DECENTRALIZED RESO

. AD-R1S8 477 RESEARCH IN blSTngUTED TACTICAL DECISION MAKING:

RCE. . (U) CARNEGIE-MELLON UNIV
ENCE

TSBURGH PR DEPT_OF COMPUTER SCI

. PIT
UNCLASSIFIED E D J

T T
N
I
I

ENSEN ET AL. 31 JUL 8 F/G6 972

5

3

NL

O, ORI S et WY SO I O ot Pt R o ¥ PR TR R YAy Rop o R P @4

[

o

FEeEEEEE
EER
=
N N
s

[
13
r

llas

=

X
o
i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS —1963 A

W B
et

- - AR Y
P I VT RTINS ST Y

T R IS & A Y TRy

Résearch in Distributed Tactical Decision Making:
Decentralized Resource Management in
Tactical Computer Executives

SFRC: N00014-84-K-0734
Work Unit No. 649-004
Annual Report
1 August 1984 - 31 July 1985

Prepared for
‘Department of the Navy
Accession For
Ofﬁce of Naval Research NTIS GRA&I
800 North Quincy St., Arlington, VA 22217 DTIC TaB g
Unannounced 0
Justification___ _ 1}
By
by " |_Distribution/ -
. Computer Science Department _ Availability Codes
|Avail and/er |
Department of Electrical and Computer Engineering |Dist | Spectal
Department of Statistics '
Carhe‘gie-Mellon University A:I ‘
Pittsburgh, Pennsylvania 15213 /D-r\\
(412) 578-2574 Che,

This research was supported by the Engineering Psychology Program, Office of Naval Research. Approved
for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of
the United States Government.

T Y Soiiae

LIPS St i o arte s foaugen Sracivl em ivie A0 hon Sien) el S e Ben g dire Aoad BAR RS ITRI Tt RTINS IR -
. . -

SIFIED

SECURITY CLASSIFICATION OF TiiS PAGE
S —
REPORT DOCUMENTATION PAGE

Ta. AEPOAT SECURITY CLASSIFICATION 5. RESTAICTIVE MARKINGS
UNCLASSIFIED) NONE

20 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAIILABILITY OF REPORT

- TN T T Y T Approved for public release;
LASSIFY] 1/]

. o€ cA distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBEAR(S) §. MONITORING ORGANIZATION REPOAYT NUMBEA(S)

Ga. NAME OF PERFORMING ORGANIZATION

w OFFICE SYMBOL To. NAME OF MONITORING ORGANIZATION
(1 applicadle)
Dept. of Computer Science ONR

Se. ADORESS (Clty, State and ZIP Code) . ADQRC“ (City. Siate ond LIP Code)

Carnegie-Mellon University Pagsadena, CA 91106
Pittsburgh, PA 15213

Gs. NAME OF FUNDING/SPONSORING

. 80. OFFICE SYMBOL 8. PROCUREMENT INSTRUMENT OENTIFICATION NUMBER
ORGANIZATION {1/ applicadis)
Office of Naval Research | 442EP NO0014-84-K-0734
$s. ADDRESS (City, State and ZIP Cods) Jg. SOURCE OF FUNOING NOS.
PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 222 17 ELEMENT NO. NO. NQ. NQ.
it fl.l ll-
Reeeaers Aad Redoykee Yanagepent in
b ""“‘5&%’&?1%. Sha, J.P. Lehoczky, C.D. Locke, S.E. Shipman, A.M. vanTilborg
tvglfalfcg?l mary 1::°:u¢ cgl\;"(‘).l 7085.11113 14, DATR OF uniur ' 5'1 Mo., Des: 15, PAGE 9c¢8>u~r
. SUPPLEMENTAAY NOCTATION
‘ : 5 !
17. COSAT!I CODES '18. SUBJECT TEAMS (Canlnue on reverse if necessary end identily dy dlock number:
. 2:8L0 | cGAous Sys. on. ""Best effort decision making, dynamic reconfigurat ion&
decentralized scheduling, gtalagggéi%tilgable

18, ABSTRACT (Conlinue on reverse if nectssery ond idantify by dech aumber)

This report summarizes first year progress on the. subject contract. It
presents an analysis of dynamic reconfiguration of distributed computing
systems, and provides a set of powerful reconfiguration algorithms. The
report also describes basic research into team decision making as applied
to load balancing. In addition, the report contains verbatim copies of two
technical papers on the subject of modular concurrency control and

failure recovery.

2 ”TNI';TIONIA\IAILAIILITV OF ASSTRACT 21. AGSTRACY SECUAITY CLASSIFICATION
. wncLassisigo/unumiteo B3 same as aer. O oric vsens O UNCLASSIFIED
3a MAME OF AEIPONSIBLE INDIVIOUAL M IELEPHONE Nuulﬂl 7:::. QFFICE SYMEOL
Dr. David Mizell U818y 705-5071 | ONR Code 433

SOITION OF | JAN 73 1§ QASOLETS. UNCLASSIFIED

DD FORM 1473, 83 APR

acuam CLASSISICATION QFf TS PAGE

.‘.'-.".' e e e e .
-{-"-.'h '._&\ '-’h A e AR Rt R P PP

Table of Contents

1. Summary

1.1 Overview .
1.2 Progress on Task A: Best Effort Decision Making
1.2.1 Subtask Al: System Reconfiguration Decision Algorithms
1.2.2 Subtask A2: Best Effort Decision Theory
1.2.3 Subtask A3: Multi-processor Real-time Scheduling
1.3 Progress on Task B: Atomic Transaction Theory -
1.3.1 Subtask Bl: Atomic Transaction Theory
1.3.2 Subtask B2: The Devclopment of Co-operating Transactions
1.4 Plans '

2. Subtask A1: Dynamic System Reconfiguration

2.1 Introduction
2.2 Problem Complexity and Algorithm Design Decision
2.3 Basic Concepts: Disturbance and Vulnerability
2.3.1 Quantification of Disturbance
2.3.2 Future Vulnerability '
2.3.3 Trade-offs
2.4 Algorithm Development Approach .
2.4.1 The Two Phase Search Approach
2.4.1.1 Linear Phase: Satisfying Processor Constraints
2.4.1.2 Quadratic Phase: Minimizing Communication Traffic
2.4.2 Controlling Disturbance
2.4.3 Controlling Vulnerability
2.5 The Algorithmic System .
2.5.1 Maximizing The Feasibility: The Reverse FFD Algorithm
2.5.2 The Modified Multi-dimensional FFD algorithm
2.5.3 The Clustering Algorithm
2.6 The Reconfiguration Procedure
2.6.1 The Reconfiguration Routine
2.6.2 The Overall Reconfiguration Procedure
2.7 Conclusion .
3. Subtask A2: Best Effort Decision Making Theory

3.1 Introduction
3.2 Overview of Co-operative Decision Making
3.3 The Load Balancing Problem
1.3.1 The Value Of Perfect Information
3.3.2 The Value Of Local Information
3.3.3 Approaches to Decentralized Load Balancing
3.4 Future Research
3.5 Appendix
351Casel:L=1

E i S AR S S Sl e Mgl S

[P DAl b B -mab-ihe s 4 1*

O 00 I N AN VL LML LA sae b

b bt et et et
oL RCORRES

[y
W v

sEEEnReRE sy

oL

N A it i ri vt e S et i~ N ERACR L R R I o S Ay U S e Varh Tl Sy A S
. -

352Casc2: L =2
3.5.3 Simulation Results

4. Subtask A3: Multi-Processor Real-Time Scheduling

4.1 Introduction
4.2 Related Research
4.2.1 Artificial Intelligence
4.2.2 Non-monotonic Logic
4.2.3 Decision Theory
4.2.4 Real-Time Deadline Management
4.2.5 Distributed Decision Making
4.3 Hard-Real-Time Scheduling
4.3.1 Problem Spccification
4.3.2 Deadline Scheduling Model

5. Subtask B1-1: Atomic Transaction Theory: Modular Concurrenby Control

5.1 Introduction
5.2 A Model of Modular Scheduling Rules
5.2.1 Database
5.2.2 Transactions and Their Schedules
5.2.2.1 Transactions
5.2.2.2 Schedules
5.2.3 Modular Scheduling Rules
5.2.3.1 Definition of Scheduling Rules
5.2.3.2 Consistency and Correctness
5.2.3.3 Modularity, Optimality and Completeness
5.3 The Setwise Serializable Scheduling Rule

5.3.1 Atomic Data Sets
5.3.2 The Setwise Serializable Scheduling Rule
5.3.2.1 Definitions .
5.3.2.2 Consistency and Correctness
5.4 Compound Transactions
5.4.1 Syntax
5.4.2 Generalized Setwise Serializable Scheduling Rules
5.5 Conclusion
8. Subtask B1-2: Atomic Transaction Theory: Modular Failure Recovery
6.1 Introduction
6.2 A Model of Modular Failure Recovery Rules
6.3 The Failure Safe Rule
6.4 Conclusion :
7. Plans
=
-
=
-
»
>":;
B o R T e S I T T e R

iii

List of Figures

Figure 4-1: Process Model Attributes for Process i : 42

List of Tables

Table 51: Compound Transaction Get-A-and-B
Table 52: Compound Transaction Get-A-or-B
Table 6-1: Compound Transaction Get-A-and-B

Lm el e e . @ e e sl Culiad
- - -

Report Distribution

1. Office of Naval Research

Head, Mathematica! Sciences Division 1
Code N000O14
800 North Quincy St.
Arlington, VA 22217
2. Office of Naval Research 1

Resident Representative, Code N66002
National Academy of Sciences

Joscph Henry Bldg., Rm. 623

2100 Pennsylvania Ave. NW.
Washington, DC 20037

3. Office of Naval Research 1
Code 433
Attn: Dr. David Mizell
1030 E. Green St.
Pasadena, CA 91105

4, Space and Naval Warfare Systems Command 1
Code 611
Attn: Dr. Kepi Wu
Washington, DC 20363-5100

5. Office of Naval Research
Code 42EP
Attn: Dr. William Vaughn, Jr.
800 North Quincy St.
Arlington. VA 22217

6. Dircctor, Naval Rescarch [aboratory
Attn: Code 2627
Washington, 1XC 20375

7. Defense Technical Information Center
Bldg. 5
Cameron Station
Alexandria, VA 22314

12

Research in Distributed Tactical Decision Making:

Decentralized Resource Management
in

Tactical Computer Executives

This report prepared by:
E. Douglas Jensen, Principal Investigator

Lui Sha, John P. Lehoczky, C. Douglass Locke, Samuel E. Shipman, Investigators

Andre M. van Tilborg, Program Manager

1. Summary

1.1 Overview

" "This report summarizes first year technical progress on SFRC N00014-84-K-0734, "Rescarch in Distributed
Tactical Decision Making: Decentralized Resource Management in Tactical Computer Executives,” for the
period 1 August 1984 (contract start datc) through 31 July 1985. 'This rescarch reported herein is jointly
fundcd by Office of Naval Rescarch and Space and Naval Warfarc Systems Command.

The objective of this cffort is to conduct research in the arca of distributed tactical decision making.
Carmncgic-Mellon University (CMU) proposed to conduct research on primarily two tasks in the first contract
year. Task A considers best effort decision making for decentralized resource management, Task B focuses
on the development of atomic transaction theorics to support highly concurrent and reliable real-time com-
putation. Innovative research under the guidance of the Principal Investigator was conducted on both of

these tasks. Work will continuc on both tasks in the second contract year. ., -’

1.2 Progress on Task A: Best Effort Decision Making

Task A is divided into three subtasks. Subtask Al deals with the deveclopment of best effort decision
making algorithms for dynamic syséem reconfiguration for the purpose of enhancing system survivability.
Subtask A2 is a basic research task which investigates the theory of best effort team decision making. Subtask
A3} investigates real-time multi-processor scheduling. (n the following section, we summarize the progress

made in Task A. A detailed discussion of these three subtasks is presented in Chapters 2 through 4.

1.2.1 Subtask A1: System Reconfiguration Decision Algorithms
CMU has developed a set of reconfiguration algorithms with the following properties:

o Disturbance to functioning processes during the process of reconfiguration is minimized,
o System vulnerability to future failures after re-configuration is minimized,

o Reconfiguration is performed in real-time.

These algorithms are directly applicable to a variety of distributed tactical systems.

S T T T T e e e SR e e e e T T * T T R T Y T T R T N T T T T T T T T T T AT IR T I e T
. -) ’

1.2.2 Subtask A2: Best Effort Decision Theory

CMU has developed results showing that the lower bound on the performance of hest effort team decision
making in the context of load balancing is 62% of the idealized performance with full and instantancous
information. In this analysis, only local information is used for decision making. Since this resuit is the lower
bound of best cftort decision making in the context of load balancing, it demonstrates the promise of
decentralized best effort tcam decision making. A protocol for the cfficient use of active information has

heen investigated. Further rescarch on this topic will be continued in the next year,

1.2.3 Subtask A3: Multi-processor Real-time Scheduling

Subtask A3 represents our initial work on a value function based approach’ for multi-processor real-time
scheduling. This rescarch involves the study of deadline management in a multi-processor environment, in
which the time allocation decisions must be made using a best effort approach. A considerable amount of
rescarch has been done when deadlines could be met, but relatively little information is available about

scheduling decisions when available resource limitations require that one or more deadlines cannot be met.

Our approach is designed to maximize the value of the available state information to make the deadline

scheduling decisions, particularly in those cases where dcadlines cannot be met.

1.3 Progress on Task B: Atomic Transaction Theory

Task B is divided into two subtasks. Subtask Bl represents the conclusion of a long term research of atomic,
transaction theory for the development of wransaction facilities in decentralized operating systems. Atomic
transaction facilities are important for the reliable and efficient management of distributed data. Therefore,
these facilities are also important for implementing any distributéd decision making protocol. Subtask B2
initiates the investigation of co-operating transactions, transactions that share information and co-operate as a
team to achieve some common goal. In the following section, we summarize the progress made in Task

B. The detailed report of Task B is presented in Chapters 5 and 6,

1.3.1 Subtask B1: Atomic Transaction Theory

CMU’s major achievement in the area of atomic transactions is the development of a formal theory of
modular concurrency control and failure recovery. This theory is a generalization of classical serializability
theory and failure atomicity. This theory provides the basis for both optimal modular concurrency control

and optimal failure recovery rules. As long as each programmer ensures the consistency and correctness of his

e

L . -'.

. . .1
) e .o ST s
LofaSafataea.aal aa a’s. . .m 4’ Al al el WA AT 0y

ii. Label the identified node as the candidate node.
ii. List the candidate node in the merging list.
iv. In the graph, merge the candidate node with the merged node.

f. Take the first processor in the processor list. Repeat the following until the merging list is
cmptied.

i. Take the first node in the merging list, delete it from the list and try to fit it in the
Processor.

ii. Check all the constraints, real or pseudo.

iii. If successful. then this node is a resident of the processor.

iv. If a node becomes a resident of a processor, delete it from the communication graph.
8. Delete the processor from the processor list.

h. If the processor list is emptied but the communication graph is not. then report that the
reconfiguration fails.

i. If the processor list is not emptied but the communication graph is, then delete the mode
from the movable mode list.

2.6 The Reconfiguration Procedh re

In this section, we first list the reconfiguration routine. Next, we list the overall reconfiguration procedure.

2.6.1 The Reconfiguration Routine
We list the reconfiguration rcutine.

1. Run the reverse FFD algorithm to obtain the movable mode list.

2. If it is a processor failure, then run the new multi-dimensional FFD algorithm. If this FFD
algorithm fails, then report that the reconfiguration fails. In addition, report the modes that are
still disabled and exit this routine.

3. Check the communication constraints.

4. If the communication constraints are satisfied, report to the operator that the reconfiguration is
successful, and exit this routine.

............
....................

a. List all the processes in the mode in decreasing order according to their maximal real
resource requirement such as CPU, memory, ports cte. For example if a process needs 20%
CPU and 10% memory. its maximal resource requirement is 0.2.

b. Take the first process in the process list and repeat the following until cither the list is
cmptied or reconfiguration fails.

i. Try to put the process in the first processor in the ordered processor list.
ii. Check all the constraints in all the dimensions, real or p.2udo.

jii. If all the constraints are satisfied. then this process becomes the resident of the proces-
sor. In this casc. delete the process from the list.

iv. If the process cannot be fit into any proccséor then report to operator that recon-
figuration fails. :

c. If the list of processes is emptied. then delete the associated mode from the list of movable
modes.

2.5.3 The Clustering Algorithm
The steps of our clustering algorithm are as follows:

1. List all the movable modes in decreasing order according to their linear criticality score.

2. List all the processors in decreasing order according their minimal available capacities as defined
in the previous section.

3. Take the first mode in the list and repeat the following until either the list is emptied or the
reconfiguration fails. ’

a. Draw the communication graph of all the processes in the mode.

b. Identify the maximal arc.

¢. Put one of the two nodes joined by the arc on a merging list.

d. In the graph, mark the node on the merging list as the merged node.)

¢. Repeat the following until all the nodes in the graph are put into the list.

i. In the graph, identify the node which communicates most heavily with the merged
node.

L T ———

17

memory utilization 0.3 and 0.5, while these average are 0.4 and (0.3 for mode B, then mode A and
muode B are said o be compatible. ‘This is because the total utilization are 0.7 and 0.8, which are
both less than 1. If a functioning mode is compatible with any of the failed modes, then it is said
to be a candidate movable mode. ‘The idca of compatibility is that if a failed mode is CPU
intensive, then we want to match it with a mode which uses littic CPU., so that they can be packed
together later. We identify all the candidate movable modes.

5. For cach candidate movable mode Mi' we compute its total resource supply Ri by summing up all
the resources it utilizes in percentage of total units,

6. We now try to fill the pscudo bin by first putting all the failed modes into it. We then repeat the
following steps until the list of candidate modes is emptied.

a. For cach of the candidatc movablc modes M,, we compute the additional disturbance score
D, which would arise if mode M, is disturbed.

b. For each of the candidate movable modes Mi. we compute the merit score Ri/I)i. The merit
score is a measure of the amount of resource provided by a mode per unit disturbance
incurred.

¢. We try to put the one with maximal merit score into the pseudo bin. Call this mode as the
candidate bin resident and delete it from the candidate movable mode list.

d. Add up the total disturbance scores of the bin resident modes and this candidate bin resi-
dent. If this total score is less than S‘. then the candidate becomes a resident of the pseudo
bin.

7. Report all the modes in the pseudo bin as movable modes to the operator for approval and
possible alteration.

2.5.2 The Modified Mutti-dimensional FFD algorithm
The steps to carry out the multi-dimensional FFD algorithm are as follows:
1. Augment each processor with a set of pseudo joint criticality resources, each of which corresponds
10 a joint criticality index.
2. List all the movable modes in decreasing order according to their linear criticality score.

3. List all thc processors in decreasing order according to their minimal capacities. For example, if
processor A has 10% available CPU cycles and 20% available memory, then the minimal capacity
is 10%.

4. Take the first mode in'the list and repeat the following until either the list is emptied or the
reconfiguration fails.

RS NN M AU S SN A A L S STl S arat arer aade G it e g A A Sl S M A Ak Wi Aie S S S St Sl A Sl il St A Jhgllh el Jemce Ml oy -Tv'w‘

16

FEFD algorithm. “To avoid putting processes belonging to a set of jointly critical modes into a single processor,
we require the clustering algorithm to observe the pscudo resource constraints associated with cach processor.
Te promote the clustering of processes belonging to a same mode, wé run the clustering algorithm on a mode
by modc basis. That is, we examine the communication graph of cach mode and try to cluster those processes
with heavy inter-process communication first. Since processes belonging to the same mode co-operatively
carry out a task, they tend to communicate with each other more than with processes of other modes. ‘Thus

the modc by mode clustering is likely to produce results ncarly as good as the results of global clustering.

2.5 The Algorithmic System

In this section, we first outline in detail the reverse FFD algorithm, the modificd FFD and clustering

algorithms. Next, we present our overall procedure for carrying out the reconfiguration.

2.5.1 Maximizing The Feasibility: The Reverse FFD Algorithm

The Reverse FFD algorithm is used to maximize the reconfiguration feasibility by identifying all the
movable modes with respect to the given allowable disturbance level Sa. That is, the algorithm takes the
current configuration and the set of failed modes and produces a set of functioning modes which can be

disturbed within the disturbance constraint Sa.

We now list the steps of this algorithm.

LIf S' is zero, then list all the modes that have been disabled by the failure as movable modes and
exit this procedure.

L1If S. is non-zero, then create a pseudo bin whose size is St = Sc + Sa. where Sc is the current
disturbance due to the failure.

3. For each mode, we compute the average process resource utilization for each resource type. For
example, mode A has 3 processes which use 0.1, 0.2, and 0.3 units of CPU and 0.4, 0.5, 0.6 units of
memory respectively, then in this case the average CPU utilization is (0.1 + 0.2 + 0.3)/3 = 0.2
units and the average memory utilization is 0.5 units.

4. For each of the failed modes, we pair it with each of the functioning modes and check their joint
compatibility. If the sum of the average utilization of each of the resource types is less than om:,2
then the two modes are said to be compatible. For example, if mode A has average CPU and

2One 8 a generally good value for the threshold in this case. However, the value for the threshold can be experimentally tuned.

15

chosen to offer a high probability of finding a feasible reconfiguration. This algorithm is described in Section

23.1.

2.4.3 Controlling Vulnerability

We have developed our approach to keep the reconfiguration disturbance below a permitted level Sa.
Given that this constraint is satisfied, we now must minimize the future vulnerability. As discussed before, we
cannot hope to find the minimal future vulncrability configuration in rcal-time. However, we can take
advantage of the characteristics of a given system and develop an approach that produces nearly optimal

results.

When a processor fails, all the modes rclying on the processes running on this proccssorA are interrupted.
Thus, to minimize future vulnerability, a key principle is to avoid putting multiple modes on a single proces-
sor, especially jointly critical modes. Another important aspect in minimizing future vulnerability is to try
pack all the processes of a mode into as few processors as possible, because when a mode is supported by
several processors, the failure of any of these processors interrupts the mode. Both of these aspects can be
accomplished by modifying the multi-dimensional FFD algorithm in the linear phase of the reconfiguration

procedure and the clustering algorithm in the quadratic phase.

In the linear phase, to avoid putting multiple critical modes into a single processor, we associated pseudo
resources with each processor. Each of the pseudo resources corresponds to a joint critical index as discussed
before. In the example we discussed earlier, the two scanning modes have a joint criticality score of 0.8. To
prevent the processes of both scanning modes being put into a single processor, we associate one unit of
pseudo scanning resource with each of the processors that can support scanning modes. In addition, we
specified that a scanning mode requires 0.6 unit of the pseudo scanning resource, while other non-scanning
modes requires none of this pseudo scanning resource. Thus, a processor can only support the processes of
one of the two scanning modes, but not both. To put the processes of a mode into as few processors as
possible, we first run the multi-dimensional FFD algorithm for the most significant mode with respect to the
processors with most available capacities. This gives the best chance for the FFD algorithm to pack the most
significant mode into the least number of processors. After packing the most significant mode, we repeat this

processes for the second most important mode and so on.

In the quadratic phase, the modification of the clustering algorithm is similar to the modification of the

............................
..

........
...........

RN S A e, Al i spil il Auieatl St o ie s At Pt AL I IO LA e SN Y SRS R i e e A A S M A

14

2.4.2 Controlling Disturbance

We have mentioned that we are in favor of keeping mc'rccnnﬁgurutinn disturbance Su tora low level while
trying to produce a configuration that is low in future vulnerability. We assume that the default value of Sa is
zero. That is, without the operator’s explicit permission, the only processes that are allowed to be relocated by
the reconfiguration system are those associated with the modces disabled by the hardware failures. 'The
reconfiguration system will always attempt to restore disabled modes at zero disturbance and report the
results to the operator. If all disabled modes cannot be restored at a zero Sa score, the operator has the option
of explicitly naming the set of modes that can be relocated or of giving a level of allowable reconfiguration
disturbance Sa. If Sa is given, then the reconfiguration system will first try to enlarge the solution space as

much as possible, while kecping the disturbance level below Sa.

An example may help to illustrate these ideas. Suppose that we consider five modes, two associated with
scanning and three with fire control. The scanning modes have individual criticality score 0.1 and joint
criticality score 0.8. The fire control modes have individual criticality score 0.15 and joint criticality score 0.9.
In reconfiguration, suppose that one of the scanning modes is the only mode in the failed processor and that
the operator specifies Sa = 0.6. If we try to relocate the functioning scanning mode. then we have a distur-
bance score Sa given by 0.1 + 0.8 = 0.9. ' The 0.1 is the individual criticality score for disturbing the
functioning scanning mode. The 0.8 is the joint criticality score for disturbing both scanning modes, one of
which was disturbed by the processor failure. Since 0.9 > 0.6, we must not disturb the only functioning
scanning mode in the reconfiguration activity. If we relocate two fire control modes, the disturbance score is
0.15 + 0.15 = 0.3. If we relocate all three fire control modes, the disturbance score is 0.15 + 0.15 + 0.15 +
0.9 = 1.35. In this example, we can only relocate the scanning mode disabled by failure plus two funtioning

fire controlling modes.

Generally, once the allowable disturbance level for reconfiguration Sa is given, we need an algorithm to
identify the set of modes that can be moved without exceeding the specified value of Sa. It is possible that -
this computation has already been carried out off-line and results are stored in the database. Thus, for a given
S Ve would only need to look up the movable modes in the database. We also provide an on-line algorithm
to carry out this activity. This algorithm is a modified form of the well known first fit decreasing (FFD) bin
packing algorithm called the reverse FFD algorithm, which takes a set of failed modes and identifies a set of

functioning modes that can be disturbed. The identified set satisfies the disturbance constraint S. and is

Fach of these formulations can be used. However, we prefer the bin packing formulation because the

cxistence of the first fit decreasing (FF1)) algorithm, which is known to be very fast and often producces cither
optimal or ncar optimal results [Frederickson 80, Bentley 83). ‘The development of our algorithm for the

search of the lincar subspace will be based upon the FFD algorithm.

In the single dimension case, the FFD algorithm is to first order the items in decreasing size. We then try to
put the largest item into the first bin, Nextwe try to put the next largest onc into the first bin and so on until
the first bin cannot be filled. We then use the second biﬁ and repeat the same algorithm. If the bin sizes are
diffcrent, we order the bin in increasing order according to their sizes. The idea of FFD is to get the most
difficult one donc first: trying to put the largest item into the smallest bin first. When the problgm is
multi-dimensional, we use the largest number of requirements to order items and the smallcst number of its
capacities to order bins. For example, if a process (item) needs 20% CPU and 10% memory then its scalar
measure is 0.2. If a processor (bin) has 70% CPU available and 30% memory available for reconfiguration

task, then 30% is the scalar measure.

2.4.1.2 Quadratic Phase: Minimizing Communication Tratfic

When the bus communication constraints are violated, we cnter the quadratic phase. In this phase, our

objective is to minimize the traffic flow on the bus. Our quadratic integer assignment problem can be

formulated as follows:

1. Algorithms based upon the Branch-and-Bound method [Hillier 80).
2. Algorithms based upon the estimation method [Graves 70}.

3. Algorithms based upon the cluster idea used in real-time task allocation [Chu 80).

In a real-time environment, ﬂ;e only feasible algorithms are the clustering algorithms because either the
Branch-and-Bound or the estimation method are known to be slow. The clustering algorithms are based upon
the following observation. If we first group the heavily communicating tasks together before assigning them
to the processors, then the solution space is significantly reduced. One can argue that this reduced space is

promising because many heavily communicating processes are already bound together and they are no longer

to communicate over buses.

TTATEY VT TRy

ALt Tel G R Ve e o ¥ ey WU . v ; S U Cim T R -

v
e

12

-

2.4 Algorithm Development Approach

Having discusscd the principlcs underlying the issucs of disturbance and vuinerability. we now develop our

I (NCRUACATRERE N) AP

algorithms. We first describe our overall two phasc approach as a basis for the design of fast algorithms. We
then describe the implementation of the minimization of disturbance and of vulnerability as well as the

maximization of the feasibility in the context of this two phasc approach.

T . [SR oy 3
A RO

2.4.1 The Two Phase Search Approach

We have pointed out that due to the communication constraints, our reconfiguration problem is of the type

- e v.T ot
Socd e T

I of quadratic integer assignment problems whose optimal solutions are gencrally impossible to obtain unless the

problem size is extremely small. Thus. we must develop fast algorithms that focus their search in the

i

promising area of the solution space.

The constraints of our reconfiguration broblem can be divided into two classes: linear constraints such as
CPU cycles and memory units and the quadratic constraints, bandwidth of the buses. Since a bus is one of

the most reliable elements in the system, it is less likely to fail as compared with processor elements. This

Y,-',._< —— -
A Tt TROINL e AT,
(I S 0.

indicates that a promising area in the solution épace is the linear subspace. Based upon this observation, we
divide our search of the solution space into two phases: the linear phase and the quadratic phase. In the
lincar phase, we try to satisfy all the linear constraints. Once the linear consu"aims are satisfied, we have a
can_didate solution which will be checked if it satisfies the bus constraints. If it does, then we have found a

solution. If not, we enter the quadratic phase to further minimize the communication traffic on the bus.

2.4.1.1 Linear Phase: Satisfying Processor Constraints

In the linear phase, our reconfiguration problem is of the type known as integer assignment problems. The
constraints are CPU utilization, memory utilization and communication port utilization. Note that the port

utilization is additive. There are generally three possible formulations to this problem.

‘ 1. Formulate the problem as optimal zero-one integer programming problem and use the branch
K and bound method.)

2. Formulate the problem as the linear programming problem of the "cutting stock” type [Chvatal
83). ’

R A

3. Formulate the problem as multi-dimensional bin packing probiem [Coffman 83).

...................
..........................

LR AL NI A el Sag Selh, Nk, ted el i/l A Bt IR P AE AR AL i L A A N

LA i Al st e o on i o e e g

11

2.3.3 Trade-offs

We have identificd three aspects of the cost of a particixlar failure: sunk costs from a failure, the present
additional cost from the reconfiguration activity and the average sunk cost of next failure (the future
vulncrability). We focus cntircly on a single processor type, since processes in a failed processor must be
moved into the same processor type. Once a failure occurs, one can compute the sunk costs by noting all the
modes that have been disturbed and adding all the individual criticality scores and joint criticality scores. We

labcl this score Sc for current score.

We now consider a particular feasible reconfiguration. We identify the modes disturbed by failure and by
reconfiguration, and calculate the total disturbance score which results. This total disturbance score is
denoted as St. The additional disturbance from reconfiguration for this solution is Sa = S(- Sc. The new
configuration has a future vulnerability associated with it, the average sunk costs associated with the failure of
each of the processors of this type. We label this Sr for future cost. In summary, each feasible reconfiguration

has two numbers associated with it, S‘ and S'.

There are two issues which need to be addressed. Ideally, one would like to find a reconfiguration in which
both Sa and Sf are small. However, these two goals are often in conflict. In addition, we have discussed a
typical reconfiguration. The number of such feasible reconfigurations could be enormous, far greater than
could be examined in real-time. It follows that we must define heuristics which will guide us close to a
solution with small values of S' and S‘. Generally, we prefer to first specify S., so that the disturbance owing
to reconfiguration is bounded. We then try to find a reconfiguration with a small future vulnerability Sr The
determination of an acceptable S . requires some judgement and certainly depends on the current mission
scenario. We treat the threshold limit on S. as an input parameter to the algorithmic system. Generally, if a
reconfiguration can be accomplished without further disturbance, for example, by using spares, it will be
automatically carried out. If some disturbance is necessary, then input from the operator is sought The
operator, informed of the current disturbance, can either specify the set of modes which can be disturbed -

during reconfiguration or the maximal allowable value for S .

ey CNER A PRl ity DAL [DOl e AR e L S e R

10

’
o

resource, while all other modes require 0 units of it. The result of this approach is that the reconfiguration

reS

,

algorithm will be able to avoid critical joint disturbance and avoid putting jointly critical modes in the same

processor which would otherwise create an unnccessarily large future vulnerability.

- .l‘ :

The creation of pscudo resources addresses the non-lincar scoring problem and allows us to keep a lincar

scoring approach. Notice, however, that cach additional pscudo resource brings new constraints into the
reconfiguration algorithm and hence reduces reconfiguration potential. Consequently, one should use this

approach sparingly.

2.3.2 Future Vulnerability

When a failure occurs, certain modes will be disrupted and a criticality score can be computed using the
linear rule and joint indices. After examining the impact of the failure, the system must be reconfigured, and
= additional disturbance may occur owing to the reconfiguration. The initial part represents sunk cost, the cost
from the failure. The reconfiguration pan'can only add to the cost. Therefore, therc is a powerful incentive to
incur the smallest possible additional cost ip reconfiguration. This is, however, shortsighted. The sunk costs
- which seem to be unavoidable were actuaily the result of the previous reconfiguration decision. The recon-
figuration from the previous failure left the system in a state which lead to the current sunk cost. The current
reconfiguration will create a future system vulnerability. Clearly, we would like this vulnerability to be kept as

low as possible.

Now we quantify this concept. Fortunately, it is quite simple to quantify future system vulnerability using

"an expected value approach. We focus on a fixed processor type (e.g.. UYK-44). Consider any potential

configuration of processes in processors. Each processor will support one or more modes. If that processor
were to fail, then the sunk cost disturbance score would be the sum of the individual mode index score plus
the joint index score if any such sets are co-resident in the processor. Thus, we can compute the resulting sunk

cost disturbance associated with each single processor failure. We assume that each of these processors are

DR A
PPN

equally likely to fail, thus the future system vulnerability is the average of the individual total processor

',

scores. Any configuration can be evaluated in this fashion.

e i A0 s

———

T YTV Y

T VW W v

2.3.1 Quantification of Disturbance

In a recal-time command and control environment. a system will require a large number of modes to
function properly. Clearly. some modes will be of greater importance than others. We will assume that it is
possible to attach an index of criticality o cach of the modes and that this set of indices is available to the
reconfiguration algorithm. ‘This index is a measure of the importance of one mode relative to anothcr'ﬁxcd
reference mode. ‘This index can be used as scoring device by which to measure the amount of disturbance
caused by an interruption of a sct of modes. ‘The scoring of disturbancce is a very serious issuc. It is most
convenient to adopt a linear scoring rule. This rule would operate as follows. If a set of modes ceased to
function. then the total disturbance is taken to be the sum of the individual indices of criticality. This is a
reasonable approach in most cascs and is generally very convenient; however, there are instances where it is
inadequate and even misleading. For example, suppose that we consider two modes associated with scanning:
scanning mode 1 and scanning moc!e 2. Each may have the same index of criticality. The loss of a single
scanning mode is not catastrophic, because there is a second which can fulfill part of the scanning function. If,
however. both scanning modes are lost, the impact is very serious, far greater than the sum of the two index
scores, because the entire scanning function has been lost. This situation is rei'resentative of a non-linear

scoring problem. That is, the total score is not simply the sum of the individual scores.

An alternative to a linear approach is a wutility function approach. We must define a function which takes
sets of disrupted modes and evaluates them numerically. This function can be as general as the situation
warrants and must be constituted by hand for all the possible failure subsets. This is a feasible, but difficult

and exacting task.

We propose to adopt a hybrid, intermediate scoring approach. This approach begins with a linear scoring
rule but the reconfiguration Aalgorithm will take the non-linearities into account. Furthermore, we do this in a
simple and fast algorithmic way. This approach is as follows. We consider each of the modes separately and
define an index of criticality for each. Nexg we consider the modes in pairs. For each pair, we determine
whether the simultaneous failure of each would be of profound seriousness. If so, we create an index of joint
criticality and define a pseudo resource of 1 unit for this pair. Both modes are assumed to require a 0.6 units
of this pseudo resource, while all other modes require 0 units of this resource. We continue in this fasl;ion

creating critical pairs, indices of joint criticality and pseudo resources. One can continue with triplets of joint

criticality indices and pseudo resources. In this case, each member of a triplet requires 0.4 units of the pseudo

=TT~ e

remain intractable perpetually” [Karp 72). To appreciate the difficulty, we reported the work done by Kaku
and ‘Thompson [Kaku 83]. ‘They used one of the best known algorithms coded in Fortran.on a DEC-20. 1t
ok on average 31.43 scconds to obtain the optimal solution for an 8 by 8 problem, 220.91 scconds and
1.305.65 scconds for 9 by 9 and 10 by 10 probiems, respectively. The rapid exponentially increasing computa-
tion time 1s the characteristic of this type of problem. Owing to the very nature of this problem, we had w
give up the search for optimal solutions and develop our own hybrid system of fast algorithms for the

reconfiguration prublcm.]

2.3 Basic Concepts: Disturbance and Vulnerability

When a failure of a processor or other hardware clement occurs, there is an immediate interruption of
various functioning processes cither because the processor in which they were running failed or because the
communication paths being used were disrupted. It is important to realize that processes are the fundamental
unit of reconfiguration; however, modes are the fundamental unit of disturbance. A system mode consists of
a collection of processes. If any of those processes fails (because a processor fails or a communication path is

interrupted), the mode is disrupted. Thus, r_node_s are the unit of system functionality.

One must now reconfigure the system to overcome the failure. This can be done by rerouting messages,

relocating processes, shedding load or all of these three. There are three distinct aspects to be considered:

1. The present disturbance incurred by the failure.
2. The additional disturbance caused by reconfiguration.

3. The vulnerability of the subsequent reconfigured system.

We next analyze each of these aspects, Let us begin by quantifying the disturbance.

]The essential difference between an optimal algorithm and a fast algorithm in this context is that the former must cover the entire
solution space, while the latter limits the search to "promising areas” of the solution space and uses simple and fast operations. Fast
_ algorithms can operate in real-time and generally give good solutions. However, fast algorithms cannot guaraatee the optimality of their

solutions.

et Tar ", - . ISP SN RN
PR WAL WRDIREIA Whe WAZ W IR, W U I WAt WA S W WA I A WG TR WU TR IR W VR WL I DAL AT TR IS WA A IS DL WL, LY

2. Subtask A1: Dynamic System Reconfiguration

In this chapter, we summarize our work on subtask Al, best cffort decision making algorithms for dynamic
system reconfiguration. The objective of dynamic system reconfiguration is to re-organize a system (o adapt
10 a changing tactical cnvironment or to overcome hardwat ¢ fdilures. The study of reconfiguration algorithms
is important to distributed tactical systems that must operate in hostile and cver-changing cnvironments. This
work is carried out under the direction of principle invcs_tigator by Prof. John P, l.choczky, Dr. J.ui Sha and

Mr. Samucel E. Shipman.

2.1 Introduction

Conceptually, the three goals of reconfiguration are minimal disturbance, minimal vulnerability and max-
imal feasibility, the ability to reconfigure the current task set without shedding load. The goal of minimal
disturbance requires the reconfiguration algorithm not to disturb the critical modes in functioning processors,
so that the system can carry out its mission without much additional disruption. The goal of maximal
feasibility focuses on the restoration of as many disabled modes as possible. The goal of minimal vul-
nerability is introduced to ensure that as a result of reconfiguration the system is made as fault tolerant to
failures as possible, so that the impacts of future system failures are lessened. Conceptually, the notions of
minimal disturbance and vulnerability help to eliminate the undesirable regions in the solution space, while

the notion of maximal feasibility seeks to have as large a solution space as possible.

We have successfully developed a system of algorithms that

L. minimize the disturbance to the functioning tasks in the course of reconfiguration,
2. reduce the vulnerability to future system failures,

3. and operate in real-time.

2.2 Problem Complexity and Algorithm Design Decision

In a distributed system, the reconfiguration task belongs to the class of quadratic integer programming
problems. The term "quadratic” refers to the pairwise nature of the communication traffic and the term
"integer” refers to the indivisibility of a process. The dctermination of the optimal solution to this type of

problems is known to be a special type of NP-complete problem, which, except for very small sizes, "will

.............. T T e e e T Tt e e e e e e Nt e e T T T e A e
..................... Y

..................

A A A A A e A R 4

transaction when exccuting alone and follows the rules of this theory, then the following are true despite

system failures:

o ‘Ihe consistency of shared data (database) is ensured, .
o The post-condition of cach transaction will be satisfied,

o Transactions can be written, modified and scheduled independently of the rest of the transactions
in the system.

¢ The concurrency achieved by this approach is at lcast as great as any other consistent and correct
modular approach.

1.3.2 Subtask B2: The Development of Co-operating Transactions

In the process of developing reconfiguration algorithms under Subtask Al and transaction theory under
Subtask B1, we have discovered that the current technology used for real-time executives (operating systems)
is inadequate to support the realization of either of these two technologies in thc context of a distributed
real-time command and control system. The lack of a system level scheduling facility makes run time process
level reconfiguration or a real-time transaction facility infeasible, because there is no run time mechanism to
correctly assign a dispatching priority to th.e newly configured processor load or to the transactions that follow
some concurrency control protocol. As a result of this discovery, current efforts-under subtask B2 concentrate

on resolving these issues by investigating real-time process management techniques.

1.4 Plans

Progress on Tasks A and B indicates a su:or'xg need to begin an immediate study of the time management
problem associated with best effort decision making and transaction facilities. In the next year, emphasis will
be given to the real-time aspéct of distributed tactical decision making. Task A will emphasize time-driven
resource management --- managing system computation and communicatio-n resources efficiently so that
real-time constraints will be met. Task B will examine extension of the model of compound transactions to
allow for the specification of timing constraints and development of the new ;heory of co-operating trans-

actions. A more detailed discussion of CMU’s plan is in Chapter 7.

..

LA R T e A e e e e e T T el e e e e e T L e L L
e R N et L e e T e e T T T T

S ot o PG YRSV SRS PRN T PRSI P W P VT R N Y

|

PR R i e Ve g Nl e iy A T b i ech o Sl A A A RO A O e D SRR A NN M AP S el g A

20

5. Otherwise. run the clustering algorithm. I successful, report to the operator that the recon-
figuration is successful, and cxit this routine. If unsuccessful, report that the reconfiguration fails.
In addition. report the modes that are disabled. ’

2.6.2 The Overall Reconfiguration Procedure
When a failure occurs, do the following:

1. Report to the operator the modes disabled by the failure.

2. Try to use sparcs if there are any. If this is successful, report to the operator that the recon-
figuration is successful.

3. If this fails, run the reconfiguration routine at zero level disturbance and report the result to the
operator.

4. Let the operator determine if there is any mode that can be shed and what should be the allow-
able disturbance threshold level, or the set of the movable modes.

5. Run the reconfiguration routine accordingly and report the result.

2.7 Conclusion

P
v

Dynamic system reconfiguration algorithms are important to the survivability of a tactical decision system

L)
'

P ey
AR DA
B AN A
ALV RIS

N

3

that must operate in hostile and ever changing environments. We have successfully developed a system of

v
.

algorithms that

1. minimize the disturbance to the functioning tasks in the course of reconfiguration,

ne

2. reduce the vulnerability to future system failures,

. ¢
Y

Cimad
[

3. and operate in real-time.

Smanat jay
P D

i
.

v

3. Subtask A2: Best Effort Decision Making
Theory

This chapter summarizes our work on Subtask A2, best cffort decision making theory. This work represents

the basic rescarch part of our effort and is primarily carricd out by Prof. John P. [.choczky.

3.1 Introduction

In a decentralized computer system, processes often function co-operatively as a tcam 10 enhance system
level performance. One basic goal of the Archons project of which this rescarch is part is to develop concepts
N and mechanisms which are intended to function co-operatively by using co-operative decision making. These
mechanisms must function efficicntly even though they will have both inaccurate and incomplete information
upon which to act [Jensen 84]. In .this chapter, we introduce a framework for dealing with co-operative

decision making problems arising in decentralized systems in general and the Archon system specifically.

Concepts drawn from queueing theory, team decision theory [Marschak 72] and information theory will be
uscd to analyze the value of system status information for resource management. We focus specifically on the
trade-offs between the completeness and the timeliness of information. Rather than treating the consensus
problem abstractly, we will single out a particular problem for study: the problem of decentralized load

balancing. This problem will nicely illustrate the application of one particulai' paradigm of consensus deci-

sion making ~ team decision theory. Furthermore, it illustrates the trade-offs among the cost of information
(loading information at each processor), its completeness, and its timeliness. This chapter is organized as
follows. Section 3.2 provides an overview of decentralized decision making Section 3.3 describes the load
balancing problem and its formulation as ;a consensus decision making problem. Specific results charac-

terizing the value of system status information are derived. Section 3.4 presents some ideas for further study.

3.2 Overview of Co-operative Decision Making

In decentralized computer systems, the processors often must collaborate to, solve a particular system or
application problem. The problems may range from those associated with the management of system

resources (such as deciding which processor should process a particular task) to those arising in a specific

application such as speech recognition. We propose to try to deal with these problems in a general way by
casting them in a framework of statistical decision theory. Once in such a framework, it is possible to consider

issues such as the importance or value of information and its decline in value with time delays.

T g r—

,..‘
<y et te
.

-
« a4 %
o S0 W

In statistical decision theory, there is a sct of possible stites one of which is the "true” state. Generally, it is

.
e,

desired to identify the particular true state. Often data are available to assist the decision maker in identifying

Nl

the true state. ‘These data have different likelihoods for the various possible states. An example might be the

load balancing problem in a distributed local computer network. ‘The possible states represent the exact

workloads at cach of the processors at the time the decision is made. ‘The data are the workload information

L]
ll "l .‘l . .

messages exchanged by the processors. ‘These messages are incxact and dcelayed in time. ‘'The particular

decision made will vary in goodness with the possible states of the system.

Many decision problems arising in decentralized decision making can be cast in a statistical decision theory

framework. Once in this framework. various solution techniques can be brought to bear on the problems. A

» particularly powerful method, Bayesian decision theory, should be considered, since it leads to optimal
decision procedures. In the Bayesian formulation, the probability distribution is specified on the possible
states. This is called a prior distribution. Next, we must determine the probability of the possible states with
respect to observed data, which is called the likelihood function. These two components result in a posterior
distribution over the possible states. The posterior distribution reflects both the pribr information and the
observed data. An optimal decision or ac'ti.on with respect to some criterion can then be determined. Fur-
thermore, the posterior distribution can be continuously updated in real-time. Unfortunately, this program
can often not be carried out in its exact form. Two fundamental difficulties arise. First, the prior distribution

and likelihood function may be essentially impossible to specify. Second, in many examples the Bayesian

DOl N
[IR T)

formulation does not consider that data (for example processor status information) deteriorates in value with

time. If some information is delayed, the quality of the decision made may be greatly reduced.

In many real problems, a joint likelihood function must be determined empirically. When a high dimen-
sion likelihood function is required, an empirical approach is impossible to carry out. For example, in a
speech recognition context, the likelihood of a particular signal being a particular phrase will depend on many
factors ranging from its context in the sentence to the sound of the actual signal. A speech recognition system
will take these many diverse factors into account. The Bayesian program would call for these factors to be
considered jointly rather than marginally (separately). Currently, this is an impossible task. A satisfactory but
sub-optimal approach is to employ a team of specialized processors. Each processor works on a special aspect
of the problem. Each processor possesses the special database and codes designed for its particular aspect of

the problem. The individual processors are to function as a team of experts and are to arrive at a consensus

decision. Each processor develops hypotheses and probabilities associated with the hypotheses. The team

W =
o~ IETE A v(-—-_.,wv,r_r.r.f.._.A._._P._.~

members exchange these hypotheses and by this process ¢ hance the marginal viewpoints to a more global
view. The process must somchow convcfgc to a conscnsu$ decision of the tcam perhaps by.a formal method
such as that of DeGroot [DeGroot 74] or by some heuristic method such as the HearSay system [l.csser 73).
‘The approach is somewhat similar in spirit to the "divide and conquer”™ approach of algorithm design but
lacks the optimality of the full Bayesian program, because the joint information has been sacrificed. ‘That is.
the inter-dependence of various aspects are only approximated by the indirect approach of reaching a consen-
sus among experts. In the fotlowing discussion. we refer to this type of co-operative decision making process

as consensus decision making.

A second consideration which often Ieads to decentralized decision making .is the delay in and the cost of

& interprocess communication. In many real-time applications such as load balancing, information delay often

;‘_ plays a dominant role, and rapid decision making may be crucial. The time delay incurred in collecting
F complete status information from all the relevant parties could be sufficiently long that by the time all the
- information is gathered and a decision is made, valuable time will have been lost, and the information itseif

will be substantially in error. To obtaixi a timely decision, the decision makers may be forced to make

decisions based only on partial information. For example, in a large point-to-point network, a dynamic
routing scheme is nceded for message tranéfers through the network. Clearly, elaborate information gather-
ing and consensus arbitration is self defeating. Instead, one might adopt decentralized procedures such as the
one used in Arpanet [Kleinrock 76] and allow each node to make its own local routing decisions. Further-
more, each node will make these decisions based on only partial information, the information from nearby
nodes. Information from more distant nodés will be significantly delayed and of lesser value. This illustra-
tion highlights the importance of the two concepts of timeliness and completeness of information. Siuce this
type of co-operative decision making requires decision makers to work as a team to further the system level
performance but does not require them to reach an agreed upon opinion, we will refer to this type of

co-operative decision making as team decision making [Marschak 72]. A single team member is allowed to

make a certain set of decisions without necessarily gaining the concurrence of the other team members. Any -

team member may seek information which will improve the quality of its decisions. All team members make

decisions which attempt to improve overall system performance.

The.consensus decision making procedure in which a single decision is reached, and the team decision
procedure can be thought of as extremes on a negotiation spectrum. Generally, there are several important
facets in any consensus decision making prqblem which will, in part, determine the most appropriate solution

scheme. These include:

N TIPSR A AT R N e et e et e T e Tt e A T T e e et e,
¥) R AN 1 S RTRUCINE L S L IR
“aal o, "-_fn.i.n" L.; L(‘.{ L'*n..l'..";‘._d. a2t }A‘:(W o ‘--.:.l. PR .z‘_:. .1..‘n_‘\i‘"-.‘. ".“ L e .4':."\.\.‘.‘

A /ut Jma 4
(] .

LR A
e e %

IS Joorente

o Is it necessary to reach a single consensus among all decision makers? Can a single decision maker
make the decision after taking the opinions and information of others into account?

o How important is the complctencss of the information in making an optimal or ncar optimal
decision? ‘That is, how does the quality of a decision deteriorates as the completencess of infor-
mation decreases?

e What is the computational complexity of the proposed decision process? 1oes a substantial
reduction in complexity cause a major or minor reduction in performance?

e What is the total delay of a proposed decision process? This includes the information gathering,
negotiation, and decision making. More importantly, how is this total delay compared with the
relaxation time of the system? ‘The refaxation time is a measure of how fast the system is changing
its status.

In the following, we attempt to answer some these questions in the context of load balancing.

3.3 The Load Balancing Problem

In this section, we consider the load balancing problem in the context of a local distributed computer
system such as Archons [Jensen 83] in which users create jobs at the nodes they log into. Since both the job
arrival process and the required computational time for each node is unpredictable, the loads at each of the
nodes will be widely variable. Some will be lightly loaded, while others will be heavily loaded. The task of
the decision makers (local operating systems) is to equalize the loads in the system in order to improve the

system wide performance. Balanced loads will create short queues and short response times.

Each decision maker can manage its own job queue if it chooses to process it locally. Load balancing
necessitates the shifting of load from one proéessor to another, and this necessitates some form of consensus
and negotiation involving at least a subset of the processors. At the other end of the spectrum, one processor
acting as a centra] scheduler will assign the job to one of the processors. The no negotiation approach can be
carried further by letting each of the processors schedule its own jobs. This arrangement would then be
equivalent to the team decision approach whereby no consensus is needed, but d3e individual decision makers
act to improve overall system performance. There is no a priori necessity for consensus. Rather, the degree

of negotiation must be dictated by performance.

Generally, there are two aspects of load balancing. The first aspect is the matching of the structure of the

data flow in the application with the architecture of the distributed computer system. This includes clustering

24 M N

s & 3 4 0

e a0 s]

-

"
1

closely coupled processes in the same or nearby nodes, scheduling tasks with respect to precedence relations

in such a way that more tasks can be exccuted concurrently, and matching the special resource requirements
of tasks with special hardware ctc. From a modelling point of vi¢w, the optimization of these aspects is
typically an intcger programming problem. In many dedicated real-time control systems, this is done off-line
duc to the lack of efficient algosithms for solving integer programming problems. A second aspect of load
balancing is the control of system dynamics. In a distributed system, there is substantial redundancy built into
the system. Often a class of tasks can be executed with ncar cqual cfficiency by any of a group of similar or
identical processors. ‘I'he problem then is the cqualization of the load so as to improve the throughput and

responsc times. In this chapter. we will concentrate on this latter aspect.

Traditionally, the load balancing is carried out by a centralized scheduler. However, this approach is
inadequate for many larger scale systems which are typically loosely coupled. The inadequacy is in part due
to reliability considerations and in part duc to the time delay involved in routing all relevant information to a
centralized location. In this chapter, we will investigate a highly parallel and highly decentralized approach.
In this approach, each processor is considered to be a member of a management team, the individual actions
of which are geared to increasing the syste't;i level performance. The crucial requirement is the development
of an information exchange structure and an associated decision procedure which makes such an approach

effective.

In summary, it appears that one reasonable approach to load balancing is the highly decentralized teém
approach. In this approach, each processor acts individually to increase system performance. The key
"ingredient is to develop an information exchange structure which will lead to increased system performance
by allowing each individual processor to schedule its own jobs. The most difficult aspect lies in obtaining the
relevant system status information in a timely fashion. In addition, the actions of the individual processors
must be sufficiently coordinated to generate a coherent global strategy, even though it is implemented in a

highly decentralized fashion. We present some results on this team formulation in the rest of this section.

3.3.1 The Value Of Perfect information

In developing a highly decentralized team approach to the load balancing problem, an important con-
sideration is the value of system status information. The actual information available to a processor wiil often
be delayed, incomplete, and inaccurate, It is, however, useful to consider the ideal case of "perfect” infor-

mation. System performance measures such as throughput or mean response time are influenced by unavoid-

Lt

e

.......
......

......

-
v

SR RS

‘_\ - Y

.

R

)

U AL R ALRERL RS

o

RO AR S N T s S A

RN PP

P

'ﬁ(l DRI e

26

able queucing or congestion delays and dcluys caused by imperfect system status information. “To quantify
the importance of system status information, we must sepirate out the extra delay incurred when information
is imperfect. ‘The approach is to measure system performance under the assumption of perfect information
and to also measure it under some imperfect information scheme. The former gives an upper bound on

obtainable performance, while the difference measures the loss in performance duc to imperfect information.

As an illustration, let us contrast two extreme cases, At onc extreme, we assume that all processors have
complete, accurate, and instantancous system information. At the other extreme, we assume that processors
have no system status information a(all (not cvén local information). In both cascs, the processors will make
the best possible decisions, but since different information levels are assumed, the performance achieved in
the two situations will be different. The difference in performance is due solely to the availability of the
status information and provides us with a quantitative measure of the value of complete information. This

measure will help us to identify situations in which information is very valuable and situations where it is not.

Asa specific example of this approach, we assume that the network consists of n homogeneous processors.
We assume jobs arrive at the i th according to a Poisson process with mean'>\i jobs per unit time. All jobs are
homogeneous and require a random amount of time to process given by an exponential distribution with
mean m. We will, for the moment, ignore all other factors such as communication costs, priorities, etc. In the
case of perfect information, each processor is able 10 act as a central scheduler. If a processor is available for
work, this is assumed to be known to the other processors. No queues will form if other processors are idle.
This corresponds to an M/M/n queueing system with arrival rate A = }\1 + .. +A 2 and mean service rate
1/m. The performance of such a system can be explicitly characterized. For example, the mean rcsponse
time is given by np((1 - p)+C(n,np)/n)/(A(1 - p)) where C is the Erlang C function and p=Am. The Erlang
C function is bounded above by 1 and is usually small. Thus this formula can be approximated by np/A.

Other quantities such as processor utilization can also be calculated.

In the case of no system status information, each processor must make a decision based only on the)\i. m, |
and 0. That is, only long run average information rather than dynamic loading information is available to the
processors in this case. The optimal assignment scheme is probabilistic and results in an even load being put
on all processors. It is important to observe that the concept of a balanced load is defined here only in the
long run. All jobs are allocated so that in the long run the same number of jobs will be handled by all n

processors. The lack of current and complete system status information means that the processors are not

able to take current loads into account. Imbalances will result, and system performance will be decreased.

PN R e B A, M A Ml el e AW e i S A S A N e N e I M AP A it g DL e Sute Jngn it Bete R B Zharie S S S e e i gy vTYYvTYTY

Ry

The situation of no current status information corresponds o a collection of n independent M/M/1
qucucing systems with Poisson input having mean rate A/n and mean service time m. Performance quantitics
arc casily calculated for such a system. For example, the mean response time is given by np/(A(1=p)). Itis
interesting W compare the mean response time in these two extreme cascs, the complete information case and
the no information case. The two differ by the muhiiplicative factor 1-p + C(n.np)/n. Onc might refer to
this quantity as the "information factor”. ‘The factor is cqual to 1, its minimum value, when p=0, and it
decreases to 1/n as p increases to 1. This means that at low traffic intensitics (p ncar 0). system status
information provides no significant reduction. This factor can be calculated for any traffic intensity p and
shows that information is very valuable at moderate and high intensitics. Furthermore, the value of infor-

mation increases with the number of processors in the network.

3.3.2 The Value Of Local Information

In this section, we continue to &ume' a situation in which processes and processors are homogencous.
Furthermore, we do not consider the communication delays or the time cost of transferring tasks in this
section. Now we wish to study the situation in which each processor has only local information (the status of
its own job queue) and knows the long run arrival rate of work. The arrivals are assumed to be independent
Poisson processes with common parameter A. while service times are again exponential with mean m. Each
processor upon receiving a job must determine whether to process it locally or send it to another processor.
This decision must be based only on the local qucue length and is made without any negotiation. We also
assume that if it is sent to another processor, that processor must accept the job and cannot send it further.

This assumption is useful in that it prevents excessive job swapping, and it simplifies the analysis.

A general class of control policies within which an optimal policy must lie consists of a set of probabilities,
{pn}. where P, gives the pfobability that the processor accepts a newly arrived task when its local queue
consists of n other tasks. These probabilities must be decreasing in n. Optimal stochastic control theory
suggests that the optimal P,s will be non-randomized (either 0 or 1). This reduces consideration to a ‘control
limit’ policy: accept a task if and only if the local queue, including the one being served, consists of L or
fewer tasks, otherwise send it to another processor chosen from among the other candidates. The best value
of L will depend on the traffic intensity. If the traffic intensity is small, then L = 1 is appropriate. For larger
values of p, L must be larger. It remains to determine the optimum value of L for each p. and to assess the

performance of the resulting local information system.

Iy AP A A A N AL g L A S R

28

Once 1. has been determined. there is a second phase to the policy - the choice of the processor to send the
unaccepted task. A number of policics, both deterministic and stochastic can be used. An optimal policy
must cqualize the load on the processors in the long run. Beyond that requirement, we expect that the
optimal policy will minimizc the cocfficient of variation of the resulting arrival processes. The form of the
optimal policy is still an open question. We choose a policy in which cach processor sciects randomly from

the remaining (n— 1) available choices.

The L policy queucing system has not been studicd Bcﬂ)rc. and it is quite complicated to produce exact
analytic solutions. Fortunatcly. a simple approximation can be used which is very accurate for large valucs of
n(l1-p). We treat cach of the n processors as independent birth-death processes with birth rate bn-':A(l +5)
forn<L.and b = As for n>L, while the death rate is 1/m for all states. The parameter s is used to connect
the queues together and is chosen to achieve equilibrium. The unknown s is a root of a polynomial equation.
Once s has been determined, approximate equilibrium distribution and its mean can be found. The deriva-
tion is given in the appendix along with simulation results which attest the high accuracy of the approxima-

tion. If we let F =np/(A(1—p)), then we can determine the mean response times to be given by

POLICY ' MEAN RESPONSE TIME

no information F[1]

local control, L=1 F[1/(1+p)]

local control, L=2 F{1-p+p/((1+p)?)]

perfect information F[1=p +C(n,np)/n] ~ F[1=p]

The results are rather surprising. The peréentage reduction in mean response time for perfect ififormation
over no information is p. The percentage reduction for the L=1 policy is p/(1+p). Of the total p percent
| reduction for perfection, 1/(1+ p) of it can be obtained using only local information. Even at high intensities,
local information gives over 50% of the possible gain. If one allows general L's, then at least 62% is possible
for any traffic intensity! It is worthwhile to point out that some non-local information can be obtained at
nearly no additional cost by keeping track of the source of each task in the local queue. Hence one can
further improve system performance by using this "free” non-local information. For example, if a processor
decides to ship out a task, it should be sent to a processor which has not shipped it anything in its current
queue. This all suggests that very effective control can be exercised at low traffic intensities using just local
control. At higher intensities, the mean response times become quite long. Even though local control can
capture a high percentage of the overall gain possible from perfect information, it becomes important to

refine the decision making with extra information. Specifically, one needs to make a more informative choice

A e e et T e P e e e e e e e e Sl el e Tt e O et e e et A B L i T T P
; - . - - A~ - o e . SRR - LRSS LSS S AL O SIS
L L Y ¥ LY JL“;S’J‘L\‘L'\. PR

of the processor selected to process the task. ‘The purcly random choice described carlier is inadequate.

Several such schemes are suggested in the next section.

3.3.3 Approaches to Decentralized Load Balancing

Once one has introduced a measure of the value of information, it remains to develop an algorithm which
will nearly achicve the theoretical upper bound on performance. In general, processors will send messages to
inform other processors of their status. 'The more frequent the messages. the more information other proces-
sors will have. Unfortunately, these messages create overhead which serves to degrade system performance.
To deal with this tradeoff, onc can draw an analogy with team decision theory. Information is valuable and
worth the cost only if it causes the recipient to change his decision and results in a lower overall cost. A
message should be sent orly if it has a sufficiently large information content to justify the cost of sending it.
Here we are ignoring the reliability considerations which may dictate that a message be sent periodically. We
use the word ‘information’ in the Shannon sense. The information gained from a message is equal to the
uncertainty removed. Only messages describing relatively unusual or surprising system states should be
transmitted. In the load balancing context, the high information content messages are those which describe
overloading or undcrloading conditions. This suggests that processors should transmit status messages ac-
cording to a control limit policy: cither when it is underloaded or overloaded relative to its equilibrium
distribution. The exact control limits are determined to optimize the tradeoff between the cost of information

and the gain in performance from it.

The control limit policy described in the previous paragraph should provide a very efficient decentralized
control algorithm. The policy is, however, one based on long run equilibrium calculations which ignore short
run fluctuations. A processor will send a status message when its workload deviates from its long run
expectations. It is possible that there could be a heavy influx of jobs over a short period (or a very small

influx), and many processors will have above (below) average workloads. This causes many status messages

to be sent which further degrades the system. This effect can be overcome by having control limits which are -

determined dynamically and change based on short term load fluctuations. Unfortunately, this would seem
to necessitate sending even more messages to identify these short run fluctuations. Theré is, however, an
alternative approach. This approach is based on having each processor construct a system status model. If we

assume that the processors are linked by a bus connection, then each processor must do intensive bus

monitoring. Each processor rﬁust keep track of all traffic on the bus, noting its source, its destination, and if

R Rl N S i St A NN e gl P i st iRt 3 " T ——— M S e e AN i hanc S il e S Ma I ¥ ._‘..1

30

possible its estimated processing time. “Phis information allows cach processor to build and update a system
status model. Such a model would predict the curreat workload at cach processor. Based on this model, the
processor could act as a central scheduler to determine the best processor to handle any particular task. The
quality of these decisions will be totally a function of the accuracy of the model used. At first glance, it would
scem that the system status model might be accurate for a short time period, but its quality would quickly
deteriorate as time passes, duc in part to the uncertainty of the exact processing requirements of any par-
ticular task. It is necessary to introduce some sort of feedback control to keep the model accurate. This can
be also done in a highly decentralized cfficient manner. Under the assumption that the processors are
coupled by a bus, they will all sce the same traffic. As a result, they will all build identical system status
modcls. Thus the models used by cach of the processors gives essentially identical predictions of the
workload at any particular processor. [n addition, each of the processors has extra infoﬁnation in that it
knows the exact workload for itself. Each processor can compare its own workload with the workload as
predicted by the common system staius model. The two will of course deviate. It is only important to notify
the other processors when this deviation becomes significant. This is again done on a control limit basis.
When the actual load is significantly larger or smaller than the load predicted by the model, that processor
must send a message to all other processors to have that part of the model updated. The exact control limits
must be determined to tradeofT the increase in performance with the overhead costs in sending the message.

In this fashion an effective feedback control mechanism can be established in a highly decentralized fashion.

3.4 Future Research

The previous section indicates how one can quantify the value of system status information. We wish to
generalize these results to a broader context. 'I"his will be done as follows. We will assume that both jobs and
processors may be heterogeneous. Further we will reintroduce the costs (in time) of communication as-
sociated with sending jobs around the network. A number of models are possible to handle this greater
degree of generality. We might assume that processes arriving at processor i (at rate Ai) can be processed by
any other processor, but the amounts of time required will vary. A number of factors will cause these time
differences: differing communication times, the capabilities of the particular pr.ocessors, the requirements of
the job, the location of the data, etc. We assume that the time to process a job at processor j is random and

has a distribution Fti with mean m, and variance S From this structure, one must evaluate the system

performance under a full information and a no information structure.

e A e A R e R R S N R S e W W e T ‘T

]|

Under the assumption of no dynamic information, the decisions must be hased solely on the parameters)\|
and Fij' Again a probabilistic algorithm will be optimal. Performance quantitics such as the mcan response
time can be calculated from the Pollaczek-Khinchin formula. The full information optimal performance

cvaluation can be carried out by a straightforward Lagrange multiplicrs argument.

It is intuitively clear that heterogeneity in gencral reduces the value of system status information. This
observation follows because knowledge of the availability of a particular processor will be uscless for jobs
which arc mismatched to that processor. Heterogenceity increases the number of such mismatches and thus

reduces the number of cases where information is of value.

In summary, there remain a variety of important issues yet to be investigated. First, there is a need to
evaluate the response times of systems more general than the one analyzed in sections 3.1 and 3.2. Thisis
outlined above. Second. one must evaluate the performance of the various control strategies outlined in
section 3.3. These initial results do, however, indicate that the team decision approach with limited local

information will offer a very high performance decentralized system.

et e T e e
“‘ "a‘ih. i' DN -l' " =y

3.5 Appendix

The behavior of the network under an 1 policy can be determined approximately using a simple birth and
death process model. We focus attention onto a single node. ['his node receives external input according o a
Poisson (A) process. 1t accepts and queucs these tasks if there are currently fewer than [tasks there, It sends
the work clesewhere if it currently has 1. or more tasks. The node also accepts tasks sent by other nodces that
invoked the 1. policy. These tasks must be kept and processed. ‘That is. each task can be only sent once by a

node. We assume the same external input rate A and exponential scrvice rate 1/m at cach node.

The queuc length process at cach node is treated as a birth and death process with constant death rate 1/m.
The birth rate is b, = A+ A0 = XN1+8)if0<i<Landis Adifi> L. Here § is the fraction of traffic
forwarded by a node and is 2;: L7y where {wk}:": 0 is the equilibrium distribution of the birth-death
process. One can find the equilibrium distribution from standard birth and death theory.

k-
m, =m, [T, bm_) 1<k<oo

0 i i+l

2:0 w =1

=0 "k
Consequently,

. = {p"(1+o)" 1<k<L
Lo kgt at k>L

3.5.1Case 1:L =1
We consider the case L = 1. Here, the equilibrium distribution is given by
S {p(1+0)ﬂo k=1
p* "1+ 0)m, k>1

_®
whered =1- a1 = Ej=ovj,

The condition 1 = 2;:01:] yields wo(l+p)/(1- p8) = 1. The further requirement § = -1.— L gives m,

=1 - p,s0 & = p. This gives the equilibrium distribution in terms of p alone,

= [1-p k=0

haf'

p i1+ pX1-p) k21

TS e s s T AR ik Tl el Aasll. Sl Radl B B gl Nl

T T T T m——— - T T Ty i‘._h’

XX

Iie mean queue length can be caleulated directly from this distribution to be p"‘/[(1 —-p)?(l +p)]. Liule’s

formula can be used to find the waiting time = F(1/(1 4 p)).

3.5.2Case2:L =2

‘The analysis for 1. = 2 is similar to the . = 1 case. The equilibrivm distribution is given by

" = pl+)m k=1

p 0" N1+ 0Ym k22
where Zia:o"i =L8=1-m~-m,

The three conditions, 2?:015 L =1~am andw, = p(l+ 6)m , can be uscd to find the equilibrium

distribution. It is LA 1 -~ pand

n = {PUFPXI=p)(+p(=p) k=1
[0 /(1+ p(1- p)(1 +pY(1-pV/p* k22
Once again, the equilibrium queue length can be found this distribution. The waiting time is given by

F(1-p+p/(1+p)%)

3.5.3 Simulation Results

It is important to determine the accuracy of the previous approximation. A simulation was carried out for
that purpose. Selected results are presented below for the case of 5 nodes. The results show that the ap-
proximation is extremely accurate for traffic intensities up to 0.5 and still accurate when traffic intensity is 0.7,
At high traffic intensities, the network becon;es difficult to simulate accurately as extremely long runs are
needed. The approximation will work better as the number of nodes increases, but simulations are difficult to
carry out in such cases. The followings are simulation results and theoretical results of the probability of n

jobs in the queue. In addition, the mean queue length of simulation results and theoretical results are also

compared.

LA e St a4 et e

47

Traditionally. studies on concurrency control have focused on the issue of database consistency, rather than
transaction correctness. Under a non-scrializable schedule, transactions cannot be considered as if they are
exccuting afone, It is, therefore, unclear if a transaction which satisfics its post-condition when cxecuting
alone will still satisfy its post-condition when it is run non-scrializably, even if the non-scrializable schedule is
consistent. Although many proposed non-scrializable control methods arc shown to be powerful tools to
solve various specific application problems, non-serializable concurrency control methods will be difficult to
usc in a general transaction facility until the problems of the consistency of the database, the correctness of

transactions and the modularity of scheduling transactions are coherently solved.

In this chapter, we develop a theory of modular concurrency rules — a theory of provably consistent and
correct concurrency control methods that allow one to write, modify and schedule one’s transactions indepen-
dently of the others. Our theory is a generalization of serializability theory and provides at least as much
concurrency as any other modular scheduling method. Before the formal investigation, we give an informal
overview of our theory. From a programmer’s point of view, our work is a formal theory for decomposing a
transaction system. Under scrializability theory each transaction is treated an atomic unit of operations and
the database is treated as a non-divisible unit of data objects. In our approach, both the database and

transactions are decomposed as follows.

1. The database is partitioned into consistency preserving atomic data sets; As long as the consis-
tency constraints of each atomic data set are satisfied individually, the consistency of the database
is maintained. However, data objects in different atomic data sets need not be independent or
unrelated, and data objects can be added to or deleted from any of the dynamic data structures
(e.g. linked lists) in an atomic data set.

. Each transaction is independently partitioned into a partially ordered set of correctness preserving
elementary transactions. As long as the post-condition of each executed clementary transaction is
individually satisfied, the post-conditions of the partitioned transaction (called a compound
transaction) are also satisfied. '

[3P]

An elementary transaction can have the structure of nested transactions, and it preserves the
consistency of the accessed atomic data sets. However, elementary transactions in a compound
transaction need not be independent computational units. That is, the results of computations can
be exchanged by the elementary transactions of the same compound transaction.

Having divided the database and transactions, we next employ some concurrency control protocol to ensure
that the elementary transactions of each of the compound transactions are executed serializably on a atomic

data set by set basis. The protoéol defined in this chapter ensures that:

Capul- il e i A - Le, W W R e — RN e e i S AR it dhadt - Saelh Bl T ‘rv._w".Tw."-_f‘,r‘

46

5. Subtask B1-1: Atomic Transaction Theory
Modular Concurrency Control

In this chapter, we summarize our work on the concurrency control part of atomic transaction theory.
which is part of Subtask Bl. Concurrency control addresses the problem of how to run a st of transactions in
a distributed system consistently and correctly with a high degree of concurrency. This work is primarily

conducted by Dr. Lui Sha and Prof. John P. |.choczky.

5.1 Introduction

Scrializability theory has becn widely accepted as the basis for concurrency control, because it ensures the
consistency and correctness of concurrency control. Under serializable schedules, the results of executing a
set of transactions will satisfy both the consistency constraints of the database and the post-conditions of
transactions as long as each individual transaction is consistent and correct when exccuting alone. Further-
more, with serializable schedules one can write, modify and schedule® any single transaction independent of
any knowledge of the rest of the transactions in the system. Such a modular property of concurrency control is
very attractive in the development of a gencral purpose transaction facility in which transactions are fre-
quently modified. We believe that the propertics of consistency, correctness and modularity account for both
the popularity of serializability theory and the continuing interest in the study of various protocols that

support the serializability of concurrency control [Weihl 84, Attar 84, Papadimitriou 84, Mohan 85].

On the other hand, there are many propos'ed non-serializable scheduling methods that can provide a higher
degree of concurrency than that available using serializable schedules [Allchin 82, Schwarz 82, Garcia-Molina
83, Lynch 83, Schwarz 84]. Since serializability theory is optimal when only transaction syntax information is
used for scheduling transactions {Kung 79), many proposed non-serializable scheduling approaches have
typically focused on various methods of using transaction semantic information to maximize system concur-
rency. This approach can lead to significant increases in concurrency. There is, however, a potential accom-
panying disadvantage. When a set of transactions are jointly scheduled through the use of semantic infor-
mation, the modification of even a single step of a single transaction could result in the res;:heduling of the

rest of transactions. There is a second problem which arises with the use of non-serializable schedules.

6For example, one can use the two phase lock protocol to schedule one’s transaction (Eswaran 76).

45

o Use hard deadline scheduling -- Use all value functions with the same constant value prior to their
dcadlines, 0 after the deadlinces.

o Maximize the number of processes scheduled in a given time interval - Use all value functions
with the same constant value both before and after their deadlines.

o Use user-defined priority scheduling -- Usc value functions with constant valucs, but whose values
represent their prioritics.

o Minimize the average lateness - Use value functions which are constant prior to the process

decadline, but lincarly decreasing after the deadline.

A solution for this problem must produce (at least) the following actions in some form:

o Continuously refine the cstimate of the computation time for each process.

e Determine the probability that an overload condition exists such that one or more currently
schedulable processes will miss its deadline.

o Determinc the best execution sequence of the currently known schedulable processes.

o Initiate the shedding of load if an overload condition currently exists and has a high probability of
continuing. ' '

LI O R . m, . e tar . - et e s -
Y Y - N LY et . N R AR I
e S S A A A P PR N T VY

- " . - - *
RIS & C] e, o N v, e, B e N
] A"A"A\Aﬂﬁ_h\&A_L A et e e e N s — "'\L'n' -L:' PN '.L'.‘L"L‘-L_.” <

function of process P, drops below some user-defined value, the scheduler may decide that there is insuf-

ficicnt value to the system in continuing its cxecution, and cause its abortion. This action will (perhaps
slowly) purge the system of processes crroncously capturing a disproportionately large portion of the system
resources. The type of functions definable for Vi will determine the actual scheduling performance of the

system.

Each scheduling computation results in the determination of a process ordering (m,.---.m) where P, is
the j"' process to be scheduled. Scheduling will be considered optimal if, with respect to the availaélc
information at the time of the scheduling dccisién. B is maximized, where =3 V(T) and 'l‘i is the expected
complction time of p, using the scheduling sequence currently decided upon (if P, is the j‘h process to be

scheduled, then Ti= 21:1 ka).

It is evident that no priority has been defined for P, The use of the value function renders such a concept
unnecessary for this research, since the relative priority of all competing processes, at any point in time, will
be determined by their respective value functions at their estimated completion time. Thus their priorities
will vary, but will always reflect the estimated likelihood of completing prior to their deadlines. A separate
question is how an application will define the relative importance of a number of competing processes, but
this question will not be considered in this fesearch. A number of potential solutions to this problem exist,

and their choice will depend on the behavior desired as well as the actual type of value functions used.

This model encompasses both periodic and non-periodic processes in that any individual execution of a
periodic process can be described as shown above in exactly the same way as for a non-periodic process. The
only difference is that the periodic process immediately becomes schedulable when it terminates, s;nce its
next request time is already known. We can beg the question of overlapping executions since, with our

model, they can either be avoided (by ensuring that a periodic process’ value function drops to zero prior to

its next request time), or handled by allowing multiple instances of a process to be simultaneously schedulable

(assuming that processes are reentrant, and that the average load does not become larger than the processor

capacity). A .

It should be noted that the use of the arbitrary value function in this computational model subsumes a

number of scheduling policies which are commonly used or desirable in detenhining scheduling algorithms

such as:

[., P S R ST IS AL L AP
- P . v ar T e et >~

Bt A LSS SEP I A Sy MRS ol Ml S NN Rt M M M e T b A 4 NEEERCE A SAe gt hay-S i Ma Y ""7""'\1

43

. . . S s .
A schedulable process, p, is onc which is not currently awaiting any cxternal® cvent in order 1o be
scheduled. and which has an outstanding request for processing time. We define a process as schedulable as
soon as it has met this requirement, and it remains schedulable until one of the following conditions has

occured:

o lts process defined deadline event has been signaled and the process has blocked waiting for some
future external event.

o It has terminated.

e [t has been aborted by the system.

Thus, the request time Ri for a schedulable process may be either 2 future or a past time. If the rcducst
time Ri is a futurc time, the process is not currently a candidate for dispatch, but its attributes may be
considered in the current computations of load from which current scheduling decisions are made. The
reason for this will become clearer as we progress with some of the scheduling algorithms and heuristics for

this decision. Process P, cannot be dispatched prior to its requcét time.

The computation time Ci is a stochastically defined value representing the expected time to proce.ss P,
(estimated time remaining if P, has already begun processing), not including non-requested system overhead
or preemptions. The source of this value is expected to be an actual measurement by the system itself. Other
possible sources are the process programmef at implementation time or a predicted value using procéss
information combined with system measurement. The choice of source(s) for this value is one of the ques-

-tions to be considered as part of the policy/mechanism discussion. In this research, the distribution of Ci is

one of the issues to be discussed.

The deadline Di is a time prov.ided by the requesting process at the time Ri is defined, making p, schedul-
able. The importance of the deadline is determined by the value function V. in fact, the deadline itself,
without the value function, has no particular importance. Vi, defined in this research as a non-negative
function, defines the value to the system for completing P, prior to Di. Its value is used by the scheduling

function to determine the best sequence in which to schedule each of the available processes. If the value

sAn external event is an event which is not under control of the process. Examples of such events are I/0 completion, asynchronous

requests from another process, and timer countdown.

A A 4 T T R T R mIm——, - e o v L ek a0
. B A D T A L T A e AN CA A I R e A b P i il
P Il N
- . - i-

Following the definition of the computational model, the set of possible scheduling actions must be
defined. ‘This includes the scheduling decisions as well as the determination of an overload condition in
which it is apparent that, at a given processor, the resources are inadequate to meet some deadlines, I
resources are inadequate to meet some of the deadlines, a user policy must be defined to specify how the
system should respond. A set of potential policies for such cases will be described, and mechanisms

(algorithms) to implement these policies will be defined.

4.3.2 Deadline Scheduling Modeil

Consider some small number n of processors (say 4). in a fully connected distributed sys(cm“.

R, D,
<= =<{proc.press<

Figure 4-1: Process Model Attributes for Process i

The model for this problem consists of a set of schedulable processes p, resident in each processor. Each
such process has a request time Ri, a deadline Di, an estimated computation interval Ci, and a value function
Vi(t), where t is a time for which the valué is to be determined. Figure 4-1 illustrates these process attributes
for a process with a linearly decreasing value function prior to its deadline, and an exponential value decay
following its deadline. The illustration depicts a process which is dispatched after its request time and which

completes prior to its deadline.

4W’e will use a small number of processors for convenience in performing simulation of the resuiting algorithms, but the algorithms
themselves will contain no assumptions regarding the actual number of processors.

N P M Sl Sl Ml Mt S Al Ak TR e St Sk Pl A i el M Ak St Aol wuf i s ned e et n g detih ek And Ak ek Aal S Mad e s nalh A et e T

© - -

41

4.2.5 Distributed Decision Making

‘The Byzantine Generals Problem [l .amport 82] |Dolev 82] [.ynch 82] is the name given tu the problem of
reaching a consensus on a decision in an environment in which some of the decision makers have failed (or
may cven be antagonistic to the making of a correct decision). It has been proved that in a fully connected
nctwork of decision makers {{.amport 82]. a correct decision can be cffected as long as more than two thirds of
the decision makers have not failed. The algorithms presented, however, while guaranteed to produce a
correct solution, require full synchronization of all decision makers. and require a large number of messages.
1t should be noted that in a completely asynchronous system (i.e., one with no complete event ordering such

as a clock), no Byzantine agreement is possible in the presence of any failure [Fischer 82]

4.3 Hard-Real-Time Scheduling

Making a best-effort decision in a distributed system can be accomplished using a number of techniques
spanining scveral computer science disciplines. There are no specific bounds on the techniques employed, so
algorithms will be developed using ideas from such areas as artificial intelligence, decision theory, and
non-monotonic logic, as well as combinations of these. It is expected that each of these techniques will have a
number of positive and negative characteristics in the context of decentralized operating system resource

management.

This research will be performed in four partially overlapping phasss:

1. Problem Specification
2. Algorithm Development and Analysis 4 N
3. Experimentation

4, Evaluation

4.3.1 Problem Specification

First, a detailed statement of the problem to be solved must be produced, defining an instance of a
distributed system for which deadline management can be described precisely and simply, as well as the

available information from which to make the decisions. To define such a problem, it is necessary to describe

the computational model of the processes to be scheduled and for which algorithms will be designed.

LIS S Nt Tl ik Sl el A M auil oo AU 4 A AP A S S TR R AL e yTYTY

----- Sa
-
- C -

40

; whether to plan a picnic for Saturday). ‘The decision maker first constructs a matrix with cach row for a
potential decision and cach column for a potential relevant state, placing in cach matrix clement a value of the
. utility or desirability of having made that decision if the corresponding state occured. ‘I'hen the decision
: maker constructs a similar malﬁx containing the probability that that statc will actually occur (possibly
conditional on the decisiou to be made). ‘The row-wisc sum of the matrix produced by multiplying cach
clement of the utility matrix by the corresponding clement of the probability matrix defines a vector

representing the optimal ordering of the sct of potential decisions.

4.2.4 Real-Time Deadline Management

Research into the gencral scheduling problem has progressed for a long time as a part of operations
research, where it has found application in the scheduling of such activities as manufacturing production.
Graves [Graves 81} has provided an excellent synopsis of this background, including a taxonomy of produc-
tion scheduling problems. He identiﬁe; four levels of complexity with respect to scheduling decisions;
tractable solutions have been identified for only the simplest of these levels while the rest have been proved to

be NP-complete or NP-hard.

I In particular, the level of complexity most similar to the problem to be considered in this research, soft-
real-time deadline scheduling with.const.ant value functions for met deadlines, has been proved to be
NP-complete [Karp 72). Algorithms for this. problem have been described [Sahni 76] both for optimum
i scheduling (obviously, in exponential time) and for a heuristic approach for which an optimal solution can be
missed by a determinable factor in O(’) time. The model which we are using to define the scheduling

problem to be handled includes this problem as a special case.

In a classic paper, Liu and Layland [Liu 73] show that the simple deadline scheduling problem with a set of
independent periodic processes whose computation times are exactly known and identical for every period,
whose deadlines are equal to their period, and which are running in a single processor, is solvable with a

simple algorithm, and that the schedulability of such a simple system is easily determinable in advance.

While this result is interesting, the cases covered are much too unrealistic to be directly applicable to our
problem.

39

S A

N applying a best cffort to the real-time process scheduling problem, particularly in the arcas of data under-

standing and knowledge and inference rule representation.

CRE R RS gy

4.2.2 Non-monotonic Logic

Decision making is dependent on a determination of the state of the relevant world as assessed by the

l ’ decision maker. The decision to be made can be viewed as a consequence (deduction) from this perceived
: state, which can be represented as a sct of predicates. Normal formal logic, from which inference rules would
be taken to produce such deductions, can be described as monotonic in the sense that the addition of any new

i axiom (i.e.. an additional observation of state) which is not in conflict with cxisting axioms, can never
invalidate a previously drawn conclusion. In a situation characterized by a large quantity of incomplete or
inaccurate information, such deductions may later be invalidated by the presence of new information Logic

in which inferences may be drawn wusing such data is called non-monotonic logic [McDermott

80] [McDermott 82], and is generally characterized by the use of a logical operator meaning "is consistent

TR g

with" on conclusions drawn.

In another form of monotonic logic. inferences which can be described only as "consistent” with perceived

state information can be handled by the use of firzzy sets. Normal set theory deals with sets whose boundaries

are clear-cut; an element is either a member of a given set or it is not. Members of fuzzy sets [Kaufmann 75]
: have an associated membership value which determines the degree of membership of that member in the set.
. Fuzzy logic refers to the manipulation of predicates with fuzzy implications (e.g., High value processes should

be executed early). Discussions of such logic inference rules are given in [Zadeh 79).

4.2.3 Decision Theory

- There are several mathematical techniques developed to construct decisions based on the opinions (inexact

measurements) of a number of co-decision makers. Stankovic [Stankovic 83] describes a heuristic for job

; WO e

assignments in a decentralized, distributed environment using Bayesian decision theory [Jeffrey 84), while
DeGroot describes iterative solutions given a matrix of opinion weights and a vector of opinions [DeGroot
- 74).

Bayesian decision theory may be used in an environment in which a decision must be made whose value is

] determinable only when evalugted in the light of an unpredictable future global state (such as determining

’
[ACAD)
[

., A

¢
LN

. v'i‘ AR RN ." N

Ve L (VW TV, N N - R T T T T TR T R R IRY . ORI

38

Questions of policy/mechanism separation [Wulf 81} arc also related to this problem. I one or more
deadlines must be missed. which deadlines should be selected? Clearly a policy decision must be made, and
the range of potential policies for this decision will be determined. with the required mechanisms defined,
implemented, and cvaluated. It is these mechanisms which will reflect the best effort approach, and their

support of the potential policics will be analyzed.

4.2 Related Research

‘This area of rescarch is the combination and: extension of a number of previous efforts. As a result, there
are scveral arcas of rescarch which can be considered related to this work. Here, we will describe rescarch in

five rclated areas:

o Artificial Intelligence -~ particularly techniques for knowledge representation and rules of in-
ference related to decision making (planning).

® Non-monotonic Logic -- studies related to the handling of multi-valued logic, fuzzy logic (truth
assertions with respect to fuzzy sets). and associated truth determination.

o Decision Theory -- work related to the process of combining sets of observed states of nature, the
probabilities associated with these states in the event of a given set of decisions, and the ordering
of possible decisions based on this information (e.g., Bayesian theory).

® Real-Time Deadline Management -- research on deadline scheduling in a real-time system.

o Distributed Decision Making -- efforts toward the problem of reaching a consensus in a distributed
system in the presence of failures.

4.2.1 Artificial Intelligence

Little or no work has been performed in the application of knowledge collection, knowledge represen-

tation, and the resulting inferences to the problem of scheduling, load balancing, or process reconfiguration.

It seems that these areas could be critical to the efficient handling of these decisions. Stefik [Stefik 82] .

delineates a number of approaches to problems involving expert systems, outlining the-primary techniques
used in developing them based on the overall system type (e.g., planning, diagnostic, etc.). This problem
shares a number of the aspects of planning problems, in that the solution must evaluate the data determining
its quality and meaning, sean:h{ the space of possible scheduling decisions estimating the result of each

evaluated decision, and make a decision which is adequately close to optimal. It is expected that at least some

of the techniques involved in the design of expert planning systems will be applicable to the problem of

37

4. Subtask A3: Multi-Processor Real-Time
Scheduling

‘The chapter summarizes Subtask A3, our recently initiated work on multi-processor real-time scheduling.
In 2 modern combat environment. making and carrying out the decision in time can be as important as the
quality. of the decision itsclf. Missing the deadlines could mean the failure of an otherwise successful
operation. In this chapter. we describe our initial work on a value function based approach for real-time
multi-processor scheduling. This work is primarily carricd out by Mr. Douglass L.ocke as part of his Phl)

rescarch,

4.1 Introduction

An operating systcm managing a real-time application shares a large number of functions with a normal
timesharing operating system, but differs most significantly in one principal area -- the management of time
deadlines. The typical time sharing operating system manages a number of independent applications,
promoting some concept of faimess (defined by the system administrator) among them. In the real-time

3

system, a single application” uses the system resources to solve a single problem, and includes a set of

deadlines which must be met in order to satisfy its specifications.

N The research which we undertake here is to study deadline management in a multi-processor environment,
. in which the time allocation decisions must be made using a best effort approach. In fact, for this problem a
best effort approach must be used because of the built-in uncertainties even if complete and accurate global

p
tj- system state information were available, because of the stochastic nature of the information available about
P

schedulable processes and thé limited decision making time available in a real-time system.

A considerable amount of research has been done when deadlines could be met, but relatively little
information is available about scheduling decisions when available resource limitations require that one or
more deadlines cannot be met. Our approach will be designed to mgximize the value of the available state
information to make the deadline scheduling decisions, particularly in those cases where deadlines cannot be

met.

3A single application means a set of processes working together and sharing resources toward & common goal. While it is possible for
more than one such application to run concurrently in a real-time system, it is usually true that the real-time commitment of the system
will be made only to one: any others will execute as background applications.

\
‘»

e

Run 8: Traffic Intemsity

0.7, Policy:

Simuylation Theory

Prob[n=0] 0.301 0.300
Prob[n=1] 0.279 0.295
Prob[n=2] 0.273 0.290
Prob[n=3] 0.086 0.082
Prob[n=4] 0.034 0.023
Prob[n=5] 0.015 0.007
Prob{n=6] 0.007 0.002
Prob[n>7] 0.005 0.001
Mean queue length 1.371 1.267

35

Run 5: Traffic Intensity = 0.5, Policy: L =1

Simylation _Theory

Prob[n=0] 0.502 0.500
Prob[n=1] 0.365 0.375
Prob[n=2] 0.094 0.094
Prob[n=3] 0.027 0.023
Prob[n=4] 0.008 0.006
Prob[n=5] 0.003 0.002
Prob[n>6] 0.001 0.000
Mean queue length 0.687 0.666

Run 6: Traffic Intensity = 0.5, Policy: L = 2

Simylation Theory

Prob[n=0] 0.502 0.500
Prob[n=1] ' 0.292 0.300
Prob[n=2] 0.179 0.180
Prob[n=3] 0.022 0.018
Prob{n=4] 0.004 0.002
Prob[n>5] . 0.001 0.000
Mean queue length 0.737 0.722

Run 7: Traffic Intensity = 0.7, Policy: L = 1

Simylation Theory
Prob[n=0] 0.299 0.300
Prob[n=1] 0.344 0.357
Prob[n=2] 0.167 0.175
Prob[n=3] 0.087 0.086
Prob{n=4] 0.046 0.042
Prob[n=5] 0.025 0.021
Prob[n=6] 0.014 0.010
Prob[n=7] 0.008 0.005 .
Prob(n>8] 0.010 0.004
Mean gqueue length 1.468 1.365

et Tt e e e e e T T AP SN S R R O

N LR
s T e . s R St e T e et et g, - ~
LaSa o abhodalbalend & o &, aande s bl e B e i B A B o B e B B B B B B B g g s o

Run 1: Traffic Intensity

0.1, Policy: L =1

Simulation Theory

Prob{n=0]
Prob[n=1]
Prob[(n=2]
Prob{n2>3]

Mean queue length

Run 2: Traffic Intensity

0.902 . 0.900
0.097 0.099
0.001 0.001
0.000 0.000
0.099 0.101

0.1, Policy: L = 2

Simulation Theory

Prob{n=0] 0.901 0.900

Prob[n=1] 0.090 0.091

Prob[n=2] 0.009 0.009

Prob[n>3] 0.000 0.000

Mean queue tength 0.108 0.109

Run 3: Traffic Intensity .= 0.3, Policy: L = 1

Prob{n=0]
Prob[n=1]
Prob[r=2]
Prob[n=3]
Prob[n>4]

Mean queue length

Run 4: Traffic Intensity

Simylatjon _ Theory
0.702 0.700
0.268 0.273
0.026 0.025
0.003 0.002
0.001 0.000
0.333 0.329

‘0.3, Policy: L = 2

Simylatiogn Theory

Prob[n=0] 0.699 0.700

Prob[n=1] 0.225 0.226

Prob[n=2] 0.074 0.073

Prob[n=3] 0.002 0.001

Prob[n2>4] 0.000 0.000

Mean queue length 0.379 0.375

v

DA S g A e AL 340 A e 0 A A AL A ML A Sl sl Al SR Al A AE A A A SRR AR AN

438

1. The databasc consistency constraints will be satisfied.
2. 'The post-condition of cach (compound) transaction will be satisfied.

3. The transaction scheduling approach is modular and provides at Icast as much concurrency as any
other consistent and correct modular concurrency control method.

The concepts of modularity and atomic data sets formally defined in this chapter have intuitive meanings,
A modular concurrency control method is onc which allows a programmer to write, modify and schedule his
transaction independently of other transactions. For example, scrializability theory is a modular scheduling
mecthod, because a programmer can write, modify and then schedule (¢.g8. using the two phasc lock protocol)
his transaction independently of other transactions in the system. In other words, a modular concurrency
control method ensures that any particular written and scheduled transaction need not be changed, when

other transactions are written, modified or rescheduled.

We assume throughout that the consistency constraints of the database arc fixed while transactions are

> .

il et
o,
I T T

being added or modified. It is. of course, possible that the specification of database consistency constraints

R
o
.

could be changed during the development of the transaction system and this could in turn force the trans-
actions to be rewritten and rescheduled because transactions must maintain the database consistency con-
straints. However, the task will be easier if a modular approach is used, because one can examine the impact
of new consistency constraints on each of the transactions individually and perform the necessary modification

individually.

Intuitively, an atomic data set is a set of data objects whose consistency can be maintained by a transaction,
independently of how other atomic data sets are being updated by other transactions. We call this property of

an atomic data set "consistency preserving”. It is important to point out that consistency preserving implies

neither that data objects in different atomic data sets are unrelated nor that data structures must be static. For

example, we might have a document queue associated with each of the computers in a local network and

several print queues associated with printing devices in the network. Each queue has its own consistency
constraints in the form of "0 < QueueSize < MaxSize"”. There is a clear "producer-consumer” relation
between document queues and printer queues. Nonetheless, each queue forms an atomic data set because the

consistency of any queue can be satisfied independently of the others.

As an additional example showing the possible inter-relatedness of data objects in distinct atomic data sets,

AL Sl Sl N ok A g

_:. let us consider a simplified maodel of a distributed dircctory syslcm.7 1t consists of a set of local directorics
(1.1 in the form of trees with consistency constraints that cach entry in a 1.1 must point to the correct
location of files residing in the disk. We also have two global directories (GD) in the form linked lists of
<FileName, Nodel.ocationd pairs with the consistency constraints that an entry in a GI) must point to cither
the current location or a historical location of a file. In addition, cach node maintains a partial global directory
{PG1)) that contains the location information of frequently used remote files and the forwarding addresses of
migrated files. ‘T'he data structure and consistency constraints of a PGI) arc the same as those of a GID. [t is
obvious that these directories are inter-dependent entities. However, cach LD, PGD. and GD is an atomic
data sct. because we can maintain the consistency of anyonc of them without blocking the activitics of
transactions on other atomic data sets. For cxample, we can readlock a LD, get the information we need,
unlock it and then update a GD. That is, we can read the LD without blocking the activities on other atomic
data sets, and we can update the GD and satisfy its consistency constraints, independently of how the LD or
other atomic data sets are being updated by other transactions. Finally, linked lists, queues and trees are

examples of atomic data sets that consist of dynamic data structures.

To illustrate compound transactions and their scheduling, let us consider the following example. Suppose
that transaction Get-A-and-B needs one unit of some resource at node A and another unit at node B. This
transaction requires both resource types, and if it cannot have both then it will not keep anyone of them. The
resource heap at each node is modelled as an atomic data set with consistency constraint "0 < HeapSize <
MaxSize”, and the transaction is written in the form of a compound transaction, Get-A-and-B, which is
illustrated in Table 5-1. ‘

*

This example illustrates the following three characteristics of our approach. First, the database is par-
titioned into two consistency preserving atomic data sets: Heap A and Heap B. Second, the compound
transaction Get-A-and-B consists of four correctness preserving elementary transactions, which co-operatively
carry out the task of the compound transaction by passing information to each other via atomic variables -
Obtain-A and Obtain-B. As long as the post-conditions of the executed elementary transactions are in-
dividually satisfied, the post-conditions of the compound transaction Get-A-and-B are satisfied. In addition,
each of these elementary transactions also preserves the consistency of Heap A and He.ap B. Third, the

locking protocol used by this transaction only ensures that each elementary transaction is executed serializ-

7For a detailed discussion of the distributed directory example, see Chapter 7 of [Sha 85a).

D et e et L ta et el PR

R S S I T T T VL P

LI P T P A A - "=
. - e . N . s

50

CompoundTransaction Get-A-and-8;
AtomicVariable Obtain-A, Obwain-8B : Boolcan;
ReginSerial
BeginParallel
Elementary l'ransaction Get-A;
BeginSerial
Writclock Heap A;
Take a unit from A if available
and indicate the result in atomic variable Obtain-A.
Commit and unlock Heap A:
KndSerial ;

ElementaryTransaction Get-B;

BeginSerial
Writel.ock Heap B;
Take a unit from B if available
and indicate the result in atomic variable Obuin-B;
Commit and umlock Heap B;

EndSerial ;

EndParallel ;

BeginParallel;
ElementaryTransaction Put-Back-A;
BeginSerial
_ If Obiain-A and not Obiuain-B
o . then BeginSerial
v WriteLock Heap A; -
F Put-Back the unit of A;
Commit and unlock Heap A;
EndSerial;
EndSerial ;

ElementaryTransaction Put-Back-B;
BeginSerial ;
If Obtain-B and not Obtain-A
then BeginSerial
WriteLock Heap B;
Put-Back the unit of B;
Commit and unlock Heap B;
EndSerial; .
EndSerial ;
EndParallel ;
EndSerial.

Table 1: Compound Transaction Get-A-and-B°

T ARCINE M oS it arvis st i v it SRS ati atd avic NI i ave SOt AINE arde gNdateg g RPN AL SR AR S A S Bl S S S At St s‘v‘:}
...... [-~ AR . . .~ - it Lo TR R RN -

ably with respect to each atomic data set. Global serializability of concurrency control is not enforced. For

example, suppose that we have another compouhd transaction Get-A-or-B, which is illustrated in Table 5-2.

Transaction Get-A-or-B tries to get one unit of resource from node A and one unit of resource from node B.

Ifit cannot get both, then it keeps whatever it has obtained.

Y E e it S M Rl i SR Sl Py e T~ SN S B ™ ad --‘v‘

o

) Compound I'ransaction Get-A-or-B; T

X ReginParallel -

- Flementary Iransaction Get-A; ‘
BeginSerial

. Writelock Heap A;

v Take a unit from A if available;

) Commit and unlock Heap A;

" kndSerial;

4 Flementary Transaction Get-B:

- BeginSerial

< Writel.ock Heap B;

- Take a unit from B if available;

= Commit and unlock Heap B;
FndSerial ;

o EndParaliel.

. Table 5-2: Compound Transaction Get-A-or-B

Suppose that we execute transactions Get-A-and-B and Get-A-or-B with Heap A and Heap B with initial
values of one. It is possible that transaction Get-A-and-B gets the only unit of A first, while transaction

Get-A-or-B gets the only unit of B first. As a result, transaction Get-A-and-B will return a unit to A, while

“‘..,V.r.-ir.-,

transaction Get-A-or-B will keep the unit obtained from B. The result of this execution is not equivalent to -

executing these two transactions serially. When these two transactions are executed serially, one of them will

3 .
)

get both units.

eSS

Eventhough the transactions are not executed serializably, the consistency and correctness of concurrency

_control will be preserved. That is, the sizes' of Heap A and Heap B will be positive and within their bounds,

.
ati el

transaction Get-A-and-B will either get both units or nothing and transaction Get-A-or-B will either get both
units, one of the two units or nothing. From an application point of view, the partition of the database and of

transactions increases the system concurrency and reduces the probability of deadlocks.

The consistency and correctness of compound transactions like Get-A-and-B and Get-A-or-B is not an
2 isolated example but rather the result of satisfying the generalized setwise serializable scheduling rule

developed in this work. Readers who are interested in the use of this theory in the development of a

decentralized operation system are recommanded to read Tokuda's, Clark’s and Locke’s work [Tokuda 85).

atali o a ‘.".

This chapter is organized as follows. In Section 5.2, we formally define the basic concepts of our model. In

R

Section 5.3, we formally define the concept of aromic duta sets and develop our first modular scheduling rule
called the setwise serializable scheduling rule and in Scction 5.4 we develop a new transaction structure called

compound transactions and their associated scheduling rules.

N 5.2 A Model of Modular Scheduling Rules

- We begin our formal investigation by developing a model of modular scheduling rules. Intuitively, a
scheduling rule specifics how the steps of a transaction can be interleaved with those of other transactions. In

our model, a scheduling rule performs this specification by partitioning the steps of cach transaction into

cquivalence classes called atomic step segments. Schedules satisfy the specification of a given scheduling rule
by interleaving the atomic step segments of each transaction serializably with the atomic step segments of
other transactions. For example, séﬁalizability theory is a particular scheduling rule which takes alt the steps
of a transaction as a single atomic step segment. Serializable schedules are the set of schedules that satisfy this
rule, because the atomic step segments specified by serializability theory are interleaved serializably in

serializable schedules.

This section is organized as follows. In Section 5.2.1, we define the concepts related to the notion of the
database and in Section 5.2.2 we define the concepts of transactions and their schedules. In Section 5.2.3, we

define the concepts of a scheduling rule and their properties.

5.2.1 Database

A database is simply a set of shared data objects, and a state of the database is a vector whose components

are the values of these shared data objects. A consistent state is a state that satisfies a given set of consistency

b constraints. We now formalize the concepts related to the concept of database.

b, Definition 5.2,1-1: A data object, O, is a user defined smallest unit of data which is individually accessible

and upon which synchronization can be performed (e.g. locking).

Definition 5.2.1-2: Associated with each data object O, we have a set Dom(O), the domain of O, consisting
of all possible values taken by O.

Definition 5.2.2: Each data object is represented by triplets, <name, value, version number>. When a data
object is created, its initial value is assigned to version zero of this data object, e.g. "A[0): =1". When the data

: object is updated, a new version of the object is created, and the transaction works on this new version.

o

-

[y ARV Sy SSe i el npl i Sl ot e p e O e e A A N S S N I ST O SRR L w4t o St Seut vl e At Sl g Sons oraugren g b~

53

In the following discussion, when we refer to the current value of a data object Q. we would. for simplicity,
write “O" instcad of "Ofv]". The version number representation will be used when different versions of the

valucs of a data object are referred to.

Definition $.2.3-1: The system database) = {01. 02. On} is the collection of ail the shared data objects

in the system.
Definition 5.2,3-2: A state of databasc Disan n-tuplc Y € @ = I'[J'.'=l I)om(Oj).

Definition 3.2.3-3: Associated with databasc D, there is a sct of consistency constraints in the form of
predicates on the states of database D. A consistent state of database D is an n-tuple, Y, satisfying this set of
consistency constraints. This is indicated by "C(Y) = 1", where C is a Boolean function indicating whether
this set of consistcncy constraints is satisfied by Y. For simplicity, we will also refer to this set of consistency
constraints by C. The meaning of C is easiiy determined ‘by the context. The set of all consistent states of D is

denoted by U, where U = {Y | C(Y) = 1}

5.2.2 Transactions .and Their Schedules

Having defined the concept of the database, we now formalize the concept of transactions and schedules.

5.2.2.1 Transactions

In this section, we first define the syntax of single level transactions and the concepts of pre- and post-
conditions of a transaction. We then enumerate our fundamental assumptions regarding transactions. In

later sections, we will introduce generalizationé to the single level transactions defined here.

Definition 5.2.4: A single level transaction Ti is a sequence of transaction steps (tu, Ly G). A
i

transaction step is modelled as the non-divisible execution of the following instructions [Kung 79);

L =0 -
LIJ t.l~j

o =f (@ .L ,..L)
ST TR TUN PR T

where the symbol "t. " represents step j of transaction Ti; the local variable LL _ is used by step t. T to store

t.
i

ij
the value read. The symbol "0L " is the data object accessed (read or written) by step Lu., and the symbol

(4]
”fL " represents the computation performed by step (id
i

SR AP IO AR O e i S i TRl Siand Sl SRS

..........

In this modcl, cvery step reads and then writes a data object. A read step is interpreted as writing the value

rcad back to the data object. ‘That is, the function f associated with a read step is the identity function. We
i

now definc the pre- and post-conditions of a transaction. We begin with defining the input steps and output

steps in a transaction.

Definition 5.2.5: l.et T, = {tu. ti‘m_} be a transaction. l.ct data object O be the one accessed (read or
written) by step t Step [iJ is said to be anlinpul step if it |s the step in 'I‘i that first accesses data object O. Step
L is said to be an output step if it is the step in Ti last accessing Q. ‘T'hat is, for every data object O accessed by
T, there is an input step and an output step associated with Q. Note that when there is only one step in Ti

accessing O, then this step is both an input and an output step.

Since transactions operate on the shared database, they must be able to accept any consistent state as their
input. That is, the values input to a transaction are assumed to satisfy the pre-conditions of the transactions as

long as these values come from a consistent database state.

Definition 5.2.6: Let OU[vb]. j=1ltok,be the set of values read by the input steps of Ti, where v, denotes
the version of a data object that is input to a transaction. Let the index set of OiJ[vb], j=1lwk,be lm. The

input values to Ti, OU[vb]. j=1lto ki’ are said to satisfy the pre-condition of Ti, if and only if
Jxe walm(X) =0, fvJi=1wk)

where #, is the projection operator. That is, L (X) is a tuple whose elements are those of a consistent X

‘ 1
m m
indexed by I - Having discussed the pre-conditions, we now turn to the subject of post-conditions.
Definition 52.7: Let Oi.i[vf]‘ j= 1ok, be the set of values written by the output steps of transaction Ti,
where v, denotes the version of a data object output by the transaction. The post-condition of transaction Ti is

the specification of the output values of Ti as functions of the input values,

0 U[v,] = gU(Ou[vb]. v Oui[vb]). i=1wk,

Having defined concepts relating to the notion of a transaction, we now state our fundamental assumptions

about a transaction:

. e

IR AL S
LY

RN IWRCROR A I DAL I AR ANISA L atb ot dad Nad Al il il Al Al i IR WL S G AL S i St N AR R A T "’

55

Fundamental Assumptions:
o Al Termination: A transaction is assumed to have a finitc number of steps and is assumed to

terminate.

o A2 Transaction Correctness: A transaction is assumed to producc results that satisfy its post-
condition when executing alone and when the database is initially consistent.

e A3 Transaction Consistency. Given a consistent state of the database, a transaction is assumed to
produce a state that satisfics the consistency constraints of the database when it is exccuting alone.

Definition 5.2.8: A transaction Ti is said to be consisten: 3nd correct if and only if Ti satisfics assumptions

Al, A2 and A3.

In the following discussion, we restrict our attention to consistent and correct transactions.

5.2.2.2 Schedules

In the previous two sections, we have formalized the basic concepts related to database and transactions.
We now develop our model one step further by considering the execution of a set of transactions. To this

end, we introduce the concepts of transaction systems and schedules.

Definition 52.9: A transaction system T is a finite set of transactions {T,, ..., Tn} operating upon the
shared database D.

Definition 52.10: A schedule z for transaction system T is a totally ordered set of all the steps in the
transaction system T = {Tl' - Tn} such that the ordering of steps of Ti, i = 11to n, in the schedule is

consistent with the ordering of steps in the transaction Ti, i=1lton
ViX(te)= (te U A [\7'(1'i ¢ THV((tl‘j, ty € T)A (tu > Lu.))((Lu.. ty €DA (t,y >t rJ))

A schedule z for transaction system T is said to be consistent if and only if the execution of T according to z

preserves the consistency of the database D. This concept is formalized as follows.

Definition 52.11: Let X be the initial state of D and Y be the state at the end of executing T according to z.
Schedule z is said to be consistent if and only if

AR A S B S A S N S T I T AT S

56
22XeU—=YelU

A schedule z for a transaction system ‘I is said to be correct if and only if the execution of transactions in T

according to z produces computations that satisfy the post-condition of cach of the transactions in the system.

Definition 5.2.12: Under schedule z, let the values input to and output from transaction 'l'i €T be 0i][vb],
0, [vJand O, [v]. ... O, [v] respectively. Schedule z is said to be correct if and only if
ki . k.

V(Tie'l‘)(oulv 1= 6,00, v} Oui["o])' j=1ltwk.)

Having defined the basic properties of a schedule, we now consider the relations between schedules by
introducing the concept of equivalent schedules. Conceptually, two schedules z and 7 for transaction system
T are cquivalent if for any given ini-tial state of D the executions of T according to z and z yield the same
sequences of values for each data object in the database and the same sequences of values for each of the local
variables (states) of each transaction in T. This is formally defined by the partial ordering of steps induced by

zandz on each of the data objects in D.

Definition 52.13: LetO, = O‘km denote step L and step tk.m read or write the same data object. A
schedule 2 for transaction systcm T is said to be equzvalem to another schedule z_ for T, if for every pair of

stepst.uandtmmzandz .

Vi bn€UDAO, =0, Dy D AGH) = (g 2) A N

m

That is, for each of the data objects in the database, O, the orderings of transaction steps induced by z and

byz, t ol -~ (1,(O), are identical.

We now prove an important theorem which states that if z and z for T are equivalent, and if z is consistent

and correct, then z_ is also consistent and correct. We begin our proof with the following lemma.

Lemma 5.2.1: Let z and Z_ be two schedules for transaction system T. Let t be a step of transaction ’l'i €T
Let the values of the data object accessed by tin z and z be Ol and O: respectively. Let the values of the local
variable associated with tin zand z_ be Lt and L: respectively. Given the identical initial state X to both z and

z‘, we have

57

VirenViee X © =0) A0, = 1))
‘That is. the values input to and output from any transaction step under 2z arc cqual t those under z.
Prpof: Recall that the syntax of a transaction step is as follows,

L := 0l
i/ id

0O :=f (L ...L)

Yoot

It follows that a transaction step will output identical values under z and z if for any transaction step te UT
the values input to t under z and under 2 are equal. Thus, we need to show only that each transaction step

te UT inputs the same values under both schedules z and z.

Now consider the first step in schedule z denoted as Ly Step t,, must input the initial value of some data

object in D denoted as Ol . By the definition of equivalent schedules and with the same initial state of D,
zl

step t, | must input the same initial value of data object 0l

. 21

and z . Now consider the second step t 22 in z. The value input to the local variable of ta under z is either

. Hence, t,, outputs the same value under both z

the initial value of a data object or the value output by step L By the definition of equivalent schedules and
by the fact that t, , outputs the same value under bothzandz , stept,, will input the same value under both
zand z . Suppose that step ¢t +h inputs the same value under schedules z and z. Following the argument

-above, step t inputs the same value under z and 2. The lemma follows by induction. O

zh+1

Theorem 5.2.1: Let schedule z be a consistent and correct schedule for transaction system T. If schedule z

= 2, then z is also consistent and correct.

Proof: To show that z is correct, we need to show that for any TieT, the execution of 'I‘i under z_
produces correct results. Let the values input to 'l'i be Ou[vb]. Ou [vb]. Let the values output by 'l‘i be
i

oi.llvfl' Oi‘k [v‘], The post-condition of 'l'i is the specification of the output values of 'I'i as some functions
i

of the input values: oi.j[Vr] = fu(Ou[vb]. v Oi.ki[vbD’ ji=1lw ki. It follows from Lemma 5.2.1 that all the

input values to and the output values from Ti under zand 2’ are identical. Therefore, the post-condition of T,

must be satisfied under both zand 2.

A ANV S Sk et sl dul tad tad. thd Snd Auii-Sudl Y O AT Sl S UL auIC sde 4 NI A A M M et A e - Sy Jhate S it Raate St St S B et S At It S

58

L4 A “
To show that 2 is consistent, let the initial state of 1) be Xe U and the final states of D resulting from
. g - s 7 ~. W - .. .
exccuting ‘I according to z and 2 be Y and Y respectively. [t follows from the definition of equivalent

* - -
schedules and Lemma 5.2.1 that Y = Y . Thus, Y is a consistent state. O

As an cxample of cquivalent schedules, a serializable schedule is defined as a schedule z for which there

L] . . .
cxists a serial schedule z such that z = z . The consistency and correctness of scrial schedules directly follow
from the assumption that cach transaction is consistent and correct when exccuting alone. By Theorem 5.2.1,

scrializable schedules are also consistent and correct.

5.2.3 Modular Scheduling Rules

Having defined the concepts of transactions and schedules, we now formally define the concepts related to
modular scheduling rules.
5.2.3.1 Definition of Scheduling Rules

We now formalize the concept of a scheduling rule and its relation to schedules.

Let Tm denote the set of all the possibie consistent and correct transactions with m steps. Let T denote the
set of all the possible consistent and correct transactions, that is, T = U:f’z le. Let Pm denote a partition
into atomic step segments of a m-step consistent and correct transaction. Let €Pm denote the set of ali the
possible partitions of a consistent and correct m-step transaction. Let Pbe the set of all the possible partitions,

thatis,® = u;‘; 2o

Definition 5.2.14-1: A scheduling rule for a transaction system with n transactions, Rn, is a function which

takes the transaction system of size n and partitions each of the n transactions,
. n
Rn' r[i=lT - I-]:l=l ?

Definition 5.2.14-2: A scheduling rule R is a function which takes a transaction system of any size and
partitions each of the transactions in the system.

R: U::I(H;x'r) - U:il(n;;x L

such that the restriction of Rto [];_, Tis R . Thatis, RI[[_,T =R ,n = lto 00

59

Given a scheduling rule R, we must identify the sct of schedules that satisty R. A schedule 7 satisfies R if
atomic step segments of onc transaction are interleaved serializably with those of others in 2. This is formal-

ized as follows.

Definition 3.2.13; letT = {T,, ... 'l‘n} be a consistent and correct transaction system, that is, T C T. Let
'|'i be a transaction in T, L.ct ER('I‘ i) denote the partition of the steps of 'l'i by R. [et " be the set of all the

atomic stcp segments of T specified by R, thatis, " = U. = R(Ti)‘ l.ct D) be the database and 7(T) be the

I.eT
1
set of all the possible schedules for ‘1. Finally, let o, be an atomic step segment of 'l‘i. that is, o, 3 R('l‘i). A

schedule z € Z(T) is said to be atomic step segment serial with respect to R if atomic step segments specified by

R and belonging to differcnt transactions do not overlap in z. That is,
VT, T Tis) Vio, e Zi(T)) Vo, Z(T)) Vite o) (< tIVE> €7)
where tjl and tjmj are the first and last stcbs ing, respectively,

Definition 5.2.16: A schedule ze Z(T) is said to satisfy scheduling rule R, if atomic step segments specified

by R and belonging to different transactions are interleaved serializably in z. That is, z satisfies R if and only
3(2‘ eZM)((z= z')/\(z' is atomic step segment serial))
The set of all the schedules in Z(T) that satisfies R is denoted by ZR(T). That is,

ZR(T) = {ze (T)| z satisfiesR }

5.2.3.2 Consistency and Correctness

In the previous section, we have defined the concept of a scheduling rule and its relation to schedules. We

now define the key properties of a scheduling rule: consistency and correctness.

Defipition 5.2.17: A scheduling rule R is said to be consistent and correct if.and only if all the schedules

that satisfy R are consistent and correct,

V(T cC T)V(z € ZR(T)) (z is consistent and correct)

B S AP e Sy e et e et e AN el ot bt e e A Aot SN - i SRR~ 2 A o S o~ R~ o ofidi i it

60

where T is the set of all the consistent and correct transactions. In the following, we limit our discussions o

consistent and correct scheduling rules.

5.2.3.3 Modularity, Optimality and Completeness

We consider a scheduling rule to be modular, if it partitions cach transaction in a way that is independent of
all the other transactions in the system. We consider a scheduling rule to be optimal under some condition, if
this rule provides the highest degree of concurrency under this condition. We consider a set of consistent and
correct modular scheduling rules to be complete if for an-y consistent and correct modular scheduling rule R,

wc can always find a scheduling rule R’ in the set such that R provides at Icast much concurrency as R.

Definition 5.2.18: A scheduling rule R is said to be modular if and only if R partitions each transaction
independently. That is,

R(T,, .. T) = (RI(T)), .. RXT)).n = L to oo,

The scheduling rule for individual transactions, R, i = 1 to n, will be referred to as the kernels of the
modular scheduling rule R. Notc that the kernels of a modular scheduling rule need not be identical for
different transactions. In other words. a modular scheduling rule can consist of a family of kernels. This

allows each of these kernels to take advantage of the semantic information of the given transaction.

Having defined the concept of modularity.' we come to address issues related to the degree of concurrency
provided by scheduling rules. We address these issues using the concepts of optimality and completeness.
‘Before formally defining these two concepts, we first comment on the implications of using a richer set of
primitive steps in addition to the "read” and "write" steps used in this work. Korth [Korth 83} has shown that
for serializable schedules the conturrency can be improved if the set of primitive steps is expanded to include
other commutative ones. The idea is that if a set of steps is commutative, then there is no need to control
their relative order. In this chapter, we limit our discussion to transactions using only the primitive steps:
"read” and "write”". The use of commutative steps to improve the concurrency of (generalized) setwise
serializable schedules can be done in a manner similar to that done by Korth for serializable schedules. We

begin our investigation by first defining a way to compare the degree of concurrency offered by different

'scheduling rules.

- y v W T ET N A AT Y. - TR o % Ty W
AU A A R T N A N A B T Tl At A A o A SN i MR S et e e S it Raty St St St Ha I P T S

6l

Definition 5.2.19: Scheduling rule R' is said to be at least us concurrent as R, denoted by R! > R?. if and

only if,
VIrgTxz,(n S 7,(1)

That is, the concurrency of schedules is partially ordered by sct containment. We now define the concept

of an optimal moduiar scheduling rule.

Definition 5.2.20: 1.ct /\M be the set of all the consistent and correct modular scheduling rules. A modular

scheduling rule R ¢ A, is said to be optimat if R is at least as concurrent as any rule in A, . That is,
ViReA,)(R* 2 R)

We now introduce the concept of completeness. A family, of modular scheduling rules is said to form a
compiete class within the set of modular scheduling mlés if and only if given any modular scheduling rule R

we can always find a rule R in this family of rules such that R’ is at least as concurrent as R.

. Definition 5.2.21: Let AM be the set of all the consistent and correct modular scheduling rules. A set of

consistent and correct modular scheduling rules % is said to form a complete class within AM, if and only if
VReA IR)R 2 R))

5.3 The Setwise Serializable Scheduling Rule . *

Having developed a formal model of modular scheduling rules, we now introduce an important modular

scheduling rule called the setwise serializable scheduling rule. In essence, this rule states that if the database is

~urTecm g

partitioned into consistency preserving atomic data sets, then we can replace the global serializability of

concurrency control by setwise serializability. Intuitively, an atomic data set is simply a set of data objects
with a set of associated consistency constraints that can be satisfied independently of other atomic data sets.
For example, in a distributed computer system a job queue at a computer waiting for execution is an atomic
data set, the local directory to a computer’s files is an atomic data set, and each user’s mailbox is also an

atomic data set. This is because the consistency of each of these entities is defined by a set of consistency

constraints that can be satisfied independently of others.

3

T rr————

75

Proof: First, if any atomic step scgment ¢ in ’I’i specified by R does not preserve the consistency of the
database, then another transaction 'I‘J. excecuting after o would input an inconsistent state. Since R is modular,
wc can define the semantics of lJ as one that outputs incorrect results’ when its input is inconsistent. ‘Thus R is
incorrect. Second, if the conjunction of the post-conditions of all the atomic step segments in 'I‘i specified by
R is not cquivalent to the post-condition associated with Ti, then R is incorrect by definition. Since any
schedule z for any transaction system T C T satisfying R guarantccs the serializability in the exccution of the
transaction atomic step segments specified by R, it follows from conditions 1 and 2 that z is consistent and

correct. O

Theorem 5.4.3: Generalized setwise scrializable scheduling rules form a complete class within the set of

modular scheduling rules.

Proof: Let R be a consistent and correct modular scheduling rule. Suppose that 'I'i is a consistent and
correct transaction and T, is partitioned into atomic step segments g, ..., &, by R. First, by Lemma 5.4.3 o, i
= 1 to k, must preserve the consistency of the database when executing alone. Second. by Lemma 54.3 the

conjunction of the post-conditions of o . O, MUS be equivalent to the post-conditions associated with Ti.

k
Note that each o, i = 1 o k, satisfies the definition of an elementary transaction. We now define a

generalized setwise serializable scheduling rule R” which partitions Ti as follows. First, R labels s o O S

k
. - N ,
elementary transactions. Next, R partitions these elementary transactions into transaction ADS segments.

Hence, R’ is at least as concurrent as R. O

5.5 Conclusion

In this chapter, we have developed a formal theory of modular scheduling rules. This theory coherently
addresses the notions of consistehicy, correctness, modularity and completeness in concurrency coauol. Fur-
thermore, this theory provides us with a cbmpete set of provably consistent, correct and modular concurrency
control rules. From an application point of view, this means that if each programmer can ensure the
consistency and correctness of his transaction, and he follows the rules given in the chapter, then the consis-
tency and correctness of system concurrency control is also ensured. In addition, our approach provides at

least as much concurrency as any other consistent and correct modular concurrency control method.

Finally, we want to cite a few results from [Sha 85a] that we omitted in this chapter. First, the setwise

AT et - A TN . Lt . St T . Y -
PN IS T T, TR A IR P R Y I YL T A Y I A

Sl el it Ad aatspll il e

e

A T R Sl it St gt St Sa A= iy * i IO LR AL it gttt pid Pal BRGNSl Nl Ml Mad Al Sl Ay DRSO A S o A

74

‘Thus far. we have shown that the gencralized sctwise serializable scheduling nile R is consistent, correct
ard modular. We now prove that generalized sctwise scheduling rules (i.c. the kerncls of R) form a complete
class within the sct of all the consistent and correct modular scheduling rules. Before proceeding with the
proof of completeness, we need to introduce the concept of the post-conditions associated with an atomic step
segment. To itlustrate the need. let the transaction T, = {tu: A=At A=A+ 1}. If the two steps
of 'I‘i arc trcated as a single atomic step secgment, then t.L | is an input step and ti‘2 is an output step. The
partition of a transaction could create input and output steps in addition to those defined in an executing
alonc environment. For example, if cach of these two steps is an atomic step segment, then Ly (ti.z) is both an

input step and an output step.

Definition 3.4.7; Leto = {Lu. L:.k} be an atomic step segment. Let the data object accessed by step ti\i €
o be O. Step tiJ is an input step if it is the step in ¢ first accessing O. Step ti‘j is an output step if it is the step

in o last accessing O.

Definition 5.4.8: Let Oj[vb], j = 1tok, be the values input to the input steps of ¢ and Oj[vf]. j=1tok be
the values output by the output steps of ¢. The post-condition of ¢ is a specification of the output values as
functions of input values and the values of the local variables associated with the steps of preceding atomic

step segments of the same transaction. That s,
Oj[vf] = fj(Lj, Ollvb], . Ok[vb]), j=1ltok;

where Lj is the set of local variables associated with the steps of the atomic step segments preceding the

output step for Oj.

We now prove that generalized setwise serializable scheduling rules form a complete class within the set of

all the consistent and correct modular scheduling rules.

Lemma 5.4.3: Let R be a modular scheduling rule. R is consistent and correct if and only if

1. for each of the transactions Ti in T, the conjunction of the post-conditions of all the atomic step
segments in Ti is equivalent to the post-condition associated with Ti.

2. let z be a schedule for a transaction system T C T and z satisfies R. In the execution of T
according to z, any atomic step segment in ’I‘i € T specified by R preserves the consistency of the
database.

e R R R T TP I T r— ———

3

5.4.2 Generalized Setwise Serializable Scheduling Rules

Having dcfined the syntax of a compound transaction, we now define the concept of gencralized sctwise

scrializable scheduling rulcs.

Definition 5451t T = {'l‘l. 'I‘n} be a transaction system. ‘The generalized setwisc serializable schedul-

ing rule R is a modular scheduling rule with the following propertics.
. . _ | P Nyeys
1. R(I‘l. l‘n) = (Rl(| - Rl(ln))

2. The kernel of R, Ril. i = 1to n, is a composite function which first maps 'l’i into a compound
transaction l'f and then partitions the steps of cach of the clementary transactions of I‘f into
transaction ADS scgments.

For simplicity, we refer to the kernels of the generalized setwise serializable scheduling rule as generalized

setwise scrializable scheduling rules.

Definition 5.4.6: A schedule z for a transaction system T is said to be generalized setwise scrializable if z
satisfies the generalized setwise serializable scheduling rule R. That is, the transaction ADS segments

specified by R in one elementary Lransactioh_are interleaved serializably with those of others in z.
Theorem 5.4.1; Generalized setwise serializable schedules are consistent and correct.

Proof: Since a generalized setwise serializable schedule is setwise serializable with respect to all the elemen-
tary transactions in the system, it follows from Assumption 5.4.1 and Corollary 5.3.3-1 that each elementary
transaction terminates, preserves the consistency of the database and produces results that satisfy i;s post-
conditions. Hence, the consistency of the database is preserved and the post-condition of each of the com-
pound transactions is also satisfied. Therefore, generalized setwise serializable schedules are consistent and

correct. O]
Corollary 5.4.1: Generalized setwise serializable scheduling rules are consistent and correct.

Theorem 5.4.2: Generalized setwise serializable scheduling rules are modular.

Proof: It directly follows from Definitions 5.2.18 and 4.5. O

DO I PR R I A A B e M f BN T

R R Y S W W N V.V L T Wy W+, «, TR g e @ - " - N - e - P . M) £ 2l T T heainv i ool

O = (L.l ...L)
AT TR Y

where I,p is the sct of local variables associated with all the preceding clementary transactions in the same

compound transaction.

We now define the concepts of input and output steps of an clementary transaction. Next, we define the

concept of the post-conditions of an clementary transaction.

Definition 5.4.3: Step L“2 € ’lf is an input step if it is the step in 'If first accessing a data object O. Step ti\j is

an output step if it is the step in Tflast accessing O.

Definition 5.4.4: Let Oj{vb]. j = ltok, be the values input to the input steps of 'lfand Oj[VF]' j=1tok, be
the values output by the output steps of 'l'f The post-condition of 'l'le is a specification of the output values as
functions of input values and the values 'of local variables associated with the steps in the preceding elemen-

tary transactions.
Oj[vf] = fj(Lp. 01["17]' Ok[vb]).j =1lwk. .

where Lp is the set of local variables associated with the steps in the preceding elementary transactions of

the same compound transaction.
Having defined the syntax of compound transactions, we now state our assumptions about them.

Assumption 5.4.1: When an elementary transaction of a compound transaction is executed serially and in
an order that is consistent with the partial order defined by the compound transaction, it satisfies our three
fundamental assumptions about a transaction, that is, it terminates (Al), preserves the consistency of the
database (A2) and satisfies its own post-conditions (A3). Furthermore, the post-condition of a compound

transaction is equivalent to the conjunction of all the post-conditions of its elementary transactions.

n

5.4 Compound Transactions

A compound transaction consists of a partially ordered set of clementary transactions. When an clementary
transaction is exccuted scrializably and in an order consistent with the partial ordering of the clementary
transactions in the compound transaction, it has the following two propertics. First, given a consistent state of‘
the databasc and the results passed from preceding clementary transactions, an clcmcntery‘ transaction
produces another consistent state of the databasc and satisfies its own post-conditions. Sccond, the conjunc-
tion of the post-conditions of the constitucnt clementary transactions is cquivalent to the post-conditions of
the compound transactions. When the database is partitioned into atomic vdata sets and transactions are
partitioned in the form of compound transactions, the consistency and correctness of concurrency control will
be ensured as long as the elementary transactions of the compound transactions are run setwise serializably.
This result is formally expressed as the generalized setwise serializable scheduling rules. We also prove that
our approach of partitioning the database and transactions provides as least as much concurrency as any other
modular concurrency control approach. 'fhis optimality result is formally expressed as the completeness of

generalized setwise serializable scheduling rules.

5.4.1 Syntax

We begin our formal investigation of compound transactions by first defining their syntax. A compound

transaction consists of a partially ordered set of elementary transactions. Each elementary transaction can

have the structure of a nested transaction. These elementary transactions collectively carry out the task of the

compound transaction by passing information via local variables. For simplicity, we assume that elementary

transactions are single level transactions in this chapter.8
Definition 5.4.1: A compound transaction is a partially ordered set of elementary transactions.

Definition 5.4.2: Let Tf = {Lu. e b l’k} be an elementary transaction. Let the data object accessed by step
t; € T;be O, . Let the local variable associated with step t, be L, .Step . is modelled by the indivisible
i .

operation of the following two instructions.

I gl A gl e 0 A S R el Nl el O Anl Sl M

A e T R S G A e A A i el Rt OB i i N A AR e ol Uit R S e e Sk St s N e A 8 LR i e T

70

Proof: Lot Q = {.A'. .Ak} be a CP partition of 1), 1.et the initial states of cach of the ADS's he 7. A [0
i

= 1 to k. ‘These initial states are assumed to be consistent.”

Since a schedule is a totally ordered set of steps from all the transactions, cach of which terminates, there
must exist a transaction ADS segment (i, .Aj) which first finishes its computation. {.ct the associated ADS
state be 7., [l]. Since there are no interlcavings among transaction ADS segments accessing the same ADS in
a setwisc sérial schedule, Z [1] must be output by a transaction which has uscd only the initial states that
were assumed to be consnstcél. By Lemma 5.3.3-3, L [1] is consistent, and the valucs of data objects in .A
output by ¥(i, A.) are correct. Consider now the output of the second transaction ADS segment produced by
the schedule. Smce it can usc only LA‘[I] orZ, [0 m=1tokandm 7 j, at the end of this second
transaction ADS segment, the accessed ajtomic datamset is in a consistent state and the output values are correct
by Lemma 5.3.3-3. Now assume that the first n transaction ADS segments produce consistent and correct
results. The n+1% must also by the same argument. By induction, the ADS state produced by each of the
transaction ADS segments is consistent, and the values of the data objects output in each ADS at the end of

the transaction ADS scgment satisfy the post-condition. It follows that a setwise serial schedule is consistent

and correct. O
Corollary 5,3.3-1: Setwise serializable schedules are consistent and correct.
Proof: It directly follows from Definition 5.3.6 and Theorem 5.2.1. O
Corollary 5.3.3-2: The setwise serializable ;cheduling rule is consistent and correct.
Proof: It directly follows from Corollary 5.3.3-1. O

Throughout this section, the choice of atomic data sets has been arbitrary, because Theorem 5.3.3 applies to

any CP partition whether maximal or not. If the CP partition consists of a single ADS, then setwise serjaliz- -
able schedules reduce to serializable schedules.

09

Lemma 5.3.3-3: In a setwise scrial schedule, if at the beginning of a transaction ADS segment, ¥(i, 'AiJ)‘ =
1o ki. ADS .AiJ. is initiatly consistent, then .»{iJ. is consistent at the end of Y(i. 'AiJ)‘ and the values of cach of

the data objects in Ai.j output by 'l‘i are correct.

Proof: [.ct the atomic data sets accessed by Ti be .AiJ, j=1t ki. Now lct 'I‘i exccute alone in a serial
schedule z_ with the initial states of .AiJ.. j=1ltw k. being identical to the initial statcs of “(iJ‘ j=1to k. in

the setwisc serial schedule z.

Let the values of the local variables and data objects in the serial schedule z" be L' and o' - and those
11 1[

in sctwise scrial schedule z be LL and 0 . We now prove that the cxecutions of T, under z and z are
i/ LI
equivalent. Recall that the syntax of a transaction step is given by

L :=0
L1.1 Lr.l

0 := f (L)
LY T LTI ‘u

Since the initial states of ADS "iJ‘ j = 1wk are cqual in both schedules, the initial values of all the data

objects in A, i j=1to k, are equal. Therefore, the first steps in both schedules input the same value. That

s L= L‘ Inaddition, 0, =f (L)=f (L')=0", . Next L, =L , because step two
Ll 1 1.1 I.l Ll Ll Ll l.l 1.2 1.2
either reads the initial value of a data object or the value of the data object output by step 1. Similarly, 0
o 1.2
o .
Y2

Now suppose that these local variable and data object value pairs are equal from steps 1 to r. That is, LL

. . th

=L .. and 0 = 0 = 1tor. Weshow that L‘ =L . This follows because step r+1 either
ih ih l.h ir+1 ir+1

reads the initial value of a data object or a data object which has been output by some steps between 1 tor. It

follows that O, = 0", . Therefore, the final values of accessed data objects in both schedules are

ir+l ir+1
_equal at the end of each transaction ADS segment. In addition, data objects in .Aid., j = 1ok, not accessed

by T. remain unchanged and therefore equal at the end of each transaction ADS segment for both schedules.
It follows from Lemma 5.3.3-2 that at the end of ¥(i, 'Lq)' the A, T j=1to ki, are consistent, and the value of
each of the data objectsin L. ,j= 110 ki. output by ’I‘i is correct. O

Theorem 5.3.3: A setwise seriaf schedule is consistent and correct.

‘m. RIS T R B i o s s e 'I.II'I!I".".l"!l.-l,'l.'l.!I.".' et Bl L har e Aare dagrn dh- fhs et A de e sye A S e it et “aORL M SbND At LA ottty

O =f (. ...L)
VAR VALY W

Since the initial states of all accessed ADS are equal with cither X or Y as the initial state, it follows that the

initial values of the accessed data objects are cqual. Hence, at the first step of T, I,l = L'l . In addition,

. . . il il
O =f (.)=Ff (L,)=0_, . Next, ., =L _ . bccausc the sccond step cither reads the initial
VR TR T TR T il b2 Y2 .
valuc of a data object or the value of the data object output by step 1. Similarly, Ol =0 L

i.2 i.2

L

Now suppose that these local variable and data object value pairs are cqual from steps 1 to r. That is, LL
» L] . l'h
=L, andQO =0 ,h=1tor. WeshowthatL =L . This follows because step r+1 either
Yin Yin Yih Gr+l birel
reads the initial value of a data object or a data object which has been output by some step between 1 tor. It

follows that O = 0‘L . By induction, the final values of accessed data objects with either X or Y as

LLI’+1 wr+1

initial state are equal. Since the values' of data objects in iij, j=1to ki, not accessed by Ti remain
unchanged, they must be equal at the end of the transaction with either X or Y as the initial state. That is,
"sid(wx) =g .(Wy), j=1to ki, where Wx and Wy are the states of D at the end of executing Ti with X and
Y as initial states respectively. Since the execution using X as the initial state is assumed to preserve the
consistency of each of the accessed atomic data sets, the execution using Y as the initial state must also
preserve the consistency of each of the accessed atomic data sets. Since the execution with X as the initial state

produces correct results, the execution using Y as the initial state must also produce correct results. O

Lemma 5.3.3-2: Let the atomic data sets a}ccesscd by transaction Ti be .A.IJ..j =1to ki. If Ai.i’ j=1lto ki,
are initially consistent and if Ti executes alone, then at the end of transaction ADS segment ¥(i, .AU) the
consistency of 'Ai.i is preserved. Furthermore, the values of data objects in .AiJ. output by ¥(i, J.u.) are correct
attheend of ¥(i, 'Ai.j)'

Proof: At the end of the transaction ADS segment ¥(i, .AU). j=1lto ki. the data objects in "(i,j’ j=1t ki
are neither read or written again. It follows that the values of the data objects in'.AiJ, j=1lto ki, are the same
as at the end of the transaction. By Lemma 5.3.3-1, at the end of the transaction, the consistency of each of the
atomic data sets is preserved, and the values of the data objects output by ’I‘i are correct, it follows that at the

end of each of the transaction ADS segments the state of the accessed atomic data set is consistent and the

values of the data objects output by the segment are correct. O

I N e AR B I A A A A A A S et i St e Sabr St Soiacindh fhuie Jhelh B 0 bl 4 Jonte A<t oot bats haarBo ade wa i\ m oo o

P A e

67

5.3.2.2 Consistency and Correctness

We now prove that setwise scrializable schedules are consistent and correct. The proof-is organized into
three lemmas, 1ot T, be a consistent and correct transaction. In 1.emma 5.3.3-1. we prove that 'I'i preserves the
consistency of cach of the accessed atomic data sets and produces correct results when executing alone. In
l.emma 5.3.3-2, we further prove that at the end of exccuting a transaction ADS scgment ¥(i, A) of 'l‘i. the
consistency of A has been already preserved. In addition, the output values of data objects in A are correct at
the end of (i, A). We aced not wait for the end of T ; to know these results. In L.emma 5.3.3-3. we relax the
cxecuting alonc condition. We show that the results of Lemma 5.3.3-2 are still valid for any ADS A, as long as

A is consistent at the beginning of transaction segment ¥ (i, A).

Definition 5.3.7: An ADS .Aj is said to be accessed by a transaction, if this transaction reads or writes one or

more data objects in Aj.

Lemma 53.3-1: LetQ = {..(1, .(k} be a given CP partition of D. Let Ti be a consistent and correct
transaction. If ’l‘i executes alone and if the' states of the atomic data sets accessed by ’l‘i are initially consistent,
then at the end of T, the state of each of the accessed atomic data sets is consistent, and the values output by

T, satisfy the post-condition of T.

Proof: let A, T j=1to k., be the atomic data sets accessed by transaction T.. LetY ¢ Q be astate of D such
that CLi(' u(Y» =1Lj=1t k where C represents the ADS consistency constraints of .L and S
represents the index set of A, T Now let X be a consistent state of the database such that g _(X) =g (Y), j
=1to k.. Next, we let ’l‘i execute alone with the database initially in state X. We now prove that with either

X or Y as initial state, the executions of Ti are equivalent,

By assumptions Al to Al in Section 2.2.1, with X as initial state, T, produces correct results and preserves

the consistency of the database. It follows that 'I’i preserves the consistency of all the atomic data sets. To

complete the proof, we must show that the values of the local variables and the values of the global variables
of Ti are identical in both schedules.

Let the values of the local variable and the data object in the execution with initial state X be L and

o ¥ Let the values of the local variable and the data object with initial state Y be L and O‘L We must
{
provethatl, = L" andO, =0 ateach step of the transaction. Recall that the syntax of a transaction

AU VR VIR Vi
step is as follows,

2 x r ee—

Pl

s T . S VS T T Y T T L T T T Y L G T VR T T T T T T TR s

5.3.2 The Setwise Serializable Scheduling Rule

In this scction, we first define this rule and then prove that this rulc is consistent and correct.

5.3.2.1 Definitions

In this section, we first define the concept of a transaction ADS segment. We then define the scheduling

rule called the serwise serializable scheduling rule. Finally, we define the set of schedules that satisfy this rule.

Definition 5.3.3: A transaction ADS scgment is the séqucncc of steps in a transaction that rcad or write
data objects in the same ADS. Let ¥(i. A) denote the transaction AIDS scgment of transaction 'l‘i accessing

ADS A. Let ti‘j > Ym denote that step tiJ is executed after step b We have

L, L) = {t](te 'I‘i) A (t reads or writes a data object in ADS A) }

2. V(([ij’ ty € ¥(i, A)) A (ti\j > ti.k))((ti.j’ Ly € A (tiJ. > t”n.k))

Definition 5.3.4: The scheduling rule that partitions each of the transactions in a transaction system T into

transaction ADS segments is called the setwise serializable scheduling rule.

A setwise serial schedule z for a transaction system T is a schedule in which transaction ADS segments

accessing the same ADS do not overlap. This concept is formalized as follows.

Definition 5.3.5: Let t ! and t*™ denote the first step and the last step of transaction ADS segment ¥(i,

A) respectively. Let Q be a consistency preserving partition of D. A schedule z for transaction system T is

‘said to be setwise serial if and only if under z,

VUeQV(T e DV ez A eT) (M >y v (> er™)
where t* represents any step accessing ADS A in the transaction system T.

Having defined the concept of setwise serial schedules, we now define a setwise serializable schedule as one

which is equivalent to a setwise serial schedule.

Definition 5.3.6: A schedule z for transaction system T is said to be setwise serializable if there exists a

setwise serial schedule z_ for T such thatz = z .

65

given a st of consistent states such as (al. a,, as). (hl. bz‘ b 3) and (cl. CyC 3). we must prove that {al. bz‘ c3} is
also consistent. First, we apply the intersection of {1} and {1. 2} to "A, B” and "A. C" respectively. States @,
bz‘ b 3) and (a. c,, c3) arc two of the four new consistent states. Next, we apply the intersection of {2, 3} and

{3} to these two new states. One of the two resulting consistent states is {al. b.. c,}. We now give a general

r S
proof of [.emma 5.3.2-3.

Lemma §.3.2-3 if P] and P2 arc CP, then their least common refinement is also CP.

Proof: Let Pl = {Sl. Sm} and P2 = {ol, an}. Their least common refinement is P1 N l’2 =
{Cl. CL}' where Ci = sjnok forsomej, k,i = 1toL.

Let)(i eUi=1toLandY € Q be given such mat‘wc(xi) = wC(Y). i=1tol. WemustproveY ¢ U
. i i
to conclude that the Plan is CP.
v X)j=2tw
L. Noting that Cj = Sinak, Lemma 5.3.2-2 indicates that Xj €U, j = 1toL. It follows that X L= YeUDO

To this end, we define a sequence {x'i, i = 1toL} as follows: xl‘ =X, xj' = H. (X

Theorem 5.3.2: There exists a unique maximal CP partition.

S b R e g N s W R e At L R et Sl TR Bt I S e h e S < i e e R Jhgr e Sttt e dng ot dee] *

Proof: Suppose that there exists more than one maximal CP partition. The least common refinement of

distinct maximal CP partitions is CP by Lemma 5.3.2-3, thus contradicting the maximality assumption. O
Corollary 5,3.2: There exists a unique maximum CP partition Q of D.

In the next section, we show how consistency preserving partitions can be used to schedule transactions in a
non-serializable fashion. Although any cP partition can be used, Theorem 5.3.2 indicates that there is a CP
partition that is "most refined” with respect to a given set of consistency constraints. This partition will allow

the maximal concurrency in concurrency control.

.......
......
.
.........

04

Lemma 5,.3.2-1: Suppose that X P X2 € U. If Sis an clement of any CP partition of 1, then Ils.: UxU — U.

Proof: It'S = 1. then Hy(X . X,) = X, and the result follows.

letP = {S, 0 “k}‘ k > 1 be a CP partition.
l)cﬁncWo =)(Z.Wi = Xl.i = lu)k:sothatwi €U, i=0twk
ws(Wo) = "S(Hs(xl’ Xz))

wo'(Wi) = woi(Hs(Xl, XNi=1lwk

Given that P is CP, HS(XI, Xz) is therefore in U by the definition of a CP partition. Thus Hs maps pairs of

consistent state into a consistent state. 0]

When we have two or more distinct CP partitions of the same index set I, sets from distinct partitions could
intersect. Lemma 5.3.2-2 generalizes Lemma 5.3.2-1 by allowing the intersections to be used for the specifica-
tion of swapping. For example, let P2 = { {1}, {2, 3} } be a second CP partition. The intersection of {1,2} ¢
Pl and {2, 3} ¢ P2 is {2}. Lemma 5.3.2-2 states that the two states resulting from swapping the projections of
A and B specified by {2} are also consistent. That is, (al. bz' a3) and (br a,, b3) are consistent. We show the
consistency of (al, b,. a,) as follows. First, we use Lemma 5.3.2-1 to swap the projections of A and B specified
by {1} of Pz' One of the two resulting consistent states is E = (al, bz' b3). Next, swapping the projections of
A and E specified by {3} of Pz’ we find (al, b,, 33) to be a consistent state also. We now give a general proof
of Lemma 5.3.2-2. '

Lemma 5.3.2-2: Suppose that S ¢ l’1 ando € Pz’ where P1 and P2 are CP. Thnen Hsnc: UxU —U.

Proof: IfS ¢ Pl, then there exists a CP partition P such that S° € P. Since Xl, X2 € U, it follows that
Hsc(xl, xz) € U by Lemma 5.3.2-1. Therefore, Hc(xl, Hso(xz, Xl)) € U as well. The Lemma follows, since
H (X;, HelX, X)) = Hg (X1, X)). O

Lemma 5.3.2-3 demonstrates that the least common refinement of any two CP partitions is also a CP

partition. For example, the least common refinement of P1 and Pz' {{1}, {2}, {3}}, is also CP. In this case,

B e T ¥ N T~ T T T w5~ 5= 4= 2y

63

Ux € U{ L (X)}. ‘The set of consistency constraints Ci whose truth set is the consistent states of .Ai_ is called the
i

ADS consistency constraints of .Ai. ‘That is,
U= Lo Clmg (V) =1

Theorem 5.3.1: The conjunction of all the ADS consrraints Ci, i = 1 w k, is cquivalent to consistency

constraints C of). That is,
C=CACA..C.
Proof: Let U’ be the truth set of the conjunction of all the ADS constraints. We have,
U ={Y| Clms (i = 1wk}
= {YIvS'(Y) € Ui.i =1ltwok} =U.
i
Hence,C = ClquA - C.0

We now prove the theorem that ﬂ}ere always exists a unique maximal CP partition. First, we note that CP
partitions exist, since the trivial partition { I } .is CP. Furthermore, the CP partitions are partially ordered by
refinement. That is, for any pair of CP pariitions l’1 and P., partition P is refined by P2 if and only if
‘V(Sj € Pz) 3(Si € P1)(Sj C S.l). A maximal CP partition is one which is refined by no other CP partition.
In the following, we will prove that there exists a unique maximal CP partition P. Since the proof is relatively

complex, we would like first to illustrate the ideas of the proof.

The proof is based on three lemmas. The idea of Lemma 5.3.2-1 is illustrated by the following example.
Let Pl = { {1, 2}, {3} } be a CP partition of the index set I = {1, 2, 3}. Suppose that A = (@, a, as) and B
= (bl, bz' b3) are two consistent states. Let S be a partition set, either {1, 2} or {3}. Lemma 5.3.2-1 states that

the two new states which result from swapping the projections of A ax;d B specified by S are also consistent.

That is, (al, a b3) and (b,, br a3) are consistent.

We now define a mapping Hs: OxQ — Q as follows, where S C 1. Given that Xl. X2 €Q, Hs(xl. Xz) =
Y, where Y satisfies w(Y) = #(X,) and 7 gd¥) = wdX,), where S° = I — S. Thus H(X,, X,) replaces
the projections of X1 specified by S with the projections of X2 specified by S.

.....

1 6 4 & &AW

E AU

FOl B AR N R]

Te o TI T NT g T g rgui rrerrrgrr wvpre ey nw e o,
s Te Y S w St e e S R T BT e e e (T LT e

62

It is important to note that inter-related data objects can be in different atomic data sets. as long as the
consistency of an atomic data sct can be satisfied independently of other atomic data sets. For example, we
can move a job waiting on the job queue of onc computer to the job qucuce of another computer in order to
balance the workloads. That is, these job queucs are related by soime load balancing transactions. However, at
cach computer a load balaicing transaction must observe the consistency constraints of the local job queue

such as the maximum size.

5.3.1 Atomic Data Sets

In this section, we first define the concepts of atomic data sets and a consistency preserving partition of the
database. Next. we show that the conjunction of the consistency constraints of the atomic data sets is
equivalent to that of the database. Finally, we prove that there is always a unique maximal consistency

preserving partition with respect to a given set of consistency constraints.

Definition 5,3.1-1: LetI = {1, 2, ..., n} be the index se. of database D. The index i € I specifies the data
object Oi € D. Let ws(Y) denote the projection of an n-tuple Y € usix;g the set of indices S C 1. That is,
"'s(Y) denotes the tuple whose elements are the values of the data objects indexed by S. Let P = {Sl, s Sk}
denote a partition of [. Let \v’i be the set wﬁose elements are the projections of all the consistent states, X € U,
onto an arbitrary index set Si. that is, Vi = Ux €U {wsi(X)}. A partition of the index setl, P = {Sl, Sz'
Sk}, is said to be consistency preserving (CP) if and only if,

V(Y ¢ O [rg(Y) e V,i=lokl—[Y ¢ U}

Defipition §.3.1-2: An atomic data set .Ai for a CP partition P is the set of data objects specified by Si €P.

The associated partition of data objects in D, Q, is called a consistency preserving partition of D.

The definition of a CP partition states that a CP partition has the property that any choice of the consistent
states of the atomic data sets leads to a consistent state of the database. We now introduce the concept of
consistency constraints of an atomic data set. Next, we show that the consistency constraints of the database

can be decomposed into sets of ADS consistency constraints.

Definition 5.3.2: Let P be a CP partition of I and let Si C I be the set of indices which specify the data

objects in the atomic data set. .Ai C D. Let the set of all the consistent states of an ADS .Ai be Ui =

76

scrializable scheduling rule is the optimal ruic when the transaction semantic information is not availuble for
scheduling. Sccond, the clementary transactions can be in‘the form of nested transactions. Finally, to enforce
gencralized sctwise scrializability, we can use the setwise two phase lock protocol: cach clementary trans-
action docs not release any lock on an atomic data sct until it has acquired all the locks on this atomic data set;
once an clementary transaciion releases a lock on an atomic data sct, it does not acquire any new lock on the

same atomic data set. If an atomic data set has the structure of a tree, we can use the tree lock

protocol [Silberschatz 80] instead of the setwise two phase lock protocol.

AT R R SR I .."_‘."l R S N TR B S R A
A PP

P R LI - -
S A A AT

P B U DT IE TR AL R
M. S SN E N N TP U S ST SEPRIPN T T . s

n

6. Subtask B1-2: Atomic Transaction Theory:
Modular Failure Recovery

In this chapter, we summarize our additional work on Subtask B1, the failurc recovery part of our atomic
transaction theory. The failure recovery theory addresses the problem of guarantecing the consistency and
correctness of concurrency control in the face of system failures. This work is primarily carried out by Dr. Lui

Sha and Prof. John P. [.choczky.

6.1 Introduction

In the previous chapter, Modular Concurrency Control, we have studied the subject of concurrency control
without considering the impact of possible system failures. We now extend our work by taking the effect of
system failures into consideration. C_omputer systems can fail in many ways. We limit ourself to the so-called
"clean and soft” failures. A failure is said to be clean and soft if the effects of this failure can be modelled by a
network of computers some of which stop running and lose the contents of their main memories. However,

the database residing in the stable storage remains intact.

The objective of using failure recovery rules is to ensure that concurrency control can be carried out
consistently and correctly despite failures in the system. A failure recovery rulespecifies the conditions under
which the executed steps of a transaction c_:ommit or abort. Comimitting a sequence of executed steps means
non-divisibly transferring the result of the computations from the main memory to the database residing in
the stable storage. The commit operation represents irrevocable changes made to the database. For example,
the recovery rule associated with serializable schedules is known as Jailure atomicity. This rule requires that a
transaction either commits or aborts all executed steps at the end of execution. In other words, serializable
schedules creates a virtual "executing alone” environment in which the concurrently executed transactions
maintain database consistency and produce correct results. At the end of its execution, a transaction will
either non-divisibly transfer the results of computation to the database or abort and re-start later. In this way,
the consistency and correctness of concurrency control is ensured despite clean and soft system failures.
Failure atomicity is widely accepted as the criterion for failure recovery, and many new protocols are being

designed to efficiently implement it {Bernstein 83, Mohan 83, Attar 84, Svobodova 84].

Unfortunately, the non-divisibility in the transferring of the computational results of a transaction to the

e e e . e D ST L LI P I et st L NP P U N
DR R A L AT SRS TRV L) ._...' e e . .".'_J‘_.‘_." A e S S S P R
AR e e AN : M NN o

.. . . .
I R A P LT P SN S LS e, e R R U Rt e et et e At e e e e
PR IR I WA UL, W e W, S ST PURTIREII WAL VRO Dl DAL T U W R T WIS 0 T, TR P I T I

78

database places a fundamental limitation on the degree of concurrency in the cxecution of a transaction
system. In order to ensure failure atomicity and avoid cascaded aborts, the results of the computation
performed by a transaction must be withheld by some concurrency control mechanism such as locks until the
transaction has successfully committed. 'This is because a transaction can be aborted by failurcs before it has
committed. [f other transactions usc the results of the partial computation of a transaction, their computa-
tions could be invalidated by the abortion of that transaction. In this chapter, we develop a new failure
recovery rule, called the failure safe rule, which divides a transaction into a partially order sct of atomic
commit segments and commits them segment by segment. This rule is designed for transaction systems using

our concurrency control theory described in [Sha 85b, Sha 85a].

Before the formal investigation, we first give an informal overview of our failure recovery approach.
According to our modular concurrency control theory, the database is partitioned into atomic data sets and
transactions are written in the form of compound transactions, each of which consists of a partially ordered set
of elementary transactions. Given a compound transaction, the failure safe rule examines the. transaction
ADS segments in cach of the clementary transactions. A transaction ADS segment consists of all the steps in
an elementary transaction that access the same atomic data set. If the steps of a transaction ADS segment are
not interleaved with those of others, then the ADS segment is named an atomic commit segment. Otherwise,
interleaved ADS segments are taken to be a single atomic commit scgment. That is, the failure safe rule
partitions a transaction into a pania;ﬂy ordered set of atomic commit segments. A transaction must non-

divisibly commit each of its atomic commit segments in an order consistent with the partial order of the

atomic commit segments in the transaction.

To illustrate our approach, let us consider the compound transaction example which was also used in [Sha
85b, Sha 85a] to illustrate our cancurrency control approach. Suppose that transaction Get-A-and-B needs
one unit of some resource at node A and another unit at node B. If it cannot have both, then it would rather
have none, since the task cannot be run with only one of the resources. The resource heap at each node is
modelled as an atomic data set with consistency constraint "0 < HeapSize < MaxSize", and the MWﬁon is

written in the form of a compound transaction, Get-A-and-B, which is illustrated in Table 6-1.

Compound transaction Get-A-and-B has four atomic commit segments, each of which corresponds to one
of the four elementary transactions: Get-A, Get-B, Put-Back-A and Put-Back-B, because each of these

elementary transactions consists of a single transaction ADS segment. It should be pointed out that failure

0

. LA . T . caTe e v e e e - e L e e - -
- e Tt PPN s e T T PR R R S S T S T S Y PR I T T .
. P o, . * .

T

D I YR
bl YA . APUR. 3P, 1

~ N I R A e & |

R "B
TR

L]

.
[

d .]
* N

79

Compound l'ransaction Get-A-and-B:
AtomicVariable Obtain-A, Obtain-B : Boolean;
BeginSerial '
BeginParallel
Flementary I'ransaction Get-A:
BeginSerial
Writelock Heap A;
Take a unit from A if available

and indicate the result in atomic variable Obtain-A

Commit and unlock Heap A;
FndSerial ;

Elementary Transaction Get-B;
BeginSerial
Writel.ock Heap B;
Take a unit from B if available

and indicate the result in atomic variable Obiain-B;

Commit and unlock Heap B;
EndSerial ;
EndParallel;

BeginParallel ;
FlementaryTransaction Put-Back-A;
BeginSerial '
-If Obtain-A and not Obtam-B
then BeginSerial
WriteLock Heap A;
Put-Back the unit of A;
Commit and unlock Heap A;
EndSerial;
EndSerial ;

ElementaryTransaction Put-Back-B;
BeginSerial ; .
If Obtain-B and not Obtain-A
then BeginSerial
WriteLock Heap B;
Put-Back the unit of B;
Commit and unlock Heap B;
EndSerial ;
EndSerial ;
EndParallel ;
EndSerial.

Table 6-1: Compound Transaction Get-A-and-B

atomicity is a degenerate case of our failure safe rule in that it corresponds to the rule in which the entire set

of steps of a transaction is taken as a single atomic commit segment.

From a concurrency control point of view, a concurrent execution of a transaction system is modelled by a

-'-'»‘4“~'.

ST IO

I E R R ".\ .\x-

BRI A S i ARl SUL AL il Sk S Sud et

80

schedule. 1t is shown in this chapter that owing to the preservation of both the internal ordering of steps in
: transactions and the integrity of transaction ADDS segments, the cffect of a system failure under the failure safe
rule becomes cquivalent o changing an cxisting generalized setwise scrializable scheduice to another schedule
that is also genceralized sctwisc scrializable. Thus, under the failure safe rule system failures are safe in the
sense that the computations recorded in the databasce are cquivalent to the computations resulting from a
failure-free execution of the transaction system. For example, suppose that compound transaction Get-A-
: and-B fails after its clementary transaction Get-A has committed. Since Get-A lcaves the database consistent,
other transaction will be exccuted consistently and correctly despite the failure of Get-A-and-B. Since other
transactions leave the databasc consistent, when Get-A-and-B resumes its exccution it will also be executed
consistently and correctly. When resuming its execution, Get-A-and-B can get another unit of B or return the

obtained unit to A, depending on the availability of B.

In this chapter, the organization of studying failure recovery rules is parallel to that of our studying

— . s

concurrency control rules in the previous chapter [Sha 85b). We will use many concepts related to concur-
rency control such as steps, transactions and schedules. All these concepts are formally defined in the previous
chapter, and we will not replicate them in this chapter. In Section 6.2, we develop a model of failure recovery
| rules and define their properties such as cbnsistency, correctness failure safety and optimality. In Section 6.3
: we define the failure safe rule and prove that this rule is consistent, correct and modular. In addition, we
prove that this rule is optimal for transaction systems scheduled by generalized setwise serializable scheduling

rules. Section 6.4 offers some concluding remarks.

6.2 A Model of Modular Failure Recovery Rules

We now develop our model of modular failure recovery rules. We first define the concept of a modular

i failure recovery rule. Second, we model the effect of clean and soft failures upon concurrency control. We
then define the concept of consistency and correctness for a modular failure recovery rule in the face of clean

and soft failures. Next, we introduce the concept of safety for a recovery rule. We conclude this section by

addressing the issues of re-scheduling aborted transactions.

« - e

Conceptually, a failure recovery rule is a specification of the way to commit the executed steps of a
transaction. For example, failure atomicity is a failure recovery rule that specifies that at the end of a

} transaction all the executed steps must be either committed or aborted as a non-divisible unit. In this chapter,

e v w

PN NG NI AR 4 N S N P A A ™ /™ i . SR A St IR TR i St i o e S B <o ios SN Ul et < ‘A A et et A ol 200 A s 1

81

a failure recovery rule is modelled as a function which takes a transaction and partitions it into cquivalence

classes called atomic commit segments. At the end of executing an atomic commit segment, the computational
said to be moduiar if it partitions a transaction independently of other transactions in the system. For
example, failurc atomicity is a modular failurce recovery rule that takes the entire sct of steps of a transaction
as a single atomic commit secgment. We now formalize the concept of a failure recovery rule in Definitions

2.1-1and 6.2.1-2.

Definition 62.1-1: lLet 'I‘m denote the set of all the possible consistent and correct transactions with m
% T

steps. Let T denote the set of all the consistent and correct transactions, that is, T = Unz1Tm

Let Pm dgnote
a partition of an m-step consistent and correct transaction into a partially ordered set of transaction step
segments called atomic commit segments. Let ‘EPm denote the set of all the possibie partitions of an m-step
consistent and correct transaction. Let ?Pb¢ the set of all possible partially ordered sets of partitions, that is, P
= U;°= 19m. A failure recovery rule for a transaction system with n transactions, ‘.l:n. is a function which
takes the transaction system of size n and partitions cach of the transactions into a partially ordered set of

atomic commit segments.
n n
%, 1, T— 11,2, 2

Definition 6.2.1-2: A failure recovery rule % is a function which takes a transaction system of any size and

partitions each of the transactions into a partially ordered set of commit segments.
. n 00 n
®: Un=l(Hi=\ T) - Un:l(ni=1 m
such that the restriction of % t6 [Tj_ Tis® . ie.
n
‘.la|]'[i=l T= %n,n = ltooo.

Definition 6.2.2: A failure recovery rule b is said to be modular if and only if B independently partitions

each transaction in a transaction system into atomic commit segments. That is,

B (T T) = (BT, . By (T)0 =110 05.

82

where % _is the restriction of % to [T T.
n =1

Having formalized the concept of modular recovery rules, we now state our assumption regarding the
atomic commit scgments produced by those recovery rules. When failure atomicity is adopted, the commit
operation censures that the computations produced by a transaction arc cither discarded or transferred to the
database as a non-divisible unit. In this case, the valucs stored in the focal variables are irrelevant to the
commit operation, because the computation has been completed. However, when we commit a transaction
segment by scgment, we must not only guarantee that the computations produced by an atomic commit
segment are non-divisibly transferred to the database. but also guarantce that the values stored in the local
variables associated with the commit scgment are non-divisibly transferred to the stable storage as well. This
is because when an aborted transaction resumes its execution, an executing step may need the values of the
local variables associated with those commit scgments already committed. We now formalize our assumption

regarding the commit and abort operations of atomic commit segments.

Assumption 6.2,1-1: At the end of executing an atomic commit segment, the computations produced by

this segment will be either committed or aborted.

Assumption 6.2.1-2: An atomic commit segment ¢ is said to be committed if and only if

1. the computations produced by this segment are non-divisibly transferred to the database. That is,
let the data objects accessed by atomic commit segment ¢ be 01, 0k and the values output by
obe OI[Vfl, Ok[vf]. The values of the data objects in the database will be Ol[vfl, Ok[v(] ife
is committed.

2. The values stored in the local variables associated with segment ¢ will also be non-divisibly
transferred to the stable storage. That is, let Ll, o Ly b the set of local variables associated with
the transaction steps in 0. Let Ll, .Lk be a set of data objects in the stable storage but not part

: of the database. Data objects 1’1' Lk are said to be the private stable storage for ¢. The private
stable storage of an atomic commit segment o can only be written by the commit operation of ¢
and can only be read by steps of other commit segments in the same transaction. When o has
committed, we have Ll = "‘1’ - Lk = Lk.

A;sumpmn_ﬁ.z.u An atomic commit segment is said to be aborted if and only if its computations are
discarded. That is,

1. Let Ollvb], Ok[vb] bé the values of data objects O, ... O, input to atomic commit segment o.
The values of the data objects 01' - Ok are given by OI[Vb], - Ok[vb] respectively.

OV tad S B R i Y B A B e it B Jhon St iy B <l

83

2. The private stable storage associated with ¢ has the initial value "nil” for cach of the data objects

L... Lk. The value "nil” is a special value reserved for recovery management such as the bit

pattern of a word with all 1's. "nil” must not be in the domain of any data object. When the
private stable storage Ll. Lk arc assigned to a commit scgment. their initial values are initial-
ized to "nil". This indicates that they have not been used to store values by the commit segment.

Assumption 6.2.1-4: When resuming the execution of an aborted atomic commit segment ce'l‘i. all the
local vaniables associated with commitied atomic commit scgments in Ti will be restored to values saved in
their privatc stable storages. That is, let o o Oy be the atomic commit segments that have been committed.

We have
V(LiEaj. ISisk =2L)

Having defined modular recovery rules-and the commit operations for atomic commit segments, we now
model the effect of a clean and soft system failure upon concurrency control. When a transaction system is
executed according to a schedule z and a failure occurs, schedule z is partitioned into two parts. The part z°

represents the steps in z that have been executed, another part 2! represents those steps yet to be executed.

Definition 6.2.3: Given a schedule z for transaction system T, a clean and soft system failure partitions z
into two parts: z° and 2'. The partial schedule 2° represents steps of z that have been executed prior to the

failure, and 2’ represents steps in z yet to be executed.

Within an executed partial schedule 2%, there can be some atomic commit segments which have been
committed. The computations represented dy.successfully committed atomic commit segments are modelled

by a committed partial schedule 2°.

Before we formally define this concept, we must first introduce the useful concept of a sub-segment,
denoted as "[C". We say that a sequence of steps o, is a sub-segment of another sequence of steps o, if and

only if all the steps in o, are also in o In addition, the ordering of steps in o, is consistent with that in o)

Definition 624: Let o, be a sequence of transaction steps. A sequence of steps o, is said to be a sub-
segment of 0, denoted as "az; @,", if and only if

Vit €0y i7£ DA) (G €0 DA > 1)

SRR Y g 2 R

T P N S T 2 T T
.,. e e e e e e e

e e T T T T T T T T Tl T S T T T T T e T e e T T e R T T W T VY T, W e e vy,

84
We now define the concept of a committed partial schedule.

Definition 6.2.5: 1.ct «° be the exccuted partial schedule in 2. [t be an atomic commit scgment. ‘The
committed partial schedule 1° is a sub-scgment of z° that contains only successfully committed atomic commit

scgments. That is,

1. The committed partial schedule is a sub-scgment of the exccuted partial schedule;
*CE

2. The committed partial schedule does not contain fragmented atomic commit segments;
Vi e 2o T 2Nt € o)

3. Transaction commit segments belonging to a transaction are committed in the order defined by
the commit rule. We let "o, < 02" denote that commit segment o, precedes o,.

V(T,e DV (o), 0,ET) A (0,<0)) (5,52 = (0, C 1))

Having addressed the issues related to the commit operation, we now turn to the subject of resuming the
execution of an aborted transaction. When a transaction fails, some of its atomic commit segments may have
been already committed. When the database system resumes the exccution of this aborted transaction, we are
faced with the problem of scheduling a partial transaction. We assume that a partial transacticn is scheduled
by the same scheduling rule R as follows. Whén a partial transaction consists of an integer number of atomic
step segments, all we have to do is to ensure that these segments are interleaved serializably with those of
‘other transactions. The main problem in scheduling a partial transaction is that an atomic step segment
specified by R might be partitioned by a recovery rule % into more than one atomic commit segments. When
a failure occurs, it is possible that only some of these commit segments have been committed. In this case, the
portion of an atomic step segment left in the remaining schedule z, will be taken as an atomic step segment
and interleaved serializably with atomic step segments of other transactions in Z,.

For example, suppose that tmns;act.ion'l'i has two atomic step segments o, and a, specified by scheduling
rule R. If the entire Ti is in a remaining partial schedule z, then these two atomic step segments will be
interleaved serializably with atomic step segments of other transactions in Z, If o, is committed but o, is left

in z, then o, will be interieaved serializably with those of others in z, Finally, suppose that a recovery rule

partitions the atomic step scgment 9, into two atomic commit segments: %1 and)y If only % has been

T R N T Y L N T R T N T R N N T W W W oW w s ‘.‘.W'J"W"-“v‘“‘:]

85

committed and o 12 and o, arc left in z . then both ¢, and o, will be taken as atomic step segments in z

12 I

Thatis, o, , and o, will be interlcaved scrializably with those of others in 2. We formalize our discussion

1.2
about scheduling aborted transactions as Assumption 6.2.2.

Assumption 6.2.2: Let z be a schedule for transaction system T satisfying scheduling rule R, et 7, be the
remaining partial schedule after a failure occurs during the execution of z. Let = R(Ti) denote the atomic step

scgments of transaction Ti specified by R.
1. The steps in z, arc those in z but not in the committed partial schedule z°,
Vixeenatez) — (tez))

2.If all the steps of a transaction Ti are in z,, then the atomic step segments of Ti are still
represented by = (T)). ’

3. Let Tp denote the partial transaction of T in the remaining partial schedule z. A partial trans-
action T" is a sequence of steps such that (T"L__T AV (((teT. DA(tez,)) — (te Tp)). Partial
transacnon Tp is scheduled by R as follows Lct R('I"’) denote the atomic step segments
specified by R with respect to the pamal transaction Tp We have that

a. each atomic step segment of the partial transaction is a refinement of some atomic step
segment of the original transaction;

V(IPE2)V(o e Z(TH) (0" e Z(T)) (00).

b. each step that is in an atomic step segment of the original transaction and in the partial
transaction is in some atomic step segment of the partial transaction.

V(o' ez (M) Vite o)t TP) (Ao e Z(TXte o)

4. The remaining partial schedule Z, satisfies scheduling rule R. That is, the atomic step segments
specified by R in a (partial) transaction will be interleaved serializably with those of others in z,.

Having modelled the effect of a single failure, we now address the issue of multiple failures. When the first
failure occurs during thc execution of z, the committed atomic commit segments are represented by z°. The
executed but not yet comnﬁtted transaction steps are aborted. These aborted steps are re-scheduled together

f 10 create the remaining partial schedule z X In the execution of z,, suppose that a second failure

with steps in z
occurs. In this case, we have a new committed partial schedule, z z, and a new remaining schedule z, This

process continues until all the steps in the transaction system are executed and committed.

................

f‘u.l_h\l:-_.,l.«!.»&

.............

RESCERACINE IS SRS S DAL DA AN B O A At R A SNl = A i on S Shn S M N N il Mallo Al i Jilh Shall S

86

Definigion 6.2.6-1; 1.ct 2 be a schedule of transaction system T satisfying scheduling rule R, When the first
failure occurs, the committed partial schedule is denoted as 25, and the remaining partial schedule is denoted

asz,. The K remaining partial schedule 7, is the remaining schedule for 2 after the k™ failure.

Definition 6.2.6-2; When there are no failures, the exccution of a transaction system is modelled by a

schedule 2. With n failures, the execution of a transaction system is modclled by a committed schedule z(n) =

(-, zﬁ, z:).

In order to investigate the execution of transaction systems in the face of failures, we must relate the

concept of a committed schedule to our established results on scheduling rules.

Theorem 6.2.1: Let a committed schedule for a given total of k failures in the execution of transaction
system T = {T, .., T } be z(k) = < z‘l’; vr z|°‘>. where z;: is the i committed partial schedule after the i
failure.® Committed schedule z(k) satisfies scheduling rule R if and only if

1. The ordering of the steps of transaction Ti, 1 € i £ n, in z(k) is consistent with that in transaction
T.1<i<n.

[)‘vt’(:)x)](: ¢ 2k) = (t € U] A[V(T, € TIV((O by € TI A >E)) (1, € LN AL,
i

2. Atomic step segments specified by R and belonging to different transactions are interleaved
serializably in z, :

3z e Z(T)) ((2(k) = 2)A(z is atomic step segment serial))

Proof: It directly follows from Assumptions 6.2.1-1, 6.2.1-2, 6.2.1-3 and 6.2.1-4, Definitions 6.2.6-1 and
6.2.6-2, and Definitions 5.2.10 and 5.2.12 in the previous chapter. O

Having modelled the effect of failures upon concurrency control, we are now in a position to define the
concept of consistency and correctness of a recovery rule. We consider a recovery rule % designed for a
consistent and correct scheduling rule R to be consistent and correct if and only if % ensures the consistency

and correctness of the committed schedules in the face of any finite number of system failures.

9Notc that 1: =3 because there are no more failures aRterthe kth failure, and the entire , is committed.

..............................

................................

...

.. P " R
[N Sy AL T T AL WL . Tl T . TS TR T G . T N . PP SN SRS TSR PRV Y VRV PR W Y WL

L S DA A e i e ke “ TR W M e "N e ™20 ey “A "0 -SSR O i Wl i Mt e S e it vl Mt SR AN AR Sl S i I i SRR e B - Sbnat s St

87

Definition 6.2.7: I.ct % be the recovery rule designed for the scheduling rule R, recovery rule % is said to

be consistent and correct if and only if
V(ze ZR('I')) (z(n) is consistent and correct, 0 € n< o)
where ’LR('I‘) is the set of all the schedules for transaction system T satisfying R.

We now define an important property of a recovery tule called safety. We consider a recovery rule &%
designed for a scheduling rule R as being safe if and only if the committed schedules satisfy scheduling rule R.
That is, the computations recorded in the database cannot be distinguished from thosc resulting from an

exccution of a schedule z¢ ZR(T) without failures.

Definition 6.2.8: A recovery rule % designed for a scheduling rule R is said to be safe if and only if for any

given schedule z ¢ ZR(T) the commit sche_dules satisfy R, i.e.
VizeZ (T)Xa(n) € Z,(T),0 < n< %) |

Theorem 6.2.2: If recovery rule % designed for a consistent and correct scheduling rule R is safe, then

recovery rule % is consistent and correct.

Proof: Since all the schedules satisfying scheduling rule R are consistent and correct, it follows from

Definitions 6.2.7 and 6.2.8 that % is consistent and correct. O

We now turn to the subject of optimality of nodular and safe recovery rules. We measure the concurrency
provided by a modular recovery rule by how finely it partitions a transaction. This is because computations
produced by an atomic commit segment must be withheld by locks or some other mechanism until this
segment has been committed. To allow other transactions to use the results produced by a commit segment
before its commit could lead to cascaded aborts — a highly undesirable event. Generally, the finer the

partition, the smaller is the size of a commit segment and thus the highér the degree of concurrency.

Definition 6.2.9: Let T be the set of all the consistent and correct transactions. Let R be the set of all the

modular and safe recovery rules associated with some consistent and correct modular scheduling rule R. Let

Ea('l' i) denote the partition resulting from % ¢ R partitioning Ti €T. A modular and safe recovery rule % is

LA A v e AeCRARCI i T 0 A A S e D<A e M i i A S SR a0 o S St it o e

88

said 10 be optimal with respect to the associated scheduling rule R, if and only if % always produces the most

refined partitions. That is, % is optimal if and only if
VI enV(@R €R) ((0 € Zg(T)) — (0 € 2, (T))
where ¢ denotes an atomic commit segment.

We now conclude this section by addressing the issucs in re-scheduling aborted transactions. The main

point is that an atomic commit segment must be a superset of some atomic step segments.

Theorem 6.2.3: An atomic commit segment produced by a modular and safe recovery rule must be a

superset of some atomic step segments produced by the associated scheduling rule R.

Proof: Suppose that this claim is false, and there exists a modular and safe recovery rule ‘:1:‘, which divides
atomic step segment o, of transaction T1 into n commit segments with n > 2. Let the commit segments be
<°1.1' “1.n>' Let the set of data objects read or written by L4 be A. Let transaction T2 consist of only one
atomic step segment o, which writes into every data object in A. Now consider.a schedule z for transaction
system T = {Tl. Tz}. Suppose that schedule z satisfies R, and we execute T according to z in which T2 is
executed last. Suppose that a failure occurs just after %)) has been committed and commit segments o

12

), 2 aborted. Let the remaining partial schedule z, be <T "14:)' Suppose that there are no more

» %>
failures. That is, z(1) is the committed schedule. Note that z(1) does not satisfy R. This is because in (1) =

<o an>, o, precedes o, but ."2 also precedes o, on A. That is, the atomic step segments of T1

%%y 1
are not interleaved serializably with that of T,,. This contradicts the assumption that %" is safe. O

6.3 The Failure Safe Rule

Having developed a model of modular recovery rules, we now define our failure safe rule and prove that
' this rule is modular, consistent, correct and safe. We conclude this section by showing that this rule is optimal

for transaction systems using generalized setwise serializable schedules. .

When we study schedules, a useful concept is the serializable interleaving of the atomic step segments of
one transaction with those of other transactions. In the study of failure recovery, an important concept is the

interleaving of transaction ADS segments within the same transaction. When transaction ADS segments of a

39

ziven transaction are interlcaved, they must be committed as a single atomic commit scgment in order to

preserve the internal ordering of steps in a transaction.

Definition 3.1: Let E.'g(T.l) denote the set of transaction ADS scgments resulting from a gencralized sctwise
scheduling rule Rg partiticning Ti‘ A transaction AIDS segment oiei'g(’l‘i) is said to be interleaved with
transaction ADS segment 9 € Es(Ti) if

1 m,
Jite ai)(laj <t tajj)

where tl and t':jarc the first and last steps in segment 9 respectively.
j j

Definition 3.2: Given a transaction TieT scheduled by a generalized setwise serializable scheduling rule
Rs’ the failure safe rule % isa function that produces a partially ordered set of atomic commit segments as

follows:

1. For each transaction ADS segment o in an elementary transaction of Ti, name ¢ as an atomic
commit segment if ¢ is not interleaved with any other transaction ADS segment in this elementary
transaction.

2. When two or more transaction ADS segments in an elementary transaction are interleaved with
each other, merge them into a single atomic commit segment.

Theorem 3.1: The failure safe rule is modular.
Proof: It directly follows from Definitions 6.2.2 and 6.2.11. O

Theorem 3.2: The failure safe rule % is safe. That is, under % we have,

V(TCT)V(zeZ, (T)) (a(n) is generalized setwise serializable, 0 < n < 0o);
g
where z(n) = <z, ... z:> is a committed schedule for a given total of n failures.”

Proof: By Theorem 6.2.1, to show that z(n) = <z%, ..., zﬁ) is generalized setwise serializable for 0 < n < oo,
we need to prove that the ordering of steps in z(n) is consistent with the internal ordering of steps in each of
the compound transactions. In addition, all the transaction ADS segments in an elementary transaction must

be interleaved serializably with those of others in z(n).

AD-A158 477 RESEARCH IN DISTRIBUTED TACTICAL DECISION MAKING: 272
DECENTRHLIZED RESOURCE. . (U) CARNEGIE- HELLON UNIY
PITTSBURGH PA DEPT_OF COHPUTER SCIEN
UNCLARSSIFIED E D JENSEN ET AL. 31 JUuL 8 F/G 9/2 NL

Clute;

ORI

N
LPI

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

4.5 28 .
L o P
e 2 22
b g ==
) Imzo
L

E
13
re

s

=

»

B

walan

_-?-"7’“.7 R R R T R Y N W i N T IV ™ I w3 L st o T

90

To prove that the internal ordering of transaction steps in a compound transaction is prescrved , we need to

s s 9 2 B

prove that the ordering of the clementary transactions of a compound transaction in z(n) is consistent with
that in the compound transaction and that the internal ordering of steps in cach of the clementary transactions
is preserved. By Definition 3.2, the partial ordering of atomic commit scgments is consistent with the partial

ordering of clementary transactions in a compound transaction. Since atomic commit scgments are com-

Lot Ol g e

mitted in an order consistent with the partial ordering of atomic commit segments, the ordering of elementary
transactions of a compound transaction in z(n) is consistent with the ordering of them in the compound

transaction.

To complete the proof that the internal ordering of steps in a compound transaction is preserved. we need
to show that the ordering of steps in each of the elementary transactions is also preserved. Let Ly and tm be
two steps in an elementary transaction 'If and LL " <t . We need to show that Ln.k < L:.m in z(n). There are two
cases. First, suppose that Ly and Lun are in the same commit segment ¢. Since ¢ T z(n) and the commit
segment o is the superset that contains the transaction ADS segments in which Ly <t o it follows that by <
tm in z(n). Second, suppose that by isin cqmmit scgment o, while b isin o, and o, < o, Since o < o, in

z, it follows that Ly < '”un in z(n).

. We now prove that all the transaction ADS segments in an elementary transaction are interleaved serializ-

LI I A}

ably with those of others in z(n). First, it folloyvs from Assumption 6.2.2 that steps of elementary transactions
are interleaved setwise serializably in z and in the remaining partial schedules z, 1<i<n. Sincez*Cz aﬂd
£ C 2T z,1<i<n,it follows that transaction ADS segments are interleaved serializably with those of
“others in each of the committed partial schedules zf. 1 €i € n. We now claim that all the transaction ADS
segments in an elementary transaction are interleaved serializably with those of others in z(n). If we suppose
that this claim is false, then there must exist at least two transaction ADS segments in an elementary trans-
action such that these two segments are interleaved non-serializably. Let these two ADS segments be o, and
L There are two cases. First, o and o, are in the same committed partial schedule. This contradicts the
result that all the ADS segments of an elementary transaction are interleaved serializably with thdse of others
in the same committed partial schedule. Second, suppose that o, and o, are in two different committed
partial schedules 1; and 1; and that zi < z;. By the assumption that these two transaction ADS segments are
non-seﬁalizable.meremustexistsomestepstu >4, inczandsomestepstmnuinclsuchthat"tu<
Ly and "tu >, However, this contradicts the fact that all the steps in committed partial schedule zi

precede those in z; Hence, all the transaction ADS segments of an elementary transaction are interleaved
serializably with those of others in z(n). O

'_: " s

91
Corpltary 3.2: ‘I'he failure safe rule is consistent and correct.

Theorem 3.3: The failure safe rule % is the optimal failure recovery rule within the sct of all the modular

and safe failure recovery rules for transaction systems using genceralized sctwisc serializable scheduling rules.

Proof: To prove the optimality of the failure safe rule %, we need to show that the commit segments
produced by % for any transaction provide the most refined partition. There are two cases. First, a trans-
action ADS segment of transaction 'l'i could be taken as a commit segment by %. By Theorem 6.2.3, this
commit segment cannot be further partitioned. In the second case, transaction ADS segments 00 inan
elementary transaction of ’l‘i are taken as a single commit scgment by %, becausc they are interleaved.
Suppose that they are intcrleaved and taken as a single atomic commit segment 'a. Suppose that there exists a
modular and safe recovery rule 9" which divides o into more than one atomic commit segments, o, -, 0 .
where n > 2. By Theorem 6.2.3, each of these commit segments must contain an integer number of trans-

action ADS segments. Therefore, O,y = O, MUSL be supersets of transaction ADS segments. Let the first

1’
failure occur just after the commit of %1 and let there be no more failures. Suppose that the ordering of
steps of 'l‘i in 2(1) is consistent with the internal ordering of steps in T.. This contradicts the assumption that
the steps of the transaction ADS segments in o are interleaved, because in z(1) all the steps of %, in 2

precede all the stepsin o It follows that the steps of Ti in z(1) violate the internal ordering of

- inz
c.zy .y cn 1'
steps in Ti, and therefore z(1) is not gerieralized setwise serializable. This contradicts the assumption that %
is safe. Thus, the commit segments produced by % for any transaction Ti cannot be refined by other modular

and safe recovery rules. O

6.4 Conclusion

In this chapter, we have shown that when the transaction scheduling rule is the generalized setwise serializ-
able scheduling rule, the optimal modular and safe recovery rule is the failure safe rule. From an application
point of view, there are two important points one should be aware of. First, one should write one’s compound
transaction carefully to avoid the interleaving of transaction ADS segments, whenever this is possible. Un-
necessarily interleaving the steps of transaction ADS segments in an elementary transacu'm{ could lead to a
serious Joss of system concurrency. Second, one must realize that the spirit of the failure safe rule is to provide
"check-points”, so that a transaction can resume its execution after being interrupted by failures. As a matter

of fact, once we have committed one single atomic commit segment of a transaction, we can only abort

AT QLRY W -\.\._ ¥
»

- (oA d d Pt N 2 M IR SN L NI BN g T e i s R M SR AR SR A gt S AR

[}

4 s 9 ¥
e e

92
~
. .
" commit scgments not yet committed. We cannot abort the transaction as a whole. Indeed. once we commit a
: commit scgment we arc obliged to complete the exccution of our transaction. For example, in the compound
i transaction Get-A-and-B presented in "Table 1. once we have obtained onc unit of a resource and committed
:j: the operation, we are obliged cither to get the other unit or to put back the unit which we have already taken.
"\
We give a few informal suggestions regarding the implementation of the failure safe rule. The standard
- distributed version of the two phase commit protocolm [Bernstein 83] can be adopted to commit the atomic
2 commit scgments. The major modification is that we also need to store the values of local variables of a
5 commit segment in the stable storage. Saving these values in the stable storage is important for resuming the
exccution of a transaction that has becn interrupted by a failure. When an atomic commit scgment commits,
'-Ij the local variables contained in this segment should also be saved in the stable storage. To optimize the
o : storage utilization, we can save only those local variables that are shared by different commit segments. The
(-
s identification of those shared variables can be made easy if one is willing to request the explicit declaration of
- them as atomic variables in the program of a compound transaction.
-
’ 10 .]
Y Some call it the three phase commit protocol.
-
W
i
.,
3 : . - - b -'. X -]

AN ST

RN TS TR v P C

operating transactions.

93

7. Plans

Progress on Tasks A and B indicates a strong need to begin an immediate study of the time management
problem associated with best effort decision making and transaction facilities. Current technology used for
real-time exccutives (operaiing systems) is inadequate to support the efficient realization of reconfiguration
algorithms and transaction facilities for distributed real-time command and control systems. The develop-
ment of a theory of distributed scheduling algorithms anq its integration with reconfiguration algorithms and
a transaction facility has emerged as a critical problem to the success of any real-time decentralized computer

system.

Research over the next year on Tasks A and B will continue largely as described in CMU's proposal. Qased
on the results of research accomplished over the past year, emphasis will be directed at incorporating real-
time constraints into transactions and developing scheduling algorithms so that the real-time constraints are
met. The expected results from this work should be directly applicable to real-time distributed tactical
decision making. Task A will emphasize time-driven resource fnanagement --- managing system computation
and communication resources efficiently so 'that real-time constraints will be met. This effort will concentrate
on (1) a value function based approach for multi-processor scheduling, (2) scheduling problems of a
decentralized system, (3) investigation of a decentralized team decision model, and (4) architectural support
for the scheduling of distributed cdfnputations. Task B will examine extension of the model of compound

transactions to allow for the specification of timing constraints and development of the new theory of co-

. " - - e
- N T WA W LR » TR " Ottt o R DG et Vet fag S am SONAIRIME LRSI i ORI S, SR A I D TP At i b

94

References

[Allchin 82] Allchin, James E. and Martin S. McKendry.

A Object Based Synchronization and Recovery.

A Technical Report GI'T-1CS-82/185, School of Information and Computer Science, Georgia
. Institute of Technology, 1982,

[Attar 84) Attar, R., Bernstein P. A. and Goodman N.
Site Initialization, Recovery and Backup in a Distributed Database System.
{EEF, Transaction on Sofiware Engineering , Nov., 1984,

N [Bentley 83] Bentley, J. L., Johnson, D. S., Leighton, T. and McGeoch, C. C.
An Experiemental Study of Bin Packing.
Technical Report, Bell Laboratories, Murray Hill, N.J. 07974, 1983.

[Bernstein 83] Bernstein, P. A., Goodman, N. and Hadziacos V.
Recovery Algorithms for Database Systems.
Technical Report, Aiken Computation Laboratory, Harvard University , March 1983.

- [Chu 80] Chu, W. W.; Holloway, L. J.; Lan, M.; Efe, K.
Task Allocation in Distributed Data Processing.
Computer 13(11):57-69, November, 1980.

e S A

[Chvatal 83] Chvatal, V.
Linear Programming. _
W. H. Freeman and Company, 1983.

¥ [Coffman83] Coffman Jr., E. G., Garey, M. R. and Johnson, D. S.
Approximation Algorithms for Bin Packing - An Updated Survey.
Technical Report, Bell Laboratories, Murray Hill, N. J., 1983.

Reaching a Consensus. .

; [DeGroot74] DeGroot, M. H.
; Journal of the American Stalistical Association 69(345):118-121. March, 1974.

[Dolev 82] Dolev, D.
- The Byzantine Generals Strike Again,
Journal of Algorithms 3(1):14-30, March, 1982.

- [Eswaran76] Eswaran, K. P, J. N. Gray, R. A. Lorie and I. L. Traiger.
The Notion of Consistency and Predicate Lock in a Database System.
' CACM ,1976.

[Fischer82] Fischer, M. J.; Lynch, N. A.; Paterson, M. S.
. Impossibility of Distributed Consensus with One Faulty Process..
Technical Report, Massachusetts Institution of Technology, September, 1982,

—
"

[Frederickson 80} Frederickson, G. N.
Probabilistic Analysis for Simple One and ‘T'wo Dimensional Bin Packing Algorithms.
Information Processing Letters, Vol.11, No. 4, 5. , Dec. 1980.

[Garcia-Molina 83}

[Graves 70]

[Graves 81)

[Hillier 80]

[Jeffrey 84)

[Jensen 83]

[Jensen 84)

[Kaku 83]

{Karp 72]

{Kaufmann 75]

Garcia-Molina, H.
Using Scmantic Knowledge For Transaction Processing In A Distributed Database.
ACM Transaction on Database Systems, Vol 8. No. 2, Junc, 1983.

Graves, G. W. and Whinston, A. B.
An Algorithm for The Quadratic Assignment Problem.
Management Science, Vol. 17, No. 7, Mar. 1970.

Graves, S. C.
A Review of Production Scheduling.
Operations Research 29(4):646-675, July-August, 1981.

Hillier, F. S. and Lieberman, G. J.
An Introduction to Operations Research, 3rd Edition.
Holden-Day Inc., 1980.

Jeffrey, R. C.

The Logic of Decision, Second Edition.
University of Chicago Press, Chicago and London, 1984.

Jensen, E. D.

The Archons Project: An Overview.

In Proceedings of the International Symposium on Synchronization, Control, and Com-
munication in Distributed Systems, pages 31-35. Academic Press, 1983.

Jensen, E. D.
ArchOS: A Physically Dispersed Operating System.
IEEE Distributed Processing - Technical Committee Newsletter , June, 1984,

Kaku, B. K. and Thompson, G. L.

An Exact Algorithm for The General Quadratic Assignment Problem.

Technical Report, Graduate School of Industrial Administration, Carnegie-Mellon Univer-
sity, Mar. 1983,

' Karp, R.M.

Reducibility among Combinatorial Problems.
Complexity of Computer Computations.
Plenum Press, New York, 1972, pages 397-411.

Kaufmann, A.
Introduction to the Theory of Fuzzy Sets.
Academic Press, New York, 1975.

PR .

A R SR A I S A I PR TR T

.

» o a Ty

P
L

LSRR '.i
A A

SN AN S S SR R A M AR iy Y-St A A P R R Al A i A A A - et -t Sl e i A T i . 0

[Kleinrock 76] Klicinrock, 1..
Qucueing Systems, Vol 11, pp 424 - 425,
John Wilcy and Sons, 1976.

[Korth 83] Korth, H. F.
Locking Primitives in a Database System.
JACM, Vol. 30, No. I , January, 1983.

[Kung 79] Kung, H. T. and C. H. Papadimitriou.
An Optimal Theory of Concurrency Control for Databases.
In Proceedings of the SIGMOD International Conference on Management of Data, pages
116-126. ACM, 1979.

[Lamport82) Lamport, L.; Shostak, R.; Pease, M.
The Byzantine Generals Problem. -
ACM Transactions on Programming Languages and Systems 4(3):382-401, July, 1982.

[Lesser 73] Erman, L. D,, Fennell, R. D., Lesser, V. R, and Reddy, D. R.
System Organizations for Speech Understanding.
The Third International Joint Conference on Artificial Intelligence , August 1973,

[Liu 73] Liu, C. L.: Layland, J. W,
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment.
Journal of the Association for Computing Machinery 20(1):46-61, January, 1973.

[Lynch 82] Lynch, N. A.; Fischer, M. J.; Fowler,R. J.
A Simple and Efficient Byzantine Generals Algorithm.
In Proceedings of the Second Symposium on Reliability in Distributed Software and Dalabase
Systems, pages 46-52. ACM-1EEE, July 19-21, 1982.

[Lynch 83] Lynch, N. A.
Multi-level Atomicity - A New Correctness Criterion for Database Concurrency Control.
ACM Transaction on Database Systems, Vol. 8, No. 4, December, 1983,

[Marschak 72] Marschak, J. and Radner, R.
Economic Theory of Teams.
Yale University Press, 1972,

[McDermott 80] McDermott, D.; Doyle, J.
Non-Monotonic Logic 1.
Artificial Intelligence 13:41-72, 1980.

[McDermott 82) McDermott, D.
Non-Monotonic Logic I
Journal of the Association f>r Computing Machinery 29(1):33-57, January, 1982,

]

97

[Mohan 83] Mohan, C.
Efficient Commit Protocol for The Tree Process Model of Distributed 'T'ransactions.
IBM Research Report, RJ 3881 (44078). Computer Science , June, 1983.

{Mohan 85) Mohan, C., Fussell, D., Kedem Z. M. and Silberschatz A.
Lock Conversion in Non-Two-Phase Locking Protocols.
IEEF, Transaction on Software Engineering , Jan., 1985.

[Papadummou 8]
Papadimitriou, C. H. and Kanellakis, P. C.
On Concurrency Control by Multiple Versions.
ACM Transaction on Database Systems , Mar., 1984.

[Sahni 76] Sahni, S. K.
Algorithms for Scheduling Independent Tasks.
Journal of the Association for C ompulmg Machinery 23(1):116-127, January, 1976.

[Schwarz 82] Schwarz, Peter M. and Alfred Z. Spector.
Synchronizing Shared Abstract Data Types.
Technical Report CMU-CS-82-128, Department of Computer Science, Carnegie-Mellon
University, 1982,

[Schwarz 84] Schwarz, P. A
Transactions on Typed Objects. .
PhD thesis, Department of Computer Science, Carnegie-Mellon University, 1984.

[Sha 85a] Sha, L.
Modular Concurrency Control and Failure Recovery - Consistency, Correctness and
Optimality.
PhD thesis, Department of Electrical and Computer Engineering, Carnegie-Mellon Univer-
sity, 1985.

[Sha 85b] Sha, L., Lehoczky, J. P. and Jensen E. D, .
Modular Concurrency Control and Failure Recovery --- Consistency, Correctness and Op-
timality; Part I: Concurrency Contro).
Submitted for publication , 1985.

[Silberschatz 80] Silberschatz, A., and Z. Kedem.
Consistency in Hierarchical Database Systems.
JACM 27:1, 1980.

[Stankovic 83] - Stankovic, J. A.
Bayesian Decision Theory and Its Application to Decentralized Control of Job Scheduling.
February, 1983.
Internal documentation, University of Massachusetts, Department of Electrical and Com-

puter Engineering.

[Stefik 82]

(Svobodova 84]

[Tokuda 85}

[Wcihl 84)

[Wulf 81)

(Zadeh 79]

Stefik, M.; Aikins, J.: Balzer, R.; Benoit, J.; Birnbaum, 1..; Haycs-Roth, F.: Sacerdoti, E.
The Organization of Expert Systems, A Tutorial.
Artificial Intelligence 18:135-173, 1982.

Svobodova, L.
Resilient Distributed Computing.
IEEF. Transaction on Sofiware Engineering , May, 1984,

Tokuda, H., Clark, R. K. and Locke, C. D.
Archons Operating System (ArchQS) --- Client Interface, Part I1.
Technical Report, Department of Computer Science, Carncgic-Mellon University, 1985.

Weihl, W. E.
Specification and Implementation of Atomic Data Types.
PhD thesis, Massachusetts Institute of Technology, 1984.

Wulf, W. A.; Levin, R.; Harbison, S. P.
HYDRA/C.mmp: An Experimental Computer System.
McGraw-Hill, Inc., 1981,

Zadeh, L. A.

A Theory of Approximate Reasoning.
Machine Intelligence 9.

Wiley, New York, 1979.

.......

PR PSAA A e E S SRR SRS i Mol T A ATt A A N AN AR AT TR
REPRODUCE D AT GOVERNMENT E XPENSE
10-85

-

.“1

