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SECTION I

rINTRODUCTION

Current trends in aircraft and space vehicle structural design have

significantly increased the possibility for interaction between flight

control and structural characteristics. In aircraft, to achieve the

full benefits of possible drag and weight reduction, One vehicle may be

designed for normal operation around neutral or negatively stable c.g.

lncations with active control systems to stabilize the rigid body modes.

Because the basic (unaugmented) aircraft ca-I be divergent, the closed-

loop system will have a minimum bandwidth requirement which can be

greater, whe adequate margins are provided, than the bandwidth needed

to augment a stable aircraft. This is all t'o likely to intrude on the

lower frequency flexible modes, with effects which must be considered in

the control system design. The flexible modes can either be stabilized

or have their effects on the system reduced by appropriate filtering.

Because low frequency effective lags are minimized, direct stabilization

of the lower frequency flexible modes is often a superior strategy in

contrast to signal suppression via notch or low pass filters. In other

cases direct control of the flexible modes is essential, as in the

direct reduction of wing root bending moment by control of aircraft wing

bending modes, or the alleviation of flutter characteristics by active

stabilization. Similarly in space vehicles, structures are projected

which have very large physical dimensions, light damping, and low rigid-

ity. Such systems inherently possess many degrees of freedom, some

characterized by eigenvalucs ot low frequency and damping which may also

be highly cross-coupled. There can be an overlap of the body and bend-

ing modal frequencies, requiring explicit consideration of the bending

modes in the control system synthesis.

From the standpoint of the flight control system designer the status

of the vehicle's flexible characteristics has fundamentally changed.

Previously these high frequency properties were ordinarily nuisances to

be countered by notch or low pass filtering. While these techniques are

st'll valuable for some modern and future craft, the flexible properties



of the vehicle will be central issues in most new designs. In these

cases the object. will be to actively intervene with the flexible mode3

usitig control techniques. Another technology trend is in the control

apparatus, which has become dominantly discrete or digital in character

in recent years. Digital systems are now commonplace in flight control

although most of the applications have not yet had to cope in a signifi-

cant way with direct control of flexible modes. Instead most of the

systems have again relied on the equivalent of low pass or notch filter-

ing and antialiasing filtering to reduce the impact of any flexible mode

effects on the primarily rigid body flight control system.

Following these trends in vehicle dynamics and controller technology

the study reported here is primarily concerned with the direct digital

control of highly elastic vehicles, including the exertion of positive

influences on the elastic modes themselves. The approach that is taken

in most of the report is to carefully select existing theory and well-

proven flexible vehicle control concepts. The case study method will be

used throughout to illustrate the applications. They are arranged in

order of increasing complexity, ending finally with a relatively com-

pietLe detig8I study uf a digital duLuinaLic flighLt ztutLul sysLtm fur

flexible and rigid body control of a fighter aircraft.

The next section of this report reviews the principal analytical

tocls to be used for digital design. These are the w-domain transfer

function for direct digital analysis stability assessment; the "hybrid"

frequency response for response assessment and indication of digital

system peculiarities; and the "sawtooth Bode" as the key control system

design concept.

Section III provides a detailed case study illustrating the hybrid

frequency resý3nse. Some of the peculiar features of digital, as con-

trasted O:ith continuous, control systems are revealed in a clear cut way

in this example.

Section IV presents two control system design examples for rigid

body and flexible control of a typical fighter aircraft. The aircraft

control problems are initially addressed with a continuous control sys-

tem design. Topics su;h as the control system feedback loop architec-

ture, the most favorable control loops, sensitivity and robustness

2



considerations, and the closed-loop system design assessment are

addressed. Then the design is redone using the discrete systems analysi.

tools. The overall feedback control architecture is the same as in the

continuous system since this is appropriate from the standpoint of the

basic physics of the aircraft and flexible mode control tasks. The

digital design is conducted first with a w-domain transfer function

treatment which emphasizes the effects of sampling rate. Stability

properties are explored both in the w and z-domain. Then the hybrid

frequency response is examined over a wide range of sampling conditions.

Section V brings in the subject of optimal control. In the first

article the flight control system design of Section IV is contrasted

with a previously accomplished set of optimal control designs for the

same vehicle. This comparison leads to many insights, such as the much

simpler, generally superior, and more practical features of the conven-

tionally designed system over the optimal version. This reflects the

relative maturity of the two techniques and is particularly useful in

illuminating some of the problems which optimpl formulations must over-

come to result in practical systems. The latter portion of this section

is an attempt to overcome some of the difficulties encountered with

optimal control approaches for flexible structures. An extensive liter-

ature shows that continuous or discrete regulators based on quadratic

indices and/or maximum likelihood estimators often lead to controller

transfer functions which are not only equal to the order of the system

being controlled but are also sometimes unstable and very often non-

minimum phase. Thus optimal controllers for flexible vehicles are

inherently very sensitive to both the modelling process and demand a

precise knowledge of the vehicle parameters. We illustrate by a simple

example that the control system complexity, e.g., the feedback of all

significant state vector components, can be somewhat relieved by using

physical rather than generalized coordinates. The tendency for optimal

approaches to yield nonrobust and occasionally nonminimum phase control-

lers is more troublesome. By another example we are able to show that

the adoption of an unusual optimal control performance index will yield

an extraordinarily robust and simple control system akin to those illus-

trated earlier using the more conventional procedures.

3



SECTION II

REVIEW OF ANALYTICAL AND CONCEPTUAL PRELIMINARIES

This study is primarily concerned with digital control systems for

flexible vehicles. The focus is on the application of existing discrete

systems analysis techniques and flexible vehicle control concepts rather

than the development of new theory. The bulk of the report is made up

of examples which illustrate behavioral features of digital controllers

as applied to flexible vehicles. So thdt the details of the examples

can be easily followed we will present, in this section, reviews of per-

tinent sampled data system analysis and flexible mode control concepts.

These will include:

0 w-domain transfer functions as the primary tool

for direct digital design and stability;

* the "hybrid" or "complete" frequency response as
the primary tool for response assessment and
understanding;

* the "sawtooth Bode" as the key to establishing
"phase stabilized" control systems for flexible
vehicles.

These topics will be treated in the above sequence in the following

articles.

A. THE w-DOMAIN

1. s, z, and w Transforms

The use of discrete (digital) flight controllers makes the augmented

aircraft a sampled data system, that is, a discretely controlled contin-

uous system. The anal: sis and design of such systems requires pro-

cedures and tools beyond those of continuous feedback control system

design. Since the late 1940's much work has been done in this area and

a wide range of methods for analysis and synthesis of sampled data

systems are available. This includes z- and w- transform techniques,

I4
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and procedures for multi-rate systems (e.g., Refs. 1-4). Because our

focus is on the special class of controllers appropriate to flexible

aircraft flight control system design, there are methods and approaches

that are of principal interest and value. These particular sampled data

methods were selected because o[ their power in connecting peculiarities

introduced by the digital features to the well understood dynamics of

the aircraft. This is especially desirable because of two considera-

tions. The first appears naturally in FCS development simulations,

where digital controllers are being assessed with simulated aircraft

dynamics. Most simulation laboratories have now been converted to digi-

tal computers, so the continuous aircraft dynamics are conventionally

simulated as "digital" aircraft. Because of the complexity of complete

aircraft equations, simulation up-date rates for the vehicle are often

quite low when compared with those of the controller. Consequently, the

dominant "digital system" in a simulation may be the aircraft itself!

The second consideration is the ever present concern with achieving good

flying qualities. The FCS designer needs sampled data analysis tool3

which are not only good computational algorithms but which can aid in

dealing with the impact of the digital controller on flight control sys-

tem simulation and flying qualities issues which are often more qualita-

tive than quantitative. To this end one of the more important uses of a

digital analysis method is to aid in the interpretation of AFCS simula-

tions and of pilot ratings in simulations or flight tests. Consequently

discrete systems analysis techniques which parallel familiar continuous

procedures to the maximum extent are most desirable.

The behavioral complexities Ictroduced by discrete controllers arise

from the implementation of the control laws as difference equations in

the flight control computer and through the sampler and data hold ele-

ments required at the analog/digital interfaces. Thus for linear trans-

U form analysis the Laplace transforms of the continuous case become pulse

transf.cms for the sampled data aircraft. A logical point of departure

is to consider how the sampling operation may be analyzed. Figure la

indicates the action of the sampler idealized as a switch which closes

for an instant every T seconds. When the continuous function of time

5



f(t) shown at the left in Fig. lb is sampled a time series represented

hy tIe points at T intervals, as shown on the right side of Fig. ib, is

generated. The information in this time series can conveniently be

rupresented by a discrete function fT(t) which is related to the contin-

utous function f(t) by

fT(t) = f(0)6(t) + f(T)6(t - T) + f(2T)6(t - 2T) +

(1)

Z f(nT)6(t - nT)
n=O

where 6 is the Dirac delta (or unit impulse) function and the super-

script 'T notation indicates that f(t) is sampled every T seconds. The

impulIse train serves to establish the sampling times for the time

e;cries, while the area of a particular impulse sets t-e time series'

va]lb ad thiat instant. Sampling may thus be viewed as impulse (ampli-

t,idc) modulation, i.e., fT(t) Is produced by modulating a train of unit

impulses with f(t) as indicated in Fig. Ic.

The sampled signal may he Laplace transformed (Ref. 1) to give

FT(s) C[fT(t)] - I f(nT)e-snT (2)n-O

This does not lead immediately to a transfer-function-like quantity

because Eq. 2 Is not a rational polynominal but rather is transcendental

in -3. The traditional solution to this problem has been the use of the

z-tianstorm. This is accomplished by mapping the complex variable s

Into the complex variable z according to

/ = e (3)

6
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The z-transform, Z fT(t)], is then defined as the transformattor. which

maps a time domain function (the sequence fT(t)) into a complex valued

function F(z), of the complex variable z, according to

F(z) = z[fT(t)]

E f(nT)z-n (4)
n=0

= [Fr(s)iesT=z

z-transforms can be expressed as rational polynomials (and thus as poles

and zeros) in the z-domain. For example consider f(t) = e-at,

F(z) = e-anT z-n
n=O

1 + e-aT z-1 + e-2aT z-2 + ... (5)

+ eaT +eaT 
2

:~ z - -- + ..

1 z

I - (eaT/zJ z - e-aT

While the z-transform method is quite u.1able from a purely computa-

tional standpoint, it has certain disadvantages for aircraft FCS design.

The s-plane is distorted by the z - esT mapping as shown in Fig. 2. The

unit circle replaces the imaginary axis as the stability boundary and in

large order systems poles tend to cluster near this circle, giving the

designer very little insight about degree of stability. Simple boundary

contours of wn, •, etc., ini the s-plane are quite distorted in the

z-plane, which means that familiar flight control system and flying

qualities specifications (e.g., those of the MIL-Specs) must be trans-

formed and reinterpreted.

8
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A much more serious objection to the z-transform is the loss of

immediate connections between the z-domain poles and zeros and the air-

craft configuration parameters -- stability derivatives. For many

applications of digital control to complex plants the designer may not

have a well developed physical insight for the plant, but the aircraft

FCS dynamicist evolves a FCS design based on an intimate understanding

of the aircraft-alone poles and zeros and the factors which influence

them. For instance, the physical insights and literal approximate

factors which derive from the s-domain Bode magnitude asymptotes are

especially valuable, yet are not available in the z-domain. Fortunately

most of these objections can be eliminated by using the w-transform

instead of the z-transform for sampled data analysis.

The complex variable w can be developed from the complex variable z

through the bilinear transform,

2 z-lz--• 6
w (Z (6)

z is also a bilinear transform of w, i.e.,

w + 2/T (7)

w- 2/T

w can also be determined directly from s by noting

2z z- 1) 2 esT - 1
T z + I T esT+ 1

(8)

2 Ts
T tanh -

The mapping of s into either the z or w domain is illustrated in Fig. 2.

These transformation diagrams are given with a larger scale in Appen-

dix B.

10



The w-transform, W[fT(t)], is defined as the transformation which

maps the sequence fT(t) into a complex valued function F(w) of the com-

plex variable w according to

F(w) = W[fT(t)]

OD f(nT) I + Tw/2 -n
n=O T - Tw/2T

= [F(z)] w + 2/T

Z= w - 2/T

The last expression in Eq. 9 provides a practical way of obtaining the

w-transform if the z-transform is available (say from a z-transform

table) by using Eq. 7 to replace the z's with w's.

The correspotndence between a given F(s) and its F(z) equivalent can

be summarized in convenient transform tables (e.g., Ref. 1). The first

two columns of Table I provide a rudimentary version of such a table.

If a traaisfer function G(s) is isolated by samplers as showr. in Fig. 3a,

then G(z) can be found either directly or via partial fraction expansion

from the elemental forms of G(s) given in Table 1.

In practical syrtems the continuous elements are not subjected to

impulse train inputs. Instead a data hold of some type is present, as

shown in Fig. 3b. The data hold is a physical device which takes the

input signal samples, RT, and constructs a continuous signal which then

forces the continuous system represented by G(s). It is a coupler

between discrete and continuous system elements, and typically includes

digital to analog conversion. When this coupler is a zero-order hold,

its transfer function (see Fig. 3c) is,

M°(s) = -sT (10)

The presence of the hold will modify the z transform of interest. Con-

sider the earlier example where f(t) = ae-at. If this is presumed to
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be the impulse response of a system element having a transfer function

G(s), then
a

G(s) a (II)s + a

As developed in Eq. 5 and shown in the fourth row, second column of

Table I the z-transform is

G(z) =- az
z - eaT

When the data hold is included

a( I - e-sT)C(s) M•(s) 5( +a)(12)
s(s + a)

pThe z transform of this is

[M]T esT)T

s(s + a) (

I 1 IT
T [(I e-sT) (n s ua t b)

The factor (I - e-sT) - z-l),an s nfetdby he apig

operator, 
so

[GM T (z- [- I a I T

z s s+a

z -1,z z (14)= ( I'z 1 z e-aT

(1 - e-aT)

z - eaT

This result corresponds to the "z-plane (ZOH)" entry in the third column

of Table 1. The entries in this column are converted to the w transform
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form, in the fourth column, using Eq. 9. In its now complete form,

Table I illustrates several examples of the connection between s, z, and

w-domain transfer functions. A key point to notice there is that the w

transforms, when viewed as transfer function-like entities, all exhibit

a right-half plane zero at w-- 2/T. This, of course, stems from the

sample and hold. When loops are closed around w transfer functions this

zero has the expected but unfortunate property of drawing the loci from

some system pole(s) toward or into the unstable region.

The three great appeals of the w-domain are:

* Stability boundaries are again associated with
the entire left half plane rather than the unit
circle.

* w approaches s as the sampling interval
approaches zero, i.e.,

w 2 tanh Ls
T 2

2 rTs I (Ts 3 2 •Ts 5ILI- ' • j • T -•- - ' (15)

+ s, as T + 0

The poles and zeros in the w-domain are very
close to those ii, the s-domain for poles or zeros
which have magnitudes much less than 2/T.

As an example of the last point consider the first-order lag

a/(s + a) plus zero-order hold as converted to the w-domain.

2  -e aT _ - )

a T 1 + e-aT

;+ a 2 1 - -aT
•i---T + e-aT')

Tw-

a'l) -yT-J

w + a'

15



where a' = (2/1)(1 - e-aTI/(I + e-aT) - (2/T) tanh (aT/2). Using the

hyperbolic rangent series expansion the value of a' becomes,

a [ I - a T |21 2 a T 4

32 F 4

For sampling rates which are high relative to the s-plane pole magnitude

a, i.e., for aT/2 << 1, a' is very close to a and the s-plane pole at

s = -a is an excellent approximation to the w-plane pole at w = -a'. At

lower rates (or lacger values of "a") the effect of sampling is to

reduce the magnitude a' of the w-plane pole relative to the s-plane pole

magpitude, a. The close connection between w and s poles and zeros

which are much less than 2/T in magnitude, and the "distortion" for
other conditions can be seen in Fig. 2. Here ; and wn contours mapped

into the w-domain are only slightly distorted near the origin (e.g.,

below I/T).

As a consequence of these features, many continuous system design

procedures and represenLations can be carried over into the digital

world. Bode diagrams, conventional and Bode root loci, transfer-

function based multiloop analysis procedures, and many rules of thumb

will all work well 'using w as the complex variable in place of s.

If these concepts are now applied to FCS analysis considerations the

first-order effect of sampling is to introduce the rhp numerator zero at

2/T, while the second-order effects are to change the magnitude of the

poles and zeros in the w transfer functions from those of the s-domain

transfer function. Ordinarily the FCS sampling rate will be large rela-

tive to the FCS frequencies of interest (except, perhaps, for flexible

modes) so the addition of a zero at w = +2/T to the regular continuous

transfer functions with w substituted for s will often provide an ade-

quate approximation for FCS stability and dominant mode response pur-

poses. When higher frequency modes impinge on the sampling region these

approximations no longer apply and the more exact w-domain poles and

zeros must be used.

16



With the high sample rates of next generation digital FCS for manned

aircraft the sampling effects noted above are not as likely to cause

trouble on the actual aircraft as they are earlier in the simulation

phase of development. There are particular concerns with closed-loop

man-in-the-loop simulation with actual hardware. In a typical simuta-

tion the aircraft characteristics may be programmed onto a digital com-

puter which may also run a moving-base apparatus and parts of a visual

display attachment. As already mentioned the mathematical models of the

vehicle may be very complex and include many nonlinear characteristics,

lots of lookup tables, and so forth. The result often is a simulation

which represents a continuous airframe by a fundamentally digital char-

acterization with relatively low update rates. Now, when an actual

digital flight controller with a frame rate of 80-100/s is used in con-

junction with a 20/s digital simulation of a continuous airplane, the

simulated stability and control properties of the aircraft will suffer

phasing and timing shifts. If these "digital airplane" effects are not

properly accounted for the basic aircraft/augmenter system ay exhibit

difficulties which are really only imaginary. There have been times

when the actual airplane was needed to fully appreciate the FCS capabil-

ities!

2. An Elementary Roll Control System Example

To illustrate some of the features of the w-domain analysis pro-

cedures we will consider the elementary roll controller shown in Fig. 4a

as an example. The actuator and sensor dynamics are assumed to be

negligible, and the aircraft is represented by an idealized */ 6 a trans-

fer function in which the spiral mode is neutral, the quadratic numera-

tor term cancels the Dutch roll denominator term, and the roll subsi-

dence time constant, TR, equals )/,. The flight control computer, actu-

ator, and other elements comprise a gain, sampler, and first-order hold.

17
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a. Open-Loop Transfer Function Characteristics

When the system is presented in its simplest terms it appears as

Fig. 4b. The effective open-loop system s-domain transfer function is,

Gs(s) a (s K + a)

(16)

K
"a s s + a

This does not include the zero-order hold because the conversion from

the s to the w-domain will be accomplished using Table 1 which takes

this into account. The partial fraction form of Eq. 16, and the entries

of column 4, rows 1 and 4 of Table 1 yields the w-domain transfer func-

tion which, after some manipulation, becomes

2 aT 2 aT T

(K/a) [w (I - tanh ---J + tanh-- (--w 1)
(w)T L 2 2G~)2 aT

(w + I tanh 2-)

(17)

K/a [w (I- (tanh u)/u) + a (tanh u)/u] (- +w 1 )J

w (w + a (tanh u)/u)

where aT/2 u. When viewed as an open-loop transfer function analogous

to Ge(s), the major effects of the sampling and hold exhibited in G(w)

are

* . right half plane zero at 2/T is introduced;

S A second zero, -zl, is also introduced, resulting
in a transfer function numerator which is the
same order in w as the denominator;

* A sampling effect scaling pa'ameter, u - aT/2,
appears and affects the system's poles and zeros.

19



The first point was anticipated from the development of the w-transform

with zero-order hold. The second point is typical of G(w) transfer

functions which can be considered to be generalizations of the continu-

ous system transfer functions. The additional zeros introduced by the

sample and hold operations tend towards infinity as the sampling inter-

val approaches zero.

Both the second and third features are made even more evident if the

w-domain pole, -a (tanh u)/u, is called -a'. Then G(w) becomes,

[K/a) [w LI - a'/a) + a'] (- - w 4 1)
G(w) =

w Lw+ a')
(18)

K_ a')] Lw + zl) Lw - 2/T)-•-u~i -- 2)] [
a2 a w ý4 " A j

where

- a'ia (tanh u)/u
z - a'/a I - t(tanh u)/u]

The relative "pole-zero" orders are such that z, > 2/T > a'. Considered

as an open-loop transfer function analogous to G (s), the very-low "frd-

quency" gain [sometimes called the Bode gain], is K/a for both G(s) and

G(w). The very-high "frequency", or root-locus, gains are quite differ-

ent, being simply Y. for the continuous domain, and

K 
I_(I _____LS ' K' tanh. u I a ) .u _ (19)

for the w domain.

The variations of the normalized magnitudes of the poles and zeros

with the normalized sampling interval (aT/2) for the G(w) transfer func-

tion are shown In Fig. 5. Note that the open-loop pole is shifted less

than 10 percent even when the sampling rate in hertz (l/T) is equal to

20

.



S15

ao/ I/u

.5- 5I , /a• --

!0 I1 2I
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with Normalized Sampling Int~erval

the magnitude of the pole (i.e. , at u -aTI2 = •/2). At this same

normalized sampling frequency the high "frequency" minimum pnase zero,

-/a> 11. So these two quantities are not shifted, in a practical

sense, very far from their continuous values at this quite low sampling

frequency. The non-minimum phase zero at 2/T, on the other hand, is

very much in the picture at this value of u, and will have a major

impact or. the closed-loop system properties.

b. System Stability

Because the left-half of the w-plane corresponds to stability the

Sclosed-loop characteristic equation, 1 + G(w) - 0, can be examined for

stability just as far the continuous case. Forming I + G(w),

G(w)0 + - Aw2 +Bw+C = 0 (20)
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where,

KT a') K KTKh

-f - a aT

a a a 2

(21)

tanh u +K tanhu ( )]
it a +

C =K K tanh u
a u

The coefficient C is always positive for a stable continuous system, for

which the only criterion is K > 0 (assuming the roll subsidence inverse

time constant, "a-, is positive). The leading coefficient, A,

approaches 1 as the sampling rate approaches infinity, so A is positive

for high sampling rates. A transition from A > 0 to A < 0 will occur

when,

KT a' ) KT (22)+2-a [a -2a (2

A will be zero when

a2  - u -tanh u (23)
K

An instability criterion based on A changing from positive to negative

then becomes

K 1 (24)

a 2  u - tanh u

This criterion is shown as a stability boundary in Fig. 6.
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Figure 6. Stability Boundaries

Another stability boundary can be found by determining when the

'closed-loop w-plane damping" coefficient, B, becomes zero. This is

given by

K = tanh u (25)

a 2  (1 + u) tanh u- u

This boundary is also shown on Fig. 6. The two boundaries intersect

when the normalized sampling parameter u u uc.

When u is less than u., the governing stability boundary is given by

B = 0. Then any instability will show up as a negatively damped quad-

ratic in the w-plane. A root locus sketch showing this situation is

23
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given in Fig. 7b. Because the B = 0 boundary is asymptotic to 1, in

this case any gain less than K/a 2  1+ will result in a stable system

without further conditions.

14hen the normalized sampling interval is u > uc, the governing sta-

bilicy criterion will be A = 0. The critical value of u will occur at

the transitional condition where A = B. This can be shown to be

tanh2 u 4- tanh u - u = 0 (26)

Solving Eq. 26, the critical value for u is

uc 1.860 (27)

When the A f 0 boundary applies the instability is indicated by a

closed-loop right half w-plane real root. This can occur at relatively

low values of gain. In fact, as can be seen by examining Fig. 6, gains

for instability corresponding to the A = 0 boundary will ordinarily be

K/a2 K I+.

The same transitional conditions can be interpreted using the

w-plane rooL loci. These start from the w-plane open-loop poles at zero

and -a'. The zeros at 2/T and -zI (as well as the pole at -a') depend

on the normalized sampling parameter, u. When u is such that the con-

stellation is as shown in Fig. 7c, there is a perfectly balanced sym-

metry among the poles and zeros. For this case as gain is increased

from zero the closed-loop poles will progress from the two poles towards

each other, rendezvous, and proceed along a straight line parallel to

the imaginary axis. At the transitional gain, corresponding to the A -

B point in Fig. 6, the closed-loop poles are at infinity, where they

split into two real roots. Then at higher gains still these real roots

will drive from plus and minus infinity along the positive and negative

real axes towards the zeros.

24

S. i~ i - o i• - ° , .. , . "* •° o.



=0:5 jw

K/a
2 =I

s- plane

-o

a) s-plane Root Locus for Gs (s) K

w-plane B 0

-ZI 2/T

b) w-plane Root Locus for G (w)-; U < Uc

w - plane
-z -a/ 2/T

ZI -2/T

c w -plane Transitional Conditions, (z, - a') -2/ T

Figure 7. Roots of w-plane Constellation for
Transitional (A=B; u=u ) Conditions

C

25



This example is very instructive in that it demonstrates a great

deal of interesting behavioral possibilities introduced by sampling. At

the outset, as already remarked, the continuous system cannot be

unstable for positive "a" and K (see Fig. 7a). The most common instabi-

lity of the sampled system, corresponding to relatively high sampling

rates (i.e., u < uc) results in negatively damped w-plane closed-loop

roots (Fig. 7b). These can only occur at quite high gains, i.e., K/a 2 >

1. It is worth noting that the closed-loop damping ratio in the contin-

uous case corresponding to the lower gain bound for this condition (K =

a 2 ) is C = 1/2, which is approaching marginal conditions. Of course,

the sam'2 gain for a sampled condition will result in a 6maller effective

w-plane damping ratio because of the tendency of the zero at 2/T to suck

the closed-loop quadratic into the right half plane (a tendency which is

not present in the s domain at all). The possibility of an instability

corresponding to a w-plane real root (for the A < 0 case) has no paral-

lel in the continuous case.

B. TRE HYBRID FREQUENCY RESPONSE

Use of the w-domain permits many of the key problems of digital con-

troller design to be addressed in a direct and effective way. In parti-

cular, stability issues and system compensation possibilities can be

examined with techniques, such as w-plane and Bode root locus methods,

which are analogous to continuous system analysis procedures. The

effects on stability of lags and "new" leads introduced by sampling can

be identified, assessed, and accounted for exactly.

While stability is well-handled using the w-domain and conventional

techniques, digital systems introduce other effects which do not have

continuous system parallels. In a continuous system the features (e.g.,

system poles and zeros) affecting stability and the features affecting

system response are the same. This is not quite the situation in a

digital system. For example, in a constant-coefficient linear system, a

sinusoidal input will force a component of output response which is also

sinusoidal at the same frequency. In the sampled system a sinusoidal
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input will beget an output component at the same frequency plus an infi-

nity of frequencies which are sums and differences of the forcing and

integral multiples of the sampling frequency. This is a direct conse-

quence of the impulse train modulation feature of sampling, and the

appropriate analogy is amplitude modulation (as in carrier servo sys-

tems).

The w-domain deals exactly, but specifically, with the system's

characteristics only at the sampling instants. The modulation products,

on the other hand are primarily exhibited during the inter-sampling

intervals. Accordingly, the assessment of the total response character-

istics, including the "control roughness" or inter-sample ripple intro-

duced when the discrete system elements are coupled with the continuous

components via data holds requires another approach.

These effects are most easily considered using the "hybrid frequency

response" developed in Refs. 2 and 4. The name "hybrid frequency

response" is used to emphasize that it is a continuous frequency

response of a continuous plant with a d1screte controller. It, there-

fore, by definition involves the complete spectrum of the output of the

continuous elements of the system -- all of the higher frequency sum and

difference frequencies generated by the modulation are included as well

"as the fundamental output which corresponds directly to the input. [The

hybrid frequency response should not be confused with the "sampled spec-

trum," in which one finds the lowest frequency sine wave that fits the

sampled response at the sampling instants.]

The hybrid frequency response function permits one to determine the

amplitude ratio and phase shifts imparted to a sinusoid inserted at the

input as it is converted to an output component, and also provides data

on the infinity of modulation products generated in the process. Con-

struction of the actual output time response requires consideration of

all of the components.

When contrasted with the frequency response for a system with a con-

tinuous controller the hybrid frequency response is very similar at

27



lower frequencies. There is a significant difference in the low fre-

quency phase, amounting to a phase lag increment for the discrete system

which is given by

A --- (28)

This phase lag effect is just what is expected as the low-frequency

consequence of the non-minimum phase zero at w = -2/T. Because the low-

frequency phase shows clearly the delay introduced by the sampling and

hold processes, and the amplitude ratio and phase includes all of the
modulation products, the hybrid frequency response reflects all of the

important effects introduced by the digital controller.

To develop the hybrid frequency response assume that a unit sinu-

soid, r(t) = I sin bt, is applied at the input of the sampled system

with data hold given in Fig. 3b. Then, following Ref. 4, the Laplace

transform C(s) of the continuous output will be

C(s) = G(s)M(s) 1 Wn (29)
T 52 + W

n

where wn = b + 27rn/T% and M(s) and G(s) are the transfer functions of

the data hold and the continuous system respectively. The partial frac-

tion expansion of Eq. 29 may be written as

C~) =An(i~n) Bns)=n=- s2 + n + s2 + 2 + [Transient modes of GM) (30)

Multiply each side by s2 + w2 and evaluate at s Jwn:

C(s) (s2 + = Anwn + BnJwn

= G(s)M(s)(1/T)wn (31)

An + jBn (1/T)G(s)M(s)I=jWn , n 0, *1, 2.2,

28



Thus the continuous spectrum contains, because of the summation from

-• to +-, both positive and negative modulation product frequencies.

As an example, consider a zero-order hold for M(s) and a continuous

system given by a first order lag, G(s) = M/(s + 1). Then,

An +(32) sT s 4 1~~~

This is seen to be the frequency response of the continuous system,

1/(Jw + 1), multiplied by a "frequency response" corresponding to the

sample and hold, i.e.,

1- e-juT -JwT/2 LeJwT/2 - e-JwT/2J

JwT ( 2(JwT/2)

(33)

sin wT/2 etJwT/2

The incremental phase, At = wT/2 is the predominant low frequency

effect due to the sampling and hold operations. The amplitude ratio,

(sin wT/2)/(wT/2), introduces an infinity of notches, located at

w = 21/T, 41/T, 61/T, ... etc.

The Bode plot of this hybrid frequency response is presented in

Fig. 8 for T = I second.

To interpret Fig. 8 suppose a unit sine wave at 1 rad/sec is

inserted to the sampler. Then, if sine waves with the amplitudes and

phases corresponding to those shown at 1, 1 + 2i/T, I - 21/T, I + 4u/T,

I - 4n/T ... are added together, the resultant waveform will be an exact

match of the actual steady-state output waveform. In Fig. 8, one may

plot the negative frequency modulation products on a "positive fre-

quency" Bode plot by taking advantage of the fact that the magnitude is

an even function of frequency and the phase is an odd function of fre-

quency.
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One might expect this waveform to be relatively clean, since the

first modulation product is 30 dB lower than the input component. How-

ever, the output response itself does not bear out this conjecture, as

can be seen in Fig. 9. The reason that the higher frequency terms are

important is that they are not "harmonic" terms which slightly distort

periodic waveforms but are rather modulation components which add

together to match conditions at the T transition points. It can also be

seen that the "steady state" does not necessarily take on the additional

attribute of periodicity. This occurs only when the input frequency and

the sampling frequency bear an integer relationship with respect to one

another.

C. SAWrOOTH BODE - QUADRATIC DIPOLES

The basis for flexible mode stabilization in continuous control

systems is thoroughly explored and exemplified in many sources, includ-

ing Refs. 5 and 6. The basic idea for achieving simple and robust sta-

bilization is to insure an aopropriate "Sawtooth Bode" situation for the

open-loop characteristics. This will be reviewed below for the simplest

example possible -- a quadratic dipole representing the dynamics of a

f lexible mode.

)uadratic dipoles in the crossover region of some feedback loop or

other ir,, ubiquitous in flight control practice (Ref. 7). Among the

ýppiicattons are flexible mode control. The essence of what can happen

is indicated in Fig. 10. This considers an open-loop system which can

bc approximated in the region of crossover by:

2•

K:s 2 + 2 + KrN,
G( s) L N--___+_ - (34)

sI-2 + 2 1DWDS + !A) SLD, 4D1

In the idealized situations illustrated the closed-loop quadratic mode
t t -

D , u)DI progresses as open-loop gain is increased from the open-loop

pole L:i, ')DJ to the open-loop zero [kN, wN1, in a counterclockwise

direction along a circular segment. Thus, when the pole is smaller than

the zero, the closed-loop roots depart toward the right-half plane and

3i
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suffer a damping decrease, whereas the reverse is true when the numera-

tor, v)N, is smaller than the denominator, 't. The maKxmum diminution or

increase in damping is connected with the maximum phase deviation, due

to the dipole, from the phase angle contributed by the rest of the sys-

tem. This is given by:

2(CN + 4D) JwD - (N

AO(wN, w)max -- tan- + 4 ND (

wD •N

When wN/W D is near 1, this becomes approximately:

A• WD -tan- IN + D ((36)max 2(hND "D

When wN!/wD > 1, the incremental phase is a dip resulting in a decreased

phase margin (when crossover occurs in the dipoLe region) over that

which would be present without the dipole. Conversely. 'J/wD < 1

implies a phase lead blip and an itcreasvd phase margin. '. greater

the blip, the larger the attatnable closed-loop damping ratio, ;;.

All of the ramifications implicit in the idealized situations above

are exhibited in practical control situations. When wANN/WD > 1 the pres-

ence of the dipole and its associated phase dip is a distinct nuisance,

often causing instability or marginally stable operation. Conversely,

the presence of the dipole is advantageous in that the phase blip con-

nected with w N/WD < 1 situations permits the closed-loop damping to be

increased over that available open-loop.

When applied to a single isolated structural mode the same phenome-

non will occur. This is developed in Fig. 11, for the case of an ideal-

ized longitudinal control system involving the short period and first

fuselage bending modes, with a pitch rate gyro as the controller sensor.

The analysis there is very elementary, resulting in the simple rule of

thumb that rate gyro locations with positive mode shap,- slopes, 4j, will

create the proper conditions for phase stabilization of the mode being

considered.
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This is one special case of the old rubric used by flight control

designer's for decades. In the words of Ref. 8, for example, "If only

one set of instruments is used in one plane for several bending modes

ti.- l)cation of the sensing Instruments ... has to be selected so that

the [mode shape] slopes of all the bending modes have the same [and

appropriate] sign."

In general, regardless of whether rate gyros, accelerometers or com-

binations are being considered as the sensors, the key to stabilization

possibilities is the presence of a positive phase blip in transfer func-

tions relating the sensed quantity to the control effector to be used.

The wider and larger this blip is, the better the attainable closed-loop

damping ratio will be. Conversely, the presence of a marked phase dip

can often be the indication of either a nuisance or more serious insta-

bility problem.

i
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SECTION III

HYBRID FREQUENCY RESPONSE CASE STUDY

In the last section the fundamentals of flexible mode control and of

the hybrid frequency response were reviewed as separate entities. In

this section the two topics will be brought together to explore the

hybrid frequency response concept more fully for a system which contains

terms representing flexible modes. The example problem will still be

somewhat idealized to permit a clearcut illustration of some of the more

interesting phenomena. To provide an easy to follow treatment through

the many graphical representations, the section is laid out so that text

presented, faces the figures being described.

A. THE EXAMPLE SYSTEM

The open-loop effective vehicle characteristics relating pitching

velocity to elevator deflection for the example are given by the trans-

fer function,

G(s) = q = Ks 2 + (8)21 ýs2 + (80)21 (37)6 e sis 2 + (10)21 [s2 + (100)21

The free s in the denominator represents a high frequency approximation

to the rigid body characteristics, and two flexible modes are present at

10 and 100 rad/sec, respectively. Thim; transfer function would be typi-

cal of that achieved with an appropriate rate gyro location such that

the numerator quadratics for the first two sensible modes, at 8 and

80 rad/sec, are both less than their associated eigenfrequencies. With

this pole-zero configuration a simple pure gain controller yields a

highly robust and effective control over the damping of the flexible

modes. That is, as the loop gain of the continuous controller is

increased the root locus from both the poles (with undamped natural fre-

quency at 10 and 100) depart into the left half plane and proceed in

nearly semi-circular segments toward their respective zeros. The

attainable damping in either mode depends primarily on the pole-zero

separation associated with that mode.
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A typical example of a closed frequency response for a continuous

design is shown in Fig. 12 for K = 10. Closing the loop has greatly

increased the damping of the first flexible mode (10 rad/sec), whereas

the second mode is hardly affected. The phase between phase blips

always approaches -90 deg. The high frequenicy amplitude ratio of the

second flexible mode decreases uniformly with a slope of -20 dB per

decade. Thus there are no disruptions in the smooth, ever decreasing

amplitude ratio and essentially constant phase above the second mode.

A block diagram and "hybrid" frequency response for a sampled data

control with I/T = 50 Hz and zero order hold is shown in Fig. 13. This

frequency response is computed using the Ref. 4 techniques reviewed in

Section II. As noted there, the amplitude ratio and phase of an output

sinusoid generated by a sinusoid inserted at the qc command point can be

read from this response function as well as the infinity of modulation

products also present. Construction of the actual continuous system

output time response requires consideration of all of the output power.

When constrasted with the frequency response for the system with the

continuous controller the hybrid frequency response is very similar at

frequencies up to and just beyond the second flexible mode. As antici-

pared in Section II (Lq. 28) there is a difference in the low frequency

phase. The discrete system phase includes an incremental lag which is

approximated by

¢=
2

The phase increment is approximately 45 deg at w 80 for the 0.02 sec

sample period (i.e. , T/2 A 0.01 second). It indicates the low frequency

effect of sampling, and corresponds to an effective time delay of 1/2

the sampling interval.

The higher frequency effecLs begin to show up at approximately

210 rad/sec and even more so at approximately 300 rad/sec with other

fluctuations at higher frequencies. Both the amplitude ratio and phase

are in marked contrast with those of the continuous system (c.f.
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Fig. 12) at these frequencies and represent the folding consequences of

sampling. As anticipated 1y considering Eq. 33, there is a major ,.otch

in the amplitude ratio at thc( sampling frequency, 314 rad/sec. AlL of

these high frequency effects are typical 1f sampled data phenomena.

B. OUTPUT RESPONSE FOR SINUSOIDAL INPUTS

While periodic sampling is a linear operation it does introduce

peculiar consequences when contrasted with a constant coefficient sys-

tem. As reviewed in Section 11, in a sampled system a sinusoidal input

will beget an, output component at the same frequency plus an infinity of

frequencies which are sums and differences of the forcing and integral

multiples of the sampling frequencies. In general, the output may not

even be periodic. To illustrate some of these points the system shown

in the block diagrnm of Fig. 13 will be used as a test case for seve-da

different input sinusoids. First, in order to provide solnewhaL fore

damping on the second flexible mode, the open-loop gain will he

increased by a factor of 4. The closed-loop system hybrid frequency

response for this system Is shown in Fig. 14, again for a sampling time

of 0.02 sec (501 Hz sampling frequency). On these scales the modulation

products at about 210 rad/sec and the sampled notch at 314 rad/sec, as

well as the higher frequency modulation effects, show up more dramnati-

cally than on Fig. 13. The first-order effect of the lag underlying the

effective delay is also plainly evident when contrasted with Fig. 12.

Figure 15 shows two output waveforms in response to a sinusoidal

forcing function. In both cases the frequency of the input sinusoid is

less than the sampling frequency. In Fig. 15a the input freqUency is

Ws/30. The output appears to be essentially sinusoidal with just a small

delay, as would be expected. it is very similar to the output of a con-

stant coefficient continuous system with an incremental effective delay.

The output waveform for an input frequency much closer to the sam-

pling frequency (ui = ws/4) Is shown Fig. 15b. This is an extraordi-

narily contaminated response and shows no similarity to the single sinu-

soid that would be expected in the continuous system case.
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Discretely Controlled Flexihle Vehicle, K = 40 and
T = 0.02 sec (ws = 314 rad/sec)

Both of the responses shown in Fig. 15 are periodic, albeit Fig. 15b

4s quite complex due to the modulation effects. If the forcing function

f requency is incommensurate with the sampling frequency the ou0tput wave-

form will, in gcreoral, be non-periodic. As might be expected, the

departure from periodicity for a forcing function very low in froquency

compared to the sampling frequency will be hardly noticeable.

C. EFFECTS OF SAMPLING INTERVAL ON HYBRID FREQUENCY RESPONSE

We will now examine a cross section of systems as the sampling

intervals are modified. The system is still that shown in the block

diagram of Fig. 13, but with a loop gain of 40, as applies to the hybrid

frequency response of Fig. 14. Figure 16 shows the effectzs of increas-

ing the sampling period. Figure 16a gives the hybrid frequency response

for T = 0.04 sec, Fig. 16b for T = 0.08 sec, and Fig. 16c for T = 0.32

sec. When taken in concert with Fig. 14 (T = 0.02 sec), Lhese frequenc-

responses show the same system for four different sampling intervals.
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The notches in the ampl itude ratios at o. and its integer I':l eti-; 2j S•

3•s, etc. are clearly seea in all of the t igures.

The differences among the systems are very remarkable. Only thIe

system with T = 0.02 sec = 314 rad/sec) in Fig. 14 is reasonably

close to the continuous system of Fig. 12 over the f requency range (21-

tamiing the flexible modes. Even the system with I = D).U)4 (as =

157 rad/sec), Fig. 16a, has a different amplitude ratio just before thuý

high frequency flexible mode, which demonstrateg some modulation

effects. The sampling rates down to 78.5 rad/sec (0.08 > T > n) are

suitable for cxerting control on the lower fteqency flexible mode and

have some effect on the high frequency mode. For T = U.32 sec the

respor,!,e is, as might be expected, a hodgepodge.

The novel mixtures of the sampling frequency with the flexible mode

frequencies create a large number of peaks in the amplitude ratio which

become more contused as T is increased. These peaks are modulation lro-

ducts which reflect difference frequencies between nw s and the flexible

riodes at 10 and 100 rad/sec. The most easily picked out of these is

shown in Fig. 16a at 57 rad/sec, which is - 100. The introduction of

these apparent "resonances- at difference frequencies between sampling

and flexible mode frequencies is an interesting feature of systems which

contain lightly damped modes. It is a pheniomenon which requires special

attention for systems where such differencc frequencies nvy reside in

the frequency range of control.

Figure 17 gives some additional appredation for the output

responses when the input and sampling f reque.icies ar.Ž commensurate. In

Fig. 1 7 a the input sinusoid is reflected by the lowest frequency c,'mpon-

ent of the output response. The prominent high frequency waveform

superimposed on the large dmplitude low frequency compoUent is at

P approximately 50 rad./sec, which is a difference frequency between lie

sampli ng and input f requency. There is, of course, other content

present, but these two are by tar the most conspicuous. When the ratio

of input to sampling is reduced just a bit more, to a factor of 3, the

waveform, while periodic, has much less resemblance to a sine w,,.- with

some higher frequency deviations. This is indicated in the output
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res p)nms shown i:i Fig. 17b which is quitite cusp-like in character. The

Ilow treqiencv componleiat representing tile principal forcing of the input

sinus0oid i t still thle re, hut is definitely not as evident as in

F . 7,I 7 .

w,) wave I o rms representiulg out. put responses with two for'ing func-

Sitonls hlich have f reqiencies not commensurate with the sampling fre-

,I,1enc-' ;ire ii tuStrAted in Fig. 18. Figure 18a shows a response for the

.v st-i with T I U.)1. sec simplIing interval and a forcing function fre-

ilenc' ot 3'J r.iLI/sec, wh`ch is a factor of .b 1799... less than the

pl in,. f reqcitencv . Fi gu re I 8h shows a si milar incommensurate case for

tLhe = u. 32 sec saIpIl i n1, period. Both out put waveoforms are distinctly

,inp<; r i ld " t ril t i 00s.

'in;i rk. h l the re spo i.se of Fig. Shb, which has the lowest wi/ws
ratio o aryf the Autput responses shown here, appears to have less

d i st ir ion Clan ,.-Any of the others. This is a consequence of the par--

t i cu otlr numbers used in the example. Referring to Fig. 16c, it is seen

Sthat tLhe 11.424 rad/sec i nput tfrequency, which is strongly represented

ini Fig. 18b, is very close to the resonant peak associated with the

, pe,0-001) mode it l0) rod/sec. The first difference frequency (ws - Wt =

19.35 - [1.42i = 8.'11 rad!e'ec) on the other hand is very close to the

not Lch at 8 ra(l/s 2c Ii the aip 1tiude rat io of F ig. 16c , and i.s therefore

supplressed. vie most promineni distorting frequencies are much higher.

't tie sit.at ion would be markedjy changed with mil nor modifications to the

n -liineri Col vilues. It nonetheless nicely illustrates another of the

1 picti 1Lar feattires int roduced by the coinhi nat ion of samp 11 ng and lighL ly-

damped system mode f requencies.

B. .
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SECTION IV

FLIGHT CONTROL SYSTEM DESIGN WITH DIGITAL CONTROLLERS

In this section we will present examples illustrating the stabiliza-

tion of flexible aircraft characteristics. In the process two contcol

system possibilities will be considered -- both continuous and digital

controllers. The aircraft selected as the example vehicle is a fighter,

and the control problems solved are longitudinal.

In the next subsection a summary of the flexible airplane character-

istics will be presented. Some details are relegated to Appendix A.

This is followed by the continuous controller preliminary design, which

covers topics such as control system architecture, loop closure details,

sensitivity and robustness considerations, and assessment of the closed-

loop system design. We then turn to the digital system design, which

uses the same feedback control architecture as the continuous system --

as is appropriate from the basic physics of the control task. The

design is conducted with a w-domain treatment, and emphasizes the

effects of sampling rate. The stability limits are explored both in w-

and z-domains. Finally, the hybrid frequency response of the digital

flight control system is examined over a wide range of sampling condi-

tions. We will continue the practice of showing figures opposite the

relevant discussion whenever this is feasible.

The emphasis on sampling rate effects started in Section III is; con-

tinned here even though many advanced flight control systems are likely

to have very high rate systems. The primary reasons are tied in with

the flexible m¢des -- which can cause response peculiarities at quite

low frequencies as they interact with the sampling rate as a difference

frequency -- and tihe likely use of relatively low sampling in some

development simulations which can give rise to unrealistic anomalies in

the simulation.
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A. FLEXIBLE AIRCRAFT CHARACTERISTICS AND SURVEY
OF FEEDBACK ONNTROL POSSIBILITIES

1. Flexible Aircraft Characteristics

The flexible aircraft characteristics to be used for the continuous

and digital control examples are given in Ref. 9. Figure 19 shows a

three-view of the airplane, which has three possible longitudinal con-

trol points -- elevator, flaps, and symmetic ailerons -- available for

use in establishing good flying qualities and for flexible mode control.

Table 2 gives the available sensor locations and the corresponding mode

shape characteristics. In principle either accelerometers or rate gyros

could be placed at any or all of the locations.

Table 3 summarizes the aircraft dynamic modes which will he -onsid-

ered, consisting of the short period and five structural modes. As can

be seen there the short period characteristics of the airplane are con-

ventional, although it has a damping ratio of 0.28 which will result in

Level 2 flying qualities. Consequently the oilot-centered requirements,

as far as rigid body characteristics are concerned, cart be met simply by

improving the damping to 0.35 or greater. The flexible modes are less

straightforward to correct, and will be considered next.

2. Survey of Feedback Control Possibilities
for Flexible Mode Stabilization

A direct approach to the development of feedback system possibili-

ties for the fighter flexible mode control is to examine the rate gyro

and accelerometer transfer functions which relate these signals at each

possible pickup point with the three possible control points (symmetric

aileron, flap, and elevator). This is a lot of transfer functions --

[2 sensors] x [4 pickup locations) x [3 control points] = 24 -- yet a

trivial computational chore for this case with a limited number of

modes. The transfer functions are then examined for the presence of

In a more general problem, where specific locations were not fixed

and where higher frequency modes were still present in the airplane's
mathematical model, several additional steps are needed to get to this
point. See, for example, Ref. 6 for more specifics on modal truncation,
residualization, etc.
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TABLE 2. COEFFICIENTS IN THE FORMULAS OF THE NORMAL
ACCELERATION AND THE PITCH RATE FOR DIFFERENT

AIRCRAFT STATIONS (REF. 9)

normal acceleration at station x:

zx n

an g g +g -=

pitch rate at station x:

n
qx q = U

Structural ti
I Vertical displacement - Slope • at =

mode aat

pilot wing nose tail pilot wing nose tail
seat tip seat tip

p w n t p w nt

1 230 1.0 -. 120 -. 489 .0004 .007 .001 .001
2 .129 1.0 2.55 -. 401 .0044 -. 027 1 .021 .005
3 0 -1.0 0 .455 0 -.039 0
4 .542 -1.0 .727 238 .0096 .068 -. 011 -. 012
5 . 223 - .47: 628 .0017 .039 -.001 -. 004

Sensor locations:

n p c.g. t

position zx/c

c.g. 0
p 1.13
n 2.96
w -. 55
t -1.99
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TABLE 3. AIRCRAFT DYNAMIC MODES

Short Period: [ isp, •sp] [0.28, 6.3I; Flying Qualities: L.evel 2

• UO

I/T2 1.097 (9/a - = 32.4)
-2gT 2

St ructural Modes: Frequency

(Hz)/(rad/sec)

I First Symmetric Wing Bending 2.9/18.2
2 First Symmetric Wing Torsion 3.6/22.6
3 Inboard Store Yaw Mode 4.6/28.9
4 Inboara Store Pitch Mode 5.8/36.5
5 Outboard Store Yaw Mode 6.1/38.3

Control Effectors Available:

Klevator, 6e

Trailing Edge Flaps, 6f

Symmetric Ailerons, 6a

phase blips, phase dips, or near cancellation, for each mode. The

equalization, if any, needed to adjust the particular transfer function

being considered to an appropriate sawtooth Bode form is also consid-

ered.

Figure 20 illustrates the examination process. Figure 20a shows the

transfer function relating normal acceleration at the wing tip loca-

tion, anw, and the elevator. First wing bending (Mode 1), first wing

torsion (Mode 2), and the outboard store yaw mode (Mode 5) are all

represented with strong positive phase blips. Considered in context

with tile sawtooth Bode concept described in Section II (Fig. 10), these

phase blips indicate a promising feedback possibility for improving the

damping of those modes. There is essentially no reflection of the

52

0 . . - - . - - . - • . - % - . . - ' - ' . , ' - - . -- - - , - . - . - - - . - . . - - .



inLoa .. j se? 100no

20 -

- --_ -D -- - --
_.- C

.101.00 W.Arod/secl 10.00
onw__ _ 'to

•dB- -

_... . -I20

o-

(deg"

b) Qnw/-s-,

. . i .o o . ( ro d / s e c ) L a o0
S__ _ -.,o J . . . 1

I Ln

i 

i

I. _I8* O - . .. ..- - -

(deg)

qn an/-8e/

- I In

Figure 20. Examples of Survey for Flexible

Mode Control Possibilities

53



inboard store yaw (Mode 3) or pitch (Mode 4) modes in the transfer func-

tion, indicating that these are Unobservable. Figure 20b, the anw to

flap, 6f, transfer function, shows unfavorable phase characteristics for

Modes I and 2, again nothing for Modes 3 and 4, and a possibly favorable

phase blip for Mode 5. In the third example, shown in Fig. 20c, the

transfer function for pitching velocity at the nose location, q n to

elevator, 5e, has only a tiny phase blip at Mode I and nothing at any

other. This qualifies for an unusable (or 'nil') classification.

The results of the complete survey are given in Table 4. There it

is seen immediately that the 3rd (inboard Store Yaw) and 4th (Inboard

Store Pitch) modes show neither blips nor dips. In other words, the

transfer function poles corresponding to these modes are essentially

cancelled by zeros for all sensor and control effector combinations.

The modus are, therefore, neither observable nor controllable from the

pickup locations and control effector points available. If their con-

trol was essential to the mission some alternative configurations would

have to be considered.

(r. the other hand, there are a number of favorable possibilities for

the improvement of short period damping, and for increased stabilization

of wing torsion, wing bending, and the outboard store yaw mode. These

possibilities are summarized in Table 5.

B. CONTINUOUS CONTROL SYSTEM DESIGN

I. Control System Purposes and Requirements

The fuindamental purposes of the system are to:

* Improve the flying qualities (increase short
period damping ratio).

* Improve the flexible mode dampings, as feasible.

* Reduce thne wing root bending moment.

* Reduce the flexible mode induced vibratory
environment at the pilot station.
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TABLE 4. SURVEY OF FEEDBACK POSSIBILITIES

* 2 3 4 5

it ist Inboard Inboard Outboard
Wing Berndi-g Wing Torqion Store Yaw Store Pitch Store Yaw

S)ke 'lode Mode

2.3.9,2 3t 2 2.6 4.i. 28.9 5.i 3,.5 ¾i'3?i. 3

I ¾

qn , (i - a, f, e) - - Nil

-1+ * .11+ _ _ _ Nl

Sa Nil + Nil I Nil +

6F Nil Nil Nil -

q ¾ N aill C Nil ! Nil +

"'6F 'il - ,Nil si -

,w !e +"Nil

qT 6a. 6e Nil

I5f Nil N il

ann * 6a + - Asii - -

an, * 6f. 5. N 'Li

a0p * Nil

anp se + N ll

an1 *¾5 4 - Nil---- -

a h. + + ---- Nll-- +

anw * sa + - - N"i - +

aI rw * 5f - --- N il +

anT -e----- -

*-,, * 5C Ni l -L1------

CRITERIA FOR SURVEY OF FEEDBACK POSSIBILITIES

Promising (+) -- Positive Phase Blip

0Adjustable to Appropriate Sawtooth Bode "orms

Unfavorable (-) -- Negative Phase Blips or Excessive Equalization

0 Unusable ("Nil") -- No Blips at all

5S



TABLE 5. MOST FAVORABLE FEEDBACK POSSIBILITIES

Additional Considerations
Short Period Damping:

qp --- > Elevator Positive Effect on Ist Wing
Bending.

qw --- > Symmetric Aileron Z6 /M6 = 15.4; Z 6 /Mc ý 4.6"a a 1a p
Therefore, q, pro uccs

3.36 times more lift due to &
than qp + 6e.

Wing Torsion:

qw --- > Symmetric Aileron qw + 6a increases Wing Root
Bending MGment.

anw -.- Elevator Tends to degrade short period
damping; small pole-zero separa-
tions for torsion.

Wing Betiding:

anw --- > Elevator Tends to degrade short period
damping; small pole-zero separa-

tions for torsion.

anw --- > Symmetric Aileron Short period damping degradation.
Pole-zero separation for torsion

less than for anw . 6 e.

The survey results summarized in Table 5 provide the implied

requirements that an accelerometer at the wing location and a pitch rate

gyro at the pilot station are well constituted to satisfy the various

damping requirements.

2. Control System Architecture (Figure 21)

The closed-loop system involves only the elevator. Remarkably, this

selection, while demonstrably the best in performance potential, is also

probably the simplest since it does not require specialized high band-

width actuation for the symmetric aileron and/or flap effectors. The
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control system involves two loop closures which naturally operate pti-

marily in two frequency ranges. Thus, successive stable loop closures

using the higher bandwidth closure as aot inner-loop is appropriate to

assure a robust desig.. If the lower bandwidth outer-loop pathway is

Iost the system will still be stable and will still accomplish its pri-

mary flexible mode stabilizing functions. The appropriate inner-loop is

the anw * elevator feedback.

Tile most desirable feedback for flexible mode damping augmentation

is one proportional to the velocity of the modal deflection. This is

most easily approximated with the accelerometer by using a low frequency

1ý., equalization on the accelerometer signals. This will establish a

-20 dB/decade slope in the frequency regions above 10-15 rad/sec where

the positive phase blips occur and will thereby assure stable and effec-

tive loop closure conditions. In terms of the root locd for the bending

and torsion modes this shaping will pull the loci further into the left-

half plane thereby increasing the closed-loop damping and damping

ratios. Because the pole-zero pairs will be closer together in thi

closed-loop system than they are in the open loop, the near-cancellation

tendencies will further reduce the excitation of these modes by control

system inputs. So both the damping augmentation and improved pole/zero

cancellation effects are favorable.

A typical elevator actuator will have o bandwidth which can be

approximated by a first-order lag at about 20 rad/sec, This lag will be

very detrimental to the stabilization process for the higher order

modes, destroying the -20 dB/decade slope just where it is most needed.

Therefore it will be necessary to compensate for the actuation dynamics.

This can be done by using a lag-lead equalization tor the accelerometer.

Thus, the acceleration loop feedback (including actuator) component,

6eat of the total elevator deflection 6., will be

(.- + 20) 1
ea (s + a) (s + 20) nw

(38)

p a
a

(s + a) nw
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3. Inner and Outer Loop Closure Characteristics

a. Inner [Accelerometer] Loop Closure (Figure 22)

Figure 22 shows the open-loop frequency response and the system root

locus when the first order lag - = 5 rad/sec is used for the equaliza-

tion. It is seen there that a gain of 0.1 rad/g provides maxtinum damp-

ing in the wing bending and torsion modus and some damping improvement

for the outboard store yaw mode. The other two flexible modes are

essentially unaffected as they are scarcely observable. The short

period is somewhat destabilized as it progresses toward its nearby zero.

This zero is, however, in the left-half plane so the system is assured

of stability even without an outer loop. The flying qualities would, of

course, be very poor because of this short period damping ratio (Cp =

0.0107).

b. Outer [Pitch Rate Gyro] Loop Closure (Figure 2•"

The fundamental purpose of the pitching velocilty feedback is to

improve the short period damping while not degrading the flexible mode

d ipruverenos due to the inner loop. Thls is most easily accomplished by

low pass filtering the rate gyro signal at frequencies above about

1•) rad/sec. A first-order filter at 10 when combined with the actuator

dynamics at 20 rad/sec, readily satisfies this regimen. The frequency

response and closed-loop system root locus for this loop, with the air-

craft characteristics modified by the acceleration loop closure, are

shown in Fig. 23. it is seen there that with a very low gain of

0.2 rad/rad/sec the short period damping ratio is improved to a Level I

value of r = 0.35. The gain margin GM for this is 12 dB. The root

locus shows the roots at ±6 dB from this Level 1 value by + markings.

It is easy to appreciate from the short period locus that damping ratios

below Level 2 minimums are excluded even with a 5 dB gain reducLion.

Higher gai,'s are appropriate for the final setting.

At the gain levels considered here the effects of the pitching

velocity feedback on the flexible modes is nil. The relatively heavy

filtering of the pitching velocity feedback assures that the system will

be robust if the accelerometer loop is opened.
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4. Sensitivity and Robistness
P

With the design as developed above a zero signal in either the

accelerometer or rate gyro loops will not result in an unstable system.

The degraded aircraft dynamics with the pitch rate gyro loop open are

quite undesirable from a flying qualities standpoint, although the flex-

ible modes are stabilized as well as can be accomplished with available

effectors and instrument sites. Loss of the accelerometer loop is not

in itself crucial, as the flexible nodes are all still stable; they

will, however, suffer from significantly decreased damping.

Another sensitivity assessment is to consider the effects of change

in the composite loop gain. In this instance the equalized acceler-

omcter and -ate gyro signals are first summed and the composite is then

presumed to share a common changeable loop gain. These changes physi-

caliv could occur in the forward path of Fig. 21 and could be the result

of uncertainties in surface effectiveness, less than ideal gain compen-

satton, actilaror valn changes, etc.

The frequency response and root locus for these combined loops is

shnwn in Fig. 24. The composite loop gain margin is 16 dB and the phase

mar;,in ahout 80 deg. For this system there are several phase margins

hecause there are several crossover frequencies. There will also be a

corresponding set of delay margins given by TM = ýmiwc. The phase and

delay margins of major interest are given in the table.

(Crossover Freqeoncy, uc Phase !Margin, 4m Delay Margin, TM
rad/sec) (des) (secs)

9.8 80 0.14
16 9U 0.10
2!3.5 160 0.12

Thus, while the gain and phase margin values seem large, the delay mar-

gins macy at first glance appear quite small. They imply that the inser-

tion of an effective pure time delay of 0.1 to 0.14 sec (which can be
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made up of a combination of high frequency lags and delays not included

in the analysis) would result in a system instability. These small

values must be viewed in perspective with the potential instability,

which will be the wing bending mode at approximately 15 rad/sec. At

these frequencies an effective pure delay of 0.10 (as needed to develop

a 90 deg phase loss) is quite large indeed.

The other modes are typically somewhat improved when gain is

increased over the nominal and somewhat degraded with gain decreases.

Consequently, the system can be considered quite insensitive and highly

robust to even major changes in the system gains and even loop removal.

5. Assessment of the Closed-Loop System Design

The fundamental purposes of the system were to

* Improve the flying qualities (increase short
period damping ratio)

* Improve the flexible mode dampings

* Reduce the wing root bending moment

Reduce the flexible mode induced vibratory
environment at the pilot station

The first two of these purposes have already been achieved as described

above. Figures 25, 26, and 27 show that the wing root bending moment

and acceleration at the pilot station are also significantly modified

and improved.

Figure 25 shows the asymptotic and total frequency responses for

pilot location acceleration and wing root bending moment in response to

an angle-of-attack gust, ag, input. Peak bending moment amplitude

ratio- of about 130 dB are indicated for the wing bending and outboard

store yaw modes. Figure 26 shows that these are reduced significantly

to 122 dB for wing bending and 126 dB for the outboard store. The cost

of this is an increase in the wing bending at short period frequencies

of approximately 6 dB. Th4s stems, of course, from the reduced short

period damping ratio with just the accelerometer loop closed. The final

system closure of the pitch rate gyro (Fig. 27) removes this defect and,
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in fact, improves the wing root bending moment at and near short period

frequencies over that of the aircraft without control. There is an

additional very small improvement at wing bending frequencies and little

or no effect at still higher frequencies.

Comparison of the acceleration at the pilot station of the total

closed-loop system with that of the open-loop indicates only very minor

changes. It should be recalled, however, that the rate gyro gain is set

at the Level 1 lower boundary for these calculations merely to illus-

trate what was required to change the short period to a Level I status.

When full advantage is taken of the augmentation system the pitching

velocity gain will be increased somewhat so that the gust induced

acceleration in the short period at the pilot station will be reduced

from that shown.

These considerations indicate that the closed-loop system design has

accomplished its desired purposes.

C. DIGITAL SYSTEM DESIGN

The system architectural configuration for the digital controller is

the same as that for the continuous control case. Accordingly the sys-

tem block diagram, as shown in Fig. 28, is similar except for the

sampler3 and zero-order holds.

As already noted, there are two very instructive approaches to the

direct digital design problem. In the first, the s-domain transfer

characteristics, including those of samplers and holds, are converted to

the w-domain. The design is then carried out in a fashion directly

analogous to that for continuous controls. The design data presents-

tions and techniques used are essentially those transferred from contin-

uous analysis in which w replaces s as the complex variable. The

results Of such procedures are precise for stability margins, etc., but

may leave somethi.tg to be desired as far as full appreciation of the

response artifacts associated with discrete systems are concerned.

These response considerations are very effectively treated using the
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second direct digital design technique associated with the hybrid spec-

trum of the digital controller. These two complementary approaches are

illustrated in the following articles.

I. Direct Digital Design Using w-Domain Transfer Functions

The w-domain is the natural extension to use in accomplishing a

direct digital design analysis of the system. The graphical presenta-

tion of results use the same forms as for the continuous control case,

i.e., system surveys showing w-plane root loci, "ordinary" Bode plots,

and w-plane Bode root loci. The rout loci are directly comparable to

those in the continuous domain in that they are true root plots. They

do not compare in the sense that the w-plane roots necessarily imply a

corresponding time domain mode damping and undamped natucal frequency.

The results approximate this for modes much lower in "w frequency" than

2/T, but will depart markedly as the modes approach the sampling rate

(see, e.g., Fig. 2). One can, of course, convert back to the s-domain

to find the true (as contrasted with the "w-domain") dampings and

natural frequencies. The "ordinary" Bode diagram, for which an imagi-

nary variable replaces w (just as Jw replaces s for continuous systems),

does not correspond to a true frequency response in the same sense as
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for the continuous case. Yet, the limiting characteristics, as T + 0,

provides, by analogy, a significant amount of insight if not exact

interpretat ions.

In the following treatment system surveys are presented for four

values of sampling, 1/T = 100, 50, 25, and 14 Hz. The actual open-loop

transfer functions used in the surveys are for the composite form

wherein the accelerometer and rate gyro signals are combined. The

appropriate comparison for the continuous case is with Fig. 24. [On the

w-plane Bode plots which follow the real roots (w = o) are shown as

solid lines, and the complex roots as crosses (+). The asymptotes

shared by both the Bode -frequency response" and root loci are dashed

lines. I

Figure 29, for a sampling rate of I/T = 100 Hz, is virtually indis-

tinguishable from Fig. 24 except for the appearance of the non-minimum

phase w-plane lead at 200 rad/sec and the continuing decrease in the

high frequency phase associated with the same right half plane zero.

Essentially the same statements can be made for the sampling rate at

I!T = 50 Hz (Fig. 30) except for a major change in the low frequency

phase. This is due to a tiny shift in the zero (at approximately

1•) rad/sec) associated with the wing bending mode (at 17.6 rad/sec).

For the continuous case and ]/T = 100 Hz cases this zero is just very

slightly in the right half plane, whereas for I/T - 50 Hz it has moved

into the stable region of the w-pl .P.

For the much lower frequency sampling rates of I/T = 25 (Fig. 31)

ano' 14 Hz (Fig. 32), there are some major shifts in the high "frequency"

amplitude ratio high gain asymptote as it approaches closer to the level

of the very-low "frequency" asymptote. The phase blips for I/T = 50 and

UIT = 25 are very similar. But there is a major change in the highest

frequency blip for I/T = 14 Hz (Fig. 32) as the magnitude of the rhp

zero becomes less than the highest frequency mode. This is also

reflected in the Bode root locus shift in the undamped natural frequen-

0 cies of the higher frequency modes for I/T = 14 Hz.
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The conventional root loci for the two lower sampling frequencies

also illustrate the marked shifts in w-plane location as sampling rate

is reduced. Not only are the "natural frequencies" increased, but the

apparent attainable "damping ratios" are also. These appearances are

not "real" in terms of the time domain, but occur because of the w-plane

distortion when contrasted with the s-plane.

Examination of the real portion of the Bode root locus of Fig. 32

shows the real root starting at r = -17 sec-l (the value of the w-plane

root which, in this case, corresponds to the s-plane real axis root at

-20 I/sec in Fig. 24) is driven to infinity, and then around the Riemann

surface to plunge into the sampling zero at 2/T = 28 sec-1. The system

at nominal gain is thus unstable, due to this feature. The instability

is caused by the sampling zero being reduced to the point that the high

frequency asymptote coincides with the zero dB line. This is very easy

to see, and track, on the Bode root locus presentations. In fact, the

"gain margins" throughout the system surveys can be assessed directly by

the distance between the zero dB line and the high frequency horizontal

asymptote.

The instability for nominal system gain is also readily found using

z-transfurm analysis. It is, however, more difficult to interpret than

the w-domain resuILS. The z-!.ransform root locus for the I/T = 14 Hz

condition is given in Fig. 33. The poles and zeros in this domain are,

of course, extremely distorted when compared with the s- or w-domains.

With considerable effort they can be identified and traced as sampling

rates are changed, but very little insight is available as to what is

crucial. Figure 33 is a good example. There it is seen that many of

the poles and zeros are relatively close to the ,nit circle, with little

tn Indicate that the pole originally at -20 sec-1 in the continuous sys-

tem is the one that ultimately goes unstable first. The degree of sta-

bility, and hence any estimates of robustness, are difficult to appreci-

ate in this format as well.
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2. Hybrid Frequency RespoL.e of Flexible Vehicle
Digital Cop-troller for Variotts Sample Rates

The digitally controlled system will now be considered using the sc-

called Hybrid Frequency Response. As reviewed in Section II, the hybrid

or "generalized frequency response" gives all of the output components

for a sine wave input as values on a frequency response plot of ampli-

tude ratio and phase. In a continuous system the frequency response is

interpreted as the output/input amplitude ratio and phase at a specific

frequency which is the same in both the input and the output. Thus, a

particular sine wave input gives rise to a similar sine wave output at

the same frequtncy. When applied to the discrete system the amplitude

ratio and phase curves in the generalized frequency response appear

somewhat similar at low frequencies (well below the sampling frequency)

but markedly different at high frequencies. The interpretation of the

frequency response is also somewhat different in that a particular sine

wave input begets an infinity of output components. The first is at the

same frequency as the input. The rest are at an infinity of sum and

difference frequencies involving integers (n = 1, 2, 3 ... ) times the

sampling frequency plus the input frequency and n times the sampling

frequency minus the input frequency. As exemplified by Fig. 8 all of

these points, for a given frequency input, can also be seen in the

generalized frequency response. fhen, when computing the actual output

response to a sinusoidal input, all of the higher frequency terms must

be included along with the fundamental. Because of the sum and differ-

ence rather than harmonic character of the modulation products, the out-

put wuve is, in general, not periodic. An Important feature of the

hybrid frequency response, and of the method reported in ReFs. 3 and 4,

is that it is applicable to both single and multiple rate sampled-daa

systems. Since the w- and z-transfcorm methods do not directly apply to

the multiple rate situation, the hybrid frequency response becomes a

primary tool for these situations.

In the following discussion the hybrid frequency responses for the

flexibie mode FCS will be considered for a number of sampling rates. As

a practical matter only the higher rates are likely candidates for the
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actual flight control system. The other rates considered are, however,

instructive and thought-provoking when simulations using a "digital air-

plane' are considered. In these cases some of the phenomena introduced

by the arrificial digitization of thb aircraft equations of motion will

be similar to the characteristics shown for the lower sampling rates for

the co-itroller.

To establish a basis for comparison the closed-loop frequency

response functions for the continuous system are given in Fig. 34. The

acceleration and pitching velocity at the pilot station and the wing

root bending moment are the frequency response functions represented.

Figure 35 shows the same responses for a sample period of 0.01 sec cor-

responding to 100 Hz sampling frequency. The two figures show essen-

tially identical characteristics up to approximately 100 rad/sec. At

and above this frequency the effect of the small incremental phase lag,

A4, due to sampling, i.e., wT/2, becomes apparent in the phase for the

sampled •yrtpm. Then at w = 628 rad/sec (21T/0.01) the first distinctive

notch due to sampling occurs.

Figure 3b shows the same responses for a 50 Hz sample rate. The

trends are similar to those fcr the 100 Hz case at frequencies below

about 100 rad/sec, although the incremental phase is twice as large

because the sampling frequency is just half that of the previous case.

The first notch due to sampling appears at 314 rad/sec (2n/0.02). The

second notch appears at 628 rad/sec, and a third at 942 rad/sec. But

the important thing is that the low frequency system characteristics

(below 100 rad/sec) are nearly identical to those of the 100 11z sampled

and the continuous system except for the small phase shift traceable to

the sample and hold operations.

For a sample rate of 25 Hz (Fig. 37) the frequency range over which

the continuous and sampled system responses are very close, except for

the additional phase lag, is reduced to about 70 rad/sec. The sampling

notches now occur at values of 157 n rad/sec (27n/0.04), n = 1, 2,

3, ... Also, the higher frequency flexible modes are beginning to have

their impact on the frequency respon-,e amplitude just prior to the first

notch. This is seen on -311 three response functions but Is peýrhaps most
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noticeable for anp/6ec. The difference frequency involving wing bending

Is the most prominent at approximately 140 rad/sec (2n/0.04 - 18). The

effects of the flexible modes (us + modal frequencies) are also begin-

ning to show up on the high frequency side of the first notch espe-

cially. Nonetheless, the system is still effective in the basic task of

flexible mode and short period control with LMS sampling rate.

In the w- and z-domain study of the closed-loop system it was found

that the system will go unstable for a sampling frequency between 13 and

14 Hz. Thus, the most extreme changes in the generalized freqency

response that can be observed in thit stable system will occur for a

discrete system where I/T = 14 Hz (0.0714 sec). The closed-loop fre-

quency responses are illustrated in Fig. 38. The sampling notch at

88 rad/sec and its successors at 176, 263,... rad/sec all show up well.

The short period and the first two flexible modes are still essentially

uneffected by the sampling, but the high frequency characteristics from

about 35 rad/sec on up are very dramatically affected. The most impor-

tant effect is the neutral stability of the highest frequency flexible

mode at about 40 rad/sec. The frequency response between there and the

first notch also exhibits a number of the difference frequencies between

the sampling and the several modes. The amplitude ratios on the high

side of the 40 rad/sec mode and on either side of the sampling notches

as well, reflect the nw. and flexible mode sum and difference character-

istics.

3. Response Characteristics for Sinusoidal Inputs

A very graphic way to show the effects of the modulation products,

is to examine sample outputs derived from the generalized frequency

response functions. These are illustrated in Fig. 39 which shows the

bending moment response to a 5 Hz sinusoidal input applied at the pilot

command point. Figures 39a and 39b, for 100 Hz and 50 Hz samp-.ng rates

respectively, show outputs that are essentially sinusoidal. Low fre-

quency lags due to the zero-order hold sample data for these two

responses would only be 0.005 and 0.01 seconds, and could hardly be read
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on the scale. For the 25 Hz sampling rate, however, (Fig. 39c) the out-

put waveform is quite distorted and the delay is easily scen. Finally,

for the lowest sampling frequency for which stability is just barely

retained (l/T - 14 Hz) the output waveform is asymmetric and, indeed, is

non-periodic. The amplitude ratios of Fig. 38 for 5 Hz (31.4 rad/sec)

are not too different from those for higher sampling frequencies, so the

extraordinarily distorted waveform shown in Fig. 39d is a dramatic

demonstration of the extreme response distortion due to the high fre-

quency power in the modulation products.

Because the sampling rate for instability (approximately 14 Hz,

88 rad/sec) is relatively high compared to the flexible modes (symmetric

wing bending at 2.9 Hz, 18.2 rad/sec and symmetric wing torsion at

3.6 Hz, 22.6 rad/sec), actually being controlled, the sum-difference

effects illustrated in Section III are not as apparent for this aircraft

example. However, the modulation products for a 5 Hz input are quite

important at I/T - 25 Hz, (e.g., Fig. 39c), and the Mode 5 impact on the

hybrid frequency response is an important effect for I/T - 14 Hz. Thus

the phenomena illustrated in Section III have their parallels for the

practical example presented here. The differences that exist are more

in degree than in kind.

i
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SECTION V

SOME COMPARISONS WITH OPTIMAL CONTROL RESULTS
AND A NEW OPTIMAL CONTROL APPROACH FOR FLKXIBLY, VEHICLE 0ONrROL

A. 74TRODUCTION

The selection of the R(f. 9 flexible aircraft data for our continu-

ous and discrete controller examples also provides an unusual opportu-

nity to compare the results of conventional and optimal design

approaches. The ý rimary purpose of Ref. 9 was to demonstrate a method

for applying linear optimal control theory to the design of a regulator

for flexible aircraft. Several optimal and suboptimal controllers were

developed and presented. It will be instructive to compare certain of

these results with the continuous controller version of the system syn-

thesis presented here. This comparison will be made in the next sub-

section.

When optimal control procedures are applied routinely (without

special care and consideration) to the flexible aircraft control problem

the resulting systems are quite complex in that feedbacks are required

from all of the states to all of the control points. As will also be

seen below for the flexible aircraft control case these complicated sys-

tems do iot compare favorably with the far simpler conventional system.

This result is not unusual as far as flexible mode control is concerned.

In fact a survey of the literature indicates that attempts to apply

optimal control procedures in a direct, straightforward, and routine way

to the control of flexible modes do not fare well in general. Typically

the controllers synthesized involve feedbacks of all states to all con-

trol points and often the controller is unusually sensitive and requires

a high degree of calibration to precisely known characteristics. Some

of the reasons for these features are explored in the second subsection

using an approximation to a flexible beam as an example. Some of the

deficiencies introduced by routine application of optimal control pro-

cedures are then rectified by introducing additional, none routine, con-

siderations. For instance, we show that It is possible to construct a
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performance index (cost function) which will result in a sawtooth Bode

type controller as a consequence of an optimal control design exercise.

As might be expected, the performance index is unusual. However,

because optimal control procedures are so computationally efficient, the

qbility to synthesize r sawtooth-Bode-like controller with optimal tech-

niques offers a potentially fruitful new direction for such systems.

S. COMPARISON OF CONVENTIONAL AND OPTIMAL CONTROLLER
RESULTS FOR THE FLEXIBLE AIRCRAFT CONTROL PROBLEM

Reference 9 develops several optimal and suboptimal controllers

which can be compared with the results of the present study. The opti-

mal controllers are all based on the minimization of the cost functional

II*

""o an 2 + QMBW 2 + R6 (6e2 + 6f2 + Sa 2 J] dt (39)

Here Qan, and QMBW are weightings on the acceleration at the pilot
V .station and on a modified wing bending moment, respectively.

A large number of systems were synthesized on a preliminary basis to

explore the effects of different cost combinations. Some of the regula-

tors synthesized had:

costs attached only to an and the control surface
deflections, with no atention paid to MBw;

costs attached only to MB and the control sirface
deflections, with no atlention paid to anF;

costs attached to both an and MBW, together with the
control surface defletPtions.

For these basic criteria variation studies the Ref. 9 optimal systems

synthesized used only the short period, wing bending, and wing torsion

in the definition of the airplane. This reduction from the twelfth

order complete model to the sixth order simplified model was made

because "the twelfth is difficult to manage" (presumably from a computa-

tional standpoint -- which would no longer be a major problem).
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This truncation of the vehicle dynamics by simply ignoring the high

frequency modes was, with the benefit of hindsight, unfortunate. Not

only was the controlled element not truncated using residual stiffness

concepts (Refs. 11, 12) but the insignificant third and fourth modes

could have been eliminated not arbitrarily, bit on the basis of their

non-controllability and non-observability (as was demonstrated in Sec-

tion IV). As a practical matter, with the sensors and locations avail-

able, the third and fourth modes (inboard store yaw mode and inboard

store pitch mode) are insignificant but the fifth (outboard store yaw

mode) is significant and ideally should have been retained. In any

event the various results achieved in Ref. 9 for the vehicle with three

modes do not compare very well with the six mode case for the flexible

modes common to both representations.

One of the more interesting developments of Ref. 9 is shown on

Fig. 40. This illustrates the effect on the closed-loop modes of the

reduced system of varying the performance criterion weighting paramn-

eters. The solid-line curves are the result ot varying the weighting

Qan (with QMBw - 0) while on the dashed-line curves the weighting

factor QMBW for the wing root bending moment MBW varied (with Qan =

0). Between QMBW = 5 and 10 the damping ratio for the short period mode

is maximized, while the damping of the wing bending mode is increased

monotonically as QMBw increases. Thus a weight QMB approximately - 10

should provide benefits to both. As might be expected the variation of

Qanp directly affects the short period damping. This weighting param-

eter primarily modulates the gains of the anp ÷ 6 i feedbacks. The maxi-

mum damping ratio for the wing bending mode, as affected by Qan , occurs

for a value of 2-3. Based on these secondary effects of weighting

parameter variations for the reduced system, a reasonable set of weights

for the cost functional might be

I3
Qanp 3

QMBW - 1C (40)

R W 0.01

99



_ _ _24

TORSION MODE

22

0o, VAIPIATION
p

Qt.k4 VARIATION jw

0 BASIC AIRCRAFT 20

20_10
10

_ _-- BENDING MODE o-,• 16

5 3

_____ I I ___. ____- _____~-- ---- 14

21

__ _ __ -1 SHORT Pr.!L.O) #,

_ _I

-16 -14 -12 -10 -8 -4 -2

Figure 40. Pole Locations for Varying Weighting Factors of a and

MB for Reduced Model (Ref. 9' p

100

..- - - . •%-.-. .- %-.- -, °. . ..........° ..° ..-.-....... _....... .... . -. . . . .- .,° ... •.-



As noted, these values correspond to near maximum damping ratios in the

short period and wing bending modes when the weights are considered as

single variations. A weight of Qan - 3 (when QtBW = 0 ) gives a bend-

ing mode characteristic of [0.11, 15.74]. Similarly a weighting of

QMBw = 10 (when Qa 0) gives a short period mode of [0.35, 10.52].

The primary effect of varying Qanp is on the short period, where a

value of 3 results in a damping ratio of approximately 0.6 when the

bending moment weighting factor is zero. Similarly, the bending mode is

predominantly dependent upon the weighting Q(MBw; a value of 10 improves

the damping ratio of first wing bending mode by a factor of four (4 =

0.027 to C - 0.10). The authors of Ref. 9 selected the weights given in

Eq. 40 as an appropriate compromise.

Reference 9 also shows the results of a calculation of an optimal

controller using all aircraft modes and the weightings based on the

reduced aircraft model systems developments. These results are shown as

pole locations of the closed-loop aircraft regulator system in Fig. 41.

The most profound changes occur with the short period, first symmetrical

wing bending, and outboard store yaw modes. First symmetrical wing tor-

sion is barely affected and, as would be expected, neither the inboard

store yaw mode nor the inboard store pitch mode are modified at all.

The eigenvalues for the rigid body and flexible modes of the air-

craft-alone, aircraft plus optimal regulator, and aircraft plus conven-

tional controller (from Section 4) are given in Table 6. The most

dramatic differences between the controllers occur in the short period

and first symmetric wing bending modes. For the optimal regulator the

short period undamped natural frequency is pushed to a higher value than

the first wing bending, leaving some .oubt as to which mode should be

considered the effective short period. However, neither the closed-loop

short period nor the wing bending quadratic characteristics would be

satisfactory as far as flying qualities are concerned. For this flight

condition the MIL-F-8785C requirements for Level I short period charac-

teristics for Category A flight phases would require

S > 0.35 (41)

3 < wsp < 10 radians per second
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TABLE 6. COMPARISON OF CLOSED-L.OOP EICENVALUES FOR OPTIMAL.

AND CONVENTIONAL CONTROLLERS

AIRCRAFT AIRCRAFT
MODE AI RCRAFT-ALONE++MODE L ]+ +

OPTIMAL REGULATOR CONVENTIONAL CONTROLLER

Short Periodi
Srt Piod 0.28, 6.31 [0.44, 17.5] [0.35, 7.4]
(Rigid Body). .. ... . ....... . . ...........

1st Syimmetric 1
Wing Bending [0.027, 17.6] [0.255, 14.51 [0.097, 16.11
(Mode 1)

.. . .. . . . . . . . _ - - - -- - . . .. . . ... . . . .... . . .. . . . . . . ... . .

1st Symmetric
Wing Torsion [0.046, 24.1) [0.070, 23.6) [0.073, 23,4]
(Mode 2)

__- - I - .. .. . . .... ... - - -... ... . . . . .. . ..- -.. . . ..

Inboard Store
Yaw Mode [0.051, 28.7] ---

(Mode 3)

Inboard Store
Pitch Mode i[(0.042, 37.3]

(Mode 4)

Outboard Store

Yaw Mode [0.038, 39.3] [0.33, 44.09] [0.05, 38.8]
(Mode 5)

If the modified short period is considered to be the effective short

period mode, the damping ratio is Level I but the undamped natural fre-

quency is 70 percent too high at best. Alternatively if the now lower

frequency first symmetric wing bending is identified with the short

period, the damping ratio is too low for Level I and the undamped

natural frequency is almost 50 percent too high.

The mere fact that the lowest frequency closed-loop oscillatory

modes range from 2.3 to 2.8 Hlz when the aircraft-alone short period is

about I Hz indicates that the optimal controller gains are extraordinar-

ily high indeed. The controller will accordingly saturate at quite low

levels of the feedback quantities.
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At first glance the optimal regulator would appear to offer a signi-

ficant advantage over the aircraft plus conventional controller as far

as stabilization of the outboard store yaw mode is concerned. This is

chimerical because the optimal controller does not take into account in

any way the surface actuators and other high frequency filtering. With

the surface actuator at 20 rad/sec the closed-loop outboard store yaw

mode will hardly be affected by the controller. The results for the

first symmetric wing torsion mode are quite similar for the optimal and

conventional controller. Neither controller is suitable to modify the

inboard store yaw and or pitch modes.

The optimal control of Fig. 41 cannot be mechanized using only the

sensors at their current locations since these are insufficient to, by

themselves, provide full state feedback for all six modes. Consequently

the regulator design is based upon a full set of state vector components

developed somehow. These could be achieved with observers, Kalman

filters, or pseudo-inverse techniques. In any event, the effective con-

troller will be of even higber order than the pute regiilaLor discussed

here. The optimal design also assumes that all three available control

effectors are used and that the actuators at these locations have very

large bandwidths compared to the highest frequency modes. When all of

these points, Logether with the comparison with the conventional con-

troller, are taken into account it is apparent that the optimal regula-

tor of Ref. 9 has little viability as a practical system. Instead, it

must be considered to be an academic exercise which illustrates a pro-

cedure. This was, of course, the fundamental purpose of the Ref. 9

report -- a purpose which it serves admirably. The generally unfavor-

able comparison of the highly complex and unrealistic optimal design

with the conventional controller should also be viewed as an academic

illustration which indicates some of the problems which must be

D accounted for if an optimal'design is also to be practical.

C. A TRUNCATKD FLEXIBLK BEAN EWLE

With both flexible aircraft and large space structures there can be

an overlap of the rigid body and bending mode frequencies which require
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explicit consideration of the bending modes in the control system syn-

thesis procedure. An extensive literature exists in which the control

synthesis tools employed for control law development for such vehicles

and structures are predominantly based on a continuous optimal regulator

for control and estimation of the state vector using filLer/observer

thee -y. A direct consequence of this approach is, typically, to require

n control points and n sensors if the plant equations contain n modes.

Thus the optimal results are at variance with the classical approach of

phase stabilization, which can conceivably increase the damping of many

modes using only one control point and one sensor. Clearly some trans-

lation of the classical ideas into the optimal setup, perhaps coupled

with modifications to optimal procedures, is indicated. In this subsec-

tion we wilt explore these points using a low order flexible system as

an example. It will serve to demonstrate that

0 many physical plants are naturally in a favorable
sawtooth format

* this sawtooth Bode format is best revealed when
physical coordinates (as opposed to generalized
coordinates) are used.

The simple example will then be used in the next subsection to explore

an optimal control approa which is capable of forcing the sawtooth

Bode form.

Consider the example system comprising three masses coupled by

springs, with the possibility of a control effector at each node, shown

in Fig. 42.

x1 X2 k2 X3

Figure 42. A Three Point-Mass System
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The Laplace transformed equations of motion of this system are given by

(Mjs 2 + k,) -k0 Xl F1

II -kj m1 s t kj + k2] -k2 X2 F2

0 -m3s 2 + k2 ) F3

(42)

Equation 42 is a truncated form of the more general discrete mass

approximation for conservative flexible systems, which would have the

form,

ýml s 2 +klJ -k1  0 ... ... 0 X1 FI

-k1  m2 s 2 +1k1 + k2 J -k 0 F2

0 -k 2  m3 s 2 +(k 2 + k 3 ) X3 F 3

0 0 -k 3  . •

0 0 -k nkl mnS2 +kn-11 J Xn Fn

(43)

0 The diagonal terms in the plant matrix have a second order format, and

the matrix is sparse and symmetric with only diagonal, upper diagonal,

and lower diagonal elements. The characteristic function of Eq. 42 is

the sixth order expression given by,

m2m2 m3s
2[84 + + k k + k 2 ) 82 + k 1 k 2  + 1 1+ + I

m3  m- m2  mnI2  m2 m3  mjm2

0mi 2 m3 s 2 [s 2 + w2 s2 + w2
2 ] (44)
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To make the example more specific consider that the system comprises

unit masses interconnected with unit springs. Then the matrix equation

becomes Eq. 45.

s2+I -+ 0] X Fi

- 2 + 2 -1 X[ F] (45)

0 - 2 + 1 X3 F3

Solving for [X1 involves the inverse of the system matrix, which is

shown as part of the solution below.

s4 + 3s2 + 1 S2 + I I F

s2 + I I2 + + F22

L2 + 1 3s2 + I F 3

s 2 (s 4 + 4S 2 + 3) (46)

In factored form this bec mes

- [s2+(0.618)2][s2+(1.618)2] [s 2 +1 ] F 1

"rxI" Is2 + I] [s 2 +ll 2  [s2+i] F2

X2 1  [s2+1] [s2 +(0.618) 2 ][s 2 +(1.618) 2 ] F 3

X3
L J s2[s2 + I][s2 + (,i3J21

(47)

All of these eqaations describe the plant in physical coordinates, i.e.,

x1, x2 , eid x 3 . One can visualize placing sensors on the physical

107



masses and measuring position, velocity, acceleration, etc. , and then

feeding such sensed signals to control effe-tors imposing forces F,, F 2 ,

and F 3 . With velocity or rate sensors (or their equivalent in terms of

position sensors followed by lead equalization or acceleration sensors

followed by lag equalization) there are a variety of single sensor,

single actuator control systems which can stabilize the plant. A cross

section of possibilities is shown in Figs. 43 and 44. In the first of

these the sensors and actuators are co-located. As can be seen from

Fig. 4 3 (a) sensors and actiltor.; co-located aL the end points x1 or x 3

can stabilize all modes with simple pure gain velocity feedbacks. On

the other hand a velocity sensor at x 2 is not capable of observing and

controlling the mode [0, I]. This corresponds to the situation where a

rate gyro is located at a fuselage station where the [0, 1] mode shape

has zero slope. The [0, 1] mode will not be excited by controller

inputs but it will be influenced by disturbances. The other modes are

well controlled for both commands and disturbances. As seen by examin-

ing Fig. 44, for the condition where sensors and actuators are not co-

located, it is virtually impossible to exert ettective control cver all

modes with a pure gain single sensor/actuator system. Thus again we see

in this example the fundamental sawtooth Bode, phase stabilization con-

cept and application. Just as with the sawtooth Bcde concept for flex-

Ible aircraft control, these principles for flexible beam stabilization

go back many years. For example, Ref. 12 indicated "for vehicles which

can be characterized as beams it is unlikely that all flexible modes can

be stabilized without structural damping unless the rotational sensor

and the control force for each axis are placed where the signs of the

slope and deflection are the same fo all modes, such as the beginnings

or ends of the mode shapes."

These fuiadaniental ptinciples of beam stabilization, co-location

etc., aside, the important point to be mdde for the current discussion

is that it is possible with single sensor/actuator combinations to

create a highly robust, extremely simple controller and that a cross

section ct these controllers is easily determined by considering the

plant equations in physical coordinates.
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I

,) x i_ [o,o.618][o,.618]
F, F3  () [o, ][0,V ]

6&

(0,11 2
F2  (o)[0,1][043]

Figure 43. Single-Sensor/Actuator System
Possibilities for Co-located Systems
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i1 2 i 2  [0,1]
F2 F2  F, F5 (O) [O, ;]WO,=31

0b

F3  F, (0) [0 ,][0.V3-

Figure 44. Single-Sensor/Actuator System Possibilities
for Non Co-located Systems
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The system of Fig. 42 can also be placed into a canonic torin in

terms of generalized coordinates by using the trransformation

x = q (48)

whiere the column vectors uf € arc the eigenvectors corresponding to the

eige.values related to the eigenvectors of the system,

s= , .• = -1, = -3 (49)

The eigenvectors can be found by substituting the values given in

Eq. 49 into Eq. 45 and solving for three constants which force the three

equations to he identically zero. To illustrate, for the eigenvector

corresponding to s= - 3, substitoite s- = -3 into Eq. 45:

-1 b = 0 (50)
0 -1 Ibc It

Since s- = -3 defines an eigenvalue, the determinant ot the matrix of

Eq. 5 is zero. Therefore, use (aussian elimination to eliminate the

depe n ~ic,, eJLat ions:

12 - :/2 L' 1 L/2 0 1/2 0 i/1,2 0

-1 -01÷1 1 , 112 1 + 1 2 + C) 1 2

0 -1 - 2 L 1 2 0 1 20

(5k)

Therefore th- -,".eent relat Ioships are,

a + b/2 = 0

b + 2c 0 (52)
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Then if a = I, b =-2, c - , the eigenvector -2 becomees

ýs2= - 2 (53)

Proceeding in a similar manner for s 2 = 0 and 52 -1 yields the trans-

formation matrix

1 0 -2 (54)

1 -1 1

Premultiply Eq. "5 by 0' to form[2+ 1 -1 0
' -1 s 2 + 2 --1 q - 'F (55)

L 0 s2 + I

Since all the eigenvectors in the 0 matrix are mutually orthogonal, the

operations indicated by Eq. 55 produce a diagonal (decoupled) matrix on

the left hand side:

[3s2 0) ] q, [1 1]
0 2is2 + Ij 0 q 1 0 -1 F

+0 6(S2 + 3j q3 ] 1 -2 1 F

(56)
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The solution of Eq. 56 for the generalized coordinates is easily

written:

1/3 1/3 1/3 Fl

112 1
- /2-1/2

q2 s2 + 1 s2 + 1 2 (57)

1/6 -11/3 1/6
q3 s2 + 3 s2 + 3 s 2 + 3 3

It should be clear from the diagonal character of Eq. 56 that feedbacks

involving the rates (or their equivalents) of all the generalized coor-

dinates are needed to stabilize and control the three basic modes. For

example, a controller which comprises

q- F1

;2 F 2  
(58)

;3 + F 3

will suffice. With no additional considerations, such as combining the

q's to form physical coordinates, this controller implies signals from

3 state components fed to 3 actuators to control 3 modes.

Any control system based on generalized coordinates will, then appear
inherently to be more complicated than the simplest ones for physical

coordinates. Again this can be, of course, only a matter of appearance,

for the particular combinations of generalized coordinates being used

could amount to a single appropriate physical coordinate. Nonetheless
there will in general be n feedbacks -equired for stabilization of n

modes if the system states used for feedback control are defined in

generalized rather than physical coordinates.
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D. OPTIMAL CONTROLLER TO GENERATE SAWTOOTH BODE CONDITIONS

As noted above the majority of optimal control studies for flexible

structures use generalized coordinates to describe the plant, resulting

typically in the requirement of feedback from all states to all control

points. In particular, the use of the quadratic index

J fu'Ru + x'Qx) dt (U*RU + X*QX)ds (59)2 2 Tu + x t 2j f

c--I

R > 0, Q ) 0

with diagonal Q and R with non zero elements will always result in feed-

back from alt states to all control points. This result is unsatisfac-

tory when one considers that a sawtooth Bode solution, requiring only

one sensor and one co-located actuator, can be set up directly in physi-

cal coordinates.

Further, typical optimal control studies involving flexible craft

(e.g., Refs. 13-15) appear to yield controller characteristics which

contain lightly damped numerator and denominator quadratics. In the

words of Ref. 13, "Right-half plane zeros are rarely used in classical

compensation networks, but they appear to be common in optimal control-

lers for systems with poles near the imaginary axis."

None of these features which appear as consequences of routine

applications of optimal control are especially attractive. We would

like to get around them, while retaining the computational efficiencies

available with optimal approaches. To do this we will explore, using

the simple three-mode truncated flexible beam example, several aspects

of optimal control application. The results will indicate that:

0 optimal control procedures using the performance
index of Eq. 59, with diagonal elements only
(although some equal to zero), can generate a
sawtooth Bode control law in physical coordi-
nates;
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0 this same control law can be induced using gener-
alized coordinates, but the Q matrix in the per-
formance index will be quite peculiar -- still
symmetric but non-diagonal.

The first key question is whether the performance index of Eq. 59

can be used to generate a control law in generalized coordinates which

will transform into a sawtooth Bode control law in physical coordinates.

For the simple beam example, the answer to this question is in the

affirmative. To cee this, imagine that only MASS #I has a co-located

sensor and actuator and rewrite the physical coordinate set (Eq. 45) as

[2+ 1 -1 02 [cjI [:'

-1 s2 + 2 -1 = U + Fý (60)

0 -1 s 2 + I x [F

Here the control vector U is a part of the general applied force vector

F in Eqs. 42 or 45, e.g., F1 • U + F'. Otherwise Eq. 60 and Eq. 45

are identical.

One may treat the system of Eq. 60 as a regulator problem by drop-

ping the external force vector F' and replacing it with the transform of

the initial condition vector. When this is done, a Wiener-Hopf approach

to the optimization immediately suggests a performance index of the form

-2 0 0

R 1; Q 0 0 0 (61)

0 0 0

For those more comfortable with first-order notation (as opposed to

degree-of-freedom), the setup of Eqs. 60 and 61 can be restructured into

a first-order format by defining

xl " x 4

2- x 5  (62)
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Thus

i20 0 1 0 0 0

i3 1 0 0 1 X3 0 (63)

x4 -1 1 0 + 1 u

X5 1 -2 0 0 X5 0

06 L 0 -i J 0 J

and

(3 x 3) (3 x 3)

R "1; Q = -I
1 0 0 (64)

0 I 0 0 0
0o 0 oj

(3 x 3) (3 x 3)

Application of any standard time domain optimal solution program based

on either eigenvalue decomposition or a Riccati-based solution will

yield a feedback K matrix

K [ [0 0 0 1 0 01 (65)

and thus produce the sawtooth Bode solution in physical coordinates.

Next, we explore the structure of the R and Q matrix needed to

achieve the equivalent result in generalized coordinates. In general-

ized coordinates one has a formulation, equivalent to Eq. 60, of

2 2
0 s2 + 1 0 q2 1/2 U + 12 0 - (66)

0 0 R + 3 q3 1/6 1/6 -1/3 116
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Again, one may switch to a first-order form by the assignment

411 = q4

42 = q5 (67)

q3 = q6

giving

1i 0 0 qj0

S2 0 0 1 0 q2 0

S3 _ 0 0 i q3 0 (68)
C = _+U

q4 0 0 01 q4 1/3 U

45 0 -1 0 0 q5 1/2

L6 0 0 -3 L q6 1/6

The Wiener-Hopf degree-of-freedom Q matrix, when translated into the

first-order format, will appear as

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
(69)

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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What is the equivalent in generalized coordinates? In physical coordi-

nates (using Wiener-Hopf)

s2 0 0 XI

X'QX = [X1 ,X 2 ,X 3 1 0 X2 -q''Q=q'

0 01 X31

1 1 1 _2 0 0 1 1 1

- [ql,q2,q31 1 0 -1 0 0 0 - (70)

I -2 0 0 O 1 -I1

-s 2  _z - 92

X'QX + Qgen = s 2  _S2 _S2 (71)

-82 -92 -82

In first-order format, using 41 - q, etc., Eq. 71 becomes

-0 0 0 0 0 0-

0 0 010 0 0

0 0 0 0 0 0

Qgen 0 0 0 1 - - (72)

0 0 0 1 1 1

0 0 0 1 1 1

Also, R 1, as before. Application of time domain optimal control to

the system defined by Eq. 68, using the Q matrix of Eq. 69, gives the

gain matrix

K - [0 0 0 1 1 II (73)
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The closed-loop system will be the same (when transformed back to physi-

cal coordinates) as the closed-loop system synthesized with the Q matrix

of Eq. 64.

For each system, the closed-loop elgenvalues are

s = 0

s = -0.416283541

s = -0.233676852 k j 0.885556760 (74)

s = -0.058181377 ± j 1.691279149

We also note, in passing, that the sawtooth Bode for this system can be

invoked in physical coordinates by the selection of

H, = [0 0 0 1 1 1] (75)

where Q = H H'

A critical point in this development is that, for generalized

coordinates, the Q matrix defined in Eq. 72 is non-diagonal but still

symmetric. This unusual Q matrix is one secret to the evolution of a

simple, pure gain, single sensor/actuator system from an optimal control

procedure. We believe that this exercise is novel in that a Q, R formu-

lation has been given for a phase-stabilizable sawtooth Bode configura-

tion. As such, these results provide insight as to the formulation of

co-located actuator/sensor controllers as optimal control problems,

whether formulated in physical coordinates or in generalized coordi-

nates.
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SECTION VI

OONCLUSIONS

In this report we have examined, on an exploratory case study basis,

the application of some prominent direct digital design procedures to

the analysis of control systems for vehicles with flexible modes. Con-

clusions have been provided in the main text in the discussion for each

of the examples, but some of the more interesting are worthy of reprise

for emphasis. These are summarized below.

w-Domain Analysis Procedures

0 The w-domain transfer function approach permits a
direct carryover of classical frequency response syn-
thesis procedures and stability analyses.

0 The additional zeros introduced in w-domain transfer

functions by the sampling and hold operations of digi-
tal systems;

-- directly show the phase lag associated with
sampling as the result of a rhp zero at w =

2/T;

-- indirectly lead to some stability conditions
for the sampled system which have no paral-
lels in their continuous counterpart.

* The w-domain transfer function poles and zeros which
transfer from the s-domain continuous case are only
slightly affected by the fact of sampling until the
sampling frequency, 1/T, approaches their magnitude.
Thus, for pole and zero magnitudes less than about

I/T, the w-domain poles and zeros are closely approxi-
mated by those in the s-domain.

Hybrid Frequency Response Analysis

0 The understanding of digital system response ques-
tions, as contrasted to stability, requires considera-
tion of the modulation pxoducts associated with the

impuise ti.in amplitude modulation features of digital
systems. The hybrid frequency response Is an excel-
lent approach to study these questions.
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0 A lightly damped flexible mode subjected to sampling
gives rise to "resonances" at frequencies which are
sums and differences of the flexible mode natural fre-
quency and n times the sampling frequency. The lowest
difference frequency may reflect a "resonance" to a
value which may have an impact within the control
bandwidth. Similarly, "notches" are reflected from
transfer function numerator quadratics.

0 The hybrid frequency response, by delivering all the
output components for a sinusoidal input, permits the
simple calculation of output waveforms. These can be
particularly instructive in showing the non-periodic
response and waveform distortion present as a conse-
quence of the sampling process.

* As sampling rates are lowered the output distortion
revealed by the hybrid frequency response will ordi-
narily become critical well before the effects of
sampling and hold on stability.

Control Systems for Flexible Vehicles

* The straightforward survey of control possibilities
using the sawtooth Bode concept as a guide reduces the
total number of reasonable feedback possibilities to a
small number of feasible contenders.

The flying quality, bending mode relief, and pilot
station excitation requirements, coupled with the
desire to improve the flexible mode characteristics,
combine to dictate a very small number of feasible
system feedback architectures.

The sawtooth Bode concept for phase stabilization of
flexible modes is one of the continuous control
schemes which carry over directly into the w-dcmain.

* An attempt to apply optimal control procedures in a
routine fashion, without taking into account the fly-
ing qualities, actuation, and other practical consid-
erations, will iesult in a design which has little
practical relevance.

121



Optimal Control Applications to Flexible
Mode Controller Designs

"S The highly robust, extremely simple, controller
designs permitted by application of the sawtooth Bode
concept cannot be realized by straightforward and
routine application of optimal control proceduces
using a positive definite performance index with
diagonal Q and R weighting matrices. The controller
synthesized in this fashion will typically have feed-
backs from all states to all control points, and will
often have lightly damped right-half plane zeros.

" The consideration of physical coordinates in contrast
to generalized coordinates can be very handy in the
apparent simplification of controller feedback quanti-

ties. For example, the requirement to feedback all
generalized coordinates to affect all the flexible
modes may conceivably be translated into a requirement
to feedback as little as one physical coordinate.

" A sawtooth Bode controller, can be readily achieved
using optimal control procedures by selecting a
special form of performance index. For example, using
physical coordinates in the simple truncated beam
case, a performance index using R = I and Q having
only a single non-zero component will provide a pure
gain, sawtooth Bode controller which damps all modes.

" A sawtooth Bode controller for the truncated beam
example expressed in generalized coordinates can be
induced by a Q matrix which is non-diagonal but sym-
metric. This unusual Q matrix is one secret to the
evolution of a simple, pure gain, single sensor/
actuator controller using an optimal control proce-
dure.
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APPENDIX A

EQUATIONS OF MOTION FOR EXAMPLE VLEXIBLE AIRCRAFT

Feedback Controls Survey and Closed-Loop Design Example

This appendix presents the system equations of motion in the fre-

quency domain for both the feedback controls survey and the selected

loop closure. The basic airframe and sensor equations are those of

Ref. 9 for a contemporary, flexible, light fightet aircraft equipped

with heavy external stores. The data base comprised two rigid body

modes (pitch and heave) and five structural modes responding to eleva-

tor, flap and aileron inputs. The supplied sensor equations include

acceleration and pitch rate at four stations (nose, tail, wing tip and

pilot seat) as well as wing-root bending moment.

Figure A-i presents the controls survey equations of motion using

the general second order form

[A2 s 2 + AIs + A0ox = [B 2 s 2 + Bis + Bo0 f

where the "cell" components of each row and column are stacked verti-

cally, i.e.

a 2

a1  represents a 2 s 2 + ais + a0
a0

The system variables, x, and forcing functions, f, are defined in

Table A-i as well as the corresponding column codes used in Fig. A-I.

The results of the controls survey indicated that feedback of

shaped anw and qp to the elevator was relatively simple and gave the

best performance potential. The block diagram is given in Fig. A-2 and

the closed-loop system equations of motion are givce in Fig. A-3.
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Figure A-I. Controls Survey Equations of Motion
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TABLE A-1. SYSTEM AND FORCING FUNCTION VARIABLES
USED IN CONTROLS SURVEY AND/OR CLOSED-LOOP

SYSTEM DESIGN EXAý[PLE

System Variables

COL EOM
CODE Var. -Units Definition

ALF a rad angle of attack
CIQ rlq rad pitch rate (normalized by cl)^

CV2 ClV2 m ( generalized co-ordinate for
CV3 ClV3 m • structural mode deflection rate
CV4 clv4 m (normualized by cl)^
CV5 m

NI n, m
t-N2 n2 m ( generalized co-ordinate for

N3 n3 m structural mode deflection
N4 n4 m )
N5 n5m

tn5

DE De Gad elevator

** DF Cf tad flaps
DA Va lad symmetric ailerons

A NP anp g pilot station acceleration
ANW anw U wing station acceleration

** ANN ann g nose station acceleration
ANT ant g tail station acceleration
QP qcp radisec pilot station pitch rate
2QW qw rad/se wing station pitch rate

CV3QN qn rad/sec nose station pitch rate

** QT qt tad/sec tail station pitch rate
++ MBW MBW N-m wing root bending moment
++ DEF nef mad net feedback to elevator
++4 DEA ýea ad anw feedback to elevator

++ DEQ re ad qp feedback to elevator

Forcing Functions

DEC 4,e rad elevator command
** DFC f rad flap command
** DAC C tad aileron command

ALG ag gad gust input

++ variables not used for controls survey
Svariables not used for closed-loop system design example

normailzPon constant is c p 2.35/290. sec

128



Qg

8F Onp
Flexible

Aircraft qw
Equations

of

Motion qp
Bec + be n

f fl

beF

8o -0.5 ________ _e0  (s+5) i

± 5eq (s+ l0)(s+20]

Figure A-2. Closed-Loop System for Flexible Mode
and Short Period Damping Augmentation

1

129

r.. . . ." - ... ., . ' ' , _ . - . ".. . '. °./ -



1 2 3 4 k 7 0 q 10 iI
AL CL C ,'! CV2 CV3 CV4 CY5 N I h. a N4

0 0 v 0 0 0
3. 5, -0,413E.02 0 0 0 c 0 0.113E-02 (..401-02 -G.332E-0i -0,;73E-02
4.1 -434. -7.i, J.11 5.23 -se.

c 0 0 0 0 0
2 0.169E-01 3.1 0 0 0 0 c -0.3?3102 0.721E02 0.743E-02 -0,454E-02

II.18 ,24 -0.2)0 0.480 1.04 -0.510

0 0 0 0 0 0 0
3 -0.7131-02 -0.'M1-02 0,00 0 0 C, 0 ,7081-02 0.194E-02 -0.1051-0C -0,600E-02

0.460 -0.230 0 2.01 1.28 1.75 -2.16

0 0 0 . 0 0 0
4 -0.2191-02 -0.217E-02 0 1.46 0 0 0 0.21V-02 0.2.5E-01 0,486E-03 -C.I0?E-0]

0.480 0.20( 0 -0,230 '.15 14.7 -1.91

0 0 0 0 0 0 0
5 0. 137E-l 0.122E-01 0 0 61.8 0 0 -0.6401-02 0,332E-02 1.48 0.211E-02

-2.18 -0,650 0 0.6:0 -2.87 414. 3.46

I 0 0 0 0 0 0
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0 0
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-140 0

0 0
11 0 0 0 0 0 0 0 0 0 0.8101-02

-1.0 0

0
12 0 0 0 0 0 0 0 0 t 0 0

-1.0

13 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
14 1,0 -1.13 -0.230 0,129 0 0,542 0,223 0 0 0 0

0 -1"3. 0 0 0 0

0 0 0 0 0 0 0
1' 1.0 -2.06 1.0 1.0 -1.0 -.1C -0.470 0 0 0 0

0 -123, 0 0 0

0 0 0 0 0
4' 0 C- c- c 0 0 0 0 0 0 0

-1,0 04001-03 0.440E-02 O.60E-02 0.170E-02

S0 0 0 0 0 0 0 0 0 0
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Figure A-3. Closed-Loop System Equations of Motion for Elevator
Control of Flexible Mode and Short Period Damping Augmentation
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APPENDIX B

MAPPING BETWEEN THE a, z, and v-DO4AINS

This appendix presents a variety of graph forms suitable for inter-

preting and/or converting roots from one domain to another. These were

prepared using the transformations

z , eTs I + Tw/2 (w + 2/T)
I - Tw/2 (w - 2/T)

The figures provided are:

Fig. B-1 w-domain with s-domain contours of ; i

Fig. B-2 z-domain with s-domain contours of ,

Fig. B-3 s-domain with w-domain contourR of Cwn

Fig. B-4 z-domain with w-domain contours of Cwn

Generally the user enters a plot with the rectangular coordinates of a

root and interpolates within the contours for the ; and wn of the other

domain.

Figures B-I and B-3 are sized to illuctrate that roots well below

the folding frequency are essentially equal (numerically) in a or w.
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