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SECTION 1

INTRODUCTION

Current trends in aircraft and space vehicle structural design have
signtficantly increased the possibility for interaction between {light
j control and structural characteristics., In aircraft, to achieve the
\ full benefits of possible drag and weight reduction, tne vehicle may be
designed for normal operatlon around neutral or negatively stable c.g.
locations with active control systems to stabilize the rigid body modes.
Because the basic (unaugmented) aivcraft can be divergent, the closed-
loop system will have a4 minimum bandwidth requirement which can be
greater, whe adequate margins are provided, than the bandwidth needed
to augment a stable alrcraft. This 1s all t-o likely to intrude on the
lower frequency flexible modes, with effects which must be considered in
the control system design. The flexible modes can elther be stabilized
or have their effects on the system reduced by appropriate filtering.
Because low frequency effective lags are minimized, direct stabilization
of the lower fregquency flexible modes is often a superior strategy in
contrast to signal suppression via notch or low pass filters. In other
cases direct control of the flexible modes is essential, as in the
direct reduction of wing root bending moment by control of aircraft wing
bending modes, or the alleviation of flutter characteristics by active

stabilization. Similarly in space vehicles, structures are projected

which have very large physical dimensions, light damping, and low rigid-
9 ity. Such systems 1nherently possess many degrees of freedom, some
characterized by eigenvalucs of low frequency and damping which may also
be highly cross-coupled: There can be an overlap of the body and bend-
ing modal frequencies, requiring explicit consideration of the bending

modcs in the control system synthesis.

L From the standpoint of the flight control system designer the status
of the vehicle's flexible characteristics has fundaweutally changed.

Previously these high frequency properties were ordinarily nuisances to

be countered by notch or low pass filtering. While these techniques are

sttll valuable for some modern and future craft, the flexible properties




of the vehicle will be central issues in most new designs. In these
cases the object will be to actively intervene with the flexible modes
uslug control techuiques. Another technology trend is in the control
apparatus, which has become dominantly discrete or digital in character
in recent years., Digital systems are now cowmmonplace in flight control
although most of the applications have not yet had to cope in a signifi-
cant way with direct control of flexible modes. Instead most of the
systems have again relied on the equivalent of low pass or notch filter-
ing and antialiasing filtering to reduce the impact of any flexible mode
effects on the primarily rigid body flight control system.

Following these trends in vehicle dynamics and controller technology
the study reported here is primarily concerned with the direct digital
control of highly elastic vehicles, including the exertion of positive
influences on the elastic modes themselves., The approach that 1is taken
in most of the report is to carefully select existing theory and well-
proven flexible vehicle control concepts. The case study method will be
used throughout to illustrate the applications. They are arranged in
order of {ncreasing complexity, ending finally with a relatively com-
plete design study of a dlgltal automaiic flight <oulrol system for
flexible and rigid body control of a fighter aircraft.

The next section of this report reviews the principal analytical
tocls to be used for digital design. These are the w-domain transfer
function for direct digital analysis stability assessment; the "hybrid”
frequency response for response assessment and indication of digital
system peculiarities; and the “"sawtooth Bode™ as the key contrel system

design concept.

Section III provides a detalled case study illustrating the hybrid
f requency response. Some of the peculiar features of digital, as con-
trasted vith continuous, control systems are revealed in & clear cut way

in this example.

Section IV presents two control system design examples for rigid
body and flexible coantrol of a typical fighter aircraft., The ailrcraft
control problems are initially addressed with a continuous control sys-
tem design. Topics such as the control system feedback loop architec-

ture, the most favorable control loops, sensitivity and robustness
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considerations, and the <closed~-loop system design assessment are
addressed. Then the design 1is redone using the discrete systems analysi.
tools. The overall feedback control architecture is the same as in the
continuous system since this 1s appropriate from the standpoint of the
basic physics of the alrcraft and flexible mode control tasks. The
digital design is conducted first witn a w-domaln transfer function
treatment which emphasizes the effects of sampling rate. Stability
properties are explored both in the w and z-domain. Then the hybrid

frequency response 1s examined over a wide range of sampling conditions.

Section V brings in the subject of optimal control. In the first
article the flight control system design of Section IV 1is contrasted
with a previously accomplished set of optimal control designs for the
same vehicle. This comparison leads to many insights, such as the much
simpler, generally superior, and more practical features of the conven-
tionally designed system over the optimal vevsion. This reflects the
relative maturity of the two techniques and is particularly useful in
illuminating some of the problems which optimel formulations must over-
come to result in practical systewms. The latter portion of this section
is an attempt to overcnme some of the difficulties encountered with
optimal control approaches for flexible structures. An extensive liter-
ature shows that continuous or discrete regulators based on quadratic
indices and/or maximum likelihood estimators often lead to coatroller
transfer functions which are not only equal to the order of the system
being controlled but are also sometimes unstable and very often non-
minimum phase. Thus optimal controllers for flexible vehicles are
inherently very sensitive to both the modelling process and demand a
precise knowledge of the vehicle parameters. We illustrate by a simple
example that the control system complexity, e.g., the feedback of all
significant state vector components, can be somewhat relieved by using
physical rather than generalized coordinates. The tendency for optimal
approaches to yield nonrobust and occasionally ncnminimum phase control-
lers 18 more troubiesome. By another example we are able to show that
the adoption of an unusual optimal control performance index will yield
an extraordinacily robust and simple control system akin to those 1llus-

trated earlier using the more conventional procedures.




E SECTION I1I

REVIEW OF ANALYTICAL AND CONCEPTUAL PRELIMINARIES

i This study is primarily concerned with digital control systems for
flexible vehicles., The focus is on the application of existing discrete

systems analysis techniques and flexible vehicle control concepts rather

v

than the development of new theory. The bulk of the report 1is made up

of examples which illustrate behavioral features of digital controllers
F as applied to flexible wvehicles. So that the detalls of the examples
can be easily followed we will present, in this section, reviews of per-
tinent sampled data system analysis and flexible mode control concepts.
These will include:

) w-domain transfer functions as the primary tool
for direct digital design and stability;

— 'r‘vvv

] the "hybrid"” or “complete” frequency response as
the primary tool for response assessment and
understanding;

. the "sawtooth Bode” as the key to establishing
“phase stabilized” control systems for flexible
vehicles.

These topics will be treated in the above sequence in the following

articles.
A. THE w-DOMAIN
l. &, z, and w Transforms

The use of discrete (digital) flight controllers makes the augmented
aircraft a sampled data system, thsat 18, a discretely controlled contin-
UQu8s system, The anal sis and design of such systems requivres pro-
cedures and tools beyond those of ccntinuous feedback control system
design. Since the late 194G's much work has been done in this area and
a wide range of methods for analysis and synthesis of sampled data

systems are avallable. This includes z- and w- transform techniques,

et
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and procedures for multi-rate systems (e.g., Refs., 1-4). Because our
focus 1s on the speclial class of controllers appropriate to flexible
aircraft flight control system design, there are methods and approaches
that are of principal interest and value. These particular sampled data
methods were selected because of theilr power in connecting peculiarities
introduced by the digital features to the well understood dynamics of
the afircraft. This 1is especlally desirable because of two considera-
tions., The first appears naturally in FCS development simulations,
where digital controllers are being assessed with simulated aircrsft
dynamics. Most simulation laboratories have now been converted to digi-
tal computers, so the continunus alrcraft dynamics are conventionally
simulated as "digital” alrcraft. Because of the complexity of complete
aircraft equations, simulation up-date rates for the vehicle are often
quite low when compared with those of the controller. Consequently, the
dominant "digital system” in a simulation may be the aircraft {itself!
The second consideration is the ever present concern witn achieving good
flying qualities. The FCS designer needs sampled data analysis tools
which are not only good computational algorithms but which can aid in
dealing with the impact of the digital controiler on flight control sys-
tem simulation and flying qualities issues which are sften more qualite-
tive than quantitative., To this end one of the more important uses of a
digital analysis method is to aid in the interpretation of AFCS simula-
tions and of pilot ratings in simulations or flight tests. Consequently
discrete systems analysis techniques which parallel familiar continuous

procedures to the maximum extent are most desirable.

The behavioral complexities jcrtroduced by discrete controllers arise
from the implementation of the control laws as difference equations 1imr
the flight control computer and through the sampler and data hold ele-
ments required at the analog/digital interfaces. Thus for linear trang-
form analysis the Laplace transforms of the continuous case become pulse
tranafucms for the sampled data aircraft. A loglical point of departure
18 to consider how the sampling operation may be analyzed. Figure la

indicates the action of the sampler idealized as a switch which closes

for an instant every T seconds. When the continuous function of time
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r(t) shown at the left in Fig., lb is sampled a time series represented
by the points at T intervals, as shown on the right side of Fig. 1lb, 1is
generated. The information in this time series can conveniently be
represented by a discrete function fT(t) which is related to the contin-

uous function f(t) by

tT(e) £COYE(t) + £(T)S8(t = T) + £(2T)6(t = 2T) + ...

(1)

it

£ £(nT)8(t - aT)
n=0

whiere 8 is the Dirac delta (or unit 1impuise) function and the super-
script T notation indicates that f(t) 1is sampled every T seconds. The
impulse train serves to establish the sampling times for the time
series, while the area of a particular impulse scts tte time series'
value ac that instant. Sampling may thue be viewed as impulse (axpli-
tnde) modulation, 1i-e., fT(t) is produced by modulating a train of unit

tmpulses with f(t) as indicated in Fig. lc.

The sampled signal may be Laplace transformed (Ref. 1) to give

FT(s) = L[fT(t)] = F f(nT)e-8nT 2)

n=

Thia does not lead immedlately to a transfer—-function-like quantity
hecause Eq. 2 is not a rational polynominal but rather is transcendental
in 3. The traditional solution to this problem has heen the use of the
z-transform, This 1is accomplished by mapping the complex variable s

into the complex variable 2z according to

¢ = esT (3)
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Figure 1. The Idealized Sampler
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The z-transform, Z[fT(t)], 1s then defined as the transformation which
maps a time domain function (the sequence fT{t)) intc a complex valued

function F(z), of the complex variable z, according to

F(z)

z[€T(t)]

¥ f(nT)z ™ (4)
n=0

(FT(s) ]

eST=2

z-transforms can be expressed as rational polynomials (and thus as poles

and zeros) in the z-domain. For example consider f(t) = e~at,

F(z)

§ e-anT ,-n

n=0

= 1 + e-aT =1 4 o=2aT -2 4 ,,, (5)

e—aT e—aT L
z

1+ ( )+ ( ) o+ ...

z

1 - 2z
1 - (e~aT/z) z - e~al

While the z-transform method 18 quite u.:able from a purely computa-
tional standpoint, it has certain disadvantages for aircraft FCS design.
The s-plane is distorted by the z = eST mapping as shown in Fig. 2. The
unit circle replaces the imaginary axis as the stability boundary and in
large order systems poles tend to cluster near this circle, giving the
designer very little inslght about degree of stability. Simple boundary
contours of w,, §, etc., 1n the s-plane are quite distorted in the
z-plane, which means that familiar flight control system and flying
qualities specifications (e.g., those of the MIL-Specs) must be trans-

formed and reinterpreted.
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A mch more serious objection to the z-transform is the loss of
immediate connections between the z-domain poles and zeros and the air-
craft configuration parameters -- stablility derivatives. For many
applications of digital control to complex plants the designer may not
have a well developed physical insight for the plant, but the aircraft
FCS dynamicist evolves a FCS design based on an intimate understanding
of the alrcraft-alone poles and zeros and the factors which influence
them. For 1instance, the physical 1insights and literal approximate
factors which derive from the s-domain Bode magnitude asymptotes are
especlally valuable, yet are not available in the z-domain. Fortunately
most of these objections can be eliminated by using the w-transform

instead of the z-transform for sampled data anaiysis.

The complex variable w can be developed from the complex variable z

through the bilinear transform,

2 4z -1
T+ ©

£
I

z is also a bllinear transform of w, i.e.,

_w+ 2/T
w - 2/T

w can also be determined directly from s by noting

g o= 2ol | ozel-ol
T *z + 1 T o8T + i
(8)
2 Ts
= T tanh 2

The mapping of s into either the z or w domain is {llustrated in Fig., 2.
These transformation diagrams are given with a larger scale in Appen-

dix B.

10




The w~transform, W[fT(t)], is defined as the transformation which
maps the sequence fT(t) into a complex valued function F(w) of the com—

plex variable w according to

F(w)

wiET(t)]

@ | + Tw/2, D
Ly £T) =3

(9

[F(2)]  w+ o1
z w=-2/T

The last expression in Eq. 9 provides a practical way of obtaining the
w-transform 1f the z-transform 1s available (say from a z-transform

table) by using Eq. 7 to replace the z's with w's,

The correspondence between a given F(s) and its F(z) equivalent can
be summarized in convenient transform tables (e.g., Ref. 1), The first
two columns of Table 1 provide a rudimentary version of such a table.
1f a trausfer function G(s) is isolated by samplers as showr in Fig. 3a,
then G(z) can be found either directly or via partial fraction expansion

from the elemental forms of G(s) given in Table 1.

In practical sy<tems the continuous elements are not subjected to
impulse train inputs. Instead a data hold of some type is present, as
shown in Fig. 3b. The data hold is a physical device which takes the
input signal samples, RT, and constructs a continuous signal which then
forces the continuous system represented by G(s). It is a coupler
between discrete and continucus system elements, and typically includes
digital to analog conversion. When this coupler is a zero-order hold,

its transfer function (see Fig. 3c¢) is,

1 - e sT

Mo(s) = ——— (10)

The presence of the hold will modify the z transform of interest. Con-

sider the earlier example where f(t) = ae™8t, If this 1is presumed to

11
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Pulse Transfer Functions

R R Data Hold C C
X — 0‘_0 | G (s) j T~
T M(s) T

b) Sampled System With Dafo Hold

(1/s)

(-¢"%/s)

c)I/mpulse Response of Zero-Order Data Hold

Figure 3, Sampling and Zero Order Hold Operations
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be the impulse response of a system element baving a transfer function

G(s), then

G(s) = (rn)

As developed in Eq. 5 and shown 1in the fourth row, second column of

Table | the z-transform is

3 S L S
G(z) T osal

When the data hold is included

- o—sT
G(s) M(s) = EL%?E-%—;YZ (12)

The z transform of this 1is

. a(l - e=sTy T
([au]t = (2L =)
(13)

- 1 T
- la-esh (g - 5]

The factor (1 - e 8T) = (2 - 1)/z, and 1is unaffected by the sampling

operator, so

[eM]T = (224 [E-

- (= lyv . 2 _ z

- L z ) Lz -1 z - e-aT) (14)
_ (1 - emaT)

Tz - emal

This result corresponds to the "z-plane (ZOH)" entry in the third column

of Tahle 1. The entries in this column are couverted to the w transform
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form, in the fourth column, using Eq. 9. In its now complete form,
Table | illustrates several examples of the connection bLetween s, z, and
w-domain transfer functions. A key pcint to notice there 1is that the w
transforms, when viewed as transfer function-like entities, all exhibit
a right-half plane zetro at w = 2/T. This, of course, stems from the
sample and hold. When loops are closed around w transfer functions this
zero has the expected but unfortunate property of drawing the loci from
some system pole(s) toward or into the unstable region.
The three great appeals of the w-domain are:
L4 Stability boundaries are again associated with
the entire left half plane rather than the unit

circle.

] w approaches s as tte sampling 1interval
approaches zero, i.e.,

w o= %-tanh %f
3 5
2 (Ts ! | Ts 2 Ts .
Crir o3l tsind el (15

+ 5, as T+ 0

L The poles and zeros 1in the w-cdomain are very
close to those 11 the s-domain for poles or zeros
which have magnitudes much less than 2/T.

As an example of the last poiunt consider the first-order lag

a/(s + a) plus zero~-order hold as converted to the w-domain.

-aT
2 (1l - e”? 1 - Tw
. T (l " e_aT)t 5—)
;s + a
- o-aT
w + Z{l e”d%
T 1+ e-aT
— a'(l - ;EJ
w+ a'
15




where a' = (2/™)(1 - e~aT)/(1 + e™aT) = (2/T) tanh (aT/2). Using the

hyperbolic tangent series expansion the value of a' becomes,

2 4
a = all - (2L +%(§I) _—

For sampling rates which are high relative to the s—plane pole magnitude
a, f.e., for aT/2 << 1, a' is very close to a and the s-plane pole at
8 = -a is an excellent approximation to the w-plane pole at w = -a'. At
lower rates (or larger values of "a") the effect of sampling 1is to
reduce the magnitude a' of the w-plane pole relative to the s-plane pole
magritude, a. The close connection between w and s poles and zeros
which are much less than 2/T in magnitude, and the "distortion” for

other conditions can be seen in Fig. 2. Here [ and w_ contours mapped

n
into the w—-domain are only slightly distorted near the origin (e.g.,

below 1/T).

As a consequence of these features, wany continuous system design
prucedures and representations can be carried over 1into the digital
world. Bode diagrams., conventional and Bode root loci, transfer-
function based multiloop analysis procedures, and many rules of thumb

will 211 work well 'using w as the complex variable in place of s.

If these concepts are now applied to FC5 analysis considerations the
first—order effect of sampling is to introduce the rhp numerator zero at
2/T, while the second-order effects are to change the magrnitude of the
poles and zeros in the w transfer functions from those of the s-domain
transfer function. Ordinarily the FCS sampling rate will be large rela-
tive to the FCS frequencies of interest (except, perhaps, for flexible
modes) so the addition of a zero at w = +2/T to the regular continuous
transfer functions with w substituted for s will often provide an ade-
quate approximation for FCS stability and dominant mode response pur-
poses. When higher frequency modes impinge on the sampling region these
approximations no longer apply and the more exact w-domain pcles and

zeros mist be used.

16
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With the high sample rates of next generation digital FCS for manned
alrcraft the sampling effects noted above are not as likely to cause
trouble on the actual aircraft as they are earlier in the simulation
phase cf development. There are particular concerns with closed-loor
man-in-the-loop simulation with actual hardware. Irn a typical simula-
tion the aircraft characteristics may be programmed onto a digital com-
puter which mry also run a moving-base apparatus and parts of a visual
display attachment. As already mentioned the mathematical models of the
vehicle may be very complex and include many nonlinear characteristics,
. lots of lookup tables, and so forth. The result often ic a simulation
vhich represents a continuous alrframe by a fundamentally digital char-
acterization with relatively low update rates. Now, when an actual
digital flight controller with a frame rate of 80-100/s is used in con-
junction with a 20/s digital simulation of a continuous airplane, the
simulated stability and control properties of the aircraft will suffer
phasing and timing shifts. If these "digital airplane” effects are rot
properly accounted for the basic aircraft/augmenter system ay exhibit

difficulties which are really only imaginary. There have been times

my

when the actual airplane was needed to fully appreciate the FCS capabil-
ities!

2. An Elemeuntary Roll Control System Examwple

To illustrate some of the features of the w-domain analysis pro-
cedures we will conslider the elementary roll controller shown in Fig. 4a
as an example. The actuator and sensor dynamics are assumed to be

» negligible, and the aircraft is represented by an idealized ¢/8, trans-
fer function in which the spiral mode is neutral, the quadratic numera-
tor term cancels the Dutch roll denominator term, and the roll subsi-

dence time constant, Tp, equals }/a. The flight control cowmputer, actu-

° ator, and other elements comprise a gain, sampler, and first-order hold.
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a, Open-Loop Transfer Function Characteristics

When the system 1is presented in its simplest terms it appears as

Fig. 4b. The effective open-loop system s-domain transfer function is,

K
Cele) = s (s + a)
(16)
K (1 1
SR i

This does not include the zero-order hold because the conversion from
the 8 to the w-domaln will be accomplished using Table 1 which takes
this into account. The partial fraction form of Eq. 16, and the entries
of column 4, rows 1 and 4 of Table | yields the w-domain transfer func-

tion which, after some manipulation, becomes

(x/a) fw (1 - 2 tanh aty 4 % tanh EIJ (—<I wol)
. . aT 2 1 2 2
¢lw) = 2 a1
w (w + = tanh ==
T 2

(17)

K/a [w (1- (tanh u)/u) + a {tanh u)/u] (- %-w + 1)

w (w+ a (tanh u)/uj

where al/2 = u. When viewed as an open-loop transfer function analogous

to Gs(s), the major effects of the sampling and hold exhibited in G(w)
are
® ., right half plane zero at 2/T 18 introduced;
L] A second zero, ~Z), 18 also introduced, resulting
in a transfer function numerator which 18 the

same order in w as the denominator;

® A sampling effect scaling pacameter, u = aT/2,
appears and affects the svstem's poles and zeros.

19




The first point was anticipsted from the development of the w-transform
with zero-order hold. The second point is typical of G(w) transfer
functions which can be considered to be generalizations of the continu-
ous system transfer functions. The additional zeros introduced by the
sample and hold operations tend towards infinity as the sampling inter-

val approaches zero.

Both the second and third features are made even more evident if the

w—domain pole, -a (tanh u)/u, is called -a'. Then G(w) becomes,

(k/a) [w (1 - a'/a) + a'] (- ;-w + 1)

G(w) =

wiw+a')
(18)
, + - 2/T
= - ['K— all =25 _(_W 2y [wm——).
22 a wlw+al
where
e - a'/a - (tanh u)/u
zy/a =37 1 - [(tanh u)/u]

The relative "pole-zero™ orders are such that z > 2/T > a'. Considered
as an open-loop transfer function analogous to Cs(s), the very-low "fre-
quency” gain [sometimes called the Bode gain], is K/a for both G(s) and
G(w). The very-high "frequency”, or root-locus, gains are quite differ—

ent, being simply K. for the continuous domain, and

(19)

for the w domain,

The variations of the normalized magnitudes of the poles and zeros
with the normalized sampling interval (aT/2) for the G(w) transfer func-
tion are shown in Fig. 5. Note that the open-loop pole {s shifted less

than 10 percent even when the sampling rate in hertz (1/T) 1is equal to

20
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Figure 5. Variation of Open-Loop Poles and Zeros
with Normalized Sampling Inferval

the magnitude of the pole (i.e., at u = aT/2 = 1/2). At this same
normalized sampling frequency the high "frequency” minimum pnase zero,
=z;/a > 1l. So these two quantities are mnot shifted, in a practical
sense, very far from their continuvcus values at this quite low rampling
frequency. The non-minimum phase zero at 2/T, on the other hand, 1s
very much 1in the picture at this value of u, and will have a major

impact or the closed-louop system properties.

b. System Stability

Because the left-half of the w-plane corresponds to stability the
closed-loop characteristic equation, 1 + G(w) = 0, can be examined for

stability just as for the continuous case. Forming 1 + G(w),

Gw) +1 = AWl +Bu+C = O (20)

21



where,

KT a' KT ,tanh u

A= 12 -2 ) = e (-

- v L KK a’ ar
B o= (a'+ aJ 4 a (1 + 2J

21)
- a tanh u + K [l _ tanh u (1 + uj]
u a u
cC = K a' _ K tanh u
a u

The coefficient C is always positive for a stable continuous system, for
which the only criterion is K > 0 (assuming the roll subsidence inverse
time constant, "a", 1is positive). The 1leading coefficient, A,
approaches 1 as the sampling rate approaches infinity, so A 1is positive
for high sampling rates. A transition from A > 0 to A < 0 will occur
when,

KT a'J _ KT

l+—2—a'; —'z—a' (22)

A will be zero when

u -tanh u (23)

An instabilitv criterion based on A changing from positive to negative

then becomes

)

u - tanh u (24)

£
al

This criterion is shown as a stability boundary in Fig. 6.
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Figure 6. Stability Boundaries

i Anothier stability boundary can be found by determining when the
E:: "closed—loop w-plane damping” coefficient, B, becomes zero. This 1is
;:' given by
I

K _ tanh u

al ~ (1 + u) tanh u - u (25)

This bouundary is also shown on Fig. 6. The two boundaries 1ntersect

when the normalized sampling parameter u = u..

When u is less than u,, the governing stability boundary is given by
B =0, Then any instability will show up as a negatively damped quad-

ratic in the w-plane. A root locus sketch showing this situation 1s

23
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given in Fig. 7b. Because the B = 0 boundary is asymptotic to 1, in
this case any gain less than K/a% = 1+ will result in a stable system

without further condicions.

Wien the normalized sampling interval is u > u the governing sta-

c?
bility criterion will be A = 0. The critical value of u will occur at

the transitional condition where A = B. This can be shown to be

tanh? u + tanh u ~u = 0 (26)

Solving Eq. 26, the critical value for u is

ue = 1.860 (27)

When the A = 0 boundary applies the instability 1is 1iandicated by a
closced-loop right half w-plane real root. This can occur at relatively
low values of gain. In fact, as can be seen by examining Fig. 6, gains
for instability corresponding to the A = 0 boundary will ordlnarily be
K/a? < 1+,

The same transitional conditions can be interpreted using the
w~plane root loci. These start from the w-plane open-loop poles at zeto
and -a'. The zeros at 2/T and -z, (as well as the pole at -a') depend
on the normalized sampling parameter, u., When u is such that the con-
stellation is as shown in Fig. 7c, there 1is a perfectly balanced sym-
metry among the poles and zeros. For this case as gain is increased
from zero the closed-loop poles will progress from the two poles towards
each other, rendezvous, and proceed along a straight line parallel to
the imaginary axis. At the transitional gain, corresponding to the A =
B poiat in Fig. 6, the closed-loop poles are at infinity, where they
split 1into two real roots. Then at higher gains still these real roots
will drive from plus and minus infinity along the positive and negative

real axes towards the zeros.
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Figure 7. Roots of w-plane Constellation for
Transitional (A=B; u=uc) Conditions
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This example 1s very instructive in that 1t demonstrates a great
deal of interesting behavioral possibilities introduced by sampling. At
the outset, as already remarked, the continuous system cannot be
unstable for positive "a" and K (see Fig., 7a), The most common instabi-
1ity of the sampled system, corresponding to rvelatively high sampling
rates (i.e., u < u.) results in negatively damped w-plane closed-loop
roots (Fig. 7b). These can only occur at quite high gains, 1i.e., K/a2 >
l. It is worth noting that the closed-loop damping ratio in the contin-
uous case corresponding to the lower gain bound for this condition (K =
a2) is £ = 1/2, which 1is approaching marginal conditions., 0f course,
the sam: gain for a sampled condition will result in a smaller effective
w-plane damping ratio because of the tendenry of the zero at 2/T to suck
the closed-loop quadratic into the right half plane (a3 tendency which is
not present in the s domain at all). The possibility of an instability
corresponding to a w-plane real root (for the A < O case) has no paral-

lel in the continuous case.
B. THE HYBRID FREQUENCY RESPONSE

Use of the w-domain permits many of the key prcblems of digital con-
troller design to be addressed in a direct and effective way. In parti-
cular, stability issues and system compensation possibilities can be
examined with techniques, such as w~plane and Bode root locus methods,
which are analogous to contipuous system analysis procedures. The
effects on stability of lags and "new" leads introduced by sampling can

be identified, assessed, and accounted for exactly.

While stability is well-handled using the w-domain and conventional
techniques, digital systems Introduce other effects which do not have
continuous system parallels. In a continuous system the features (e.g.,
system poles and zeros) alfecting stability and the features affecting
system response are the same, This 18 not quite the situation in a
digital system., For example, in a constant-coefficient linear system, a
sinusoidal input will force a component of output response which 1s also

sinusoidal at the same <frequency. In the sampled system a sinusoidal
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input will beget an output component at the same frequency plus an infi-
nity of frequencies which are gums and differences of the forcing and

integral mltiples of the sampling frequency. This 1s a direct conse-

Y Y VY VT T T ™ 7Y

A

quence of the 1mpulse train modulation feature of sampling, and the
appropriate analogy 1s amplitude modulation (as in carrier servo sys-

tems).

The w-domain deals exactly, but specifically, with the system's
characteristics only at the sampling instants. The modulation products,
on the other hand are primarily exhibited during the 1inter-sampling
intervals. Accordingly, the assessment of the total response character-

istics, including the “control roughness” or inter-sample ripple intro-

T T L, T vy T vt

duced when the discrete system elements are coupled with the continuous

components via data holds requires another approach.

These effects are most easily considered using the "hybrid frequency
response” developed 1in Refs. 2 and 4. The name “hybrid frequency
response” 1s used to emphasize that it 1is a continuous frequency
responge of a continuous plant with a discrete controller. 1It, there-
fore, by definition involves the complete spectrum of the output of the
continuous elements of the system —- all of the higher frequency sum and
difference frequencies generated by the modulation are included as well
as the fundamental output which corresponds directly to the input. ([The
hybrid frequency response should not be confused with the "sampled spec-

trum,” in which one finds the lowest frequency sine wave that fits the

sampled regponse at the sampling instants.]

The hybrid frequency response function permits one to determine the
amplitude ratio and phase shifts imparted to a sinusoid ingerted at the
input as it is converted to an output component, and also provides data

on the infinity of modulation products generated in the process. Con-

struction of the actual output time response requires consideration of

all of the compounents.

When contrasted with the frequency response for a system with a con-

tinuous controller the hybrid frequency respoase 18 very similar at

27
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lower frequencies. There 1is a significant difference {n the low fre-
quency phase, amounting to a phase lag increment for the discrete system

which is given by

. wT
A¢ = o

(28)

This phase lag effect is just what is expected as the low-frequency
consequence of the non-minimum phase zero at w = =2/T. Because the low-
frequency phase shows clearly the delay introduced by the sampling and
hold processes, and the amplitude ratio and phase includes all of the
modulation products, the hybrid frequency response reflects all of the

important effects introduced by the digital controller.

To develop the hybrid frequency response assume that a unit sinu-
soid, r(t) = 1 sin bt, is applied at the input of the sampled systenm
with data hold given in Fig. 3b. Then, following Ref. 4, the Laplace

transform C(s) of the continuous output will be

o “’n

C(s) = G(sIM(s) %ng_mm (29)
n

where wy, = b + 27n/Ty and M(s) and G(s) are the transfer functions of
the data hold and the continuous system respectively. The partial frac—
tion expansion of Eq. 29 may be written as

Ap{wn ) Bns

C(s) = § + + [Transient modes of GM) (30)
ng-m 52 + m% 52 + m%

Multiply each side by 82 + w% and evaluate at s = jup:

Cls) (82 + w§) = Apwy + Byiwy
= G{s)M(s)(1/T)u, (31)
Ay + jB, = (1/T)G(s)M(s)|s=jwn , n=0, tl, £2, ...
28




| !

3\ WIS

Thus the continuous spectrum contains, because of the summation from

=» to +°, both positive and negative modulation product frequencies.

As an example, consider a zero-order hold for M(s) and a continuous

system given by a first order lag, G(s) = 1/(s + 1). Then,

A + 4B, = L&t 1 (32)
n n sT s + 1 s=juwp

This is seen to be the frequency response of the continuous systenm,
1/(jw + 1), multiplied by a "frequency response” corresponding to the
sample and hold, i.e.,

] - e jwT

(e‘J“T/Zl LejmT/Z - e~jwT/2)
jwT

g 2(jwT/2)

(33)

Si(r:)Tw';/Z e-ij/Z

The 1incremental phase, 4¢ = wI/2 is the predominant 1low frequency
effect due to the sampling and hold operations. The amplitude ratio,
(sin wT/2)/(wT/2), 1introduces an infinity of notches, 1located at
w = 2%/T, 4n/T, 67/T, ... etc.

The Bode plot of this hybrid frequency response is presented in
Fig. 8 for T = 1 second.

To interpret Fig. 8 suppose a unit sine wave at 1 rad/sec 1is
inserted to the sampler. Then, if sine waves with the amplitudes and
phases corresponding to those shown at 1, 1 + 2u/T, 1 - 2n/T, 1 + 4n/T,
1 = 4n/T ... are added together, the resultant waveform will be an exact
match of the actual steady-state output waveform. In Fig. 8, one may
plot the negative frequency modulation products on a “positive fre-
quency” Bode plot by taking advantage of the fact that the magnitude is
an even function of frequency and the phase is an odd function of fre-

quency.
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One might expect this waveform to be relatively clean, since the
ficst modulation product 1is 30 dB lower than the input component. How-
ever, the output response itself does not bear out this conjecture, as
can be seen in Fig, 9. The reason that the higher frequency terms are
important is that they are not "harmonic” terms which slightly distort
periodic waveforms but are rather modulation components which add
together to match conditions at the T transition points. It can alsc be
seen that the "steady state”™ does not necessarily take on the additional
attribute of periodicity. This occurs only when the input frequency and
the sampling frequency bear an integer relationship with respect to one

another.
C. SAWTOOTH BODE - QUADRATIC DIPOLES

The basis for flexibie mode stabilization in continuous control
systems is thoroughly explored and exemplified in many sources, 1includ-
fng Refs. 5 and 6, The basic idea. for achleving simple and robust sta-
hilization is to {nsure an appropriate "Sawtooth Bode” situation for the
open-loop characteristics. This will be reviewed below for the simplest
example possible -- a quadratic dipole representing the dynamics of a

flexihle mode.

Juadratic dipoles in the crossover region of some feedback loop or
other are ublquitous in flight control practice (Ref. 7). Among the
applications are tlexible mode control. The essence of what can happen
is indicated in Fig. 19. This considers an open-loop system which can

b approximated in the reyion of crossover by:

' , 2\ [ 1
6(s) K{s? + 2oyuys + g K{oNs WN] (34)
wis = N " = T

sis? + 2opups + wf] s1%ps wp]

In the idealized situations 1illustrated the closed-loop quadratic mode
[:6, wb? progresses as open—loop galn 1is increased frcm the open-loop
pole ECD, ”D; to the open-loup zero [CN» wN], fn a counterclockwise
direction along a circular segment. Thus, when the pole is smaller than

the zero, the closed-loop roots depart toward the right-half plane and

3i
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suffer a damping decrease, whereas the reverse is true when the numera-
tor, uwy, is smaller than the denominator, Wy The max{mum diminution or
increase in damping 1s connected with the maximum phase deviation, due
to the dipole, from the phase angle contributed by the rest of the sys-
tem. This 1s given by:

tjgi '\/GB

)

. o 2len + ) Nep Ny
Aluy, W gy = Ttam : . “N Yp (35)
2+ bengy (- =2)
wp Wy
When wN/wD is near 1, this beconmes approximarely:
; : . 5N+ &p o wy
Adlwy, w = ~tan"! ———= (= - 1) (36)
N» “D) ax 2TN%p (WD

When wN/wD > 1, the incremental phase is a dip resulting in a decreased
phase margin (when ctogsover occurs in the dipoie region) over that
which would be present without the dipole, Conversely, Ml/wD <1
implies a phase lead blip and asan 1Increased phase margin., Ti. greater

the blip, the larger the attainable closed~loop damping ratio, Cb.

All of the ramiflcations fmplicit in the idealized situations above
are exhlbited in practical control situations., When wN/wD > 1 the pres-
ence of the dipole and its associated phase dip is a distinct nuisance,
often causing 1nstabllity or marginally stable operation. Conversely,
the presence of the dipole is advantageous in that the phase blip con-
nected with wN/wD < 1 situations permits the closed-loop damping to be

increased over that available open-loop.

When applied to a single isolated structural mode the same phenome-
non will occur. This is developed in Fig. 11, for the case of an ideal-
lzed longitudinai control system involving the short period and first
fuselage bending modes, with a pitch rate gvro as the controller sensor.
The analysis there is very elementary, resulting in the simple rule of
thumb that rate gyro locations with positive wmode shaps: slopes, ¢i, will
create the proper conditions for phase stabilization of the mode being

considered.
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This 1s one special case of the old rubric used by flight control
designer's for decades. 1In the words of Ref. 8, for example, "If only
one set of instruments is used in one plane for several bending modes
ti.» location of the sensing !'nstruments ... has to be selected so that
the [mode shape]l slopes of all the bending modes have the same [and

.

appropriate] sign.’

In general, regardless of whether rate gyros, accelerometers or com-
binations are being considered as the sensors, the key to stabilization
possibilities is the presence of a positive phase blip in transfer func-
tions relating the sensed quantity to the control effector to be used.
The wider and larger this blip is, the better the attainable closed-loop
damping ratio will be. Conversely, the presence of a marked phase dip
can often be the indication of elther a nuisance or more serious insta-

bility problemn.
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SECTION III

HYBRID FREQUENCY RESPONSE CASE STUDY

In the last section the fundamentals of flexible mode control and of
the hybrid frequency response were reviewed as separate entlities. In
this section the two topics will be brought together to explore the
hybrid frequency response concept more fully for a system which contains
terms representing flexihle modes. The example problem will still be
somewhat idealized to permit a clearcut illustration of some of the more
fnteresting phenomena. To provide an easy to follow treatment through
the many graphical representations, the section is laid out so that text

presented, faces the figures being described.
A. THE EXAMPLE SYSTEM

The open-loop effective vehicle characteristics relating pitching
velocity to elevator deflection for the example are given by the trans-

fer function,

s2 v+ (8)21 1s2 + (80)2]
2

o(s) = + =
(s + (10)2] [s2 + (100)2]

an

The free s in the denominator represents a high frequency approximation
to the rigid body characteristics, and two flexible modes are present at
10 and 100 rad/sec, respectively. This transfer function would be typi-
cal of that achieved with an appropriate rate gyro location such that
the numerator quadratics for the first two sensible modes, at 8 and
80 rad/sec, are both less than their assoclated eigenfrequencies. With
this pole-zero configuration a simple pure pgain controller ylelds a
highly robust and effective control over the damping of the flexible
modes. That 1is, as the loop gain of the continuous controller {is
increased the root locus from both the poles (with undamped natural fre-
quency at 10 and 100) depart {into the lett half plane and proceed in
nearly semi-circular segments toward their respective zeros. The
attainable damping in either mode depends primarily on the pole-zero

separation assoclated with that mode,
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A typical example of a closed frequency response for a continuous
design 1is shown in Fig. 12 for K = 10. Closing the loop has greatly
increased the damping of the first flexible mode (10 rad/sec), whereas
the second mode 1is hardly affected. The phase between phase blips
always approaches -90 deg. The high frequency amplitude ratio of the
second flexible mode decreases uniformly with a slope of -20 dB per
decade. Thus there are no disruptions 1in the smooth, ever decreasing

amplitude ratio and essentially constant phase above the second mode.

A block diagram and “hybrid” frequency response for a sampled data
control with 1/T = 50 Hz and zero order hold is shown in Fig. 13. This
frequency response is computed using the Ref. 4 techniques reviewed in
Section II. As noted there, the amplitude ratio and phase of an output
sinusoid generated by a sinusoid inserted at the q_ command point can be
read from this response funétion as well as the infinity of modulation
products also present, Construction of the actual continuous system

output time response requires consideration of all of the output power.

When constrasted with Lhe frequency response for the system with the
continuous controller the hybrid frequency response is very similar at
frequencies up to and just beyond the second flexible mode. As antici-
pated in Section II (iq., 28) there is a difference in the low frequency
phase. The discrete system phase includes an incremental lag which is

approximated by

The phase increment is approximately 45 deg at w = 80 for the 0.02 sec
sample period (l.e., T/2 2 0.0l second). 1t indicates the low frequency
effect of sampling, and corresponds to an effective time delay of 1/2

the sampling interval.

The higher frequency effecis begin to show up at approximately
210 rad/sec and even more so at approximately 300 rad/sec with other
fluctuations at higher frequencies. Both the amplitude ratio and phase

are 1in marked contrast with those of the continuous system (c.f.
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Fig. 12) 2t these frequencies and represent the foldinyg consequences of
sampling. As anticipared by considering Eq. 33, there is a major rotch
in the amplitude ratio at the sampling frequency, 314 rad/sec. All of

these high frequency effects are typical 5f sampled data phenomena.
B. OUTPUT RESPONSE FOR SINUSOIDAL INPUTS

While periodic sampling is a linear operation it does introduce
peculiar consequences when contrasted with a constant coefficient sys-
tem. As reviewed in Section 1I, in a sampled system a sinusoidal input
will beget an output component at the same frequency plus an infinity of
frequencies which are sums and differences of the forcing and integral
multiples of the sampling frequencies. In general, the output may not
even be periodic. To illustrate some of these points the system shown
in the block diagram of Fig. 13 will be used as a test case for several
diffecent input sinusoids. First, in order to provide somewhat wmore
damping on the second flexihle mode, the open-loop gain will bhe
increased by a factor of 4. The closed-loop system hybrid frequency
response for this system is shown in Fig. 14, again for a sampling time
of 0,02 sec (SU Hz sampling frequency). On these scales the modulation
products at about 210 rad/sec and the sampled notch at 314 rad/sec, as
well as the higher frequency modulation effects, show up more drainati-
cally than on Fig. 13. The first-order effect of the lag underlying the

effective delay 1s also plainly evident when contrasted with Fig. 12.

Figure 15 shows two output waveforms in response to a sinusoidal
forcing function. 1In both cases the frequency of the input sinusoid is
less than the sampling frequency. 1In Fig. 15a the input frequency I1s
wg /30, The output appears to be essentially sinusoidal with just a small
delay, as would be expecteds 1t is very similar to the output of a con-

stant coefficient continuous system with an incremental effective delay.

The output waveform for an input frequency much closer to the sam-
pling frequency (wy = wg/4) is shown Fig. 15b. This 1is an extraordi-
narily contaminated response and shows no similarity to the single sinu-

sold that would be expected in the continuous system case.
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Figure 14. Closed-Loop Hybrid Frequency Response for
Discretely Controlled Flexible Vehicle, K = 40 and
T = 0.02 sec (ws = 314 rad/sec)

Both of the responses shown in Fig. |5 are periodic, albeit Fig. 15b
is5 quitc complex due to the modulation effects. If the forcing function
f requency is incommensurate with the sampling frequency the oufput wave-
form will, 1ir gerecal, be non-periodic. As might be expected, the
departure from periodicity for a forcing function very low in frequency

compared to tie sampling frequency will be hardly noticeable.
C. EFFECTS OF SAMPLING INTERVAL ON HYBRID FREQUENCY RESPONSE

We will now examine a cross section of systems as the sampling
intervals are modified. The system is still that shown in the block
diagram of Fig. 13, but with a iloop gain of 40, as applies to the hyvbrid
f requency response of Fig. l4. Figure 16 shows the effects of increas-
ing the sampling period. Figure l6a gives the hybrid frecuency response
for T = 0,04 sec, Fig, 16b for T = 0.08 sec, and Fig. léc for T = 0.32
sec. When taken in concert with Fig. 14 (T = 0.02 sec), these frequenc-

responses show the same system for four different sampling I{ntervals.
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The notches 1n the amplitude ratios at g and ics integer saltiples 2w

3 »

3o, etec. are clearly seea in all of the tigures.

The differences among the systems are very remarkable, Only the
system with T = 0.02 sec (wg = 314 rad/sec) in Fig, 14 is reasonably
close to the continuous system of Fig. 12 over the frequency range coa-
raining the flexitle modes. Even the syvstem with T = 9,04 (us =
157 rad/sec), Fig. lba, has a different amplitude ratio just beture theo
high frequency flexible mode, which demonstrates some modulation
effects. The sampling rates down to 78.95 rad/sec (0,08 > T > ) are
suitable for exerting contrcl on the lower freguency flexible mode and
have some effect on the high frequency mode. For T = 0.32 sec the

response is, as might be expected, a hodgepodge.

The novel mixtures of the sampling freauency with the flexible mode
frequencies create a large number of pecaks in the amplitude ratio which
become more confused as T is incr2rased. These peaks are modulation pco-
ducts which reflect difference frequencies between aw, and the flexible
modes at 10 and U0 rad/sec. The most easily picked out of these is
shown in Fig. 16a at 57 rad/sec, which is e T 100, The introduction of
these apparent “resonances” at difference frequencies between sampling
and flexible mode frequencies 1s an interesting feature of systems which
contain lightly damped modes. It is a phenomenon which requires spectlal
attention for systems where such difference frequencies may reside in

the frequency range of control.

Figure 17 gives some additional appreciation for the output
responses when the input and sampling frequencies are commensurate. In
Fiyg. 17a the input sinusoid is reflected by the lowest frequency compon-
ent of the output response, The prominent high frequency waveform
superimposed on the large amplitude low frequency vcompunent is  at
approximately 50 rad/sec, which is a difference frequency between he
sampling and 1input frequency. There 1s, of course, other content
present, but these two are by tar the most consplcuous. When the ratio
of input to sampling is reduced just a bit more, to a factor of 3, the
waveform, while perlodic, has much less resemblance to a sine wew- with

some higher frequency deviations. This 1{is 1indicated in the outpat
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response shown in Fige 17b which is quite cusp=like {n character. The
low trequency camponent representing the principal forcing of the input
sinusoid 13 still there, but 1is definitely not as evident as in

Vig, 174,

Two waveforms representing output responses with two for~ing func-—
tions which have frequencies not commensurate with the sampling fre-
quency are illustrated in Fig. 18, Figure 18a shows a response for the
svstem with T = 0.8 see sampling interval and a forcing function fre-
quency ot 3 rad/sec, which is a factor of 2.61799... less than the
sampling frequency.,  Figure 18b shows a similar incommensurate case for
the T = u.32 sec sampling period. Both output waveforms are distinctly

nonperiodic tunctions.

vemarkably  the response  of Fig. 18b, which has the lowest wi/wg
ratio of any of the output responses shown here, appears to have less
distortion than many of the others. This is a consequence of the par-
ticular numbers used in the example. Referring to Fig. lbc, it is seen
that the 11.42% rad/sec input frequency, which is stronyly represented
in fFig. 1Bb, is verv close to the resonant peak associated with the
apen-loop mode at 10 rad/sec. The first difference frequency (wg - wy =
19.635 — 11.424 = 8,211 rad/sec) on the other hand is very close to the
notch at 8 rad/sec in the amplitude ratio of Fig. léc, and is therefore
suppressed,  The most prominent distorting frequencies are much higher.
The situation would be markediy changed with minor modifications to the
namerical  values, 1t nonetheless nicely illustrates another of the

paculiar features introduced by the combination of sampling and lightly-

damped system mode frequencies.
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SECTION IV

FLICHT CONTROL SYSTEM DESIGN WITH DIGLTAL CONTROLLERS

In this section we will present examples i{llustrating the stabiliza-
tion of flexible alrcraft characteristics. In the process two control
system poseibilities will be considered -- both cortinuous and digital
controllers. The aircraft selected as the example vehicle is a fighter,

and the control problems solved are longitudinal.

In the next subsection a summary of the flexible airplane character-
istics will be presented. Some details are relegated to Appendix A,
This {s followed by the conttinuous controller preliminary design, which
covers topics such as control system architecture, loop closure detalls,
sensitivity and robustness considerations, and assessment of the closed-
loop system design. We then turn to the digital system design, which
uses the same feedback control architecture as the continuous system --
as 1s appropriate from the basic physics of the control task. The
design 1is conducted with a w-domain treatment, and emphasizes the
effects of sampling rate. The stability limits are explored both in w-
and z-domalins. Finally, the hybrid frequency response of the digital
flight control system is examined over a wide range of sampling condi-
tions. We will continue the practice of showing figures opposite the

relevant discussion whenever this is feasible,

The emphasis oun sampling rate effects started in Section 1[I is con-
tinued here even though many advanced flight control systems are likely
to have very high rate systems. The primary reasons are tied in with
the flexible mudes -- which can cause response peculiarities at quite
low frequenclies as they interact with the sampling rate as a difference
frequency -- and tie likely use of relatively low sampling 1in some

development simulations which can give rise to unrealistic ancumalies ir

the simulation.



A. FLEXIBLE AIRCRAFT CHARACTERISTICS AND SURVEY
OF FEEDBACK CONTROL POSSIBILITIES

1. Flexible Afrcraft Characteristics

The flexible aircraft characteristics to be used for the continuous
and digital control examples are given in Ref. 9. Figure 19 shows a
three-view of the airplane, which has three possible longitudinal con-
trol points -- elevator, flaps, and symmetic ailercns -- available for
use in establishing good flying qualities and for flexible mode control.
Table 2 gives the available sensor locations and the corresponding mode
shape characteristics. In principle either accelerometers or rate gyros

could be placed at any or all of the locations.

Table 3 summarizes the aircraft dynamic modes which will he counsid-
ered, consisting of the short period and five structural modes. As can
be seen there the short period characteristics of the alrplane are con-
ventional, although it has a damping ratio of 0.28 which will result in
Level 2 flying qualities. Consequently the opilot-centered requirements,
as far as rigid body characteristics are concerned, can be met simply by
improving the damping to 0.35 or greater. The flexible modes are less

straightforward to correct, and will be considered next.

2. Survey of Feedback Control Possibilities
for Flexible Mode Stabilization

A direct approach to the development of feedback system possibili-
ties for the fighter flexible mode control is to examine the rate gyro
and accelerometer transfer functions which relate these signals at each
possible pickup point with the three possible control points (symmetric
alileron, flap, and elevator). This 1is a lot of transfer functions --
[2 sensors]) x [4 pickup locations] x [3 control points] = 24 -- yet a
trivial computational chore for this case with a limited number of

*
modes. The transfer functions are then examined for the presence of

*In a more general problem, where specific locatlions were not fixed
and where higher frequency modes were still present {in the airplane's
mathematical model, several additional steps are needed to get to this
point. See, for example, Ref. 6 for more specifics on modal truncation,
residualization, etc.

49



5
VNoMTeE

// SHAPE

;\%
~
*+1,
'Z
|
» th
i MCOE SHAPE
e T o
P Atk
¢FJ'
v
<
z
UF =AND ~-CCWN
- N{MOVING FLAPS
z -
— e AL

f

Figure 19. Three View Drawing of

the Flexible Alrcraft,
Explanation of the Motion Parameters,

Forces, and Moments (Ref.

50

Including an
9)




L ¢+ BV

S DT TR S S

. v.- 1

Ty 'W—rrvvmr-')—:'.
oty ‘. V . . P .o ’

® T .

D4
[

TABLE 2.

COEFFICIENTS EIN THE FORMULAS OF THE NORMAL

ACCELERATION AND THE PLTCH RATE FOR DIFFERENT
AIRCRAFT STATIONS (REF. 9)

normal acceleration at station x:

L

Vv . X ¢ 1 n .
a = ~{g-al+—q-= I (4N
Ny 2 q g q Z i= di)x Ny
pltch rate at station x:
b .
- - (L
qX q 1 l l\ax )X ni}
% 34
Structural Vertical displacement L Slope — at =
mode at ra Ix
| |
pilot wing nose | tatl pilot wing nose tafl
{ seat tip seat tip ‘
p w I n t P W ! n t
1 -.230 1.0 | =.120 | -.489 | (0004 .007 i .001 .001
2 .129 1.0 2.55 -.401 .0044 -.027 | .02l .005
3 0 | -1.0 0 455 0 -.039 i 0 0
4 .542 ., =1.0 .727 .238 | ,0096 .068 ’ -.011 | =-.012
5 .223 - W47 . 554 .628 .0017 .039 l -.001 -.004

Sensor locations:

n p c.g.
T Ty
7

- ~._1
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position
X

c.g.
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TABLE 3. AIRCRAFT DYNAMIC MODES

Short Period: Tspo ”sp] = [(0.28, 6.3]; Flying Qualities: l.evel 2
.U
1/Ta = 1.097 (n/a = = 32.4)
v2 gTaz
. . Frequency
Structural Modes: (Hz)/(rad/sec)
| First Symmetric Wing Bending 2.9/18.2
2 First Symmetric Wing Torsion 3.6/22.6
3 1Inboard Store Yaw Mode 4,6/28.9
4 Inboara Store Pitch Mode 5.8/36.5
5 COuthoard Store Yaw Mode 6.1/38.3
Control Effectors Available:
klevator, &,
Trailing Edge Flaps, 6f
Symmettic Ailerons, §,
phase blips, phase dips, or near cancellation, for each mode. The

equalization, if any, needed to adjust the particular transfer function
being considered to an appropriate sawtooth Bode form is also consid-

ered.

Figure 20 illustrates the examination process. Figure 20a shows the
transfer function relating normal acceleration at the wing tip Joca-
tion, an,,s and the elevator, First wing bending (Mode 1), first wing
torsion (Mcde 2), and the outboard store yaw mode (Mode S) are all
represented with strong positive phase blips. Considered in context
with the sawtooth Bode concept described in Section 11 (Fig. 10), these
phase blips indicate a promising feedback possibility for improving the

damping of those modes, There 1is essentially no reflection of the
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inboard store yaw (Mode 3) or pitch (Mode 4) modes in the transfer func-
tion, 1indicating that these are unobservable. Figure 20b, the ap,, to
flap, 3¢, transfer funcrion, shows unfavorable phase characteristics for
Mades | and 2, agailn nothing for Modes 3 and 4, and a possibly favorable
phase blip for Mode 5. In the third example, shown in Fig. 20c, the
transfer function for pitching velocity at the nose location, q,» to
elevator, 5,, has only a tiny phase blip at Mode I and nothing at any

other. This qualifies for an unusable (or "nil") classification.

The results of the complete survey are given in Table 4. There it
is seen immediately that the 3rd (Inboard Store Yaw) and 4th (Inboard
Sture Pitch) modes show neither blips nor dips. In other words, the
transfer function poles corresponding to these nodes are essentially
cancelled hy zeros for all sensor and control effector combinations.
The modes are, therefore, neither observable nor controllable from the
pickup locations and contrel effector points available. If their con-
trol was essential to the mission some alternative configurations would

have ta he considered.

On the other hand, there are a number of favorable possibilities for
the improvement of short period damping, and for iacreased stabilization
of wing torsion, wing bending, and the outboard store yaw mode. These

nossibilities are summarized in Table 5.
B. CONTINUOUS CONTROL SYSTEM DESIGN
1. Coutrol System Purposes and Requirements

The fundamental purposes of the system are to:

L] Improve the flying qualities (increase short
period damping ratio).

L] Improve the flexible mode dampings, as feasible.
L Reduce the wing root bernding moment.

® Reduce the flexible mode 1induced wvibratory
environment at the pilot station.
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SURVEY

OF FEEDBACK POSSIBILITIES

. Y T
: 1 g 2 _ 3 : 4 5
Ist tst | Inboard Inboard Outhoard
Wing Beading wing Torsion ' Store Yaw I Stare Pttch ' Store Yaw
: Mde ' “ode Mode
—_— .I___. fe e e — s __.__.‘_,——___——.—.
RIS FAR P 3.0 22,6 1 4,0/28.9 5.973mn.5 50073803
] \
At & (4= a, £, &) : N1l -
e S : + ' N1l
i i !
.5, N1 * T O T +
+ 5F ' Nil - Nil N{L -
ay * 5, N1l * PNt Nil +
. &f Nl \ - Nil vil -
" “'e + Nl -
ar * 65, 6, N1
I
» 5f Nil - ; Nil
an, 5, . . - -—f] —— -
|
an, dg. Se N1l T
30, ¢ 8, + , i -— N1l —= -
1 !
3n, £ + ! + : —_— N ——— -
anp S, ' + - —-—— N{] —e -
an, "t + ! + —~— — .
1
ag, 5, . + - - N{] —— -
an, ¢ I = - | - N{] ——- +
i
any 5, + - i - N{ ]| ——- -
anp * 3 - - ; -— +
|
R Se + Nt : +
|

CRITERIA FOR SURVEY OF FEEDBACK POSSIBILITIES

Promising (+) -- Positive Phase Blip

Uufavorable (-) —— Negative Phase Blips or Excessive Equalization

Adjustable to Appropriate Sawtooth Bode "orms

Unusable ("Nil") -- No Blips at all
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TABLE 5. MOST FAVORABLE FEEDBACK POSSIBILITLES

. Additional Considerations
Short Period Damping:

. aH -—=> Elevator Positive Effect on Ist Wing
Bending.
q, -—=> Symmetric Aileron Z§ /Mg = 15.4; Z@e/Mc = b6

Therefore, q, * 8, produces
3.36 times more 1lift due to ¢

: than q, + S,.
Wing Torsion:
q, -—=> Symmetric Aileron qu * 84 increases Wing Root
Bending Mcment.
]

an, —=> Elevator Tends to degrade short period
damping; small pole-zero separa-
tions for torsion.

Elevator Tends to degrade short period
damping; small pole-zero separa-
tions for torsion.

an -—=> Symmetric Aileron Short period damping degradation.
i Pole-zero separation for torsion
less than for an, + .

The survey results summarized 1in Table 5 provide the implied
» requirements that an accelerometer at the wing location and a pitch rate
gyro at the pilot station are well constituted to satisfy the various

damping requirements.

2. Control System Architecture (Figure 21)

- The closed-loop system involves only the elevator. Remarkably, this
- selection, while demonstrably the best in performance potential, is also
T} probably the simplest since it does not require specialized high band-
®

width actuation for the symumetric alleron and/or flap effectors. The

56




Lo an o ~ o g i e Bl aihat it Ehac Jai et Shbo it i el b S T A R A R L e A S S

Sa Mew
—— [ —
8‘-’ Onp
Qw
b — D g
Lctuation Qe -
Se. : Se
¢ o+ and
— ) » on
%_ Ferward Path N —
| Eqgualization
|

ACCeerometer

) —— and ot

E qualizction

]
] ’ Rate Gyro

S angd s

Equathzation
» . . :
Figure 21. Closed-Loop System for Flexible Mode
and Short-Period Damping Augmentaticn

»




control system involives two loop closures which naturally operate pri-
marily in two frequeucy ranges. Thus, successive stable loop closures
using the higher bandwidth closure as au 1inner-loop 1is appropriate to
assure a robust desig.. 1f the lower bandwidth outer—loop pathway is
iost the system will still be stable and will stili accomplish its pri-
mary fiexlble mode stabilizing functions. The appropriate inner-loop is

the a, elevator feedback.

The most desirable feedback for flexible mode damping augmentation

is one proportional to the velocity of the modal deflection. This is

most easily approximated with the accelerometer by using a low frequency
l., equalization on the accelerometer signals. This will establish a
-20 dB/decade slope in the frequency regions sbove 10-15 rad/sec where
the positive phase blips occur and will thereby assure stable and effec-—
tive loop closure conditions. 1In terms of the roct loci for the bending
and torsion modes this shaping will pull the loci further into the left-
half plane thereby 1increasing the closed-loop damping and damping

ratios. Because the pole-zero pairs will be ciroser together 1in the

closed-loop system than they are in the open loop, the near-cancellation
tendencies will further reduce the excitation of these modes by control
system inputs. So both the damping augmentation and improved pole/zero

cancellation effects are favorable.

A tvpical elevator actuator will have & bandwidth which can be
approximated by a first—order lay at about 20 rad/sec. This lag will be
very detrimental to the stabilization process for the hivher order

modes, destroying the -20 dB/decade slope just where it is must needed.

’ Therefore it will be necessary to compensate tor the actuation dynamics.
This can be done by using a lag-lead equalization tor the accelerometer.
Thus, the acceleratinn loop feedback (including actuator) component,

, Sea, of the total elevator deflection 60, will be

¢ - 4 (s + 20) 1 a

©a (s + a) (s + 20) ""w

(38)
‘ - a

——
(s + a) "

S”
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3. Inner and Outer Loop Closure Characteristics

a. Inner [Accelerometer] Loop Closure (Figure 22

A . |

Figure 22 shows the open-loop frequency response and the system root
locus when the first order lag .. = 5 rad/sec is used for the equaliza-
tion., It is seen there that a gain of 0.1 rad/g provides maximum damp-

l ing in rthe wing bending and torsion modes and some damping improvement
» for the outwvoard store yaw mode. The other two flexible modes are
essentially unaffected as they are scarcely observable. The short
period is somewhat destabilized as it progresses toward its nearby zero.
- This zero is, however, in the left-half plane so the system is assured
of stability even without an onuter loop. The flying qualities would, of
course, be very poor because of this short period damping ratio (Lép =

0.0L0U7),

b. Guter [Pitch Rate Gyro] Loop Closure (Figure 27°

Tne fundamental purpose of the pltching veleocity feedback 1is to

improve the short period damping while not degrading the flexible mode

Wt

improvemenis due to the {nner loop. This is most easily accomplished by
low pass filtering the rate gyro signal at frequencies above about
1) rad/sec. A first-order filter at 10 when combined with the actuator
dynamics at 20 rad/sec, readily satisfies this regimen. The frequency
i response and closed-loop system root locus for this loop, with the air-
craft characteristics modified by the acceleration loop closure, are
- shown 1in Fig. 23. 1t is seen there that with a very low gain of
0,2 rad/rad/sec the short period damping ratio is fimproved to a Level 1|
’ value of £ = 0.35. The gain margin Gy for this 1s 12 dB. The root
. locus shows the roots at 26 dB from this lLevel | value by + markings.
;t, It i{s easy to appreciate from the short period locus that dampling ratios
below Level 2 minimums are excluded even with a 5 dB gain reduccion.

\ Hirher galns are appropriate for the final setting.

At the gain levels considered here the effects of the pitching
velocity feedback on the flexible modes is nail. The relatively heavy
r. filtering of the pitching velocity feedback assures that the system will

b be robust ii the accelerometer loop Is opened.
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4., Sensitivity and Robustaoess

With the design as developed above a zero signal 1in either the
accelerometer or rate gyro loops will not result In an unstable system,
The depraded aircraft dynamics with the pitch rate gyro loop open are
quite undesirable from a flying qualities standpoint, although the flex~
{ble modes are stabilized as weli as can be accomplished with available
effectors and {nstrument sites. Loss of the accelerometer loop 1is not
in itself crucial, as the flexible modes are all still stable; they

will, however, suffer from significantly decreased damping.

Another sensitivity assessment 1s to consider the effects of change
in the composite loop gain. In this finstance the equallzed acceler-
omcter and rate gyro signals are first summed and the composite is then
presumed to share a common changeable loop gain. These changes physi-
cally could occur in the forward path of Fig. 21 and could be the result
of uncertaintlies in surtace effectiveness, less than ideal gain compen-

sarion, Aactuator gain changes, etc.

The frequency response and root locus for these combined loops is
shown in Fig. 24, The composite loop gain margin is 16 dB and the phase
maryin ahout 80 deg. For this system there are several phase margins
because there are several crossover frequencies., There will also be a
corresponding set of delay margins given by Ty = ¢p/w.. The phase and

delay mAarging of major interest are given in the table.

Crossover Frequency, w | Phase Margin, ¢ Nelay Maryin, Ty
rad/sec) (deyps) {secs)
9.8 80 U. 14
16 0 0.10
25 160 0,12

Thus, while the gain and phase margin values seem large, the delay mar-
gins may at first glance appear quite small. They imply that the inser-

tion of an eftective pure time delay of Q.1 to 0.14 sec (which can be

.
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made up of a combination of high frequency lags and delays not included
in the analysis) would result in a system instability. These small
values must be viewed in perspective with the potential instability,
which will be the wing bending mode at approximately 15 rad/sec. At
these frequencies an effective pure delay of 0.10 (as needed to develop

a 90 deg phase loss) 1is quite large indeed.

The other modes are typlically somewhat improved when gain {is
increased over the nominal and somewhat degraded with gain decreases.
Consequently, the system can be considered quite insensitive and highly

robust to even major changes in the system gains and even loop removal.
5. Assessment of the Closed-Loop System Design

The fundamental purposes of the system were to

L] Improve the flying qualities (increase short
period damping ratio)

L Improve the flexible mode dampings
L Reduce the wing root bending moment

L4 Reduce the flexible mode 1induced vibratory
environment at the pilot station
The first two of these purposes have already been achleved as described
above, Figures 25, 26, and 27 show that the wing root bending moment
and acceleration at the pilot station are also significantly modified

and improved.

Flgure 25 shows the asymptotic and total frequency responses for
piiot location acceleration and wing root bending moment in response to
aun angle-of-attack gust, g, input. Peak bending moment amplitude
ratios of about 130 dB are indicated for the wing bending and outboard
store vaw mcdes. Figure 26 shows that these are reduced significantly
to 122 dB for wing bending and 126 dB for the outboard store. The cost
of this is an increase in the wing bending at short period frequencies
of approximately 6 dB. Thisc stems, of course, from the reduced short
period damping ratio with just the accelerometer loop closed. The final

systen closure of the piltch rate gyro (Fig. 27) removes this defect and,
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in fact, improves the wing root bending moment at and near short period
frequencies over that of the aircraft without control. There 1is en
additional very small improvement at wing bending frequencies and little

or no effect at still higher frequencies.

Comparison of the acceleration at the pilot station of the total
closed-loop system with that of the open-loop indicates only very minor
changes. 1t should be recalled, however, that the rate gyro gain is set
at the Level 1 lower boundary for these calculations merely to illus-
trate what was required to change the short period to a Level 1 status.
When full advantage 1is taken of the augmentation system the pitching
velocity gain will be increased somewhat so that the gust 1induced
acceleration in the short period at the pilot station will be reduced

from that shown.

These considerations indicate that the closed-~lcop system design has

accomplished its desired purposes.

C. DIGITAL SYSTEM DESIGHN

The system architectural configuration for the digital controller is
the same as that for the continuous control cases Accordingly the sys-
tem block diagram, as shown 1in Fig. 28, 1is similar except for the

samplers and zero~order holds.

As already noted, there are two very instructive approaches to the
direct digital design problem. In the first, the s-domain transfer
characteristics, including those of samplers and holds, are converted to
the w-domain. The design 1is then carried out in a fashion directly
analogous to that for continuous controls. The design data presenta-
tions and techniques used are essentially thoge transferred from contin-
uous analysis in which w replaces 8 as the complex variable. The
results of such procedures are preclse for stability marginec, etec., but
may leave something to be desired as far as full appreciation of the
response artifacts associated with discrete systems are concerned.

These response considerations are very effectively treated using the
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second direct digital design technique associated with the hybrid spec-
trum of the digital controller. These two complementary approaches are

1llustrated in the following articles.
1. Direct Digital Design Using w-Domain Transfer Functions

The w-domain 1is the natural extension to use in accowplishing a
direct digital design analysis of the system. The graphical presenta-
tion of results use the same forms as for the continuous control case,
i.e., system surveys showing w-plane rcot loci, "ordinary™ Bode plots,
and w-plane Rode root loci. The rout loci are directly comparable to
those in the continuous dcomain in that they are true root plots. They
do not compare in the sense that the w-plane roots necessarily imply a
corresponding time domain mode damping and undamped natural frequency.
The results approximate this for modes much lower in “"w frequency” than
2/T, but will depart markedly as the modes approach the sampling rate
(see, e.g., Fig. 2). One can, of course, convert back to the s—domain
to find the true (as contrasted with the “w-domain™) dampings and
natural frequencies. The “ordinary” Bode diagram, for which an imagi-
nary variable replaces w (just as jw replaces s for continuous systeme),

does not correspond to a true frequency response in the same sense as
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for the continuous case. Yet, the limiting characteristics, as T + O,
provides, by analogy, a slgnificant amount of insight 1if not exact

Interpretations.

In the following treatment system surveys are presented for four
values of sampling, 1/T = 100, 50, 25, and 14 Hz. The actual open-loop
transfer functions used 1in the surveys are for the composite form
wherein the accelerometer and rate gyro signals are combined. The
appropriate comparison for the continuous case is with Fig. 24. [On the
w-plane Bode plots which follow the real roots (w = o) are shown as
solid lines, and the complex roots as crosses (+). The asymptotes
shared by both the Bode “frequency response” and root loci are dashed

lines.}

Figure 29, for a sampling rate of 1/T = 100 Hz, is virtually indis-
tinguishable from Fig. 24 except for the appearance of the non-minimum
phase w-plane lead at 200 rad/sec and the continuing decrease in the

high frequency phase associated with the same right half plane zero.

Essentially the same statements can be made for the sampling rate at
1/T = 50 Hz (Fig. 30) except for a major change 1in the low frequency
phase. This 1is due to a tiny shift {n the zero (at approximately
1> rad/sec) assocliated with the wing bending mode (at 17.6 rad/sec).
For the continuous case and 1/T = 100 4z cases this zero 1s just very
slightly 1in the right half plane, whereas for 1/T = 50 Hz it has moved

into the stable region of the w-pl -e.

For the much lower frequency sampling rates of 1/T = 25 (Fig. 31)
and 14 Hz (Fig. 32), there are some major shifts in the high "frequency”
amplitude ratio high gain asymptote as it approaches closer to the level
of the very-low "frequency” asymptote. The phase blips for 1/T = 50 and
1/T = 25 are very similar. But there is a major change in the highest
frequency blip for 1/T = 14 Hz (Fig. 32) as the magnitude of the rhp
zero becomes 1less than the highest frequency mode. This 1is alsc
reflected in the Bode root locus snift in the undamped natural frequen-

cies of the higher frequency modes for 1/T = l4 Hz.
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The conventional root loct for the two lower sampling frequencies
also illustrate the marked shifts in w-piane location as sampling rate
is reduced. Not only are the "natural frequencies” increased, but the
apparent attainable “damping ratios” are also. These appearances are
not “real” in terms of the time domain, but occur because of the w-plane

distortion when contrasted with the s-plane.

Examinatfon of the real portion of the Bode root locus of Fig. 32
shows the real root starting at w = =17 sec™l (the value of the w-plane
root which, in this case, corresponds to the s-plane real axis root at
-20 1/sec in Fig. 24) {s driven to infinity, and then around the Riemann
surface to plunge into the sampling zero at 2/T = 28 sec”l., The system
at nominal gain 1is thus unstable, due to this feature. The instability
is caused by the sampling zero being reduced to the point that the high
frequency asymptote coincides with the zero dB line. This is very easy
to see, and track, on the Bode root locus presentations. 1In fact, the
“"gain margins” throughout the system surveys can be assessed directly by
the distance between the zero dB line and the high frequency horizental

asymptote.

The instability for nominal system gain is also readily found using
z-transform analysis. It 1is, however, more diffjcult to interpret than
the w-domain resuilis. The z-!ransform root locus for the 1/T = {4 Hz
condition is given in Fig. 33. The poles and zeros in this domain are,
of course, extremely distorted when compared with the s- or w-domains.
With considerable effort they can be identified and traced as sampling
rates are changed, bhut very little insight 1s available as to what 13
crucial. Figure 33 1s a good example. There it is seen that many of
the poles and zeros arve relatively close to the uvnit circle, with little
tn indicate that the pole originally at -20 sec™! 1n the continuous Sys-
tem is the one that ultimately goes unstable first. The degree of sta-
tility, and hence any estimates of robustness, are difticult to appreci-

ate 1o this format as weil.
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2. Hybrid Frequency Respouse of Flexible Vehicle
Digital Corntroller for Varions Sample Rates

The digitally controlled system will now be considered using the sc-
called Hybrid Frequency Response. As reviewed in Section II, the hybrid
or “generalized frequency response” gives all of the output components
for a sine wave input as values on a frequency response plot of ampli-
tude ratio and phase. 1In a continuous system the frequency response is
interpreted as the output/input amplitude ratio and phase at a specific
frequency which is the same in both the input and the output. Thus, a
particular sine wave input gives rise to a simllar sine wave output at
the same frequency. When applied to the discrete system the amplitude
ratio and phase curves 1in the generalized freaquency response appear
somewhat similar at low frequencies (well below the sampling frequency)
but markedly different at high frequencies. The interprecation of the
frequercy response 1is also somewhat different in that a particular sine
wave input begets an infinity of output components. The first i{s at the
same frequency as the input. The rest are at an infinity of sum and
difference frequencles involving {integers (n =1, 2, 3 ...) times the
sampling frequency plus the input frequency and n times the sampling
frequency minus the input frequency. As exemplified by Fig. 8 all of
these points, for a given frequency 1input, can also be seen 1in the
generalized frequency response. [hen, when computing the actual output
response to a sinusoidal input, all of the higher frequency terms must
be included along with the fundamental. Because of the sum and differ-
ence rather than harmonic character of the modulaticn products, the out-
put wave 1is, 1in general, not perilodic. An lmportant feature of the
hybrid frequency response, and of the method reported in Refs. 3 and 4,
is that it is applicable to both single and multiple rate sampled-daca
systems. Since the w- and z-transform methods do not directly apply to
the multiple rate situation, the hybrid frequency response becomes a

primary tool for these situatlons.

In the follouing discussion the hybrid frequency responses for the
flexibie mode FCS will be considered for a number of sampling rates. As

a practical matter only the higher rates are likely candidates for the




actual flight control system. The other rates considered are, however,
instructive and thought-provoking when simulations using a "digital air-
plane” are considered. In these cases some of the phenomena introduced
by the arrificial digitization of th: alrcraft equations of motion will
be simi)uar to the characteristics shown for the lower sampling rates for

the coatroller.

To establish a basis for comparison the closed-loop frequency
response fuuctions for the continuous system are given in Fig., 34. The
acceleration and pitching velocity at the pillot station and the wing
root bending moment are the frequency response functions represented,
Figure 35 shows the same responses for a sample period of 0.0l sec cor-
rasponding to 100 Hz sampling frequency. The two figures show essen-
tially 1identical characteristics up to approximately 100 rad/sec. At
and above this frequency the effect of the small incremental phase lag,
Ap, due to sampling, i.e., wT/2, becomes appareat in the phase for the
sampled system. Then at w = 628 rad/sec (27/0.01) the first distinctive

notch due to sampling occurs.

Figure 3t shows the same responses for a 50 Hz sample rate. The
trends are similar to those fcr the 100 Hz case at frequencies below
about 100 rad/sec, although the {incremental phase 1s twice as large
because the sanmpling frequency 1s just half that of the previous case.
The first notch due to sampling appears at 314 rad/sec (21/0.02). The
second notch appears at 628 rad/sec, and a third at 942 rad/sec. But
the important thing 1is that the low frequency system characteristics
(below 100 rad/sec) are nearly identical to those of the 100 Hz sampled
and the continuous system except for the small phase shift traceable to

the sample and hold operatious.

For a sample rate of 25 Hz (Fig. 37) the frequency range over which
the continuous and sampled system responses are very close, except for
the addirional phase lag, 1s reduced to ahbout 70 rad/sec. The sampling
notches now occur at values of 157 n rad/sec (2mn/0.04), n =1, 2,
3, ... Also, the higher frequency flexible modes are beginning to have
their impact on the frequency response amplitude just prior to the first

notch., This is seen on all three response functions but 1s perhaps most
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noticeable for anp/éec. The difference frequency involving wing bending
ls the most prominent at approximately 140 rad/sec (27/0.04 - 18). The
effects of the flexible modes (wg + modal frequencies) are also begin-
ning to show up on the high frequency side of the first notch espe-
clally. Nonetheless, the system is still effective in the baslc task of

flexible mode and short period centrol with tuls samwpiing rate.

In the w- and z-domain study of the closed~loop system it was found
that the system will go unstable for a sampling frequency between 13 and
14 Hz. Thus, the most extreme changes in the generalized frequency
response that can be observed in this stable system will occur for a
discrete system where 1/T = 14 Hz (0.0714 sec), The closed-loop fre-
quency responses are 1llustrated in Fig. 38. The sampling notch at
88 rad/sec and its successors at 176, 263,,.. rad/sec all show up well.
The short period and the first two flexible modes are still essentially
uneffected by the sampling, but the high frequency characteristics from
about 35 rad/sec on up are very dramatically affected. The most impor-
tanct effect 1{s the neutral stability of the highest frequency flexible
mode 2t abcut 40 rad/sec. The frequency response between there and the
first notch also exhibits a number of the difference frequencies between
the sampling and the several modes. The amplitude ratios on the high
side of the 40 rad/sec mode and on either side of the sampling notches
as well, reflect the nw_ and flexible mode sum and difference character-

s
istics.

3. Response Characteristics for Sinusoidal Inputs

A very graphic way to show the effects of the modulation products,
is to examine sample outputs derived from the generalized frequency
response functions, These are 1illustrated in Fig. 39 which shows the
bending moment response to a 5 Hz sinusvidal iaput applied at the pilot
command point. Figures 39a and 39b, for 100 Hz and 50 Hz samp.l!ng rates
respectively, show outputs that are essentially sinusoidal. Low fre-
quency lags due to the zero-order hold sample data for these two

regponses would only be 0,005 and 0.0l seconds, and could hardly be read
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on the scale. For the 25 Hz sampling rate, however, (Fig. 39c) the out~-
put waveform is quite distorted and the delay is easily scen. Finally,
for the 1lowest sampling frequency for which stabllity {is just barely
retained (1/T = 14 Hz) the output waveform is asymmetric and, indeed, 1s
non-periodic, The amplitude ratios of Fig. 38 for 5 Hz (31.4 rad/sec)
are not too different from those for higher sampling frequenciles, so the
extraordinarily distorted waveform shown 1in Fig. 39d is a dramatic
demonstration of the extreme response distortion due to the high fre-

quency power in the modulation products.

Because the sampling rate for 1nstabllity (approximately 14 Hz,
88 rad/sec) i{s relatively high compared to the flexible modes (symmetric
wing bending at 2.9 Hz, 18,2 rad/sec and symmetric wing torsion at
3.6 Hz, 22.6 rad/sec), actually being controlled, the sum-difference
effects illustrated in Section III are not as apparent for this aircraft
example. However, the modulation products for a 5 Hz input are quite
important at 1/T = 25 Hz, (e.g., Fig. 39c), and the Mode 5 impact on the
hybrid frequency response is an lmportant effect for 1/T = 14 Hz. Thus
the rphenomena illustrated in Section IIl have their parallels for the

practical example presented here. The differences that exist are more

in degree than in kind.
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SECTION V

SOME COMPARISONS WITH OPTIMAL CONTROL RESULTS
AND A NEW OPTIMAL CONTROL APPROACH FOR FLEXIBLF. VEHICLE CONIROL

A. TINTRODUCTION

The selection of the Ref. 9 flexible aircraft data for our continu-
ous and discrete controller examples also provides an unusual oppurtu-
nity to compare the results of conventional and optimal design
approaches., The : rimary purpose of Ref. 9 was to demonstrate a method
for applying linear optimal control theoary to the design of a regulator
for flexible alrcraft, Several optimal and suboptimal controllers were
developed and presented. It will be instructive to compare certaln of
these results with the continuous controller version of the system syn-
thesis presented here. This comparison will be made in the next sub-

section,

When optimal control procedures are applied routinely (without
spectal care and consideration) to the flexible atrcraft control problem
the resulting systems are quite complex in that feedbacks are required
from all of the states to all of the control points. As will also be
seen below for the flexible alrcraft control case these complicated sys-
tems de not compare favorably with the far simpler conventional system.
This result 1s not unusual as far as flexible mode control 1is concerned.
In fact a survey of the literature indicares that attempts to apply
optimal control procedures in a direct, stralightforward, and routine way
to the contrcl of flexible modes do not fare well in general. Typically
the controllers synthesized invoive feedbacks of all states to all con-
trol points 4and often the controller 1is unusually sensitive and requires
a high degree of calibration to precisely known characteristics. Some
of the reasons for these features are explored in the second subsection
using an approximation to a flexible beam as an example. Some of the
deficiencies introduced by routine application of optimal control pro-
cedures are then rectified by introducing additional, none routine, con-

siderations. For instance, we show that it 1s possible to construct a
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performance index (cost function) which will result in a sawtooth Bode
type controller as a consequence of an optimal control design exercise.
As might be expected, the performance index 1is wunusual. However,
because optimal control procedures are so computationally etficlent, the
ability to synthesize a sawtooth-Bode-like controller with optimal tech-

niques offers a potenctially fruittul new direction for such systems.

B. COMPARISON OF CONVENTIONAL AND OPTIMAL CONTROLLER
RESULTS FOR THE FLEXIBLE AIRCRAFT CONTROL PROBLEM

Reference 9 develops several optimal and suboptimal centrollers
which can be compared with the results of the present study. The opti-

mal controllers are all based on the minimization of the cost functional

.

1 2 2
J = 7 Jo [Qanp anp + QMBH MBw + Rg (682 + 6f2 + 6a2J] dt (39)

Here Qann and QMBw are weightings on the acceleration at the pilot
L5

station and on a modified wing bending moment, respectively.

A large number of systems were synthesized on a preliminary basis to
explore the effects of different cost combinations. Some of the regula-
tors synthesized had:

costs attached only to a, and the control surface
deflections, with no at%ention paid to HBu3

costs attached only to Mg, and the control surface
deflections, with no aétention paid to anr;

costs attached to both a, and Mg,, together with the
W
control surface defleftions.
For these basic criteria varfation studies the Ref. 9 optimal systems
synthesized used only the short period, wing bending, and wing torsion
in the definition of the alrplane. This reduction from the twelfth
order complete model to the sixth order simplified mode) wss made
because "the twelfth is difficult to manage” (presumably from a computa-

tional standpoint == which would no longer be a major problem).
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This truncation of the vehicle dyramics by simply ignoring the high
frequency modes was, with the benefit of hindsight, unfortunate, Not
only was the controlled element not truncated using residual stiffness
concepts (Refs. 11, 12) but the insignificant third and fourth modes
could have been eliminated not arbitrarily, but on the basis of their
non-controllability and non-observability (as was demonstrated in Sec-
tion IV). As a practical matter, with the sensors and locations avail-
able, the third and fourth modes (inboard store yaw mode and inboard
store pitch mode) are insignificant but the fifth (outboard store yaw
mode) 1is significant and 1ideally should have been retained. In any
event the various results achieved in Ref, 9 for the vehicle with three
modes do not compare very well with the six mode case for the flexible

modes common to both representations.

One of the more interesting developments of Ref. 9 {s shown on
Fig. 40. This {fllustrates the effect on the closed~loop modes of the
reduced system of varying the performance criterion weighting paraan-
eters. The solid-line curves are the result ot varying the weighting
Qanp (with QMBw = () while on the dashed-line curves the weighting
factor QMBw for the wing root bending moment Mg, varied (with Qan =
0). Between QHBW = 5 and 10 the damping ratio for the short period mode
is maximized, while the damping of the wing bending mode 1is increased
monotonically as QMBW increases. Thus a weight QMBw approxizately = 10
should provide benefits to both. As might be expected the variation of
Qan directly affects the short period damping. This weighting param-
eter primarily modulates the gains of the anp + &4 feedbacks. The maxi-
mum damping ratio for the wing bending mode, as affected by Qan , occurs
for a value of 2-3. Based on these secondary effects of weighting
parameter variations for the reduced system, a reasonable set of weights

for the cost functional might be

QMB = 1C (40)

RS = 0.0l
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As noted, these values correspond to near maximum damping ratios in the
short period and wing bending modes when the weights are considered as
single variations. A weight of Qanp = 3  (when QMBw = 0 ) gives a bend-
ing mode characteristic of {0,11, 15.74], Similarly a weighting of
QMBw = 10 (when Qanp = 0) gives a short period mode of [0.35, 10.52].

The primary effect of varying Qan is on the short period, where a
value of 3 results in a damping ratio of approximately 0.6 when the
bending moment weighting factor Is zero. Similarly, the bending mode 1is
predominantly dependent upor the weighting QMBw; a value cof 10 improves
the damping ratio of first wing bending mode by a factor of four (§ =
0.027 to £ = 0.10). The authors of Ref. 9 selected the weights given in

Eq. 40 as an appropriate cowmpromise,

Reference 9 also shows the results of a calculatior of an optimal
controller using all alrcraft modes and the welightings based on the
reduced alrcraft model systems developments. These results are shown as
pole locations of the closed-loop aircraft regulator system in Fig. 41.
The most profound changes occur with the short period, first symmetrical
wing bending, and outboard store yaw modes. First symmetrical wing tor-
sicn 1s barely affected and, as would be expected, neither the inboard

store yaw mode nor the inboard store plitch mode are modified at all,

The elgenvalues for the rigid body and flexible modes of the alir-
craft-alone, aircraft plus optimal regulator, and aircraft plus conven-
tional controller (from Section 4) are given in Table 6. The most
dramatic differences between the contrcllers occur in the short pericd
and first symmetric wing bending modes, For the optimal regulator the
short period undamped natural frequency is pushed to a higher value than
the first wing bending, leaving some Joubt as to which mode should be
considered the effective short period, However, neither the closed-loop
short period nor the wing bending quadratic characteristics would be
satisfactory as far as flying qualities are concerned. For this flight
condition the MIL-F-8785C requirements for Level | short period charac-

teristics for Category A flight phases would require

tgp > 0.35
(41)

3 < wgp < 10 radians per second
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TABLF 6. COMPARISON OF CLOSED-LOOP EIGENVALUES FOR OPTIMAL
AND CONVENTIONAL CONTROLLERS

. ! ATRCRAFT I AIRCRAFT
MODE AIRCT%PTw?LONh ' N : N
i e |OPTIMAL REGULATOR CONVENTIONAL CONTROLLER

1 " o

Short Period
(Rigid Body)

(0.28, 6.3] (0.44, 17.5)

(0.35, 7.4]

S

1
l
1

— ——f""‘“ .

lst Symmetric !
Wing Bending | [0.027, 17.6) [0.255, 14.5]) : (0.097, 16.1])
{Mode 1) ;

L — e - . - L) - — U —

lst Symmetric i
Wing Toarsion [0.046, 24,1} =  [0.070, 23.6] (0.073, 23,4
(Mode 2) !

p———

e __T e e e me . e e e — e e ———— 4
Inboard Store |

Yaw Mode (0,051, 28.7) -— . -
(Mode 3) : |

_- e — = U S e e — e e

Inboard Store
Pitch Mode
(Mode 4)

OQuthoard Store
Yaw Mode
(Mode 5)

S

If the modified short period 1is considered to be the effective short
period mode, the damping ratio is Level 1 but the undamped natural fre-
quency is 70 percent too high at best. Alternatively 1if the now lower
frequency first symmetric wing bending 1is {dentified with the short
peciod, the damping ratio 1s too low for Level I and the undamped

natural frequency 1is almost S0 percent too high.

The mere fact that the lowest frequency closed-loop oscillatory
modes range from 2.3 to 2.8 Hz when the alircraft-alone short period is
about 1 Hz indicates that the optimal controller gains are extraordinar-
11y high indeed. The controller will accordingly saturate at quite low

levels of the feedback quantities.
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At first glance the optimal regulator would appear to offer a signi-
ficant advantage over the alrcraft plus conventional controller as far
as stabilization of the outboard store yaw mode 1is concerned. This is
chimerical because the optimal controller does not take into account 1in
any way the surface actuators and other high trequency filtering. With
the surface actuator at 20 rad/sec the closed-loop cutboard store yaw
mode will hardly be affected by the controller. The results for the
first symmetric wing torsion mode are quite similar for the optimal and
conventional controller. Neither controller 1is suitable to modify the

inboard store yaw and cr pitch modes.

The optimal control of Fig. 41 cannot be mechanized using only the
sensors at their current locations gince these are insufficient to, by
themselves, provide full state feedback for all six modes. Consequently
the regulator design is based upon a full set of state vector components
developed somehow. These could be achleved with observers, Kalman
filters, or pseudo—inverse techniques. In any event, the effective con~
troller will be of even higher order than the pure regulaitor discussed
here. The optimal design also assumes that all three available control
effectors are used and that the actuators at these locations have very
large bandwidths cowpared to the highest frequency modes. When all of
these points, Logether with the comparison with the conventional con-
troller, are taken into account it is apparent that the optimal regula-
tor of Ref. 9 has little viability as a practical system. Instead, it
must be considered to be an academlic exercise which illustrates a pro-
cedure. This was, of course, the fundamental purpose of the Ref. 9
report —-- a purpose which it serves admirably. The generally unfavor-
able comparison of the highly complex and unrealistic optimal design
with the conventional controller should also be viewed as an academic
illustration which indicates some of the problems which wmust be

accounted for if an optimal design is also to be practical.
C. A TRUNCATED FLEXIBLE BEAM EXAMPLE

With both flexible aircraft and large space structures there can be

an overlap of the rigid body and bending mode frequencles which require
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explicit consideration of the bending modes in the control system syn-
thesis procedure. An extensive literature exists in which the contrel
synthesis tools employed for control law development for such vehicles
and structures are predominantly based on a continuous optimal regulatcr
for control and estimation of the state vector using {ilter/observer
thec 'y, A direct consequence of this approach is, typically, to require
n control points and n sensors if the plant equations contain n modes.
Thus the optimal results are at varlance with the classical approach of
phase stabilizatjon, which can conceivably increase the damping of many
modes using only one control point and one sensor. Clearly some trans-
lation of the classical ideas into the optimal setup, perhaps coupled
with modificarions to optimal procedures, is Iindicated. In this subsec-
tion we will explore these points using a low order flexible system as
an example. It will serve to demonstrate that

L many physical plants are naturally in a favorable
sawtooth format

® this sawtooth Bode format {5 best revealed when

physical coordinates (as opposed to generalized

coordinates) are used.

The simple example will then be used in the next subsection to explore
an optimal control approa which 1s capable of forcing the gawtooth

Bode form.

Consider the example system comprising three masses coupled by

springs, with the possibllity of a control effector at each node, shown
in Fig. 42.

K k2

- i
pre— —

X l3

figure 42, A Three Point-Mass System
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The Laplace transformed equations of motion of this system are given by

- -3 - T
(mys? + k) -ky 0 X|
-k [mys? + (k) * k)] k2 X2 =
0 -ko (m352 + k2) X3
L - L -

—

L

-

Fl

F2

F3

" (42)

Equation 42 1s a truncated form of the more general discrete mass

approximation for conservative flexible systems, which would have the

form,

2 ,
(m;s“+k) -k, 0 ces eee O X,

2
Tk mpsTrlkg v k) 0 X2
2

0 -k, mys“+(ky + kj) X3

0 0 -k . -

0 0 vee k__, msi+k__, || x
L n=l "n Ll | B u

(43)

The diagonal terms in the plant matrix have a second order format, and

the matrix is sparse and symmetric with only diagonal, upper diagonal,

and lower diagonal elements. The characteristic function of Eq. 42 1s

the sixth order expression given by,

k k ki + k
2 1 . l 2) 62 + kpkg ( 1 1

1

J]

+
m3 o] mp mpmy  mym3
20 &2 21122 2
= mmymys?(s? + wi]{s? + W3]
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To make the example more specific consider that the system comprises
unit masses interconnected with unlt springs. Then the matrix equation

becomes Eq. 45,

_ o - - o
s2 + 1 -1 0 X, F|
-1 s +2 -1 X, = F, (45)
0 -1 s2+ 1] ]x5 Fy

Solving for [X] finvolves the inverse of the system matrix, which 1is

shown as part of the solution below.

Fsa + 382 41 82 + 1 1 F
s? + 1 (s + 1)? s¢ 41 Fy
X
1
2 4 2
X R s2+ 1 séeas?en] | ]
%3 2 gb 2
- sc(s* + 4s° + 3) (46)
In factored form this bec 'mes
[s24(0.618)2][82+(1.618)2] [s2+1] 1
Xl’ [92 + 1) [92+l]2 [sz+1]
X2 1 [s2+41] (82+(0.618)2][82+(1.618)2]
L . B
X3
- s2(s2 + 1][s2 + (/3)2]
(47)

All of these equations describe the plant in physical coordinates, {i.e.,

Xy, %y, 2ud Xxj. One can visualilze placing sensors on the physical
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masses and measuring position, velocity, acceleration, etc., and then
feeding such sensed signals to control effertors lmposing forces F;, F,,
and F3. With velocity or rate sensors (or their equivalent in terms of
position sensors followed by lead equalization or acceleration sensors
followed by lag equalization) there are a varlety of single sensor,
single actuator control systems which can stabilize the plant. A cross
section of possibilities is shown in Figs. 43 and 44, 1In the first of
these the sensors and actuators are co-located. As can be seen from
Fig, 43(a) sensors and actuitor. co—-located a:i the end points X] Or X3
can stabilize all modes with simple pure gain velocity feedbacks. On
the other hand a velocity sensor at Xy is not capable of observing and
controlling the mode [0, 1]. This corresponds to the situation where a
rate gyro is located at a fuselage station where the [0, 1] mode shape
has zero slope. The [0, 1] mode will not be excited by controller
inputs but it will be influenced by disturbances. The other modes are
well controlled for both commands and disturbances. As seen by examin-
ing Fig. 44, for the condition where sensors and actuators are not co-
located, it is virtually impossible to exert etfective control cver all
modes with a pure gain single sensor/actuator system. Thus again we see
in this example the fundamental sawtooth Bode, phase stabilization con-
cept and application. Just as with the sawtooth Bcde concept for flex-
ible alrcraft control, these principles for flexible beam stabilization
go back many years. For example, Ref. 12 indicated "for vehicles which
can be characterized as beams it is unlikely that all flexible modes can
be stabilized without structural damping unless the rotational sensor
and the control force for each axis are placed where the signs of the
slope and deflection are the same fo. all modes, such as the beginnings

or ends of the mode shapes.”

These fuudamental p[incigles of beam stabilization, co-location
etc.,, aside, the important point to be mdade for the current discussion
18 that it 1is possible with single sensor/actuator comblnations to
create a highly robust, extremely simple controller and that a cross
section ot these controllers 138 easily determined by considering the

plant equations in physical coordinates,
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The system of Fig. 42 can also be placed into a canonlc torm in

terms of generalized coordinates by using the transformation

X = ¢q (48)

witere the column vectors of ¢ are the ecigenvectors curresponding to the

aigenvalues related to the eigenvectors of the system,
s =0, s = =1, g2 = =3 (49)
The eigenvectors can be found by substituting the wvalues given in

Eqe. 49 into Eq. 45 and solving for three constants which force the three

equations to be identically zero,. To 1illustrate, for the eigenvector

corresponding to s = - 3, substitute s = =3 {nto Eq. 45:
-2 -1 0 a 0
-1 -1 -1 b = 0 (59)
0 -1 -2 ¢ 0
Since s?2 = -3 defines an elpenvalue, the determinant of the matrix of

Eq. S0 is zero. Therefore, use Gaussian eliminatlion to eliminate the

dependvirt 2quations:

-2 -1 0 1 ./2 o Lo1/2 0 Lo1/2

0 1 12 0
-1 -1 -1 - ) 1 l - r0 o 1/2 001 + 10 1 2 * 0 1 Z
0 =1 =2 0 1 2 0 1 2 0 1 2 0 0 01
(51)
Theretore th- 1 . 2 . endent relatlonships are,
a4 +b/2 =0
b+ 2¢c = 0 (52)
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Then if a =1, b= -2, ¢ =1, the elgenvector ¢Sg - 3 becomes
1
bs2..9 = |2 (53)

1

Proceeding in a similar manner for §2 = 0 and s = -] ylelds the trans-

formation matrix

¢ = 1 0 =2 (54)

Premultiply Eq. «5 by ¢' to form

s+ 1 -1 0
' -1 s2 +2 T-1 ¢q = ¢'F (53)
0 82 + 1

Since all the eigenvectors in the ¢ matrix are mutually orthogonal, the

operations indicated by Eq. 55 produce a diagonal (decoupled) wmatrix on
the left hand side:

382 0 0 q 1 1 1 F|
0 2(s2 + 1) 0 il - |1 0 -1 F,
0 0 6(s? +3) | | 1 =2 1] L,
(56)
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The solution of Eg. 56 for the generalized coordinates 1is easily

written:

) ~ N 0
a 1/3 1/3 1/3 F,
! $2 ) o2
1/2 -1/2
9 = — 0 —_— F (57)
i sl + 1 s2 + 1 2
a3 1/6 -1/3 1/6 g
' s + 3 s + 3 s + 3 3
L - | - L -

It should be clear from the dlagonal character of Eq. 56 that feedbacks
involving the rates (or their equivalents) of all the generalized coor-
dinates are needed to stabilize and control the three basic modes. For
example, a controller which comprises

q * F

@ >k (58)
q3 * F3

will suffice. With no additional considerations, such as combining the
6'5 to form physical coordinates, this controller implies signals from

3 state components fed to 3 actuators to control 3 modes.

Any control system based on generalized coordinates will then appear
inherently to be more complicated than the simplest ones for physical
coordinates. Again this can be, of course, only a matter of appearance,
for the particular combinations of generalized coordinates being used
could amount to a single appropriate physical coordinate. Nonetheless
there will 1in general be n feedbacks vequired for stabilization of n
modes 1f the system states used for feedback control are defined in

generalized rather than physical coordinates.
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D. OPTIMAL CONTROLLER TO GENERATE SAWTOOTH BODE CONDITIONS

As noted above the majority of optimal control studies for flexible
structures use generalized coordinates to describe the plant, resulting
typically In the requlrenent of feedback from all states to all control

points. In particular, the use of the quadratic index

ctje
- LT ' = 1 Jyn *
J 2];01 Ru + x'Qx) dt Zij(g RU + X*QX)ds (59)
c—)®
R>0,92>0

with diagonal Q@ and R with non zero elements will always result in feed-
back from all states to all control points. This result is unsatisfac-
tory when one considers that a sawtooth Bode solution, requiring only
one sensor and one co-located actuator, can be set up directly in physi-

cal coordinates.

Further, typical optimal control studies involving flexible craft
(e.g., Refs. 13~-15) appear to yield controller characteristics which
contain lightly damped numerator and denominator quadratics. In the
words of Ref. 13, "Right-half plane zeros are rarely used in classical
compensation networks, but they appear to be common {n optimal control-

lers for systems with poles near the imaginary axis.”

None of these features which appear as consequences of routine
applications of optimal control are especially attractive. We would
like to get around them, while retalning the computational efficiencies
available with optimal approaches. To do this we will explore, using
the simple three-mode truncated flexible beam example, several aspects
of optlmal control application. The results will indicate that:

® optimal control procedures using the performance
index of Eq. 59, with diagonal elements only
(although some equal to =zero), can generate a

sawtooth Bode control law 1in physical coordi-
nates;
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] this same control law can be induced using gener-
alized coordinates, but the Q matrix in the per-
formance 1index will be quite peculiar -- still
symmetric bhut non-diagonal.

The first key question 1is whether the performance index of Eq. 59
can be used to generate a control law in generalized coordinates which
will transform into a sawtcoth Bode control law in physical coordinates.
For the simple beam example, the answer to this question 1is 1in the
affirmative. To cee this, imagine that only MASS #1 has a co-located

sensor and actuator and rewrite the physical coordinate set (Eq. 45) as

s + 1 -1 0 X, i F
- 2 - =
1 s + 2 1 X, oJu+|rs (60)
0 -1 g2 + 1 X, 0 F3 §

Here the control vector U 18 a part of the general applied force vector
F in Eqs. 42 or 45, e.g., F} = U} + Fi'e Otherwlse Eé. 60 and Eq. 45

are identical.

One may treat the system of Eq. 60 as a regulator problem by drop-
ping the external force vector F' and replacing it with the transform of
the {nitial condition vector. When this {8 done, a Wiener-Hopf approach

to the optimization immediately suggests a performance index of the form

-8 0 0
R = 1; Q = 0 0 0 (61)
0 0 0

For those more comfortable with first-order notation (as opposed to

degree-of-freedom), the setup of Eqs. 60 and 6! can be restructured into

a first-order format by defining
1" X
X, = Xg (62)

X3 = X
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X) : 1t 0 0 xlw oT ;
- Xy 0 | 0 1 0 X0 0
X3 1o 0o 1 X3 0 (63)
! o o e B
: - |
TS 1 2 1 | 0 Xsg 0
0 1 -1 0
L] L | I e N
d
and
(3 x 3) (3 x 3)
0 I 0
. R = 1; Q = _———]————=
l 1 0 0
o | 0 0 04 (64)
| 0 v O_I
i (3 x 3) (3 x 3)
- Application of any standard time domain optimal soiution program based
on either eigenvalue decomposition or a Riccati-based solution will
i ylield a feedback K matrix

K = [0 0 0 1 0 0] (65)

and thus produce the sawtooth Bode solution in physical coordinates.

Next, we explore the structure of the R and Q matrix needed to
achieve the equivalent result in generalized coordinates. In general-

ized coordinates one has a formulation, equivalent to Eq. 60, of

2 0 0 q 1/3 /3 1/3 /3
0o s +1 0 a | = fuyzjus+ fr2z 0o -1/2]F  (66)
: 0 0 &l +3 a3 1/6 1/6 -1/3 176
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Again, one may switch to a first-order form by the assignment

4 = qq
d2 = qs (67)
3 = g
giving
r‘il [ | 1 0 rcuﬁ 0
4 0 I 1 a2 0
R | 0 i q3 0 (68)
&1 lo "o "o T T 7 wl Yl
& o -1 o | 0 as 1/2
| 46 o o -3 IR | 1/6 |

The Wiener-Hopf degree-of-freedom Q matrix, when translated into the

i first-order format, will appear as




Wwhat 13 the equivalent in generalized coordinates? In physical coordi-

nates (using Wiener-Hopf)

X'QX = [Xl,XZ,X3] 0 0 0 X2 - q‘¢'Q¢q'

11 1 F-sz 0 0 111
|
1 -2 1 0 0 0 1 -1 1

82 -g2 —g2

X'QX > Qgen = | -s? -s2 -s? (71)
g2  —g2 g2

In first-order format, using §) = g4, etc., Eq. 71 becomes

l [0 0 01 0 0 0]
o 0 o : o o0 0
o o ol o o o
' e Tl 0 011 1 7Y
o 0 o0 ! 111
0 0 o | 1 1 1

Also, R = 1, as before. Application of time domain optimal control to

the system defined by Eq. 68, using the Q matrix of Eq. 69, gives the

gain matrix




The closed-loop system will be the same (when transformed back to physi-
cal coordinates) as the closed-loop system synthesized with the Q matrix

of Eq. 64.

For each system, the closed-loop eigenvalues are

s = =0.416283541

s = =0.233676852 £ j 0.885556760 (74)

s = -0.058181377 £+ j 1.691279149

We also note, in passing, that the sawtooth Bode for this system can be

invoked in physical coordinates by the selection of

H'

[}

(0 o o 1 1 1] (75)

H H'

where Q

A critical point 1in this development 1s that, for generalized
coordinates, the Q matrix defined in Eq. 72 is non-diagonal but still

symmetric. This unusual Q matrix is one secret tc the evolution of a
simple, pure gain, single sensor/actuator system from an optimal control
procedure. We believe that this exercise is novel in that a Q, R formu-
lation has been given for a phase-stabilizable sawtooth Bode configura-
tion. As such, these results provide insight as to the formulation of
co~located actuator/sensor controllers as optimal control problems,
whether formulated in physical coordinates or in generalized coordi-

nates.
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o SECTION VI

. CONCLUSIONS

In this report we have examined, on an exploratory case study baslis,

i the application of some prominent direct digital design procedures to
- the analysis of control systems for vehicles with flexible modes. Con-

clusions have been provided in the main text in the discussion for each
of the examples, but some of the more interesting are worthy of reprise

E for emphasis. These are summarized below.

w—Domain Analysis Procedures

® The w-domain transfer function approach permits a
® direct carryover of classical frequency response syn-
thesis procedures and stability analyses.

e The additional zeros 1introduced in w-domain transfer

functions by the sampling and hold operations of digi-
tal systems:

-~ directly show the phase lag associated with
sampling as the result of a rhp zero at w =
2/T;

- -~ 1{indirectly lead to some stability conditions
E for the sampled system which have no paral-
] lels in their continuous counterpart.

K ® The w-domain transfer function poles and zeros which
transfer from the s-domain continuous case are only
slightly affected by the fact of sawmpling until che

‘ sampling frequency, 1/T, approaches their magnitude.

T Thus, for pole and zero magnitudes less than about
1/T, the w-domain poles and zeros are closely approxi-
mated by those in the s-domain.

° Hybrid Prequeucy Response Analysis

::} L The understanding of digital system response ques-

L tions, as contrasted to stability, requires considera-

T tion of the modulation products associated with the

S impuise tiain amplitude modulation features of digital

'Q' systems. The hybrid frequency response 18 an excel-

lent approach to study these guestions.

)
L
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A lightly damped flexible mode subjected to sampling
gives rise to "resonances” at frequencies which are
sums and differences of the flexible mode natural fre-
quency and n times the sampling frequency. The lowest
difference frequency may reflect a “resonance” to a
value which may have an impact within the control
bandwidth. Similarly, "notches™ are reflected from
transfer function numerator quadratics.

The hybrid frequency response, by delivering all the
output components for a sinusoidal 1input, permits the
simple calculation of output waveforms. These can be
particularly instructive 1in showing the non-periodic
response and waveform distortion present as a conse-
quence of the sampling process.

As sampling rates are lowered the output distortion
revealed by the hybrid frequency response will ordi-
narily become critical well before the effects of
sampling and hold on stability.

Control Systems for Flexlible Vehicles

The straightforward survey of control possibilities
using the sawtoocth Bode concept as a gulde reduces the
total number of reasonable feedback possibilities to a
small number of feasible contenders.

The flying quality, bending mode relief, and pilot
station excitation requirements, coupled with the
desire to 1lmprove the flexible mode characteristics,
combine to dictate a very small number of feasible
system feedback architectures.

The sawtooth Bode concept for phase stabilization of
flexible modes 1is one of the continuous control
schemes which carry over directly into the w-dcmain.

An attempt to apply optimal control procedures in a
routine fashion, without taking into account the fly-
ing qualities, actuation, and other practical consid-
erations, will 1esult 1in a design which has little
practical relevance.
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Optimal Coutrol Applications to Flexible
Mode Countroller Desiguns

The thighly robust, extremely simple, controller
designs permitted by application of the sawtooth Bode
concept cannot be realized by straightforward and
routine application of optimal control proceduces
using a positive definite performance 1index with
diagonal Q and R weighting matrices. The controller
synthesized in this fashion will typically have feed-
backs from all states to all control points, and will
often have lightly damped right-half plane zeros.

The consideration of physical coordinates in contrast
to Jeneralized coordinates can be very handy in the
apparent simplification of controller feedback quanti-
ties. For example, the requirement to feedback all
generalized coordinates to affect all the flexible
modes may conceivably be translated into a requirement
to feedback as little as one physical coordinate,

A sawtonth Bode controller, can be rteadily achieved
using optimal control nprocedures by selecting a
special form of performance index. For example, using
physical coordinates 1in the sliwmple truncated beam
case, a performance index using R =1 and Q having
only a single non-zero component will provide a pure
gain, sawtooth Bode controller which damps all modes.

A sawtooth Bode controller for the truncated bean
example expressed in generalized coordinates can be
induced by a Q matrix which 1s non-diagonal but sym-
metric. This unusual Q matrix 1is one secret to the
evolution of a simple, pure gain, single sensor/
actuator controller using an optimal control proce-
dure.
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APPENDIX A
EQUATIONS OF MOTION FOR EXAMPLE FLEXIBLE AIRCRAFT

Feedback Controls Survey and Closed-Loop Design Example

This appendix presents the system equations of motion in the fre-
quency domain for both the feedback controls survey and the selected
loop closure. The basic airframe and sensor equations are those of
Raf. 9 for a coantemporary, flexible, light fighter alrcraft equipped
with heavy external stores. The data base comprised two rigid body
modes (pitch and heave) and five structural modes responding to eleva-
tor, flap and aileron inputs. The supplied sensor equations include
acceleration and pitch rate at four stations (nose, tail, wing tip and

pilot seat) as well as wing-root bending moment.

Figure A-l1 presents the controls survey equations of motion using

the general second order form
[Aps2 + Aps + Aglx = [Bps2 + Bys + Bylf

where the “cell"” components of each row and column are stacked verti-

cally, i.e.

aj represents aps2 * 818 + ag

The system varlables, x, and forcing functions, f, are defined 1in

Table A-1 as well as the corresponding column codes used in Fig. A-l.

The results of the controls survey 1indicated that feedback of
shared an,, and qp to the elevator was relatively simple and gave the

best performance potentlal. The block diagram 1is given 1n Fig. A-2 and

the closed-loop system equations of motion are given in Fig. A-3,
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TABLE A-1. SYSTEM AND FGRCING FUNCTION VARIABLES
USED IN CONTROLS SURVEY AND/OR CLOSED-LOOP
SYSTEM DESIGN EXAMPLE

e
b»
b
-
[
.
b
;_
9

System Varlables

COoL EOM
CODE Var. Units Definition

P ALF a rad angle of attack
t' ClQ 14 rad pitch rate (normalized by c;)"
v cvl cv) o
L Ccv2 vy m ) generalized co-ordinate for
F Cv3 cyvq m - structural mode deflection rate
M CV4 vy o ‘ (normalized by cl)“
:' CV5S CIVS m
’ . N1 nl m
r- N2 n, n 1 generalized co-ordinate for
- N3 n, m structural mode deflection
E! N4 n, m g
:. N5 ns m
L DE Le rad elevator
o **x  DF if rad flaps
> ** DA Za rad symmetric allerons
5 ANP ap g pilot station acceleration
E ANW 3n5 g wing station acceleration
i *%  ANN an, g nose station acceleration
P **  ANT an, g tall station acceleration
I QP ap rad/sec pllot station pitch rate
i *k QW q, rad/sec wing station pitch rate
bi *% QN q, rad/sec noge station pitch rate

; **% QT 9, rad/sec tail station pitch rate

- ++  MBW MBW N-m wing root bending moment
E{ ++  DEF Cef rad net feedback to elevator

. ++ DEA e rad a,,  feedback to elevator
i. ++ DEQ Ce: rad qufeedback to elevator
E' Forcing Functions
fi DEC Ce. rad elevator command
¢ *%  DFC Se rad flap command
b **  DAC L,c rad aileron command
- ALG age rad gust input
\d
]
&
- ++ varlables not used for controls survey
a8 faded variables not usad for closed-loop system design example
E; - normaitzation constant is c¢; = 2.35/290. sec
.
b
&
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APPENDIX B

MAPPING BETWEEN THE s, z, and w—-DOMAINS

This appendix presents a variety of graph forms suitable for inter-
preting and/or converting roots from one domain to another, These were

prepared using the transformations

z € T - Tw/2 ~w - 2/T)

The figures provided are:

Fig. B-l w-domain with s-domain contours of c,wn
Fig. B-2 z-domain with s-domain contours of ¢, wn
Fig. B-3 s-domain with w-domain contours of g, Wy

Fig. B-4 z-domain with w-domain contours of §,%n

Generally the user enters a plot with the rectaungular coordinates of a
root and interpolates within the contours for the ; and w, of the other

domain.

Figures B-1 and B-3 are sized to illuctrate that roots well below

the folding frequency are essentially equal (numerically) in 8 or w.
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Figure B-3, s-Domain with w-Domain Contours of G,w,
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