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, .',..Abstract

" The modelling and segmentation of images by MRF's (Markov Random

Fields) is treated. These are two-dimensional noncausal Markovian

Stochastic Processes. Two conceptually new algorithms are presented for

segmenting textured images into regions in each of which the data is

modelled as one of C MRF's. The algorithms are designed to operate in real

time when implemented on new parallel computer architectures that can be

built with present technology. A doubly stochastic representation is used-

in image modelling. Here, a Gaussian MRF is used to model textures in

visible light and infrared images, and an auto-binary MRF to model a priori

information about local image geometry. Image segmentation is-realized as

maximum likelihood estimation. In addition to providing a mathematically
correct means for introducing geometric structure, the auto-binary (or

ternary, etc.) MRF can be used in a generative mode to zeneratemage

geometries and artificial images, and such simulations constitute a very

powerful tool for studying the effects of these models and the appropriate

choice of model parameters. The first segmentation algorithm is

hierarchical and uses a pyramid-like structure in new ways that exploit the

mutual dependencies among disjoint pieces of a textured region. The second -

segmentation algorithm is a relaxation-type algorithm that arises naturally

within the context of these noncausal MRF's. It is a simple, maximum

likelihood estimator. The algorithms can be used separately or together. "" ".

The algorithms have the desirable properties: i) the required computation

appears to be close to the minimum required for segmenting images modelled

by MRF's; (ii) the segmentation can operate in adaptive modes, estimating a

priori unknown fixed or spatially varying MRF parameters; (iii) the

segmentations are unusually accurate--- usually to within one or two pixels

. in the experiments run. A contribution of the paper is that a start is

made in discussing and exploring that inherent structure of MRF's that must

be exploited in order to construct physically meaningful MRF models for

representing real textured images, and in order to devise segmentation

algorithms that are computationally efficient.

,-.-*..- .-
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1.0 History of the Textured Image Segmentation Problem

The use of Markovian Random Fields to model image textures, textured

region geometry, and textured region boundary, and then the application of

maximum-likelihood or Bayesian estimation methods for segmenting such images

has a growing history. Cooper, et. al. [1], have used white Gaussian fields

to represent texture, and unilateral (causal) Markov processes to represent

region boundaries. Image segmentation was realized as the maximization of the

conditional likelihood of a boundary given the data image. In [2], Cooper,

et al., used the same representation and developed an approach that

partitions an image into small square windows, does boundary estimation

simultaneously in all windows through the use of dynamic programming, then

seams the windows together using again dynamic programming. Again, using the

same representation, Schenker, et. al. [3], demonstrated the hierarchical

"ripple filter", a local relaxation-type algorithm to do maximum likelihood

image segmentation. Elliott and Scharf [4] were the first to develop a

dynamic programming algorithm for boundary estimation, and then Elliott,

'N et.al. [5] developed a dynamic programming algorithm for segmenting multi-

level texture. Here a white Gaussian field with different means (for the

different textured regions) was used to model texture, and a MRF was used to .

model region geometry. This doubly-stochastic modelling for texture and

region geometry was also adopted by Therrien [6]. He used a white or a causal

colored texture field for describing the texture of the different regions in• 1- : '-. ..*':

the image, and a binary field based on a 2D Markov chain introduced by Kaufman

* and Woods [7] to model prior information about texture region connectivity. -"

The image segmentation algorithm he used was an iterative one where the

texture region association of a pixel (i,j) was based on the relative numbers
r.-.

of pixels assigned to the 2 texture types in a small square about (i,j) and on

its texture conditional likelihood. Later, maximum a posteriori estimation %

A, 
%
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(MAP) of an original image given the degraded observations through stochastic

relaxation was also adopted by the Gemans [8]. They viewed the image as a

pair of processes -- the intensity process and the line process. These were

modelled by MRF's (with a relatively small neighborhood) whose Gibbs potential

was assumed known. Image restoration was achieved through an annealing

schedule that forces samples from the posterior distribution towards the

minimal energy configuration (i.e. the maximum of the posterior distribution). "

Finally, we mention three lines of research, not because they deal with the

segmentation of MRF's, but rather because they use algorithms close in spirit

to those that we discuss. Chen and Pavlidis [9] presented a hierarchical

approach to textured image segmentation involving image data modelled by

noncausal 2-D Gaussian processes. No use was made of MRF's or their

properties. They expressed the segmentation problem as a sequence of tests of

hypotheses on a quadtree data base and within the framework of a split-and-

merge algorithm. Regions of arbitrary initial segmentation were tested for -.

uniformity. If they were not uniform they were subdivided into smaller

regions, or set aside if the appropriate statistics were below a given

threshold. Subject to cluster analysis, similar uniform regions were merged

as constituting a texture-type region. Updated estimates for the parameters

of each random field were obtained as the uniform regions became larger.

These were in turn used to classify some of the rem .ining unclassified small

regions. Rosenfeld and colleagues have developed 're.axotion' Olg",riLhmb for

parallel processing. Though they do not do maximum likelihood estimation nor

*O do they use the image data in iterations following the initial segmentation,

nevertheless, they have shown that their approach involving "pseudo-likelihoods" c -.---

used in many important applications, e.g., see L10].Faugeras and Berthod [111 deve\%-,-;

a relaxation-like algorithm but based on the extremization of a performance functio-I---

Their application was object classification based on multi-spectral data. Hinton, -6

et.al. [25], are developing elements of an approach to scene understanding based on.. -.

networks, an energy performance functional , and a probabilistic relaxation

optimization algorithm. Though the referenced papers do not deal with textured ima;-"

- , •.
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segmentation, there is a significant overlap in the kinds of equations that they and we

ultimately deal with.

The first published papers on maximum likelihood segmentation of textured

images when noncausal Gaussian MRF's are used for data modelling and another

MRF is used for texture-type region modelling are those of Cohen, et al. [12,

13, 14]. Hierarchical and parallel iterative (relaxation-type) segmentation

algorithms were introduced, and so was the use of these in combination. -

1.1 Brief Overview of our Use of Windows, Our Approach to Textured Image -

Segmentation, and the History of Markov Random Fields for Texture Modelling.

We model textured images on two levels, one unobserved level to describe

the geometry of the basic regions within each of which the image has one type

of texture, and an observable level to describe the textured image data in

each region. Under this scenario for image generation, nature first generates

the texture-type regions, and then fills in each region with an image having

the appropriate texture. Two-dimensional MRF s are used as texture and region

models. The MRF models are a class of parametric models that have been

studied extensively by Besag [15] Rnd Bartlett [16] as a generalization to

the Ising model. Gaussian MRF's have been extensively studied by Woods [17]

and Jain [18], among others. Woods has considered them for image filtering

(19]. They have been successfully used by Cross (20], and Kashyap and

[21], among others, to model a variery of stationary texture fields such as

Brodatz textures. Theory has been presented by besag [151, as well as by Kashvap and

Chelappa [21] for estimating parameters to adapt the models to stationary

field data. Kashyap's and Chelappa's work [21] also included texture

recognition for rectangular textured regions.

The segmentation problem consists of partitioning a textured image into

regions, in each of which there is one of C possible texture types (texture

* .. : .

.. ,,.%...._ .,.,. _._. _...,,,...-.......-..,,..... ............... ...... ,............ .-. ,.......
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classes). This means that a texture-type classification must be made for each

pixel. Since a connected single texture-type region will usually contain many

pixels, we consider a simplification that considerably reduces the required "" "

computation. The simplification is to partition the image into small square

windows and to process each window under the assumption that it contains one

or at most two texture types. Then each window is processed as a separate

subimage, and the results combined in an appropriate way (see Section 4.5).

Hence, most of this paper is concerned with segmenting a small square window

of image into two regions, each of which comprises one of two image texture ,

types. Extension to three or more texture types in a window is immediate.

A precise brief statement of our segmentation approach is the following.

Nature partitions an NxN pixel window into two (or more) regionn denoted as .

texture-type regions 0 and 1. Within region k, model k is used to generate

the data. The image data in region 0 is statistically independent of that in

region I. Let sij be a binary variable taking values 0 and 1, denoting

texture-type 0 and 1, respectively, and let S denote the N2 dimensional vecto'r

having components sij. Then the vector S specifies the partition of the NxN

pixel window into the texture-type 0 and texture-type 1 regions. Let yij

denote the picture function (i.e., image data) at pixel (ij), and Y be the N2

component vector having components Yij. Then Y is the vector of all picture

function values in the NxN pixel window. If S is viewed as a constant but

,Iknokwn vector, t.h likilihoQd of the data in the window is

p(YS) P(Yo 10) P(Y 1 Il) (i) 

Here, p(Y,S) is the liklihood of Y given the partition S. Yk denotes the

picture function vector for texture-type region k, and p(Yklk) denotes the

likelihood of Yk given the probability model for image data in texture-type

'%7', > -. .
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region k. Hence, the simplest texture segmentation problem is to determine

the partition S for which Eq.l is a maximum.

The second problem is that in which S is itself a random vector. That

is, nature partitions the window into texture-type regions in accordance with

some probabilistic process. Then the segmentation problem is the

determination of S for which the posterior likelihood

p(SlY) (2)

is a maximum. Note, equivalent to maximizing (2) is finding the S that

maximizes (3) or (4)

In p(Y,S) (3)

In p(S) + in p(YIS) (4)

1.2 Contribution of this Paper

The present paper is an in-depth treatment and extension of material

briefly introduced in 113,14). It makes the following contributions. Certain

- properties of MRF's need to be exploited in order to do physically meaningful

image data modelling that is also mathematically consistent. Some of these

questions are raised and one solution is presented. Parallel iterative and

hierarchical algorithms are presented for maximum likelihood segmentation of

textured images, Our iterative algorithm will generally require much less

computation than will an annealing algorithm, and will also work with

no!Ls.tationa-y models and data, whereas the annealing algurithm usually will

not. Again, there are properties of the MRF's that can be exploited, this

0- time to substantially reduce the amount of required computation. A divide-

and-conquer approach is taken in our hierarchical segmentation algorithm that

reduces the number of multiplication-equivalent operations to 42,257 for a

*D 64x 6 4 pixel window. This is to be compared with ten to fifteen times that

number of multiplication-equivalent operations for a direct hierarchical

77-° "-'.~I 1_2-[:- I



773'

-7-

approach. The simplest iterative algorithm is mathematically correct, but

. lacks a certain physical meaningfulness. This problem is addressed and one

solution is briefly proposed. A number of experiments are run with real "-"

data. This turns out to be important, as the segmentation of real data is

much more difficult than is that of artificially generated data---- 
especially

since real image texture data is generally nonstationary. One approach to

parameter-adaptive segmentation is briefly discussed and illustrated. 
This

estimation of unknown model parameters during the segmentation process 
is

required in practice. Our algorithms appear to be robust, and effective even

when the models do not represent the data well.

2.0 Markov Random Fields (MRF)

We use the auto-normal MRF (i.e., Gaussian process) as the texture data

model, and the auto-binary process for modelling region geometry for an image 
-

window that contains at most two different texture types. Let r=(i,j) index

pixel location where i,j specify pixel row and column location and satisfy

-1 < i,j < N. Let xr denote a random field, with xr the field at pixel r, X -

a vector specifying the field over an entire N x N window and having

components xr, and Xr the field everywhere but at pixel r. By (xr} a MRF we

mean that

:.) ~ ~~~~P (CI xr) p (xrI XvVtDp)....' ":-:"..

Here, Dp denotes a neighbor set, and P(xrlXr) denotes the conditional

likelihood of xr given Xr.

The nature of Dp is illustrated in Fig. i. As indicated in Fig. i, a 1st

order MRF is one for which the neighbor set consists of the four pixels

constituting the north, south, east, and west neighbors of the center pixel. A
I..:

° ......................................... ..

. . . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . ... . . . . . .
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2nd order MRF is that for which the neighbor set is the first layer of eight

pixels surrounding the center pixel, i.e., all pixels marked 1 or 2. A 3rd

order neighbor set consists of all pixels marked 1, 2 or 3, etc. In general,

Dp {v =(t,m) such that I1r-v11 2  N P and v~r1

Where P is the order of the process, and N is an increasing function of P.
P

N takes the values 1,2,4,5,8,9 for P=1,2,..,6 respectively.
P

2.1 The Gaussian MRF Texture Model

The observed texture field (i.e., image data field) is denoted Yij or

just Yr, r = (i,j). The conditional likelihood for the kth texture class is

Gaussian, and is given by

P(Yr Y class k)=

(21ra2(k)> 2 exp{-(lI2U2(k))[y-i(k) - r8-v.(k)(yv-v(k))12 1 (5)
vcD "

For {Yr} stationary, Or-v must satisfy certain restrictions. However,

nonstationary fields are also of interest in this paper. For a stationary

field, the joint probability density function (pdf) for the image in texture

region k given that the field is 0 outside this region is shown by Besag [15] to be

p(Ylclass k) = [27ra (k]-14/2!B(k)Il/2exp{-[(Y-U(k))t B(k)[Y-1J(k)],'2 (k)) (5e)
* . - 1.

where U(k) = i(k)(l,l,..,l)t, and Y is an (M x 1) column vector whose elements

are the picture function Yr at the pixels in the M pixel region. B(k) is a

symmetric positive definite (MxM) matrix whose diagonal elements are

unity, and whose off-diagonal element is equal to -8 r-v, where 8 r-v indicates

the strength of the spatial interaction between the MRF at points r and v.

"r-v is zero if points r and v are not neighbors.

c. AIX
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2.2 The Binary MRF Spatial Region Model

We use the noncausal binary process to model region geometry. It has

been used by others to model image textures (Cross [20] ). For example, if one

texture-type region consists of small elongated blobs and another consists of

large regions, a binary MRF model can be designed to generate such patterns.

Or if two texture-type regions are large with boundaries of low curvature, a

binary model can be designed to generate these patterns. For the local 0,1

pattern shown in Fig. 2, if nature's goal was to generate regions with long

smooth boundaries she would generate an s value of 0 with higher probability

than an s value of 1 at location x. Let S denote the region-field modelled by

* **,' the noncausal auto-binary Markov field that describes the geometry of the

* regions in the image. For an N x N image, S has N2 components {sij}, each sr

taking the value 0 or 1 and describing the allocation of pixel r (i,j) to

either class I or class II. The conditional probability takes the form

P(SrISr) exp (sr Tr)/[l + exp(Tr)] (6)

where T is given by
r

Tr - a + brvsv (7)

v cD

For {sij} stationary, brv - b for all r (,J) and v N(,n).

3.0 The Segmentation Problem

" Overview

The window segmentation problem of concern in this paper is that a window may

contain two* texture-type regions, each from one of C classes, and the

window is to be partitioned into two regions, each consisting of one texture

* Three or more are possible, but the required computation is more extensive.

. .. . . .".'".. ...... . ". ... ,..". " " -* ." .. """.- .. " . " -', -'."'-"-" "' . .-" -' - ..- " - " " "" '""*..
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type. We use maximum likelihood estimation for this purpose. The two

difficulties that arise in the segmentation problem are: first, likelihoods

must be computed for texture regions of irregular shape; second, likelihoods

must be computed for many of the possible partitionings of the window. The

challenge of the first problem is that there is no obvious simple way of

computing the joint likelihood of a noncausal MRF over an irregular region.

The challenge of the second problem is to be able to compute the picture

function likelihoods for many different partitions of a window without having

to do a horrendous amount of computation.

This paper presents simple practical solutions to both problems. The

first algorithm we present is a hierarchical pyramidal-type algorithm, whereas

the second one is an iterative relaxation-type algorithm. Both algorithms can

handle textured images modelled by either stationary or nonstationary MRF

texture models. "-

The reason for partitioning the image into windows is threefold: 1) it

permits parallel processing, since windows can be segmented simultaneously

using appropriate hardware architectures, and the results then seamed

together; 2) by having one or at most two texture classes in a window, the

processing is relatively simple; 3) if the windows are small, the texture :1

model within a wiadow can be treated as being spatially stationary, i.e.,

having parameters that are constant for the entire window, (and satisfying certain

restrictions). This is especially convenient if, as is usually the case, the texture

model parameters are a priori partially unknown or are spatially slowly varying and . I

must be estimated during the segmentation process.

i-:: :>~'."'%:

= .; .-.>-.>--

." . . . . . . % " * ,* " - ,' V. a
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3.1 The Hierarchical Algorithm.

In the hierarchical algorithm, we often refer to the two texture-type

regions as object and background regions. The reason for this is partly

historical and stems from the fact that a goal is often to isolate a specific

object without caring about the interpretation of the surrounding region.

Examples are an image of a kidney in a CATSCAN, a vehicle in an infrared

image, a tree in a visible light image, etc. Such an object often appears in

an image as a convex textured blob. The intersection of a window with such a

region will be connected. Hence, for the hierarchical algorithm we have

imposed the constraint that the estimate of one of the textured regions in a

window, the object region, be connected. Our algorithm can easily be modified ._-.

to require that the estimated object and background regions both be connected

regions, or to not require connectivity in either type of region estimate. - -

The segmentation sought is that which maximizes the likelihood of the

data. In each window the segmentation algorithm is hierarchical and uses a "

quadtree-like data structure. The window is divided into four quadrants and

the best segmentation, i.e, grouping of these four blocks, is obtained. Then V"'

each of the four blocks is itself partitioned into four, and the process is

repeated until the block size is such that each block consists of one pixel. -'

At each 3tage of the hierarchy, the object connectivity constraint is met. -.

Each stage of the algorithm involves working with blocks of a certain

size andc cortists at two steps.

Step 1. "Region growing".

At the end of the nth stage, the window has been segmented into two sets,

one of which is referred to as the object region and is constrained to be

connected. For the (n+l)st stage, we shrink and expand the object by

U partitioning each block in the neighborhood of the estimated boundary into

four and obtain the best grouping of the four resulting quadrants. There will

.............................. ~. . .. . .. .. ... . . . . .. . , - . . . ,.
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be 16 partitions to consider. Since under the auto-normal model assumption

neighboring blocks are spatially interacting among each other (i.e., partially

correlated along their comnon boundaries) the likelihood of each partition is

conditioned on the segmentation of the surrounding blocks determined at the -'

nth stage. This use of stochastic dependence is crucial to achieving good.,

segmentation. This is especially true when the blocks are of small sizes,

since a small block may contain only a portion of a cycle of texture data, and

consequently, texture-type classification cannot be based on the data content B
of the small window alone. Rather, use must be made of the continuity of the

texture data and its first or higher derivatives at the boundary between the

small window and the surrounding image region of the same texture type. Our

maximum likelihood segmentation algorithms automatically include information

roughly equivalent to this. All object blocks constituting the boundary of

the object as well as all background blocks neighboring the boundary blocks

are processed simultaneously. *' \

Step 2. "Object connectivity"

We check for the single-object-region connectivity constraint. If there

is more than one object-region, we merge them into one. The merging is done

by computing the likelihoods of all possible configurations that will result

in a single connected object-region. We have adopted the notion that no pair

of regions be merged unless they have at least one common first-neighbor

block. By first neighbor blocks we mean background blocks that are adjacent

to the boundary of the object. We repeat step 1 and step 2 at each stage of

decreasing block size until each block consists of one pixel.

The following example will illustrate the algorithm steps more clearly. -.,-

Suppose at the end of the 2nd stage we obtained the segmentation shown in

-
* - .4.

-. . . . . . ~ J~ a *. .... C *-Xaa-W . -r -

**)*.*- %-,*$--
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Figure 3a. Note that the object is not connected, as it consists of two

disjoint regions RI, R2. Following step 2 there will be one of two possible

results. Either block B is reallocated to the object class, figure 3b, or RI or

R2 are reallocated to the background class, figure 3c,d, whichever is more likely. >-.'"'

This results in oneOnnected object region R. We expand and shrink region R -

by partitioning the boundary and first-neighbor blocks as in step 1.

3.2.1 Computational Considerations for Stationary Gaussian MRF Textures

The hierarchical texture segmentation algorithm involves recognizing the

texture region association of large blocks of image data in the early stages . - .. :4,

and small blocks of image data in the last stages of image segmentation. For .

the former, it is necessary to compute the likelihoods of large blocks of the S *
image. For the latter, it is necessary to compute the likelihoods of small

blocks of data conditioned on their surrounds. These are normally "

computationally prohibitive tasks. In this section we will show how to

practically compute the likelihoods of large blocks and the conditional '

likelihoods of small blocks of data conditioned on their surrounds.

The free-boundary condition [15] is assumed. The meaning of this

is that if pixel (i,j) is in Lhe region for which the joinL likelihood of all

picture function values is to be computed and if pixel (L,m) is not in the ..;...

region but is in the conditioning neighbor set given in (5), the picture "

function ytm at (1,m) is not to be used in (5). (Note, (1,m) is in the

conditioning neighbor set if (Z,m) c D p.) Not including yl,m is equivalent

to setting it to 0 in (5). The use of this free boundary condition does not

give consistent probabilities for all subsets within the region. We comment

on this briefly in Section 7.0. For an M x N rectangular lattice, the joint --

2*.*.*-***.*.**-,*.. *..... -*4. -:ZZ~ /- .:Y ~ .x~ .. *. . - .
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density function is given in (8). For simplicity, we assume that Y (YY-U(k))

represents the picture function minus its mean. Y is a vector with components

Yij=yij-u(k) that are arranged in raster scan order.

p(Y) (2ro 2 ) - ( MN ) /2jBjI exp{-Yt B Y/2o2 ) (8)

..,-..

As M,N - m, fBI, the determinant of B, is asymptotically equal to the

determinant resulting from the use of a torus structure [21]. (This equality is in [A

the sense that the difference of the two determinants divided by either one of them

goes to 0.) This occurs because as M,N " m, the contribution to p(Y) of

the Yij near the window border becomes unimportant; hence the choice of

boundary condition becomes unimportant. For the torus structure, I BI takes

the simple form [21]

M-1 N-2 2 -j-. -."
IBI =  11 1 1- 2 0 Cos mil (8a)i=O j=O -2< t,m <2 

""m

Because of the raster scan, the MN x MN positive definite symmetric matrix B . 5

can be decomposed as

B~ tB 2 B3 0.. 0
Bl B2 B3  0 0]

Bt Bt Bl B
31 2

B . (8b) - .

B3  '-'." 3B .-.-..-. . ,
B2 .

0 0 . . . Bt Bt Bl
3.2 1 .. .' V.,

". .... ,',%"

.'., .. . . . . . ~ ~.... . ,.. .• . ..-.. . ... , ..... ,:... V ,. ; ,
;) . .' ." . . ": ." ., . ,. .". ." -.v , , . ,. . -.: - .- , - - .. . . ; . , - . -... :: . - . - . .- - - . , : ' : ' . ' -.: : ,, : -; *- .. . ., . ,.* . _. ... t ', k _ :: .
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B1 , B2 and B3 are CM X M) matrices. The matrix B1 represents the spatial

interaction of a row (column) with itself, while B2 is the spatial interaction

matrix between two adjacent rows (columns), and B3 is the spatial interaction

matrix between two rows (columns) separated by one intervening row (column). ""

Then for a 2nd order model the quadratic in (8) is expanded as

M N - M-1 N M MN-1 a
- 2 0 --1- 2812 Y X YiYl,j+1

i-- Jt1 ll -i YijYI+ , i.il j

(9)
H-i N-i M-1 N

. 2821 YjjYi+Ij+I - 222 Yi Yi+l,j-" i l J i -1 J2 -

We proceed now to show how to recursively compute the conditional and

unconditional likelihood functions associated with the 16 partitions of a

boundary or first neighbor block.

Result 1

'. . Suppose an N X N data block Y is divided into 4 quadrants. Let Y be the 4'4 *

data vector in quadrant j j = 1,2,3,4) where these quadrants are NW M

,. (Northwest), NE, SW and SE, respectively. Then the N2xN2  B matrix associated

with the data block Y can be partitioned into

4. .,'

* B1 B BIII%'*

. B = B2 B2 B2 3  B2 4

Bt Bt B3  B3413 23
t t t
B1  2~ B34  B4

o* -.-. -

-".. . . . . . . . . . . . * *•.....,::....4 
44

• -" ,
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where Bj(j = 1,2,3,4) is the interaction matrix associated with Yj and is

given in (8b) for M = N N/2. Bi is the interaction matrix between

quadrants i and j. Note that the Bj are the same for all quadrants, and that

B 1 2 = B34 and B1 3 = B24 . The joint likelihood of the N X N data block Y can

then be expressed as

_ 2 4

p(Y) " 2 2)N/2 IB l/2exp{-(i/202)[ I Bj 2 .Y.]} (10)

331-J i,j -j.-

Proof follows from the preceding decomposition of B.

Let IW( j ) be the within-block interaction term for data block Yj.

IW( j ) = YB. Let IB(i.,j ) be the between-block interaction term for

blocks Yi and Yj. IB( i ,) = YBijgj = YtBtgi. Hencej

2 22
In p(Y) (1/2)LnIBI (N /2)In 2ro2 - 112a2[ 1W(i) + 2 IB(1,)]

i-1i i,j :..::
l<i<j<4

The next result gives the form of the likelihood of a block X conditioned on

the surrounding block(s) Y. .

Result 2

The conditicnal likelihood of a data block X given surrounding data

blocks Y and the free boundary condition outside blocks X and Y is

2-N /2  2 t - _t t - ] •p(XIY) = (2 t) " X IB exp{-(1/2o2)[x BxX + 2X ByY + Y B _ BX  } (11)

where NX is the number of pixels in block X.

Proof: See Appendix A

:w" : : -::
.................................................
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Remark

As Nx - Yt B Y/XtB 0. nce la ge NX and--or

process Y
cB be neglecte nd we use the a"pproximati

Inp(XjY) --( )tnIBx1-(Nx/2)Xn(2a 2 )- (1/2a 2 )[I W(X)+21BCX,Y)]

With 300J~ IesL(ts.

From Result 2, it follows that the conditional likelihoods involved in the -

decision mechanism are explicitly expressed as a summation of appropriate

within-block and between-block interactions. These terms can be recursively

computed from one resolution to the next. For example, assume that at stage n

the window has M2 blocks. Let IC(i,j;n) be the within-block interaction for

the (i,j) block at resolution n under texture class c. Let IcB(i,jL,m;n) be

the between-block interaction between block (ij) and block (L,m) at

resolution n under texture class c. (Note that increasing n means smaller

blocks, with the largest n specifying a block size of one pixel). Then the

within-block interactions at resolution (n - 1) are computed from I. . n) and

B(•, ,.n) using a very simple ring-structure shown in figure 4. Here the

.Iw(.,.;n) for each block at resolution n is represented by a node, whereas the

%?:? IB( .,.,, ;n) between a pair of blocks is represented by either a dashed or

solid branch. We assume that the sets Iw(.,.;n) and IB(.,.,.,.;n) for

,-.-.the blocks at resolution n have been computed and stored. We compute the sets

.w(.,.,;n-I) and 11(.,.,.,.,;n-l)by summing up the branches of the

appropriate solid rings, and the branches of the appropriate dashed rings

given at resolution n (see fig. 4). Note that the between-block interaction

between 2 non-neighboring blocks is zero. Here the neighborhoood set is that

which is defined by the order of the process. For a 5th-order process the

only nonzero interaction blocks that a block (ij) of size (2 x 2) or higher

has is the between block interaction set {IB(i,j,i+k,j+t) -1 < k, Z < I, and
* 0ii!i:
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(k,L) # (0,0)). With special-purpose hardware one can compute all the

lc(•,•;n-l) and I(.,.,.,.;n-l) simultaneously using (Icw(.,.;n),

IB( .... ;n-1)). Because of this recursion, the hierarchical algorithm is

computationally attractive.

3.2.2 Amount of Computation Required for Hierarchical Segmentation Using

Stationary Gaussian MRF Textures

We can estimate the amount of required computation for a 64 x 64 window

and 2nd-order model as follows. At the 2 x 2 block level, 14 multiplications

and 9 additions are required for computing the within-block interaction term

for each block, and there are (32)2 such blocks. Hence a total of (32)2 x 14

multiplications and (32)2 x 9 additions are required. For the between-block

interaction of a block with any one of its neighbors, 7 multiplications and 3

additions are needed for the block. The total number of multiplications for

the between-block interactions is 7[(2x29x30+2x29x29)+4x30+4x2x29+29+4x3] -

7x3786 multiplications and 3[(2x29x30+2x29x29)+4x30+4x2x29+4x3] = 3x3786

additions. Hence, at the (2 x 2) block resolution, (32) 2x14+7x3786 40,838

and 3x3786 = 20,574 additions are used. For resolution (n-2), each block is

(4 x 4). Using the ring structure, 9 additions and one multiplication are

needed for the within-block interaction for each block, hence a total of (16)2

multiplications and (16)2 x 9 additions. For the between-block interaction

between two (4 x 4) blocks, we need 1 multiplication and 6 additions, hence a

total of [(2x13x14+2x13x13)+(14x4+2x13x4)+4x3)] f 882 multiplications and 6x882

- additions, etc....

"-''..... Total number of multiplications for all the IW(.,.;.) is 14,677.
W

Total number of additions for all the IW(.,.;.)is 9556.

*_. Total number of multiplications for all the IB (.,.,.,.;.) is 27,580.

Total number of additions for all the IB( ,.,.,.;.) is 27,042.

~~~.:/ ... :....... .... _....... ._.... ..... ft .... . . . .. ... . ,. .- -. ,, ' , . . .
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Without this ring structure, the total number of multiplications for IW(.,. ) is
1792mlilctosadfrIB( __-_....

.i07,902 multiplications and forIB .,.,.,.;.) is 44,020 -- hence, a total of

151,922 multiplications compared to 42,257 multiplications. Furthermore, if the

"within" and the "between" block structures that we developed here are not used,

but rather p(Y,S) is computed from scratch for each possible partition in the 0

hierarchical algorithm, then the number of multiplication equivalent operations

for segmentation is at least fifteen to twenty times the 42,257 required for our

algorithm.

3.2.3 Amount of Required Computation with a Parallel Architecture

The bulk of the computation in 3.2.2 could be carried in parallel with a

simple special purpose architecture. Here the overall structure is such that

each block at a given resolution (say (n-l)st) is assigned nine processors. The

first one, called the within-processor, computes the Iw(i,j;n-l) term for the

(i,j) block at the (n-l)st resolution. It has as inputs the elements of the

appropriate solid ring at resolution n. An example is shown in Fig 4. The .-

remaining eight processors are called the between-processors. Since each block .

of size ( ) or higher has eight neighbors as shown in Fig 5 for a MRF of 2nd-

order through fifth order, each between processor has the task of computing an

IB(ijj,.,.;n-l) term for the interaction between block (ij) and one of its 8
, .0

neighbors. Each between-processor has as inputs the elements that constitute the --

appropriate dnshed ring at restilution n. Again on example ia showr i.n Fig. 4.

At the highest resolution (i.e. at 2x2 block level) the total number of "

multiplications, and additions is 14 and 9, respectively, for the within-processor,.-

and a maximum of 4 for the between processor for a 2nd order MRF (for a 5th order

that number will be 12). For lower resolutions only I multiplication and 9

l additions are needed for IW(.,.;.). A maximum of 1 multiplication and 4

Z ,
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additions are required for IB( ,.,.,.; .). The total computation for

* {IW(.,.;.)} is 14 + log (N-i) multiplications and 9 logN additions; and a

maximum of 4+log(N-l) multiplications and 4logN additions for IB( .,...). An

upper bound for the required computation is then 14+log(N-l) multiplications
-_ --.- -

and 9logN additions. Note that o a o

except at the 2x2 block level, the "-o"-'- ~~0 0 '.",''

processors consist mainly of adders --.

and are hence structurally simple! - -

,' Figure 5

3.3.0 Pseudo-Likelihood

Let Yij denote the vector Y less a ' 3

the component Yij" Consider t a• -

yijlYij (i.e., yij conditioned on its a O a t a -

surround), and suppose the window is O a .. a

just one texture type. For .- -X

simplicity, assume the texture model Figure 6

is a Ist order Gaussian MRF. If the yij are limited to one code, ie., the

pixels marked a or those marked B in Fig. 6, the conditioned variables YijlYij

will be statistically independent. Hence,

II P(YljY) (12) -

c one code

is the joint conditional likelihood of picture function values for pixels in one

code. Equivalently, (12) is the joint likelihood of the statistically

independent residuals in the prediction of the Yij in a code given the

surrounding picture function values. By the pseudo-likelihood of the picture j
function in a region, we mean the product of the conditional likelihoods of the

picture function at all points in the region, e.g., (12a). Note that the pseudo-

likelihood is not a true likelihood; rather it is the product of joint

N' .
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conditional likelihoods, each joint conditional likelihood being for one code in

the region.

()P(YijIYij) (12a)(i~j '""-""

c region

Let the window be NXN. Denote by

p (Y i 3,Y ij ,o ) (13)-; -

the conditional p.d.f. of Yij given its surround when the p.d.f. parameters are o.

given by the vector 0. Then it is easy to show that for the field Yj having .1

parameter vector 0 with 0 4'

P{zim[ n P(yijiYijOt)/p(YijIYij )] > 1} = 1 (14)
M-m (i,j)

That is, the ratio of the conditional likelihoods of the picture function values

in a code becomes greater than 1 for almost all windows as N * . Hence, this -

conditional likelihood raLio is an effective texture-type classifier.Furthermore,.

it is trivial to show (Appendix B) (also [21]) that (14) holds if all pixels in a .

window are used, and better performance is to be expected then. We suggest using 777

this pseudo-likelihood function as a performance functional for segmenting MRF's

when the pseudo-likelihood estimated parameters for the Gaussian MRF are those ..

for a noastationary process.

3.3.1 On the Use of the Pseudo-Likelihood Function and Maximum Pseudo-Likehood

Parameter Estimates

Though we successfully perform adaptive maximum-likelihood textured-image

segmentation, two problems are encountered. The first is the computation of

determinants such as those in (5a) for irregularly shaped regions. Approximations 
7

are necessary here. In our hierarchical algorithm we use (8a) for computing

"BI. The approximation is satisfactory here because the algorithm considers only

I. o".

• . "- .-. . . .'-'.,,-.'-" ,?-/ ? ,2".'."., i"?-' ..-2- .'.i". " ..
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rectangular regions, square regions, or a combination of both as shown in Fig. 7. ...-

For the latter case, we use the

. approximation BI lB JB IBs. For
r s B

* an arbitrary shaped region the I Figure 7

approximation in (8a) may not be Li -.

appropriate. The second more serious problem is that computation-intensive --

maximum likelihood parameter estimation is necessary if the MRF models used are

* constrained to be those for stationary processes. Using the asymptotic

expression for the likelihood (5a), good parameter estimates can be obtained for -

a stationary Gaussian MRF model even when the data is somewhat nonstationary.

However, because of the large amount of required computation, online adaptive '. -.

segmentation may not be possible. On the other hand, the maximum pseudo-

likelihood parameter estimates for the stationary MRF are asymptotically

consistent, efficient, and computationally simple [21] --- even for highly

irregularly shaped regions. (However there is no guarantee that the estimates

based on finite data sets will be those for a stationary MRF, nor even those fr."

a Gaussian MRF, i.e., the estimated parameters may result in a determinant in .'.

(5a) that is not positive semi-definite.) The pseudo-likelihood function can

also be used to estimate parameters for nonstationary Gaussian MRF's, or for

MRF's that are not Gaussian. Fortunately, we have found generally that these ,

pseudo-likelihood estimates of the parameters in (5) can be used in a pseudo- .

lik.lihood performance fuactional (Sec. 3.3.0, 6.0) that is effective for both

texture recognition and hierarchical textured image segmentation. Hence, when

the pseudo-likelihood estimates for the Sij result in positive-semidefinite B's
• .. 19

for (5a), our hierarchical maximum-likelihood segmentation can be used, and when

this estimated B is not positive-semidefinite, maximum pseudo-likelihood

segmentation can be used. One other option for hierarchical segmentation is the - - '*

_ . .44
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use of the likelihood performance functional --- but neglecting the determinant

of B in (5a) when the estimated B is not positive-semidefinite. Experiments

using these three performance functionals are described in Section 6.0.

3.3.2 Amount of Computation Required for Hierarchical Segmentation When Using

Nonstationary MRF Textures

Similar to the likelihood function of a Gaussian MRF, the quadratic of the

pseudo-likelihood function can be expressed as sums of data covariances. The

neighborhood structure is larger, however. This can be seen by considering a

lst order Gaussian MRF. The quadratic in the conditional function p(yijlYij),

given by

[Yij - 3ll(_i-l,j + Yi+l,j) - a12(Yi,j-l + Yij+i)] 2 / 2o 2 ,

. . -

involves covariances (interaction terms) encountered in a 3rd order MRF process

(e.g. Yi-l,j Yi+l,j, Yi-l,j Yi,j+l, etc.) The pseudo-likelihood function

includes covariances in the 621, 822, 831, 832 directions which weren't present

in the likelihood function. The quadratic function in the pseudo-likelihood for

a lst order MRF can be shown to be

coo =2 ~i~ + ci.I
Co i YijYi+lj + c12 YijYi,j+l + c21 YijYi+l,jiliJ J ~i -"-"j

+ c2 2  1 YijYi+l,j-i + c3! YijYi+2,j + c3 2  YijYi,j+2
i,j i,j j

+ correction.

Hence, a similar ring-structure is appropriate to evaluate the {Iw(.,.;.)} and

sets. The amount of computation is higher than that for the

likelihood function, as a larger number of covariance functions are involved, and

there is a correction term which is nonexistent when the likelihood function is

used.

"-.---

S
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3.3.4 Generality of the ring-structure

The ring structure is fundamental to MRF's in genral, not just the Gaussian.

For the class of auto-models [15], the most general form p(Y) can take in order -. •

-' to give a valid probability sturcture that represents a MRF is given by

p(Y) = h exp Q(Y) (15) L

. where h, the partition function, is a normalizing constant in order that p(Y)

have unit area. Q(Y) is known as a Gibbs potential and is shown [15] to have the

form

QMY =yr Gr (Yd) + G G(Y y rY) y y (16)

r rv -.--rv

This has the same form as the quadratic for the Gaussian MRF and therefore

the compuation involved in the hierarchical segmentation can be carried on.

through a similar ring-structure. This fact makes the hierarchical segmentation

computationally attractive and highly parallelizable for any random field for

which the Gibbs potential has been determined.

4.1. Segmentation Using Auto-Binary Fields for Region Geometry and a Parallel
Iterative Relaxation-Type Algorithm

",, ,-. ,,,,

In Section 3, the segmentation of an image into regions each of which

contains a single Markovian texture field was considered. The hierarchical

algorithm was based solely on models for the obse-vablp texture fields, and did

not incorporate any information about image geometry (i.e., shapes of the

regions, their sizes, etc.). Because of the lack of information about image-

geometry, boundaries between segmented regions in noisy images are often jagged

and must be smoothed. A noncausal auto-binary field could be used towards that

end. The auto-binary field is used to model region geometry or boundary shape.

712 2_A
*'.'., ..
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For the case of an object that is assumed to have a boundary that is smooth and

slowly curving, an appropriate field will be such that the conditional

probability of a point sij given its neighbors will be low for the case where a

sharp increase in the boundary slope would result. Alternatively, for a region r..

with high curvatures, we can choose the parameters for the auto-binary field so .

as to reflect locally this property. A parallel, iterative relaxation type

algorithm arises naturally here, and is implemented to maximize the conditional

likelihood p(SJY), or equivalently, the joint likelihood p(YIS)p(S). A .

sequential algorithm guaranteed to find a local maximum is as follows. Suppose

at the nth iteration, the estimated binary field is Sn with value s! at pixel

(ij). Note that sij takes the values (0,1) corresponding to texture data field

classes c = 1,2 respectively. The different steps are:

1. Choose any pixel (i,j).

2. Keep s '. as is or change it, whichever maximizes p(S,Y). This provides

a new estimate Sn+l. Hence

p(YISij, sij = k) P(Sij, sij = k), k = 0, l,must be computed.

To carry out these computations we use

P(Sij,sij ) = p(sijSij) P(Sij)

Since P(Sij) is not a function of sij , only the conditional likelihoods

P(Sij = kjSij) , k = 0, 1, must be computed. These are given in (6) and

are simple to compute. .. -:

3. For the other computation, use

p(YISij,sij = k) =

p(yijlYij, Sij,sij = k) p(YijISij,sij k), k = 0,1.

Since the second factor is not a function of sij , all that need be computed

is the first factor for k = 0,1.
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4. Hence, choose sn l = 1 or sn l = 0 depending on whether the ratio (17) is
ij ii.

greater than or less than 1.

n+1 n n+1 n (17)
P(YijiYij,sij - 1, Sij) P(Sij j 1Si

n+l nlj)i
p(Yij Yij,sij = 0, Si) PSi 0

If some of the YL,m in the neighborhood system of Yij are missing in

Eq. (17), they are set equal to 0.

To carry out the next iteration, choose a new pixel (i',j') and repeat.

The parallel version of the above algorithm is based on dividing the entire

data window into different subsets called codes. For example, for a Ist order

auto-binary model the image data could be partitioned into two sets or codes as

shown in Figure 6. For any specific pixel a, the conditional mean of the image

function at that pixel a given the image at all other pixels will only depend on

the 4 surrounding B pixels and not on any a pixels. Hence the algorithm

described above could be applied to all the a pixels simultaneously. The next

iteration would then involve working with all the 8 pixels. This algorithm will 451

converge with fewer passes through the image than will the first algorithm

described.

Note that the joint likelihood function is a multimodal function of S. The

iterative algc-rithm is guaranreed to find a local maximum of the joint likelihood

function in a finite number of iterations. If the binary field is used within a

window as a smoother to the boundary estimated by the hierarchical algorithm,

then only pixels adjacent to the hypothesized boundary at that time need be

tested, rather than pixels interior to the hypothesized regions. In this sense,

* the algorithm would be related to the Ripple Filter introduced by Cooper, et al.

..:,-' (1,3].,..--.. ,

° . .*- . .
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4.2 Proof that the Algorithm Converges

At the end of each iteration the joint likelihood p(S,Y) has increased or

remained unchanged. For an N x N window, the joint likelihood, as a function of

S, can take at most 2N
2 values. Because of this and the fact that the algorithm

is sure that Sn+l differs from Sn only if the change strictly increases the value

of the joint likelihoood function, it follows that the algorithm is guaranteed to

find a local maximum of the joint likelihood function in a finite number of -

iterations.

4.3 Example of the Form of the Classification Computation

To illustrate explicitly the computations made during each iteration of the .

algorithm, suppose p(yijlyzm in region k) is

2

N((k) + 0 rvYv- (k)], o2(k))
vcD

p

with r (i,j), v = (Z,m).

Then the pixel texture-type classification function in its simplest form is to

choose srn+l = 1 or 0 at the n+l st iteration in accordance with: _

[ ~ ~if -Xna(l) -[1/2a2(1)] ay-C) (1)[yv V(1)]}2 ".'.,
-- r-v [  v " .,.,

+ no(0) + [I/20j2(0)]{yr - U(0) - r 8( 0 )[yv - 1(0)}2.
veD

V2

pp
"-p .- . -

n+l n+l
> 0, then s r 1; else, s r 0.

(Thi cn be hexr r .'-l-u-.a.-t
.-.,. ,: . .'

• ~(This can be expressed more compactly by using matrix notation.) ---

o-V

." . . . .- . .•. . . - . . .-. -.-. .-,"- -".". "- v ' -"- "- ,. .. . -. .. . ,. - . . ,. .- .. ': 'S'.". .'. .. .,.
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4.4 A Modified Relaxation-Type Algorithm for Close-to-Optimum Segmentation

The algorithm in Section 4.1 generally converges to a local maximum of

p(Y,S). Segmentation errors take the form of classification errors in the

vicinity of the true boundary and/or the occurence of one or more

incorrectly classified sizeable regions. Let sij denote the value of sij -

produced by the segmentation algorithm. sij takes values of 1 and 0 in

accordance with (18). It is usually the case that for many of the pixels (ij)

for which sij is incorrect, the likelin.od ratio in (17)is close to 1. L:.

This suggests changing the values of all sij for which the likelihood ratio is

close to 1, and using the resulting segmentation as an initial segmentation for

rerunning the algorithm. The algorithm will converge to some new segmentation S. I *
In almost all experiments that we have run, S is closer to the true segmentation

than is S. The procedure can be repeated any number of times. It is possible

for one of these perturbations to result in convergence to a less accurate

segmentation. Consequently, it is desirable to use some measure of segmentation >'"*"

accuracy to determine when to accept a limit partition. The modified algorithm

is as follows. A

..* - "ft f

1. After convergence, run the following check at each pixel (ij).

! - <_ ij _ + C (19)

(where Rij is the ratio in (17)). .:.

2. If Rij lies between the indicated bounds, change sij, otherwise keep it

as it is.
*..' .>.

3. After making all such changes throughout the image, use the resulting -

segmentation to run the parallel iterative algorithm until it converges

again.

%' id'.•... ................. ..................
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4. At each convergence S, compute the pseudo likelihood

11P(Yij iYij ,Sij)p(sij ISij)-

i,j

(See Section 3.3.0 for the significance of this performance functional.) -'.

Repeat the algorithm until there is little change in a few successive pseudo - 9

likelihoods. Keep that segmentation for which the pseudo-likelihood is a .

maximum. That segmentation is our estimate of the true segmentation. The

reason the perturbation algorithm is so effective is that the segmentation L .

resulting from the first convergent running of the algorithm is usually

fairly good.

Two changes in the preceding algorithm could be considered. The first is

to let c decrease each time a new cycle is begun. The other is to not change

the classification of all sij satisfying (19), but rather to change it with >.

some probability, perhaps 0.5. This makes the algorithm more analogous to k.-.--

that used in other applications, and to the annealing methods explored

recently, and earlier.

4.5 The Relaxation Algorithm Used for Seaming

If holding computation to an absolute minimum is not necessary, a simple

convenient seaming procedure is to seam two (or four) adjacent windows by running 4

the iterative parallel algorithm in the union of these winduws. Since the .

algorithm begins with a close- to-maximum-likelihood segmentation, it goes through "-

"* only a few iterations in order to converge. If the two (or four) windows contain . '

the same two texture types, the hidden region modelling field used will be

binary. If three texture types are involved, the region modelling field should

*. be ternary. In a typical image such as Fig. 15c, if windows of modest size are

used, the great majority contain at most two texture types; a small number of

windows contain three texture types.

. . -. - - - - .. - - '. . . . . . . . .
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4.6 Segmentation of Images of Manufactured Objects .' ->"

Smooth dull surfaces such as those of many manufactured objects result in

picture functions that are spatially slowly varying and are well approximated

over much of their extents by low degree polynomial functions. Such images are

easily segmented using the adaptive hierarchical or iterative relaxation-type ,

algorithms. One solution [23 ] is an extension of the solution to the problem of the

segmentation of an image consisting of two or more regions of constant but

unknown image intensity plus white Gaussian noise. See, e.g., Figs. 14a,b and the

associated discussion in Section 6.0. In extending that solution, instead of the

mean value of the picture function in region k being some a priori unknown

constant u(k), it might be a linear function taking value y0 (k) + y1 (k)i + y2(k)j

at pixel (i,j), where Y0 (k), Y1 (k), Y 2(k) are a priori unknown constants. Or

the mean value function might be a quadric function taking the value

Yo(k) + Y1(k)i + Y 2(k)j + Y 3(k)ij + X 4(k)i
2 + y5(k)j

2 at pixel (i,j). Hence,

when using the adaptive hierarchical segmenter, the y(k) 's could be first

estimated using small image blocks and unsupervised learning. These estimates

are used to start the hierarchical segmenter, which would adapt further during

the segmentation procedure. Maximum likelihood or Bayesian parameter estimation eA-

is used during this stage. Adaptation can also be done when using the iterative . .-

segmenter.

5.0 Adaptation

An algorithm for segmenting textured images will be of no value unless 
it

has the capability to estimate image model parameters during 
the segmentation

process. This assertion is based on the observation that model parameters for a

texture type will generally vary greatly from one image to another. The source

of this parameter variability is variation in lighting, scale, and simply

.... ... ... ... ... ... ... ... ... .... ... ... ... ... .. " .. .- '.
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variability within a broad class such as tree foliage, grass, earth, roads, etc.

(Within a single image, there generally is only slow spatial variation in the MRF

parameters for a single texture type.) Consequently, either no a priori

information is assumed concerning texture-type model parameters, or a priori

distributions are assumed for these parameters, and these distributions are used -
" 

-

in Bayesian-like parameter estimation during the segmentation process. In many

instances the approximation that model parameters are constant over a texture-

type region is satisfactory. In other instances, slow spatial variation must be _ ,

assumed for model parameters. We briefly comment on how the first situation can

be handled using our segmenters. An appropriate approach for the latter i

situation is slightly more complicated and involves modelling the spatial

parameter variation for a texture-type model by an MRF. Practical incorporation -.

of adaptation into segmentation algorithms is a substantial topic by itself and

is treated in a subsequent paper. At the moment, we simply want to establish

feasibility of solution.

Both the iterative-parallel and the hierarchical segmentation algorithms can .

function in an adaptive mode, but require some prior texture-type model parameter .

information. Three possible means of obtaining this information are as follows.

1i. Use small windows, perhaps 16x16 or 32x32 in a single image to estimate

model parameters. It is assumed here that the great majority of small

windows of this size coatain only one texture-type region. Effective

parameter estimation is po..zible by raximizirg ,he pseudo- likelihood

function (see section 3.3.1). Parameter estimates from small windows in a

texture-type region will cluster. Distributions for the various texture-

type model parameters can then be obtained.

2. Obtain prior distributions for texture-type model parameters from previously -,

segmented images.

. . .
-°*
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3. Produce a first crude segmentation based on gray level or image features and

image understanding. Use model parameters or parameter distributions

estimated from this initial segmentation.

The hierarchical segmenter is ideally suited to adaptation since large

region blocks are classified initially, and good parameter adaptation can be had "

by using these large blocks for parameter estimation as though each large block

contained data from one texture-type. In a typical large block, most of the

pixels will be from a region of the same texture-type. This is the approach

exhibited in Figs. 9b, llb. Parameter adaptation realized by incrementally

updating parameter estimates following each iteration of the iterative

segmentation algorithm is discussed in a forthcoming paper.

6.0 Experiments -

The segmentation algorithms have been run on visible light, infrared, and -

artificially generated data. Generally, all of our algorithms work extremely

well on stationary artificially generated MRF's, almost as well in stationary

natural data, and less well but good on nonstationary natural data. The

following examples illustrate these cases. Fig. 8a consists of two constant gray

level squares in a background of some other constant gray level, plus white

Gaussian noise. The signal-to-noise ratio (the difference in average values in

th" squares and backgrcund divided by the noise standard deviation) is i. .

Segmentation by the iterative segmenter is carried out using an isotropic binary

field having parameter values a = -16.0, b = 1.5. Fig. 8b is the initial

segmentation accomplished by assigning a pixel to square or background depending -

on whether it is greater than or less than (robj + rback)/2, respectively. Here

robj and rback are the average picture function values in the object and the

: S1
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background, respectively. Following 21 passes through the image, the

segmentation converged to is that in Fig. 8C. Fig. 9 is the infrared image of a

tank and background to which has been added white Gaussian noise and illustrates

the importance of parameter adaptation in the segmentation process. The same

type of modelling used in Fig. 8 is appropriate here. The signal-to-noise ratio

is 1.3, and a 2nd order binary MRF is used. Fig. 9a is the segmentation produced

by the hierarchical segmenter using a ML (maximum likelihood) performance

functional, and incorrect values for robj, rback, a. Starting with the same j-

model parameters as in Fig. 9abut using the adaptive segmenter, results in the

segmentation shown in Fig. 9b. Fig. 9c is the result of running this segmenter

with parameters estimated asing unsupervised learning on the window (see [2])

prior to segmentation.

In Fig. 10 we are seeing experiments with the iterative-parallel segmenter -.

operating on artificially generated images. Two Gaussian textured regions are

present, both with the same means and conditional variances, but otherwise

different first order MRF's. There is a sinusoidal boundary separating the two

regions. The upper region has strong correlation in the vertical direction,

whereas the lower region has strong correlation in the horizontal direction.

Model interaction parameters for the two stationary Gaussian fields are

.,. -- .3, and -.1 for the vertical and horizontal directions in the upper image,

and the permutation of these for the 1^wer image. A second order binary S field

was used with model parameters a = -4.6, b .. = 2 in the horizontal and v.rticai

directions and 0.3 in the diagonal directions. Note that since the mean values

in the two texture-type regions are the same, it is impossible to do any

meaningful segmentation based on thresholding the picture function. Spatial
.o- 9?.. JZF-

variation in the picture function must be exploited. Fig. 10a is the original

image.

I ' "bq-FS*
............................ .. -...... ..
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Fig. 10b is the initial segmentation based on use of the conditional likelihood

of the picture function at a point given its surround under each of the two

texture hypotheses. Fig. 10c is the segmentation resulting from the first

convergence of the algorithm. The segmentation is then perturbed using the

modified iterative-parallel segmenter (sec 4.1), and the algorithm run again.

After four such cycles, the segmentation produced is that in Fig. 10d. Measured -..-

values of the pseudo -likelihood performance functional for the five segmentations

at the convergence were -1. 607e, -1.612e, -1.613e, -1.613e, -1.614e,
a

respectively, where e is a constant. Note that the changes are small because the

pseudo-likelihood function is for the segmentation of a whole window, and the

number of pixel classification changes from one convergence to the next is small

compared with the number of pixels in the window. But this performance

functional is useful for deciding on whether a new convergent segmentation is

better than an earlier one.

Again, Fig. 11 illustrates the all important adaptive segmentation. Fig.

Ila is the segmentation of the image data in Fig. 10, but now using the

hierarchical M.L. (maximum likelihood) segmenter with incorrect model parameters
U

for the Gaussian MRF texture model. Fig. llb is the result of starting off with

the same incorrect parameters, but then running the segmenter in the adaptive

mode. The resulting segmentation can now be smoothed tsing a few passes of the

iterative segmenter with its binary region model. Hierarchical segmentation will

also work well on such stationary data j the likelihoo- unction hihouz B

determinant (see Eq. 5a), or the pseudo-likelihood function is used as a

performance functional. These various performance functionals will give roughly

the same segmentations down to block sizes of 8 x 8 and sometimes 4 x 4 pixels,

but at the 2 x 2 pixel --solution use of the maximum likelihood performance

functional results in more accurate segmentation. Hence, use of the determinant

of B does make a difference! (see the discussion in Sec. 7.)

..... ....... .
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Nonstationary data provides the real challenge to segmentation algorithms

based on MRF data models. Figs. 12a-12h illustrate a number of considerations in

segmenting grass (upper) and earth (lower) regions in a portion of an outdoor

visible light scene, using the hierarchical segmenter. Because maximum

likelihood estimation of model parameters is computationally costly, we have . .:'

experimented with the computationally less costly maximum pseudo-likelihood model

parameter estimates. If the estimated parameter values result in B matrices

(Eq. 5a) that are nonpositive semidefinite, which is the case in Figs. 12d, 12e, -

the Gaussian likelihood function cannot be used as a performance functional in

the hierarchical segmenter. Consequently, we consider three performance

functionals, namely, the L (likelihood), the L.W. (likelihood without the B

determinant in Eq. 5a), and the P.L. (pseudo likelihood). In Figs. 12a-12e,

parameter values are estimated prior to segmentation. Figs. 12a, 12b, 12c are

hierarchical segmentations using the L.,L.W., and P.L. performance functionals,

respectively, and maximum likelihood parameter estimates. Second order Gaussian . . ..

HRF models were used. In these figures, the image is divided into four windows,

and segmenters are run independently in each. The maximum likelihood parameter

estimates were constrained to be those for a stationary Gaussian model and were

obtained by using asymptotic methods. Parameter estimates obtained are shown in

the table. Figs. 12d, 12c are hierarchical segmentations using P.L. and L.W.
performance fUnctionals respectively, and pseudo-likelihood parameter estimates L .

Estimator texture- .

type upper left lower left
region a' 2 mean ertical horizontal lower right upper right

Maximum grass 32.0 158.0 .0339 .462 0 -.0036
Likelihood earth 136.3 150.9 .0142 .483 -.00164 -.00123

Maximum grass 27.7 157. .263 .433 -.078 -.116
Pseudo earth 59.1 151.2 .451 .537 -.233 -.249
Likelihood _ _"__ _ _ _ _ _ _ _

Table

6' , SII'~"
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Even though the image data is somewhat nonstationary, the combination of maximum

likelihood parameter estimates and L. segmentation performance functional is

best. In Figs. 12c, 12d and other experiments run with nonstationary image data,

the P.L. segmentation performance functional results in segmentations that

reasonably approximate the true boundary, but false boundaries are sometimes

found as well. For such data, hierarchical L.W. segmentation usually reasonably

approximates the true boundary when used with maximum likelihood parameter

estimates, but sometimes completely misses the boundary, as in Fig. 12e, when

used with maximum pseudo likelihood parameter estimates. The problem in this

* latter case may be caused by abnormally large positive values for the exponent in

the likelihood-without-determinant for some erroneous segmentation because the B

L.
matrix is non positive semidefinite and therefore has at least one negative

eigenvalue. Figs. 12f, 12g are the results of beginning with the segmentations

in Figs. 12a and 12d, respectively, and seaming with the iterative segmenter.

Notice that the effect of the seaming is to smooth out the estimates of the true

boundaries and to remove some of the erroneously estimated regions. Finally, .-.

?* Fig. 12h is the classification of 8 x 8 pixel blocks in the image independently,

using a P.L. classifier, as discussed in Sec. 3.3.0, with maximum pseudo .' T-* -

* likelihood parameter estimates. Note that almost all blocks are classified " '- "'

correctly, suggesting that with slight modification the hierarchical P.L.

segmenter might be iess prone to gAnerating extraneous boundaries when the data

is difficult to distinguish (16 x 16 pixel blocks are all classified

correctly by the algorithm for this image.) Figure 13 is the hierarchical L. .-. "

U. segmentation of two nonstationary artificially generated textures with sinusoidal

boundary, based on use of maximum likelihood parameter estimates. The

hierarchical P.L. segmentation based on maximum pseudo-likelihood parameter

. estimates was almost as good (there were no spurious segmentations), and this was

true of the other segiuenters as well.

. ..i,-',"-.-. *... -.
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:':': Fig. 14a is an artificially generated image of a Lambertian can illuminated ..

by a point source at infinity. Fig. 14b is the result of hierarchical

segmentation. Of importance here is that the window to be segmented consists of

portions of the images of the can top and can side at a location such that the

image intensities of the two surfaces are the same in a small region in the

center of the image. In other words, there is not a strong intensity

' discontinuity between regions! The image model used for the two surfaces is a

constant plus noise for the can top, and a quadric polynomial plus noise for the

can side. The segmentation algorithm is a trivial extension of our algorithms

for segmenting models for which the image intensity over a region is constant

plus white Gaussian noise.

*- In Fig. 15a we see an interesting image in which there is some deterministic

geometric structure, largely in the house, but where the rest of the image is

largely stochastic texture structure. We chose six texture-types to work with, _

the left tree foliage with roughly isotropic spatial variation (denoted trI), the

foliage of the large tree on the right with greater spatial correlation in the

vertical than in the horizontal direction (denoted tr2 ), house roof shingles, skv,

road, and grass. A set of MRF model parameters was estimated for each of these *.

texture-types, from a small data window in each case. Then these models were

used to generate slightly larger windows of artificial images, and the generated

images were inserted in the picture close to the locations from which the data

'or erinating r.del prraineters w.% caken, Fig. 15b. The artificially generated

-r1 texture-type image is a square window in the uDDer left corner Uf the picture.

The other artificially generated square window images can be recognized in

different locations in the picture. What is surprising is that the models appear i-...

to capture the texture structure amazingly well. All of the models used are 2nd

order MRF's, except for the roof model which is 5th order. This higher order was

?5 " .. .

1.. % ,,,

11 -'.. .
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necessary to capture the horizontal shingle structure because the angle involved

is different from 0 degrees with respect to the horizontal axis for the picture.

Fig. 15c illustrates the effectiveness of the pseudo-likelihood function (12a) as

a recognizer of the texture-type seen within a window. Window data "

classifications were made independently of one another here. Notice that

incorrect classifications were made in the dark area in the foliage of the left

tree, and much of the sky region was incorrectly classified. The first set of "

errors is due to the fact that the model parameters for a texture-type vary

(usually slowly) within an image, and this variation should be incorporated into

the models used. The second set of errors is due to the occurrence of artifacts *

such as the images of telephone wires in the misclassified windows. Note that

the bushes and a third small tree-foliage region on the right have been

classified as trI type regions. This is because models were not introduced for

these texture-types, and the data seen looks very much like that in the trI type

region. Finally, note that two windows toward the right side of the grass region

have been classified as road region&. Though it is difficult to tell from this

image, these windows lie in a driveway region that looks very much like the road

image texture. More windows in this region are not classified as road because

these other windows contain grass image texture as well. ..

-. 4

-. .--.. . .- *. , ..- E- -. ---. .- .. . . . . . . . . . . . . . . . . - . . . . . . Z.. .. . . . . . . ,.. ,.
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7.0 Physically Meaningful Models, Mathematical Correctness, and

Computational Complexity

We comment on two important problems in this section.
n+j

1. Consider Eq. (17). The meaning of p(yijlYij,sij - 1, Sij ) is that Yij is

conditioned only on those Yv in the neighbor set D in (5) for which sn = 1. All

other Yv in D are omitted; equivalently, they are set to 0. We shall refer to th -*.

yv that are set to 0 as constituting missing data. The same situation arises

with the hierarchical algorithm where the conditional likelihood of a block of

data must be computed. This conditioning of Yij by setting missing picture

function values to 0 is not physically meaningful and also leads to probabilities

of segmented images that do not constitute a consistent set of probabilities.
* S

(Note, the missing data problem also occurs at the four sides of a window, but

since this window boundary is fixed and boundary effects die out away from the

boundary, significant harmful effects on segmentation do not occur here.) Small

improvement in segmentation accuracy can be made by correcting the problem. The

solution is to treat {Yij} as though the texture-type 1 model is used to generate

all the data in the window, and a subset of the data points is chosen, namely, '.

AB
those yv for which sv = I. Then, the true conditional likelihood

P(Yijlyv for which sv 1, class 1) is computed. This conditional likelihood,

which for reasons given is not (5), is Gaussian. The conditional variance of Yij

is at least as large as 02 (1) and lies between this and the marginal varianice of *

Yij for class I. It can be computed approximately for various combinations of Yv

present (see Appendix C, result 4). The true conditional mean of YJ can be

simply computed iteratively, as briefly described in Appendix C, result 5.

Hence, with a modest amount of extra computation, a more physically meaningful

probability measure, which is also consistent can be used for image modelling for

. the purpose of textured image segmentation. Of course, corresponding results

n+ I1 .-.-.-
apply when working with sij 0.

. . . .. . . . . . . . . . . . .. ... . .
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The problem of having a consistent probability measure can be easily treated

directly by designing a single MRF that incorporates both a region and a texture

model [5,8]. Upon applying that formulation to our problem, the Gibbs potential

would be

tt t~i
G = (Y 1 -(l)]t B(l) [Y -U(1)] + [Y0 -U(O)] B(O) [Y 0 -U(0)] . S BS. (20)

Here, B(l) and B (0) are the inverse covariance matrices for the region 1 and the

region 0 texture data vectors, respectively, and B is a matrix having values a

along the main diagonal and br.v elsewhere. Note that the resulting p(Y,S) is -

h exp G (21)

where h does not depend on the window partition for which p(Y,S) is

computed. This likelihood is not the same as in (2a) using (5a) to specify

p({yv}: sv=kIclass k). The dependence of the likelihoods on the data YI, Yo is

exactly the same in the two cases. However, whereas the likelihood which is

the combination of 2a and 5a has a multiplicative factor IB(k)'1 that is a

function of the partition of the window, h in (21) is not a function of the

partition. The multiplicative factor is substantial when the associated texture-

type region comprises many pixels. It is a-l(k) when Yk consists of one pixel.

It is possible to include additional quantities in (20) that results in a. -

modified (21) being more like the combination of (2a) and (5a), but it is not

clear that (21) can be modified to be close. For example, G can be modified to

include Ia(Sv). This produces a somewhat strange MRF for modelling the image.

However, use of this G in an iterative algorithm would result in exactly the same
.. ,. .. .&

algorithm as in Eq. (18).

2. A second important problem is that the process defined by (5) may be

stationary Gaussian, nonstationary Gaussian or nonGaussian, depending on the.- ,'..
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Oij's. For example, as discussed earlier B in (5a) must be positive semidefinite

for the MRF in an NxN window to be Gaussian. This restricts the Bij's. As N-,

the Bij's become increasingly restricted, and in the limit satisfy the

restrictions for a homogeneous Gaussian MRF. If B in (5a) is not positive

semidefinite, the resulting exponential still defines a MRF if the exponential

has finite integral. A sufficient condition for finiteness of the integral is

that tyiji be uniformly bounded above. This will always be the case for picture :4i

functions generated by real sensors.

8.0 Conclusions

- MRF's appear to be very powerful for modelling textured images for the '

purpose of textured image segmentation and classification. New methods for

image segmentation were presented in this paper. These algorithms are not "

computationally costly, and can be realized using parallel computer

architectures, thus permitting real-time image segmentation. The algorithms are

computationally simple. However, there are subtle, probably important,

considerations to be aware of in using the approach presented. Further study of

these issues is worthwhile. Fortunately, the MRF's have an interesting

structure, and unlocking all of their secrets promises to be an interesting

experience. For the moment, the reader's attention is directed to the following -

important considerations.

1. Since th-e image tLexture mo'els use~d are Gatics' -n etoclaascic procesnes, do

they provide any advantages over the use of Fourier analysis or finite impulse

response filtering? The answer is a definite yes! The primary advantage is that

Fourier analysis or finite impulse response filtering is applied over a

rectangular window of image data. The window must be large enough to include at '

least a few spatial cycles of the picture function. Hence, the boundary

- . . . . . . - . . . . .- ..-"f ... . ...- ..
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estimation accuracy achievable with this method is poor. On the other hand,

segmentation of MRF models is very suitable to highly irregular boundaries. In

the experiments we have run, boundary location estimation error usually lies

between 0 and 3 pixels. Error analysis for the hierarchical algorithm is treated

in a subsequent paper [22]. A second advantage of the MRF approach is that

additional image model structure is easily incorporated. In this paper, we .

incorporated a texture region model. Boundary shape models can be incorporated.

(We have found the use of boundary shape models to be of great use in earlier

nwork [1,2]). A third advantage of the MRF's is that they are ideally suited to

handling images where the texture parameters are a priori partially unknown or

are spatially varying. These are the conditions usually encountered. In this
Iwo t

paper, we have briefly exhibited an approach to treating the former case. In the

latter case, the spatial variation can be appreciable. For example, in Fig.15

the texture in the dark portion of tree foliage type 1 is closer to the typical

texture in the region of tree foliage type 2. Therefore, estimating the region

occupied by a texture type should be based not on a fixed parameter model for a %

texture-type picture function, but rather on one where the texture model

parameters at a point in a texture-type region are close in value to the model

parameter values at nearby points in the region. In [23] a MRF is used to model

parameter variation, and maximum likelihood estimation of these spatially varying

parameters is shown to be an important ingredient of Bayesian textured image,.* .

segmentlLtio. Though the cts~ of apriori fixed but partially unknown texture

parameters is easy to handle using the Fourier analysis approach to image .'-.-.

segmentation, it is not apparent how that approach could handle the case of .

spatially varying texture parameters. The one advantage of Fourier Analysis with

respect to the MRF's is the ability to efficiently represent nonparametric

spectra. However, texture segmentation is probably practical only for simple

S .. . . . . . . . . . . . . . .. . . . . .. . . .. ., - , . . - .. -. - - -. ' -, - . .- -. . ... .- - ..
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spectra having one or two modes. The MRF's should be good models for these, and

indeed work well in practice.

2. It was shown that maximum likelihood segmentation of images of manufactured

parts is possible with the same algorithms. Here, the picture function of a

slowly curving 3-D surface is spatially slowly varying. Two approaches were

taken to this problem. The first was the modeling of the image of a surface as a

small piece of a MRF[13]. The MRF model parameters were treated as a priori.

-*. partially unknown. The second was to treat this image as a polynomial with a .-

priori partially unknown parameter values plus white noise. In both cases, the

partially unknown parameter values were estimated during image segmcntation.

More extensive treatment of adaptive segmentation using the polynomial model is I.

given in a forthcoming paper.

3. Both segmentation algorithms presented are highly parallel , and will easily

run in real time on the appropriate architectures (which can be built using . ..

present technology). The iterative relaxation algorithm has a very simple

" structure, and is well suited to use with general MRF models--- even those having

non-constant parameters. Whereas the iterative algorithm will generally make

only a small number of passes through an image, there are cases where it may make

many passes when changing the classification of a region from an initial

classification of one texture-type to a final classification of another texture-

t'pe. In these situations, the algorithm changes only a few pixels at the region

bodina-ry durirng eaeh pass thcough the image. A way to overcome this is to use

the iterative algorithm with 2x2 or 4x4 blocks or with blocks of decreasing size.

Such a modification would run much faster and would be a hybrid of our

hierarchical and relaxation algorithms. The hierarchical ripple filter (3] uses

this philosophy. " , .

*'-

,. ,,. f,
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The iterative algorithm is closely related to the annealing algorithms, but

runs faster though it may not always be quite as accurate in finding a globally

optimum image segmentation if the initial segmentation used in beginning the

iterations is highly in error. However, what is most important is that the

iterative algorithm will always work with nonstationary MRF models or with

conditional Gaussian models when the parameters are such that the picture ,.

function is not quite Gaussian (see Sec. (6.0)) ; the annealing algorithms

usually will not work under these conditions. But these conditions are the ones

that are often prevalent in real image data!

The hierarchical algorithm achieves huge computational savings through

certain divide and conquer type recursions (a logarithmic computational cost

through use of a new simple ring structure) and also through organizing the bulk

of the computation as computation on the data only. These data computations can

then be combined with model parameters, at small computational cost, to realize

texture segmentation. The complete computational cost benefit of the algorithm is

realized only for fields with spatially constant parameters. However, the

hierarchical algorithm can always be applied to nonconstant-parameter MRF's, and

will always be effective in achieving high segmentation accuracy.

4. Three performance functionals are discussed and shown to be useful for the

recognition of blocks of textured image or for hierarchical textured-image

segmentation. These are the joint likelihood function with and without the

de.eriinants of the inverse covariance matrices, and the joint pseudo-likelihood

function. The first functional usually produces the greatest accuracy, whereas

the accuracies of the latter two are comparable. Examples of behavior are given

in Sec. 6.0.

- ... t

">.-. ,:



-45- (.

- Acknowledgement: L

This work was partially supported by Army Research Office grant
#DAAG 29-81-K-0167, and National Science Foundation grants
#ECS-8119676 and ECS-8404774.The authors are especially appreciative of
the critical contributions of Judith Silverman. She did most of the
programming and experimentation for the work reported. We also thank
Magda Butnaru for her contribution to the programming and
experimentation. Prof. A. Hanson, University of Massachusetts, Amherst,
was kind enough to provide us with portions of the image data base
developed by his group; the visible light data, Figs 12,15, came from
that set.

Re ferences

1. D. B. Cooper, et al., "Stochastic Boundary Estimation and Object
Recognition", Computer Graphics and Image Processing, April 1980,
pp. 326-355.

- 2. D. B. Cooper and F. Sung, "Multiple-Window Parallel Adaptive
Boundary Finding in Computer Vision", IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. PAMI-5, No. 3, May 1983.

3. P. Schenker, et al., "Fast Adaptive Algorithms for Low Level
Scene Analysis: The Parallel Hierarchical Ripple Filter",
Conference Proceedings of the Fifth Inter. Symp. on Pattern
Recognition, Miami, Dec., 1980.

* 4. L.L. Scharf and H. Elliot, "Aspects of dynamic programming in

signal and image processing", IEEE Trans. Automatic Contr.,
vol AC-26, pp. 1018-1029, Oct. 1981. __

2 5. H. Elliot, et al., "Image Segmentation Using Simple Markov Field
Models", TR Ju8l-DELENG-I, Colorado State Univ., Electrical Eng.
Dept., June 1981.

6. C. W. Therrien, "Linear Filtering Models for Texture Classification

and Segmentation", Proc. of 5th Int. Conf. on Pattern Recognition,
Miami, Dec. 1980, pp. 1 13 2 -1 13 5 . -'.

7. H. Kaufman, et al., "Recursive Image Estimation: A Multiple Model
Approach",Proc. 18th Conf. on Decision and Control, Fort
Lauderdale, Florida, 12-14, Dec. 1979.

8. D. Geman and S. Geman, "Stochastic Relaxation, Gibbs Distribution
and Bayesian Restoration of Images", Brown University., Division
of Applied Math. T.R., September, 1983.

9. P. C. Chen and T. Pavlidis, "Image Segmentation as an Estimation
Problem", Computer Graphics and Image Processing, Vol. 12,
pp. 153-172, 1980.

10. A. Rosenfeld, R. A. Hummel, and S.W. Zucker, "Scene labeling by

relaxation operations", IEEE Trans. Syst., Man., Cybern.,
Vol. SMC-6, pp. 420-453, June 1976.

11. O.D. Faugeras and M. Berthod, "Improving consistency and reducing
ambiguity in stochastic labeling: an optimization approach", IEEE
Trans. Pattern Anal. And Machine Intel., Vol. PAMI-3, pp. 412-424,

July 1981.

* "- *D -. ' -*-.. . . .

""" """ ., . ,""''. ._'""..- """" "" "''': .. ,- '..... ." -. - " ' "-"-.... .'". .,. .... ... .": '" . .. , v .. ''' : ' ,., .o.



-46-

-- 12. F. S. Cohen, "Parallel Adaptive Hierarchical Algorithm for Textured
Image Segmentation Using Noncausal Markovian Fields", Ph.D. Thesis,
Division of Engineering, Brown University, Providence, RI., Aug.

"* 1983.

13. F.S. Cohen and D.B. Cooper, "Real-Time Textured Image Segmentation
Based on Non-Causal Markovian Random Field Models", Proc. of the
3rd Intl. Conf. on Robot Vision and Sensory Control, Cambridge,
Mass., Nov. 1983; Proc. SPIE 449 , pp. 17-28 (1984).

14. F. Cohen, et al., "Simple Parallel Hierarchical and Relaxation
Algorithms for Segmenting Textured Images Based on Noncausal
Markovian Random Field Models," Proc. of the 7th Int. Conf. on -
Pattern Recognition, Montreal, Canada, July 1984.

15. J. Besag, "Spatial Interaction and the Statistical Analysis of .. •
Lattice Systems", Journal of the Royal Statistical Society, Series
B., 36, 1974, pp. 192-236.

16. M.S. Bartlett, The Statistical Analysis of Spatial Pattern,
Chapman and Hall, London, 1976.

17. J. Woods, "Two Dimensional Discrete Markovian Fields", IEEE Trans.
on Information Theory, Vol. 11-18, No. 2, March 1972, 232-240.

18. S. Ranganath and A. Jain, "Two Dimensional Linear Prediction
Models Part I: SPECTRAL Factorization and Realization", T.R.
SIPL-83-5, Dept. of Electrical Eng., Univ. of California at Davis,
May 1983.

19. M. Ekstrom and J. Woods, "Two Dimensional Spectral Factorization
with Applications in Recursive Digital Filtering", IEEE Trans.
Acoust., Speech, Signal Processing, Vol. ASSP-24, #2, pp. 115-128,
April 1976.

20. R.J. Cross, "Markov Random Fields Texture Models", TR 80-02,

Dept. of Computer Science, College of Engineering, Michigan State

University, 1980.

21. R.L. Kashyap, et al., "Estimation and Choice of Neighbors in
Spatial Interaction Models of Images", IEEE Trans. on Information
Theory, Jan. 1983, PP 60-7--

22. Cohen paper in preparation.

23. Cooper, et al., paper in preparation.

24. M. Loeve, Probability Theory, D. van Nostrand, 1960, p. 228.

25. G.E. Hinton and T.J. Sejnowski, "Optimal Perceptual Inference" .
Proceedings IEEE Comp. Soc. Conf. on Comp. Vision and Pattern
Recog., Washington, D.C., June 19-23, 1983, pp 448-453. Also, talk
at Brown Univ., April, 1984.

' * ".".%N



-47-

Appendix A

Proof of Result 2.

Under the free boundary condition,

p(X,Y) constant-exp{-(l/2a 2)(XtBXX + 2XtBXyY + YtByY]l

From this it can be seen that pCXI Y) is Gaussian with covariance matrix B_ and
-lX

mean vector -BX B~yY. Hence,

* p(XIY) = 1BxI~2o)X exp{-(l/2a2)( +X B~yY)tBX(X + BX BXyY)]l

= 1BXj1 (27r2)-NX/
2  exp{-(l/20 2d[XtBXX + 2XtB~yY + YtBtB1BXyYI1

Appendix B

Theorem

Consider C homogeneous Gaussian MRF texture models; the covariance matrix

_-Dr every set of pixels in a texture-type region is nonsingular. Let I(Ylk)

denote the discriminant (1/N2) in[ 1T p(yijlYijpk)], k- 1,2,...,C ,for the kth

Ci~j)

texture-type in an NxN pixel window. The texture recognizer based on choosing

the texture type having the largest discriminant incurs a probability of '

misclassification that goes to 0 w.p.l as N m

Proof

* Assume that the texture-type under which the data was generated is k0.

=-(-2)Ln(27va 2 (k)]- l/N 2 2G2 (k) l yij-U(k)- S (k) (yXM-i(k)]12  (Bi)
(i J) (~)-~-

*cD .

is the sample mean of approximately N2 identically distributed, partially

correlated r.v.'s

-N tn[2Wd2(k)]-(1/2a2(k)]fy -ii(k) 0 (k) [y -1B~k)]1 2  0B2)
i.1 (L,m) L-i'm-j i

eD .

p

%*4* ~ . A i~.d. ~ ~ .'P~~******A *~**, *Ab . . *** ~ . .
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Since (y j is homogeneous, so is (B2) for all k. Because {y is

nonsingular homogeneous MRF, both its autocorrelation function and that of

(B2) fall off exponentially for large distance from the origin. Using this

and the Borel Cantelli Lemma [24], it is easy to prove a strong law of

* large numbers, specifically that

Z(Yjk) W..L E[zij (k) Ik]l as N~ (B3)

where the expection is with respect to the measure for Y.

* Claim:

E~zij(k)Ik] > E[zi~ (k)Ik] for k~ko. (B4)

This comes from a standard information theory argument as follows.

* E[zij(k)!k]

- f{(iIjjk)l,

- [PYijIij~k) - p(Y YijP(Yk dY i 9k)

-~i 0[i (k)l
zniph eqait fYJ~o P(j 1 l,)-~ y IYj1 k)fo al Snc

P(Y'i~~~!Yi(Yt k)0 n~pnn~lfnto nYjad bcueo h

nosiguaiy of th )proes it folosthtthrei euliy !Yi

< f tnp (l~ I Y c ) p (yc fo - <j k 0 <Y I d Y(5

Becaus oftepeeigiequality ad (B3), ik ~ ~j~j1 fralyjyj ic

P )i nepnnilfntoni YadY bcueo h
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Z(Ylko)/I(Yjk) . a as N-.=, kc{l,2,...,C} and k I ko , where a is a -.- -

W.p.1
constant strictly greater than I. Thus, probability of correct classification

converges to I with probability I as N goes to infinity.

The proof can be extended to nonGaussian MRF's and to some nonstationary

ones. A simple procedure is to consider the sequence LN, where LN takes the

value I if [ I p(yiiYijko)/p(yjlYijk)] < 1, and is 0 otherwise.

Note that k I ko in the inequality. Then the idea is to prove that as N - , LN

takes the value I only finitely often. But this will be the case, by the Borel

Cantelli Lemma, if ( p{Ln 1})<o . Hence, this proof depends on showing for

N=2
the MRF model under consideration that the preceding sum of probabilities is

* finite.

Appendix C .

Some useful likelihood functions

Let an NxN pixel window be partitioned into three regions, and let the

picture function at the pixels in these regions be components of the column

vectors W, X, Y. Let Z = (XtYt)t. The picture function over the window is a

constant parameter Gaussian MRF. Then the following results are already derived

in the paper or can be derived using similar techniques. Let the field have 0

mean value.

i. p(W,Z) = (2y2)-N2/2 JB."

exp {-(1/2a2) [WtBWW + ZtBzZ + 2 WtBwzZ]}

• I i

I ::.-..-..**.-.*.*..,. '. -
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where B, BW, BZ are the within interaction matrices for the whole window, W, and

Z, respectively; and BWZ is the between interaction matrix for W and Z. See

Secs. 2.2.1 and 3.2.1. ..

1 2 -1
2. p(zIw) N(-B BZW, B.

(See Section 3.2.1)

2B-1 -l)'::: . :.

3. i) p(Z) , N (O,a2[B - BZW BW BWZ]

This result follows from p(W,Z) p(WIZ)p(Z) and use of results 1 and 2.

Note that the covariance matrix for Z is "bigger" than (Bz)-l, because (Bz)-l

is the conditional covariance matrix for Z given that the surrounding neighbors _ U

have value 0.

(ii) p(Z) cp(WZ)

where c is a suitable normalizing constant, and W is the value of W that

maximizes the joint likelihood p(W,Z). This result is discussed in [12; pp.

55,56] and a simple iterative relaxation algorithm for computing W is discussed

in (13; Appendix], and also described as result 5 in this Appendix of this paper. !

4. p(Y IW) ,N( 0 c2 [B~ Y B -1B B

,,.. .- .- ,

This result follows from p(X,YjW) PV N(.,B obtained from use of result 2, and

then the application of result 2 to p(X',Y') where Z' is ZIW. The fact that

cov[YIW] does not depend on BW or Bw makes sense, since the covariance matrix

for Y when Z is conditioned on the free boundary condition at its border is --

exactly the same as when conditioning on a combination of the free boundary

condition and on W where W borders on Z.

.4.o
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5. We describe a simple algorithm for computing E[YJW] when W, X, Y, Z are as

previously described. Note that E[ZIW ]  [(E[XjW])t, (E[YIW]) ]t,so that E[Y)W]

is the lower vector in E[ZIW]. From p(Z,W) p(ZIW)p(W), it is seen that E[ZIW]

is the value of Z for which p(Z,W) is a maximum, i.e., it is the maximum

likelihood estimate of Z. But p(Z,W) is a quadric form in Z with positive

semidefinite matrix. Assume the matrix is positive definite. Hence, p(Z,W) has

only one maximum as a function of Z, and any one of many iterative algorithms may

be used to compute this value of Z. We use a relaxation algorithm. Consider

updating the estimate znI. of the component of Z at pixel (i,j) found at the nth
n + 1 "" '.''

stage. Then zij , the estimate at the n+l stage, is computed as

n+l "1 + t n
zij : O r-v(n - ),-. .

vCDp
where this is the expression for the conditional mean in Eq. (5), and tn is a

v
component of either Zn or W, depending on v. As with the relaxation algorithm in

Sec. 4.1, estimates at all locations in a code can be made simultaneously.

I
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