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1. Summary

1.1 Overview

'I'is report summarizes first year technical progress on SFRC N00014-84-K-0734, "Rcscarch in Distributed

Tactical lecision Making: Decentralized Resource Management in Tactical Computer Executives," for the

period I August 1984 (contract start date) through 31 July 1985. This research reported herein is jointly

funded by Office of Naval Research and Space and Naval Warfare Systems Command.

Thc objective of this effort is to conduct research in the area of distributed tactical decision making.

Carnegie-Mellon University (CMU) proposed to conduct research on primarily two tasks in the first contract

year. Task A considers best effort decision making for decentralized resource management. Task B focuses

on the development of atomic transaction theories to support highly concurrent and reliable real-time com-

putation. Innovative research under the guidance of the Principal Investigator was conducted on both of

these tasks. Work will continue on both tasks in the second contract year. K ,

1.2 Progress on Task A: Best Effort Decision Making

Task A is divided into three subtasks. Subtask Al deals with the development of best effort decision

making algorithms for dynamic system reconfiguration for the purpose of enhancing system survivability.

Subtask A2 is a basic research task which investigates the theory of best effort team decision making. Subtask

A3 investigates real-time multi-processor scheduling. In the following section, we summarize the progress

made in Task A. A detailed discussion of these three subtaks is presented in Chapters 2 through 4.

1.2.1 Subtask Al: System Reconfiguration Decision Algorithms

CMU has developed a set of reconfiguration algorithms with the following properties:

" Disturbance to functioning processes during the process of reconfiguration is minimized,

" System vulnerability to future failures after re-configuration is minimized,

" Reconfiguration is performed in real-time.

These algorithms are directly applicable to a variety of distributed tactical systems.



1.2.2 Subtask A2: Best Effort Decision Theory

CM Ll has developed results showing that the lower bound on the performance of best effort team decision

making in the context of load balancing is 62% of the idcalized peririnance with 'uill and instantaneous

information. In this analysis, only local information is used for decision making. Since this result is the lower

bound of best cflort decision making in the context of load balancing, it demonstrates the promise of

decentralized best effort team decision making. A protocol for the efficient use of active information has

been invcstigated. Further research on this topic will be continued in the next year.

1.2.3 Subtask A3: Multi-processor Real-time Scheduling

Subtask A3 represents our initial work on a value function based approach for multi-processor real-time

scheduling. This research involves the study of deadline management in a multi-processor environment, in

which the time allocation decisions must be made using a best effort approach. A considerable amount of

research has been done when deadlines could be met, but relatively little information is available about

scheduling decisions when available resource limitations require that one or more deadlines cannot be met.

Our approach is designed to maximize the value of the available state information to make the deadline

scheduling decisions, particularly in those cases where deadlines cannot be mel

1.3 Progress on Task B: Atomic Transaction Theory

Task B is divided into two subtasks. Subtask B1 represents the conclusion of a long term research of atomic..

transaction theory for the development of transaction facilities in decentralized operating systems. Atomic

transaction facilities are important for the reliable and efficient management of distributed data. Therefore,

these facilities are also important for implementing any distributed decision making protocol. Subtask B2

initiates the investigation of co-operating transactions, transactions that share information and co-operate as a

team to achieve some common goal. In the following section, we summarize the progress made in Task

B. The detailed report of Task B is presented in Chapters 5 and 6.

1.3.1 Subtask BI: Atomic Transaction Theory

CMU's major achievement in the area of atomic transactions is the development of a formal theory of

modular concurrency control and failure recovery. This theory is a generalization of classical serializability

theory and failure atomicity. This theory provides the basis for both optimal modular concurrency control

and optimal failure recovery rules. As long as each programmer ensures the consistency and correctness of his

........
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ii. I ahel the identified node as the candidatc node.

iii. list the candidate node in the merging list.

iv. In the graph, merge the candidate node with the merged node.

f. Take the first processor in the processor list. Repeat the following until the merging list is
emptied.

i. Take the first node in the merging list,. delete it from the list and try to fit it in the
processor.

ii. Check all the constraints, real or pseudo.

iii. If successful, then this node is a resident of the processor.

iv. If a node becomes a resident of a processor, delete it from the communication graph.

g. Delete the processor from the processor list.

h. If the processor list is emptied but the communication graph is not. then report that the
reconfiguration fails.

i. If the processor list is not emptied but the communication graph is, then delete the mode
from the movable mode list.

2.6 The Reconfiguration Procedure

In this section. we first list the reconfiguration routine. Next, we list the overall reconfiguration procedure.

2.6.1 The Reconfiguration Routine

We list the reconfiguration routine.

1. Run the reverse FFD algorithm to obtain the movable mode list.

2. If it is a processor failure, then run the new multi-dimensional FFD algorithm. If this FFD
algorithm fails, then report that the reconfiguration fails. In addition, report the modes that are
still disabled and exit this routine.

3. Check the communication constraints.

4. If the communication constraints are satisfied, report to the operator that the reconfiguration is
successful, and exit this routine.

"- " , _- " o - " . . " . ""°" . ° . -"% -"•"- "•".°. -.- °.. " -.- ' ' .' .
- • " ° " "

" ...... d l*ii.l ~ . . " l - .. .I. .
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a. I.ist all the processes in the mode in decreasing order according to their maximal real

resource requirement such as CPU. memory, ports etc. For example if a process needs 20%
CPU and 10% memory. its maximal resource requirement is 0.2.

b. Take the first process in the process list and repeat the following until either the list is

emptied or reconfiguration fails.

i. Try to put the process in the first processor in the ordered processor list.

ii. Check all the constraints in all the dimensions. real or p,-udo.

iii. If all the constraints are satisfied, then this process becomes the resident of the proces-
sor. In this case. delete the process from the list.

iv. If the process cannot be fit into any processor then report to operator that recon-
figuration fails.

c. If the list of processes is emptied, then delete the associated mode from the list of movable
modes.

2.5.3 The Clustering Algorithm

The steps of our clustering algorithm are as follows:

1. List all the movable modes in decreasing order according to their linear criticality score.

2. List all the processors in decreasing order according their minimal available capacities as defined
in the previous section.

3. Take the first mode in the list and repeat the following until either the list is emptied or the
reconfiguration fails.

a. Draw the communication graph of all the processes in the mode.

b. Identify the maximal arc.

c. Put one of the two nodes joined by the arc on a merging list.

d. In the graph, mark the node on the merging list as the merged node.

e. Repeat the following until all the nodes in the graph are put into the list.

i. In the graph, identify the node which communicates most heavily with the merged
node.
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memory utili/afion 0.3 and 0.5. while these average are 0.4 and 0.3 lor mode II. then mode A and
mode It arc said to be compatible. 'Ibhis is because the total utilization are 0.7 and 0.8. which are
both less than 1. If a functioning mode is compatible with any of the fitiled modes, then it is said
to be a candidate movable mode. 'I'c idea of compatibility is that if a failcd mode is CPU
intensive, then we want to match it with a mode which uses little CPU, so that they can be packed
together later. We identify all the candidate movable modes.

5. For each candidate movable mode Mi, we compute its total resource supply Ri by summing up all
the resources it utilizes in percentage of total units.

6. We now try to fill the pseudo bin by first putting all the failed modes into it. We then repeat the
following steps until the list of candidate modes is emptied.

a. For each of the candidate movable modes M. , we compute the additional disturbance score
Di, which would arise if mode M, is disturbed.

b. For each of the candidate movable modes Mi. we compute the merit score R./D.. The merit

score is a measure of the amount of resource provided by a mode per unit disturbance
incurred.

c. We try to put the one with maximal merit score into the pseudo bin. Call this mode as the
candidate bin resident and delete it from the candidate movable mode ist.

d. Add up the total disturbance scores of the bin resident modes and this candidate bin resi-
dent. If this total score is less than St, then the candidate becomes a resident of the pseudo
bin.

7. Report all the modes in the pseudo bin as movable modes to the operator for approval and
possible alteration.

2.5.2 The Modified Multi-dimensional FFD algorithm

The steps to carry out the multi-dimensional FFD algorithm are as follows:

1. Augment each processor with a set of pseudo joint criticality resources, each of which corresponds
to a joint criticality index.

2. List all the movable modes in decreasing order according to their linear criticality score.

3. List all the processors in decreasing order according to their minimal capacities. For example, if
processor A has 10% available CPU cycles and 20% available memory, then the minimal capacity
is 10%.

4. Take the first mode in the list and repeat the following until either the list is emptied or the
reconfiguration fails.



16

1:t1) algorithm. To avoid pting processes belonging to a set ol'jointly critical modes into a single processor,

we require the clustering algorithm to observe the pseudo resource constraints associated with each processor.

To promote the clustering of processes belonging to a same mode. w6 run the clustering algorithm on a mode

by mode basis. That is. we examine the communication graph of each mode and try to cluster those processes

with heavy inter-process communication first. Since processes belonging to the same mode co-operatively

carry out a task. they tend to communicate with each other more than with processes of other modes. 'Thus

the mode by mode clustering is likely to produce results nearly as good as the results of global clustering.

2.5 The Algorithmic System

In this section, we first outline in detail the reverse FFD algorithm, the modified FFD and clustering

algorithms. Next, we present our overall procedure for carrying out the reconfiguration.

2.5.1 Maximizing The Feasibility: The Reverse FFD Algorithm

The Reverse FFD algorithm is used to maximize the reconfiguration feasibility by identifying all the

movable modes with respect to the given allowable disturbance level Sa. That is. the algorithm takes the

current configuration and the set of failed modes and produces a set of functioning modes which can be

disturbed within the disturbance constraint S

We now list the steps of this algorithm.

1. If S. is zero, then list all the modes that have been disabled by the failure as movable modes and
exit this procedure.

2. If Sa is non-zero, then create a pseudo bin whose size is St = SC + Sa, where Sc is the current
disturbance due to the failure.

3. For each mode, we compute the average process resource utilization for each resource type. For
example, mode A has 3 processes which use 0.1. 0.2, and 0.3 units of CPU and 0.4, 0.5, 0.6 units of
memory respectively, then in this case the average CPU utilization is (0.1 + 0.2 + 0.3)/3 = 0.2
units and the average memory utilization is 0.5 units.

4. For each of the failed modes, we pair it with each of the functioning modes and check their joint
compatibility. If the sum of the average utilization of each of the resource types is less than one,2

then the two modes are said to be compatible. For example, if mode A has average CPU and

2One sa generally ,ood value for the threshold in this cue. However, the value for the threshold ran be expeimentally tuned.



chosen to offer a high probahility of finding a feasible reconfiguration. Ibis algorithm is dcsc-rihcd in Section

2.3.1.

2.4.3 Controlling Vulnerability

We have developed our approach to keep the reconfiguration disturbance below a permitted level a

Given that this constraint is satisfied, we now must minimize the future vulnerability. As discusscd before. we

cannlot hope to find thc minimal futurc vulnerability configuration in real-time. However, we can take

advantage of the characteristics of a given system and develop an approach that produces nearly optimal

results.

When a processor fails, all the modes relying on the processes running on this processor are interrupted.

Thus, to minimize fuiture vulnerability, a key principle is to avoid putting multiple modes on a single proces-

sor. especially jointly critical modes. Another important aspect in minimizing future vulnerability is to try

pack all the processes of a mode into as few processors as possible, because when a mode is supported by

several processors, the failure of any of these processors interrupts the mode. Both of these aspects can be

accomplished by modifying the multi-dimensional FED algorithm in the linear phase of the reconfiguration

procedure and the clustering algorithm in the quadratic phase.

In the linear phase, to avoid putting multiple critical modes into a single processor, we associated pseudo

resources with each processor. Each of the pseudo resources corresponds to a joint critical index as discussed

before. In the example we discussed earlier, the two scanning modes have a joint criticality score of 0.8. To

prevent the processes of both scanning modgs being put into a single processor, we associate one unit of

pseudo scanning resource with each of the processors that can support scanning modes. In addition, we

specified that a scanning mode requires 0.6 unit of the pseudo scanning resource, while other non-scanning

modes requires none of this pseudo scanning resource. Thus, a processor can only support the processes of

one of the two scanning modes, but not both. To put the processes of a mode into as few processors as

possible, we first run the multi-dimensional FFD algorithm for the most signifirsant mode with respect to the

processors with most available capacities. This gives the best chance for the FED algorithm to pack the most

significant mode into the least number of processors. After packing the most significant mode, we repeat this

processes for the second most important mode and so on.

In the quadratic phase, the modification of the clustering algorithm is similar to the modification of the
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2.4.2 Controlling Disturbance

We have mentioned that we are in favor of keeping the reconfiguration disturbance S. toa low level while

trying to produce a configuration that is low in fture vulnerability. We assume that the default value of Sa is

zero. 'lhat is. without the operator's explicit permission, the only processes that are allowed to be relocated by

the reconfiguration system arc those associated with the modes disabled by the hardware failures. 'hc

reconfiguration system will always attempt to restore disabled modes at zero disturbance and report the

results to the operator. If all disabled modes cannot be restored at a Zero Sa score, the operator has the option

of explicitly naming the set of modes that can be relocated or of giving a level of allowable reconfiguration

disturbance Sa. If S. is given, then the rcconfiguration system will first try to enlarge the solution space as

much as possible, while keeping the disturbance level below Sa.

An example may help to illustrate these ideas. Suppose that we consider five modes, two associated with

scanning and three with fire control. The scanning modes have individual criticality score 0.1 and joint

criticality score 0.8. The fire control modes have individual criticality score 0.15 and joint criticality score 0.9.

In reconfiguration, suppose that one of the scanning modes is the only mode in the failed processor and that

the operator specifies Sa = 0.6. If we try to relocate the functioning scanning mode. then we have a distur-

bance score Sa given by 0.1 + 0.8 = 0.9. The 0.1 is the individual criticality score for disturbing the

functioning scanning mode. The 0.8 is the joint criticality score for disturbing both scanning modes, one of

which was disturbed by the processor failure. Since 0.9 ) 0.6, we must not disturb the only functioning

scanning mode in the reconfiguration activity. If we relocate two fire control modes, the disturbance score is

0.15 + 0.15 = 0.3. If we relocate all three fire control modes, the disturbance score is 0.15 + 0.15 + 0.15 +

0.9 = 1.35. In this example, we can only relocate the scanning mode disabled by failure plus two func-tioning

fire controlling modes.

Generally, once the allowable disturbance level for reconfiguration Sa is given, we need an algorithm to

identify the set of modes that can be moved without exceeding the specified value of S.. It is possible that

this computation has already been carried out off-line and results are stored in the database. Thus, for a given

S., we would only need to look up the movable modes in the database. We also provide an on-line algorithm

to carry out this activity. This algorithm is a modified form of the well known first fit decreasing (FFD) bin

packing algorithm called the reverse FFD algorithm, which takes a set of failed modes and identifies a set of

functioning modes that can be disturbed. The identified set satisfies the disturbance constraint S8 and is

," -- "- , - -'
...%.....-....-
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Fach of these formulations can be used. llowevcr, we prefer the bin packing irmulation because the

existence of the firsi lli decreasing (FFI)) algorithm, which is known to be vcry fast and oftcn produces either

optimal or ncar optimal results IFrederickson 80, llentlcy 831. "ibc" devclopmcnt of our algorithm for thc

search of the lincar subspacc will be based upon the FFI) algorithm.

In the single dimension case, the FF1) algorithm is to first order the items in decreasing size. We then try to

put the largest item into the first bin. Next,we try to put the next largest one into the first bin and so on until

the first bin cannot be filled. We then use the second bin and repeat the same algorithm. If the bin sizes are

different, we order the bin in increasing order according to their sizes. The idea of FFD is to get the most

difficult one done first: trying to put the largest item into the smallest bin first. When the problem is

multi-dimensional, we use the largest number of requirements to order items and the smallest number of its

capacities to order bins. For example, if a process (item) needs 20% CPU and 10% memory then its scalar

measure is 0.2. If a processor (bin) has 70% CPU available and 30% memory available for reconfiguration

task, then 30% is the scalar measure.

2.4:1.2 Quadratic Phase: Minimizing Communication Traffic

When the bus communication constraints are violated, we enter the quadratic phase. In this phase, our

objective is to minimize the traffic flow on the bus. Our quadratic integer assignment problem can be

formulated as follows:

1. Algorithms based upon the Branch-and;-Bound method [Hillier 801.

2. Algorithms based upon the estimation method [Graves 70].

3. Algorithms based upon the cluster idea used in real-time task allocation [Chu 80].

In a real-time environment, the only feasible algorithms are the clustering algorithms because either the

Branch-and-Bound or the estimation method are known to be slow. The clustering algorithms are based upon

the following observation. If we first group the heavily communicating tasks together before assigning them

to the processors, then the solution space is significantly reduced. One can argue that this reduced space is

promising because many heavily communicating processes are already bound together and they are no longer

to communicate over buses.
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2.4 Algorithm Development Approach

Having discusscd the principles underlying the issues of disturbance and vulnerability. we now develop our

algorithms. We first describe our overall two phase approach as a basis for the design of fast algorithms. We

then describe the implementation of the minimization of disturbance and of vulnerability as well as the

maximization of the feasibility in the context of this two phase approach.

2.4.1 The Two Phase Search Approach

We have pointed out that due to the communication constraints, our reconfiguration problem is of the type

of quadralic integer assignment problems whose optimal solutions are generally impossible to obtain unless the

problem size is extremely small. Thus, we must develop fast algorithms that focus their search in the

promising area of the solution space.

The constraints of our reconfiguration problem can be divided into two classes: linear constraints such as

CPU cycles and memory units and the quadratic constraints, bandwidth of the buses. Since a bus is one of

the most reliable elements in the system, it is less likely to fail as compared with processor elements. This

indicates that a promising area in the solution space is the linear subspace. Based upon this observation, we

divide our search of the solution space into two phases: the linear phase and the quadratic phase. In the

linear phase, we try to satisfy all the linear constraints. Once the linear constraints are satisfied, we have a

candidate solution which will be checked if it satisfies the bus constraints. If it does. then we have found a

solution. If not, we enter the quadratic phase to further minimize the communication traffic on the bus.

2.4.1.1 Linear Phase: Satisfying Protessor Constraints

In the linear phase, our reconfiguration problem is of the type known as integer assignment problems. The

constraints are CPU utilization, memory utilization and communication port utilization. Note that the port

utilization is additive. There are generally three possible formulations to this problem.

1. Formulate the problem as optimal zero-one integer programming problem and use the branch
and bound method.

2. Formulate the problem as the linear programming problem of the "cutting stock" type [Chvatal
831.

3. Formulate the problem as multi-dimensional bin packing problem [Coffman 831.

* o.
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2.3.3 Trade-offs

We have identified three aspects of the cost of a particular failure: sunk costs from a failure, the present

additional cost from the reconfiguration activity and the average sunk cost of next failure (the future

vulnerability). We focus entirely on a single processor type, since processes in a failed processor must be

moved into the same processor type. Once a failure occurs, one can compute the sunk costs by noting all the

modes that have been disturbed and adding all the individual criticality scores and joint criticality scores. We

label this score S for currcnt score.
C

We now consider a particular feasible reconfiguration. We identify the modes disturbed by failure and by

reconfiguration, and calculate the total disturbance score which results. This total disturbance score is

denoted as St. The additional disturbance from reconfiguration for this solution is Sa = St - Sc. The new

configuration has a future vulnerability associated with it, the average sunk costs associated with the failure of

each of the processors of this type. We label this Sf for future cost. In summary, each feasible reconfiguration

has two numbers associated with it, S and Sr

There are two issues which need to be addressed. Ideally, one would like to find a reconfiguration in which

both Sa and Sf are small. However these two goals are often in conflict. In addition, we have discussed a

typical reconfiguration. The number of such feasible reconfigurations could be enormous, far greater than

could be examined in real-time. It follows that we must define heuristics which will guide us close to a

solution with small values ofSa and Sr Generally, we prefer to first specify S., so that the disturbance owing

to reconfiguration is bounded. We then try to find a reconfiguration with a small future vulnerability Sr The

determination of an acceptable Sa requires some judgement and certainly depends on the current mission

scenario. We treat the threshold limit on Sa as an input parameter to the algorithmic system. Generally, if a

reconfiguration can be accomplished without further disturbance, for example, by using spares, it will be

automatically carried out. If some disturbance is necessary, then input from the operator is sought. The

operator, informed of the current disturbance, can either specify the set of modes which can be disturbed

during reconfiguration or the maximal allowable value for Sm.

*:*-"-'-: . .*. * .. * . -. ,. * ..-. ... *. *-.o' -
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resource, while all othcr mldes require 0 units of it. The result of this approach is that the reconfiguration

algorithm will be able to avoid critical joint disturbance and avoid putting jointly critical modes in the same

proccssor which would otherwise create an unneccssarily large futurc "vulnerability.

lhe creation of pseudo resources addresses the non-linear scoring problem and allows us to keep a linear

scoring approach. Notice, however, that each additional pseudo resource brings new constraints into the

reconfiguration algorithm and hence reduces reconfiguration potential. Consequently, one should use this

approach sparingly.

2.3.2 Future Vulnerability

When a failure occurs, certain modes will be disrupted and a criticality score can be computed using the

linear rule and joint indices. After examining the impact of the failure, the system must be reconfigured, and

additional disturbance may occur owing to the reconfiguration. The initial part represents sunk cost, the cost

from the failure. The reconfiguration part can only add to the cost. Therefore, there is a powerful incentive to

incur the smallest possible additional cost in reconfiguration. This is. however, shortsighted. The sunk costs

which seem to be unavoidable were actually the result of the previous reconfiguration decision. The recon-

figuration from the previous failure left the system in a state which lead to the current sunk cost. The current

reconfiguration will create a future system vulnerability. Clearly, we would like this vulnerability to be kept as

low as possible.

Now we quantify this concept. Fortunately, it is quite simple to quantify future system vulnerability using

an expected value approach. We focus on a fixed processor type (e.g., UYK-44). Consider any potential

configuration of processes in processors. Each processor will support one or more modes. If that processor

were to fail, then the sunk cost disturbance score would be the sum of the individual mode index score plus

the joint index score if any such sets are co-resident in the processor. Thus, we can compute the resulting sunk

cost disturbance associated with each single processor failure. We assume that each of these processors are

equally likely to fail, thus the future system vulnerability is the average of the individual total processor

scores. Any configuration can be evaluated in this fashion.
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2.3.1 Quantification of Disturbance

In a real-time command and control environment. a system will require a large number of modes uo

function properly. Clearly, some modes will be of greater importance than others. We will assume that it is

possible to attach an index of criticality to each of the modes and that this set of indices is available to the

reconfiguration algorithm. 'Ihis index is a measure of the importance of one mode relative to another fixed

reference mode. This index can be used as scoring device by which to measure the amount of disturbance

caused by an interruption of a set of modes. The scoring of disturbance is a very serious issue. It is most

convenient to adopt a linear scoring rule. This rule would operate as follows. If a set of modes ceased to

function. then the total disturbance is taken to be the sum of the individual indices of criticality. This is a

reasonable approach in most cases and is generally very convenient; however, there are instances where it is

inadequate and even misleading. For example, suppose that we consider two modes associated with scanning:

scanning mode 1 and scanning mode 2. Each may have the same index of criticality. The loss of a single

scanning mode is not catastrophic, because there is a second which can fulfill part of the scanning function. If,

however, both scanning modes are lost, the impact is very serious, far greater than the sum c r the two index

scores, because the entire scanning function has been lost. This situation is retresentative of a non-linear

scoring problem. That is, the total score is not simply the sum of the individual scores.

An alternative to a linear approach is a utility finction approach. We must define a function which takes

sets of disrupted modes and evaluates them numerically. This function can be as general as the situation

warrants and must be constituted by hand for all the possible failure subsets. This is a feasible, but difficult

and exacting task.

We propose to adopt a hybrid, intermediate scoring approach. This approach begins with a linear scoring

rule but the reconfiguration algorithm will take the non-linearities into account. Furthermore, we do this in a

simple and fast algorithmic way. This approach is as follows. We consider each of the modes separately and

define an index of criticality for each. Next, we consider the modes in pairs. For each pair, we determine

whether the simultaneous failure of each would be of profound seriousness. If su, we create an index of joint

criticality and define a pseudo resource of 1 unit for this pair. Both modes are assumed to require a 0.6 units

of this pseudo resource, while all other modes require 0 units of this resource. We continue in this fashion

creating critical pairs, indices of joint criticality and pseudo resources. One can continue with triplets of joint

criticality indices and pseudo resources. In this case, each member of a triplet requires 0.4 units of the pseudo

• =. % " ".' •'." % ' " N. 'o " • % . . ° .'.°.% •," .° , % % ." '°.' .* - -'." " ". • " °.°.° . . .- J
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remain intractable perpetually" lKarp 721. To apprciate the diflculty. we reported the work done by Kaku

and 'l'hompson lKaku 83). They used one of the best known algorithms coded in lortran.on a )IC-20. It

took on average 31.43 seconds to obtain the optimal solution for an 8 by 8 problem. 220.91 seconds and

1,305.65 seconds for 9 by 9 and 10 by 10 problems. respectively. Ihe rapid exponentially increasing computa-

tion time is the characteristic of this type of problem. Owing to the very nature of this problem. we had to

give up the search for optimal solutions and develop our own hybrid system of fast algorithms for the

rectnfiguration problem.

2.3 Basic Concepts: Disturbance and Vulnerability

When a failure of a processor or other hardware element occurs, there is an immediate interruption of

various functioning processes either because the processor in which they were running failed or because the

communication paths being used were disrupted. It is important to realize that processes are the fundamental

unit of reconfiguration; however, modes are the fundamental unit of disturbance. A system mode consists of

a collection of processes. If any of those processes fails (because a processor fails or a communication path is

interrupted), the mode is disrupted. Thus, modes are the unit of system functionality.

One must now reconfigure the system to overcome the failure. This can be done by rerouting messages,

relocating processes, shedding load or all of these three. There are three distinct aspects to be considered:

1. The present disturbance incurred by the failure.

2. The additional disturbance caused by reconfiguration.

3. The vulnerability of the subsequent reconfigured system.

We next analyze each of these aspects. Let us begin by quantifying the disturbance.

1The essential difference between an optimal algorithm and a fast algonthm in this context is that the former must cover the entire
' solution space, while the latter limits the search to "promising areas" of the solution space and uses mmple and fast operatiou Fa

algorithms can operate in real-time and generally give good solutions. However, fast algorithrs cannot guarautee the optimality of their
solutiont

.. * -" *
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2. Subtask Al: Dynamic System Reconfiguration

In this chapter. we summarie our work on subtask AI. best effort decision making algorithms for dynamic

system reconfiguration. lhe objective of dynamic system reconfiguration is to rc-organi7.e a system to adapt

to a changing tactical cnvir,)nment or to overcome hardwai, failures. 'hc study of reconfiguration algorithms

is important to distributed tactical systems that must operate in hostile and ever-changing environments. ['his

work is carried out under the direction of principle investigator by Prof. John P. I.choczky. Dr. I.ui Sha and

Mr. Samuel E. Shipman.

2.1 Introduction

Conceptually, the three goals of reconfiguration are minimal disturbance, minimal vulnerability and max-

imal feasibility, the ability to reconfigure the current task set without shedding load. The goal of minimal

disturbance requires the reconfiguration algorithm not to disturb the critical modes in functioning processors,

so that the system can carry out its mission without much additional disruption. The goal of maximal

feasibility focuses on the restoration of as many disabled modes as possible. The goal of minimal vul-

nerability is introduced to ensure that as a result of reconfiguration the system is made as fault tolerant to

failures as possible, so that the impacts of future system failures are lessened. Conceptually, the notions of

minimal disturbance and vulnerability help to eliminate the undesirable regions in the solution space, while

the notion of maximal feasibility seeks to have as large a solution space as possible.

We have successfully developed a system of algorithms that

1. minimize the disturbance to the functioning tasks in the course of reconfiguration,

2. reduce the vulnerability to future system failures,

3. and operate in real-time.

2.2 Problem Complexity and Algorithm Design Decision

In a distributed system, the reconfiguration task belongs to the class of quadratic integer programming

problems. The term "quadratic" refers to the pairwise nature of the communication traffic and the term

"integer" refers to the indivisibility of a process. The determination of the optimal solution to this type of

problems is known to be a special type of NP-complete problem, which, except for very small sizes, "will
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trankaction when executing alonc and follows the rules of this theory. then the fillowing arc true despite

system failures:

S'llhc consistency of shared data (database) is cnsurcd,

" The post-condition of each transaction will be satisfied,

" Transactions can be written, modified and scheduled independently of the rest of the transactions
in the system.

* The concurrency achieved by this approach is at least as great as any other consistent and correct
modular approach.

1.3.2 Subtask B2: The Development of Co-operating Transactions

In the process of developing reconfiguration algorithms under Subtask Al and transaction theory under

Subtask B1. we have discovered that'the current technology used for real-time executives (operating systems)

is inadequate to support the realization of either of these two technologies in the context of a distributed

real-time command and control system. The lack of a system level scheduling facility makes run time process

level reconfiguration or a real-time transaction facility infeasible, because there is no run time mechanism to

correctly assign a dispatching priority to the newly configured processor load or to the transactions that follow

some concurrency control protocol. As a result of this discovery, current efforts under subtask B2 concentrate

on resolving these issues by investigating real-time process management techniques.

1.4 Plans

Progress on Tasks A and B indicates a strong need to begin an immediate study of the time management

problem associated with best effort decision making and transaction facilities. In the next year, emphasis will

be given to the real-time aspect of distributed tactical decision making. Task A will emphasize time-driven

resource management --- managing system computation and communication resources efficiently so that

real-time constraints will be met. Task B will examine extension of the model of compound transactions to

allow for the specification of timing constraints and development of the new theory of co-operating trans-

actions. A more detailed discussion of CMU's plan is in Chapter 7.

.'-tI ', -, [ "k, -' mn m' ''':....." . - .- _ -•-._............ .
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5. Otherwisc. run the clustering algorithm. If successful, report to the operator that the recon-

figuration is su:cssful, and exit this routine. If unsuccessful. report that the reconIiguration fails.
In addition, report the modes that are disablcd.

2.6.2 The Overall Reconfiguration Procedure

When a failure occurs, do the following:

1. Report to the operator the modes disabled by the failure.

2. "ry to use spares if there arc any. If this is successful, report to the operator that the recon-
figuration is successful.

3. If this fails, run the reconfiguration routine at zero level disturbance and report the result to the

operator.

4. Let the operator determine if there is any mode that can be shed and what should be the allow-
able disturbance threshold level, or the set of the movable modes.

5. Run the reconfiguration routine accordingly and report the result.

2.7 Conclusion

Dynamic system reconfiguration algorithms are important to the survivability of a tactical decision system

that must operate in hostile and ever changing environments. We have successfully developed a system of

algorithms that

1. minimize the disturbance to the functioning tasks in the course of reconfiguration,

2. reduce the vulnerability to future system failures,

3. and operate in real-time.
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3. Subtask A2: Best Effort Decision Making
Theory

This chapter summarizes our work on Subtask A2, best effort decision making theory. 'his work represents

the basic research part of our etTort and is primarily carricd out by Prof. John P. I .choczky.

3.1 Introduction

In a decentralized computer system, processes often function co-operatively as a team to enhance system

* level pcrformancc. One basic goal of'the Archons project of which this research is part is to develop concepts

* and mechanisms which are intended to function co-operatively by using co-operative decision making. These

- mechanisms must function efficiently even though they will have both inaccurate and incomplete information

upon which to act [Jensen 84]. In this chapter, we introduce a framework for dealing with co-operative

decision making problems arising in decentralized systems in general and the Archon system specifically.

Concepts drawn from queueing theory, team decision theory [Marschak 72] and information theory will be

used to analyze the value of system status information for resource management. We focus specifically on the

trade-offs between the completeness and the timeliness of information. Rather than treating the consensus

problem abstractly, we will single out a particular problem for study: the problem of decentralized load

balancing. This problem will nicely illustrate the application of one particular paradigm of consensus deci-

sion making - team decision theory. Furthermore, it illustrates the trade-offs among the cost of information

(loading information at each processor), its completeness, and its timeliness. This chapter is organized as

follows. Section 3.2 provides an overview of decentralized decision making Section 3.3 describes the load

balancing problem and its formulation as a consensus decision making problem. Specific results charac-

terizing the value of system status information are derived. Section 3.4 presents some ideas for further study.

3.2 Overview of Co-operative Decision Making

In decentralized computer systems, the processors often must collaborate to. solve a particular system or

application problem. The problems may range from those associated with the management of system

,o resources (such as deciding which processor should process a particular task) to those arising in a specific
.

application such as speech recognition. We propose to try to deal with these problems in a general way by

casting them in a framework of statistical decision theory. Once in such a framework, it is possible to consider

issues such as the importance or value of information and its decline in value with time delays.

.....
.... d.................................
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In stahistical decision theory. there is a set of possible states one of which is the "true" slC. Generally. it is

desired to identify the particular true state. Often data are available to assist the decision maker in identifying

the truc statc. 'Iliese data have different likclihoods for the various pbssihlc states. An example might be the

load balancing problem in a distributed local computer network. "Ibc possible states represent the exact

workloads at each of the processors at the time the decision is made. 'Ihc data are the workload information

messages exchanged by the processors. These messages are inexact and delayed in time. The particular
• *-i deision made will vary in goodness with the possible states of the system.

Many decision problems arising in decentralized decision making can be cast in a statistical decision theory

framework. Once in this framework, various solution techniques can be brought to bear on the problems. A

-* particularly powerful method, Bayesian decision theory, should be considered, since it leads to optimal

*i decision procedures. In the Bayesian formulation, the probability distribution is specified on the possible

states. This is called a prior distribution. Next, we must determine the probability of the possible states with

* respect to observed data, which is called the likelihood function. These two components result in a posterior

distribution over the possible states. The posterior distribution reflects both the prior information and the

observed data. An optimal decision or action with respect to some criterion can then be determined. Fur-

thermore, the posterior distribution can be continuously updated in real-time. Unfortunately, this program

can often not be carried out in its exact form. Two fundamental difficulties arise. First, the prior distribution

and likelihood function may be essentially impossible to specify. Second, in many examples the Bayesian

formulation does not consider that data (for example processor status information) deteriorates in value with

time. If some information is delayed, the quality of the decision made may be greatly reduced.

In many real problems, a joint likelihood function must be determined empirically. When a high dimen-

ll sion likelihood function is required, an empirical approach is impossible to carry out. For example, in a

speech recognition context, the likelihoodof a particular signal being a particular phrase will depend on many

factors ranging from its context in the sentence to the sound of the actual signal. A speech recognition system

will take these many diverse factors into account. The Bayesian program would call for these factors to be

considered jointly rather than marginally (separately). Currently, this is an impossible task. A satisfactory but

sub-optimal approach is to employ a team of specialized processors. Each processor works on a special aspect

of the problem. Each processor possesses the special database and codes designed for its particular aspect of

the problem. The individual processors are to function as a team of experts and are to arrive at a consensus

decision. Each processor develops hypotheses and probabilities associated with the hypotheses. The team

*
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members exchange these hypotheses and by this proccss o. nance the marginal viewpoints to a more global

view. The process must somehow converge to a conCnsus decision ofh die team perhaps by. a formal method

such as that of D)c3root [I)eGroot 741 or by s.omc heuristic method such as the HearSay system II.esscr 73].

"The approach is somewhat similar in spirit to the "divide and conquer" approach of algorithm design but

lacks the optimality of the flull Bayesian program, because the joint information has been sacrificed. That is.

the intcr-depcndcnce of various aspects are only approximated by the indirect approach of reaching a consen-

sus among experts. In the following discussion. we refer to this type of co-operative decision making process

* as consensus decision making.

A second consideration which often leads to decentralized decision making is the delay in and the cost of

*, interprocess communication. In many real-time applications such as load balancing, information delay often

" plays a dominant role, and rapid decision making may be crucial. The time delay incurred in collecting

complete status information from all the relevant parties could be sufficiently long that by the time all the

information is gathered and a decision is made, valuable time will have been lost, and the information itself

will be substantially in error. To obtain a timely decision, the decision makers may be forced to make

decisions based only on partial information. For example, in a large point-to-point network, a dynamic

routing scheme is needed for message transfers through the network. Clearly, elaborate information gather-

ing and consensus arbitration is self defeating. Instead, one might adopt decentralized procedures such as the

one used in Arpanet [Kleinrock 76] and allow each node to make its own local routing decisions. Further-

more, each node will make these decisions based on only partial information, the information from nearby

nodes. Information from more distant nodds will be significantly delayed and of lesser value. This illustra-

tion highlights the importance of the two concepts of timeliness and completeness of information. Since this

type of co-operative decision making requires decision makers to work as a team to further the system level

performance but does not require them to reach an agreed upon opinion, we will refer to this type of

co-operative decision making as team decision making [Marschak 72]. A single team member is allowed to

make a certain set of decisions without necessarily gaining the concurrence of the other team members. Any

-team member may seek information which will improve the quality of its decisions. All team members make

decisions which attempt to improve overall system performance.

The.consensus decision making procedure in which a single decision is reached, and the team decision

procedure can be thought of 'as extremes on a negotiation spectrum. Generally, there are several important

facets in any consensus decision making problem which will, in part, determine the most appropriate solution

scheme. These include:
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* Is it necessary to reach a single consensus among all decision makers? Can a single decision maker
make thc decision after taking the opinions and information of others into account?

e How important is diC Completeness of thc information in making an optimal or near optimal
decision? TIhat is, how does the quality of a decision deteriorates as tie complcecncss of in for-
mation decreases?

* What is the computational complexity of the proposed decision process? Does a substantial
reduction in complexity cause a major or minor reduction in performance?

*What is the total delay of a proposed decision process? This includes the information gathering,
* negotiation, and decision making. More importantly, how i this total delay compared with the

relaxation time of the system? 'llhe relaxation time is a measure of how fast the system is changing
its status.

In the following, we attempt to answer some these questions in the context of load balancing.

3.3 The Load Balancing Problem

In this section. we consider the load balancing problem in the context of a local distributed computer

system such as Archons [Jensen 83] in which users create jobs at the nodes they log into. Since both the job

arrival process and the required computational time for each node is unpredictable, the loads at each of the

* nodes will be widely variable. Some will be lightly loaded, while others will be heavily loaded. The task of

* the decision makers (local operating systems) is to equalize the loads in the system in order to improve the

* system wide performance. Balanced loads will create short queues and short response times.

Each decision maker can manage its own job queue if it chooses to process it locally. Load balancing

necessitates the shifting of load from one processor to another, and this necessitates some form of consensus

and negotiation involving at least a subset of the processors. At the other end of the spectrum, one processor

* acting as a central scheduler will assign the job to one of the processors. The no negotiation approach can be

* carried further by letting each of the processors schedule its own jobs. This arrangement would then be

* equivalent to the team decision approach whereby no consensus is needed, but the individual decision makers

act to improve overall system performance. There is no a priori necessity for consensus. Rather, the degree

of negotiation must be dictated by performance.

Generally, there are two aspects of load balancing. The first aspect is the matching of the structure of the

data flow in the application with the architecture of the distributed computer system. This includes clustering
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closely coupled processes in the siame or nearby nodes, sdhcduling tasks with respect to precedence relations

in such a way that more tasks can bc executed concurrcntly. and matching the special resource rcquircments

of tasks with special hardware etc. From a modelling point of vi w. the optimization of these aspects is

typically an integer programming problem. In many dedicated real-time control systems, this is done off-line

due to the lack of efficicnt algorithms for solving integer programming problems. A second aspect of load

balancing is the control of system dynamics. In a distributed system, there is substantial redundancy built into

the system. Often a class of tasks can be executed with near equal efficiency by any of a group of similar or

identical processors. 'Thc problem then is the equalization of the load st) as to improve the throughput and

response times. In this chapter. we will concentrate on this latter aspect.

Traditionally, the load balancing is carried out by a centralized scheduler. However. this approach is

inadequate for many larger scale systems which are typically loosely coupled. The inadequacy is in part due

to reliability considerations and in part due to the time delay involved in routing all relevant information to a

centralized location, in this chapter, we will investigate a highly parallel and highly decentralized approach.

In this approach, each processor is considered to be a member of a management team, the individual actions

of which are geared to increasing the system level performance. The crucial requirement is the development

of an information exchange structure and an associated decision procedure which makes such an approach

effective.

In summary, it appears that one reasonable approach to load balancing is the highly decentralized team

approach. In this approach, each processor acts individually to increase system performance. The key

'ingredient is to develop an information exchange structure which will lead to increased system performance

by allowing each individual processor to schedule its own jobs. The most difficult aspect lies in obtaining the

relevant system status information in a timely fashion. In addition, the actions of the individual processors

must be sufficiently coordinated to generate a coherent global strategy, even though it is implemented in a

highly decentralized fashion. We present some results on this team formulation in the rest of this section.

3.3.1 The Value Of Perfect Information

In developing a highly decentralized team approach to the load balancing problem, an important con-

sideration is the value of system status information. The actual information available to a processor will often

be delayed, incomplete, and inaccurate. It is, however, useful to consider the ideal case of "perfect" infor-

mation. System performance measures such as throughput or mean response time are influenced by unavoid-
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able queueing or congestion delays and delays caused by itnperkIct system status inhfrmantion. 1o quantify

the importance of system status information, we must separate out the cxtra delay incurred when information

n is imperfect. 'Ihc approach is to measure system performance under the assumption of perfect information

-" and to also measure it under some imperfect information scheme. The fonner gives an upper bound on

obtainable perfonnance, while the difference measures the loss in performance due to imperfect information.

As an illustration, let us contrast two extreme cases. At one extreme, we assume that all processors have

complete. accurate, and instantaneous system information. At the other extreme, we assume that processors

. have no system status information at all (not even local information). In both cases, the processors will make

the best possible decisions, but since different information levels are assumed, the performance achieved in

the two situations will be different. The difference in performance is due solely to the availability of the

status information and provides us with a quantitative measure of the value of complete information. This

measure will help us to identify situations in which information is very valuable and situations where it is not.

As a specific example of this approach, we assume that the network consists of n homogeneous processors.

We assume jobs arrive at the i th according to a Poisson process with mean X, jobs per unit time. All jobs are

homogeneous and require a random amount of time to process given by an exponential distribution with

mean m. We will, for the moment, ignore all other factors such as communication costs, priorities, etc. In the

case of perfect information, each processor is able to act as a central scheduler. If a processor is available for

work, this is assumed to be known to the other processors. No queues will form if other processors are idle.

This corresponds to an M/M/n queueing system with arrival rate A = XI + ... + X. and mean service rate

1/rn. The performance of such a system can be explicitly characterized. For example, the mean r.sponse

time is given by np((l-p)+C(nnp)/n)/((1-p)) where C is the Erlang C function and p =Am. The Erlang

C function is bounded above by 1 and is usually small. Thus this formula can be approximated by np/A.

Other quantities such as processor utilization can also be calculated.

In the case of no system status information, each processor must make a decision based only on the Xi, m,

and n. That is, only long run average information rather than dynamic loading information is available to the

processors in this case. The optimal assignment scheme is probabilistic and results in an even load being put

on all processors. It is important to observe that the concept of a balanced load is defined here only in the

long run. All jobs are allocated so that in the long run the same number of jobs will be handled by all n

processors. The lack of current and complete system status information means that the processors are not

able to take current loads into account. Imbalances will result, and system performance will be decreased.
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The situation of no current status information corresponds to a collection of n independent M/M/1

qucueing systems with Poisson input having mean rate X/n and mean servicc time m. Performance quantities

arc easily calculated for such a system. For example, the mean response time is given hy np/( (l - p)). It is

interesting to compare the mean response time in these two extreme cases, the complete information case and

the no information case. "bc two differ by the multiplicative factor I-p + C(n.np)/n. One might refer to

this quantity as the "information factor". 'Ihe factor is equal to 1. its minimum value, when p=0. and it

decreases to /n as p increases to 1. Ihis means that at low traffic intensities (p near 0). system status

information provides no significant reduction. 'Ibis factor can be calculated for any traffic intensity p and

shows that information is very valuable at moderate and high intensities. Furthermore. the value of infor-

mation increases with the number of processors in the network.

3.3.2 The Value Of Local Information

In this section, we continue to assume a situation in which processes and processors are homogeneous.

Furthermore, we do not consider the communication delays or the time cost of transferring tasks in this

section. Now we wish to study the situation in which each processor has only local information (the status of

its own job queue) and knows the long run arrival rate of work. The arrivals are assumed to be independent

Poisson processes with common parameter A. while service times are again exponential with mean m. Each

processor upon receiving a job must determine whether to process it locally oi send it to another processor.

This decision must be based only on the local queue length and is made without any negotiation. We also

assume that if it is sent to another processor, that processor must accept the job and cannot send it further.

This assumption is useful in that it prevents excessive job swapping, and it simplifies the analysis.

A general class of control policies within which an optimal policy must lie consists of a set of probabilities,

{pn}. where pn gives the probability that the processor accepts a newly arrived task when its local queue

consists of n other tasks. These probabilities must be decreasing in n. Optimal stochastic control theory

suggests that the optimal ps will be non-randomized (either 0 or 1). This reduces consideration to a 'control

limit' policy: accept a task if and only if the local queue, including the one tking served, consists of L or

fewer tasks, otherwise send it to another processor chosen from among the other candidates. The best value

of L will depend on the traffic intensity. If the traffic intensity is small, then L = I is appropriate. For larger

values of p, L must be larger. It remains to determine the optimum value of L for each p, and to assess the

performance of the resulting local information system.
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Once I. has been determined, there is a second phase to the policy -the choice of the processor to send the

unaccepted task. A number of policies, both deterministic and stochastic can he u.sed. An optimal policy

must equalize the load on the processors in the long run. Beyond that requirement, we expect that the

optimal policy will minimize the coefficient of variation of the resulting arrival processes. ''hc form of the

optimal policy is still an open question. We choose a policy in which each proccssor selects randomly from

the remaining (n- I) available choices.

'l be L policy qucueing system has not been studied before, and it is quite complicated to produce exact

analytic solutions. Fortunately. a simple approximation can be used which is very accurate for large values of

n(1 -p). We treat each of the n processors as independent birth-death processes with birth rate bn =A(l +s)

for n<L, and bn = Xs for n>L, while the death rate is 1/m for all states. The parameter s is used to connect

the queues together and is chosen to achieve equilibrium. The unknown s is a root of a polynomial equation.

Once s has been determined, approximate equilibrium distribution and its mean can be found. The deriva-

tion is given in the appendix along with simulation results which attest the high accuracy of the approxima-

tion. If we let F =np/(X(1-p)), then we can determine the mean response times to be given by

POLICY MEAN RESPONSE TIME
no information F[1]
local control, L=1 F[1/(1+p))
local control, L=2 Fr[I-p+p/((+p) )
perfect information F[1-p +C(n,np)/n] - F[i-p]

The results are rather surprising. The percentage reduction in mean response time for perfect ififormation

over no information is p. The percentage reduction for the L =1 policy is p/(1 + p). Of the total p percent

reduction for perfection. 1/(1 + p) of it can be obtained using only local information. Even at high intensities,

local information gives over 50% of the possible gain. If one allows general L's, then at least 62% is possible

for any traffic intensity! It is wbrthwhile to point out that some non-local information can be obtained at

nearly no additional cost by keeping track of the source of each task in the local queue. Hence one can

firther improve system performance by using this "free" non-local information. For example, if a processor

decides to ship out a task, it should be sent to a processor which has not shipped it anything in its current

queue. This all suggests that very effective control can be exercised at low traffic intensities using just local

control. At higher intensities, the mean response times become quite long. Even though local control can

capture a high percentage of the overall gain possible from perfect information, it becomes important to

refine the decision making with extra information. Specifically, one needs to make a more informative choice

:..-,-;, -,. -..-:.:-..:-'.:- , ,.. ...:- .': .. .:.--. .';'. :-: : .: .. .: .: .: ; -.-- ,, .. 3- ..-: .,--- . - -. -
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of the pr(ocso)r selected to process the task. The purely random choice described carlier is inadequate.

Several such schemes arc suggested in thc next sction.

3.3.3 Approaches to Decentralized Load Balancing

Once onc has introduced a measure of dic valuc of information, it remains to develop an algorithm which

will nearly achieve the theoretical upper bound on performance. In gencral, processors will send messages to

inform other processors of their status. T'he more frcquent the messages, the more information other proces-

sors will have. Unfortunacely, these messages create overhead which serves to degradc system performance.

Tlo deal with this tradeoff, one can draw an analogy with team decision theory. Information is valuable and

worth the cost only if it causes the recipient to change his decision and results in a lower overall cost. A

message should be sent only if it has a sufficiently large information content to justify the cost of sending it.

Here we are ignoring the reliability considerations which may dictate that a message be sent periodically. We

use the word 'information' in the Shannon sense. The information gained from a message is equal to the

uncertainty removed. Only messages describing relatively unusual or surprising system states should be

transmitted. In the load balancing context, the high information content messages are those which describe

overloading or underloading conditions. This suggests that processors should transmit status messages ac-

cording to a control limit policy: either when it is underloaded or overloaded relative to its equilibrium

distribution. The exact control limits are determined to optimize the tradeoff between the cost of information

and the gain in performance from it.

The control limit policy described in the krevious paragraph should provide a very efficient decentralized

control algorithm. The policy is, however, one based on long run equilibrium calculations which ignore short

run fluctuations. A processor will send a status message when its workload deviates from its long run

expectations. It is possible that there could be a heavy influx of jobs over a short period (or a very small

influx), and many processors will have above (below) average workloads. This causes many status messages

to be sent which further degrades the system. This effect can be overcome by having control limits which are

determined dynamically and change based on short term load fluctuations. Unfortunately, this would seem

to necessitate sending even more messages to identify these short run fluctuations. There is, however, an

alternative approach. This approach is based on having each processor construct a system status model. If we

assume that the processors are linked by a bus connection, then each processor must do intensive bus

monitoring. Each processor must keep track of all traffic on the bus, noting its source, its destination, and if
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pos~sible its cstimajcd processing time. This information allows each processor to build and update a system

status model. Stich at model would predict the current workload at each processor. Based on this model. tie

procewsor could act its at central schcduler to determine the best processor to handle any particular ask. T'he

quality of these decisions will be totally a function of the accuracy of the mnodel uscd. At first glance, it would

seem that dic system status model might bc accurate for a short time period, but its quality would qu'ickly

deteriorate as time passes. due in part to the uncertainty of thc exact processing requirements of any par-

ticular task. It is necessary to introduce some sort of feedback control to keep thc model accurate. Ib7is can

be also done in a highly decentralized efficient manner. Under the assumption that the processors are

coupled by a bus, they will all see the same traffic. As a result, they will all build identical system status

models. lhus the models used by each of the processors gives essentially identical predictions of the

workload at any particular processor. In addition, each of the processors has extra information in that it

knows the exact workload for itself. Each processor can compare its own workload with the workload as

predicted by the common system status model. 'The two will of course deviate. It is only important to notify

the other processors when this deviation becomes significant. This is again done on a control limit basis.

When the actual load is significantly larger or smaller than the load predicted by the model, that processor

must send a message to all other processors to have that part of the model updated. The exact control limits

must be determined to tradeoff the increase in performance with the overhead costs in sending the message.

In this fashion an effective feedback control mechanism can be established in a highly decentralized fashion.

3.4 Future Research

The previous section indicates how one can quantify the value of system status information. We wish to

generalize these results to a broader context. This will be done as follows. We will assume that both jobs and

processors may be heterogeneous. Further we will reintroduce the costs (in time) of communication as-

sociated with sending jobs around the network. A number of models are possible to handle this greater

degree of generality. We might assume that processes arriving at processor i (at rate N)can be processed by

any other processor. but the amounts of time required wHi vary. A number of factors will cause these time

differences: differing communication times, the capabilities of the particular processors, the requirements of

the job, the location of the data, etc. We assume that the time to process a job at processor j is random and

has a distribution F.. with mean in.. and variance s... From this structure, one must evaluate the system

performance under a full information and a no information structure.
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Under the assumption ot no dynamic information. the decisions must be hased solely on the parameters A

and F l. Again a probabilistic algorithm will be optimal. Performance quantities such as the mean response

time can he calculated from the Pollaczek-Khinchin formula. l'he full information optimal performance

evaluation can be carried out by a straightforward Lagrange multipliers argument.

It is intuitively clear that heterogeneity in general reduces the value of system status information. 'iis

observation follows because knowledge of the availability of a particular processor will be useless for jobs

which are mismatched to that processor. Heterogeneity increases the number of such mismatches and thus

reduces the number of cases where information is of value.

In summary, there remain a variety of important issues yet to be investigated. First, there is a need to

evaluate the response times of systems more general than the one analyzed in sections 3.1 and 3.2. This is

outlined above. Second. one must evaluate the performance of the various control strategies outlined in

section 3.3. These initial results do, however, indicate that the team decision approach with limited local

information will offer a very high performance decentralized system.
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3.5 Appendix

The behavior of the network under an I policy can he determined approximaItCly using a simple birth and

death process model. We focus attention onto a single node. 'Ihis node receives external input according to a

Pois&n (A) process. It acccpt% and queues these tasks if there are currently fewer than I tasks there. It sends

thc work clesewherc if it currcntly has I. or morc tasks. The nodc also acccpts tasks sent by other nodes that

invoked the 1. policy. These tasks must be kept and processed. 'That is. each task can be only sent once by a

node. Wc assume the same external input rate X and exponential scrvice rate I/in at cach node.

"The queue lcngth process at each nodc is treated as a birth and death process with constant dcath rate I/r.
The birth rate is b. = X + X8 = X(I+8) if0 < i < L and is X8 if i > L. Here 0 is the fraction of traffic

forwarded by a node and is ' .where {k}0 is the equilibrium distribution of the birth-death

process. One can find the equilibrium distribution from standard birth and death theory.

IF.=9 I0  -i(bimi +1), 1 < k < oo

00 
w
o k -- 1.

Consequently,

pk(l+l)k 
1<k<L

lpkok-L(l+ 8)L k>L

3.5.1 Case 1: L = 1

We consider the case L = 1. Here, the equilibrium distribution is given by

IF =  lp(1+8)w° k=1
k p k'k-(1+O)ro k>1

where 9 = 1 - v0 1 = I

0

The condition 1 = =r v yields v 0(1+p)/(1-pO) = 1. The further requirement 0 = 17 w0 gives r0

= 1 - p, so 9 = p. This gives the equilibrium distribution in terms of p alone,

Wk l-p k0
k k =O"p2k-(l + p)(1-p) k>_l
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lhe mean queue length can be calculated directly from this distribution to he p2/ (l -p)(l + p)j. I.ittles

fonnula can he used to find the waiting time = F(I/(I +p)).

3.5.2 Case 2: L = 2

'lMc analysis for I. = 2 is similar to the 1, = 1 case. The equilibrium distributioil is given by

= {p(l+O)vTo k=1

pkek-2( 1 +8)21to k>2

where 7 iioWi = 1, 8 = l- go- W1,

The three conditions, Xi°= 1, = I- wovt and w = p(l + O)t 0 can be used to find the equilibrium

distribution. It is wo = 1 - p and

pk= (1 +pXlI-p)/(1+p(1-p)) k=l
I[p/( 1 + p(1 _ p)]k(l + p)(1 -p)/p4 k>2

Once again, the equilibrium queue length can be found this distribution. The waiting time is given by

F(l-p+p/(1+p)2)

3.5.3 Simulation Results

It is important to determine the accuracy of the previous approximation. A simulation was carried out for

that purpose. Selected results are presented below for the case of 5 nodes. The results show that the ap-

proximation is extremely accurate for traffic intensities up to 0.5 and still accurate when traffic intensity is 0.7.

At high traffic intensities, the network becomes difficult to simulate accurately as extremely long runs are

needed. The approximation will work better as the number of nodes increases, but simulations are difficult to

carry out in such cases. The followings are simulation results and theoretical results of the probability of n

jobs in the queue. In addition, the mean queue length of simulation results and theoretical results are also

compared.
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lraditionally. studies on concurrency control have Iicused on de issue o" dalalase consistency, rather than

transaction correctness. Under a non-serializahle schedule, transactions cannot he considered as if they arc

executing alone. It is. therefore, unclear ift a transiction which satisfies its post-condition when exectiting

alone will still satisfy its post-condition when it is run non-serializably, even if the non-scri:|lizablc schedule is

consistent. Although many proposed non-serializable control methods are shown to he powerful tools to

solve various specific application problems, non-scrializablc concurrency control methods will be difficult to

use in a general transaction facility until the problems of the consistency of the database, the correctness of

transactions and the modularity of scheduling transactions are coherently solved.

In this chapter, we develop a theory of modular concurrency rules - a theory of provably consistent and

correct concurrency control methods that allow one to write, modify and schedule one's transactions indepen-

dently of the others. Our theory is a generalization of serializability theory and provides at least as much

concurrency as any other modular scheduling method. Before the formal investigation, we give an informal

overview of our theory. From a programmer's point of view, our work is a formal theory for decomposing a

transaction system. Under serializability theory each transaction is treated an atomic unit of operations and

the database is treated as a non-divisible unit of data objects. In our approach, both the database and

transactions are decomposed as follows.

1. The database is partitioned into consistency preserving atomic data sets. As long as the consis-
tency constraints of each atomic data set are satisfied individually, the consistency of the database
is maintained. However, data objects in different atomic data sets need not be independent or
unrelated, and data objects can be added to or deleted from any of the dynamic data structures
(e.g. linked lists) in an atomic data set.

2. Each transaction is independently partitioned into a partially ordered set of correctness preserving
elementary transactions. As long as the post-condition of each executed elementary transaction is
individually satisfied, the post-conditions of the partitioned transaction (called a compound
transaction) are also satisfied.

An elementary transaction can have the structure of nested transactions, and it preserves the
consistency of the accessed atomic data sets. However, elementary transactions in a compound
transaction need not be independent computational units. That is, the results of computations can
be exchanged by the elementary transactions of the same compound transaction.

Having divided the database and transactions, we next employ some concurrency control protocol to ensure

that the elementary transactions of each of the compound transactions are executed serializably on a atomic

data set by set basis. The protocol defined in this chapter ensures that:
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5. Subtask B1 -1: Atomic Transaction Theory:
Modular Concurrency Control

In this chapter, we summarize our work on the concurrency control part of atomic transaction theory,

which is part of Subtask BII. Concurrency control addresses the problem of how to run a set of transactions in

a distributed system consistently and correctly with a high degree of concurrency. I'his work is primarily

conducted by )r. I.ui Sha and Prof. John P. Lchoczky.

5.1 Introduction

Scrializability theory has been widely accepted as the basis for concurrency control, because it ensures the

consistency and correctness of concurrency control. Under serializable schedules, the results of executing a

set of transactions will satisfy both the consistency constraints of the database and the post-conditions of

transactions as long as each individual transaction is consistent and correct when executing alone. Further-

more. with serializable schedules one can write, modify and schedule 6 any single transaction independent of

any knowledge of the rest of the transactions in the system. Such a modular property of concurrency control is

very attractive in the development of a general purpose transaction facility in which transactions are fre-

quently modified. We believe that the properties of consistency, correctness and modularity account for both

the popularity of serializability theory and the continuing interest in the study of various protocols that

support the serializability of concurrency control [Weihl 84, Attar 84, Papadimitriou 84. Mohan 851.

On the other hand, there are many proposed non-serializable scheduling methods that can provide a higher

degree of concurrency than that available using serializable schedules [Allchin 82, Schwarz 82, Garcia-'Molina

83, Lynch 83, Schwarz 841. Since serializability theory is optimal when only transaction syntax information is

used for scheduling transactions [Kung 79]. many proposed non-serializable scheduling approaches have

typically focused on various methods of using transaction semantic information to maximize system concur-

rency. This approach can lead to significant increases in concurrency. There is, however, a potential accom-

panying disadvantage. When a set of transactions are jointly scheduled through the use of semantic infor-

mation, the modification of even a single step of a single transaction could result in the rescheduling of the

rest of transactions. There is a second problem which arises with the use of non-serializable schedules.

6 For example, one can use the two phase lock protocol to schedule one's transaction [Eswaran 76].

. • . - . - . o ° . . . -. - . ... . . . . . .. .
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" Usc harI deadline scheduling -- Use all vahie functions with the Samc constalit value prior to their

deadlines. 0 after the deadlines.

" Maximize the number of processes scheduled in a given time interval -- Use all valuc functions
with the same constant value both before and after their deadlines.

B Use user-defined priority scheduling -- Use value functions with constant values, but whose values
represent their priorities.

e Minimize the average lateness -- Use value functions which are constant prior to the process
deadline, but linearly decreasing after the deadline.

A solution for this problem must produce (at least) the following actions in some form:

* Continuously refine the estimate of the computation time for each process.

* Determine the probability that an overload condition exists such that one or more currently
schedulable processes will miss its deadline.

" Determine the best execution sequence of the currently known schedulable processes.

" Initiate the shedding of load if an overload condition currently exists and has a high probability of
continuing.

.;.:. . .......................... ........... o..................
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function of proc s% p I drops blow somc user-delined value, the scheduler may decide that there is insul'-

ficient value to the ,ystem in continuing its execution. and cause its abortion. This action will (perhaps

slowly) purge the sentCm of proce'ses erroneously capturing a disproportionately large portion of the system

resources. The type of functions definable for V. will determine the actual scheduling performance of the

system.

Each scheduling computation results in the determination of a process ordering (m1 " "mn). where pr. is

the j process to be scheduled. Scheduling will be considered optimal if. with respect to the available

information at the time of the scheduling decision, P is maximized, where /3 = V,(T) and T is the expected

completion time of p, using the scheduling sequence currently decided upon (if p, is the jth process to be

scheduled, then T= Y

It is evident that no priority has been defined for pi. The use of the value function renders such a concept

unnecessary for this research, since the relative priority of all competing processes, at any point in time, will

be determined by their respective value functions at their estimated completion time. Thus their priorities

will vary, but will always reflect the estimated likelihood of completing prior to their deadlines. A separate

question is how an application will define the relative importance of a number of competing processes, but

this question will not be considered in this research. A number of potential solutions to this problem exist.

and their choice will depend on the behavior desired as well as the actual type of value functions used.

This model encompasses both periodic and non-periodic processes in that any individual execution of a

periodic process can be described as shown above in exactly the same way as for a non-periodic process. The

only difference is that the periodic process immediately becomes schedulable when it terminates, since its

next request time is already known. We can beg the question of overlapping executions since, with our

model, they can either be avoided (by ensuring that a periodic process' value function drops to zero prior to

its next request time), or handled by allowing multiple instances of a process to be simultaneously schedulable

(assuming that processes are reentrant, and that the average load does not become larger than the processor

capacity).

It should be noted that the use of the arbitrary value function in this computational model subsumes a

number of scheduling policies which are commonly used or desirable in determining scheduling algorithms

such as:
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A schedulable process. p., is one which is not currently awaiting any external5 event in order to be

scheduled. and which has an outstanding request for processing time. We define a process as schedulable as

."-)n as it has met this requirement, and it remains schedulable until one of the following conditions has

occured:

" Its process defined dcadlinc event has been signaled and the process has blocked waiting for some
future external event.

" It has terminated.

" It has been aborted by the system.

Thus. the request time R, for a schedulable process may be either 2 future or a past time. If the request

time R. is a future time, the process is not currently a candidate for dispatch, but its attributes may be

considered in the current computations of load from which current scheduling decisions are made. The

reason for this will become clearer as we progress with some of the scheduling algorithms and heuristics for

this decision. Process p, cannot be dispatched prior to its request time.

The computation time C is a stochastically defined value representing the expected time to process Pi

(estimated time remaining if p, has already begun processing), not including non-requested system overhead

or preemptions. The source of this Value is expected to be an actual measurement by the system itself. Other

possible sources are the process programmer at implementation time or a predicted value using process

information combined with system measurement. The choice of source(s) for this value is one of the ques-

tions to be considered as part of the policy/mechanism discussion. In this research, the distribution of Ci is

one of the issues to be discussed.

The deadline D. is a time provided by the requesting process at the time R. is defined, making pi schedul-

able. The importance of the deadline is determined by the value function Vi; in fact, the deadline itself,

without the value function, has no particular importance. Vi.defined in this research as a non-negative

function, defines the value to the system for completing p, prior to D. Its value is used by the scheduling

function to determine the best sequence in which to schedule each of the available processes. If the value

5An external event is an event which is not under control of the process. Examples of such events are I/0 completion. asynchronous
requests from another process, and timer countdown.
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Following he definition of the computational model. the set of possihlc s0heduling actions must he

defined. il'is includes the scheduling dcisions as well as the determination of an overload condition in

which it is apparent that, at a given processor, the resources arc inadequate to meet some deadlines. If

resources arc inadequate to meet some of the deadlines, a user policy must be defined to specify how the

system should respond. A set of potential policies for such cases will be decribed, and mechanisms

(algorithms) to implement these policies will be defined.

4.3.2 Deadline Scheduling Model

Consider some small number n of processors (say 4). in a fully connected distributed system4 .

V,

• time

C-1

<= =<proc.press<

Figure 41: Process Model Attributes for Process i

The model for this problem consists of a set of schedulable processes p, resident in each processor. Each

such process has a request time Ri, a deadline Di, an estimated computation interval Ci, and a value function

Vi(t), where t is a time for which the value is to be determined. Figure 4-1 illustrates these process attributes

for a process with a linearly decreasing value function prior to its deadline, and an exponential value decay

following its deadline. The illustration depicts a process which is dispatched after its request time and which

completes prior to its deadline.

'We will use a small number of proceon for convenience in performing simulation of the resulting algorithms. but the algorthn

themselves will contain no assumptions regarding the actual number of processous,
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4.2.5 Distributed Decision Making

'hC Byzantine Generals Problem [I .amport 821 Il)olcv 821 [I.ynch 821 is the name given to the problem of

reaching a consensus on a decision in an environment in which some of thc decision makers have failed (or

may even be antagonistic to the making of a correct decision). It has been proved that in a fully connected

network of decision makers [l.amport 82J. a correct decision can be effccced as long as more than two thirds of

the decision makers have not failed. The algorithms presented. however, while guaranteed to produce a

correct sohtion. require full synchronization of all decision makers. and require a large number of messages.

It should be noted that in a completely asynchronous system (i.e., one with no complete event ordering such

as a clock), no Byzantine agreement is possible in the presence of any failure [Fischer 821

4.3 Hard-Real-Time Scheduling

Making a best-effort decision in a distributed system can be accomplished using a number of techniques

spanning several computer science disciplines. There are no specific bounds on the techniques employed, so

algorithms will be developed using ideas from such areas as artificial intelligence, decision theory, and

non-monotonic logic, as well as combinations of these. It is expected that each of these techniques will have a

number of positive and negative characteristics in the context of decentralized operating system resource

management.

This research will be performed in four partially overlapping phas.-s:

1. Problem Specification

2. Algorithm Development and Analysis

3. Experimentation

4. Evaluation

4.3.1 Problem Specification

First, a detailed statement of the problem to be solved must be produced, defining an instance of a

distributed system for which deadline management can be described precisely and simply, as well as the

available information from which to make the decisions. To define such a problem, it is necessary to describe

the computational model of the processes to be scheduled and for which algorithms will be designed.
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whether io plan a picnic for Saturday). Thc decision makcr first constructs a matrix with cach row for a

potential decision and each column for a potential relevant state, placing in each matrix clement a valuc of the

utility or desirability of having made that decision if the correspon'ding state occurcd. 'llicn the decision

maker constructs a similar matrix containing the probability that that state will actually occur (possibly

conditional on the dccisiou to be made). T'he row-wise sum of the matrix produced by multiplying each

element of the utility matrix by the corresponding clement of the probability matrix defines a vector

representing the optimal ordering of the set of potential decisions.

4.2.4 Real-Time Deadline Management

Research into the general scheduling problem has progressed for a long time as a part of operations

research, where it has found application in the scheduling of such activities as manufacturing production.

Graves [Graves 811 has provided an excellent synopsis of this background, including a taxonomy of produc-

tion scheduling problems. He identifies four levels of complexity with respect to scheduling decisions-

tractable solutions have been identified for only the simplest of these levels while the rest have been proved to

be NP-complete or NP-hard.

I In particular, the level of complexity most similar to the problem to be considered in this research, soft-

real-time deadline scheduling with constant value functions for met deadlines, has been proved to be

NP-complete [Karp 72]. Algorithms for this. problem have been described [Sahni 76] both for optimum

scheduling (obviously, in exponential time) and for a heuristic approach for which an optimal solution can be

missed by a determinable factor in O(n) time. The model which we are using to define the scheduling

problem to be handled includes this problem as a special case.

In a classic paper, Liu and Layland [Liu 73] show that the simple deadline scheduling problem with a set of

independent periodic processes whose computation times are exactly known and identical for every period,

whose deadlines are equal to their period, and which are running in a single processor, is solvable with a

simple algorithm, and that the schedulability of such a simple system is easily determinable in advance.

While this result is interesting, the cases covered are much too unrealistic to be directly applicable to our

problem.

*. h o. . . . • . • . - . . . . . . . . . . . . .. -.- . * . . . . . . . . .
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applying a best ct n to die real-time proccss scheduling prohlem, particularly in the areas of datit under-

standing and knowledge and inference rule represcntation.

4.2.2 Non-monotonic Logic

Decision making is dependent on a determination of the state of the relevant world as assessed by the

decision maker. Tle decision to be made can be viewed as a consequence (deduction) from this perceived

state, which can be represented as a set of predicates. Normal formal logic, from which inference rules would

be taken to produce such dcductions, can be described as mnonolonic in the sense that the addition of any new

axiom (i.e.. an additional observation of state) which is not in conflict with existing axioms, can never

invalidate a previously drawn conclusion. In a situation characterized by a large quantity of incomplete or

inaccurate information, such deductions may later be invalidated by the presence of new information Logic

in which inferences may be drawn using such data is called non-monotonic logic [McDermott

80] [McDermott 821, and is generally characterized by the use of a logical operator meaning "is consislent

with" on conclusions drawn.

In another form of monotonic logic, inferences which can be described only as "consistent" with perceived

state information can be handled by the use of fuzzy sets. Normal set theory deals with sets whose boundaries

are clear-cut; an element is either a member of a given set or it is not. Members of fuzzy sets [Kaufmann 75]

have an associated membership value which determines the degree of membership of that member in the set.

Fuzzy logic refers to the manipulation of predicates with fuzzy implications (e.g., High value processes should

be executed early). Discussions of such logic inference rules are given in [Zadeh 791.

4.2.3 Decision Theory

There are several mathematical techniques developed to construct decisions based on the opinions (inexact

measurements) of a number of co-decision makers. Stankovic [Stankovic 831 describes a heuristic for job

assignments in a decentralized, distributed environment using Bayesian decision theory [Jeffrey 84J. while

DeGroot describes iterative solutions given a matrix of opinion weights and a'vector of opinions [DeGroot

74].

Bayesian decision theory may be used in an environment in which a decision must be made whose value is

determinable only when evaluated in the light of an unpredictable future global state (such as determining

... . . ', *. ... . .. . . , *. *"- . " " " . .. -.. .. '.' .. .' . ... '..." " .- .-



Qucstions of policy/mechanism separation IWulf 811 are also related to this prohlem. If one or more

*- deadlines must be mimed, which deadlines should be selected? Clearly a policy decision must be made, and

the range of potential policies for this decision will be determined. with the required mechanisms defined.

implemented, and evaluated. It is these mechanisms which will reflect the best Cllort approach, and their

support of the potential policies will be analyzed.

4.2 Related Research

'Ihis area of research is the combination and extension of a number of previous efforts. As a result, there

arc several areas of research which can be considered related to this work. Here, we will describe research in

*five related areas:

* Artificial Intelligence -- particularly techniques for knowledge representation and rules of in-
ference related to decision making (planning).

. Non-monotonic Logic -- studies related to the handling of multi-valued logic, fuzzy logic (truth
assertions with respect to fuzzy sets), and associated truth determination.

e Decision Theory -- work related to the process of combining sets of observed states of nature, the
probabilities associated with these states in the event of a given set of decisions, and the ordering
of possible decisions based on this information (e.g., Bayesian theory).

e Real- Time Deadline Management- research on deadline scheduling in a real-time system.

* Distributed Decision Making-- efforts toward the problem of reaching a consensus in a distributed
system in the presence of failures.

4.2.1 Artificial Intelligence

little or no work has been performed in the application of knowledge collection, knowledge represen-

tation, and the resulting inferences to the problem of scheduling, load balancing, or process reconfiguration.

S.It seems that these areas could be critical to the efficient handling of these decisions. Stefik [Stefik 82]

-. delineates a number of approaches to problems involving expert systems, outlining the primary techniques

used in developing them based on the overall system type (e.g., planning, diagnostic, etc.). This problem

shares a number of the aspects of planning problems, in that the solution must evaluate the data determining

its quality and meaning, search the space of possible scheduling decisions estimating the result of each

evaluated decision, and make'a decision which is adequately close to optimal. It is expected that at least some

of the techniques involved in the design of expert planning systems will be applicable to the problem of

Sp'



7W* -0J-~- a.~. ~.~~. .w.~- . .~ .. .- - -. -.- 1_ :

37

4. Subtask A3: Multi-Processor Real-Time
Scheduling

"bc chapter summarizes Subtask A3, our recently initiated work on multi-processor real-time scheduling.

In a modern combat environment. making and carrying out the decision in time can be as important as the

quality of the decision itself. Missing the deadlines could mean the failure of an otherwise successful

operation. In this chapter, we describe our initial work on a value function based approach for real-time

multi-processor scheduling. This work is primarily carried out by Mr. )ouglass Locke as part of his Phi)

research.

4.1 Introduction

An operating system managing a real-time application shares a large number of functions with a normal

timesharing operating system, but differs most significantly in one principal area -- the management of time

* deadlines. The typical time sharing operating system manages a number of independent applications.

promoting some concept of fairness (defined by the system administrator) among them. In the real-time

system, a single application3 uses the system resources to solve a single problem, and includes a set of

deadlines which must be met in order to satisfy its specifications.

The research which we undertake here is to study deadline management in a multi-processor environment.

in which the time allocation decisions must be made using a best effort approach. In fact, for this problem a

best effort approach must be used because of the built-in uncertainties even if complete and accurate global

- system state information were available, because of the stochastic nature of the information available about

schedulable processes and the limited decision making time available in a real-time system.

A considerable amount of research has been done when deadlines could be met but relatively little

-. information is available about scheduling decisions when available resource limitations require that one or

" more deadlines cannot be met. Our approach will be designed to maximize the value of the available state

information to make the deadline scheduling decisions, particularly in those cases where deadlines cannot be

met.

3Asngle application means a set of processes working together and sharing resources toward a common goal. While it is possible for
more than one such application to ran concurrently in a real-time system, it is usually true that the real-time commitment of the system

• . will be made only to one: any others will execute as background applications.

* .,",*.
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Run 8: Traffic Intensity =0.7, Policy: L =2

Simulation Theory
Prob[n=03 0.301 0.300
Prob[n=l] 0.279 0.295
Prob~n=2] 0.273 0.290
Prob[n=3] 0.086 0.082
Prob[n=4] 0.034 0.023
Prob[n=5] 0.015 0.007
Prob[n=6] 0.007 0.002
Prob(n>7) 0.005 0.001

Mean queue length 1.371 1.267
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Run 5: Traffic Intensity = 0.5, Policy: 1. =1

Simulation Theory
Prob[n=OJ 0.502 0.500
Prob[n=1] 0.365 0.375
Prob[n=2] 0.094 0.094
Prob[n=3] 0.027 0.023
Prob[n=4] 0.008 0.006
Prob(n=5] 0.003 0.002
Prob[n>6] 0.001 0.000

Mean queue length 0.687 0.666

Run 6: Traffic Intensity = 0.5, Policy: L = 2

Simulation Theory
Prob[n=O] 0.502 0.500
Prob(n=1J 0.292 0.300
Prob[n=2] 0.179 0.180
Prob[n=3] 0.022 0.018
Prob(n=4] 0.004 0.002
Prob[n>5] 0.001 0.000

Mean queue length 0.737 0.722

Run 7: Traffic Intensity = 0.7, Policy: L = 1

Simulation Theory
Prob[n=O] 0.299 0.300
Prob[n=l] 0.344 0.357
Prob[n=2] 0.167 0.175
Prob(n=3] 0.087 0.086
Prob[n=4] 0.046 0.042
Prob[n=5] 0.025 0.021
Prob[n=6] 0.014 0.010
Prob[n=7] 0.008 0.005
Probin>8] 0.010 0.004

Mean queue length 1.468 1.365

.- .................................... ................................. . ............ .
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Run 1: Traffic Intensity = 0.1, Policy: L = I

___ _S $imulation Theory
Prob[n=O] 0.902 0.900
Prob[n=1] 0.097 0.099
Probfn=2] 0.001 0.001
Prob[n>3] 0.000 0.000

Mean queue length 0.099 0.101

Run 2: Traffic Intensity = 0.1, Policy: L = 2

Simulation Theory
Prob(n=O] 0.901 0.900
Prob[n=I] 0.090 0.091
Prob[n=2] 0.009 0.009
Probin>3] 0.000 0.000

Mean queue length 0.108 0.109

Run 3: Traffic Intensity = 0.3, Policy: L = 1

Simulation Theory
Prob[n=O] 0.702 0.700
Prob[n=l] 0.268 0.273
Prob[n=2] 0.026 0.025
Prob[n=3] 0.003 0.002
Probfn>4] 0.001 0.000

Mean queue length 0.333 0.329

Run 4: Traffic Intensity =0.3, Policy: L = 2

Simulation Theory
Prob[n=O] 0.699 0.700
Prob[n=1) 0.225 0.226
Prob[n=2] 0.074 0.073
Prob[n=3] 0.002 0.001
Prob[n>4] 0.000 0.000

Mean queue length 0.379 0.375

............ . . . . . .

.o
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1. lhe database consistency constraints will be satisfied.

2. 1le post-condition of cach (compound) transaction will be satisfied.

3. Me transaction scheduling approach is modular and provides at least as much concurrency as any
other consistent and correct modular concurrcncy control method.

The concepts of modularity and atomic data sets formally defined in this chapter have intuitive meanings.

A modular concurrency control method is one which allows a programmer to write, modify and schedule his

transaction independently of other transactions. For example, serializability theory is a modular scheduling

method, because a programmer can write, modify and then schedule (e.g. using the two phase lock protocol)

his transaction independently of other transactions in the system. In other words, a modular concurrency

control method ensures that any particular written and scheduled transaction need not be changed, when

other transactions are written, modified or rescheduled.

We assume throughout that the consistency constraints of the database are fixed while transactions are

being added or modified. It is. of course, possible that the specification of database consistency constraints

could be changed during the development of the transaction system and this could in turn force the trans-

*n actions to be rewritten and rescheduled because transactions must maintain the database consistency con-

straints. However, the task will be easier if a modular approach is used, because one can examine the impact

-* of new consistency constraints on each of the transactions individually and perform the necessary modification

individually.

Intuitively, an atomic data set is a set of data objects whose consistency can be maintained by a transaction,

-independently of how other atomic data sets are being updated by other transactions. We call this property of

an atomic data set "consistency preserving". It is important to point out that consistency preserving implies

* neither that data objects in different atomic data sets are unrelated nor that data structures must be static. For

example, we might have a document queue associated with each of the computers in a local network and

several print queues associated with printing devices in the network. Each queue has its own consistency

constraints in the form of "0 :5 QueueSize : MaxSize". There is a clear "producer-consumer" relation

- , between document queues and printer queues. Nonetheless, each queue forms an atomic data set because the
. ,

consistency of any queue can be satisfied independently of the others.

As an additional example showing the possible inter-relatedness of data objects in distinct atomic data sets,

%
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7
* let us consider a simplilied model of a distributed directory system. It consists of a set of local directories

- (I.I)) in the form of trees with consistency constraints thai each entry in a II) must point to the correct

. location of files residing in the disk. We al.o have two global directories (GI)) in the form linked lists of

"" <FilcName, Nodel .ocation> pairs with the consistency constraints that an entry in a GI) must point to either

,. the current location or a historical location of a file. In addition, each node maintains a partial global directory

(PG1)) that contains the location information of frequently used remote files and the forwarding addresses of

migrated files. The data structure and consistency constraints of a PGI) arc the same as those of a GI). It is

* obvious that these directories arc inter-depcndent entities. However, each LD, PGD, and GD is an atomic

data set, because we can maintain the consistency of anyone of them without blocking the activities of

transactions on other atomic data sets. For example, we can readlock a LD, get the information we need,

unlock it and then update a GD. That is, we can read the LD without blocking the activities on other atomic

data sets, and we can update the GD and satisfy its consistency constraints, independently of how the LD or

other atomic data sets are being updated by other transactions. Finally, linked lists, queues and trees are

examples of atomic data sets that consist of dynamic data structures.

To illustrate compound transactions and their scheduling, let us consider the following example. Suppose

that transaction Get-A-and-B needs one unit of some resource at node A and another unit at node B. This

Stransaction requires both resource types, and if it cannot have both then it will not keep anyone of them. The

" resource heap at each node is modelled as an atomic data set with consistency constraint "0 < HeapSize <

MaxSi2e", and the transaction is written in the form of a compound transaction, Get-A-and-B, which is

" illustrated in Table 5-1.

This example illustrates the following three characteristics of our approach. First, the database is par-

titioned into two consistency preserving atomic data sets: Heap A and Heap B. Second, the compound

transaction Get-A-and-B consists of four correctness preserving elementary transactions, which co-operatively

carry out the task of the compound transaction by passing information to each other via atomic variables

Obtain-A and Obtain-B, As long as the post-conditions of the executed elementary transactions are in-

* dividually satisfied, the post-conditions of the compound transaction Get-A-and-B are satisfied. In addition,

each of these elementary transactions also preserves the consistency of Heap A and Heap B. Third, the

- locking protocol used by this transaction only ensures that each elementary transaction is executed serializ-

7 For a detailed discussion of the distibuted directory eample. see Chapter 7 of [Sha 85a.

,- Nr_... •



(ontpound'ransiction Get-A-and-B;
Atonmc'.'rible Obiain-A, Obtain-I? : oolean;

* HeginSeril

Ecuncntarylransaction Get-A;
* BeginScrial

Writclock Heap A.
Take a unit from A if available
and indicate the result in atomic variable Obtain-A.
Commit and unlock Heap A;

EndSerial;

Elcmentary'Iransaction Get-B;
BeginSenial

WriteLock Heap B;
Take a unit from B if available
and indicate the result in atomic variable Obtain-B;
Commit and unlock Heap B;

EndSerial;
EndParallel;

Bleginfarallel;
ElementaryTransaction Put-Back-A;
BeginSerial

If Obtain-A and not Obtain-B
then BeginSerial

WriteLock Heap A;
Put-Back the unit of A;
Commit and unlock Heap A;

EndSerial;
EndSerial;

ElemientairyTrasaction Put-Back;-B;
BeginSerial;

If Obtain-B and not Obtain-A
then BeginSerial

WriteLock Heap B;
Put-Back the unit of B;
Commit and unlock Heap B;

EndSeral;
EndSerial;

EndParllel;
* EndSerial.

Table 51: Compound Transaction Get-A-and-B -

* ably with respect to each atomic data set. Global serializability of concurrency control is not enforced. For

* example, suppose that we have another compound tanaction Get-A-or-B, which is illustrated in Table 5-2.

* Transaction Get-A-or-B tries to get one unit of resource from node A and one unit of resource from node B.

* If it cannot get both, then it keeps whatever it has obtained.
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('ompound'l'ransacion Get-A-or-B;
Reginilarallcl

ElementaryTransuction Get-A;
lk-ginSerial

Writelock Heap A;
Take a unit from A if available;
Commit and unlock Heap A;

nEdSerial;

FlementaryTransaction Get- B;
BeginSerial

Writelock Heap B;
Take a unit from B if available;
Commit and unlock Heap B;

EndSerial;
EndParallel.

Table 5-2: Compound Transaction Get-A-or-B

Suppose that we execute transactions Get-A-and-B and Get-A-or-B with Heap A and Heap B with initial

- ,values of one. It is possible that transaction Get-A-and-B gets the only unit of A first, while transaction

Get-A-or-B gets the only unit of B first. As a result, transaction Get-A-and-B will return a unit to A, while

transaction Get-A-or-B will keep the unit obtained from B. The result of this execution is noi equivalent to

"" executing these two transactions serially. When these two transactions are executed serially, one of them will

get both units.

Eventhough the transactions are not executed serializably, the consistency and correctness of concurrency

control will be preserved. That is, the sizes of Heap A and Heap B will be positive and within their bounds,

transaction Get-A-and-B will either get both units or nothing and transaction Get-A-or-B will either get both

units, one of the two units or nothing. From an application point of view, the partition of the database and of

transactions increases the system concurrency and reduces the probability of deadlocks.

The consistency and correctness of compound transactions like Get-A-and-B and Get-A-or-B is not an

isolated example but rather the result of satisfying the generalized setwise serializable scheduling rule

developed in this work. Readers who are interested in the use of this theory in the development of a

decentralized operation system are recommanded to read Tokuda's, Clark's and Locke's work [Tokuda 851.

This chapter is organized as follows. In Section 5.2, we formally define the basic concepts of our model. In

......................... ...-.".-: "-' :..- ...,.-': '
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Section 5.3. we liinnally define the concept of atomic chaa scis and develop our first modular scheduling rule

called the setwise serializable scheduling rule and in Section 5.4 we develop a new transaction structure called

co#qx)und Irallsactions and their associatcd scheduling rules.

5.2 A Model of Modular Scheduling Rules

We begin our formal investigation by developing a model of modular scheduling rules. Intuitively, a

scheduling rule specifies how the steps of a transaction can be interleaved with those of other transactions. In

our model, a scheduling rule performs this specification by partitioning the steps of each transaction into

equivalence classes called atomic step segments. Schedules satisfy the specification of a given scheduling rule

by interleaving the atomic step segments of each transaction serializably with the atomic step segments of

* other transactions. For example, serializability theory is a particular scheduling rule which takes all the steps

of a transaction as a single atomic step segment. Serializable schedules are the set of schedules that satisfy this

rule, because the atomic step segments specified by serializability theory are interleaved serializably in

'- serializable schedules.

This section is organized as follows. In Section 5.2.1, we define the concepts related to the notion of the

database and in Section 5.2.2 we define the concepts of transactions and their schedules. In Section 5.2.3, we

define the concepts of a scheduling rule and their properties.

*5.2.1 Database

A database is simply a set of shared data objects, and a state of the database is a vector whose components

are the values of these shared data objects. A consistent state is a state that satisfies a given set of consistency

constraints. We now formalize the concepts related to the concept of database.

Dfntin5..-: A data object, 0, is a user defined smallest unit of data which is individually accessible

,- and upon which synchronization can be performed (e.g. locking).

Dfinition.2U: Associated with each data object 0, we have a set Dom(O), the domain* of 0, consisting

of all possible values taken by 0.

Dfiniion..2.2: Each data object is represented by triplets, <name, value, version number>. When a data

object is created, its initial value is assigned to version zero of this data object, e.g. "A[O]: = 1". When the data

object is updated, a new version of the object is created, and the transaction works on this new version.
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In the following discussion, when we refer to the current value of a data object 0. we would, for simplicity.

write "0" instead of "0(vl". " c version number representation will be used when different versions of the

values of a data object are referred to.

I)efinition 5.2.3-1: 'lMe system database I) = 101, 02 .... On} is the collection of all the shared data objects

in the system.

Definition 5.2.3-2: A state of database I) is an n-tuplc Y E = [-I7=n I)om(O).

Ikfinition 5.2.3-3: Associated with database D, there is a set of consistency constraints in the form of

predicates on the states of database D. A consistent state of database D is an n-tuple, Y. satisfying this set of

consistency constraints. This is indicated by "C(Y) = I", where C is a Boolean function indicating whether

this set of consistency constraints is satisfied by Y. For simplicity, we will also refer to this set of consistency

constraints by C. The meaning of C is easily determined by the context. The set of all consistent states of D is

denoted by U, where U = {Y I C(Y) = 1}.

5.2.2 Transactions and Their Schedules

Having defined the concept of the database, we now formalize the concept of transactions and schedules.

5.2.2.1 Transactions

In this section, we first define the syntax of single level transactions and the concepts of pre- and post-

conditions of a transaction. We then enumerate our fundamental assumptions regarding transactions. In

later sections, we will introduce generalizations to the single level transactions defined here.

Dfiniion52-: A single level transaction T. is a sequence of transaction steps (t, t 2.1mt )L A

transaction step is modelled as the non-divisible execution of the following instructions [Kung 79]:

0 f (,LL L..." L)

where the symbol "t. represents step j of transaction T.; the local variable Lt. is used by step t. to store

the value read. The symbol "0)" is the data object accessed (read or written) by step L., and the symbol

"ft" represents the computation performed by step t.

.- " % ., - , o " % . " . - .. - " - . ' . - . , , . " , . % . - . ., , .- , ".,, , ' " , . - , , . ". . ° .. . ' , '. ° , ..3 4 - . . . " .
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In this model, every step reads and then writes a data object. A read step is interpreted as writing the value

read back to the data object. "liat is, the function C, associated with a read step is the identity ftnction. We

now dcine the pre- and post-conditions of a transaction. We begin 'ith dcfining the input steps and output

steps in a transaction.

I)efinition 5.2.5: Let Ti = {t,.1, *** ti.m.} be a transaction. Let data object 0 be the one accessed (read or

written) by step ti,. Step t i. is said to be an inpul step if it is the step in T. that first accesses data object 0. Step

t. is said to be an oulpul siep if it is the step in T. last accessing 0. That is, for every data object 0 accessed by
IJ I

T. there is an input step and an output step associated with 0. Note that wheii there is only one step in T
I I

accessing 0, then this step is both an input and an output step.

Since transactions operate on the shared database, they must be able to accept any consistent state as their

input. That is, the values input to a transaction are assumed to satisfy the pre-conditions of the transactions as

long as these values come from a consistent database state.

Definition 5.2: Let Oi [vbt j = 1 to ki, be the set of values read by the input steps ofT i, where Vb denotes

the version of a data object that is input to a transaction. Let the index set of Oi, [vJ j = 1 to ki, be Im. The

input values to Ti. Oi[vb], j = I to ki, are said to satisfy the pre-condition of Ti, if and only if

3(XeUXwI (X)= ON[vb],j = 1 to ki)
m

where wI is the projection operator. That is, v I (X) is a tuple whose elements are those of a consistent X
mn m

indexed by I . Having discussed the pre-conditions, we now turn to the subject of post-conditions.

Dint ." Let 0. [fv , j 1= to ki, be the set of values written by the output steps of transaction Ti

where vf denotes the version of a data object output by the transaction. The post-condition of transaction T i is

the specification of the output values of T, as functions of the input values,

0Jv = k(O Ilvb- o 'v:b, i = I to ki.

Having defined concepts relating to the notion of a transaction, we now state our fundamental assumptions

about a transtioa:
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Fundamental Assumptions:

" Al Terminaim: A transaction is assumed to have a finite number of steps and is assumcd to
terminate.

" A2 Transaction Correctness- A transaction is assumed to produce results that satisfy its post-
condition when executing alone and when the database is initially consistent.

" A3 Transaclion Consistency. Given a consistent state of the database, a transaction is assumed to
produce a state that satisfies the consistency constraints of the database when it is executing alone.

Dlfinition 5.2.8: A transaction T. is said to be consistent nd correct if and only if Ti satisfies assumptions

A 1, A2 and A3.

In the following discussion, we restrict our attention to consistent and correct transactions.

5.2.2.2 Schedules

In the previous two sections, we have formalized the basic concepts related to database and transactions.

We now develop our model one step further by considering the execution of a set of transactions. To this

end, we introduce the concepts of transaction systems and schedules.

Diniij g.2 92: A transaction system T is a finite set of transactions {T1 ... , T} operating upon the

shared database D.

Dfiniion.10: A schedule z for transaction system T is a totally ordered set of all the steps in the

transaction system T = {T1, .... T } such that the ordering of steps of T, i = 1 to n, in the schedule is

consistent with the ordering of steps in the transaction Ti, i = 1 to n.

[V(Cx (t C z) -(t C UT) )] A [V(T. C T)V( (t.,tkE 7 T) A Ek z ))(('k ) A k > L.))]

A schedule z for transaction system T is said to be consistent if and only if the execution of T according to z

preserves the consistency of the database D. This concept is formalized as follows.

fini n 2-,11: Let X be the initial state of D and Y be the state at the end of executing T according to z.

Schedule z is said to be consistent if and only if

.. , ... -, ., .,...... ;.', , , , ..................," - :,.-. .... ........ ...... ,.... ....... .:.. . ,, ,-
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Z: XEU YEU

A schedule z for a transaction system T is said to bc correct if and only if the CxCCution of transactions in T

according to z produces computations that satisfy the post-condition of each of the transactions in the system.

I)efinition 5.2.12: Under schedule z, let the values input to and output from transaction T. E' be OI[IvJ

.... 0 i..V] and 0.lv.. Oik [vf respectively. Schedule z is said to be correct if and only if
I I

V(T.i ErxO. [v9 = f.(Ou ] .. 0. Oi[v].), j = I to k..)I tj IJ. 1 ki.)

Having defined the basic properties of a schedule, we now consider the relations between schedules by

introducing the concept otequivalent schedules. Conceptually, two schedules z and z for transaction system

T are equivalent if for any given initial state of D the executions of T according to z and z yield the same

sequences of values for each data object mi the database and the same sequences of values for each of the local

variables (states) of each transaction in T. This is formally defined by the partial ordering of steps induced by

z and z on each of the data objects in D.

Dfini 2.: Let 0 0 denote step tij and step tlcm read or write the same data object. A

schedule z for transaction system T is said to be equivalent to another schedulb z for T, if for every pair of

steps ti and tk in z and z,

V((tiWj, tkn E UT) A (0 Li O )) [(Lij, tk E Z) A (Lt .m)) 0* ((t, ,  k. m e Z) A (t Lik>tk/))]

That is, for each of the data objects in the database. 0, the orderings of transaction steps induced by z and

by z*, tkm( ... (t,(O)), are identical.

We now prove an important theorem which states that if z and z- for T are equivalent, and if z is consistent

and correct, then z is also consistent and correct. We begin our proof with the following lemma.

LCMa52.1: Let z and z be two schedules for transaction system T. Let t be a step of transaction T. e T.

Let the values of the data object accessed by t in z and z be O and O respectively. Let the values of the local

variable associated with t in z and z" be L, and L respectively. Given the identical initial state X to both z and

z , we have

-i-' '-.-'.-".--i-'- "-.-" -%.-.-'-- " --'--L..'G''- " " " -..'G--.'- '".''-'-'-'.''................-...'."-.-.'..'.'.,..'..-...-........'.."-..."'-'-'.'." "
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VCI'.')V(t ET ''(X(O =0,)A (L = 1,))

T[hat is. the values input to and output from any transaction step under z are equal to those under z*.

EK). Recall that the syntax of a transaction step is as follows.

L I :=OiL

Ot :=ft (Lt1 .... L 1)
,I LI i,!

It follows that a transaction step will output identical values under z and z" if for any transaction step tE UT

the values input to t under z and under z are equal. Thus, we need to show only that each transaction step

t E UT inputs the same values under both ichedules z and z.

Now consider the first step in schedule z denoted as t, 1. Step t ,1 must input the initial value of some data
object in D denoted as 0 By the definition of equivalent schedules and with the same initial state of D,

step tz.1 must input the same initial value of data object O Hence, ti,1 outputs the same value under both z

and z . Now consider the second step t 0 in z. The value input to the local variable of tz,2 under z is either

the initial value of a data object or the value output by step ti, 1. By the definition of equivalent schedules and

by the fact that tLl outputs the same value under both z and z , step t 2 will input the same value under both

z and zw. Suppose that step t a inputs the same value under schedules z and z*. Following the argument

.above, step t. + inputs the same value under z and z°.The lemma follows by induction. 0

TheomL5.2.: Let schedule z be a consistent and correct schedule for transaction system T. If schedule z

z, then z is also consistent and correct.

Eroo: To show that z is correct, we need to show that for any Ti c T, the execution of T under z"

produces correct results. Let the values input to T, be O.1[v, .... Oik i[v]. Let the values output by Ti be

O J. lv *..., 0 U[V. The post-condition of Ti is the specification of the output values of T. as some functionsI

of the input values: OQ[v = f i(Okl[vJ, .. OLk [vD j = I to k.. It follows from Lemma 5.2.1 that all the

input values to and the output values from T, under z and z" are identical. Therefore, the post-condition of Ti

must be satisfied under both z and z

r... . .- ..- **~* ,-.. , * -.- ,,: • .-.- .- -. = .. .•.. ". "", -,-"- -, o"•"-" .-- "- - -' .. , " - .. ,.- , -. ,- . -. ". •- "
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To show that Z is consistent. let the initial suite of' I) be XE U and the final suites of I) resulting from

executing T according to z and z be Y and Y respectively. It follows from the definition of equivalent

schedules and I.emma 5.2.1 that Y = Y. Thus. Y is a consistent state. 03

As an example of equivalent schedules, a scrializable schedule is defined as a schedule z for which there

exists a serial schedule z such that z -z. '!lhc consistency and correctness of serial schedules directly follow

from the issumption that each transaction is consistent and correct when executing alone. By Theorem 5.2.1.

serializable schedules are also consistent and correct.

5.2.3 Modular Scheduling Rules

Having defined the concepts of transactions and schedules, we now formally define the concepts related to

modular scheduling rules.

5.2.3.1 Definition of Scheduling Rules

We now formalize the concept of a scheduling rule and its relation to schedules.

Let T denote the set of all the possible consistent and correct transactions with m steps. Let T denote the
m

set of all the possible consistent and correct transactions, that is, T = U0 1Tn. Let denote a partition

into atomic step segments of a m-step consistent and correct transaction. Let @ denote the set of all thein

possible partitions of a consistent and correct m-step transaction. Let 9Pbe the set of all the possible partitions,

that is, 9 = U00l9m.

fin n 5.2.14-1: A scheduling rule for a transaction system With n transactions, Rn, is a function which

takes the transaction system of size n and partitions each of the n transactions,

R : rH7 1 T - rl7, 9P

Definiti .142: A scheduling rule R is a function which takes a transaction system of any size and

partitions each of the transactions in the system.

such tht T -o u t flis,

such that the restriction of R to I'[i T is.Rn. Ta s I =IT =R, , n 1 to o
1= Tha is, jrjof
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(ivcn a scheduling rule R, we must identify the set of schedules that satisft R. A schedule z satisfies R if

atomic step segments of one transaction are interleaved serializ~thly with those of others in z. "bis is formal-

ized as follows.

I)efinition 5.2.15: Let = - {T . } be a consistent and correct transaction system, that is. T C T. Let

T, be a transaction in T. Let -R('r) denote the partition of the steps of T by R. Let r be the set of all the

atomic step segments of T specified by R, that is, r = U.1.ET E-R(Ti). Let I) be the database and Z(T) be the

set of all the possible schedules for T. Finally, let ai be an atomic step segment of Ti, that is. ai E 7(l'.). A

schedule z c Z('F) is said to be abomic slep segment serial with respect to R if atomic step segments specified by

R and belonging to different transactions do not overlap in z. That is,

V(T i T. E T. i 3 j) V(aiE -'R(Ti)) V(0j E. R,(T.')) V(t'E ci) ( (t < 6]'V(t > tjnj))

where tj and tmj are the first and last steps in v. respectively.

Defintion5.,16 A schedule z E Z(T) is said to satisfy scheduling rule R, if atomic step segments specified

by R and belonging to different transactions are interleaved serializably in z. That is, z satisfies R if and only

3(z° EZ(T)) ( (z =-z )A(z* is atomic step segment serial))

The set of all the schedules in Z(T) that satisfies R is denoted by ZR(T). That is,

ZR(T) = {z c Z(T)I z satisfies R}

5.2.3.2 Consistency and Correctness

In the previous section, we have defined the concept of a scheduling rule and its relation to schedules. We

now define the key properties of a scheduling rule: consistency and correctness.

D o : A scheduling rule R is said to be consistent and correct if and only if all the schedules

that satisfy R are consistent and correct,

V(T C T)V(z c ZR(T)) (z is consistent and correct)

.%,% % :,:.., --.-.....- .. .-,. .. . -.-. ; -. ..---. .-: .: .-....-... -.... ,,........ .. .... , ..-.- ,.. ..-. .. , -. . .. .. .



where Ti is the .set of all the cons istent and correct traniitions. In the following, we limit our discussions to

consistent and correct scheduling rules.

5.2.3.3 Modularity, Optimality and Completeness

We consider a scheduling rule to be modular, if it partitions cach transaction in a way that is independent of

all the other transactions in the system. We considcr a scheduling rule to bc optimal undcr some condition, if

this rule provides the highest degree of concurrency under this condition. Wc consider a set of consistent and

correct modular scheduling rules to be complete if for any consistent and correct modular scheduling rule R,

we can always find a scheduling rule R in the set such that R* provides at least much concurrency as R.

l)efinition 5.2.18: A scheduling rule R is said to be modular if and only if R partitions each transaction

independently. That is,

R(T1 . ... T ) - (R1(T1). R(T)). n I 1 to oo,

The scheduling rule for individual transactions, R'1, i = 1 to n, will be referred to as the kernels of the

modular scheduling rule R. Note that the kernels of a modular scheduling rule need not be identical for

different transactions. In other words, a modular scheduling rule can consist of a family of kernels. This

allows each of these kernels to take advantage of the semantic information of the given transaction.

Having defined the concept of modularity, we come to address issues related to the degree of concurrency

provided by scheduling rules. We address these issues using the concepts of optimality and completeness.

Before formally defining these two concepts, we first comment on the implications of using a richer set of

primitive steps in addition to the "read" and "write" steps used in this work. Korth [Korth 83] has shown that

for serializable schedules the con urrency can be improved if the set of primitive steps is expanded to include

other commutative ones. The idea is that if a set of steps is commutative, then there is no need to control

their relative order. In this chapter, we limit our discussion to transactions using only the primitive steps:

"read" and "write". The use of commutative steps to improve the concurrency of (generalized) setwise

serializable schedules can be done in a manner similar to that done by Korth for serializable schedules. We

begin our investigation by first defining a way to compare the degree of concurrency offered by different

scheduling rules.
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R 2

I..finition 5.2.19: Shcduling ruile R is said to be at least as concurrelt as R2. denoted by R > R2. if and

only if.

V('rCTXZR2('r) Q ZCRIO))

That is. the concurrency of schedules is partially ordered by set containment. We now define the concept

of an optimal moduiar scheduling rule.

l gfinition 5.2.20: Let AM be the set of all the consistent and correct modular scheduling rules. A modular

scheduling rule R E AM is said to be optimal if R is at least as concurrent as any rule in A That is,

V(R E AM) (R" > R)

We now introduce the concept of completeness. A family, of modular scheduling rules is said to form a

complete class within the set of modular scheduling rules if and only if given any modular scheduling rule R

we can always find a rule R° in this family of rules such that R° is at least as concurrent as R.

.lfinition 5.2.21: Let AM be the set of all the consistent and correct modular scheduling rules. A set of

consistent and correct modular scheduling rules % is said to form a complete class within AM, if and only if

V(R E AMX 3 (R° E LXR° 2: R)]

5.3 The Setwise Serializable Schedling Rule

Having developed a formal model of modular scheduling rules, we now introduce an important modular

scheduling rule called the setwise serializable scheduling rule. In essence, this rule states that if the database is

partitioned into consistency preserving atomic data sets, then we can replace the global serializability of

concurrency control by setwise serializability. Intuitively, an atomic data set is simply a set of data objects

with a set of associated consistency constraints that can be satisfied independently of other atomic data sets.

For example, in a distributed computer system a job queue at a computer waiting for execution is an atomic

data set, the local directory to a computer's files is an atomic data set, and each user's mailbox is also an

atomic data set. This is because the consistency of each of these entities is defined by a set of consistency

constraints that can be satisfied independently of others.
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Proof: First, if any atomic step segmcnt a in 'Ti specified by R does not preserve thc consistency of thc

database, then another transaction TI. executing after a would input an inconsistent state. Since R is modular.

wc can define the semantics ofT. as one that outputs incorrect resulhs when its inptu is inconsistent. h'us R is

incorrect. Second. if the conjunction of the post-conditions of all the atomic step scgmcnts in 'r specified by

R is not equivalent to the post-condition associated with 'r. then R is incorrect by definition. Since any

schedule z for any transaction system T C T satisfying R guarantees the serializability in the execution of the

transaction atomic step segments specified by R. it follows from conditions 1 and 2 that z is consistent and

correct. 0

Theorem 5.4.3: Generalized setwise serializable scheduling rules form a complete class within the set of

modular scheduling rules.

Eof: Let R be a consistent and correct modular scheduling rule. Suppose that Ti is a consistent and
correct transaction and Ti is partitioned into atomic step segments all .... ak by R. First, by Lemma 5.4.3 ail i

= 1 to k. must preserve the consistency of the database when executing alone. Second. by Lemma 5.4.3 the

conjunction of the post-conditions of cr  0 k must be equivalent to the post-conditions associated with T.

Note that each vi, i = 1 to k, satisfies the definition of an elementary transaction. We now define a
generalized setwise serializable scheduling rule R* which partitions Ti as follows. First, R ° labels o .... ak as

elementary transactions. Next, R partitions these elementary transactions into transaction ADS segments.

Hence, R° is at least as concurrent as R. 0

5.5 Conclusion

In this chapter. we have developed a formal theory of modular scheduling rules. This theory coherently

addresses the notions of consistehcy, correctness, modularity and completeness in concurrency coatrol. Fur-

thermore, this theory provides us with a compete set of provably consistent, correct and modular concurrency

control rules. From an application point of view, this means that if each programmer can ensure the

consistency and correctness of his transaction, and he follows the rules given in the chapter, then the consis-

tency and correctness of system concurrency control is also ensured. In addition, our approach provides at

least as much concurrency as any other consistent and correct modular concurrency control method.

Finally, we want to cite a few results from [Sha 85a] that we omitted in this chapter. First, the setwise

)'-• .* %.'.-°-..) o. o. ° o'.-.• - . °. o° . • o , .... .• ..... ".-. .-. ...- . •' o ........,-....-......,-.-..-....-'.-........-......,-..-.--.........-... .•....,.,-............,-.....-..-...,.,..,...,
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'Ibus far. we have shown that the generalized sctwise scrializahle scheduling rule R is consistent. correct

ard modular. We now prove that generalized setwisc scheduling rules (i.e. die kernels of R) form a complete

class within the set of all the consistent and correct modular scheduling rules. Before proceeding with the

proof of completeness, we need to introduce the concept of the post-conditions associated with an atomic step

.segment. To illustrate the need, let the transaction Ti = It U: A := A - 1: ti.2: A := A + 1). If the two steps

of T. arc treated as a single atomic step segment, then t. is an input step and ti2 is an output step. The

partition of a transaction could create input and output steps in addition to those defined in an executing

alone environment. For example, if each of these two steps is an atomic step segment, then tiA (ti.2) is both an

input step and an output step.

Definition 5.4.7: Let a = {t. 1 L .... t} be an atomic step segment. Let the data object accessed by step t E

a be 0. Step t.. is an input step if it is the step in a first accessing 0. Step t.. is an output step if it is the step

in a last accessing 0.

Definition 5.4.8: Let OJ[vbl. j = ito k, be the values input to the input steps of a and O[v , j = I to k, be

the values output by the output steps of a. The post-condition of a is a specification of the output values as

functions of input values and the values of the local variables associated with the steps of preceding atomic

step segments of the same transaction. That is,

O[vfl = f(L,, 01[vJ .. Ok[ybD,)j = I to k;

where L is the set of local variables associated with the steps of the atomic step segments preceding theJ

output step for 0..

We now prove that generalized setwise serializable scheduling rules form a complete class within the set of

all the consistent and correct modular scheduling rules.

Lemma .43: Let R be a modular scheduling rule. R is consistent and correct if and only if

1. for each of the transactions T i in T, the conjunction of the post-conditions of all the atomic step

segments in T. is equivalent to the post-condition associated with T..
I I

2. let z be a schedule for a transaction system T C T and z satisfies R. In the execution of T

according to z, any atomic step segment in T. e T specified by R preserves the consistency of the
database.

.- . .. . . .. ... . . -. . .
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5.4.2 Generalized Setwise Serializable Scheduling Rules

laving defined the syntax of a compound transaction, we now dcfine the concept of generalized setwise

scrializable schcduling rules.

Definition 5.4.5 Let '' = {TI .... T n be a transaction system. 'lhc generalized setwisc serializablc schedul-

ing rule R is a modular scheduling rule with the following properties.

1. R(T .. T)= (R 1 ). R(Tn) )

2. The kernel of R, R r i = 1 to n. is a composite function which first maps T' into a compound
transaction .', and then partitions the steps of each of the elementary transactions of T into

I Itransaction ADS segments.

For simplicity, we refer to the kernels of the generalized setwise serializable scheduling rule as generalized

setwise serializable scheduling rules.

Defini ion 5.4.6: A schedule z for a transaction system T is said to be generalized setwise serializable if z

satisfies the generalized setwise serializable scheduling rule R. That is, the transaction ADS segments

specified by R in one elementary transaction are interleaved serializably with those of others in z.

Theorem 5.4.1, Generalized setwise serializable schedules are consistent and correct.

of: Since a generalized setwise serializable schedule is setwise serializable with respect to all the elemen-

tary transactions in the system, it follows from Assumption 5.4.1 and Corollary 5.3.3-1 that each elementary

transaction terminates, preserves the consistency of the database and produces results that satisfy its post-

conditions. Hence, the consistency of the database is preserved and the post-condition of each of the com-

pound transactions is also satisfied. Therefore, generalized setwise serializable schedules are consistent and

correct. 1

.CorIllaxa.41: Generalized setwise serializable scheduling rules are consistent and correct.

Theorem 5.42: Generalized setwise serializable scheduling rules are modular.

EUf. It directly follows from Definitions 5.2.18 and 4.5. 0
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0 = (1,1. .IO I. "  I (lp l t  ... I.

iJ ij i.]

where I, is the set of local variables associated with all the preceding elementary transactions in the sameP

compound transaction.

We now define the concepts of input and output steps of an elementary transaction. Next, we define the

concept of the post-conditions of an elementary transaction.

Definiton 5.4.3: Step t. - TE is an input step if it is the step in "IT first accessing a data object 0. Step ti is

an output step if it is the step in Tllast accessing 0.

Definition 5.4.4: Let OVbI, j = 1 to k, be the values input to the input steps of ]'and O.vd, j = I to k, be

the values output by the output steps of V The post-condition of Te is a specification of the output values asI I

functions of input values and the values of local variables associated with the steps in the preceding elemen-

tary transactions.

OIv.. = L= 1to k.

where L is the set of local variables associated with the steps in the preceding elementary transactions of
P

the same compound transaction.

Having defined the syntax of compound transactions, we now state our assumptions about them.

Aszmio..1: When an elementary transaction of a compound transaction is executed serially and in

an order that is consistent with the partial order defined by the compound transaction, it satisfies our three

fundamental assumptions about a transaction, that is, it terminates (Al), preserves the consistency of the

database (A2) and satisfies its own post-conditions (A3). Furthermore, the post-condition of a compound

transaction is equivalent to the conjunction of all the post-conditions of its elementary transactions.

.......................... .. .. .. . .
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5.4 Compound Transactions

A compound transaction consists of a partially ordered set of elementary transactions. When an elementary

transaction is executed scrializably and in an order consistent with the partial ordering of the elementary

transactions in the compound transaction, it has the following two properties. First, given a consistent state of

the database and the results passed from preceding clementary transactions, an elementary transaction

produces another consistent state of the database and satisfies its own post-conditions. Second, the conjunc-

tion of the post-conditions of the constituent elementary transactions is equivalent to the post-conditions of

the compound transactions. When the database is partitioned into atomic data sets and transactions are

partitioned in the form of compound transactions, the consistency and correctness of concurrency control will

be ensured as long as the elementary transactions of the compound transactions are run setwise serializably.

This result is formally expressed as the generalized setWise serializable scheduling rules. We also prove that

our approach of partitioning the database and transactions provides as least as much concurrency as any other

modular concurrency control approach. This optimality result is formally expressed as the completeness of

generalized setwise serializable scheduling rules.

5.4.1 Syntax

We begin our formal investigation of compound transactions by first defining their syntax. A compound

transaction consists of a partially ordered set of elementary transactions. Each elementary transaction can

have the structure of a nested transaction. These elementary transactions collectively carry out the task of the

compound transaction by passing information via local variables. For simplicity, we assume that elementary

transactions are single level transactions in this chapter.8

finiton A.1: A compound transaction is a partially ordered set of elementary transactions.

Df tion 5A.2: Let T= ... be an elementary transaction. Let the data object accessed by step

L Te 7be 0 L. Let the local variable associated with step t be LL.. Step L. is modelled by the indivisible

operation of the following two instructions.

L =0
'Fo : J OwS

• - F-o- - ute " b.., " aco- s - me S-.. thes - S. . .... '. " - . .. " - " - " " .. " - ." '% - . . . .° .. ., " ." .. - .
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Pr : lct Q = {. ..... AkI he a CP partition of I). I.et the initial states of each of tAh Al)S's bc tA. j
J

= I to k. "Ibcse initial states arc assumed to be consistent.'

Since a schedulc is a totally ordered set of steps from all the transactions, each of which terminates, there
must exist a transaction ADS segmcnt 'P(i, A.) which first finishes its computation. loet the associated ADS

state be ZA [1]. Since there are no intcrlcavings among transaction ADS segments accessing the same ADS in
J

a setwisc serial schedule, ZA [1] must be output by a transaction which has used only the initial states that
J

were assumed to be consistent. By Lemma 5.3.3-3, ZA [1j is consistent, and the values of data objects in A.

output by 'I(i. A.) are correct. Consider now the output of the second transaction ADS segment produced by

the schedule. Since it can use only Z[I1] or ZA [0]. m = 1 to k and m -. j, at the end of this second
j m

transaction ADS segment. the accessed atomic data set is in a consistent state and the output values are correct

by Lemma 5.3.3-3. Now assume that the first n transaction ADS segments produce consistent and correct

results. The n + I't must also by the same argument. By induction, the ADS state produced by each of the

transaction ADS segments is consistent, and the values of the data objects output in each ADS at the end of

the transaction ADS segment satisfy the post-condition. It follows that a setwise serial schedule is consistent

and correct. 3

Corollary 5.3.3-1: Setwise serializable schedules are consistent and correct.

Em f: It directly follows from Definition 5.3.6 and Theorem 5.2.1. 0

Cool . : The setwise serializable scheduling rule is consistent and correct.

ELigf: It directly follows from Corollary 5.3.3-1. 0

Throughout this section, the choice of atomic data sets has been arbitrary, because Theorem 5.3.3 applies to

any CP partition whether maximal or not. If the CP partition consists of a single ADS, then setwise serializ-

able schedules reduce to serializable schedules.

.-.-..." .. _'...- . - ... .. ... ...... . ... ,..- . ...... ,... ... .. .. -.- -,-.- - ,' --. .- .- ,. , . - - ., , ,
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Iemma 5.3.3-3: In a sctwise serial schedule. if at the beginning of a transaction AI)S segment, %,(i,..4. .). =

I to k.r ADS Ai, is initially consistent. then "Aij is consistent at the end of qji.4. i.), and the values of each of

the data objects in A .i.output by 'r. are correct.

&r(2f: I.et the atomic data sets accessed by T1 be .Ai, j = I to k.. Now let T. execute alone in a serial

schedule z with the initial states of.A. i, j = ito ki, being identical to the initial states of . .ij = 1 to k, in

the setwise serial schedule z.

Let the values of the local variables and data objects in the serial schedule z* be L"L and 0 : L and thoseI~ I.

in setwise serial schedule z be L L and O . We now prove that the executions of T, under z and z are

equivalent. Recall that the syntax of a transaction step is given by

LI L

0 :=f (L .... L
L t L t

Since the initial states of ADS 4.i, = 1 to ki., are equal in both schedules, the initial values of all the data

objects in .. , j = I to ki, are equal. Therefore, the first steps in both schedules input the same value. That

is, L C ' Inaddition,0 1  f (L f (L 0 L NexL =L because step two
L 1 Li Li Li LI Uti1 UiL

either reads the initial value of a data object or the value of the data object output by step 1. Similarly, 0 =
0' .

Now suppose that these local variable and data object value pairs are equal from steps 1 to r. That is, L LO

=L andOL =0 , h = 1 to r. We show that Lt. = L .hisfollowsbecausestepr+either
O LOr+1 1tr+i

reads the initial value of a data object or a data object which has been output by some steps between 1 to r. It

follows thatO = +0 Therefore, the final values of accessed data objects in both schedules are

equal at the end of each transaction ADS segment. In addition, data objects in A. ., j = 1 to ki, not accessed

by T remain unchanged and therefore equal at the end of each transaction ADS segment for both schedules.

It follows from Lemma 5.3.3-2 that at the end of '(i AQ), the A.i, j 1 to k, are consistent, and the value of

each of the data objects in .AQi, j = 1 to kr output by Ti is correct, 0

Theor 533: A setwise serial schedule is consistent and correct.

ol j . • - ..- . - . . . . . . -- - . -. *.. . . . . . . . . . . . . ..... .. . .° ° o .°. .
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0(1. .(11.
lid 1.1 I'

Since the initial states of all accessed ADS arc equal with cither X or Y as thc initial state, it follows that the

initial values of the accessed data objects are equal. Hence, at the first step of Ti 1. = i, t. In addition,

0 = f (1 if (1 t l 0 * Next , 2 = L. 2. because the second step either reads the initial

value of a data object or the value of the data object output by step 1. Similarly. O t  = 0 .t. t2

Now suppose that these local variable and data object value pairs are equal from steps I to r. "l hat is L L

=L L and 01. = 0 t, h = I to r. We show that L t L L This follows because step r+ 1 either
0i Lh i Lr+ I tr+ I

reads the initial value of a data object or a data object which has been output by some step between 1 to r. It

follows that 0 = 0 0t . By ipduction, the final values of accessed data objects with either X or Y as
"r+1 I r+1

initial state are equal. Since the values of data objects in Ai,, j = 1 to ki, not accessed by Ti remain

unchanged, they must be equal at the end of the transaction with either X or Y as the initial state. That is,

Ws Q(WX) = irSii(Wy), j = 1 to ki, where WX and WY are the states of D at the end of executing Ti with X and

Y as initial states respectively. Since the execution using X as the initial state is assumed to preserve the

consistency of each of the accessed atomic data sets, the execution using Y as the initial state must also

preserve the consistency of each of the accessed atomic data sets. Since the execution with X as the initial state

produces correct results, the execution using Y as the initial state must also produce correct results. 0

Lemj 5 2: Let the atomic data sets accessed by transaction Ti be .A , j = 1 to ki.If .A i, j = 1 to ki,

are initially consistent and if Ti executes alone, then at the end of transaction ADS segment *,(i, Ai.) the

consistency of A Q is preserved. Furthermore, the values of data objects in A.4Q output by *,(i, .A. ) are correct

at the end of *,(i, A..).

bof At the end of the transaction ADS segment *(i, A.), j = 1 to k,, the data objects in .A., j = I to k

are neither read or written again. It follows that the values of the data objects in'A i , j = 1 to ki, are the same

as at the end of the transaction. By Lemma 5.3.3-1, at the end of the transaction, the consistency of each of the

atomic data sets is preserved, and the values of the data objects output by Ti are correct, it follows that at the

end of each of the transaction ADS segments the state of the accessed atomic data set is consistent and the

values of the data objects output by the segment are correct. 03
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5.3.2.2 Consistency and Correctness

We now prove that setwise serializable schedules arc consistent and correct. "lle proof-is organized into

three lemmas. L.ct "1" be a consistent and correct transaction. In Lemma 5.3.3-1. we prove that Ti prcserves the

consistency of each of the accessed atomic data sets and produces correct results when executing alone. In

Lemma 5.3.3-2. we further prove that at the end of executing a transaction ADS segment ',(i, A) of "1",. the

consistency of . has been already preserved. In addition, the output values of data objects in 4 are correct at

the end of *(i, .A). We need not wait for the end of T. to know these results. In Lemma 5.3.3-3, we relax the

executing alone condition. We show that the results of Lemma 5.3.3-2 are still valid for any ADS . as long as

.4 is consistent at the beginning of transaction segment ,l,(i, .).

Definition 5.3.7: An ADS . is said to be accessed by a transaction, if this transaction reads or writes one or
J

more data objects in Ai.

Lemma i 3.3-1: Let Q = {A,, ..., -kA} be a given CP partition of D. Let Ti be a consistent and correct

transaction. If T. executes alone and if the states of the atomic data sets accessed by T, are initially consistent,

then at the end ofT, the state of each of the accessed atomic data sets is consistent, and the values output by

Ti satisfy the post-condition of T.

E&of: let .' j = 1 to k,, be the atomic data sets accessed by transaction Ti. Let Y e 0 be a state of D such

that Cj(ts (Y)) = L j = 1 to k.; where C. represents the ADS consistency constraints of X -, and S..

represents the index set of .A. Now let X be a consistent state of the database such that WSi.(X) = '~ (Y), j

= i to k.. Next, we let T. execute alone with the database initially in state X. We now prove that with either

X or Y as initial state, the executions of Ti are equivalent.

By assumptions Al to A3 in Section 2.2.1, with X as initial state, Ti produces correct results and preserves

the consistency of the database. It follows that Ti preserves the consistency of all the atomic data sets. To

complete the proof, we must show that the values of the local variables and the values of the global variables

of Ti are identical in both schedules.

Let the values of the local variable and the data object in the execution with initial state X be L* and

0 Let the values of the local variable and the data object with initial state Y be L and 0 V We must

prove that L = L and 0 t= 0t0at each step of the transaction. Recall that the syntax of a transaction

tep is as follows,

,,- - . . . . - .. , : '. -. ,. - . .- .. .. ,. . . , , , , -, ,. . - . .. . ., -. .. .. -, -,. - - . . , . • . , . . . , ,' , . , . ', . ', , , , , , , - , ,
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5.3.2 The Setwise Serializable Scheduling Rule

In this section, we first dcfine this rule and then provc that this rule is consistent and correct.

5.3.2.1 Definitions

In this section, we first define the concept of a transaction ADS segment. We then define the scheduling

rule called the selwise serializable scheduling rule. Finally, we define the set of schedulcs that satisfy this rule.

e)finition 5.3.3: A transaction ADS segment is the sequence of steps in a transaction that read or write

data objects in the same ADS. Let I(i. .) denote the transaction ADS segment of transaction T accessing

ADS A(. Let t. > denote that step ti is executed after step tk. We have

1. *(i, .4.) = {t I (t e T.) A (t reads or writes a data object in ADS .A) }

2. V( (t i, tiLk e ,(i, A)) A (t ii > tiLk) )(t , t k e Ti) A (tih > Lk)

Definitian 5.3.4: The scheduling rule that partitions each of the transactions in a transaction system T into

transaction ADS segments is called the seiwise serializable scheduling rule.

A setwise serial schedule z for a transaction system T is a schedule in which transaction ADS segments

accessing the same ADS do not overlap. This concept is formalized as follows.

K Ufniu.,1 : Let tA,& and 'Am denote the first step and the last step of transaction ADS segment 'I'(i

; .4.) respectively. Let Q be a consistency preserving partition of D. A schedule z for transaction system T is

said to be setwise serial if and only if under z,

rLF ~V(.A c Q)V(Ti E T)V(t A C z A J Ti) ( t A I > tA) V (tA > L'"))

where tA represents any step accessing ADS .4 in the transaction system T.

Having defined the concept of setwise serial schedules, we now define a setwise serializable schedule as one

which is equivalent to a setwise serial schedule.

Definintio : A schedule z for transaction system T is said to be setwise serializable if there exists a

setwise serial schedule z for T such that z w z.
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given a set of consistent states such as (a,, a2, a,), (bII h2-b3) and (c. c2, c3) we must prove that la r. b2. c31 is

also consistent. First, we apply the intersection of I I ) and 11, 21 to "A, B" and "A. C" respectively. States (ar,

b2, b3) and (a. c2. c3) are two of the four new consistent states. Next, we apply the intersection of 12, 3} and

131 to these two new states. One of the two resulting consistent states is {a1. b2. c31. We now give a general

proof of Lemma 5.3.2-3.

Lemma 5.3.2-3 if P and P2 are CP. then their least common refinement is also CP.

Roof: Let P1 = {Sl ..., S.} and P2 = {fa ..... on}. Their least common refinement is P1 fl P2 =
IC1. .... C}. where C = S ia k for some I k, i = 1 to L.

Let Xi E U, i = I to L and Y 4E Q be given such that wc.(Xi) = c.(Y). i = to L. We must proveY E U
I I

to conclude that the PflP 2 is CP.

To this end, we define a sequence {Xi, i = 1 to L} as follows: X = X1r X = HC.(X . X.), j = 2 to

L. Noting that C. = Silok, Lemma 5.3.2-2 indicates that X EU j = 1 to L. It follows that X L = Y e U. 03

Th m 3.2: There exists a unique maximal CP partition.

Boof: Suppose that there exists more than one maximal CP partition. The least common refinement of

distinct maximal CP partitions is CP by Lemma 5.3.2-3, thus contradicting the maximality assumption. 0

Corollary 5.3.2: There exists a unique maximum CP partition Q of D.

In the next section, we show how consistency preserving partitions can be used to schedule transactions in a

non-serializable fashion. Although any C? partition can be used, Theorem 5.3.2 indicates that there is a CP

partition that is "most refined" with respect to a given set of consistency constraints. This partition will allow

the maximal concurrency in concurrency control

.... .. . .. . ,... :- ........, ...... ?.?,..:.. ....-..-.. ., ... . ... .. -........ .. ... .-..........+.... ., .. ... ....,..,.... ... .. ,.
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I.emma 5.3.2-1: Suppose that Xr X2 E U. IfS is an element of any CP partition of t. then II UxU - U.

Irooi: IfS = I. then U s(x. X2  X,. and the result follows.

Let P = IS, a I .... ak}, k > I be a C1 partition.

)efine WO = X2' W i =X 1. 1I to k:sothat W i E U, i =0 ok.

,s(W0) 0 ,s(Hs(Xr X2))

V 0. (W,) =w.(Hs(Xr X2)), = 1 to k.

Given that P is CP, HS(X r. X2) is therefore in U by the definition of a CP partition. Thus H s maps pairs of

- consistent state into a consistent state. 03

When we have two or more distinct CP partitions of the same index set I, sets from distinct partitions could

intersect. Lemma 5.3.2-2 generalizes Lemma 5.3.2-1 by allowing the intersections to be used for the specifica-

tion of swapping. For example, let P2 = { {1}, {2, 3} } be a second CP partition. The intersection of {1, 2} c

P1 and {2, 31 e P2 is {2}. Lemma 5.3.2-2 states that the two states resulting from swapping the projections of

A and B specified by {2} are also consistent. That is, (al, b2, a3) and (b, a2, b3) are consistent. We show the

consistency of(al, b2, a3) as follows. First, we use Lemma 5.3.2-1 to swap the projections of A and B specified

- by {1} of P2. One of the two resulting consistent states is E = (al, b2, b3). Next, swapping the projections of

A and E specified by {3} of P2, we find (al, b2, a3) to be a consistent state also. We now give a general proof

of Lemma 5.3.2-2.

Lemma.2-: Suppose that S e P1 and o e P2' where P1 and P2 are CP. Then H s): UxU-- U.

Erof: If S E Pr. then there exists a CP partition P such that Sc E P. Since X, X2 E U, it follows that

Hs X1 X2) E U by Lemma 5.3.2-1. Therefore, H,(X r, HsC(X 2, X1)) e U as well. The Lemma follows, since

H (X1, Hsc(X 2, Xl)) = Hm6 (X1 , , 2). 0

Lemma 5.3.2-3 demonstrates that the least common refinement of any two CP partitions is also a CP

partition. For example, the least common refinement of P1 and P2, {f l}, {2}, {3}}, is also CP. In this case,

k"
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Sii V .X)}" "h set of consistency constraints C. whose truth set is thc consistent states of I. is called theI I.
Al )S consistency constraints of.A.. 'lbat is,

U. { (Y)I C(V(y)) = I}

Thcorem 5.3.1: lli conjunction of all the ADS costraints C.. i = I to k. is equivalent to consistency

constraints C of I). '[hat is,

C = C1AC2 A... Ck.

Prof: Let U* be the truth set of the conjunction of all the ADS constraints. We have,

U* {Y I Ci(wsr(Y)), i 1 to k}

= {Y I5s.(Y) E U. = I to k} = U.

Hence, C =CIAC2A ... Ck. '

We now prove the theorem that there always exists a unique maximal CP partition. First, we note that CP

partitions exist, since the trivial partition { I is CP. Furthermore, the CP partitions are partially ordered by

refinement. That is, for any pair of CP partitions P1 and P2, partition P is refined by P2 if and only if

V(S i E P 2) 3(S, e PIXSj C Si). A maximal CP partition is one which is refined by no other CP partition.

| In the following, we will prove that there exists a unique maximal CP partition P. Since the proof is relatively

complex, we would like first to illustrate the ideas of the proof.

The proof is based on three lemmas. The idea of Lemma 5.3.2-1 is illustrated by the following example.

Let P -{ fi, 2}, {3} } be a CP partition of the index set I = {1, 2, 31. Suppose that A = (a, a2, a3) and B

= (b, b2, b3) are two consistent states. Let S be a partition set, either {1, 21 or t3}. Lemma 53.2-1 states that

the two new states which result from swapping the projections of A and B specified by S are also consistent.

That is, (a1 , a2 , b3) and (b, b, a3) are consistent.

We now define a mapping HS: x --- 0 as follows, where S C I. Given that X1, X2  0 0, Hs(X1 X2) -

Y, where Y satisfies is(Y) = ,rs(X 2) and rs(Y) = wsc(XI), where S = I - S. Thus H8 (X r X2) replaces

the projections of X, specified by S with the projections ofX 2 specified by S.

-- •. . . . X.
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It is important to note that intcr-related data objccts can be in different atomic data sets, as long as the

consistency of an atomic data set can be satisfied independently of other atomic data sets. For example, we

can move a job waiting on the job queue of" one computer to the job queue of another computer in order to

balance the workloads. 'That is, these job queues arc related by some load balancing transactions. However, at

each computer a load balancing transaction must observe the consistency constraints of the local job queue

such as the maximum size.

5.3.1 Atomic Data Sets

In this section, we first define the concepts of atomic data sets and a consistency preserving partition of the

database. Next, we show that the conjunction of the consistency constraints of the atomic data sets is

equivalent to that of the database. Finally, we prove, that there is always a unique maximal consistency

preserving partition with respect to a givenset of consistency constraints.

Definition 5.3.1-1: Let I = {1, 2, .... n} be the index se. of database D. The index i e I specifies the data

object O E D. Let w s(Y) denote the projection of an n-tuple Y E 03 using the set of indices S C I. That is,

vs(Y) denotes the tuple whose elements are the values of the data objects indexed by S. Let P = {S.., Sk}

denote a partition of [. Let V. be the set whose elements are the projections of all the consistent states, X e U,

onto an arbitrary index set Si, that is, Vi = UXCU {VS(X)}. A partition of the index set 1, P = {S t, S2.

Sk}, is said to be consistency preserving (CP) if and only if,

V(Y e G){ [lrs.(Y) e V , i = i to k] --+ [Y c U] 1.

Definition 5.3.1:2, An atomic data set A. for a CP partition P is the set of data objects specified by Si C P.

The associated partition of data objects in D, Q, is called a consistency preserving partition of D.

The definition of a CP partition states that a CP partition has the property that any choice of the consistent

.' states of the atomic data sets leads to a consistent state of the database. We now introduce the concept of

consistency constraints of an atomic data set. Next, we show that the consistency constraints of the database

can be decomposed into sets of ADS consistency constraints.

Definiion5,3 Let P be a CP partition of I and let Si C I be the set of indices which specify the data

objects in the atomic data set. A,. C D. Let the set of all the consistent states of an ADS A. be U =

.............. ad.....ialhamirld~ = :--.-'.......... - -'.... '-" .. ..
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* serializable scheduling rule is the optimal rule when the transaction semantic information is not available for

scheduling. Second, the elementary transactions can be in the form of nested transactions. F'inally, to cnlbrcc

generalized setwise scrial izability, we can usc the setwisc two phase lock protocol: each elementary trans-

'" action does not release any lock on an atomic data set until it has acquired all the locks on this atomic data set:

once an elementary transaccion releases a lock on an atomic data set, it does not acquire any new lock on the

same atomic data set. If an atomic data set has the structure of a tree, we can use the tree lock

protocol [Silberschatz. 801 instead of the setwisc two phase lock protocol.

...... _-**
. . . .. . . . . . . . . . . . . . . . . . .
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6. Subtask B1 -2: Atomic Transaction Theory:
Modular Failure Recovery

In this chapter, we summarize our additional work on Subtask BL the failure recovery part of our atomic

transaction theory. "[he failure recovery theory addresses the problem of guaranteeing the consistency and

correctness of concurrency control in the face of system failures. This work is primarily carried out by Dr. Lui

," Sha and Prof. John P. I.ehoczky.

6.1 Introduction

In the previous chapter, Modular Concurrency Control, we have studied the subject of concurrency control

without considering the impact of possible system failures. We now extend our work by taking the effect of

* system failures into consideration. Computer systems can fail in many ways. We limit ourself to the so-called
"clean and soft" failures. A failure is said to be clean and soft if the effects of this failure can be modelled by a

network of computers some of which stop running and lose the contents of their main memories. However,

the database residing in the stable storage remains intact.

The objective of using failure recovery rules is to ensure that concurrency control can be carried out

consistently and correctly despite failures in the system. A failure recovery rule'specifies the conditions under

which the executed steps of a transaction commit or abort. Committing a sequence of executed steps means

non-divisibly transferring the result of the computations from the main memory to the database residing in

the stable storage. The commit operation represents irrevocable changes made to the database. For example,

the recovery rule associated with serializable schedules is known as failure alomicity. This rule requires that a

transaction either commits or aborts all executed steps at the end of execution. In other words, serializable

schedules creates a virtual "executing alone" environment in which the concurrently executed transactions

" maintain database consistency and produce correct results. At the end of its execution, a transaction will

either non-divisibly transfer the results of computation to the database or abort and re-start later. In this way,

the consistency and correctness of concurrency control is ensured despite clean and soft system failures.

Failure atomicity is widely accepted as the criterion for failure recovery, and many new protocols are being

designed to efficiently implement it [Bernstein 83, Mohan 83, Attar 84, Svobodova 84].

Unfortunately, the non-divisibility in the transferring of the computational results of a transaction to the

-S
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databasc places a fundamental limitation on the degree of concurrency in the execution of a transaction

system. In order to ensure failure atomicity and avoid cascaded aborts, the results of the computation

performed by a transaction must be withheld by some concurrency control mechanism such as locks until the

transaction has successfully committed. This is because a transaction can be aborted by failures before it has

committed. If other transactions use the results of the partial computation of a transaction, their computa-

tions could be invalidated by the abortion of that transaction. In this chapter, we develop a new failure

recovery rule, called the failure safe rule, which divides a transaction into a partially order set of atomic

commit segments and commits them segment by segment. This rule is designed for transaction systems using

our concurrency control theory described in [Sha 85b, Sha 85a].

Before the formal investigation, we first give an informal overview of our failure recovery approach.

According to our modular concurrency control theory, the database is partitioned into atomic data sets and

transactions are written in the form of compound transactions, each of which consists of a partially ordered set

of elementary transactions. Given a compound transaction, the failure safe rule examines the transaction

ADS segments in each of the elementary transactions. A transaction ADS segment consists of all the steps in

an elementary transaction that access the same atomic data set. If the steps of a transaction ADS segment are

not interleaved with those of others, then the ADS segment is named an atomic commit segment. Otherwise,

interleaved ADS segments are taken to be a single atomic commit segment. That is, the failure safe rule

partitions a transaction into a partially ordered set of atomic commit segments. A transaction must non-

divisibly commit each of its atomic commit' segments in an order consistent with the partial order of the

atomic commit segments in the transaction.

To illustrate our approach, let us consider the compound transaction example which was also used in [Sha

85b, Sha 85a] to illustrate our concurrency control approach. Suppose that transaction Get-A-and-B needs

one unit of some resource at node A and another unit at node B. If it cannot have both, then it would rather

have none, since the task cannot be run with only one of the resources. The resource heap at each node is

modelled as an atomic data set with consistency constraint "0 < HeapSize < MaxSize", and the transaction is

written in the form of a compound transaction, Get-A-and-B, which is illustrated in Table 6-1.

Compound transaction Get-A-and-B has four atomic commit segments, each of which corresponds to one

of the four elementary transactions: Get-A, Get-B, Put-Back-A and Put-Back-B, because each of these

elementary transactions consists of a single transaction ADS segment. It should be pointed out that failure

° . o, o .-.Q- -. ° •. e • o-.O m o,- 1- ................................................. .' ..... ... '
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o'om1mund'rransaction Get-A-and-B:
AtonicVariable Ob/ain-A, Oblain-B: Boolean;
Begin.Scrial

Bginilarallel
Elementary'ransiction Get-A;
BeginSerial

Writelock Heap A;
Take a unit from A if available
and indicate the result in atomic variable Oblain-A;
Commit and unlock Heap A;

EndSerial;

-lementary'l'ransaction Get- B;
BeginSerial

WriteLock Heap B;
Take a unit from B if available
and indicate the result in atomic variable Obtain-B;
Commit and unlock Heap B;

EndSerial;
EndParallel;

BeginParallel;
ElementaryTransaction Put-Back-A;
BeginSerial

If Obtain-A and not Obtain-B
then BeginSerial

WriteLock Heap A;
Put-Back the unit of A;
Commit and unlock Heap A;

EndSerial;
EndSerial;

ElementaryTransaction Put - Back - B;
BeginSerial;

If Obtain-B and not Obtain-A
then BeginSerial

WriteLock Heap B;
Put-Back the unit of B;
Commit and unlock Heap B;

EndSerial;
EndSerial;

EndParallel;
EndSerial.

Table 6-1: Compound Transaction Get-A-and-B

atomicity is a degenerate case of our failure safe rule in that it corresponds to the rule in which the entire set

of steps of a transaction is taken as a single atomic commit segment.

From a concurrency control point of view, a concurrent execution of a transaction system is modelled by a



so

schedule. It is shown in this chapter that owing to the preservation of both the internal ordering of stcps in

transacions and thc integrity of transaction ADS segments, the effect of a system failure under the failure safe

rule becomes equivalent to changing an existing generalized setwise serializabic schedule to another schedule

that is also generalized sctwisc scrializable. 'Ihus, under the failure safe rule system failures are safe in the

sense that the computatiors recorded in the database are equivalent to the computations resulting f'rom a

failure-frce execution of the transaction system. For example, suppose that compound transaction Get-A-

and-it fails after its elementary transaction Get-A has committed. Since Get-A leaves the database consistent,

other transaction will be executed consistently and correctly despite the failure of Gct-A-and-B. Since other

transactions leave the database consistcnt, when Get-A-and-B resumes its execution it will also be executed

consistently and correctly. When resuming its execution, Get-A-and-B can get another unit of B or return the

obtained unit to A, depending on the availability of B.

In this chapter, the organization of studying failure recovery rules is parallel to that of our studying

concurrency control rules in the previous chapter [Sha 85b]. We will use many concepts related to concur-

rency control such as steps, transactions and schedules. All these concepts are formally defined in the previous

chapter, and we will not replicate them in this chapter. In Section 6.2, we develop a model of failure recovery

rules and define their properties such as consistency, correctness failure safety and optimality. In Section 6.3

we define the failure safe rule and prove that this rule is consistent, correct and modular. In addition, we

prove that this rule is optimal for transaction systems scheduled by generalized setwise serializable scheduling

rules. Section 6.4 offers some concluding remarks.

6.2 A Model of Modular Failure Recovery Rules

We now develop our model of modular failure recovery rules. We first define the concept of a modular

failure recovery rule. Second, we model the effect of clean and soft failures upon concurrency control. We

then define the concept of consistency and correctness for a modular failure recovery rule in the face of clean

and soft failures. Next, we introduce the concept of safety for a recovery rule. We conclude this section by

addressing the issues of re-scheduling aborted transactions.

Conceptually, a failure recovery rule is a specification of the way to commit the executed steps of a

transaction. For example, failure atomicity is a failure recovery rule that specifies that at the end of a

transaction all the executed steps must be either committed or aborted as a non-divisible unit. In this chapter,
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a failure recovery rule is modelled as a function which takes a transaction and partitions it into equivalence

classes called alolnic cominil segments. At the end of executing an atomic commit segmenL the computational

results of this segment must be either committed or aborted as an indivisible unit. A failure recovery rule is

said to be modular if it partitions a transaction independently of other transactions in the system. For

example, failure atomicity is a modular failure recovery rule that takes the entire set of steps of a transaction

as a single atomic commit segmenL We now formalize the concept of a failure recovery rule in Definitions

2.1-1 and 6.2.1-2.

Definition 6.2.1-1: Let Tm denote the set of all the possible consistent and correct transactions with m
steps. Let T denote the set of all the consistent and correct transactions, that is, T = UmO T Let Pm denote

M=1 m m

a partition of an m-step consistent and correct transaction into a partially ordered set of transaction step

segments called atomic commit segments. Let 9P denote the set of all the possible partitions of an m-step
M

consistent and correct transaction. Let 9be the set of all possible partially ordered sets of partitions, that is, 9
= U0 9. A failure recovery rule for a transaction system with n transactions, 9o, is a function which

M=1 M n

takes the transaction system of size n and partitions each of the transactions into a partially ordered set of

atomic commit segments.

% nfl 1T --+ TI n

Deinii n6.2.1: A failureorecovery rule S is a function which takes a transaction system of any size and

partitions each of the transactions into a partially ordered set of commit segments.

n=Un( li =I T) - Un=1(17=1 9

such that the restriction of % t6 rj7=IT is %n' Le.

%iH7, T = %nn I too.

Dnitin 6.2: A failure recovery rule %1 is said to be modular if and only if % independently partitions

each transaction in a transaction system into atomic commit segments. That is,

% n (T i. ) = ( 13I(T), .. (Tn)), n = I to 00,

".' ,' .' .' .''" "*'-'. "- -'- . .* "- ".-'o-' .- . '- . '- , . ',' - - - ' ' -,:-*:" . - - . , . - ' ' .-.---.. - -, . - - .. . , , . . . .. - .. - - -€ .,. '/ .: .' .. , .".. ... ; ' . . . ...-. . ,". -' . , . ".". . .



82

nn
where %n is thc restriction of 4R to H.1=T.

Having formalized thc concept of modular recovery rules, we now state our assumption regarding the

atomic commit segments produced by those recovery rules. When failure atomicity is adopted, the commit

operation ensures that the computations produced by a transaction arc either discarded or transferred to the

database as a non-divisible uniL In this case, the values stored in the local variables are irrelevant to the

commit operation, because the computation has been completcd. However, when we commit a transaction

segment by segment, we must not only guarantee that the computations produced by an atomic commit

segment are non-divisibly transferred to the database, but also guarantee that the values stored in the local

variables associated with the commit segment are non-divisibly transferred to the stable storage as well. This

is because when an aborted transaction resumes its execution, an executing step may need the values of the

local variables associated with those commit segments already committed. We now formalize our assumption

regarding the commit and abort operations of atomic commit segments.

Assumption 6.2.1-1: At the end of executing an atomic commit segment, the computations produced by

this segment will be either committed or aborted.

Assummion 6.2.-2: An atomic commit segment a is said to be committed if and only if

1. the computations produced by this segment are non-divisibly transferred to the database. That is,
let the data objects accessed by atomic commit segment a be 0 1 ..... Ok and the values output by
a be 1 v v, .... Ojk[vf. The values of the data objects in the database will be Oivf , .... Oj vfI if a
is committed.

2. The values stored in the local variables associated with segment a will also be non-divisibly
transferred to the stable storage. That is, let Li .... Lk be the set of local variables associated with
the transaction steps in a. Let L1 ..... L k be a set of data objects in the stable storage but not part
of the database. Data objects L 1, .... Lk are said to be the private stable storage for a. The private
stable storage of an atomic commit segment a can only be written by the commit operation of a
and can only be read by steps of other commit segments in the same transaction. When a has
committed, we have L1 = L1 .... Lk = Lk"

Assumntion 6.2.1-3: An atomic commit segment is said to be aborted if and only if its computations are

discarded. That is,

1. Let Ol[vJ .... Ok[O be the values of data objects 0 1, ... , 0 k input to atomic commit segment a.
The values of the data objects 01, ..... k are given by Ol[vb] ..... O[vb] respectively.

,*- -.- --,",-- - .. -... ". . -.............................................--.o- -................. P.



83

2. The private stable storage associated with a has the initial value "nil" for each of the data objects
L1 .... Lk' The value "nil" is a special value reserved for recovery management such as the bit
pattern of a word with all Fs. "nil" must not be in the domain of any data object. When the
private stable storage L1 ..., Lk arc assigned to a commit segment. their initial values are initial-
izcd to "nil". "his indicates that they have not been used to store values by the commit segment.

Assumotion 6.2.1-4: When resuming the execution of an aborted atomic commit segment a Cli, all the

local variables associated with comnmitted atomic commit segments in Ti will be restored to values saved in

their private stable storages. 'hat is. let al ..... ak be the atomic commit segments that have been committed.

We have

V(Li E a, I <j < k)(L i = L )

Having defined modular recovery rules-and the commit operations for atomic commit segments, we now

model the effect of a clean and soft system failure upon concurrency control. When a transaction system is

executed according to a schedule z and a failure occurs, schedule z is partitioned into two parts. The part ze

represents the steps in z that have been executed, another part zf represents those steps yet to be executed.

Dito6.: Given a schedule z for transaction system T, a clean and soft system failure partitions z

into two parts: ze and zf.The partial schedule ze represents steps of z that haVe been executed prior to the

failure, and zf represents steps in z yet to be executed.

Within an executed partial schedule ze, there can be some atomic commit segments which have been

committed. The computations represented by.successfully committed atomic commit segments are modelled

by a commined partial schedule zc.

Before we formally define this concept, we must first introduce the useful concept of a sub-segment,

denoted as "E". We say that a sequence of steps 02 is a sub-segment of another sequence of steps al if and

only if all the steps in a2 are also in a. In addition, the ordering of steps in a2 is consistent with that in a,.

Dfniiona.2A. Let a1 be a sequence of transaction steps. A sequence of steps 02 is said to be a sub-

segment of a1, denoted as "a2Cal", if and only if

V((%,%%E% 2 i.3j)A( >-))((%,.l)(...>..)

.
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We now define the conccpt of i committed panial schedule.

l)efiniion 6.2.5: L.ct ze be the executed partial schedule in z. Let-a bc an atomic commit segment. The

conminiedparlial schedule z is a sub-scgmcnt of ze that contains only successfully committed atomic commit

segments. lhat is,

1. The committed partial schedule is a sub-segment of the executed partial schedule;

Z c e

2. The committed partial schedule does not contain fragmented atomic commit segments:

V(t E zcX3(a C zXt e a))

3. Transaction commit segments belonging to a transaction are committed in the order defined by
the commit rule. We let "01 < a2" denote that commit segment a1 precedes 02.

V(TE E T)V( (a1, 2 CT ) A (01 < a2)) (,F2 -Zc) - (o 1 E zc))

Having addressed the issues related to the commit operation, we now turn to the subject of resuming the

execution of an aborted transaction. When a transaction fails, some of its atomic commit segments may have

been already committed. When the database system resumes the execution of this aborted transaction, we are

faced with the problem of scheduling a partial transaction. We assume that a partial transaction is scheduled

by the same scheduling rule R as follows. When a partial transaction consists of an integer number of atomic

step segments, all we have to do is to ensure that these segments are interleaved serializably with those of

other transactions. The main problem in scheduling a partial transaction is that an atomic step segment

specified by R might be partitioned by a recovery rule %L into more than one atomic commit segments. When

a failure occurs, it is possible that. only some of these commit segments have been committed. In this case, the

portion of an atomic step segment left in .the remaining schedule z1 will be taken as an atomic step segment

and interleaved serializably with atomic step segments of other transactions in z1.

For example, suppose that transactionT has two atomic step segments 01 and a2 specified by scheduling

rule R. If the entire Ti is in a remaining partial schedule z. then these two atomic step segments will be

interleaved serializably with atomic step segments of other transactions in zi. If aI is committed but o2 is left

in zI, then v2 will be interleaved serializably with those of others in z1. Finally, suppose that a recovery rule

partitions the atomic step segment al into two atomic commit segments: 011 and o'i2. If only a11 has been

."...."""- - -'""- - . -.- -.- -V "'"-".K, ,,."-". -'..".'. .,. : . . .',,, '...'.'.'.'.-. . --.:.". .,--.-
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committed and (r.2 and o2 are left in zil then both a'.2 and 02 will be taken as atomic step segments in z,.

That is. 01 and o, will be interleaved serializably with those of others in z We formalize our discussion
1.2.

about scheduling aborted transactions as Assumption 6.2.2.

Assumotion 6.2.2: Let z be a schedule for transaction system T satisfying scheduling rule R. Lct zI be the

remaining partial schedule after a failure occurs during the execution of z. Lct ZR(-I-) denote the atomic step

segments of transaction T specified by R.

1. The steps in z-, are those in z but not in the committed partial schedule zc.

V(tX (t E z)A(t ( zC)) - (t e z)

2. If all the steps of a transaction Ti are in z1, then the atomic step segments of T, are still
represented by - R(Ti).

3. Let T? denote the partial transaction of T. in the remaining partial schedule z,. A partial trans-

action Tp is a sequence of steps such that (TPipT.)A(V(t) ( ((t e T)A(t E zj)) -- (t E Ti)). Partial
transaction TP is scheduled by R as follows. Let ZR(T p) denote the atomic step segments
specified by R with respect to the partial transaction TP.We have that

a. each atomic step segment of the partial transaction is a refinement of some atomic step
segment of the original transaction;

V(TipE~z V(0"E-- T) ( 3(0"" z )(0"EP ' (- ),

b. each step that is in an atomic step segment of the original transaction and in the partial
transaction is in some atomic step segment of the partial transaction.

V(a" € -R(T,)) V((t € 0.)A(te€TP)) (3(. -e-(TP)Xt 0))

4. The remaining partial schedule zi satisfies scheduling rule R. That is, the atomic step segments
specified by R in a (partial) transaction will be interleaved serializably with those of others in z,.

Having modelled the effect of a single failure, we now address the issue of multiple failures. When the first

failure occurs during the execution of z, the committed atomic commit segments are represented by z. The

executed but not yet committed transaction steps are aborted. These aborted steps are re-scheduled together

with steps in zf to create the remaining partial schedule zI.In the execution of z,, suppose that a second failure

occurs. In this case, we have a new committed partial schedule, zc and a new remaining schedule z2. Thisr 2c

process continues until all the steps in the transaction system are executed and committed.
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l)ifnition 6.2.6-1: I.et z be a schedulc of transaction system T satisfying scheduling rule R. When the first

failure occurs, the committed partial schedule is denoted as zc, and the remaining partial schedule is denoted

as z. 'Ibc kth remaining partial schedule z is the remaining schedule for zk-, after the kth failure.

)efinition 6.2.6-2: When there are no failures, the execution of a transaction system is modelled- by a

schedule z. With n failures, the execution of a transaction system is modelled by a committed schedule z(n) =

(7, zC ....

In order to investigate the execution of transaction systems in the face of failures, we must relate the

concept of a committed schedule to our established results on scheduling rules.

eorem 6,2.1: Let a committed schedule for a given total of k failures in the execution of transaction

system T = {T1, ...I T I be z(k) = (c zc" ..., z5), where zc is the ith committed partial schedule after the ith

failure.9 Committed schedule z(k) satisfies scheduling rule R if and only if

1. The ordering of the steps of transaction Ti, 1 < i < n, in z(k) is consistent with that in transaction
TV 1 <i< n.

[V(tX (t E z(k)) - (t E UT) )] A [V(T f T)V( (t., ti.k E T) A (t.k>t ) ( (t tk t E z(k)) A (t.k

2. Atomic step segments specified by R and belonging to different transactions are interleaved
serializably in z,

3(z e Z(T)) ( (z(k)-- z)A(z is atomic step segment serial))

Proof: It directly follows from Assumptions 6.2.1-1, 6.2.1-2, 6.2.1-3 and 6.2.1-4, Definitions 6.2.6-1 and

6.2.6-2, and Definitions 5.2.10 and 5.2.12 in the previous chapter. 1

Having modelled the effect of failures upon concurrency control, we are now in a position to define the

concept of consistency and correctness of a recovery rule. We consider a recovery rule % designed for a

consistent and correct scheduling rule R to be consistent and correct if and only if % ensures the consistency

and correctness of the committed schedules in the face of any finite number of system failures.

'Now that = bemuse there are no more failures after-the kth failure, and the entire zk is ommitted.
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l)efinition 6.2.7: I.et % be the recovery rule designed for the scheduling rule R, recovery rule % is said to

be consistent and correct if and only if

V(zE ZR()) (4n) is consistent and correct. 0 < n < oo)

where ZR(T) is the set of all the schedules for transaction system T satisfying R.

We now define an important property of a recovery rule called safety. Wc consider a recovcry rule %

designed for a scheduling rule R as being safe if and only if the committed schedules satisfy scheduling rule R.

That is, the computations recorded in the database cannot be distinguished from those resulting from an

execution of a schedule z e ZR(T) without failures.

f lition.6.21: A recovery rule % designed for a scheduling rule R is said to be safe if and only if for any

given schedule z E ZR(T) the commit schedules satisfy R, i.e.

V(z e ZR(T)Xz(n) e ZR(T), 0 < n < oD)

Ibor=em .. 2: If recovery rule % designed for a consistent and correct scheduling rule R is safe, then

recovery rule %P, is consistent and correct.

PrMf" Since all the schedules satisfying scheduling rule R are consistent and correct, it follows from

Definitions 6.2.7 and 6.2.8 that S is consistent and correct. 01

We now turn to the subject of optimality of nodular and safe recovery rules. We measure the concurrency

provided by a modular recovery rule by how finely it partitions a transaction. This is because computations

produced by an atomic commit segment must be withheld by locks or some other mechanism until this

segment has been committed. To allow other transactions to use the results produced by a commit segment

before its commit could lead to cascaded aborts - a highly undesirable event. Generally, the finer the

partition, the smaller is the size of a commit segment and thus the higher the degree of concurrency.

Dfinition622: Let T be the set of all the consistent and correct transactions. Let JR be the set of all the

modular and safe recovery rules associated with some consistent and correct modular scheduling rule R. Let

Z %(Ti) denote the partition resulting from % F IR partitioning T, e T. A modular and safe recovery rule S is

.- .o. - ............................................................-..... o .. " °° . ,- .o °• .. .. o-. -.
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said to be optimal with respect to the as)ciatcd scheduling rule R, if and only ifR always produces the most

refined partitions. That is, % is optimal if and only if

V('l, ET)V(% E IR) ( (a E Z(T.)) -+ (a E z, -(T

where a denotes an atomic commit segment.

We now conclude this section by addressing the issues in re-scheduling aborted transactions. [he main

point is that an atomic commit segment must be a superset of some atomic step segments.

Theorem 6.2.3: An atomic commit segment produced by a modular and safe recovery rule must be a

superset of some atomic step segments produced by the associated scheduling rule R.

roof: Suppose that this claim is false, and there exists a modular and safe recovery rule %1, which divides

atomic step segment a1 of transaction Ti into n commit segments with n > 2. Let the commit segments be

<a L 1 . .Let the set of data objects read or written by or1 be .A. Let transaction T2 consist of only one

atomic step segment a2 which writes into every data object in A. Now consider a schedule z for transaction

system T = {T1. T2}. Suppose that schedule z satisfies R, and we execute T according to z in which T2 is

executed last. Suppose that a failure occurs just after a1 has been committed and commit segments a1,.2 ..

(Fl.n are aborted. Let the remaining partial schedule zt be ("2, V1 ".. 1,.,>. Suppose that there are no more

failures. That is, z(1) is the committed schedule. Note that z(1) does not satisfy R. This is because in z(1) =
<arl' 02' O ..... fL~nX>, 1 precedes Or2 but 02 also precedes a, on A. That is, the atomic step segments ofT,

are not interleaved serializably with that of T2.This contradicts the.assumption that %" is safe. 0

6.3 The Failure Safe Rule

Having developed a model of modular recovery rules, we now define our failure safe rule and prove that

this rule is modular, consistent, correct and safe. We conclude this section by showing that this rule is optimal

for transaction systems using generalized setwise serializable schedules.

When we study schedules, a useful concept is the serializable interleaving of the atomic step segments of

one transaction with those of other transactions. In the study of failure recovery, an important concept is the

interleaving of transaction ADS segments within the same transaction. When transaction ADS segments of a

:'.- -..~ ~............... " ..-. ".'.'., . ". - - .- - - ' '.,,' ',-r., , -...- ,
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;iven transaction are interleaved, they must be committed as a single atomic commit segment in order to

prcscrve the internal ordering of steps in a transaction.

Definition 3.1: Let --g(Ti) denote the set of transaction ADS segments resulting from a generalized setwise

;cheduling rule R partitioning 'r i. A transaction ADS segment ai E Z-(1'.) is said to be inierleaved with

transaction ADS segment a. ! Eg(T i) if

It E aixt . < t< ta )
a a

where 0 and tmi are the first and last steps in segment or. respectively.oj J .

Dfinitiona.2: Given a transaction T, E T scheduled, by a generalized setwise serializable scheduling rule

Rg, the failure safe rule % is a function that produces a partially ordered set of atomic commit segments as

follows:

1. For each transaction ADS segment a in an elementary transaction of T i, name a as an atomic
commit segment if a is not interleaved with any other transaction ADS segment in this elementary
transaction.

2. When two or more transaction ADS segments in an elementary transaction are interleaved with
each other, merge them into a single atomic commit segment.

Theoremn 31: The failure safe rule is modular.

E=f It directly follows from Definitions.6.2.2 and 6.2.11. 0

Theorem 3.2: The failure safe rule % is safe. That is, under % we have,

V(TCT)V(z E ZR (T)) (z(n) is generalized setwise serializable, 0 < n < oo);
5

where z(n) = <zc, ... z is a committed schedule for a given total of n failures.'

oof: By Theorem 6.2.1, to show that z(n) = .zc... z> is generalized setwise serializable for 0 < n < 0o,

we need to prove that the ordering of steps in z(n) is consistent with the internal ordering of steps in each of

the compound transactions. In addition, all the transaction ADS segments in an elementary transaction must

be interleaved serializably with those of others in z(n).

.................. . . .*
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S'To prove that the internal ordering of transaction steps in a compound transaction is preserved we need to

prove that the ordering of the elementary transactions of a compound transaction in z(n) is cofisistent with

that in the compound transaction and that the internal ordering of steps in each of the elementary transactions

is preserved. By Definition 3.2, the partial ordering of atomic commit segments is consistent with the partial

- ordering of elementary transactions in a compound transaction. Since atomic commit segments are com-

mitted in an order consistent with the partial ordering of atomic commit segments, the ordering of elementary

transactions of a compound transaction in z(n) is consistent with the ordering of them in the compound

r: transaction.

To complete the proof that the internal ordering of steps in a compound transaction is preserved, we need

to show that the ordering of steps in each of the elementary transactions is also preserved. Let L and t. be

- two steps in an elementary transaction Tand t. < L . We need to show thatt < t, in z(n). There are two
U i uk V~ k u

cases. First, suppose that Lk and t. are in the same commit segment a. Since a C z(n) and the commit

segment a is the superset that contains the transaction ADS segments in which k < L,. it follows that Lk <

t. in z(n). Second, suppose that Lk is in commit segment a while is in ay and a < a. Since a < ey in
• .z. , it follows that t U < %,m in z(n).

We now prove that all the transaction ADS segments in an elementary transaction are interleaved serializ-

ably with those of others in z(n). First, it follows from Assumption 622 that steps of elementary transactions

*i are interleaved setwise serializably in z and in' the remaining partial schedules x, 1 < i _ n. Since z' C z and

Z! C Z! C zi, 1 < i < n, it follows that transaction ADS segments are interleaved serializably with those of

others in each of the committed partial schedules zi, 1 : i _ n. We now claim that all the transaction ADS

segments in an elementary transaction are interleaved serializably with those of others in z(n). If we suppose

l* that this claim is false, then there must exist at least two transaction ADS segments in an elementary trans-

action such that these two segments are interleaved non-serializably. Let these two ADS segments be al and

a There are two cases. ait, 1 and a2 are in the same committed partial schedule. This contradicts the

result that all the ADS segments of an elementary transaction are interleaved serializably with those of others

*in the same committed partial schedule. Second, suppose that a, and a2 are in two different committed

partial schedules 4 and z and that 2 < . By the assumption that these two transaction ADS segments are

non-serializable, there must exist some steps t, > Tk in 02 and some steps tL. > tLa in a, such that "h, <

ft7 0and "tlx > Lt". However, this contradicts the fact that all the steps in committed partial schedule zI

precede those in c Hence, all the transaction ADS segments of an elementary transaction are interleaved

serializably with those of others in (n). 13

t-~
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Corollary 3.2: 'le failure safe rule is consistent and correct.

"licorem 3.3: The failure safe rule % is the optimal failure recovery rule within the set of all the modular

and safe failure recovery rules for transaction systems using gencralized setwise serializable scheduling rules.

Ea~t To prove the optimality of the failure safe rule S. we need to show that the commit segments

produced by % for any transaction provide the most refined partition. There are two cases. First, a trans-

action ADS segment of transaction T could be taken as a commit segment by SA. By Thcorem 6.2.3, this

commit segment cannot be further partitioned. In the second case, transaction ADS segments V,, .... aM in an

,., elementary transaction of Ti are taken as a single commit segment by S. because they are interleaved.

,-. Suppose that they are interleaved and taken as a single atomic commit segment a. Suppose that there exists a

, modular and safe recovery rule !R which divides a into more than one atomic commit segments. a, ....o

where n _> 2. By Theorem 6.2.3, each of these commit segments must contain an integer number of trans-

action ADS segments. Therefore, ac, .... rn must be supersets of transaction ADS segments. Let the first

failure occur just after the commit of a and let there be no more failures. Suppose that the ordering of

steps of T. in z(1) is consistent with the internal ordering of steps in Ti.This contradicts the assumption that

the steps of the transaction ADS segments in a are interleaved, because in z(1) all the steps of ac.1 in Zc

precede all the steps in ac2 .... , in z1. It follows that the steps of Ti in z(1) violate the internal ordering of

steps in Ti, and therefore z(1) is not generalized setwise serializable. This contradicts the assumption that S1

is safe. Thus, the commit segments produced by SR for any transaction Ti cannot be refined by other modular

and safe recovery rules. E3

6.4 Conclusion

In this chapter, we have shown that when the transaction scheduling rule is the generalized setwise serializ-

able scheduling rule, the optimal modular and safe recovery rule is the failure safe rule. From an application

point of view, there are two important points one should be aware of. First, one should write one's compound

transaction carefully to avoid the interleaving of transaction ADS segments, whenever this is possible. Un-

necessarily interleaving the steps of transaction ADS segments in an elementary transaction could lead to a

serious loss of system concurrency. Second, one must realize that the spirit of the failure safe rule is to provide

"check-points", so that a transaction can resume its execution after being interrupted by failures. As a matter

of fact, once we have committed one single atomic commit segment of a transaction, we can only abort

" ',','."":. . '. ". *"- *, *.,-.-, -, '""' .,. 
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commit segments not yet committed. We cannot abort the transaction as a whole. Indeed. once we commit a

commit segment we are obliged to complete the execution of our transaction. For example. in the compound

transaction Gct-A-and-B presented in Table 1. once we have obtained one unit of a resource and committed

the operation, we arc obliged either to get the other unit or to put back the unit which we have already taken.

We give a few informal suggestions regarding the implementation of the failure safe rule. The standard

distributed version of the two phase commit protocol ° [Bernstein 831 can be adopted to commit the atomic

commit segments. ''he major modification is that we also need to store the values of local variables of a

commit segment in the stable storage. Saving these values in the stable storage is important for resuming the

execution of a transaction that has been interrupted by a failure. When an atomic commit segment commits,

the local variables contained in this segment should also be saved in the stable storage. To optimize the

storage utilization, we can save only those local variables that are shared by different commit segments. The

identification of those shared variablcs can be made easy if one is willing to request the explicit declaration of

them as atomic variables in the program of a compound transaction.

-i
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- 7. Plans

Progress on T asks A and 11 indicates a strong necd to begin an immediate study of thc time management

problem associated with best effort decision making and transaction facilities. Currcnt technology used for

* real-time executives (operazing systems) is inadequate to support the efficient realization of reconfiguration

- algorithms and transaction facilities for distributed real-time command and control systems. The develop-

ment of a theory of distributed scheduling algorithms and its integration with reconfiguration algorithms and

a transaction facility has emerged as a critical problem to the success of any real-time decentralized computer

* system.

Research over the next year on Tasks A and B will continue largely as described in CMU's proposal. Based

on the results of research accomplished over the past year, emphasis will be directed at incorporating real-

time constraints into transactions and developing scheduling algorithms so that the real-time constraints are

* met. The expected results from this work should be directly applicable to real-time distributed tactical

decision making. Task A will emphasize time-driven resource management --- managing system computation

* and communication resources efficiently so that real-time constraints will be met. This effort will concentrate

on (1) a value function based approach for multi-processor scheduling, (2) scheduling problems of a

* decentralized system, (3) investigation of a decentralized team decision model, and (4) architectural support

* for the scheduling of distributed computations. Task B will examine extension of the model of compound

transactions to allow for the specification of timing constraints and development of the new theory of co-

* operating transactions.
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