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1. Introduction

This paper presents the results of an empirical study comparing several methods for con-

structing confidence regions and confidence intervals about parameters estimated by nonlinear

least squares. The methods compared are the lack-of-fit method, the likelihood method, and

three variants of the linearization method.

The need for confidence regions and intervals commonly arises in data fitting applica-

tions, where a response variable yj observed with unknown error i, is fit to il fixed predictor

variables x, using a function f(x,;0) which can be either linear or nonlinear in the p parame-

ters 6. The function f(xj;6) is linear in 0 if it can be written

f(x;0 = x.6 = ± ,e, i ,...,n.
j-1

Otherwise, it is nonlinear. The methods analyzed in this study are identical when f(xi;O) is

linear in 0; otherwise they are not.

When the error e, is additive, the response variable can be modeled by

Y. - fAx,;*+ ii, i= It,...,in,

where 6 denotes the true but unknown value of the parameters. The least squares estimator

of i is the parameter value, denoted 0, which minimizes the sum of the squares of the residu-

als. where the residuals, r,(O), are estimates of the random error, ei,

r,(o) - y,-f(x,;e).

T hus,

6 = arg min S(0)

where S{0) is the residual sum of squares,

S(O) - t r,(0) " - R(O)rR(O)
'-1

with R(O) denoting a column vector with ith component r,(O), and R(O)T denoting the tran-

spose of R(S).

In our study, we assume that the model is correct and that the errors are normal,

independent, identically distributed random variables with zero mean and variance a'&', i.e.,

distributed as N(O,& '2 I). Then, the least squares estimator i is the maximum likelihood esti-

mator of the parameters 6 of the p-variate normal density function,

.- .-.
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~~here Y is a coiin vector with lii" conponent Y,, and i is a columi)n vector with i" comn-

Neary norniallv distributed errors are, in fact, enroun t eed quie frequnotly in practice.

Ti s is b~ecause measuireime nt errors are ofter b lle sumi of a niumb e r of ranidom in rrorN from u nk

now n sources, and, by the cent ral limit iheorem, the suiri of i hese errors is apprOx in ttclv nor-

inally dist ribtted whatever the (dist rib)utijoni or the ird i vid ii i errors that make rip the sum.

In practice, the est imatedi valneIs of thet pa:rameters 0 will not equal the trne values0

because of the random errors, 1,, in the dat a. Since 0 is a r .ndom variable, however, it may

he possilfe to indicate with some sped i~c probibnirv I -- a in what region about 0 we might

reas~onably exp)ect 9 to be. Such regions are known as 1001- ot) confidenice regio ns. A joint

couli idenrce region about all of the param et ers is defined uriin,- a fuinct ion

C'R,, Y- a region in R '

which satisfies

Pr[ E CRJ(Y) =1-(x.

Similarly, a confidence interval about an individual parameter 0 is (lefnei using a function

CIlc Y- an interval in R

u~ hirh sat isfi.'

Pr [ e J E C11', (Y) =ia

The above definitions st ate that. before the dat a are sampled. the proba~bility that the

contifhlie regions andl confidence intervals to be constriced will contatin t he true parameter

value, is -w r. hus, if we repeatedtly draw samples anti cons! ruin con fidirice regions and

int erN J- about t he least squares est-imates for each samiple, then in the long run 100O( 1 -- t"

of thlew' coiiflcerce regions and intervals should contain the true valules- M~ethods that, for all

lie Ijti f( x :0) and confidence levels 1 -a. are statistical ly gu aratteed asvm Pt ot ically to

conitaini the tru value 100(1 -oF) of the time are called exact: all other met hods are called

approx imiate.

% ariou; nieth Ads have been propos('d for calcuilat ing; ronfidence region, ind inter; a5 fOr

parramiet er est imat ion by nonlli near least sq riare-i. These inclu de - v e ril v ariaits of the Ii nvari-

Wa on met hod, as well as the likelihod aind lack-of-fit tethods K'ee eg.Hr(171"Gl

Wa~t ( 1970), Draper and Sinmithi ( 19S1). We reiew all thrie methods3 briefly in S-ection 2. They

all are equivalent, and examt, for linear miodel-. For nonlinear models. only the lack-of-fit
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method for computing confidence regions is exact; the other methods for computing

confideiice regions and all the methods for computing confidence intervals are approximate.

The linearization regions and intervals appear to be the most approximate for nonlinear

models, but they also are far less expensive to compute than the likelihood or lack-of-fit

regions and intervals, and are the predominant methods implemented in production software.

Some nonlinear least squares packages, including NL2SOL [Dennis, Gay, and Welsch (1981)],

include three variants of the linearization method, which differ only in that. the variance-

covariance matrix of the estimated parameters is approximated in three different ways,

namely

= T 82 (j(j)Tj(j)yl,'

V6  --= -( ) 1

or

V , = 2 H(6) - l (J(i)TJ(6)) H(+ - 1 ,

%here .92 = S(t)/(n-p) is the estimated residual variance; J(i) is the Jacobian of

.'(xa;O), f I.....n, at 0; and H(S) is the Hessian of S(0) at 0.

Sections 3-6 of this paper describe and analyze a Monte Carlo study that compares all of

these methods for computing confidence regions and intervals on 20 nonlinear models. The

study is used to empirically observe how often the true parameter values are contained in the

confidence regions and confidence intervals constructed using a given method. The actual

percent of the nominally I00.(i-a)% confidence regions and intervals which are found to

contain the true value is known as the observed coverage. The observed coverage will gen-

erally depend on the method used to construct the confidence regions and confidence inter-

vals. on the nominal confidence level, 1-a, on the degree of nonlinearity of the function,

f(x,:O). and to a small extent, on the number of replications in the simulation. If the experi-

ment. used to generate the data is repeated a large number of times under the same condi-

tions and if CR. and C!, 6 are exact and the model is correct, then the observed coverage will

approach the nominal coverage. When CR. and C!j,, are only approximate, the observed cov-

erag,. will not necessarily approach the nominal coverage, although one wouli hope that the

difference between the observed and nominal coverage for a reasonable approximate method

would be small for most functions.

No similar study of this magnitude appears to have been reported previously. The pro-

perties of confidence regions and confidence intervals computed using the linearization,

................................... ' " ".' -'''. '-.-''','''-.-''',o.'•'.-.'''-...- .. '..-'''. ..,....-"...
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''Ik Ii. Pi, I t~tol, 11INv h, 1 :0tt Ialy/((l by ' \ c , ;t):it hors, :ncboli ii, .!erinrich

J~jIll' L lit,~ ;ind Mter l%195), (; alklrt (I 197G), li(i lu~tt MP.I7, mid Plates

umid \Is 1,9\ 1i!e, thc litecrat ure incI ldes nuiirnerow, N %-iuae_- reg ririg riepsIb

m:icciir.eY Jf Ill l'~ IJr0\1ii111" lt' t iilid- it coitatins little empfiricl dlatu llustralte the size

oif I lie {li~creviteie- bet u% ceit ohker% t :I td niminal cove-rage I itt miight exepect ed. Inl those

,11 lidle, Ns hich (10 coiit :t ii pmirv : t iat_ (111 _-otlA rire re:_" in. ail I ;itir a t he largest

reported differeces l et eeI I lie eLer e :i1( ii ( I no ei~ overitr', i> o-i!.y? for a 95c

con1fidenlce legret! eomiptoteuimg Ihe iienwt~ i method.,tw and is een salrfor the likeli-

hood miet hod [(.allatti ( 190 iii;tiiv prod (2!)- applic:0t jas, potelnt IiL differenices of 9%c
might riot be cause for concerni. Evidence of niucli Ilrger differences, howe ver, woldl Indicate

the( needl for improved methods. Our results providt-Nsuch evidence.

Our MnI it e Carlo stutdy has several i uirpos es. First. we A1 ish ro det eriine whet her the

obsevrved coverage of the linearizat ion method is significaritl affected h'N how the v itriance-

covarlinice mat rix is computed. Second, we wish to determilne whiet ncr the apprixi miate

conifidence reg-ions and confidence intervals constructedA using the linearization and likelihood

met hods, and~ the approximate confidence initervals constructed using the lack-of-ft mnethod

ha.ve observed coverage significantly different, frerin nominal. In particular, \v- w aii to know

whether the frequently used linearization method. is significantly better or worse than the

more expensive likelihood aid lack-of-fit methods. Section .3 (lescribes how we dlesigned our

sItitly to ansNcr thiese (Iliest ions. The results are presented andl discussed In Section 4. We

have also Investigated how effective the diagnostics of Rates an(1 Watts (1~980) Iare in predict-

ing- when the confidlence regions produced by the linearization and likelihood methods, should

be rellible: this p~art of the srtudv is the subject of S,_ect ion

)Our st u(IV is orient ed toward nonli neatr least squares software dcveloper w ho needl

a~siroicothait the riithodsi the;~ Implement are reasonable for a wide variety of problems.

WVe make only the( customnary a-,su npt ions that the model is correct and that the errors are

riorrilally dlist ribtted . We do riot asumne that wNe c an chatri-e the represent at ion of ttw parain-

et ers. e.g., 1)) repmarmeterizinrg 6 as lo(6.in order to reduice the difference hetween the

obse rsetl And
1 rioruinul COVe'rae , bece Hist' reparaincterizat ion s niot a techniqu, that can be

ro)ut teh imiplenirned hv sofi-xtrv developers who lia%(e no control over lhe fuinctions

antlI Zrl. lleaders tinterested ill uili eartreerztO to ipvetheir rt-u't, or, rofered

to !:atl~Ns . I iSt .

The, coliclusions we (Iraw\ from this sI ui t v are presented in Section Thel~ first contihiIon

iq that amiong the vaLrints of the litiariATioli101 meti011. the( OneC 11in11V i the hest choice

bcueIt is the checapest. arld 1i attt u> a rellible as the other two variants. a nd(

W.j% P. e-* .* . . . . . . ..-
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sometimes more reliable. The second conclusion is that even the best lincarizationx method

can be very poor; confidence regions with observed coverage as low as 12.*1'- for a nominal

95.% region, and confidence intervals with observed coverage as low as 75.0"' for a nominal

95% interval are reported. In contrast, for each of the datasets tested, the confidence regions

and confidence intervals constructed using the likelihood method and lack-of-fit methods are

quite close to nominal. Finally, our study indicates that the diagnostics of Bates and Watts

(1980) appear quite successful at predicting when linearization confidence regions will be poor.

Our recommendations as to how nonlinear least squares software should calculate confidence

regions and intervals, in light of these conclusions, also are given in Section 6.

2. Background

This section briefly discusses methods for constructing confidence regions and confidence

i-tervals. First, we give a very quick survey of confidence regions and confidence intervals for

linear least squares. Next, we describe the two different ways function nonlinearity can affect

the solution locus. Then, we review the linearization, likelihood, and lack-of-fit methods for

constructing confidence regions and confidence intervals when the model is nonlinear. For a

more complete discussion, see Bard (1974), Gallant (1976), Draper and Smith (1981), or

Donaldson ( 198.3).

Linear least squares

When f(x,;O) is linear in the parameters 0, then f(x,;O) = x, 0. Consequently, the Jaco-

bian of F(G) is X. an n by p matrix with i 'h row x,. If we assume that X is of full rank, then

XTX is nonsingular. and the linear least squares estimators can be expressed in closed form

by

S= (XrX)- XTY.

When i- N(O,6" I), a 100.(1- a)% confidence region about i contains those values W for

which

S(6)- S(6) !5 s p - (2.1)

Equation (2.1) is equivalent to

(O-i)r XrX (6-o) :S p FP ..- p I-a (2.2)



f ril r r L I 11.1ts ilie ,1h:te of I he COwiiiiiiCC regin> about 0 Is eclIP-

V , ) (2.3)

hI.e Ol- s e (J"))j clvenir!: of tlee inverso or Xx.- T1h, litiits of tis Ce":!fudCece

irit rs c~i i e -iuo'~ n to~ b ho-se' a-hie 0) w I'ici

oIllun~ I 8, subject to (2.4)

Nonlinearity and the Solution Locus

T he Solu't ion locus, or est mation space, of I x3 :O), It.conis-ts of all points with

ii ~ fpre"ib!'~as

wh'tile x,. 1.. li. re thle tixeOI Naluos of ttie predic.t or variables, and 0 Is allowed to

:0 : '." Ill pe"slA, val i!s of thec Ip l un kin pauruieCs. The solution locus is planar if

t- r , riirt.'rl on f x that ma.-kes the fiunction linear in thle p parame-

(,)rduina( ,rli wi ti,: sohit,i, c-t ba e fome r su n- r~ho paths obtaie

ine L, oh,11, : 11roeo in icnll ;cll ! Ito % ary A~ LI I -ll other piarmeters ace, h- d fixed.

: i I I- c-ir S iiu:urt ilr the fumnti flx,:0) is niondlinear Inl onet Or ine01t' Of

p~r :n 'ji. ron ' neiithe, ^ e .i t 11 df Is I ne1r

f I......0 I cull trjiilsh IIV!li L:C and 1 0

c- 0 ~ orouale mrd is e:li-d 'V, rIll( rr-otle .(o ply

I mt!s ( lot rijusel tl. ir- :, ii ) lccw by

e~.. :rs0or '~~c ~x cr' ,u'uiar fn "i kk Loi havc nionzero

p r in ill rt t c: cV h ir fer' r F 1 0 1 11t r IoII- I c 11r 1 rt . I e I
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Nonlinear Least Squares

When the function is nonlinear, the least squares estimators of the paranmeters cannot in

general be expressed in closed form, and must instead be computed by iterative techniques.

Construction of exact confidence regions and confidence intervals also is much more difficult.,

and so approximate methods are frequently used. The leading methods, linearization, likeli-

hood, and lack-of-fit, are described briefly below.

Linearization methods. Linearization methods for constructing confidence regions

and confidence intervals assume that the nonlinear function can be adequately approximated

by an afline, or linear, approximation to the function at the solution. That is, this method

assumes that the solution locus is planar, and that the coordinate grid is linear throughout

the area to be covered by the confidence regions and confidence intervals. Under this assump-

tion, linear least squares theory tells us that the confidence region about 6 consists of those

values 0 for which

while a confidence interval about , J1 ... p, consists of those values 6 for which

-- , 1 ": ' 1'\ t.-1

where Vr is the estimated variance-covariance matrix of the parameters, and 'rj' is the (j,j)th

element of V.

Three approximations to V are frequently used. These are

= fz (J(0)Tj(0) - ,  (A)

= ., H(O) - ,  (B)

and

-- H(0) - 1 (j( )Tj( )) H(0)-', (C)

where J(8) is the Jacobian of F(O) at 0: H(O) is the Hessian of S(O) at 6: and 12 is the residual

variance. s2 = S()/n-p

Approximation (A) is the most common approximation to V. It is computed by approxi-

mating F(O) by the affine approximation around 6,

F(O)e F() + (i) ( -6)a

where Fie) is a column vector with 1h component f(x,;G), and then directly applying the
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intervals requires the solution of :t series of nonlinearly constrained optimization problems; it

ri:iv be niecessary" to construct special purpose software to solve these problems as efficiently

as possible.) lerforming hypothesis tests using the likelihood or lack-of-fit methods is cOlnpu-

tationallv simple for both confidence regions and intervals, so we recommend that one of these

two methods be employed for hypothesis tests whenever possible.

Users may prefer the likelihood method to the lack-of-fit method even though it is

approximate and the lack-of-fit method is exact, because the likelihood method has more

desirable structural characteristics than the lack-of-fit method. Our study provides no empir-

ical evidence that the results produced by the likelihood method are inferior to those pro-

(luced by the lack-of-fit method. This does not guarantee that similar results will be obtained

on other datasets. however. In particular, the results of the diagnostic test proposed by Bates

and \Vat ,, showcd that all our dAtasets have low intrinsic curvature, which is precisely the

situation when likelihood methods are expected to be very reliable. The additional dataset we
analyzed .ith high intrinsic curvature also produced likelihood method confidence region

observed coverage close to nominal. Additional analysis is required to determine whether the

hk ihood method is reliable for datasets with high intrinsic curvature, and to determine

%hether the Bates and Watts measure of intrinsic curvature is a useful tool for indicating

when the likelihood method confidence regions are likely to be unreliable.

In addition to diagnostics, it appears that there is a need for new methods for estimating

c:>nfilence regions that are both reliable and easy to report. We are especially interested in

1n 1%tigati tito methods that would result in conservative elliptical confidence regions. The

first method is to find the minimal magnification of the (95%) linearization confidence region

th:L, encloes the (95"c) likelihood or lack-of-fit confidence region. This would require the

sOAition of a constrained optimiz:ttion problem with one nonlinear equality constraint. The

,e(Cond method is to find the smallest volume ellipse that encloses the desired likelihood or

lack-of-fit confidence region. This would require the solution of a semi-infinite programming

poblem. i.e. ;in optimization problem with an infinite set of constraints.

7. Summary

We have presented the results of a Monte Carlo study comparing the linearization, likeli-

hood and lack-of-fit methods for constructing confidence regions and confidence intervals. Our

results indicate that the lineari7ation method should be constructed using the simplest

approximation to the variance-covariance matrix, (0.1), as it is simpler, less expensive, more
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= 1 - (J(i)TJ(i)) H(+-1, (6 .3)

respectively. Variant A is simpler and less expensive because it only requirc the Jacobian of

the nicodel function at the solution and no, the additional second order terms that are also

required to form the Hessian. It is more stable because it can be formed by inverting the

upper triangular factor R of the QR factorization of the Jacobian rather than by calculating

the iiver.se of the Hessian; the former calculation can be expected to lose roughly hair as many

(1igits a', the latter in finite precision arithmetic.

The linearization method is not always an adequate method for approximating

confidence revions and confidence intervals for the parameters of a nonlinear model, however.

The results presented in the preceding section show just how poor th" linearization method

can be in some cases. Although there are many examples where the linearization method's

observed coverage differs from nominal by only a very sma!l amount, there are also many

cases where the observed coverage is far lower than the nominal. In our tests, the best lineari-

z7tion method variant. A, produced observed coverages as low as 12.4% for nominal 9.5%

confidence regions and 75.0% for nominal 95% confidence intervals.

Users will continue to use the linearization method, however, because it is readily avail-

able in software packages and provides a concise representation of the information needed to

construct confidence regions and intervals. The erratic results obtained in our study when

using the linearization method lead us to conclude that users of nonlinear least squares

software must be helped to cautiously assess the results they obtain using the linearization

method. The results of the preceding section show that the diagnostic tools proposed by Bates

and Watts (1980) are very successful in indicating cases where the linearization method

confidence regions are likely to be unreliable. In these cases, more reliable methods, such as

the likelihood or lack-of-fit methods, are required to produce accurate confidence regions or

intervals.

Our study shows that the lack-of-fit and likelihood methods both produce observed cov-

erages acceptably close to nominal in every test case. Although the difficulties and expense

associated with using these two methods to compute confidence regions make it unlikely that

they will ever routinely replace the commonly used linearization method for this purpose,

they appear to be a reliable alternative that should be considered when diagnostics show that

linearization confidence regions are unreliable. It is not as difficult and expensive to construct

confidence intervals using the lack-of-fit or likelihood methods, and we believe that producers

of nonlinear least squares software should consider this possibility. (Constructing these

• '- . i- -/ : " .- -. '- .' : -. .. i. • . - . ": .-: . - ., " . i .: : . i - i --" ", " , +,.m :-. ' ' :--l.km '-= mm~ m im ' - mmi - - ,'"" " '' + "' l" " "m m . . . " ",
"

. m
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Cook, Tsai and Wei (1984) provide an example which has scaled parameter effects curva-

ture of 934.5 and scaled intrinsic curvature of 8.4. Both the parameter effects curvature and

intrinsic curvature of this dataset exceed any curvature measure we observed in the 20

datasets in our study. For this dataset, we computed observed confidence region coverages of

19.0% and 95.0% using the linearization method and likelihood methods, respectively. While

the linearization method confidence region observed coverage is very far from nominal as we

would expect based on the parameter effects curvature of this model, the likelihood method

confidence region observed coverage is not. We cannot conclude anything from this one obser-

vation. It is clear, however, that additional analysis of datasets with high intrinsic curvature

would be useful to further assess the effect of a non-planar solution locus on the likelihood

method.

6. Conclusions

Based on our computational study, we can draw conclusions about : i) the comparison

between the three variants of the linearization method; ii) the reliability of linearization

methods for calculating confidence regions and confidence intervals; and iii) the reliability of

the likelihood and lack-of-fit methods for calculating confidence regions and confidence inter-

vaIs.

When using the linearization method to construct confidence regions and intervals, our

Monte Carlo study has shown no clearcut difference in the observed coverage of one variant as

compared to another. In our tests, the only statistically significant difference among the

results produced by the three linearization variants was in constructing confidence intervals
with finite difference Jacobians and Hessians; here variant A was superior to variants B and C.

We found no empirical evidence that one should prefer variants B or C, even though they may

be appealing from a theoretical point of view. Therefore we conclude that variant A of the

linearization method, which is computed using

-. (j(a)rj(j))-, (6.1

is the best variant to use for constructing both confidence regions and confidenc- intervals,

because it is simpler, less expensive, and more numerically stable to compute than variants B

or C, which use

- H().2)
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locus is planar is valid over the region of interest, and therefore the likelihood method

confidence region should be adequate.

In Figure 5 we plot the 20 confidence region observed coverages obtained using lineariza-

tion method variant A with analytic derivatives (derivative configuration DC3) and

c- N(O,{r 6)2 I) against the Bates and Watts relative measure of parameter effects curva-

ture. Likewise, in figure 6 we plot the corresponding 20 likelihood method confidence region

observed coverages against the Bates and Watts relative measure of intrinsic curvature. The

relative curvature measures were computed at the true parameter values using the true vari-

ance of the errors. In these plots, we have scaled the measures of parameter effects curvature

and intrinsic curvature by dividing the measure by the appropriate critical value. Thus, in

both of these plots, a scaled curvature measure less than I indicates the relative measure was

less than the critical value, while a value greater than 1 indicates the curvature exceeded the

critical value.

It is clear from figure 5 that the Bates and Watts parameter effects curvature measure is

strongly correlated with the observed coverage obtained using the linearization method. In

fact, for our data, as the parameter effects curvature increases, the observed coverage for the

linearization method confidence regions decreases nearly monotonically and linearly as the

logarithm of the scaled parameter effects curvature. Furthermore, in all datasets where the

parameter effects curvature is less than the critical value, the observed confidence region is

very close to nominal, while in all cases where the parameter effects curvature is greater than

ten times the critical value, the observed coverage is unsatisfactorily low. Datasets with

parameter effects curvature between one and ten times the critical value had observed

confidence region coverage between 83.2% and 91.6%. From these results, it appears that the

Bates and Watts parameter effects curvature is a reliable, if perhaps stringent, indicator of

when the linearization method will produce reliable confidence regions.

Figure 6 shows that all but one of the 20 datasets tested in this study have intrinsic cur-

vature which is less than the critical value, which means that each of these datasets i! nearly

planar. For nearly planar datasets we expected good observed coverage from the likelihood

method, and, as figure 6 shows, that is what we got. Since none of our datasets have high

intrinsic curvature, however, we do not know how the likelihood method will perform when

the solution locus is not nearly planar. We cannot assume that the accurate results obtained

in our study using the likelihood method will necessarily carry over to datasets with large

intrinsic curvature.

.'' . ' . % "- . .. .. ". . ". ... . . . . " . . .. .". - . ' ." . "% . '. '.- . ' '. . . .. - . °. . ". ' . . . '. . . ' - . . _
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about this linear combination was approximately equal to that of the linearization method

confidence region observed coverage.

The use of finite differences to approximate both the Jacobian and the Hessian appears to

significantly degrade the confidence interval results for linearization variants B and C. Figure

3 shows that, while there is no striking difference in the results obtained using the three vari-

ants of the linearization method with derivative configurations DC2 and DC3, variants B and

C degrade significantly more than variant A when using DC1, i.e., finite difference Jacobian

and Hessian. A two-sided paired-sample t-test was used to determine whether, for a given

derivative configuration, the observed coverages obtained using the different linearization

method variants are statistically different at the 5% significance level. The results indicate

that when derivative configuration DC2 and DC3 are used, the differences in the results

obtained using variants A, B, and C are seldom statistically significant at the 5% level, but

that when the Jacobian and Hessian are approximated using finite differences (derivative

configuration DC1) then the differences in results are often significant.

Comparing Figures 3 and 4 shows that as the variance of the errors is increased, the

differences between observed and nominal coverage also are increased, as was the case for the

confidence region results. However, this increase is not as pronounced for confidence intervals

as for confidence regions. The results at confidence levels 0.50, 0.75, 0.95, and 0.99 also

showed that as the nominal confidence level approaches 100%, the spread between observed

and nominal coverages obtained using the linearization method is increased.

5. Diagnostic tools

The preceding section demonstrates a pressing need for diagnostics to warn users when

the commonly used linearization method confidence region will not have adequate coverage.

In addition, it would be useful to have a warning to indicate when the approximate likelihood

method may be inadequate. Bates and Watts (1980) have proposed measures of nonlinearity

that provide such diagnostics.

According to Bates and Watts, when their relative measure of parameter effects curva-

ture is small compared to the critical value (FP,., 0 os)h12, then the linear coordinate grid

assumption is valid over the region of interest, and therefore the linearization method

confidence region should be adequate. Similarly, when their relative measure of intrinsic cur-

vature is small compared to the same critical value, then the assumption that the solution

...- .-.. . . ......... .. ..... . .. . .. . .. . . . ... . .. . .. .. - ..,, ," ., :-",-. v ' ;d - ; i,..-.,=,- ' : : - -:: -" ": "- " -.- --- ,-
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Confidence Intervals

Results. Figures 3 and 4 provide information for confidence intervals which is analo-

gous to that shown in figures 1 and 2 for confidence regions. The observed coverages plotted

are the jinallest of the p confidence interval coverages obtained for each dataset. Figure 3

displays the observed confidence interval results for nominally 95% confidence levels, when

i- N(O,o'2 I); figure 4 shows the results when i- N(O,(rl 6)2 I), excluding linearization

method variants B and C as was done for the linearization method confidence regions.

Observations. Figure 3 shows that for confidence intervals, the best results are

obtained using the lack-of-fit and likelihood methods, and the worst results are obtained using

the linearization method, as was the case for confidence regions. The lack-of-fit and likeli-

hood methods produce confidence intervals which seldom vary from nominal by an amount

that is significant at the 5% level, and never are less than nominal by more than 5.0%.

Again, use of finite difference Jacobians does not appear to affect the results for these two

methods.

The three variants of the linearization method, on the other hand, frequently produce far

less reliable confidence intervals than the lack-of-fit and likelihood methods. Disturbing

differences between observed and nominal coverages occur when each of the variants of the

linearization method is used to construct confidence intervals. The observed coverage for a

nominally 95% confidence interval is as low as 75.0%, 44.0%, and 10.8% for variants A, B,

and C. respectively. For most of the datasets tested in our study, however, the span between

observed and nominal coverage produced by the three variants of the linearization method is

considerably less for confidence intervals than for linearization method confidence regions con-

structed about the parameters of the same dataset. This is especially true when derivative

configurations DC2 and DC3 are used.

One reason why linearization method confidence intervals have better coverage than

linearization method confidence regions is that, when the parameter estimates are correlated

with each other, a number of points may be included in the linearization method confidence

intervals but not in the confidence regions. Note, however, that if a confidence iwterval was

computed for the linear combination of the parameters given by the eigenvector corre.spond-

ing to the minor axis of the linearization method confidence region ellipsoid. then the lineari-

zation method confidence interval observed coverage should approximately equal that of the

linearization method confidence region. In our Monte Carlo study, we actually computed the

linearization method confidence interval observed coverage for this linear combination of the

parameters. In every case, the observed coverage we obtained for the confidence interval
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Observations. Figures 1 and 2 show that the lack-of-fit and likelihood method

confidence regions are quite reliable, and that the results are not affected by use of finite

dilference derivatives. In all our tests, they produced observed coverages which seldom vary

from nominal by an amount that is significant at the 5% level. In fact, for these clatasets,

there is only one instance (dataset 3AAA, i - N(O,(r &)2 1)) where the difference between

the nominal and observed coverages produced using these two methods is greater than 5%,

and in this instance, the observed coverage is greater than nominal, not less.

The three variants of the linearization method, on the other hand, frequently produced

far less reliable confidence regions, although, as discussed below, the results still do not

appear to be affected by the use of finite-difference derivatives. The difference between the

nominal and observed coverages obtained using the linearization methods often are consider-

ably more than 20%, which is a difference that many if not most users would find unaccept-

able.

By comparing Figure 1 to Figure 2, it is apparent that increasing the variance of the

terrors does, in fact, increase the differences between observed and nominal coverage for all

methods. Our tests at confidence levels 0.50, 0.75, and 0.99, which are not reported in detail

here, also showed that the spread between the observed and nominal coverage obtained using

the linearization method increases as the nominal confidence level is increased.

The large differences for some datasets between the observed coverage of confidence

regions constructed using the likelihood method and those obtained using the linearization

miethod may be explained by the difference in the shape of the two regions. The likelihood

method confidence region corresponds to the boundary and interior of a contour of the sum of

squtares surface, i.e., a contour of constant likelihood, whereas the linearization method

confidence regions are always ellipsoidal. We plotted these contours for various datasets. and

the difference sometimes were very large. Examples for datasets 3AAA and 14 \AG are given

in Donaldson (1985).

Figure I also indicates that the observed coverage obtained using variants A, B, and C of

the linearization method are nearly identical. The results of two-sided paired-sample t-tests

indicate that there is no statistically significant differences at the 5% level between the

observed coverages obtained using any of the variants of the linearization method with ;sny of

the derivative config,0rations. The same results were obtained for our test- at the 0.50, 0.75,

anti 0.99 confidence levels.
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4. Results and Observations

This section presents the results of our Monte Carlo study of the lack-of-fit method, the

likelihood method, and the three variants of the linearization method. The section is divided

into a discussion of confidence regions and confidence intervals. For each, we also make a

number of observations about the results. The conclusions we draw from our analysis are dis-

cussed in the next chapter.

The material in this chapter includes a number of figures. These are printed at the end

of the paper.

Confidence Regions

Results. The results for nominally 95% confidence regions constructed using each of the

methods analyzed in this study with i-N(O,&2 I) are graphically displayed in Figure 1. For

each dacaset, the observed coverage is plotted against the method and derivative

configuration used to obtain it.

The three derivative configurations are labeled DC1, DC2, and DC3 in these and the fol-

lowing figures and tables, as well as in Appendix B, Here DC1 denotes use of finite difference

approximations for both the Jacobian and the Hessian, DC2 denotes use of analytic Jacobian

and finite difference Hessian, and DC3 denotes use of analytic Jacobian and Hessian. Since

the computations required to calculate the lack-of-fit method results and the likelihood

nethod re,_ults using derivative configurations DC2 and DC3 are exactly the same, these

results are displayed together.

Figure 2 shows the analogous results for i- N(O,(sl d )2 I). As noted in Section 3, vari-

ants B and C of the linearization method are excluded from the analysis displayed in Figure 2

because computational difficulties were encountered for theie variants when the variance of

the errors was increased.

A conservative 95% confidence interval about the nominal confidence level is indicated

on each plot by a pair of horizontal lines which represent the values 100.( - }--.-, where

II is two times the maximum standard deviation of the observed coverage at any coverage

level. This confidence interval provides a quick means of determining whether any of the

observed coverages for each method are significantly different rrom the nominal confidence

level at, the 5% level. When the method used to construct the confidence regions and

confidence interval3 is exact, we expect that the observed coverage for 95'1 of all p)ossible

datasets will lie within this confidence interval.

..,.........-.....--;..---.-.....-....-...-....-.....-.... -.....-... ,'."" "-:.-... .-.....-.... V .-2: ::-. ;....*- ..-......
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datasets are often troublesome, they are mostly real world problems that have not been made

artificially difficult.

Each dataset was analyzed twice to allow us to examine the effect of increasing the stan-

dard deviation of the errors. In the first analysis, i - N(O,& 2 I); in the second analysis,

i - N(O,(- & )2 1), where -n is approximately the largest number -: 10 for which every reali-

zation or the data could be successfully analyzed. The methods analyzed in the second
"analysis were the same as in the first except that variants B and C of the linearization method

were excluded from the second analysis because, when -q>1.0, we were frequently unable to

compute the required test statistics using these two variants.

Computation of the linearization method and the lack-of-fit method requires that certain

derivatives be available. The Jacobian of F(O) is used by both the linearization and lack-of-fit

methods. Variants B and C of the linearization method use the Hessian of S(s) as well. In
practice, analytic derivatives often are not available. Therefore, in our study each method
was implemented and analyzed using three different derivative configurations. These

configurations are (1) the Jacobian and Hessian both approximated by finite-differences, (2)
the Jacobian computed analytically and the Hessian computed by finite-differences, and (3)
both the Jacobian and the Hessian computed analytically. For derivative configurations (1)

• "and (2), the variance-covariance matrix needed by the linearization method was returned

directly from NL2SOL (Dennis, Gay and Welsch (1981)]. For configuration (3), it was con-
structed outside of NL2SOL. For details on the formulas used to compute the finite-difference

derivative approximations, see Donaldson (1985).

We ran our Monte Carlo study in single precision on a 60 bit word length computer. All

subroutines extracted from other sources were used without modification except for NL2SOL,
which was changed for this study in two important ways. First we disabled the two tests

within NL2SOL used to detect near singularity. Second, we used the STAPPAC [Donaldson
and Tryon (1083)] front end to NL2SOL. With this front end, the finite difference approxima-
tion to the Jacobian is computed with the optimal derivative step sizes selected using the
algorithm developed by Schnabel (1981), thus maximizing the number of correct digits in each

element of the finite difference Jacobian.

.
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true parameter values. When w>cL, the true value did not lie in the 100(1-)% confidence

region or confidence interval; when wga, it did. The values I-(A were obtained using the

hypothesis tests corresponding to the formulas for confidence regions and intervals given in

Section 2, and the appropriate cumulative distribution functions; the procedures are described

in detail in Donaldson (1985). The cumulative distribution functions were obtained from the

STARPAC subprogram library [Donaldson and Tryon (1983)].

The observed coverage, y., for the particular nominal confidence level, method and sys-

tem under analysis is the percentage of the total number of realizations of the data, N, for

which w -< a. When N is large, the standard deviation of y. can be approximated using the

normal approximation to the binomial distribution. In this study we used N=500, so the max-

* imum standard deviation of the observed coverage at any coverage level is approximately

.%

Note that substituting a new realization of the data for one which could not be com-

pletely analyzed because either (a) the nonlinear least squares algorithm did not converge, or

(b) the test statistics could not be computed for every method being analyzed, is a form of

* '-nsoring which will bias the observed coverages obtained. In our analysis, we adjusted the

value of & for each dataset so that every realization could be completely analyzed, and there-

fore the results reported in this paper are not derived from censored data.

We computed the observed coverage for four nominal confidence levels, 0.50, 0.75, 0.95,

and 0.99. In this paper we only include our data for the level 0.95, although we comment
briefly in Section 4 on our results at the other levels. Data for the full study are given in

Donaldson ( 1985).

The references for the datasets used in our Monte Carlo study are given in Appendix A

and described in detail in Donaldson (1985). With only two exceptions, the functions and

data which comprise our datasets have been taken from Ratkowsky (1983), Ilimmelblau

(1970). Guttman and Meeter (1965), and Duncan (1978). The standard deviation of thc errors
Of sonie of the data.ets has been adjusted in order to allow us to successfully analyze each

realization of the data For each dataset. The two datasets not taken from the published

literature are identified as 8ACA and 9AAG. Dataset 8ACA was created especially for this
* st 1(ly by generalizing function 3 to a larger number of parameters. Dataset 9.\AC involves a

microwave absorption line function taken from a consulting session at the National Bureau of

Stanrdard% in Bolder, Colorado.

The number of parameters in the 20 datasets analyzed range from 2 to 8 and the ratio of

the niimlber of par-inieters to the number of observations range from 2/.12 to 3/5. While these

,: ?7. ... " ,. .. -" -- : -? --~ i ,' ... ..-. . . . ..- -. • -
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.k, k= 1..,j-l,j+ 1,...,p; otherwise it is approximate. (See Halperin (1983).1

The lack-of-fit method is even more expensive to use than the likelihood method, and, as

is the case for the likelihood method, the information needed to construct the confidence

regions cannot be succinctly summarized for publication. Also, the confidence regions and

confidlence intervals constructed using the lack-of-fit method are guaranteed to contain every

minimum, maximum, and/or saddle point of the likelihood surface. This makes the lack-of-fit

method structurally undesirable.

3. The Monte Carlo Study

This section briefly describes how our Monte Carlo study was constructed. Full details

are provided by Donaldson (1985).

The Monte Carlo method uses the computer to simulate the results of repeating an

experiment many times in order to obtain a large sample from which the statistical properties

of a system can be examined. For each simulation, we first generated the errors and response

variables. The errors, i, were produced using the Marsaglia and Tsang pseudo-normal ran-

dom number algorithm (1984) as implemented by James Blue and David Kahanar of the

National Bureau of Standards Scientific Computing Division. The response variable, Y, was

then constructed so that its i.th component is

.. "~Y y, = /X,)+i ,

Then the least squares estimate, 0, was calculated using NL2SOL, an unconstrained quasi-

Newton code for nonlinear least squares [Dennis, Gay, and Welsch (1981)1. Starting values for

NL2SOL were set to the true values of the parameters, 0, and the stopping criteria for the

convergence tests based on the relative change in the parameters and in the sum of squares

both were set to 10- 5 .

Finally, for each confidence region or interval method and each derivative configuration

being analyzed, we recorded whether the true values of the parameters were contained within

the confidence regions and confidence intervals for this realization of the data. Determining

whether the true parameter values lay within the confidence regions and confidence intervals

about the lea~t squares estimates fortunately did not require that we construct the full

confidence regions and confidence intervals for each confidence level and method. Instead, we

simply calculated the smallest confidence level, 1-w, such that a 100.l1-w)%c confidence

region or confidence interval constructed using the method being analyzed will contain the

"............-le"
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intervals and confidence regions for subsets of the parameters. The lack-of-fit method is based
on the fact that the quadratic forms

Q,(6 ) - R(ORTP(6JR(d)

and

" O,6) =R(6) T(I- PL§J) R (jj

where

P(O)-- J(O)(J(6)Tj(6))-J(6)T

are independent chi-square random variables with p and n-p degrees of freedom respec-

,.ively. Therefore,

SQI ()/P" Q2(0 )/(n -p)

is distributed as so an exact 100.(1-a)% confidence region consists of all valuesd

such that

.. R t*) Tp ('# )R ('d ) !M P -P, -c
R(9) r(1- Pij))R(j6)

Note that the lack-of-fit method does not require that the least squares solution be found
prior to constructing the confidence region.

Similarly, a lack-of-fit method confidence interval for the ph parameter consists of those
vahle5 0, for which there exists values of 8k, k- 1,...,j-1,j+ 1,...,p, such that for these p

parameter values, 0.

SL(ij,,, ))- SL( i( )
" , ,. ( F )/( -..p )  4 F j,n -p ,jl -t

where .5.(6j I)) i4 the residual sum of squares obtained when R(O) is I'nearly fit to all the

columns of J(O) excluding the it', and SL(ij(j)) is the residual sum of squares obtained when
R) Is linearly fit to J(#). This interval is exact if f(xj;O) is linear in

• . . .'- • % , -,
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zero, however, we expect that the linearization methods could sometimes prodice observed

coverages very far from the expected nominal coverage. The results of our Monte Carlo study

show this to be true.

Likelihood method. The likelihood method is another approximate method for pro-

ducing confidence regions and confidence intervals. The likelihood m, 'od confidence region

about. 0 consists of those values " for which

S(Wj- S(iJ !5 p F,. , I

This is analogous to equation (2.1) for confidence regions for the parameters of a linear func-

tion, although when f(x,;O) is nonlinear in the parameters the resulting confidence region is

no longer ellipsoidal. The likelihood method confidence interval about , is the interval

bounded by the points which

maximize (0,-9,)2 subject to

S(e)-S(O) !5 32 F1,"_P,1_ ..

This confidence interval is the projection onto the appropriate parameter axis of the above

region, and is analogous to equation (2.4) for confidence intervals in the case of linear least

squares.

When the solution locus is planar, the confidence regions (but not the confidence inter-

vals) constructed using the likelihood method are equivalent to the lack-of-fit confidence

regions, and therefore are exact. In addition, likelihood method confidence regions and inter-

vals have the desirable property that they are constructed from contours of constant likeli-

hood, and that the regions and intervals are not affected by reparameterization of the func-

tion f(x,:0). Thus we might expect the likelihood method to produce confidence regions and

confidence intervals with observed coverage closer to nominal than those produced using the

linearization methods. However, the likelihood method has several practical disadvantages.

Both the confidence regions and confidence intervals produced using the likelihood method

can be disjoint and unbounded because the contours of a nonlinear function can be disjoint

and unbounded. The method also is very expensive to use, and, when the data arrays are

large, it can be awkward to publish the information necessary to reconstruct the confidence

region because this information is not succinctly summarized as it is in the case of the lineari-

zation method.

Lack-of-fit method. The lack-of-fit method can be used to produce exact joint

confidence regions for all p of the parameters, and to produce approximate confidence

i o ,~~~.. ............ '-.".,.. .. ........ . . ....
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mear least squares theory.

Approximation (B) can be obtained using maximum likelihood theory. For large sarnples.

maxim um likelihood estimators are asymptotically distributed as the p-variate normal witb

variances and covariances given by V where

- E a21ogL(Y)

,i str:tightforeward to show that V- approaches rb as n- .

..\pproxi.mt;on (C) can be obtained from sensitivity analysis. If the observations Y are

changed to Y+ C, then, to within O(i) terms, 6 will be changed to

i() -= H(fi)-l J(6)rj&

ol vi ng

I( =COV(i(i)) =E ( ()-b) 6(i)-& )

H"olds V =V.

When certain regularity conditions are met [Jennrich (1959)], each of these approxima-

io1s to V asymptotically will approach the true variance-covariance matrix of the model.

" k ,.hat these approximations differ only when

ar, a ;0)

S- n M)uZr'. I" particular, for linear functions, each of these representations of V is equal to

.2 (j(6)rj(j)) - = 82 (X T X) -

For nonlinear functions, rb is said to utilize observed information and V0 is said to utilize

,xperted infcrmation.

linearization methods have the advantage that their resulting confidence regions and

intervals are simple and inexpensive to construct, and that they produce bounded, convex

confidence regions. In addition, the information needed to construct confidence regions and

intervals using this method can be parsimoniously summarized by the p by p matrix V. and is

I.A,'ll uderstood by users familiar with linear least squares. Because the lincarization methods

Sa.,uie that both the intrinsic curvature and the parameter-effects curvature of f(x,:O) are

- .---...-.
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uinerically .table, and at least as accurate as the other two linearization variants. which are

constructed using (6.2) and (6.3). We have also given considerable evidence that confidence

regions, and to some extent confidence intervals, constructed using the linearization method

can be essentially meaningless.

Our study shows that the likelihood and lack-of-fit methods, on the other hand, pro-

duced consistently good results for the datasets tested. However, because the likelihood

method is approximate it is not clear that the good results we obtained with it will necessarily

be characteristic of all datasets. Also, because of the undesirable structural characteristics of

the lack-of-fit method, it is unlikely to be used routinely, although in cases where accuracy is

of extreme importance, it may be a useful tool to have.

Because of the uncertainty associated with the linearization and likelihood methods, we

also have briefly examined how the Bates and Watts curvature measures relate to the

coufidcnce region observed coverages we obtained in this study. Our results show that the

Bates and Watts parameter effects curvature appears to provide excellent indication of when

the linearization method may produce less than satisfactory results. Our results are not as

conclusive, however, about the relation between intrinsic curvature and likelihood method

coverage since the solution locus for all or our datasets were nearly planar.

. . ,
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Appendix

Dataset Id. p/n Reference

I 2AAA 2/12 Guttman and Meeter (1965) ;model 12, page 628

2 3AAA 2/12 Guttman and Meeter (1965) ; model 1T3, page 628

3 4AAA 2/24 Duncan (1978) ; model III , page 127

1 5AAF 4/18 Himmelblau (1970) ; model 6.2-3, page 183

5 6AAA 3/13 Himmelblau (1970); model 6.2-4, page 188

6 8ACA 4/24 None

7 9AAG 8/25 loghold Hertel; Microwave Absorption Line Function

(personal communication)

8 IIA.\B 4/9 Ratkowsky (1983) ;model 4.4 , page 62

9 I2AAB 4/9 Ratkowsky (1983); model 4.14 , page 77

10 14ACG 3/10 Ratkowsky (1983) ; model 3.5 , page 51 and 58

I I 1*:ABG 3/21 Ratkowsky (198:3) ; model 3.5 , page 51 and 58

12 14AAG 3/42 Ratkowsky (1983) model 3.5 ,page 51 and 58

13 15AAA 3/16 Rat kowsky (1983) model 6.11 , page 120 and 58

1-1 1AAF 5/27 Ratkowsky (1983); model 6.12 ,page 122, 123 and 125

15 17AAA 2/42 Ratkowsky (1983) model 3.4 page 50 and 58

16 18AAA 3/9 Ratkowsky (1983) ;model 4.1 ,page 61 and 88

17 19AA.\ 3/9 Rat kowsky (1983); model 4.2 ,page 61 ;%nd 88

s18 20A.G 4/9 Ratkowsky (1983) " model 4.3 , page 82 and 88

19 21AAA 4/9 Ratkowsky (1983) ; model 4.5 , page 63 and 88

20 22\AB 3/5 Rat kowsky (198:3) model 5.1 , page 93 and 102

.]
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