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Some Simple Models for Continuous Variate
Time Series

P. A. W. Lewis

Department of Operations Research

Naval Postgraduate School
Monterey, California

ABSTRACT '

.

A survey is given of recently developed models for continuous variate j'
nonGaussian time series. The emphasis is on marginally specific models with

given correlation structure. Exponential, Gamma, Weibull, Laplace, Beta and

IUL g o

Mixed Exponential models are considered for the marginal distributions of N
the stationary time series. Most of the models are random coefficient, ::

additive linear models. Some discussion of the meaning of autoregression
and linearity is given, as well as suggestions for higher-order linear Ny
residual analysis for nonGaussian models. {
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- INTRODUCTION

Most time series analysis of continuous variate discrete time parameter

phenomena is based on the simple, linear, autoregressive-moving average

processes which were first introduced by Yule at the end of the 19th century
N and then extended by many authors. Although these processes are not
necessarily defined as processes in Gaussian variates, it is simplest to use
them as such because linear operations on Gaussian variates preserves
Gaussianity. Again, statistical analyses based on the Gaussianity
assumption and these models are well developed. Consequently, it has been
the practice to either ignore the issue of the marginal distribution of the
variates, or to assume that the variates can be transformed mildly to

Gaussianity by standard methods.

al

Unfortunately, there are many areas, particularly in the physical sciences,
where nonGaussianity of the time-series is gross and is itself of interest
in the modelling of the phenomenon under study. The nonGaussianity may be
que to the fact that the phenomena are inherently positive-valued, or are
f1stributed with longer or shorter tails than exhibited by Gaussian
variates, The first case i3 well {llustrated in river-flow studies (see

.4., Lawrance and Kottegoda, 1977), as well as in the extensive studies of
w:n1 velocity amplitudes by Oceanographers and Meteorologists (see e.g.,
“r .wn, Katz and Murphy, 1984). The second case occurs when the North-South
int Fast-West components of wind velocities are studied and it is also
.mportant 1n the study of acoustical phenomena. These acoustical phenomena
nave marginal distributions which range from almost uniform distributions to
very long-tatiled distributions which are often modeled as Laplace
distridbutions,

As a consequence, there has been an accelerating effort during the last
decade to derive models for stationary nonGaussian continuous variate time

series. These models tend to imitate the linear (Gaussian) time series in

2 7/23/85
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their correlation structure and use various standard parametric models for
marginal distributions. The present paper will survey some of these models.
The emphasis 1s on models which are (Lewis, 1980) simple and flexible in the

following senses:

i e

(1) The models should be specified in terms of easily observed and %
measured quantifiers. For stationary models the quantifiers f
should typically be: 3
(a) the marginal distribution; !
(b) second~order moments (correlations); and :
(¢) simplified higher-order moments or residuals,
(11) The models should be parametrically parsimonious and
parametri cally simple.
(111) The models should be easy to generate on computers, i.e, they
should be structurally simple, like the usual linear models.
(iv) The models should be easy to fit to data, both formally and
informally. -
Note especially point (i.c). The emphasis in deriving the models described %
below is on the marginal distribution and the correlation structure. (
However, many models with, say, the same second-order autoregressive
structure and Exponential marginal distributions are now known, but the
sample path structures of the various models can be vastly different. As a T
consequence, Lawrance and Lewis (1985a, 1985b) have attempted to introduce a :
residual analysis for these processes; this residual analysis will be
described briefly in the last section, IS
KN

The work described in this paper is, perforce, mainly that of the author and
his colleagues, notably A. J. Lawrance and E. McKenzie; not suprisingly, the
work fits the prescription given above. The state of this work can be ,
summarized as follows. Many models with first-order autoregressive “
structure of some sort and standard parametric marginal distributions :

7/23/85
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H (Exponential, Gamma, Mixed Exponential, Weibull, Laplace, Beta) are now
known. Extension to higher-order autoregressive structures is difficult,
except in the case of the Exponential marginal distribution, or by using a
rather limited random indexing device (mixture device) due to Jacobs and
i Lewis (1983). Mixed autoregressive-moving average processes can be obtained
from most of the models, because they have (random coefficient) linear .
additive structure. Another problem is, that for positive-valued marginal ’
distributions, it is difficult to get negative correlation in simple ways;
. this may or may not be a serious problem in, say, hydrology because positive
correlation in data seems most common. The problem of negative correlation
is intimately tied up with symmetry of the marginal distribution and is,
therefore, easy to obtain for the models which will be described for Laplace

] marginals.

Models for discrete variate time series are described by McKenzie (1985a).

FIRST-ORDER AUTOREGRESSIVE PROCESSES

; A natural starting point for nonGaussian modelling of time series is the
n linear (constant coefficient, additive) first-order autoregressive process

given by

E Xn- an_1 + En' n=0,4+1,%+, ....} (1)

this is a first-order stochastic difference equation (Vervaat, 1979). The
En's are assumed to be independent and identically distributed (i.i.d.). It
) will be seen later that it is perhaps a red herring to start with this
equation, since linearity and additivity are so closely tied up with

; Gaussianity. However, one can ask whether i.i.d. innovation sequences {En}

~ exist such that the Xn's have specified nonGaussian distributions. Before
J
¥ y 7/23/85
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l considering this in the Exponential case, it is necessary to consider and
- clarify three commonly occurring concepts, namely autoregression, linearity
K and the Markov property.

' (1) Autoregression, Linearity and the Markovian Property.

E (1) Autoregression.

I In equation (1) it is clear that Xn is explicitly autoregressed (in a
; linear, additive way) on Xn_1, but autoregression is used more broadly in
1: time series analysis and is an important idea in the models given below.
N Thus, Lawrance and Lewis (1985b) give the three following nested definitions
'™

for pth order autoregression:

) (a) A stationary sequence {xn} is said to be explicitly (pth order)
autoregressive in a linear additive way if the Xn's satisfy the equation

(2)

n-1 azxn-1 4+ seee + apxn-p + En'

(PP R

where the En are i.i.d. and Ay @500y @ are fixed parameters. Equation

2° p
. (2) is the standard linear autoregressive model, AR(p).

(b) A more general definition of autoregression of order p could be the

- linear conditional expectation requirement that

E(xn-U|xn_1-Uv xn_z-lh e '.Xp'u)'
a (X _u) + ay(X _=u) ¢ eee s ap(Xn_p'u). (3)

where p is the (stationary) mean of the process. Clearly (2) implies (3),

but not vice-versa.

5 7/23/85

Ml i Ba i lall NaRCHall A BC A S i ) N S AL SAt L0 AS S Sued sl - i “aiir A St o dis alive e el Mhal dhde Yhon l".’"."‘?".'x.‘lt\ .vxﬂ'!'*"!!'ﬁ

i
|
|
J
\
\

- e e e e s T T s LT
S e T TR R T
. R SRR R A A
T I VRN N A S P W



e e e TS T i e a4t T Sl Rl S S i S S dh ARl i Sadh AR el S A S A i R arad A A S I A il i AU

(¢) A further and weaker definition of pth~order autoregression is the
requirement that the autocorrelations {pr} of the process {Xn} satisfy the
Yule-Walker linear difference equations of order p,

+ ecees + (g

Bp = 8Py * AP, ppr-p' r=1,2,ce., ()

for suitable constants N A ap and with Pp ™ Ppe

2 -r

Examples of processes which satisfy these definitions will be given below;
in particular, it will be seen that most of the models introduced are
linear, additive random coefficient models which satisfy (3) and/or (4), but
not (2).

(ii) Linearity.

To say that a model is linear will be taken to mean that the process {Xn}
satisfies the equation (2). Random coefficient models, therefore, are
nonlinear, although some authors contend that they are linear and that
nonlinearity refers only to the case where powers or products of the X

x L 3
n-2'
there are models which satisfy the third form of autoregression, but are

n-1'
., En appear in the defining equation. It will be seen later that

nonlinear by anyone's definition in that they involve products and have

parameters which appear as powers.

One should note here, too, that the common practice of transforming time
series data, so that it has (approximately) a Gaussian marginal distribution
does not imply that the transformed process will have linear structure. It
is possible to construct models which have Gaussian marginal distributions,

but which are nonlinear.

6 7/23/85
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(iii1) Markovian Property.

A third property of interest is the Markovian property, which we will only
consider in the first-order case. Thus, a process {Xn} is said to (first-
order) Markovian if the conditional density of Xn, given the past of the

process, satisfies

fxn("n|xn-1'xn-2"“) = rxn(xn|xn_1). (5)

n-1' the distribution of Xn does not depend on

i.e., given the value of X
Xn_2, Xn_3,--u The process defined by (1) is clearly of this form, by
construction, and there are two important consequences of this property.
The first is that one can write down the joint density of xn,---, X1 once we
know the marginal density and the conditional density in (5). Thus, a
likelihood function can be derived from which one can, in principle,
estimate parameters. The second consequence is that one can, for a given
marginal distribution, construct a first-order Markovian process from any
bivariate distribution having the given marginal distribution for its two
marginal distributions (Linhart, 1970). This process may not be
autoregressive in any of the above senses, although it will possibly have
the Yule-Walker autoregression. One objection to this procedure is that
there is no guidance as to which of the infinity of, say, bivariate Gamma
distributions to use in the construction. The other objection is that
without an explicit simple autoregressive structure, it is not only hard to
see what is 'going on' in the process, but it is also difficult to extend
the process to, for example, moving average structures and simple explicit

multivariate processes.
(2) First-Order Processes with Exponential Marginals.

In Equation (1), note that En and xn are, by definition, independent.

-1

Thus the Laplace transform of the distribution of Xn. oy (s), equals the

n
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Laplace transform of the distribution of Xn times that of En. If the

-1
process is stationary, solving this equation gives the equation

$5(3) = 04(3)/6,(p3). (6)

In (6), it is assumed that a solution exists for a given marginal distribu-
tion of X. Gaver and Lewis (1980) showed that for X Exponential(i), E is ﬁ
zero with probability p and Exponential(i) with probability 1-p. Note that ;
this EAR(1) process - Exponential autoregressive of order one - i{s a linear ‘
process. What is different is that the innovation random variable, En’ is
not absolutely continuous, since its distribution has a jump at zero, Thus,
Mallows (1967) result that linear processes must have Gaussian marginal

distributions as p approaches one does not hold. However, the process is

autoregressive in all three senses. The last sense follows, because for the
EAR(1) model p(r)=pr for r=1,2,..., Wwhich is the solution of the first-order
Yule-Walker equation. The process may also be written as a random

coefficient model

where the Zn's are {.i.d. Exponentials and the i.i.d. indicator random

variables In have P{In=0} = 1-P{In=1} = p.

A problem with the EAR(1) model is that the innovation random variable takes
on the value zero with positive probability. This makes the process

'defective' in the sense that when In=0, then Xn-px and the parameter p

n-1
can be estimated exactly in long enough series (Gaver and Lewis (1980)).
Note, too, that sample paths have 'runs down'. Although this bothers people
who are accustomed to more conventional looking time series, it is not

necessarily bad in hydrological contexts, i.e. river run-offs.

8 7/23/85




Now note that in (7), we can switch Xn and Zn to get another Exponential

autoregressive process of order one (in EAe sense of (1.i.b) and (1.i.¢)),
which is not defective, exhibits 'runs-up', and is regenerative. The
switching which produced this TEAR(1) process led Lawrance and Lewis (1981a)
to define the broad, two parameter Exponential autoregressive (in the sense

of (1.1.b) and (1.i.c)) process NEAR(1)

Xp = KX+ 12, (8)
where 05831, P{K =B} = 1-P{Kn=0} = a and P{IN=1} = 1-P{In=(1-a)8} = §, with
§ = (1-8)/{1-(1-a)B}. Also, the i.i.d. Exponential sequence {Zn}, the
i.i.d. {Kn} sequence and the i.i.d. {In} sequence are independent of each

other, and Kn and In are independent of the Xn's for n-1, n-2,¢+.,

This NEAR(1) process includes the EAR(1) process (a=1) and the TEAR(1)
process (B=1) given at (7), and can exhibit a wide range of sample path

behavior; also p(r) = (aB)‘r‘. The second form of autoregression follows

from the result that E(anxn-1=X) aBx+(1-aB), where we assume that the

parameter of the Exponential distribution, A, equals one.

Two other important Exponential processes which will appear as special cases
of Gamma models in the next section are the Product Autoregression model of
McKenzie (1982) and the Beta-Gamma process of Lewis (1981). We give, now,
several other models which are derived from special properties of the

Exponential distribution.

Perhaps the most important of the Exponential processes beyond the NEAR(1)
process is the Tavares (1977, 1980a, 1980b) process. Like most of the
simple models, it exploits probablilistic structures which combine two
independent Exponential random variables into a third Exponential random
variable. Here the combination is that the minimum of two independent

Exponential random variables is Exponential. Thus, if as before,{Zn}

9 7/23/85
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Lewis (1981) extended (13) to the very simple bivariate Gamma process

1 "
{xn,xn} where, for n = 0,4+1,+2,...,

M I B . R U M A T Ta
LI PR b D R AN
teo cy Sa A Lttt NI %/ T )

X! = Al(k-q',q")X! . + B'(q',k-q")G (k,8), (27)

X o= An(k-q",q")X"_. BM(q",k-q")G_(k,8). (28)
In these equations, {AA,AS} and {BA,BH} are mutually independent i.i.d.
sequences of bivariate Beta variables which, for now, are assumed to be
independent pairs. This model may be thought of as giving responses at two
different locations with the responses being driven by a common driving
effect represented by the common error term En-Gn(k.B). The random
coefficients represent local modifying effects and the autoregressions are
local dependencies. A problem with this (too) simple model is that there
are only two free parameters, q'and q", for the dependency structure, so

that the autocorrelation fixes the crosscorrelation.

There are many ways to extend this model. First, instead of a common error
term, Gn(k,B), one could have a pair of dependent error terms Gé(k.e) and
Gg(k,s) which are a bivariate Gamma pair. Also, one might use different
lags in the error terms to represent physical delays. Again, it is possible

to cross-couple the processes by switching the lagged terms xa_ and Xg_ in

1 1
(27) and (28) and to make the random coefficients dependent. Gaver and
Lewis (1980) used this cross-coupling and negatively correlated random error

terms to obtain negative correlation in the Gamma marginal processes.

For further details and other models, see Lewls and Shedler (1979), Jacobs
(1978, 1980) and Dewald and Lewis (1985Db).
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If we replace X _, in (13) by G _q» we have a moving average Gamma model
whose correlations are zero, except at lag one and are bounded by zero and
one-quarter. But, it can be shown (Hugus, 1982) that the attainable range
for p(1) in random coefficient moving average processes is minus one half to
plus one half, as with the normal theory linear MA(1) process. A different
structure achieves the maximum range of positive correlations for the Beta-

Gamma first-order moving average model (Lewis, McKenzie and Hugus, 1985):
Xn(B.k) = Gn{B.k/(1*¢)} + Bn{k¢/(1+¢).k(1'¢)/(1+¢)}Gn_1{B,k/(1+¢)}. (26)

The lag-one serial correlation is p(1)=¢/(1+¢), which has its maximum value
of one half when ¢=1/2, For ¢=0 or 1, the process is a sequence of i.i.d.
Gamma(8,k) variables. Surprisingly enough, the joint Laplace Lransform for

Xn and Xn is given by (13), so that the Beta-Gamma autoregressive and

-1
moving average processes are very much analogous to the linear Gaussian
processes. Like the Gaussian process, these Gamma moving average and

autoregressive processes are time reversible.

Because moving average and mixed moving average processes are not Markovian,
the problem of parameter estimation in these processes in the nonGaussian
case is difficult. Nevertheless, their structures may be realistic for
modelling some physical phenomena. The model (26) can be extended to

qth-order moving average structures (Lewis, McKenzie and Hugus, 1985).

MULTIVARIATE MODELS

There i3 a clear need in hydrology and other physical fields for multi-

variate processes and some such extensions of the simple models we have j
discussed {n previous sections have been made. By way of example of the g
results which can be obtained as extensions of the simple random coefficient }
models discussed in the first part of this paper, consider again the Beta- }

Gamma process,

1,
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slightly more complicated for Uniform(0,1) variates; one substitutes 1-U for
U.

In other cases of non-symmetric marginal distributions, one solution is to

use the antithetic variate X' in place of X in the defining equations, where f
Xt = B (1 - B (X)) (25) g

b

and for the symmetric (about zero) case X'=-X. Also, in the Uniform(0,1) .
case U'=1-U. As an example, consider the Exponential case and substitute t;
for X _, in the defining equation (20) for the NEAR(2) process the ;1
antithetic of Xn_1, namely Xé_1= -103{1-exp(-xn_1)}. Then one has a process i

which can exhibit the whole range of correlations for Exponential variables.
However, even though the process is explicitly 'autoregressive', it is not
autoregressive in any of the three senses given above. It is, however,
Markovian, but is probably not simple. Even the correlations, p(r), are
difficult to calculate. 4

An alternative scheme for obtaining negative correlation in time series was
given in Gaver and Lewis (1980). This consists of cross-coupling two i
processes, Details are not given here. In the symmetric case it reduces to

the usual process. The process is, however, not in general Markovian, "
MIXED AUTOREGRESSIVE-MOVING AVERAGE MODELS f

Several authors have extended the above autoregressive models to moving
average and mixed autoregressive-moving average models for various marginal .
distributions. We refer the reader to Lawrance and Lewis (1977), Jacobs and ;
Lewis (1977), Lawrance and Lewis (1980), McKenzie (1981) and Lewis, McKenzie
and Hugus (1985). It is particularly easy to extend random coefficient
models to moving average structures and we discuss here, by way of

illustration, only the Beta-Gamma model given at (13).

B e R A L
) .
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also has short-term (first-order) dependence. Out of the context of
Exponential marginals, the random indexing scheme can be used with any '
first-order autoregressive scheme to obtain a similar effect. In a somewhat N
different but related vein, Fernandez and Salas (1985) have extended the
autoregressive Gamma process to the case of periodic parameters; this is an

extension to the nonGaussian case of the so-called "Thomas-Fiering model”,

although the model is actually due to Hannan (1955).

We note, too, that it is quite simple to include deterministic periodic and
seasonal trends in the models for positive random variables. In particular,
the mean in the Gamma random variable is multiplicative and can easily be
replaced by a time-varying mean. Log-linear models for this mean are
appropriate, since they retain the positivity. In particular, Hugus (1982)
fitted an exponential sine to fifteen years of three-hourly wind amplitude
readings at ship PAPA in the Gulf of Alaska. The exponential sine included
six-hourly, six-monthly and yearly terms. The residual process was fitted

by a Beta-Gamma process with p(1)=0.88.

NEGATIVE CORRELATION

It would be useful to have time series models for nonGaussian data which can
accomodate the full range of attainable correlations, although we note that
the usual range of -15ps1 for Gaussian models is not attainable (Moran,
1967) for positive-valued variables. Thus, for exponential random
variables, the lowest value is -0.6449, Attainment of negative correlation
in processes in a simple way is intimately tied up with symmetry of the
marginal distribution. This is because, when the random variable X is
centered at zero, then -X has, by the definition of symmetry, the same
distribution as X. Thus, in the extension of the NEAR(2) models to Laplace
variables (Dewald and Lewis, 1985a), the whole range of correlations,
-1 < p <1, 1s attained by substituting -X for X. The situation is only

20 7/23/85
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' "
xn - B1Knxn-1 + szxnxn_2 + LnEn' n=0,+1,42,°°, (21)

\J "
where the i.i.d. sequences {Ln} and {Kn,Kn} are assumed to be mutually
independent and independent of the i.i.d. Exponential sequence {En} and of

Xn_1,Xn_2,°--, 0581,825 1, and (11 < 0, 0220, 01 +a25 1 with
1 w.p. 1 - p2 - p3
L =1tb Ww.p. P , n=0,11,42,+°", (22)
n b2 w p2
3 e P3
] " (1'0) wW.p. 01
(Kn’Kn) = 1 (0,1) w.p. a, , n=0,$1,12,°%¢, (23)
(0,0) w.p. 17— a, - a

The parameters Py» Py b, and b2 are complicated functions of the four

1
parameters of the process and are not given here. For a,=0, we get the

2 '
NEAR(1) process and there are several cases which give independent xns.
Moreover, the correlations, which are positive-valued, satisfy the Yule-
Walker equations and we have explicitly

p(1) = (a181)/(1 - a,8,) and p(2) = (a181)9(1) + (0282)- (24)

282
It is fairly certain that this structure can be extended to higher-order
autoregressions, but it is not at all clear that explicit expressions for
the parameters can be obtained. However, using the mixture scheme given
above, this four-parameter second-order process can be extended to higher-
orders quite simply (Lawrance and Lewis, 1985a). One can obtain, for
instance, a four-parameter UYth-order autoregressive process and this is

probably sufficient for most purposes.
(3) Seasonal and Stuttered Models.

The autoregression on xn in (21) can be replaced by autoregression on,

-2

say, xn_.‘3 to give a stationary (non-deterministic) seasonal model, which
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Xn = Aan_s + ann’ n=20,%1,%2,%°°. (20)
n

e M a
I o

The assumption is that the process is stationary; the scheme works because a

mixture of random variables with identically distributed marginal
distributions has that same marginal distribution, even if the random

variables are dependent. Moreover, it is easily verified that the

. u-_.'a o0

correlations p(r) satisfy the Yule-Walker equation (4) with

a,=1 E(An). J=1,2°°,p.

SN

! Drawbacks to this scheme, as to any scheme with this breadth, can be seen to
" occur for two reasons. One is that the uj's in the Yule-Walker equations
s are limited in range, since the rj's are probabilities and the E(An) will

have a limited range in specific cases. Thus, the range of attainable

e SN

5 correlations will be limited in comparison with, say, the attainable range
E of correlations for the AR(p) process. The second drawback comes from the
E fact that runs of identical values are possible in the sample path of the
i process, since there is a small probability that, for example, Xn’ Xn+1, and
. X o may have the value same value Xn-1 ir B, can take on the value zero.
- Nevertheless, this random indexing scheme does supply a limited solution to
TS a very difficult and important problem.

! (2) The Exponential NEAR(2) MODEL.

E A broad extension of the NEAR(1) to second-order autoregression (in the
? sense of (1.i.b) and 1.i.c)) has been given by Lawrance (1980) and Lawrance

and Lewis (1985a). This process is denoted NEAR(2) and has four parameters.

Also, despite its restriction to an Exponential marginal distribution, the

T

structure which gives the process is important in extending Exponential

processes in general,

Thus, let the stationary process {Xn} be defined by the random coefficient

stochastic difference equation

' 18 7/23/85
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Note that the resulting process is not simple and that it is unique. This

Xl . contrasts to the fact which we have seen above, that there exist many

:

processes with the same marginal distributions and that this may be
desirable in the modelling of physical phenomena such as those that occur in

r hydrology.

)
:
i HIGHER-ORDER AUTOREGRESSIVE PROCESSES )
:~- In many applications there is a need for higher-order nonGaussian
: autoregressive processes which mimic the AR(p) process given at (2). .
:{ However, the analog of the simple equation (6) is not available for p>1. In J
E fact, no direct solutions exist to equation (2), other than for Gaussian
. processes. We describe now several schemes which have been derived,
i starting with a very general mixture scheme and then dcscribing the NEAR(2)
3 process of Lawrance and Lewis (1985a). ]
?:-{ (1) Random Indexing (mixture models). ‘
55 We note that the first-order autoregressive models given above can be :
! written for the most part as random coefficient models of the form 'L
X =AX _ +BZ, n = 0,41,42,00, (19)
u with the usual independence conditions on the random coefficient sequences
‘ An and Bn and the innovation sequence Zn. Note, however, that for given n, X
:;fj the A ~and the B do not have to be independent. This is the case for the
. Beta model given at (17) above. Now the random indexing scheme (Jacobs and
: Lewis, 1983) is to replace the index n-1 in (19) by n-Sn. where Sn is a :
‘:;.- discrete valued random variable on 1,...,p with probabilities Tyt '.Tp and :
['.3: the S 's are assumed to be i.i.d. Thus, we have K
. ;
7 :
v :
= :
9
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o The Beta-Beta transform states that the product of two independent Beta
X random variables is a Beta random variable, so that Beta(a,B) +« Beta(a+B,Y)

= Beta(a,B+Y). Then the PBAR(1) model is given by

E Y

v
s

X, =1 -A(1-BX ) n o= 1,23, (1)

where {An} and {Bn} are independent sequences of i{.i.d. Beta(8,a-p) and
fn Beta(p,a-p) random variables. The single structural parameter in this
S scheme, p, determines the correlation structure of the process, .nich is

py(r) = {p8/ala+-p)}" = o", ro=0,1,2,%++; 0Sp<a. (18)

‘i Note that in this Beta process, the parameters a and 8 determine the
marginal distribution of the Xn's, and p can be freely chosen in the range

0 £ p < a to determine the correlation.

An important special case occurs when a=8=1 and the marginal distribution is
Uniform(0,1). This process is an additive random coefficient process in
Uniform(0,t) variables. Multiplicative Uniform(0,1) processes may be

obtained, for instance, by negative exponentiation of the NEAR(1) process

o
s s

)
PO

given at (8). The properties of the resulting two-parameter process have

not yet been investigated.

S

One should note here that the random coefficient approach is not the only

H5

way to generate a process with both a specified correlation structure and

o » . "
bt .
[ LA A

marginal distribution. There is another approach in the Engineering

literature which is to start with a Gaussian ARMA(p,q) process, filter it,

transform marginally using a probability integral transform to a
Uniform(0,1) marginal and then, via an inverse probability integral

\ .
‘ .1 LIS

transform, create the desired marginal distribution. The filter is chosen

’

] g (hart -

(4 M R I PR

. W, T
PR R s

to give, if possible, the desired correlation structure. Solutions are

known, for example, for an Exponential marginal distribution (Sondhi, 1983). !
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Another distribution which may be useful for modelling phenomena such as
North-South wind velocity components which, unlike the phenomena we have
considered before, are not inherently positive valued, is the symmetric
. f-Laplace distribution. Its characteristic function is ¢x(w) = (1 + wz)-z.
which for %=1 is that of the Laplace (or double-Exponential) distribution,.

For £ large, this is approximately a Gaussian distribution. For £ small, it

bl Senlndin

is peaked at x=0 and when &3 0.5, the density is unbounded at x = 0. For
the Laplace distribution, the NEAR(1) structure (and the NEAR(2) structure
given below) go through with analagous formulas to those for the Exponential
case (Dewald and Lewis, 1985a) and there is a square-root Beta f-Laplace
process which is the analog of the Beta-Gamma process (Dewald, Lewis and
McKenzie, 1985).

W T O

The Weibull distribution, as well as other extreme-value distributions, is
widely used to broaden the Exponential assumption for the marginal
distributions of stationary time series. Note that it is not infinitely
divisible and, therefore, is not type-L, so that there is no solution to the
equation (1). However, a Weibull-distributed random variable is a power-law
transform of an Exponentially distributed random variable, so that the
minimum structure (9) and the PAR(1) structure (12) give relatively simple

first-order autoregressive processes,

Situations do occur in which processes are required with marginal
distributions which are bounded below and above. One might, for instance,
be interested in modelling a sequence of probabilities, say the probability
of overflow at a dam on successive days. For this case, the Beta

distribution mentioned above provides a broad, two-parameter distribution

model which is widely used. McKenzie (1985b) has derived an autoregressive
" process for Beta random variables using the Beta-Beta transform. Thus, let

Beta(a,8) denote a Beta random variable with probability density function

xu-1(1 _ x)8-1
B(Go 8) !

f(x) = 0<x<1; a,B > 0. (16)

TR Y T,
SRR RN
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restricted ranges of the parameter p. Thus, the mixed Exponential (or
hyper-Exponential) distribution, with probability density function
U -xzx

1
x1e + nzx e 0 s LARLPY S1;

> e O 7

fx(x) =T, 1,A2 1+1r2-1. (15)

which is used to model phenomena which are more skewed than the Exponential
distribution, is not type-L. However, Gaver and Lewis (1980) gave some
sufficient conditions for a solution to exist and Lawrance (1980) gave
necessary and sufficient conditions on the parameters 8, k, p for the
solution to exist. The utility of these results are not clear, since the
Beta-Gamma process provides an alternative for skewed data which has, in
particular, a much simpler estimation solution. There are, however,
differences between the two distributions which might be important in
modelling.

(5) Ad-hoc Methods for First-order Processes.

Several of the more useful marginal distributions which have been used for
modelling marginal distributions in the physical sciences have associated
first-order processes. These processes are generally multiplicative or
additive random coefficient models, which again illustrates that the linear
model (1) may be a false starting point. The processes are generally
autoregressive in one of the senses given above. We consider these
processes briefly here for Laplace, %-Laplace, mixed Exponential, Weibull

and extreme-value distributions.

Lawrance and Lewis (1982) have shown that the switched structure given at
(7) has a solution when the Xn process is required to have the mixed

Exponential distribution whose density is given at (15). This includes the

zero jump Exponential distribution (1/A1-0). which might be useful for

modelling winds in areas where there is a positive probability of having an
amplitude of zero, i.e., being in the Doldrums.
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This Beta~Gamma process is a remarkably 'smooth' process in at least two
ways. First, the conditional density of Xn given xn_1 is continuous and,

therefore, it is relatively simple to get maximum likelihood estimates for
the parameters u, k and q (Hugus, 1982). Secondly, let p=(1-q/k). Then the
joint Laplace transform of xn and Xn is given by (Lewis, McKenzie and

Hugus, 1985)

-1

-k(1-p) -kp
¢(S1.82) f(1 + s1)(1 + sz)} (1 + s, * 32) . (14)
This result shows, first of all, that the process is time reversible, since
s, and s, can be interchanged in the equation, and secondly, that both the

1 2

regression of xn on Xn_ and the regression of Xn on Xn are linear. In

these respects the BeLa Gamma process is much Iike the Gaussian AR(1)
process. However, in modelling physical phenomena such as river-flows, this
smoothness may be a handicap. Thus, it is not possible to model °‘'runs-down'
in data, since for fixed k and y (marginal distribution), the structural
parameter q (or p) changes the correlation, but not the sample path
behavior. An extension of the process to a broader structure is given in
Lawrance and Lewis (1981); it combines the GAR(1) process and the BGAR(1)

process.
(4) Other Linear Models.

Other solutions to the first-order, linear, stochastic difference equation
(1), known as type-L distributions, are known (Shanbag and Sreehari, 1977;
Thorin, 1977a, 1977b), but generélly do not give simple, tractable
solutions. A case in point is the log-Gamma distribution. Results from
McKenzie (1982) for the PAR(1) process say that there is an innovation
random variable in this case, but it I3 not easy to even generate it, except
when the Xn's have a log-Exponential distribution. Another problem with use
of the linear equation (1) is that useful results may be obtained for
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MR the sense (1.i.a) or the sense (1.i.b) above; however, since p(r)-pr,
~7 r=1,2,¢++, it is autoregressive in the third sense. It is, of course, very

- nonlinear, in the usual sense of that term.

Y The last Gamma process we introduce is the Beta-Gamma process (Lewis, 1981)
Ef which has been detailed in Lewis, McKenzie and Hugus (1985). This is a
fﬁ: simple and very broad process which, in some ways, is an analog of the
- Gaussian AR(1) process. It is based on the Beta-Gamma transformation
(Lewis, 1983) which is as follows. Let X be a Gamma(m+n,B) variate and let
Lo Beta(m,n) be an independent Beta variate with parameters m20 and n20; then
T Beta{m,n)+X is a Gamma(m,8) variate. Using this result, we can construct
‘ the Beta-Gamma first-order autoregressive process, BGAR(1), as follows:

Let

Ef:j An’ n=1,2,+++, be i.i.d. Beta(k-q,q) random variables with q<k;
Bn’ n=1,2,+++, be i.i.d. Beta(q,k-q) random variables, independent
of the An's;
:{ Gn’ n=0,1,+++, be an i.i.d. sequence of Gamma(k,B8) innovation
-

random variables and let XO=G the Gn sequence is independent of

0;
~ the Anand the Bn sequence.

) Then

x =AX +BG ’ n-1’2,...’ (13)

T is a stationary sequence of Gamma(k,B) variates with p(r)-(1-q/k)r,
r=1,2,+++, The process is a random coefficient first-order autoregressive
process, and as such, is autoregressive in the second two senses given
above. The process is also Markovian. Note that in (13) the term BnGn can

be written as a Gamma(k-q,B) variate; the form (13) is convenient because it

z . 12 7/23/85

ljff expresses the process, {Xn}. as an autoregression on i.i.d. Gamma(k,8)
:ﬁ%f variates.
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from small positive values to large values, the random variable changes from
a highly skewed variable whose density is infinite at zero, to the
Exponential (k=1), to a Gaussian (k>50). The density is given by

£y (x) = akx¥ 1e™*8/p (k) 8>0; k>0 ; x20. (10)

Note that the mean, u = k/B8, i3 multiplicative and the Gamma random
variable, denoted by G(8,k) or G(u,k) may be written as, uG(k,k) or uG(1,k),
respectively. The associated Laplace transform is ¢x(s)-{8/(e+s)}k and (6)

yields, for the linear autoregressive process (1),
4(8) = (o + (1 - p)B/(B + )1, k>0; B8>0, (11)

which (Gaver and Lewis, 1980) is the Laplace transform of a proper random
variable. The linear, first-order autoregressive process (1) with this
innovation random variable is called the Gamma autoregressive process of
order one, GAR(1). This process actually was used in hydrology (Bernier,
1970 ) many years before its rediscovery; unfortunately, although it
includes and broadens the EAR(1) process, it too is defective. Thus, E is
zero with probability pk, which is very serious if k<1 (very skewed marginal
distribution). Also ¢E(s) cannot be explicitly inverted unless k is an
integer, although Lawrance (1982) and McKenzie (1985c) have found methods
for generating random variables with this Laplace transform.

McKenzie (1982) introduced a product autoregression process of order one,

:_'_:. called PAR(1), of the form

-

= x = xP E 0Sp<1 (12)
?-. n n-1"n’ !

F -

b

= but, although En exists for all values of the Gamma parameter k, it is only
[Z‘_‘:: possible to generate it for the Exponential case (k=1). Note that this
o process, since it is multiplicative in structure, is not autoregressive in
9

2
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denotes a sequence of i.i.d. Exponential(i) random variables, the minimum
process

xn = min(X__./p, Zn)’ (9) .

n-1
will have Exponential marginals and correlation structure p(r)-pr,
r=0,1,«++. Thus, the process is autoregressive in the third sense given
above, but the autoregression of xn on xn_1, while explicit, is not linear,
even in a random coefficient sense. Nor is the conditional expectation of
Xn' given Xn_1, linear, Thus, the first two forms of autoregression do not
hold. What is remarkable about this process is that it is a time reversed
version of the EAR(1) process given at (1). This result is due to Chernick,
Daley and Littlejohn (1983). 1In particular it shows that the process is
defective. DeHeuvels (1983,1984) has exploited this minimum structure even
further and has tried to show that all stationary Exponential processes can
be represented as infinite moving minima, However, this generalized minimum
structure does not admit Exponential processes with negative correlation and

is to some extent defective.

Many other first-order processes in Exponential random variables are now
known. For instance, one could add two independent Gaussian AR(1) processes
to obtain an Exponential process with geometrically decaying correlations.
Suprisingly, this process, while not explicitly autoregressive and not
having an explicit structure, has been shown to be Markovian. Another
interesting process which arises in the context of engineering geology has
been given by McCullagh (1983). Again, negative correlation is not
possible.

(3) First-Order Processes with Gamma Marginals.

The two-parameter Gamma distribution is a widely used model for the marginal

distribution of many physical time series. As the shape parameter k changes

10 7/23/85
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TIME REVERSIBILITY, HIGHER-ORDER MOMENTS AND RESIDUAL ANALYSIS

A recurrent theme in the models which have been described is that of time
reversibility and directionality. Gaussian linear models given by (2), with
extensions to mixed autoregressive-moving average structure, are time
reversible and are the only dependent linear models with this property
(Weiss, 1975). This can be a handicap in modelling, say, river-flow data,
which generally has quite marked directionality in its sample path behavior.
Models like the NEAR(2) process for Exponential marginals can accommodate a
wide variety of directionalities, either gross or subtle, in the sample path
behavior. On the other hand, the Beta-Gamma process is time reversible

unless it is extended by combination with the GAR(1) process.

It is important to note that serial correlations do not, in any way, reflect
directionality in time series. This is apparent from the well known formula
that p(r)=p(-r), r=0,+,1,+,*++, This suggests using higher-order moments or

their transforms, e.g. bispectra (see for example, Rosenblatt, 1980, 1982).

A simpler approach has been suggested by Lawrance and Lewis (1985a,1985b)
for processes which are autoregressive of order p, in the sense that their
correlations satisfy the Yule-Walker equations (4). In that case, the

linear autoregressive residuals

Ry = Xp = agXpoy = e aX n o= p+l,eee, (29)

are uncorrelated, although not independent unless the residuals are

generated by a linear process. It is this difference between lack of

dependence and lack of correlation which is exploited in the residual
2
5 n
process, or crosscorrelations between the Rn and the Rn process. This

analysis, which consists of examining the autocorrelations of the K

7/23/85



analysis actually involves higher-order moments of the {Xn} process, but

uses standard second-order statistical computations.

An extension (Lawrance and Lewis, 1985¢c) is to use reversed residuals.
Thus, since the correlations for the reversed process are the same as for
the original process, even if the process is not time reversible, the

reversed residuals

RRn = xn - a1xn+1 - o200 ~ apxn+p ns= 1’12'000’ (30)
will also be uncorrelated. An analysis based on both RRn and Rn is then
possible to determine linearity and time-reversibility in the time series
and correctness of the fitted models.

CONCLUSIONS

No attempt has been made to completely survey all the models for continuous
variate time series which have been proposed. Instead, we have concentrated
on marginally specific time series models which are simple in structure and
which would be used much in the spirit in which Gaussian linear models are
used in the so-called Box-Jenkins method. For hydrologic models which are
physically motivated, the reader is ref¢rred to Lawrance and Kottegoda
(1977) or Salas et al. (1980).
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