solves Problem L because in a
satisfiable graph with only real vertices, each vertex occurs at most once on any single reducing
path. (And in fact, every shortest path is a reducing path.)

When some unknowns are integer and some are real, however, it is possible for a reducing
S path to visit the same vertex more than once, even if the graph is satisfiable. For example, in the

graph shown in Figure 1, the reducing path p = 3 - 2 - 1 -. 2 - 4 3 --* 3 -- o 2 visits vertices
2 and 3 three times each. If all the z, are initially set to 0, the edges of p must be relaxed in
their order along the path to achieve convergence. Moreover, relaxing the entire edge set in some
arbitrary order only 3 = IVI - I times might not achieve convergence. Since the value of n in
line R2 must be at least the maximum number of edges in any reducing path, the value IV - 1,

.. which was used in Algorithm BF, will not suffice.
Fortunately, reducing paths are never very long in satisfiable graphs because of the following

- lemma.

Lemm. 1. Suppose G = (V, V1, E,a) is satisfiable. If p is a reducing path in G, then

4
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I. p visits no integer v'erte: more than'once, and

2. p never visits the same real verzex twice without visiting some integer vertex in

between.

Proof. If either condition is violated, then the reducing path p can be extended indefinitely by
repeating the cycle that causes violation. a

Lemma 1 allows us to determine a value for n in line R2 of Algorithm R such that the z
converges to a solution whenever G is satisfiable. Any reduc-ng path contains each integer vertex
at most once and each real vertex at most IVI + 1 times. Since the number of edges in a path is
one less than the number of vertices, any reducing path for a satisfiable graph can have no more
than IVAI + (IVIl.+ 1)IVRI - 1 = V IViVqI + IVI - 1 edges. Thus the limit n of the outer loop

* in Algorithm R should be set to IV:iIVnl + IVI- 1.
This analysis suggests the following algorithm which is slightly more efficient than Algorithm

R, and which forms the basis of the asymptotically efficient algorithm presented in the next
section.

Algorithm M. (Modified relaxation.)

MI. foreach i E V do z **- 0;
M2. for ind - 1 to IVRI do
M3. foreach (i, j) E ER do
M4. Z2 - min(22, Z.- a,);

CO MS. for ind2 #--' to IV, Ido
M6. begin
M7. foreach (ij) E Er do
MS. z-, min(,. [x, + £,,J);
Mg. for ind 1 to IVRtI do
M10. foreach (i, j) E ER do
Mil. zy 4- min(z,, Z, + ai.);
M12. end;
M13. foreach (i,11 E E do
M14. if z) > z, + a,, then Fail;

The only difference between this algorithm and Algorithm R is that it treats the edges in Et
separately from the edges in ER. In lines M7-M8 of Algorithm M, each edge in El is relaxed onc.
There are IVtI such passes over E, which are preceded, followed, and separated by ezhaustive
relaxations of the edges in Eq (lines M2-M4 and Mg-M1). In each exhaustive relaxation of ER,

edges are relaxed until no further changes in the values of zj are possible for j E VR. (Actually,
the relaxations in lines M2-M4 and M9-M1 are only guaranteed to be exhaustive if there ae
no negative-weight cycles in Ept. If there are cycles of negative weight, however, this condition

is detected at the and by the convergence test in lines M13-MI4.)

4. Dijkstra's algorithm and reweighting

Section 5 gives a more efficient algorithm to solve Problem No than either Algorithm R
or Algorithm M. Two important techniques are used in the algorithm. The first is Dijkstra's

S



algorithm which finds shortest paths in a graph from a single source in the case when all the edge
weights are nonnegative. The other is reweighting, which is a technique due to Edmonds and
Karp 13] and used by Johnson 161 in his efficient algorithm for solving the all.pairs shortest-paths
problem.

Given a graph G = (V,E,a) such that all edge weights av are nonnegative, Dijkstra's
algorithm computes for each vertex i, the weight d, of the shortest path from vertex 1. Because

• .each edge is relaxed exactly once, this algorithm is faster than the Bellman-Ford algorithm which
'. solves the same problem for arbitrary edge weights. Dijkstra'e'algorithm derives its efficiency from

the observation that along any shortest path from vertex 1, the shortest-path weights d, form a
nondecreasing sequence if all the edge weights are nonnegative. Thus, a sequence consisting of all
edges (i,j) E E in nondecreasing order of the distances d, contains as subsequences shortest paths

"" from vertex 1 to all vertices in V. Furthermore, such a sequence of edges can be computed on

" the fly using a priority queue. (The textbook 11) gives a proof of correctness for this algorithm.)

* Algorithm D (Dijkstra's algorithm).

DI. 0i.-O;
- D2. for i +- 2 to IVI do z .- oo;
* D3. Q+- V;
- D4. while Q 0 0 do
. D5. begin

D6. Choose i E Q such that ,= mineQ xj;
D7. Q - Q- (i};
D8. foreach j E VR such that (i,j) E ER do
Dg. z) - min(z, , + a);
DIO. end;

If the set Q in the algorithm is implemented as a standard priority queue, each extraction
- (lines DS-D6) and update (line D8) costs O(lg jQJ) = O(Ig IVI) time. Thus the total running
:-: time of Dijkstra's algorithm is O(IEIIg VlI). Johnson [6] shows that by implementing Q as a

fixed-height heap [5], the running time can be brought down to O(hIjE + hlVl1 t11 ), where h is
an integer constant that may be chosen after the input is presented. The choice h = rig IVl gives

.. the bound O(IEI Ig IVI). For families of dense graphs where IEI -C2(nVI 1 ') for some constant
e > 0, the choice h = [I/el gives an O(IEI) bound.

1 Since Dijkstra's algorithm is equivalent to the Bellman-Ford algorithm on graphs with non-
- negative edge weights, it can be used to solve Problem L on such graphs. This is not very

interesting in itself, since any graph G = (V,E,a) in which all edge weights are nonnegative
can be trivially satisfied by setting z, to 0 for each i E V. Our interest in Dijkstre's algorithm
comes from a stronger property of the solutions it finds. Suppose the initialization step (lines

DI-D2) is changed so that each variable x, is initialized to a finite value u,. Then the relaxation
procedure in lines D3-D10 will set each z, to its largest possible value consistent with the con-

straints that z, - z, < a,, for each edge (i,) E E and that x, u, for each vertex i E V. In

*:: other words, lines D3-DI0 of Dijkstra's algorithm are functionally equivalent to lines BF3-BF5
*: of the Bellman-Ford algorithm provided that all the edge weights a,2 are nonnegative. Since a

graph with only nonnegative edge weights can never contain a negative-weight cycle, no test for
convergence is necessary in this case.
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The efficient algorithm we shall present to solve Problem M is a modification of Algorithm
M. Notice that lines Mg-Mil of Algorithm M exhaustively relax the edges in ER in a manner

similar to lines BF2-BF4 of the Bellman-Ford algorithm. In Algorithm M, however, this code is

executed many times. The efficient algorithm to solve Problem M[ uses a trick to replace this

code with code based on the more efficient relaxation procedure in lines D3-D10 of Dijkstra's
algorithm. This trick is the technique of reweighting due to Edmonds and Karp [31.

Lemma 2. Let G = (V, E, a) be an edge-weighted graph, for each i E V let ri be a real number,
and let H = (V,Z,b) where b, = a,- + ri - ry for each edge (i,j) E E. For each vertex

i E Vet Z, be areal number and let y, = : - ri. Then z: - zi _5 a,3 for all (i,j) E E if
and only if y - b , for all (i, j) F Z (that is,: is a -olution to G if and only if y is a
solution to H.)

Proof. Trivial. I

We call the vector r - (ri, r2, ... , rjv) a reuieighting of the graph G.

5. An asymptotically efficient algorithm for solving Problem M

This section shows how Dijkstra's algorithm and reweighting can be incorporated into Algo-
rithm M to yield a faster algorithm for solving Problem MI. Given a graph G = (V, V1, E, a), the
idea is to find a reweighting r such that the reweighted graph H = (V, V1, E, b) has edge weights
b,; - aj, + r,- r; > 0 for all edges (i, j) . ERq. Lemma 2 guarantees that C is satisfiable if and
only if H is satisfiable and also that a solution y to H can be converted into a solution z to G by
setting z, = y, + r, for each i E V. The advantage gained by transforming the problem on C to
a problem on H is that the relaxation portion of Dijkstra's algorithm (lines D3-D10) can replace
the Bellman-Ford relaxation (lines Mg-Ml1), which is the most expensive part of Algorithm M.

The first stage of the algorithm is to determine the reweighting values r, for all i E V and
the new edge weights b, = a" + r, - r., for all (i,j) E E. We must choose the values r, such
that b, 2 0 for all (ij) E ER. Since this is equivalent to requiring that rj - ri : a,3 for all
(i,j) E ER, values for the ri can be found by applying the Bellman-Ford algorithm to the graph
(V, ER, a). The first few lines of the algorithm are:

Algorithm T. (Efficient algorithm.)

T1. for i E V do r, .- 0;
T2. for ind - I to IV.Rl do
T3. for (ij) E ERq do
T4. r. - minh, r, "4 );
T5. for (i, 1 CR do
T6. if ry > r, - a; then Fail
TT. for (ij) E E do
T8.

If the algorithm fails in line T6, then there is a cycle of negative weight among the edges in

ER, and hence graph G is unsatisfiable even in the absense of integer constraints. Otherwise, the
values bil computed in line T8 are nonnegative for all (i, jE ERq.

?
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The next stage of Algorithm T is to solve the mixed-integer problem on the graph H -
(V, V1, E, b) by alternately relaxing the edges in E, and the edges in ER as in Algorithm M. We
begin by initializing the values y,, which will converge to a solution to H if H is satisfiable.

T9. for i E V do y, *-; )

This initialization has the added fortune of subsuming the first exhaustive relaxation of ER (lines
M2-M4 in Algorithm M). After the execution of line T9 we have y, - y, = 0 - 0 < b,, for all
(i, j) E ER, which means that the edges in El are already exhaustively relaxed.

The next portion of Algorithm T parallels lines MS-Mi I of Algorithm M and is where most
of the computing gets done.

TIO. for ind - I to IV1I do
. Ti. begin

T12. for (i,j) E El do
T13. y) *- min(yj, ,y + bJ);
T14. Q -V;
TIS. while Q 3 0 do
T16. begin

- T17. Choose i E Q such that yj - minEQ 1,,;
*T18.Q Q-(l

T19. for j E VYR such that (i,j) E ER do
T20. 2 -- min(yyy, + be,);
T21. end;
T22. end;

This code solves the problem on graph H in almost exactly the same way that Algorithm M
would. The only difference is the method by which the edges of EFt are exhaustively relaxed.

* Whereas lines M9-M11 of Algorithm M perform the exhaustive relaxation using the Bellman-
- Ford algorithm, lines T14-T21 of Algorithm T take advantage of the nonnegativity of the b,, for

(i,j) E ER and use Dijkstra's algorithm.
The final part of Algorithm T is to check the convergence of the y and to apply Lemma 2 to

produce a satisfying assignment z for the original graph G.

T23. for (i,j) E El do
T24. if y, > y, + b,, then Fail;
T25. for (i,j) E E do
T26. -, - , + ri;

Lines T23-T24 check the convergence of y by testing the inequalities associated with the edges
in El. The inequalities resulting from edges in ER need not be checked because the relaxation
in lines T14-T22 is guaranteed to be exhaustive. (If there were negative-weight cycles in ERq, we

* would have detected this in lines TS-T6.)
Lines T25-T26 convert the solution y to graph H into a solution z to graph G. Lemma 2

. ensures that the inequalities zy - z, _5 a., are satisfied, but we must also show that the z; are
integers for all i E V1. For each i E Vi the value y, is an integer, however, and furthermore, the
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values of the r, produced in lines Tl-T4 are zero for all i E V,. Thus for all the intcger vertices,
the z, are integer.

In summary, we have proved the following theorem.

Theorem 3. Algorithm T sol*es Problem MI.

The running time of Algorithm T is O(IVUEI Ig IVI). (Johnson's techniques !61 151 can be used
to reduce the actual running time to O(IVIIEI) for dense graphs by implementing the priority

queue Q as a fixed-height heap.) Tighter analysis in terms of the sizes of the sets V1, Vjq, El, and

ER is possible, however. In particular, the closer bound O(IVRIIERI + IVIIIE i + jV1 1ERI g IVI)
indicates that the algorithm performs even better when the number of integer vertices is small.

6. Applications, extensions, and conclusions

The solution to Problem NO was demanded by a problem concerning optimization of sychronous

circuitry by retiming [81. This section briefly reviews this application, and gives two other

problems-compaction of VLSI circuits in the presence of power and ground busses and PERT

scheduling with periodic constraints-which can be reduced to Problem L. We also consider an
extension of Problem I1 where multiple sets of periodic constraints must be satisfied. (For ex-

ample, some of the z, are required to be integers, and others to be exact multiples of a constant

c.) This section is abbreviated in the extended abstract.

Circuit optimization by retiming
This application is omitted. (The interested reader is refered to [8).)

PERT scheduling
Suppose we have a constraint graph representing milestones in a project, the edge-weights

indicate the timing constraints between milestones. Generally, the Bellman-Ford algorithm can
be used to provide an optimal scheduling of the milestones. If a work day is from 9:00 a.m. to
5:00 p.m., however, we may not wish to schedule a one-hour job to start at 4:30 p.m. Advancing
the job to the next day, however; may cause another job to be advanced as well if the two jobs are

constrained to fall near each other. The problem of PERT scheduling with periodic constraints
can be cast as Problem Ul.

Intuitively, the mixed-integer formulation allows one to include for each job 1. a (real) variable
representing the starting time of the job, and 2. an (integer) variable representing, say, noon on
the day the job occurs. Thus one can include constraints which say, "This job must finish before
5:00 p.m. on the day it occurs," and "These two jobs must start on the same day.'

We also can solve certain problems when there are additional periodic constraints using an
algorithm that runs in O(1V13) time. As an example, we may wish to have not only variables
representing noon on the day that a job starts, but also variables representing the week that a
job starts. Thus constraints involving weekends could be taken into consideration.

Circuit compaction
Optimal (one-dimensional) compaction of VLSI circuit layouts (41 is another application of the

Bellman-Ford algorithm. Each layout feature is given a variable representing an x-coordinate,
and the design rulcs are enforced using constraints of the form z, - z, : a,,. It may be desirable,

however, to allow feature i to be to the left of feature j or vice versa, but not to allow them
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to occupy the same position. Unfortunately, if one wishes to allow this kind of transposition of
layout features, either optimality or performance must be sacrificed because the problem becomes

NP-complete [9). But for certain compaction problems arising in practice, transposition of layout
features can be allowed.

Some design methodologies enforce the placement of power, ground, and clock to be at regular
intervals. For example, one signal processing system [10] requires that these wires be repeated
every 200X, and that the width of all cells in the system be integer multiples of this distance.

The designer is then constrained to build a new cell so that the I&) out features are tightly parked
among the global wires. In this context, where some layout features may go on one side or the
other of some global wire but may not overlap, the compaction problem can be formulated as
Problem M1.
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* Abstract I. Network Differential Equations for RC Meshes

Computa ionally simple bounds for signal pro-
pagation delay in linear RC tre models for MOS Pk D a)

-.nterconnect were derived in [1 and have proved Q I D I ----

useful in timing analysis of digital ?0S IC's (2-41. --
We show that these bounds can be derived quite(Da
simply as the payoff functions for a certain linear
optimal control problem and that they apply not only
to RC trees but to more general RC meshes as well. -
Finally, two methods are given for tightening the
original bounds given in (11.

1. introduction Fig. 1: This linear PC mesh differs from an RC
tree because of the resistor loop.

In digital integrated circuits, signal pro-
pagation delay through conducting paths with dis- Node Numbering Convention
tributed resistance and capacitance is frequently a
significant part of the total delay and grows in The ground node is not numbered. The node
relative importance as feature sizes shrink. Timing connected to the voltage source is numbered 0.
analysis of digital IC's can be speeded up by using The remaining nodes are numbered in any order from
aporoximate delay formulas, e.g.. the "Elmore delay" 1 to H, vhere N is the total number of capacitors,
[5j, in place of detailed numerical simulation for as in Fig. 1.
interconnect paths. Bounds on the delay, applicable We isolate the resistor subnetwvork R containing
to those paths that can be modelled as linear, all the resistors and assign reference directions
nonuniform branched RC ladder networks. i.e., "RC to the capacitor currents i1 .  i N as shown in
trees," were derived in (1). But, as discussed in Fig. 2. Let node 0 serve as the datum node of R.
(6-8), certain circuits used in MOS logic cannot be The node voltages with respect to datum are given
modelled as PC trees because they contain one or more in terms of the capacitor currents by the resistance
loops of resistors, as shown in Fig. I. Several matrix R as shown below.
examples of such circuits, called "RC meshes,"
arising in MOS logic networks are given in [6-71. v -4 r r ... r 1 i
As used in this paper, the teo= RC mesh Includes PC I [ 1 12 IN 1
trees as a special case. v-2 - r 21r 22 . r 2N 2

This paper is concerned with bounds on signal
propagation delay in linear, lumped FC tree and mesh , . " "
networks driven by an ideal voltage source. Since
the meaning of "delay" is somewhat application- V N-e L r., r2 ... rN i Cl)
dependent. we bound the delay by bounding the zero-
state step response at any output node of interest. Of course R is symmetric since R is reciprocal, and

C R is positive definite because all resistors are
assumed positive.

Consider the step response of the network with
zero initial conditions. Substituting set and
ik 0 -Cki k into (1), we obtain the network
differential equations

j t) -ir rtc , t 0. (2)

... .. .. ... .. .. ... .. .. ... .. .. .. .......
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- . Given Facts 1 and 2, the derivation of (5) and

. .(6) is identical to that in Appendix D of (1), i.e,,

" vfor (5) note that rji(l-vk) - rki(l-vi) - (using
_ _._ _ _ _(2)),

a tum R4  _ (riirkj - r, j) 0 O,

awhere the last inequality follows from Facts . and
._. 2. The proof of (6) is similar.

At this point the strategy becomes one of

2 3reduced order modelling with time-domain error

bounds. Choosing a distinguished node i as the
vl v2 v3 v output nod* of interest, we seek to describe the

V 1  2  3 4 system in terms of only two state variables, the

Fig. 2: The resistor subnetwork R extracted from distance to equilibrium (1-vi(t)) and its integral
tne zircuit in Fig. I is described by a resistance a
matrix as in (1). f (t) 

-
t ) [v ldt' a r C (1'v (t)),

t (7)

which are identical in form to eq. (9) of Ell: the

only difference is that in (11 certain resistances where the last equality follows upon substituting
Ri. appear in place of the rij's above. The (2) into the integral and evaluating. Using (5)
resistances Ri- were defined specifically in terms and (6) in (7) yields the following inequality
of the topology.of a tree in [11, while the rij's between these to state variables:
h'ere are defined for an arbitrary mesh as the
elements of the resistance matrix. The reader can h- 2
easily verify tnat the two definitions agree in the2 C (2.v Ct)) - f.t : )-
special case of a tree.

" ::. :tinal Control Method for Datermining Bounds 
T 
R

o.n he Stez Response

The original derivation of-step response bounds rkkc2 (l-vi(t)], Vt 0 . (8)
in !11. thouqh entirely correct, is somewhat obscure

and applies only to RC trees. The alternate derive- A
tion outlined below yields essentially the same
results, but it applies to meshes as well and also From (7) one initial condition is
affcrds a natural way to incorporate additional

information and tnereby obtain tighter bounds, as fi (0) rikCk TD. (9)
-wn in Section 1V. Facts 1-4 below parallel the k I

levelc;ment in '1 and are given here for complete- It was shown in Ell that step response bounds•' --;.s. ricO 3 vil11 be examined more closely in
--. Fact 3il xaie oncan be obtained by appropriate manipulations of

(4,5) and (7-9) above, but the methodology is some-

- what obscure. We believe a clearer view emerges
from recasting the calculations into the form of a

linear minimum- (and maximum-) time optimal control-'* "or any "-uiree nodes, i, j, k of an RC mesh,
problem with state constraints, in wnLch an input

rii r rk, rij (3) u(t) is introduced to represent the unknown wave-
form v (t):

i

The proof of (3), given in (7), generalizes the-" Minimize (or maximize) T
.r?7.-ent for the special case of a tree in (1n.

'- "m: -for the dynamical system

-he zero-state step response of an RC mesh is fi ( t) a -(l-v (t)) (10)
-_ z.m.letely -4notone, i.e., d

dt (1-v i(t)) - u(t) ,(1

-. Ct) -, t 0 with initial conditions

"'" ".he =roof is in [9].
ro ii" f 

(0
) T oD.' (1-v (0) a 1 , (12)

za:t .3 state constraints

For any two nodes i and k of an RC mesh and any Ta(l-vW(t)) ' f t) T(1-v Ct)), Vt a

instant t during the step response, - -p - (13)

rii(1-v (t)) ' r (1-v.(t)) i input constraint: u(t) • 0. Vt 0 0, (14)

r.(lv W)< r (1-v W) (6) and terminal condition

k k7.
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(1-V 'T1 - ,1-v ). - v - 1 , (15)

-m-fatest

statT indiate bydtedAn

taretton

F.g. 3: sest and sletie ta etes from the Fig. 5: Stop rpe frsot mnds for the neimrk ln
Initia•l State to the target[ region, subject to tche Fig. 4. with outcput t~aken at node L.

state constraintsl ind~icatced by dott ed li~nes.
The reader can check that€ the "Elmore time-

,.he optimal trajectories can be detcermined by constant" TI, is the first€ moment of the impulse

inspection without recourse to Pontryagin's maxim response and therefore a reasonable estimate of the
;rir.ciple. since the time duration of any path in delay. The step response estimate v. estit) 1

t.e (1-v( - f, plane can be found by rearranging 1 - exp (-t/Tt.). discussed in [8,10t: corresponds
and integrating (13) to yield to straight line trajectory from the initial

condition to the origin in Fig. 3 and is therefore
init a feasible (but not optimal) solution to the opt=mal

T - d f. " (16) control problem. i.e., yA(t) < Vi,est(t) _ Q(jt),

Vt > 0, for every mesh. It is readily seen that
ffinal TR -- To < Tp always and that the estimate and

bounds represent an effort to approximate the
Thus tne fastest trajectory from the initial point dynamics of a higher order network by one with a
to the target ir.terval is the one for which both the single tim cons tant TI): they are exact only in that
region of integration [ffinal, finit] and the inte- case. Whenever (Tp - TR.) <k T9£, the wedge-shaped

grand (1-vi)'1 are minimized, and the slowest region in Fig. 3 is quite narrow and the bounds will
tra'ectory is found similarly. See Fig. 3. The be quite tight. Chapter 3 of (81 gives examples of
U-Uun and maximum times depend on the "target" networks for which the bounds are good and others
voltace mand are denoted Tin(Vi*) and Tva=(vi*). where they are poor.
The inverse f-jnctions. denoted respectively 9i(t)
and v t!. are readily seen to be the upper and lower IV. Method "A" for Bounds Imorovement: Limits on
zoun-ds. respectively, for all feasible solutions to the Maximum Slew Rate of Node Voltages
tne optimal control problem and hence for the step
response of the mesh. Furthermore, these are the The optimal trajectories shown in Fig. 3
c.st =ossible bounds we could construct using the include horizontal segments along which vi changes
..firnation contained in (10)-I1S), since they are while fi remains constant. Since k. - -(l-vi) C 0.
attained by feasible trajectories. The algebraic these segments correspond to instantaneous jumps
.or of L (t) and Qi(t) obtained in this way can be in vi and cannot occur in practice. we can tighten
easily read off from Fig. 3 and agrees with the the bounds by adding constraints eliminating such
results in (11: tine exact expressions are omitted trajectories. The simplest form for such a
for the sake of crevity. They approach a well- constraint is a "minimum slope bound" in the
4efined li.3 i in the case of a distributed network, (l-vi)-fi plane of the form
e.;., the asinti .xa.mple in Fig. 4, for which they d f.
are Flotted in %g. S. 0 (17)

K: ( Xr d(l-vi L - i ,0(7

This rules out both trajectories in Fig. 3 as
feasible solutions. The new optimal trajectories

ip? Ip? are as shown in Fig. 6. and the corresponding
I I algebraic form for ! (t) and Qi(t) is given in (111.

The inequality (17) corresponds to a "slew-
rate bound." i.e., a bound on the derivative, for

F vr i r I Vi, Since
rig. 4: The bounds approach a well-defined limit i, 0 0 ; d(l-vi )
for a distributed network such as this one, for .& 0 -l-v )/(1-f -/f

-nich TR, a 1.33 ns., T - 1.5 ns., T -2.0 ns, (1-v L - i d f
and T. - 0.33 ins. (1)

an (8

lb + ;.--& - -'-ld ldmilhN . .... .
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Stl-. Fig. 7: Typical convex spatil voltage profile for
we rthe network in i, 4, along with the bounds ()s-v+ and (6).

aig. 6: The sloe constraint (17) alters the optimal inequalities (S) and (6) bound e node voltagestrajector[es in Fig. 3 as shown elsewhere in the network in ter of the node
voltage vi of interest and are also plotted inF and (17 bom uselss riiCith Fig. 7 for ths PC lSne. They are quite differentl-v i= rijj " rom{2) nd 4)in character: (5) gives a spatially convex profile

Fornl vales r fCiv fo " a tu ). in this case bu (6) does not. Considera llej.• improvement over (6) is possible since a convexUsng Ti .riiC i can sgnficantly tighten the curve is bounded below by any angent line, i.e.

counds whenever the mesh contains only a small num- •r

limi ouompenaptors, oal one omn the eulsei a t C }cT(-

n reasonably accurate circuit models for distributed 1-v k < (-v i  F 1 X k - 21)
interconnect [12. But as progressively more R's
and C's are used to model a given section or inter- (2connect, Ci  - 0 and 17) becomes useless with for some A (0,1. Sustitutng 21) into the riht
o m riiie 

hand side o (7) and taing the maximum over 2 yieldsFortunately, values of Ti reater than tALCi

can be found for many C rees. Space onstraints f (v T k kk 1
limit us to mentioning only one of the results in -- 1i)ma TDI . T _ plv i)this direction obtained in 113). Consider an PC . (22
line with the nodes numbered in increasing order as (2
one mo ves away from the source . it was fi r:st no ted t u e u i g t e e f c i e v l e o p ( r m 2 0

ns. to 1.83 ns. for the network in Fig. 4) and
Cit) . (t) further improving the voltage bounds as shown in

V <i-• i, Vt • 0 (19) Fig. S. Current research includes extending thisl-v-(t) 1-v (t) - - technique to trees.

a rigorous -roof was given in [141, and the result VI. Concluding Remarks
extended in (131 to include all nodes of an PC tree
up to the first branch point. Using (19) and (5) The research in this paper was stimulated byin (2), one can snow that if i is any node of an recent work that appeared in (1,81. The new
PC line, or any node of an PC tree between the developments reported here are 1) two lemmas
source and the first branch point, then (7,9) that provide a rigorous basis for extending

the theory from PC trees to PC meshes, 2) the
i optimal control formulation of te problem 131,

Sr. C/r. T .(20) 3) an extension and rigorous proof (131 of a bound- 3 2 ii R.
i on node voltage slew rates, 4) a systematic method

"11] for finding tignter step response bounds using
The dark curve in Fig. S shows the original bounds slew rate limits, and 5) method "B" for bounds
in (1) for the network in Fig. 4, along with the improvement.
improvement one obtains from using the slew-rate
bound (2)). Acknowledgement
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Abstract: In this paper, we prove that mazimum planar H-matching (the problem of determining
o the maximum number of node-disjoint copies of the fixed graph H contained in a variable planar

graph G) is NP-complete for any connected planar graph H with three or more nodes. We also
show that perfect planar H-matching is NP-complete for any connected outerplanar graph H
with three or more nodes, and is, somewhat surprisingly, solvable in linear time for triangulated
H with four or more nodes. The results generalize and unify several special-case results proved
in the literature. The techniques can also be applied to solve a variety of problems, including the
optimal tile salvage problem from wafer-scale integration. Although we prove that the optimal tile
salvage problem and others like it are NP-complete, we also describe provably good approximation
algorithms that are suitable for practical applications.

C Key Words: Approximation Algorithm, Covering, Matching, NP-Complete, Optimal Tile Sal-
vage, Packing, Planar Graph, Wafer Scale Integration.
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