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Abstract

“ The modelling and segmentation of images by MRF's (Markov Random

Fields) is treated. These are two-dimensional noncausal Markovian

Stochastic Processes. Two conceptually new algorithms are presented for
segmenting textured images into regions in each of which the data is
modelled as one of C MRF's. The algorithms are designed to operate in real
time when implemented on new parallel computer architectures that can be
built with present technology. 4 doubly stochastic'representation is used
in image modelling. Here, a Gaussian MRF is used to model textures in
visible light and infrared images, and an auto-binary MRF to model a priori
information about local image geometry. Image segmentation is-.realized as
maximum likelihood estimation. In addition to providing a mathematically

P

correct means for 1ntroduc1ng geometrlc structure, the auto-binary, (or

ot o s e ——

ternary, etc.) MRF :zan be used in a generatlve mode to generate &mage
geometries and artificial images, and such simulations constitute a very
powerful tool for studying the effects of these models and the appropriate
choice of model parameters. The first segmentation algorithm is
hierarchical and uses a pyramid-like structure in new ways that exploit the
mutual dependencies among disjoint pieces of a textured region. The second
segmentation algorithm is a relaxation-type algorithm that arises naturally
within the context of these noncausal MRF's. It is a simple, maximum
likelihood estimator. The algorithms can be used separately or together.‘<f"
The algorithms have the desirable properties: (i) the required computation
appears to be close to the minimum required for segmenting images modelled
by MRF's; (ii) the segmentation can operate in adaptive modes, estimating a
priori unknown fixed or spatially varying MRF parameters; (iii) the
segmentations are unusually accurate--- usually to within one or two pixels
in the experiments run. A contribution of the paper is that a start is
made in discussing and exploring that inherent structure of MRF's that must

be exploited in order to construct physically meaningful MRF models for

representing real textured images, and in order to devise segmentation

algorithms that are computationally efficient. -
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;d 1.0 History of the Textured Image Segmentation Problem

tﬁ | The use of Markovian Random Fields to model image textures, textured
region geometry, and textured region boundary, and then the application of
maximum-likelihood or Bayesian estimation methods for segmenting such images
has a growing history. Cooper, et. al. [l], have used white Gaussian fields
to represent texture, and unilateral (causal) Markov processes to represent
region boundaries. Image segmentation was realized as the maximization of the
conditional likelihood of a boundary given the data image. In [2], Cooper,
et al., used the same representation and developed an approach that
partitions an image into small square windows, does boundary estimation
simultaneously in all windows through the use of dynamic programming, then
seams the windows together using again dynamic programming. Again, using the
same representation, Schenker, et. al. [3), demonstrated the hierarchical
"ripple filter", a local relaxation-type algorithm to do maximum likelihood
image segmentation. Elliott and Scharf [4] were the first to develop a
dynamic programming algorithm for boundary estimation, and then Elliott,
et.al. [5] developed a dynamic programming algorithm for segmenting multi-
level texture. Here a white Gaussian field with different means (for the
different textured regions) was used to model texture, and a MRF was used to
model region geometry. This doubly-stochastic modelling for texture and

region geometry was also adopted by Therrien [6]. He used a white or a causal

LA0N o

et
» %

colored texture field for describing the texture of the diiferent regicos in
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the image, and a binary field based on a 2D Markov chain introduced by Kaufman

and Woods [7] to model prior information about texture region connectivity.

e

The image segmentation algorithm he used was an iterative one where the
texture region association of a pixel (i, j) was based on the relative numbers

of pixels assigned to the 2 texture types in a small square about (i,j) and on

its texture conditional likelihood. Later, maximum a posteriori estimation
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(MAP) of an original image given the degraded observations through stochastic

relaxation was also adopted by the Gemans [8]. They viewed the image as a

pair of processes -- the intensity process and the line process. These were

modelled by MRF's (with a relatively small neighborhood) whose Gibbs potential

was assumed known. Image restoration was achieved through an annealing

schedule that forces samples from the posterior distribution towards the

minimal energy configuration (i.e. the maximum of the posterior distribution).
Finally, we mention threg lines of research, not because they deal with the

segmentation of MRF's, but rather because they use algorithms close in spirit

to those that we discuss. Chen and Pavlidis [9] presented a hierarchical

approach to textured image segmentation involving image data modelled by

noncausal 2-D Gaussian processes. No use was made of MRF's or their

properties. They expressed the segmentation problem as a sequence of tests of

hypotheses on a quadtree data base and within the framework of a split-and-

merge algorithm. Regions of arbitrary initial segmentation were tested for
uniformity. If they were not uniform they were subdivided into smaller
regions, or set aside if the appropriate statistics were below a given
threshold. Subject to cluster analysis, similar uniform regions were merged
as constituting a texture-type region. Updated estimates for the parameters

of each random field were obtained as the uniform regions became larger.

These were in turn used to clagsify some of the remaining unclassified small
regions. Rosenfeld and colleagues have developed 'relaxotion' aigovithms for
parallel processing. Though they do not do maximum likelihood estimation nor

do they use the image data in iterations following the initial segmentation,

nevertheless, they have shown that their approach involving "pseudo-likelihoods" cq:Etﬁ

v_“.‘ -

used in many important applications, e.g., see [10].Faugeras and Berthod [11} develx- N
S e AN
a relaxation-like algorithm but based on the extremization of a performance functignl=wisll
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Their application was object classification based on multi-gpectral data. Hinton, &;;;%}
et.al. [25], are developing elements of an approach to scene understanding based on:ﬁ;:;jz
networks, an energy performance functional , and a probabilistic relaxation Eiféf;j
optimization algorithm. Though the referenced papers do not deal with textured imaQ::i;s
by
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segmentation, there is a significant overlap in the kinds of equations that they and we

ultimately deal with.
The first published papers on maximum likelihood segmentation of textured

images when noncausal Gaussian MRF's are used for data modelling and another
MRF is used for texture-type region modelling are those of Cohen, et al. [12,
13, 14]. Hierarchical and parallel iterative (relaxation-type) segmentation

algorithms were introduced, and so was the use of these in combination.

1.1 Brief Overview of our Use of Windows, Our Approach to Textured Image

Segmentation, and the History of Markov Random Fields for Texture Modelling.

We model textured images on two levels, one unobserved level to describe
the geometry of the basic rezions within each of which the image has one type
of texture, and an observable level to describe the textured image data in
each region. Under this scenario for image generation, nature first generates

the texture-type regions, and then fills in each region with an image having

the appropriate texture. Two~dimensional MRF's are used as texture and region
models. The MRF models are a class of parametric models that have been

studied extensively by Besag [15] and Bartlett [16] as a generalization to

the Ising model. Gaussian MRF's have been extensively studied by Woods [17]
and Jain [18], among others. Woods has considered them for image filtering
[19]. They have been successfully used by Cross [20], and Kashyap and

[21]), among cthers, Lo model a variery of stationary texture fields such as

.
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Brodatz textures. Thenry kas beer presanted by bBesag [15], as well as by Kashvap and
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Chelappa [21] for estimating parameters to adapt the models to stationary

field data. Kashyap's and Chelappa's work [21] also included texture

7.
ALY

recognition for rectangular textured regions.

The segmentation problem consists of partitioning a textured image into

Y,
P

1N

regions, in each of which there is one of C possible texture types (texture
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classes). This means that a texture-type classification must be made for each
pixel. Since a connected single texture-type region will usually contain many
pixels, we consider a simplification that considerably reduces the required
computation. The simplification is to partition the image into small square
windows and to process each window under the assumption that it contains one
or at most two texture types. Then each window is processed as a separate
subimage, and the results combined in an appropriate way (see Section 4.5).
Hence, most of this paper is concerned with segmenting a small square window
of image into two regions, each of which comprises one of two image texture
types. Extension to three or more texture types in a window is immediate.

A precise brief statement of our segmentation approach is the following.
Nature partitions an NxN pixel window into two (or more) region~ denoted as
texture-type regions 0 and 1. Within region k, model k is used to generate
the data. The image data in region 0 is statistically independent of that in
region 1. Let sjj be a binary variable taking values 0 and 1, denoting
texture-type 0 and 1, respectively, and let S denote the N2 dimensional vectox
having components sij- Then the vector S specifies the partition of the NxN
pixel window into the texture-type 0 and texture-type 1 regions. Let yij
denote the picture function (i.e., image data) at pixel (i,j), and Y be the N2
component vector having components Yije Then Y is the vector of all picture

function values in the NxN pixel windew. If S is viewed as a constant but

sunknown vector, the likelihood of the data in the window is

p(Y,8) = p(Yg|0) p(¥;|1) (1)

Here, p(Y,S8) is the liklihood of Y given the partition S. Yk denotes the

picture function vector for texture-type region k, and p(Yklk) denotes the

likelihood of Yy given the probability model for image data in texture-type
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region k. Hence, the simplest texture segmentation problem is to determine
the partition S for which Eq.l is a maximum.

The second problem is that in which S is itself a random vector. That
is, nature partitions the window into texture-type regions in accordance with
some probabilistic process. Then the segmentation problem is the
determination of S8 for which the posterior likelihood

p(sly) (2)
is a maximum. Note, equivalent to maximizing (2) is finding the S that
maximizes (3) or (4)

2n p(Y,S) (3

2n p(S) + &n p(Y|S) (4)

1.2 Contribution of this Paper

The present paper is an in-depth treatment and extension of material
briefly introduced in {13,14]. 1t makes the following contributions. Certain
properties of MRF's need to be exploited in order to do physically meaningful
image data modelling that is also mathematically consistent. Some of these
questions are raised and one solution is presented. Parallel iterative and
hierarchical algorithms are presented for maximum likelihood segmentation of
textured images, Our iterative algorithm will generally require much less
computation than will an annealing algorithm, and will also work with
noustationary wmodels and data, whereas the annealing algerithm usually will
not. Again, there are properties of the MRF's that can be exploited, this
time to substantially reduce the amount of required computation. A divide-
and-conquer approach is taken in our hierarchical segmentation algorithm that
reduces the number of multiplication-equivalent operations to 42,257 for a
64x64 pixel window. This is to be compared with ten to fifteen times that

number of multiplication-equivalent operations for a direct hierarchical
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approach. The simplest iterative algorithm is mathematically correct, but

lacks a certain physical meaningfulness. This problem is addressed and one

solution is briefly proposed. A number of experiments are run with real

data. This turns out to be important, as the segmentation of real data is

much more difficult than is that of artificially generated data---- especially
since real image texture data is generally nonstationary. One approach to
parameter-adaptive segmentation is briefly discussed and illustrated. This

estimation of unknown model parameters during the segmentation process is

required in practice. Our algorithms appear to be robust, and effective even

when the models do not represent the data well.

2.0 Markov Random Fields (MRF)

We use the auto-normal MRF (i.e., Gaussian process) as the texture data
model, and the auto-binary process for modelling region geometry for an image
window that contains at most two different texture types. Let r=(i,]) index
pixel location where i,j specify pixel row and column location and satisfy
1 <i,j £ N. Let x, denote a random field, with x, the field at pixel r, X

a vector specifying the field over an entire N x N window and having

components Xr, and X, the field everywhere but at pixel r. By {x,} a MRF we

mean that
}
p(xrlxr) = p(xr|xv,vanp)

Here, D, denotes a neighbor set, and p(x.|X;) denotes the conditional

likelihood of x, given X,.

The nature of D, is illustrated in Fig. l. As indicated in Fig. 1, a lst

order MRF is one for which the neighbor set consists of the four pixels

constituting the north, south, east, and west neighbors of the center pixel. A
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2nd order MRF is that for which the neighbor set is the first layer of eight
pixels surrounding the center pixel, i.e., all pixels marked 1 or 2. A 3rd

order neighbor set consists of all pixels marked 1, 2 or 3, etc. In general,

Dp = {v =(2,m) such that ||r-v||2 < N, and vér}

P

Where P is the order of the process, and N_ is an increasing function of P.

P
NP takes the values 1,2,4,5,8,9 for P=1,2,,.,6 respectively.

2.1 The Gaussian MRF Texture Model

The observed texture field (i.e., image data field) is denoted yij or
just y., t = (i,j). The conditional likelihood for the kth texture class is

Gaussian, and is given by

ply, | Yr , class k)=

= 20020101 % exp(~(1/2020GN) [y (k) = § By (ygmuN1?} (5
veD
P

For {Yr} stationary, By-y must satisfy certain restrictions. However,
nonstationary fields are also of interest in this paper. For a stationary
field, the joint probability density function (pdf) for the image in texture

region k given that the field is 0 outside this region is shown by Besag [15] to be

p(Y|class k) = [2m02 (k] 2|B(k) | 1/2exp - [(¥~U(K)}E B [¥-U(K)]/20%(K)}  (Sa)

where U(k) = p(k)(1,1,..,1)%, and Y is an (M x 1) column vector whose elements
are the picture function y, at the pixels in the M pixel region. B(k) is a

symmetric positive definite (MxM) matrix whose diagonal elements are

unity, and whose off-diagonal element is equal to -By-y, where B,-y indicates
the strength of the spatial interaction between the MRF at points r and v.

Br-v is zero if points r and v are not neighbors.
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2.2 The Binary MRF Spatial Region Model

We use the noncausal binary process to model region geometry. It has
been used by others to model image textures (Cross [20] ), For example, if one
texture-type region consists of small elongated blobs and another consists of
large regions, a binary MRF model can be designed to generate such patterns.
Or if two texture-type regions are large with boundaries of low curvature, a
binary model can be designed to generate these patterns. For the local 0,1
pattern shown in Fig. 2, if nature's goal was to generate regions with long
smooth boundaries she would generate an s value of O with higher probability
than an s value of 1 at location x. Let S denote the region-field modelled by
the noncausal auto-binary Markov field that describes the geometry of the
regions in the image. For an N x N image, S has N2 components {sij}v each s_
taking the value O or 1 and describing the allocation of pixel r = (i,j) to

either class I or class II. The conditional probability takes the form
p(se|Se) = exp (sp Tp)/[1 + exp(Ty)] (6)

where Tris given by

Ty = a + ) bpysy (N
veDP

For {sij} stationary, brv = br-v for 211 r = {(1,3) and v = (m,n).

3.0 The Segmentation Problem

Overview

The window segmentation problem of concern in this paper is that a window may
contain two* texture-type regions, each from one of C classes, and the

window is to be partitioned into two regions, each consisting of one texture

* Three or more are possible, but the required computation is more extensive.
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type. We use maximum likelihood estimation for this purpose. The two
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difficulties that arise in the segmentation problem are: first, likelihoods

N 4

must be computed for texture regions of irregular shape; second, likelihoods

A-,.i
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must be computed for many of the possible partitionings of the window. The

[t
PR

8 challenge of the first problem is that there is no obvious simple way of
computing the joint likelihood of a noncausal MRF over an irregular region.
The challenge of the second problem is to be able to compute the picture
function likelihoods for many different partitions of a window without having
to do a horrendous amount of computation.

This paper presents simple practical solutions to both problems. The
first algorithm we present is a hierarchical pyramidal-type algorithm, whereas
the second one is an iterative relaxation-type algorithm. Both algorithms can

handle textured images modelled by either stationary or nonstationary MRF

texture models.
The reason for partitioning the image into windows is threefold: 1) it
permits parallel processing, since windows can be segmented simultaneously
using appropriate hardware architectures, and the results then seamed
together; 2) by having one or at most two texture classes in a window, the
processing is relatively simple; 3) if the windows are small, the texture
model within a wiadow can be treated as being spatially statiomary, i.e.,
having parameters that are constant for the entire window (and satisfying certain

restrictions). This is especially convenient if, as is usually the case, the texture

model parameters are a priori partially unknown or are spatially slowly varying and

must be estimated during the segmentation process.
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3.1 The Hierarchical Algorithm.

In the hierarchical algorithm, we often refer to the two texture-type
regions as object and background regions. The reason for this is partly
historical and stems from the fact that a goal is often to isolate a specific
object without caring about the interpretation of the surrounding region.
Examples are an ' image of a kidney in a CATSCAN, a vehicle in an infrared
image, a tree in a visible light image, etc. Such an object often appears in
an image as a convex textured blob. The intersection of a window with such a
region will be connected. Hence, for the hierarchical algorithm we have
imposed the constraint that the estimate of one of the textured regions in a
window, the object region, be connected. Our algorithm can easily be modified
to require that the estimated object and background regions both be connected
regions, or to not require connectivity in either type of region estimate.

The segmentation sought is that which maximizes the likelihood of the
data. In each window the segmentation algorithm is hierarchical and uses a
quadtree-like data structure. The window is divided into four quadrants and
the best segmentation, i.e, grouping of these four blocks, is obtained. Then
each of the four blocks is itself partitioned into four, and the process is
repeated until the block size is such that each block consists of one pixel.
At each s3tage of the hievarchy, the object connectivity constraint is met.

Each stage of the algorithm involves working with blocks of a certain

w

ize ard congists ot two steps.

Step 1. "Region growing'.

At the end of the nth stage, the window has been segmented into two sets, r{;{gxq
SON
o N u e
. . . . . . SRS
one of which is referred to as the object region and is constrained to be ‘\}ikisa
RS A
AN
connected. For the (n+l)st stage, we shrink and expand the object by N,

partitioning each block in the neighborhood of the estimated boundary into

four and obtain the best grouping of the four resulting quadrants. There will
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be 16 partitions to consider. Since under the auto-normal model assumption
neighboring blocks are spatially interacting among each other (i.e., partially
correlated along their common boundaries) the likelihood of each partition is

conditioned on the segmentation of the surrounding blocks determined at the

nth stage. This use of stochastic dependence is crucial to achieving good

=g

segmentation. This is especially true when the blocks are of small sizes,

AN
J‘I-“v

since a small block may contain only a portion of a cycle of texture data, and

consequently, texture-type classification cannot be based on the data content
of the small window alone. Rather, use must be made of the continuity of the
texture data and its first or higher derivatives at the boundary between the
small window and the surrounding image region of the same texture type. Our
maximum likelihood segmentation algorithms automatically include information
roughly equivalent to this. All object blocks constituting the boundary of
the object as well as all background blocks neighboring the boundary blocks

are processed simultaneously.

Step 2. '"Object connectivity"

We check for the single-object-region connectivity constraint. If there

is more than one object-region, we merge them into one. The merging is done

by computing the likelihoods of all possible configurations that will result

in a single connected object-region. We have adopted the notion that no pair

of ragions be merged unless they have at least one common first-neighbor

block. By first neighbor blocks we mean background blocks that are adjacent

to the boundary of the object. We repeat step 1 and step 2 at each stage of

A raanes

decreasing block size until each block consists of one pixel.

Y
.

'-
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. .
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The following example will illustrate the algorithm steps more clearly.

20

Suppose at the end of the 2nd stage we obtained the segmentation shown in

A

.
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Figure 3a. Note that the object is not connected, as it consists of two
disjoint regions R1, R2. Following step 2 there will be one of two possible

results., Either block B is reallocated to the object class, figure 3b, or Rl or

A AP

R2 are reallocated to the background class, figure 3c,d, whichever is more likely. .
This results in onewépnnected object region R. We expand and shrink region R

by partitioning the boundary and first-neighbor blocks as in step 1.

3.2.1 Computational Considerations for Stationary Gaussian MRF Textures

The hierarchical texture segmentation algorithm involves recognizing the
texture region association of large blocks of image data in the early stages
and small blocks of image data in the last stages of image segmentation. For
the former, it is necessary to compute the likelihoods of large blocks of the
image. For the latter, it is necessary to compute the likelihoods of small

blocks of data conditioned on their surrounds. These are normally

computationally prohibitive tasks. In this section we will show how to
practically compute the likelihoods of large blocks and the conditional
likelihoods of small blocks of data conditioned on their surrounds.

The free-boundary condition [15] is assumed. The meaning of this

is that if pixel (i,j) is in Lhe region for which the joini likelibhood of all

picture function values is to be computed and if pixel (&,m) is not in the

region but is in the conditioning neighbor set given in (5), the picture

function yg n at (%,m) is not to be used in (5). (Note, (2,m) is in the :f~ 5
IORCR A S,

ses s . . . . . . SN
conditioning neighbor set if (2,m) € Dp.) Not including Y,m is equivalent r;:;a:;\w
P. -‘. “b_-.-’.'l

A

to setting it to 0 in (5). The use of this free boundary condition does not

give consistent probabilities for all subsets within the region. We comment

PN

.:_".:\. T
on this briefly in Section 7.0. For an M x N rectangular lattice, the joint E:w:e\s:c
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density function is given in (8). For simplicity, we assume that ¥ (Y=Y-U(k))
represents the picture function minus its mean. Y is a vector with components

;ij=yij-u(k) that are arranged in raster scan order.

p(Y) = (2102)~(MN) /2| B|% exp{-Yt B Y/202} (8)

As M,N +» =, IB], the determinant of B, is asymptotically equal to the
determinant resulting from the use of a torus structure [21]. (This equality is in

the sense that the difference of the two determinants divided by either one of them
goes to 0.) This occurs because as M,N + ®, the contribution to p(Y) of
the yij near the window border becomes unimportant; hence the choice of

boundary condition becomes unimportant. For the torus structure, IBI takes

the simple form [21]

M-1 N-1 2 2n
|B|= n nl1-2 Z B!. cos[— 1+ =— j]] (8a)
. . m M N
i=0 j=0 -zil,miz
Because of the raster scan, the MN x MN positive definite symmetric matrix B

can be decomposed as

By By By 0 ... 0‘T
B} By By B
Bg B% By 32
B = . (8b)

. B3

B,

t t

0 0 . . . 33 Bz Bl
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By, By and B3 are (M X M) matrices. The matrix B] represents the spatial
interaction of a row (column) with itself, while By is the spatial interaction
matrix between two adjacent rows (colummns), and B3 is the spatial interaction
matrix between two rows (columns) separated by one intervening row (column).

Then for a 2nd order model the quadratic in (8) is expanded as

T N ST §
YtBY = ¥y, - 28 Yi4Y - 28 Yia¥q 44
1=1 =1 ij 11 1=1 =1 i371+1,4 12 1=1 §=1 1371,3+1
)
M-1 N-1 Mil 1§ _
- 28 Yy - 28 YiaYi41 3o
21 1=1 j=1 1371+1,3+1 22 1=1 §=2 1§7i+1,j-1

We proceed now to show how to recursively compute the conditional and
unconditional likelihood functions associated with the 16 partitions of a
boundary or first neighbor block.
Result 1

Suppose an N X N data block Y is divided into 4 quadrants. Let Yj be the
data vector in quadrant j (j = 1,2,3,4) where these quadrants are NW
(Northwest), NE, SW and SE, respectively. Then the N2xN2 B matrix associated

with the data biock Y can be partitioned into

r;l B12 B13 31:]

B = Biz By By3 By
t t
313 323 B3 B3y
t t t

Blq Ba B B4

l. . 34 .J
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where Bj(j = 1,2,3,4) is the interaction matrix associated with Y; and is
given in (8b) for M = N = N/2. B;j; is the interaction matrix between

qQuadrants i and j. Note that the Bj are the same for all quadrants, and that

Bjs = B34 and B13 = B4. The joint likelihood of the N X N data block Y can

then be expressed as

2 4 —
p(1) = 1) N /2|81 2 expi-(1/20H)[ T BT, +2 | TB,.V.]} (10
j=1 J 3] i,j 113
1<i<j<4

Proof follows from the preceding decomposition of B.

Let Iy(j ) be the within-block interaction term for data block Yj.
Iy(j) = §§Bj§j' Let Ig(i, j ) be the between-block interaction term for

blocks Yj and Yj. Ip(i,j) = QEBijij = §§B§j§i' Hence

4
fa p(Y) = (1/2)2n|B| - (v2/2)an 2702 - 1/202[ ) I,(1) +2 ) I,(1,9)]
i=1 1,3
1<i<j<4
The next result gives the form of the likelihood of a block X conditioned on
the surrounding block(s) Y.

Result 2

The conditicnal likelihocd of a data block X given surrounding data

blocks Y and the free boundary condition outside blocks X and Y is

B, [% exp{-(1/20%) (X B,% + 2% B,.¥ + ¥ BE 8218 %]} (11)

N /zl
X X XY XY X XY

p(X|V) = (2n?)",

where Nx is the number of pixels in block X.

Proof: See Appendix A
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) can fe  compy fed exactly. Tn our experiments we have usedf

2np(X|Y) = (9)n|B,|-(N,/2)2n(2m02) - (1/202) [T (X)+215(X,1)]

ith 300d resylts.
From Result 2, it follows that the conditional likelihoods involved in the
decision mechanism are explicitly expressed as a summation of appropriate

within-block and between-block interactions. These terms can be recursively

computed from one resolution to the next. For example, assume that at stage n
the window has M2 blocks. Let Iﬁ(i,j;n) be the within-block interaction for
the (i,j) block at resolution n under texture class c. Let I¢g(i,j,f,m;n) be
the between-block interaction between block (i,j) and block (£,m) at
resolution n under texture class c. (Note that increasing n means smaller
blocks, with the largest n specifying a block size of one pixel). Then the

within-block interactions at resolution (n - 1) are computed from I;(., .3 n) and

Iﬁ(.,.,.,.;n) using a very simple ring-structure shown in figure 4. Here the

Iy(.,.3n) for each block at resolution n is represented by a node, whereas the
Ig(.,+y.,.3n) between a pair of blocks is represented by either a dashed or

s0lid branch. We assume that the sets Iy(.,.;n) and Ig(.,.,.,.;n) for

e the blocks at resolution n have been computed and stored. We compute the sets
&?35 TyCeyeysn-1) and Ig(eyey.y.,30=-1)by summing up the branches of the

E:Ej appropriate golid rings, and the branches of the appropriate dashed rings

ﬁ&: given at resolution n (see fig. 4). Note that the between-block interaction
Eﬁs between 2 non-neighboring blocks is zero. Here the neighborhoood set is that
PS:S which is defined by the order of the process. For a Sth-order process the
E!} only nonzero interaction blocks that a block (i,j) of size (2 x 2) or higher
;{E has is the between block interaction set {Ig(i,j,i+k,j+t) , -1 <k, 2 <1, and
i!.

L U I I L) e e e N T .-

TA

N e TR L T A et AT e et e et et ettt
RS o R, St AT A T e e L ’

Ly &*\.’?x}hk'. o \}'-\". B PRITORCACROL SRR T v

“ ‘-‘ . -
L e T N e e
ORI R T A TV MR EIE S UL TR T O P IS T S WO T L




- 18 -

(k,2) # (0,0)}. With special-purpose hardware one can compute all the
Ia(.,.;n-l) and Ig(.,.,.,.;n-l) simultaneously using (ICy(.,.;n),
I;(.,.,.,.;n-l)). Because of this recursion, the hierarchical algorithm is

computationally attractive.

3.2.2 Amount of Computation Required for Hierarchical Segmentation Using

Stationary Gaussian MRF Textures

We can estimate the amount of required computation for a 64 x 64 window
and 2nd-order model as follows. At the 2 x 2 block level, 14 multiplications
and 9 additions are required for computing the within-block interaction term
for each block, and there are (32)2 such blocks. Hence a total of (32)2 x 14
multiplications and (32)2 x 9 additions are required. For the between-block
interaction of a block with any one of its neighbors, 7 multiplications and 3
additions are needed for the block. The total number of multiplications for
the between-block interactions is 7[(2x29x30+2x29x29)+4x30+4x2x29+29+4x3] =
7x3786 multiplications and 3[(2x29x30+2x29x29)+4x30+4x2x29+4x3] = 3x3786
additions. Hence, at the (2 x 2) block resolution, (32)2x14+7x3786 = 40,838
and 3x3786 = 20,574 additions are used. For resolution (n-2), each block is
(4 x 4). Using the ring structure, 9 additions and one multiplication are
needed for the within-block interactioa for each block, hence a total of (16)2
multiplications and (16)2 x 9 additions. For the between-block interaction
between two (4 x 4) blocks, we need 1 multiplication and 6 additions, hence a
total of [(2x13x14+2x13x13)+(14x4+2x13x4)+4x3)] = 882 multiplications and 6x882
additions, etc....

Total number of multiplications for all the Iw(.,.;.) is 14,677.

Total number of additions for all the I, (.,.;.)is 9556.

Total number of multiplications for all the L (eyepeye3s) is 27,580.

Total number of additions for all the Ig(.,.,.,.3.) is 27,042,
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Without this ring structure, the total number of multiplications for Iw(.,.;.) is
107,902 multiplications and for IB(.,.,.,.;.) is 44,020 -- hence, a total of
151,922 multiplications compared to 42,257 multiplications. Furthermore, if the
"within" and the "between" block structures that we developed here are not used,
but rather p(Y,S) is computed from scratch for each possible partition in the
hierarchical algorithm, then the number of multiplication equivalent operations
for segmentation is at least fifteen to twenty times the 42,257 required for our

algorithm.

3.2.3 Amount of Required Computation with a Parallel Architecture

The bulk of the computation in 3.2.2 could be carried in parallel with a
simple special purpose architecture. Here the overall structure is such that
each block at a given resolution (say (n~1)st) is assigned nine processors. The
first one, called the within-processor, computes the Iy(i,j;n-1) term for the
(i,3) block at the (n-1)st resolution. It has as inputs the elements of the
appropriate solid ring at resolution n. An example is shown in Fig 4. The
remaining eight processors are called the between-processors. Since each block
of size (2x2) or higher has eight neighbors as shown in Fig 5 for a MRF of 2nd

order through fifth order, each between processor has the task of computing an

Ig(i,jy.,.3n-1) term for the interaction between block {i,j) and one of its 8
neighbors. Each between-processor has as inputs the elements that constitute the
appropriate dashed ring at resolurion n. Again an example iz shown 1n Fig. 4.

At the highest resolution (i.e. at 2x2 block level) the total number of

multiplications, and additions is 14 and 9, respectively, for the within-processor,.-
and a maximum of 4 for the between processor for a 2nd order MRF (for a 5th order
that number will be 12). For lower resolutions only 1 multiplication and 9

additions are needed for Iy(.,.j;.). A maximum of 1 multiplication and 4 s
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additions are required for Ig(.,.,.,.3.). The total computation for
{1y(.,.5.)} is 14 + log (N-1) multiplications and 9 logN additions; and a
maximum of 4+log(N-1) multiplications and 4logN additions for IB(.,.,.,.;,). An

upper bound for the required computation is then 14+log(N-1) multiplications

and 9logN additions. Note that ololo
except at the 2x2 block level, the
o{X|o
processors consist mainly of adders
o] o} o
and are hence structurally simple!
Figure 5
3.3.0 Pseudo-Likelihood ' F ’
Let Y;;j denote the vector Y less cxlB Fa Blo |8
the component yije Consider Blo kR o kB Ja
———
YijlYij (i.e., yjj conditioned on its afB fo {8 Jo {8
C— __ ]
surround), and suppose the window is BJ(} 8 {a I8 {a
:} just one texture type. For
- simplicity, assume the texture model Figure 6

s
2

.I
-

LY

is a lst order Gaussian MRF. If the yij are limited to one code, i,e., the

pixels marked @ or those marked B in Fig. 6, the conditioned variables yijl¥ij
will be statistically independent. Hence,
n p(y,,lY,)) (12)
13074
(1,9 4

€ one code

is the joint conditional likelihood of picture function values for pixels in one

code. Equivalently, (12) is the joint likelihood of the statistically
independent residuals in the prediction of the yij in a code given the
surrounding picture function values. By the pseudo-likelihood of the picture
function in a region, we mean the product of the conditional likelihoods of the
picture function at all points in the region, e.g., (12a). Note that the pseudo-

likelihood is not a true likelihood; rather it is the product of joint
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conditional likelihoods, each joint conditional likelihood being for one code in

the region.

I p(yislYis) (12a)
(i,7) 13! ij
€ region
Let the window be NXN. Denote by
p(yijl¥i;,®) (13)

the conditional p.d.f. of yij given its surround when the p.d.f. parameters are
given by the vector ¢. Then it is easy to show that for the field yij having
parameter vector ¢t with Qt ¥ o,

P{gim[ @
Noo (i,7)

p(yijlY13’°c)/P(y1j|Yij 2)] > 1} =1 (14)

That is, the ratio of the conditional likelihoods of the picture function values
in a code becomes greater than 1 for almost all windows as N + . Hence, this

conditional likelihood raiio is an effective texture-type classifier.Furthermore,
it is trivial to show (Appendix B) (also [21]) that (14) holds if all pixels in a
window are used, and better performance is to be expected then.

We suggest using

this pseudo-likelihood function as a performance functional for segmenting MRF's

when the pseudo-likelihood estimated parameters for the Gaussian MRF are those

for a nonstatiomary precess.

3.3.1 On the Use of the Pseudo-Likelihood Function and Maximum Pseudo-Likehood

Parameter Estimates

Though we successfully perform adaptive maximum-likelihood textured-image

segmentation, two problems are encountered. The first is the computation of

determinants such as those in (5a) for irregularly shaped regions. Approximations

are necessary here. 1In our hierarchical algorithm we use (8a) for computing

IB|. The approximation is satisfactory here because the algorithm considers only -
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rectangular regions, square regions, or a combination of both as shown in Fig. 7.

For the latter case, we wuse the

approximation IBI s |B IIB |. For T
r ] B -
. . r ] . g
an arbitrary shaped region the { Bs Figure 7 ;:’ :
S -
approximation in (8a) may not be 1 Pl

appropriate. The second more serious problem is that computation-intensive
maximum likelihood parameter estimation is necessary if the MRF models used are

constrained to be those for stationary processes. Using the asymptotic

expression for the likelihood (5a), good parameter estimates can be obtained for

a stationary Gaussian MRF model even when the data is somewhat nonstationary.

However, because of the large amount of required computation, online adaptive
segmentation may not be possible., On 