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Some Simple Models for Continuous Variate

Time Series

P. A. W. Lewis

Department of Operations Research

Naval Postgraduate School

Monterey, California

ABSTRACT

A survey is given of recently developed models for continuous variate

nonGaussian time series. The emphasis is on marginally specific models with

given correlation structure. Exponential, Gamma, Weibull, Laplace, Beta and

Mixed Exponential models are considered for the marginal distributions of

the stationary time series. Most of the models are random coefficient,

additive linear models. Some discussion of the meaning of autoregression

and linearity is given, as well as suggestions for higher-order linear

residual analysis for nonGaussian models.
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INTRODUCT ION

Most time series analysis of continuous variate discrete time parameter

phenomena is based on the simple, linear, autoregressive-moving average

processes which were first introduced by Yule at the end of the 19th century

and then extended by many authors. Although these processes are not

necessarily defined as processes in Gaussian variates, it is simplest to use

them as such because linear operations on Gaussian variates preserves

Gaussianity. Again, statistical analyses based on the Gaussianity

" assumption and these models are well developed. Consequently, it has been

- the practice to either ignore the issue of the marginal distribution of the

variates, or to assume that the variates can be transformed mildly to

Gaussianity by standard methods.

Unfortunately, there are many areas, particularly in the physical sciences,

where nonGaussianity of the time-series is gross and is itself of interest

in t he modell Ing of the phenomenon under study. The nonGaussianity may be

lue to the fact that the phenomena are inherently positive-valued, or are

listributed with longer or shorter tails than exhibited by Gaussian

1r'iates. The first case is well illustrated in river-flow studies (see

Lawrance and Kottegoda, 1977), as well as in the extensive studies of

S,;I !, )ci ty ampl itudes by Oceanographers and Meteorologists (see e.g.,

-r wr, Katz and Murphy, 1984). The second case occurs when the North-South

iril .-st-West components of wind velocities are studied and it is also

.*lyrtant in the study of acoustical phenomena. These acoustical phenomena

ndve mdrginal distributions which range from almost uniform distributions to

vs-ry long-tailed distributions which are often modeled as Laplace

listributions.

As a consequence, there has been an accelerating effort during the last

decade to derive models for stationary nonGaussian continuous variate time

series. These models tend to imitate the linear (Gaussian) time series in
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their correlation structure and use various standard parametric models for

marginal distributions. The present paper will survey some of these models.

The emphasis is on models which are (Lewis, 1980) simple and flexible in the

following senses:

i) The models should be specified in terms of easily observed and

measured quantifiers. For stationary models the quantifiers

should typically be:

(a) the marginal distribution;

(b) second-order moments (correlations); and

(c) simplified higher-order moments or residuals.

(ii) The models should be parametrically parsimonious and

parametr. 2ally simple.

(iii) The models should be easy to generate on computers, i.e. they

should be structurally simple, like the usual linear models.

(iv) The models should be easy to fit to data, both formally and

informally.

Note especially point (i.c). The emphasis in deriving the models described

below is on the marginal distribution and the correlation structure.

However, many models with, say, the same second-order autoregressive

structure and Exponential marginal distributions are now known, but the

sample path structures of the various models can be vastly different. As a

*consequence, Lawrance and Lewis (1985a, 1985b) have attempted to introduce a

residual analysis for these processes; this residual analysis will be

" described briefly in the last section.

The work described in this paper is, perforce, mainly that of the author and
his colleagues, notably A. J. Lawrance and E. McKenzie; not suprisingly, the

work fits the prescription given above. The state of this work can be

summarized as follows. Many models with first-order autoregressive

structure of some sort and standard parametric marginal distributions

3 7/23/85
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(Exponential, Gamma, Mixed Exponential, Weibull, Laplace, Beta) are now

known. Extension to higher-order autoregressive structures is difficult,

except in the case of the Exponential marginal distribution, or by using a

rather limited random indexing device (mixture device) due to Jacobs and

Lewis (1983). Mixed autoregressive-moving average processes can be obtained

from most of the models, because they have (random coefficient) linear

additive structure. Another problem is, that for positive-valued marginal

distributions, it is difficult to get negative correlation in simple ways;

this may or may not be a serious problem in, say, hydrology because positive

correlation in data seems most common. The problem of negative correlation

is intimately tied up with symmetry of the marginal distribution and is,

therefore, easy to obtain for the models which will be described for Laplace

marginals.

Models for discrete variate time series are described by McKenzie (1985a).

FIRST-ORDER AUTOREGRESSIVE PROCESSES

A natural starting point for nonGaussian modelling of time series is the

linear (constant coefficient, additive) first-order autoregressive process

given by

Xn= PXn- + E , n-O,±1,±,..... (1)

this is a first-order stochastic difference equation (Vervaat, 1979). The
E 's are assumed to be independent and identically distributed (i.i.d.). It

n
will be seen later that it is perhaps a red herring to start with this

equation, since linearity and additivity are so closely tied up with

Gaussianity. However, one can ask whether i.i.d. innovation sequences [En }n
exist such that the X 's have specified nonGaussian distributions. Before

n
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considering this in the Exponential case, it is necessary to consider and

clarify three commonly occurring concepts, namely autoregression, linearity

and the Markov property.

(1) Autoregression, Linearity and the Markovian Property.

(i) Autoregression.

In equation (1) it is clear that X is explicitly autoregressed (in an
linear, additive way) on Xn , but autoregression is used more broadly in

n-i'
time series analysis and is an important idea in the models given below.

Thus, Lawrance and Lewis (1985b) give the three following nested definitions

for pth order autoregression:

(a) A stationary sequence [X } is said to be explicitly (pth order)
n

autoregressive in a linear additive way if the X 's satisfy the equationn

Xn "lX + a2X + + apXn p + En , (2)n 1 n-l ~ 2 n-1pn-

where the En are i.i.d. and al. a2''.' tap are fixed parameters. Equation

(2) is the standard linear autoregressive model, AR(p).

(b) A more general definition of autoregression of order p could be the

linear conditional expectation requirement that

E(Xn-VIXn_--, Xn_- ,'',X p- 10-

a1(Xn_- ) + a2 (X n2-1) + + p (Xnp-), (3)

where i is the (stationary) mean of the process. Clearly (2) implies (3),

but not vice-versa.

5 7/23/85
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(c) A further and weaker definition of pth-order autoregression is the

requirement that the autocorrelations (p of the process {X I satisfy ther n
Yule-Walker linear difference equations of order p,

Pr 'lPr-1 +a*2Pr-2 + + apPr-p, r - 1,2,..., (4)

for suitable constants a. O2,.'" a and with pr -

Examples of processes which satisfy these definitions will be given below;

in particular, it will be seen that most of the models introduced are

linear, additive random coefficient models which satisfy (3) and/or (4), but

not (2).

(ii) Linearity.

To say that a model is linear will be taken to mean that the process {X }
n

satisfies the equation (2). Random coefficient models, therefore, are

nonlinear, although some authors contend that they are linear and that

nonlinearity refers only to the case where powers or products of the Xn_1,

X2 E appear in the defining equation. It will be seen later that
n-2' n

there are models which satisfy the third form of autoregression, but are

nonlinear by anyone's definition in that they involve products and have

parameters which appear as powers.

One should note here, too, that the common practice of transforming time

series data, so that it has (approximately) a Gaussian marginal distribution

does not imply that the transformed process will have linear structure. It

is possible to construct models which have Gaussian marginal distributions,

but which are nonlinear.

6 7/23/85



(iii) Markovian Property.

A third property of interest is the Markovian property, which we will only

consider in the first-order case. Thus, a process [X n is said to (first-

order) Markovian if the conditional density of Xn , given the past of the

process, satisfies

f (xnlXn- 1 'Xn-2'''') = fx (XnlXn-i)i (5)
n n

i.e., given the value of Xn_1, the distribution of Xn does not depend on

Xn-2' Xn 3,... The process defined by (1) is clearly of this form, by

construction, and there are two important consequences of this property.

The first is that one can write down the joint density of Xn,...# X1 once we

know the marginal density and the conditional density in (5). Thus, a

likelihood function can be derived from which one can, in principle,

estimate parameters. The second consequence is that one can, for a given

marginal distribution, construct a first-order Markovian process from any

bivariate distribution having the given marginal distribution for its two

marginal distributions (Linhart, 1970). This process may not be

autoregressive in any of the above senses, although it will possibly have

the Yule-Walker autoregression. One objection to this procedure is that

there is no guidance as to which of the infinity of, say, bivariate Gamma

distributions to use in the construction. The other objection is that

without an explicit simple autoregressive structure, it is not only hard to

see what is 'going on' in the process, but it is also difficult to extend

the process to, for example, moving average structures and simple explicit

multivariate processes.

(2) First-Order Processes with Exponential Marginals.

In Equation (1), note that En and Xn- are, by definition, independent.

Thus the Laplace transform of the distribution of Xn. OX (s), equals the
n

7 7/23/85



Laplace transform of the distribution of X times that of En . If then-1 n
process is stationary, solving this equation gives the equation

E = x(S)/0 (PS). (6)

In (6), it is assumed that a solution exists for a given marginal distribu-

tion of X. Gaver and Lewis (1980) showed that for X Exponential(A), E is

zero with probability p and Exponential(A) with probability 1-p. Note that

this EARMi) process - Exponential autoregressive of order one - Is a linear

process. What is different is that the innovation random variable, En, is

not absolutely continuous, since its distribution has a jump at zero. Thus,

Mallows (1967) result that linear processes must have Gaussian marginal

distributions as p approaches one does not hold. However, the process is

autoregressive in all three senses. The last sense follows, because for the

EAR(1) model p(r)=p r for r=1,2,..., which is the solution of the first-order

Yule-Walker equation. The process may also be written as a random

coefficient model

Xn -PXn-1 + InZn' (7)

where the Z 's are i.i.d. Exponentials and the i.i.d. indicator random
n

variables I have P{I =0) = 1-P{I = 1 - p.n n n

A problem with the EAR(1) model is that the innovation random variable takes

on the value zero with positive probability. This makes the process

'defective' in the sense that when I n-0, then Xn-PXn-1 and the parameter p

can be estimated exactly in long enough series (Gaver and Lewis (1980)).

Note, too, that sample paths have 'runs down'. Although this bothers people

who are accustomed to more conventional looking time series, it is not

necessarily bad in hydrological contexts, i.e. river run-offs.

8 7/23/85



Now note that in (7), we can switch Xn-1 and Zn to get another Exponential

autoregressive process of order one (in the sense of (1.i.b) and (1.i.c)),

which is not defective, exhibits 'runs-up', and is regenerative. The

switching which produced this TEAR(1) process led Lawrance and Lewis (1981a)

to define the broad, two parameter Exponential autoregressive (in the sense

of (1.i.b) and (1.i.c)) process NEAR(1)

X =KX + InZ n, (8)

where 0SS61, P{K = = I1-P{K n=01 = a and P{IN= 11 = 1-P{I n=(1-a)6} = 6, with

6 = (1-8)/I1-(1-a)8}. Also, the i.i.d. Exponential sequence Z n1, the

i.i.d. K n I sequence and the i.i.d. {In I sequence are independent of each

other, and K and I are independent of the X 's for n-1, n-2,....n n n

This NEAR(1) process includes the EAR(1) process (a=1) and the TEAR(1)

process (8-1) given at (7), and can exhibit a wide range of sample path

behavior; also p(r) _ (,B) I r l . The second form of autoregression follows

from the result that E(X nlXn_=x) = ax+(1-0i), where we assume that the

parameter of the Exponential distribution, X, equals one.

Two other important Exponential processes which will appear as special cases

of Gamma models in the next section are the Product Autoregression model of

McKenzie (1982) and the Beta-Gamma process of Lewis (1981). We give, now,

several other models which are derived from special properties of the

Exponential distribution.

Perhaps the most important of the Exponential processes beyond the NEAR(1)

process is the Tavares (1977, 1980a, 1980b) process. Like most of the

simple models, it exploits probabilistic structures which combine two

independent Exponential random variables into a third Exponential random

variable. Here the combination is that the minimum of two independent

Exponential random variables is Exponential. Thus, if as before, [Z }

n
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Lewis (1981) extended (13) to the very simple bivariate Gamma process
, ,,- ..

IX ,X } where, for n -
nfn

X= An(k-q',q')Xn + B'(q',k-q')G (k,), (27)nn n- n n I

X1= A"(k-q",q" )X" B" (q" ,k-q")G (k, 8). (28)n n n-1 + n n

In these equations, {An,A"} and {B',B" } are mutually independent i.i.d.n n n n
sequences of bivariate Beta variables which, for now, are assumed to be

independent pairs. This model may be thought of as giving responses at two

different locations with the responses being driven by a common driving

effect represented by the common error term E =G (k,B). The randomn n

coefficients represent local modifying effects and the autoregressions are
local dependencies. A problem with this (too) simple model is that there

are only two free parameters, q'and q", for the dependency structure, so

that the autocorrelation fixes the crosscorrelation.

There are many ways to extend this model. First, instead of a common error

term, G n(k,8), one could have a pair of dependent error terms G'(k,8) andnn"

G"(k,8) which are a bivariate Gamma pair. Also, one might use differentn
lags in the error terms to represent physical delays. Again, it is possible

to cross-couple the processes by switching the lagged terms X' and X" in
n-i n-1

(27) and (28) and to make the random coefficients dependent. Gaver and

Lewis (1980) used this cross-coupling and negatively correlated random error

terms to obtain negative correlation in the Gamma marginal processes.

For further details and other models, see Lewis and Shedler (1979), Jacobs

(1978, 1980) and Dewald and Lewis (1985b).
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If we replace Xn-1 in (13) by G n_, we have a moving average Gamma model
whose correlations are zero, except at lag one and are bounded by zero and

one-quarter. But, it can be shown (Hugus, 1982) that the attainable range

for p(1) in random coefficient moving average processes is minus one half to

plus one half, as with the normal theory linear MA(1) process. A different

structure achieves the maximum range of positive correlations for the Beta-

Gamma first-order moving average model (Lewis, McKenzie and Hugus, 1985):

Xn(B,k) = Gn{ ,k/(1+ )} + B+ n [k /(1+0),k(1- )/(1 ¢) {B,k/(1+0)j. (26)

The lag-one serial correlation is p(l)=€/(1+0), which has its maximum value

of one half when -1/2. For 00 or 1, the process is a sequence of i.i.d.

Gamma(8,k) variables. Surprisingly enough, the joint Laplace transform for

X and X is given by (13), so that the Beta-Gamma autoregressive andn n-1

moving average processes are very much analogous to the linear Gaussian

processes. Like the Gaussian process, these Gamma moving average and

autoregressive processes are time reversible.

Because moving average and mixed moving average processes are not Markovian,

the problem of parameter estimation in these processes in the nonGaussian

case is difficult. Nevertheless. their structures may be realistic for

modelling some physical phenomena. The model (26) can be extended to

qth-order moving average structures (Lewis, McKenzie and Hugus, 1985).

MULTIVARIATE MODELS

There is a clear need in hydrology and other physical fields for multi-

variate processes and some such extensions of the simple models we have

discussed in previous sections have been made. By way of example of the

results which can be obtained as extensions of the simple random coefficient

models discussed in the first part of this paper, consider again the Beta-

Gamma process.

22 7/23/85
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slightly more complicated for Uniform(O,1) variates; one substitutes i-U for

U.

In other cases of non-symmetric marginal distributions, one solution is to

use the antithetic variate X' in place of X in the defining equations, where

-1-

X1 FX (0 -FX)) (25)

and for the symmetric (about zero) case X'--X. Also, in the Uniform(0,1)

case U'=I-U. As an example, consider the Exponential case and substitute

for Xn- 2 in the defining equation (20) for the NEAR(2) process the

antithetic of X namely X'n_1= -log{1-exp(-Xn-1 )}. Then one has a process

which can exhibit the whole range of correlations for Exponential variables.

However, even though the process is explicitly 'autoregressive', it is not

autoregressive in any of the three senses given above. It is, however,

Markovian, but is probably not simple. Even the correlations, p(r), are

difficult to calculate.

An alternative scheme for obtaining negative correlation in time series was

given in Gaver and Lewis (1980). This consists of cross-coupling two

processes. Details are not given here. In the symmetric case it reduces to

the usual process. The process is, however, not in general Markovian.

MIXED AUTOREGRESSIVE-MOVING AVERAGE MODELS

Several authors have extended the above autoregressive models to moving

average and mixed autoregressive-moving average models for various marginal

distributions. We refer the reader to Lawrance and Lewis (1977), Jacobs and

Lewis (1977), Lawrance and Lewis (1980), McKenzie (1981) and Lewis, McKenzie

and Hugus (1985). It is particularly easy to extend random coefficient

models to moving average structures and we discuss here, by way of

illustration, only the Beta-Gamma model given at (13).

I,

21 7/23/85
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also has short-term (first-order) dependence. Out of the context of

Exponential marginals, the random indexing scheme can be used with any

first-order autoregressive scheme to obtain a similar effect. In a somewhat

different but related vein, Fernandez and Salas (1985) have extended the

autoregressive Gamma process to the case of periodic parameters; this is an

extension to the nonGaussian case of the so-called "Thomas-Fiering model",

although the model is actually due to Hannan (1955).

We note, too, that it is quite simple to include deterministic periodic and

seasonal trends in the models for positive random variables. In particular,

the mean in the Gamma random variable is multiplicative and can easily be

replaced by a time-varying mean. Log-linear models for this mean are

appropriate, since they retain the positivity. In particular, Hugus (1982)

fitted an exponential sine to fifteen years of three-hourly wind amplitude

readings at ship PAPA in the Gulf of Alaska. The exponential sine included

six-hourly, six-monthly and yearly terms. The residual process was fitted

by a Beta-Gamma process with p(l)=0.88.

NEGATIVE CORRELATION

It would be useful to have time series models for nonGaussian data which can

accomodate the full range of attainable correlations, although we note that

the usual range of -lp l for Gaussian models is not attainable (Moran,

1967) for positive-valued variables. Thus, for exponential random

variables, the lowest value is -0.6449. Attainment of negative correlation

in processes in a simple way is intimately tied up with symmetry of the

marginal distribution. This is because, when the random variable X is

centered at zero, then -X has, by the definition of symmetry, the same

distribution as X. Thus, in the extension of the NEAR(2) models to Laplace

variables (Dewald and Lewis, 1985a), the whole range of correlations,

-1 < p < 1, is attained by substituting -X for X. The situation is only

20 7/23/85



I wt

Xn - 81KnXn-1 + B2KBXn-2 + Ln E n, n-0,±I1,2,.., (21)

I It

where the i.i.d. sequences L n } and K n,Kn I are assumed to be mutually

independent and independent of the i.i.d. Exponential sequence {E n and of

X n_ , Xn- 2 ,..., 0 S 81982 S 1, and a 1 0, a2 
> 0, a + a2 S 1 with

1 w.p. 1 - P2 - P3
L b w.p. P2  , n - 0,±1,±2,..., (22)n ' 2

n b3  w.p. P3

(1,0) w.p. a1
(Kn Kn) - (0,1) w.p. a2  , n - 0,±l,±2,.... (23)

(0,0) w.p. 1 - a 1 - a2

The parameters pi P2' b1 and b2 are complicated functions of the four

parameters of the process and are not given here. For a2 -0, we get the2!

NEAR(1) process and there are several cases which give independent X s.n
Moreover, the correlations, which are positive-valued, satisfy the Yule-

Walker equations and we have explicitly

p(M) = (a 1 )/(1 - a282 ) and p(2) - (a 181 )P(1) + (a282). (24)

It is fairly certain that this structure can be extended to higher-order

autoregressions, but it is not at all clear that explicit expressions for

the parameters can be obtained. However, using the mixture scheme given

above, this four-parameter second-order process can be extended to higher-

orders quite simply (Lawrance and Lewis, 1985a). One can obtain, for

instance, a four-parameter 4th-order autoregressive process and this is

probably sufficient for most purposes.

(3) Seasonal and Stuttered Models.

The autoregression on Xn- 2 in (21) can be replaced by autoregression on,

say, Xn-s to give a stationary (non-deterministic) seasonal model, which

19 7/23/85



X n An X ns + BnZn, n - 0,±l,±2,.... (20)
n

The assumption is that the process is stationary; the scheme works because a

mixture of random variables with identically distributed marginal

distributions has that same marginal distribution, even if the random

variables are dependent. Moreover, it is easily verified that the

- correlations p(r) satisfy the Yule-Walker equation (4) with

CL=T E(A ), J-1,...,p.

Drawbacks to this scheme, as to any scheme with this breadth, can be seen to

occur for two reasons. One is that the a's in the Yule-Walker equations

are limited in range, since the T's are probabilities and the E(A n ) will

have a limited range in specific cases. Thus, the range of attainable

correlations will be limited in comparison with, say, the attainable range

of correlations for the AR(p) process. The second drawback comes from the

fact that runs of identical values are possible in the sample path of the

process, since there is a small probability that, for example, X n, X n+1, and

X may have the value same value X if B can take on the value zero.*n+2 n-1 n
Nevertheless, this random indexing scheme does supply a limited solution to

a very difficult and important problem.

(2) The Exponential NEAR(2) MODEL.

A broad extension of the NEAR(1) to second-order autoregression (in the

sense of (1.i.b) and 1.i.c)) has been given by Lawrance (1980) and Lawrance

and Lewis (1985a). This process is denoted NEAR(2) and has four parameters.

Also, despite its restriction to an Exponential marginal distribution, the

structure which gives the process is important in extending Exponential

processes in general.

Thus, let the stationary process {X n be defined by the random coefficient

stochastic difference equation

18 7/23/85
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Note that the resulting process is not simple and that it is unique. This

contrasts to the fact which we have seen above, that there exist many

processes with the same marginal distributions and that this may be

desirable in the modelling of physical phenomena such as those that occur in

hydrology.

HIGHER-ORDER AUTOREGRESSIVE PROCESSES

In many applications there is a need for higher-order nonGaussian

autoregressive processes which mimic the AR(p) process given at (2).

However, the analog of the simple equation (6) is not available for p>1. In

fact, no direct solutions exist to equation (2), other than for Gaussian

processes. We describe now several schemes which have been derived,

starting with a very general mixture scheme and then describing the NEAR(2)

process of Lawrance and Lewis (1985a).

(1) Random Indexing (mixture models).

We note that the first-order autoregressive models given above can be

written for the most part as random coefficient models of the form

X AnX + Bn Z n, n = 0,±1,±2,..., (19)
n n n- n

with the usual independence conditions on the random coefficient sequences

A and B and the innovation sequence Z . Note, however, that for given n,.. n n n
the A and the B do not have to be independent. This is the case for then n
Beta model given at (17) above. Now the random indexing scheme (Jacobs and

Lewis, 1983) is to replace the index n-1 in (19) by n-Sn, where S is an ndiscrete valued random variable on 1,...,p with probabilities rI''" '•p and

the S 's are assumed to be i.i.d. Thus, we have
n
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The Beta-Beta transform states that the product of two independent Beta

random variables is a Beta random variable, so that Beta(a,B) • Beta(c+B,Y)

- Beta($,+Y). Then the PBAR(1) model is given by

X - 1 - A (1 - BnX n - 1,2,3,**., (17)n n nBn1)

where A n I and (B n I are independent sequences of i.i.d. Beta(B,a-p) and

Beta(p,a-p) random variables. The single structural parameter in this

scheme, p, determines the correlation structure of the process, ,nich is

P( = p0/a(a+0-p)r- p, r - 0,1,2,...; 0 S p < u. (18)

Note that in this Beta process, the parameters a and B determine the

marginal distribution of the X 's, and p can be freely chosen in the range
n

0 S p < a to determine the correlation.

An important special case occurs when a-$-1 and the marginal distribution is

Uniform(O,1). This process is an additive random coefficient process in

Uniform(0,1) variables. Multiplicative Uniform(O,1) processes may be

obtained, for instance, by negative exponentiation of the NEAR(1) process

given at (8). The properties of the resulting two-parameter process have

not yet been investigated.

One should note here that the random coefficient approach is not the only

way to generate a process with both a specified correlation structure and

marginal distribution. There is another approach in the Engineering

literature which is to start with a Gaussian ARMA(p,q) process, filter it,

transform marginally using a probability integral transform to a

Uniform(O,1) marginal and then, via an inverse probability integral

transform, create the desired marginal distribution. The filter is chosen

to give, if possible, the desired correlation structure. Solutions are

known, for example, for an Exponential marginal distribution (Sondhi, 1983).

16 7/23/85
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Another distribution which may be useful for modelling phenomena such as

North-South wind velocity components which, unlike the phenomena we have

considered before, are not inherently positive valued, is the symmetric

% 9-Laplace distribution. Its characteristic function is *(W) - 1+ W

which for 9.-i is that of the Laplace (or double-Exponential) distribution.

For 9. large, this is approximately a Gaussian distribution. For I small, it

*is peaked at x-O and when CS~ 0.5, the density is unbounded at x -0. For

the Laplace distribution, the NEAR(i) structure (and the NEAR(2) structure

given below) go through with analagous formulas to those for the Exponential

* case (Dewald and Lewis, 1985a) and there is a square-root Beta 9-Laplace

process which is the analog of the Beta-Gamma process (Dewald, Lewis and

McKenzie, 1985).

.

The Wreibull distribution, as well as other extreme-value distributions, is

widely used to broaden the Exponential assumption for the marginal

distributions of stationary time series. Note that it is not infinitely

divisible and, therefore, is not type-L, so that there is no solution to the

equation (1). However, a Weibull-distributed random variable is a power-law

* transform of an Exponentially distributed random variable, so that the

minimum structure (9) and the PAR(1) structure (12) give relatively simple

first-order autoregressive processes.

Situations do occur in which processes are required with marginal

distributions which are bounded below and above. One might, for instance,

be interested in modelling a sequence of probabilities, say the probability

of overflow at a dam on successive days. For this case, the Beta

distribution mentioned above provides a broad, two-parameter distribution

model which is widely used. McKenzie (1985b) has derived an autoregressive

* process for Beta random variables using the Beta-Beta transform. Thus, let

Beta(ci,0) denote a Beta random variable with probability density function

f(x) x B(1 ) 0 < x < 1; ci,0 > 0. (16)

ra I
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restricted ranges of the parameter p. Thus, the mixed Exponential (or

hyper-Exponential) distribution, with probability density function

-A 1 x - 2 x
f (x) = Ai1e + it 2 X2 e , 0 S il 2  1; 1 ; 0 r+ + 2 =, (15)

which is used to model phenomena which are more skewed than the Exponential

distribution, is not type-L. However, Gaver and Lewis (1980) gave some

sufficient conditions for a solution to exist and Lawrance (1980) gave

necessary and sufficient conditions on the parameters $, k, p for the

solution to exist. The utility of these results are not clear, since the

Beta-Gamma process provides an alternative for skewed data which has, in

particular, a much simpler estimation solution. There are, however,

differences between the two distributions which might be important in

modelling.

(5) Ad-hoc Methods for First-order Processes.

Several of the more useful marginal distributions which have been used for

modelling marginal distributions in the physical sciences have associated

first-order processes. These processes are generally multiplicative or

additive random coefficient models, which again illustrates that the linear

model (1) may be a false starting point. The processes are generally

autoregressive in one of the senses given above. We consider these

processes briefly here for Laplace, L-Laplace, mixed Exponential, Weibull

and extreme-value distributions.

Lawrance and Lewis (1982) have shown that the switched structure given at

(7) has a solution when the X process is required to have the mixed
n

Exponential distribution whose density is given at (15). This includes the

zero jump Exponential distribution (1/AI=0), which might be useful for
modell Ing winds in areas where there Is a positive probability of having an

amplitude of zero, i.e., being in the Doldrums.

14 7/23/85
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This Beta-Gamma process is a remarkably 'smooth' process in at least two

ways. First, the conditional density of X given X is continuous and,n n-1
therefore, it is relatively simple to get maximum likelihood estimates for

the parameters v, k and q (Hugus, 1982). Secondly, let p=(1-q/k). Then the

joint Laplace transform of Xn and Xn- is given by (Lewis, McKenzie and

Hugus, 1985)

(SS ) = {(1 + SOO + ss2 )Wk(1-P)(1 + S1 + S2 )-kP (14)

This result shows, first of all, that the process is time reversible, since

s and s2 can be interchanged in the equation, and secondly, that both the
regression of X on X and the regression of X on X are linear. In

cn n-i n-1 n
these respects the Beta Gamma process is much like the Gaussian AR(1)

process. However, in modelling physical phenomena such as river-flows, this

smoothness may be a handicap. Thus, it is not possible to model 'runs-down'

in data, since for fixed k and p (marginal distribution), the structural

parameter q (or p) changes the correlation, but not the sample path

behavior. An extension of the process to a broader structure is given in

Lawrance and Lewis (1981); it combines the GAR(i) process and the BGAR(i)

process.

(4) Other Linear Models.

Other solutions to the first-order, linear, stochastic difference equation

(), known as type-L distributions, are known (Shanbag and Sreehari, 1977;

Thorin, 1977a, 1977b), but generally do not give simple, tractable

solutions. A case in point is the log-Gamma distribution. Results from

McKenzie (1982) for the PAR(1) process say that there is an innovation

random variable in this case, but it is not easy to even generate it, except

when the X 's have a log-Exponential distribution. Another problem with use
n

of the linear equation (1) is that useful results may be obtained for

111
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r
the sense (1.i.a) or the sense (1.i.b) above; however, since p(r)-p

r-1,2,..., it is autoregressive in the third sense. It is, of course, very

nonlinear, in the usual sense of that term.

The last Gamma process we introduce is the Beta-Gamma process (Lewis, 1981)

which has been detailed in Lewis, McKenzie and Hugus (1985). This is a

simple and very broad process which, in some ways, is an analog of the

* Gaussian AR(1) process. It is based on the Beta-Gamma transformation

(Lewis, 1983) which is as follows. Let X be a Gamma(m+n,8) variate and let

Beta(m,n) be an independent Beta variate with parameters mZO and n>O; then

Beta(m,n).X is a Gamma(m,8) variate. Using this result, we can construct

the Beta-Gamma first-order autoregressive process, BGAR(1), as follows:

Let

An, n=1,2,..., be i.i.d. Beta(k-q,q) random variables with q<k;

Bn, n-1,2,..., be i.i.d. Beta(q,k-q) random variables, independent

of the A n's;

Gn, n=O,1,..., be an i.i.d. sequence of Gamma(k,8) innovation

random variables and let Xo=Go; the G sequence is independent of

the A nand the Bn sequence.

Then

X -'A X + B G n=1,2,..., (13)
n nn'

r
is a stationary sequence of Gamma(k,B) variates with p(r)-(1-q/k) r ,

r=1,2,.... The process is a random coefficient first-order autoregressive

process, and as such, is autoregressive in the second two senses given

above. The process is also Markovian. Note that in (13) the term B G cann n

be written as a Gamma(k-q,8) variate; the form (13) is convenient because it

expresses the process, {X }, as an autoregression on i.i.d. Gamma(k,B)"- " n

- - variates.

12 7/23/85
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from small positive values to large values, the random variable changes from

a highly skewed variable whose density is infinite at zero, to the

Exponential (k-i), to a Gaussian (k>50). The density is given by

fxX) k k-1e-X8/r(k) 0>0; k>O ; x4O. (10)

Note that the mean, i - k/B, is multiplicative and the Gamma random

variable, denoted by G(B,k) or G(p,k) may be written as, UG(k,k) or UG(1,k),

respectively. The associated Laplace transform is fx(s)-{1/(O+s)) kand (6)

yields, for the linear autoregressive process (1),

fE(s) -p + (1 - p)O/(B + s)}k k>O; 0>0,wE
which (Gaver and Lewis, 1980) is the Laplace transform of a proper random

variable. The linear, first-order autoregressive process (1) with this

innovation random variable is called the Gamma autoregressive process of

order one, GAR(1). This process actually was used in hydrology (Bernier,

1970 ) many years before its rediscovery; unfortunately, although it

includes and broadens the EAR(1) process, it too is defective. Thus, E is
k

zero with probability p , which is very serious if k<i (very skewed marginal

distribution). Also *E(s) cannot be explicitly inverted unless k is an

integer, although Lawrance (1982) and McKenzie (1985c) have found methods

for generating random variables with this Laplace transform.

McKenzie (1982) introduced a product autoregression process of order one,

called PAR(i), of the form

Xn Xn-iEn' 0 < p < 1, (12)

but, although En exists for all values of the Gamma parameter k, it is only

possible to generate it for the Exponential case (k-1). Note that this

process, since it is multiplicative in structure, is not autoregressive in

11 7/23/85
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denotes a sequence of i.i.d. Exponential(A) random variables, the minimum

process

X- min(Xn i/p, Z ),(9)in
r

will have Exponential marginals and correlation structure p(r)-p

r=0,1,-... Thus, the process is autoregressive in the third sense given

above, but the autoregression of Xn on Xn I , while explicit, is not linear,

even in a random coefficient sense. Nor is the conditional expectation of

Xn, given XnI , linear. Thus, the first two forms of autoregression do not

hold. What is remarkable about this process is that it is a time reversed

version of the EAR(1) process given at (1). This result is due to Chernick,

Daley and Littlejohn (1983). In particular it shows that the process is

defective. DeHeuvels (1983,1984) has exploited this minimum structure even

ifurther and has tried to show that all stationary Exponential processes can

"" be represented as infinite moving minima. However, this generalized minimum

structure does not admit Exponential processes with negative correlation and

is to some extent defective.

Many other first-order processes in Exponential random variables are now

known. For instance, one could add two independent Gaussian AR(1) processes

to obtain an Exponential process with geometrically decaying correlations.

Suprisingly, this process, while not explicitly autoregressive and not

having an explicit structure, has been shown to be Markovian. Another

interesting process which arises in the context of engineering geology has

been given by McCullagh (1983). Again, negative correlation is not

possible.

(3) First-Order Processes with Gamma Marginals.

The two-parameter Gamma distribution is a widely used model for the marginal

distribution of many physical time series. As the shape parameter k changes

10 7/23/85



TIME REVERSIBILITY, HIGHER-ORDER MOMENTS AND RESIDUAL ANALYSIS

A recurrent theme in the models which have been described is that of time

reversibility and directionality. Gaussian linear models given by (2), with

extensions to mixed autoregressive-moving average structure, are time

reversible and are the only dependent linear models with this property

(Weiss, 1975). This can be a handicap in modelling, say, river-flow data,

which generally has quite marked directionality in its sample path behavior.

Models like the NEAR(2) process for Exponential marginals can accommodate a

wide variety of directionalities, either gross or subtle, in the sample path

behavior. On the other hand, the Beta-Gamma process is time reversible

unless it is extended by combination with the GAR(1) process.

It is important to note that serial correlations do not, in any way, reflect

directionality in time series. This is apparent from the well known formula

that p(r)=p(-r), r=Q,_,1,_,.... This suggests using higher-order moments or

their transforms, e.g. bispectra (see for example, Rosenblatt, 1980, 1982).

A simpler approach has been suggested by Lawrance and Lewis (1985a,1985b)

for processes which are autoregressive of order p, in the sense that their

correlations satisfy the Yule-Walker equations (4). In that case, the

linear autoregressive residuals

Rn Xn X apXnp n - p+l, ., (29)

are uncorrelated, although not independent unless the residuals are

generated by a linear process. It is this difference between lack of

dependence and lack of correlation which is exploited in the residual
2

analysis, which consists of examining the autocorrelations of the Rn

process, or crosscorrelations between the Rn and the R n process. This
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<-p

analysis actually involves higher-order moments of the {X process, but
n

uses standard second-order statistical computations.

An extension (Lawrance and Lewis, 1985c) is to use reversed residuals.

Thus, since the correlations for the reversed process are the same as for

the original process, even if the process is not time reversible, the

reversed residuals

RRn = Xn - iX+ .. apX n+p, n = 1,±2,-..*, (30)

will also be uncorrelated. An analysis based on both RR and R is thenn n
* possible to determine linearity and time-reversibility in the time series

and correctness of the fitted models.

CONCLUSIONS

No attempt has been made to completely survey all the models for continuous

variate time series which have been proposed. Instead, we have concentrated

on marginally specific time series models which are simple in structure and

which would be used much in the spirit in which Gaussian linear models are

-. used in the so-called Box-Jenkins method. For hydrologic models which are

physically motivated, the reader is reffrred to Lawrance and Kottegoda

(1977) or Salas et al. (1980).
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