
(U) AIR FORCE LOGISTICS COMMAND NRIGHT-PATTERSON RFB OH
NOV 94

UNCLASSIFIED F/G 9/~4

I 1-0 12-8 IH2'p

111121

NATIONAL BURIEAU OF STANDARDS
MICROOPY RESOLUTION TEST CHART

...............

N1
(WW"

.44

VtAV
7777

SUMMARY OF CHANGES

The Programmer's Guide was updated to include Appendix C, Additional
Dimensioning Requirements. Appendix C presents additional information on dimensioning
the program and is divided into three sections. Section I explains the additional
dimensioning requirement resulting from implementation of Changes #5. Section 2
explains the dimensioning process using PARAMETER statements. Section 3 explains the
dimensioning process without the use of PARAMETER statements.

\ccesStcfl For-

DTICTA
ELECTEAv'~U For-o

23y
SAUGnunef

B6

D TDiatnbutioii UnliCOCOS

ELE *TE
1AC1 e., nd*

CONTENTS ~ Pag

List of Figures iii

I. Introduction
I . I Purpose I
1.2 Program Characteristics 1
1.3 Programming Conventions 1

2. Program Logic
2. 1 Introduction 3
2.2 Main 3
2.3 Data Input and Verification 3
2.4 LRU and SRU Cost Computations 10
2.5 Display of Item to SE Relationships 12
2.6 Network Solution and Sensitivity Analysis 12
2.7 Output of Results 14
2.8 Block Data Subroutine 15
2.9 Subroutine LRUCMP 15
2.10 Subroutine FMCMP 15
2.11 Subroutine SRUCMP 16
2.12 Subroutine SECMP 16
2.13 Subroutine SETNET 17
2.14 Subroutine SORT 21
2.15 Subroutine RESET 22
2.16 Subroutine MAXFLO 22
2.17 Subroutine OUTPUT 23
2.18 Subroutine UCLSA 24
2.19 Subroutine DECIDE 26
2.20 Subroutine MTBFSA 27

Appendix A: Variables Dictionary 29

Appendix B: NRLA Program Array Dimensions 61

Appendix C: Additional Dimensioning Requirements 74

J

... *°

.4 .

: ~ LIST OF FIGURES

I. Sample Data File4
2. Support Equipment Data Structure 6
3. LRU Data Structure 7
4. LRU Failure Mode Data Structure 8
5. SRU Data Structure 9
6. Item-to-Item and Item-to-SE Relationship Linkages I I
7. SECODE-to.- Item Linkages 13
8. Sample Network with its Attribute Triples 19
9. Network Arc Attributes and Pointer Arrays 20

f.)

1. INTRODUCTION

(1.1 Purpose

This programming guide has been written oLrthe Network Repair Level Analysis
(NRLA) Model computer program developed by AFALC/XRSat Wright-Patterson AFB,
Ohio. Its purpose is to describe the program's structure, logic, input and output
operations, and the organization of data used in the program so that modifications and/or
corrections can be made. It is intended for use with the program and the NRLA User's
Guide.

Appendix B, NRLA Program Array Dimensions, must be carefully read and
understood by all users. Incorrect or incomplete redimensioning is the major user
programming error.

1.2 Program Characteristics

" "- The program is written in FORTRAN and was developed on the AFLC Honeywell 635
computer. Several FORTRAN features available (e.g., character variables, arithmetic
expressions in DO statements, and quoted literals) were intentionally avoided in order to
minimize the occurrence of incompatibilities with other FORTRAN compilers. The
program has also been compiled, with minor changes, and executed on IBM hardware.

The program is composed of a main routine, a block data subroutine, plus 12
additional subroutines. Each of these is described in Chapter 2 with particular attention
to data structures affected and CALLS to other subroutines. In addition, figures are
provided to illustrate data structures and linkages between data elements.

1.3 Programming Conventions

As the computer program was being developed, particular emphasis was given to
making the logic and code as straightforward and easy to comprehend as possible. Trade-
off questions between programming ease versus logical simplicity were resolved by
choosing simplicity. For example, all numeric data elements are stored in single
dimensioned arrays rather than double or triple dimensioned arrays. Further, the array
names were all chosen to be as descriptive as possible. Thus, the unit cost of an LRU is
stored in array UCL, its mean time between failure is in array MTBF, the unit cost of an
SRU is in UCS, and so on. These mnemonics promote the readability of the code and also
preclude potential errors arising from using the wrong column of doubly subscripted
arrays. Appendix A is a glossary of variable names.

A second programming convention relates to FORTRAN statement numbers. They
were assigned, and sometimes reassigned, so that within each routine they would be in
ascending order. Consequently, it is easy to find the destination for each GO TO and the
terminal statement for each DO loop.

Another convention, used throughout the program, concerns DO loops. Many
programs use a single letter variable for the DO loop parameters, as in

DO 10 1 =1,5 and
DO 20 1 = J,K

These single letters may be reused for other loops or a change to double (or triple) letter
* "variables may occur, e.g., 11, JJ, JK, LMN, etc. The result is that it is frequently difficult

* - * .*. *..* *** **. ~ * * -. ~7

-J,- -i 0-N -.- N 77 7-- r.-7~ -71..

to keep track of which loop most recently used a particular variable and therefore what
the value of the variable is. This problem is avoided by using unique letter-number
combinations for the loop parameters. The above loop examples would appear as

DO 10 110 = 1,5 and
DO 20 120 = J20,K20

Each variable will be a single letter followed by the statement number of the associated
CONTINUE statement. This convention provides immediate traceability for letter-
number variables and can be particularly beneficial for subscript values in long and/or
nested loops

2

a.. a~*
4

*~~ %f% % a. .. *

<a'*.. ,'~ . a. C. .,. *,-*.-.. *

- r . , .,lli',Jll il il~l~i .='a. a % .. al'.] .li- h- li i -- - a ' n' . - - a - , -

2. Program Logic

2.1 Introduction

This chapter provides detailed descriptions for each routine of the program. Its
purpose is to present the logic and rationale in sufficient detail that the reader can follow
and comprehend the program statements. It is not a line-by-line restatement of the
program code; nor does it make gross statements of purpose describing 50 or more lines of
code. It is intended to be a compromise between these extremes and still be
comprehensive.

Despite this compromise, the reader will quickly realize that the amount of
description is not always directly proportional to the amount of code being described. It
has been assumed that the reader has substantial experience with FORTRAN
programming; therefore, many details relating to FORTRAN "mechanics" and to
elementary programming techniques are casually dismissed. For example, WRITE
statements are mentioned but not detailed with regard to the number of statements, the
constants/variables written, or the applicable FORMATs. Similarly, details are not given
for data validation tests or tests preventing array overflow. Conversely, substantial
explanation is given to some sections of code to explicitly clarify the "why" and/or "how"
of the operations.

2.2 MAIN

The operation of the MAIN routine can be separated into five major functions:

a. Data input and verification,
b. LRU and SRU cost computations,
c. Display of item to SE relationships,
d. Network solution and sensitivity analysis, and
e. Output of results.

These functions are described separately, in sections 2.3 through 2.7, with particular
attention given to a description of the data structures created.

2.3 Data Input and Verification

Figure I shows a sample NRLA input data file. The data values and relationships
shown are used in subsequent figures to illustrate the data structures created by the
program.

Data input and verification is accomplished by the statements from the beginning of
the program through statement number 595.

The first three executable statements set certain parameters for two random access
data files, 15 and 16, and obtain the current date, in the form YYMMDD. Modifications
may be necessary to conform to the host computer's requirements. These are followed by
initialization statements. Then, the input from file code 5 is read into the program.
First, the output options and output units card is read. Next, the wholesale change and
exclusion factors are read.

Next, the first input data record (stored on file code 10), Weapon System Program
Factors, is read. The system name and run-identification data from it are used to write
output report headers. Validity checks are done for the overseas deployment fraction and
for sensitivity analysis pa, ameters with error messages written if appropriate. The
remaining weapon system factors are then used to compute the monthly and life cycle
flying hours.

3

MOD.TliHT.EMT 47 020 10 1 120 10004 50 200 1

132 1642 136 3485 0.33 0.15
10420 10420 20.0 0.27 0.53 0.43 0.54 1.26 1.44 .389 .573 190.
11001 MULTIMETEh 90. 1.bO 1 2.5 200 0

12002 OSCILLOSCOPE 2375. 47.5 1 1.8 200 0
12003 SIGNAL.GEN. 4750. 95.0 1 1.2 200 0
12004 PULSE.GEN. 1350. 27.C 1 0.5 200 0
12005 POWER.SUPPLY 600. 12.0 1 2.5 200 0

12006 UNIV.BRIDGE 1375. 27.5 1 0.1 200 0
15001 MULTIMETER.* 90. 1.80 1 2.5 200 0
16002 OSCILLOSCOP* 2375. 47.5 1 1.6 200 0
16003 SIGNAL.GEN.* 4750. 95.0 1 1.2 200 0
16004 PULSE.GEN..* 1350. 27.0 1 0.5 200 0

16005 POWER.SUPP.* 600. 12.0 1 2.5 200 0
16006 UNIV.BRIDGE* 1375. 27.5 1 0.1 200 0

99
31 LRU05 SCR ASSY 1. 4552. 1.0 1.0 1.5 1.5 .33 .1 2 5000
31 LEU09 SWTCH SCE AY 1. 17670. 5.0 1.0 1.5 1.5 .33 .1 8 2500
31 LRU1O STOR CAP MAD 4. 2j38. 0.5 1.0 1.5 1.5 .3j .1 4 15000

31 LHU14 PH4/SWT XFMR 1. 19810. 1.0 1,0 1.5 1.5 .33 .1 2 5000
99
41LRU05 1.67SRU53 CCA.ChRG 1 0 0. .01 6 2 .41 .41 .06 200. 3 0 .41
41LRU05 2.33 1 0 683. .05 6 2 .80 .80 .06 200. 2 0 .60
41LRU09 1.17SHU54 DLAY.RCT 1 0 0. .10 6 2 .40 .40 .06 200. 1 0 .40
41LRU09 2.17SRU57 CS.TRANS 1 0 0. .01 6 2 .50 .50 .06 200. 1 0 .50
41LEU09 3.33SkU60 TTA.S.SC 1 0 0. .50 6 2 .55 .55 .06 200. 1 0 .55

41LRU09 4.33 2 02651. .10 6 2 .53 .53 .06 200. 2 0 .53
41LRU10 11.0 1 0 351. .01 6 2 .23 .23 .06 200. 5 0 .23
41LRU14 1.71SRU55 SWT.TRNS 1 0 0. .20 6 2 .80 .80 .06 200. 3 0 .b0

41LRU14 2.25SRU56 PLS.FNET 1 0 0. .01 6 2 .55 .55 .06 200. 3 0 .55

41LRU14 3.04 1 02972. .30 6 2 .40 .40 .06 200. 4 0 .4o

99
51SRU53 698. .5 209. .01 1 0 7 b 1.5 1.5 .33 .41 .41 6 2 .06 200. .41
51SRU54 674. 2.0 202. .10 1 0 3 8 1.5 1.5 .33 .40 .40 6 2 .06 200.11 .40
51SRU57 544. 5.0 163. .01 1 0 4 2 1.5 1.5 .33 .50 .50 6 2 .06 200.1 .50
51SU60 1500. 6.0 0. .50 1 0 510 1.5 1.5 .33 .58 .58 6 2 .06 200. .58
51ShU55 956. .5 287. .20 1 0 3 2 1.5 1.5 .3o .80 .80 6 2 .06 200. .bO
51SAJh56 1628. .2 4b8. .01 3 0 61C 1.5 1.5 .33 .55 .55 6 2 .06 200. .55

99
32 LRU05 10015001
32 LRU09 10012002200320055001600260056005

32 LRU1O 1001200650016006
32 LRU14 10015001
52 SRU53 10012002200320055001600260036005

52 SRU54 10012002200320055001600260036005
52 SRU57 10015001
52 SRU60 1001200220032004200550016002600360046005

52 SRU55 10015001
52 SRU56 1001200220032004200550016002600360046005

FIGURE 1. SAMPLE DATA FILL

4

Maintenance system factors are then read. The annual turnover rates are used to

calculate life cycle turnover factors for maintenance personnel training.

Data values for the Supply System Factors are then read from the third input record.

Values from the above data records are printed for user verification. This is
followed by computations using the supply system factors and the printing of header
information for support equipment data.

Support equipment input data is processed starting at statement number 200 and
continuing up to statement 300. The variable NUMSER serves as a counter for the number
of SE resources input and as a subscript for the SE data arrays. If the number of SE data
cards exceeds the allocated array size (specified by the value for MAXSE) the excess
cards are read, printed with an error message, and ignored. When array sizes will not be
exceeded, the data is read into arrays of the common area SEIN and validation tests are
performed for the first two input characters. The arrays SRCE, DEST, CAP, and FLOW
serve as temporary storage areas for the digits of the SE code numbers. Each valid input
record is printed to allow verification by the user. The SE input values plus certain
computed values and pointers are stored in arrays as shown in Figure 2. A "row" of data
will later be referred to as an SE data record and will exist for each depot and base SE.
The functions of the computed values and pointers will be explained later.

The processing of LRU input data is performed from statement 300 to statement
350. The variable NLRU is used as a counter for the number of LRUs identified in the
input file and as a subscript for LRU data arrays. Overflow of LRU arrays is prevented by
comparing NLRU to the control value MAXLRU. The input value NSE, number of SE
resources required for LRU repair, is subtracted from zero and the result saved in the
array NSERL. This negative value is replaced by a positive value when the LRU to SE
relationships are determined. LRU input data arrays and associated pointer arrays are
shown in Figure 3. (NOTE: Entries are shown for TFAILP, FRSTFM, and LASTFM even
though they are not established until the LRU failure mode data has been read.)

Input data cards for LRU failure mode data are processed from statement 400 up to
statement 450. Th.' variable LFMS is the counter for the number of failure mode data
cards read and as a subscript for the LRU failure mode data arrays. Array overflow is
prevented by comparing LFMS to the control value MAXFM. As each card is processed
the corresponding LRU data record is located and the pointers FRSTFM and LASTFM
updated. The input value NSE (number of SE required) is subtracted from zero and saved
in the array NSERFM. Validity tests are done for the failure percentage input value and
also for the values which serve to preclude specific repair level options (LFMOD, LFMOS,
and LFMOB). If the input field for an SRU identifier is not blank the count of SRU data
cards is incremented. This value, SFMS, is then used as a subscript to save the SRU
identifier, the SRU name, and a pointer to the LRU failure mode record. In addition, the
value SFMS is saved in the array SRUPTR as a pointer to the SRU data record. LRU
failure mode arrays are shown in Figure 4.

SRU input data cards are read at statement 500 and processed prior to statement
550. Because there are no restrictions on the sequence of SRU cards in the input file, the
SRU data values cannot be read directly into the arrays for SRU data records. The values
are read into temporary locations and then moved to the proper SRU record based on
matching the SRU identifier field. For each SRU the input values which preclude specific
repair level options (SOD, SOS, and SOB) are validated and checked for consistency with
options specified for the associated LRU failure mode. Figure 5 shows the arrays used for
SRU data records.

5

- - - --- -f
H
p..

0
0.

- -

0HC.)

0

H

0

H H
0

0

____________ 0 H

p ~ , ~ a a a . . Z

II I I p i I I I
0

0*

H

0.
* 0.

LPI 000 sti 0 ~fi 000 u~ 0
~'. up In N. a' r~ In. *1-i 0 t-.

C.) CJ -t - - c'*J -1 - -

W 41 41 41
0. -J ~J 41 0. 0
0 Z * 0. ~ ~ 0 Z -0. C.~ 0

* C.) Z 0. 0 C.~ 0 C.~ Z 0.0

H0C~3 0 0 '-4 H tfl U L.~ 0 -4Lfl 0 ~ z
-4 -~ <

Cd >H -4~
C.) C.) 4 00 .- ~ -

0 Z 0 u~ -4 o 0 ~
0 C/~ 0. 0. 0 Z 0 J~ 0. 0. 0

0
S - ~-J ~ -4 t~ ~ - r~J ~ -J. In
0000000001000 ~ I
~fl - ~N CJ ~4 C~J -J f~ .C 0 'fl ~0 -C

00 0 00 ~ 0000

H
0

0

)

~*. . *.~ .2

two ad

C-)

9z 00

cy(.T

AZ:T
ce

~ 211411
E

~- ~- --

~ ~LD

1L ,II I

2.15 Subroutine RESET

RESET is called by MAIN, MTBFSA, and UCLSA. Its purpose is to exploit the known
structure of the RLA network so that the computer processor time required to solve the
network can be reduced. This is accomplished by examining certain source node to sink
node paths and incrementing the allocated flow along the paths. This is done either for all
LRUs and SRUs or for a specific LRU and tts associated SRUs.

The choice between all LRUS and a specific LRU is controlled by the argument
LPTR. If LPTR has the value zero it means that a feasible total flow must be assured (by
setting the flow in every arc to zero) prior to incrementing the flow for every LRU failure
mode and every SRU. A nonzero value means that a previously determined max-flow
solution has been made non-optimal by increasing some arc capacity values associated
with an LRU. This occurs during the sensitivity analysis process in MTBFSA and UCLSA.
In this case RESET witi only examine the arcs associated with the LRU being considered
for sensitivity analysis.

For each LRU and SRU considered the subroutine utilizes the path from source node
to depot node to base node to sink node (e.g., I to 4 to 6 to 10 in Figure 8). Direct
pointers to the arcs are found in LDARC, LSARC, and LBARC for each LRU failure mode
and in SDARC, SSARC, and SBARC for each SRU. For each arc in each path the
difference between its capacity and flow values is computed. The minimum of these 3
values is added to the flow for each of the 3 arcs. The mininum value is used because it
is the maximum amount by which the path flow can be increased and still have the flow in
each arc less than or equal to its capacity.

2.t6 Subroutine MAXFLO

This routine is called from MAIN, MTBFSA, and UCLSA. Its purpose is to determine
the minimum cut for the network because the minimum cost set of repair level decisions
is obtained directly from this cut. The solution technique used is a direct application of
the two stage labelling procedure described on pages 17-22 of Flows in Networks by L.R.
Ford, Jr. and D.R. Fulkerson, Princeton University Press, 1962.

The object of 'he first stage is to find a path froin the source to the sink node along
which the network flowv can be increased. The second stage follows this path from the
sink back to the source node modifying the allocated flow in each arc of the augmenting
path. This two stage process is repeated until no flow- augmenting path from source to
sink can be found. When this occurs the minimum cut for the network has been
determined.

Prior to initiating the labelling algorithm the loops DO 3005 and DO 3010 are
executed. The first one is executed for each LRU failure mode and the second one for
eac'i "RU. In the first, the entres in LFMOD. LFMOS, and LFMOB are examined; a
nonzero entry indicates a user specification to cxclde the d epot, s-rap, and base optious,
respectively. The repair level decisions are precluded by setting the appropriate arc
capacitv to a very large number. The SPtV' loop operaites s:rn!!ar'y using the arrays SO!-),
SOS, and SO, as the source for the ,ser I -:i specificatiors.

The first stage Is then initiated bv labelling the source node, s(tting Its STATE to 2
(labelled and ins-canned), ard setting th)e STATE fo- every other node to I (unlabelled). At
statement 3030 .-A loop s execu t e to find a lanel ed jd ;'r:ed none.

22

Arcs to node 6 are located by using the 5th and 6th entries of BACKSP. The 5th
entry is reldted to the last triple with DEST equal to 5. Similarly, the 6th entry is related
to the last triple with DEST equal to 6. Therefore, the appropriate pointers for node 6 are
BACKSP (5) +1 through BACKSP (6). In this case, 8 and 9. These pointers are not
subscripts for triples -- they are pointers to entres in BKPTR. The values in BKPTR are
subscripts for the triples. The 8th and 9th entries in BKPTR are 8 and 13 indicating that
the 8th and 13th triples have 6 as the DEST.

The last logical secton of code in SETNET is the DO 2400 loop. Here the SRCE and
DEST entries for each arc are examined to determine the function of the arc. If an arc is
used for LR!.J costs a pointer to it is saved in LDARC, LSARC, or LBARC for LRU depot
arc, LRU scap arc, and LRU base arc, respectively. Similarly, pointers are saved in
SDARC, SSARC, SBARC, SBDARC, and SBSARC for appropriate SRU arcs, and saved in
SEARCP for SE costs.

2.14 Subroutine SORT

SORT is called from subroutine SETNET. As its name implies, its function is to sort
values supplied by SETNET. Specifications to SORT are contained in its arguments list.
The first three arguments to the routine (MI, M2, M3) are the arrays to be sorted, the
fourth is an array for sequence pointers (LINK), the fifth specifies the number of values in
the arrays to be sorted, the sixth specifies the dimensioned size of the arrays to be sorted,
and the last argument i' a 0-I indicato- directing SORT to only sequence the links or to
also resequence the three arrays to be sorted. SORT is not a general purpose sorting
routine. It only sorts into ascending order and sequences based only on the contents of the
first argument array. Processing is essentially a two stage procedure.

The first stage begins by assigning the integers 1, 2, ... , N into array LINK. These
integers are used as pointers to values in the array MI. The loop DO 30 then rearranges
the LINK values so that they correspond to a sorted order for the values in MI. The first
pass through the DO 30 loop results in moving the pointer to the largest value in MI to the
end of the LINK list. The second pass gets the pointer to the second largest MI value to
the second last entry of LINK list. Each pass gets at least one LINK pointer to its proper
ordering position.

To clarify these operations, suppose that MI had the 3 values 30, 20, and 10. LINK
would first be initialized to 1, 2, 3. In the DO 30 loop the LINK values I and 2 would be
used as subscripts to compare the values 30 and 20. Since 30 and 20 are not in ascending
order the LINK values I and 2 are reversed to give the order 2, 1, 3. Next, the pointers I
and 3 are used to compare the values 30 and 10; since they are out of order the LINK
values are reversed to give the sequence 2, 3, 1. This puts 1, the pointer to the largest MI
value, last in the list. The next pass through the DO 30 loop would produce the LINK
sequence 3, 2, 1. These values mean that the smallest MI value is third, the next smallest
is second, and the largest value is first.

Depending on the value of the 0-1 argument the subroutine will either RETURN or
complete the second stage of processing. The second stage is the DO 50 loop in which the
LINK entries plus the Ml, M2, ind M3 entries are rearranged. In the loop if a LINK value
indicates that the Ml, M2, and M3 values are out of sequence they are moved to the array
TEMP. Then, the Ml, M2, and M3 slots just vacated are filled with the proper values by
using the LINK pointer; those vacated slots are then filled with their proper values; and so
on until the values in TEMP can be moved to their proper slots. This continues until all
LINKS and associated Ml, M2, and M3 values are properly sequenced.

21

4 ~ ~ ~~~~~~~~ .l . .- | n n 1- ' '' ."

SRCE 1 1 1. 1 2 3 4)4 5 616 66 7 7 8 9

DEST 2 3 4 5 4 5 5 6 7 7 10 8 6 10O9 10 10

CAP b c ad h i J J nJ k m

FIGURE 9.a. ARC ATTRIBUTE TRIPLES SORTED BY SRCE

FWDSP 1 Is 16 17 19 110113116117118TT-

SRCE I 1 11 1 2 3 4 4 5 6 6 7 7
DEST 2 3 4 5 4 [5 5 6 7 7 108 6 I0 110 0

CAP b a J ,e f g h i J J'n k

FIGURE 9.b. FWDSP VALUES AS POINTERS TO SRCF VALUES

FWDSP 11 5 16 17 19 1101131161171181

SRCE I I 1 12 23 414 50 6 6 6 7 17 7 8 9

DEST 2 3 4 5 4 5 5 16 7 7 10 8 6 10 9 10 10
CAP b c a d .7 ,J e If gh .J n J k

BKPTR 1 2131546!,1S78 13 9 1'3j 12 11 I1 41611717

BACKSP 0 T24 T-1 1]1

FIGURE 9.c. BACKSP ANT) BKPTR 4ALIE: \S POINTERS TO PEST VALUES

FIGURE 9. N4FT4ORK (o\T : i TEi kND POINTER \V1FYS

20

-'. -:' -'-', '., - . . , L " -*G , -" " - . ". ', ." -" - ', - -' -'. -" ".' - " - .- " -". ". ".. .' .' .' .-. - "- " . -.' ., " ". ". . " _

DEPLOC BSL

aJ

BR LDS k

SEOTe BRLSS 1

SRCE 1 1 1 11 1 2 3 14 14 5 6 617 7 618 __l

DEST 12_1_314+ I4 15 g1516 17 110 108111
CAP b c a dJ J e -f i nJ

FIGURE 8. SAMP'LE NETWORK WITH ITS ATTRIBUTE TRIPLES

19

The DO 2120 loop assigns attributes for the two t' 'DeS of arcs originating at a base
LRU node. One type goes to the corresponding SR(node and has a CAP value from
BRLSS; the other goes to the sink node with a CAP value from PRASELC. The loop is very
similar to the DO 2080 loop.

Each base SRU node will ,e the source for two arcs, one arc to the appropriate LRU
failure mode node and one to the sink node. These arcs are created in the DO 2130 loop.

The last set of arcs assigned are related to the base SE resources. The arrays
SEXREF and NXTITM are used to assign arcs from LRU and SRU base nodes to the base
SE nodes. This is analagous to the processing for depot SE in the DO 2060 loop. A second
type of arc is created from each SE node to the sink node and assigned a CAP value from
SECOST.

Figure 8 shows a sample network composed of arcs for one LRIJ failure mode, one
SRU, two SE resources at depot, and two SE resources at base. Node numbers appear as
they would be assigned in the program. With each arc is the array name from which the
associated logistics cost is obtained and a lower rase letter to represent the cost. The
figure also shows the entries that would be made in arrays SRCE, DEST, and CAP for this
sample network. The entries are in the order produced by the logic of subroutine SETNET.

To find the optimal solution for the network it is necessary to examine the CAP and
FLOW values for each arc going out of a node and also those coining into the node. As
shown in Figure 8 the attributes for arcs going from base LRIj and SRIU nodes (nodes 6 and
7) will not all be consecutive. Consequently, the attribute triples are sorted into
ascending order by SRCE as shown in Figure 9 .a. This order is beneficial because all arcs
going out of node i can be examined by finding the first occurrence of i in SRCE and
continuing until the value in SRCE changes. The benefit can be increased by saving a
pointer to the first occurrence of each node rather than having to search for it. This is
done in the DO 2190 loop with the pointers saved in FWDSP as shown in Figure 9.b. The
loop DO 2195 is included to prevent errors which would arise if a node was not the source
for any arc -- specifically, a depot SE not referenced by any LRU or 3RU.

Because the solution algorithm needs to know which arcs go into each node, as well
as those that go out, it would be beneficial to have the SRCE-DEST-CAP triples sorted by
DEST. Unfortunately, the triples cannot be sorted by SRCE and also bv DEST. However,
a solution to this problem is obtained by including another array. A CALL is made to
subroutine SORT with array parameters DEST and BKPTR. SORT will put the integers I
through NARCS into BKPTR and then sort the integers, based on the contents of DEST, so
that they can be used as pointers to DEST values. The loop DO 2200 uses the entries in
BKPTR to build additional pointers in BACKSP. The results of these operations are shown
in Figure 9.c. The loop DO 2222 is included to precbude problems which would arise if a
node was not the destination for any arc -- a base SE not rpferenced by any LRU or SR(,.

To clarify the utilization of FWDSP, BKPTR, and P.ACKSP consider node 6 of Figure
8. It is the source for 3 arcs and the destination for ? arcs. The 6th entry of FWDSP is 10
indicating that the triples for arcs from node 6 start with the 10th triple. Pased on the
7th entry of FWDSP, arcs from node 7. it is easy to detrmine that the appropriate triples
for node 6 are referenced by subscrints 10 throlgh 12 (1.1.. -,iinus 1). Sirilar logic
holds for every other node; the appropriate suhscript* for node i are F\% DSP (i through
FWDSP (i +1) -1.

18

-~~~~~~~7 - 7 ~ ---

2.13 Subroutine SETNET

SETNET is called by main after all costs and dependency relationships are known.
The function of SETNET is to use this information to construct a matrix representation
for the RLA network, determine and save pointers for use by the solution algorithm, and
save pointers for use by the sensitivity analysis subroutines.

The matrix representation for the network is contained in arrays which specify the
attributes for each network arc. These attributes are the source node for the arc, in array
SRCE; the destination node for the arc, in DEST; the maximum flow (logistics cost)
associated with an arc, in CAP; and the arc flow as later determined by the solution
algorithm, in FLOW. The entries in the arrays are determined by using a predefined
spatial structure for the nodes.

The fixed structure permits the determination of node numbers for key network
nodes. This is done as the first step in the subroutine so that the values can be used for
assigning SRCE and DEST node numbers. Nodes are assigned ordinal numbers, by node
category, using the sequence: source node, depot SE nodes, depot LRU failure mode
nodes, depot SRU nodes, base LRU failure mode nodes, base SRU nodes, base SE nodes,
and sink node. The last depot SE (LDSE) node number will be I plus the number of depot
SE (NDSE) resources. The last depot LRU (LDLRU) node number will be LDSE plus the
number of LRU failure modes (LFMS). Similar logic is used to calculate node numbers for
the last node in each of the node categories.

Assignment of arc attributes for depot SE arcs occurs in the loop DO 2010. Within
this loop, and successive assignment loops, the variable NARCS is incremented as a
counter for the number of network arcs and as a subscript for the arrays SRCE, DEST, and
CAP. For each depot SE the value I is saved in SRCE, the SE node number is saved in

* DEST, and the life cycle SE cost is saved in CAP.

The next two loops, DO 2020 and DO 2030, assign the arc attributes for LRU failure
mode and SRU repair costs at depot. These loops are essentially identical to the previous
one.

Arcs from each depot SE node to the appropriate LRU and SRU nodes have their
attributes assigned in the loop DO 2060. The SE to item arcs are generated stepping
through the linked list of SE to item relationships saved in the SEXREF and NXTITM
arrays. Positive values in SEXREF are pointers to LRU failure mode records. When the
values are added to LDSE the result is the node number for the failure mode and is used
fk " the arc's DEST entry. Negative values in SEXREF are pointers for SRU records. When
these negatives are subtracted from the number of LRU failure modes (LFMS) the result
can be added to LDSE to obtain the proper SRU node number to be saved in DEST.

The two types of arcs emanating from the depot LRU nodes have their attributes
assigned in the loop DO 2080. For each failure mode with an associated SRU an arc is
created from the LRU node to the SRU node and having a value from BRLDS assigned as
its capacity. Then, arc attributes are saved to represent the arc from the LRU depot node
to the LRU base node. This arc is assigned the LRU scrap option cost, from SCRPLC, as
its CAP.

SRU scrap option costs are saved in CAP for the arc assignments made in the DO
2090 loop. These arcs have an SRU depot node as the source and an SRU base node as the
destination.

17

-. . . .

2.11 Subroutine SRUCMP

This subroutine is very similar to FMCMP. it is called by MAIN, MTBFSA, and
UCLSA to compute SRU related life cycle costs. The arguments LPTR, FMPTR, and
SPTR serve as indices for locating the appropriate LRU, failure mode, and SRU data
records.

Life cycle repair costs are computed as described in the NRLA User's Guide and
saved in the SRU related arrays DEPOSC, SCRPSC, BASESC, BRLSS, and BRLDS. The
last two correspond to the DEC2 and DECI costs described in the user's guide. Monthly
maintenance man-hours required for SRU repair are computed and saved in SSEUHD and
SSEUHB.

In relation to the computed SRU costs it is important to note the SRU scrap option
costs are treated differently than the corresponding LRU failure mode costs. The LRU
failure mode scrap costs are summed and assigned to a single arc in the network. The
SRU scrap cost components are assigned to two different arcs so that each of the six joint
LRU-SRU decisions will reflect the proper total cost. Specifically, the cost for packing
and shipping SRUs plus the cost of base level inventory is assigned to be counted for a
BASE-SCRAP decision combination but not counted for the DEPOT-SCRAP and SCRAP-
SCRAP joint decisions. Further, to achieve the proper total for the SCRAP-SCRAP
decision, the cost of SRU failures is subtracted from the corresponding LRU failure mode
scrap cost.

2.12 Subroutine SECMP

SECMP is called by MAIN and by MTBFSA. It determines the quantity of each SE
resource potentially required at depot and base level plus the life cycle cost for the
resources. When called by MAIN the routine prints a table of SE requirement quantities,
monthly utilization hours, and life cycle costs. The argument IND is set at zero by
MTBFSA to suppress this printing.

At the beginning of the routine are write statements for output report identification
and column headings. This is followed by a DO loop through statement 900. Instructions
within the loop are executed for each SE resource.

The purpose of the code from statement 806 to statement 815 is to determine, for
an SE, the expected monthly utilization from all LRUs and SRUs. The appropriate items
are found by using an SEPF entry as a starting location pointer and stepping through the
linked list of entries in SEXREF and NXTITM. Each entry of SEXREF is a pointer to an
item record with positive values used for LR' T pointers and negative values used as SRU
pointers. The first digit of each SECODE i~icates whether the resource is for depot
(digits I to 4) or base (digits 5 to 8) use an therefore, whether the depot or the base SE
use hours are totaled. The total utilization hours are then used to determine the SE
quantity requirement.

This requirement is used to compute life cycle SE costs as described in the NRLA
User's Guide. If SEC P was called from MAIN the computed hours, utilization rate, and
costs are printed. If the call was from MTBFSA the new cost is assigned as the capacity
value of the proper network arc.

16

%..

. :"- " ." ."-: - .'-",,- ".""-'-'''..-''-,,""'',- ,- .d'""' "......•;.v.......--

from the previous decision to depot, scrap, and base, respectively. Of the 10 values,
processing proceeds for those associated with decision change points. Actions include
placing a "*" in array LINE corresponding to each negative value, changing negative values
to positive, replacing each 4 value with the value preceeding it, and using the values as
subscripts to place the values "DEPOT", "SCRAP", and "BASE" into the array LOCAT.
The failure mode identifier is then written with the values in arrays LINE and LOCAT. If
an SRU is associated with the failure mode the integer decision values for it are read from
file 17 into array SADECS, processed as above to fill LINE and LOCAT, and an output line
written to reflect its decision changes.

After all failure modes have been processed, two data records are read from file 17.
The values are printed to specify the total number of LRU/SRU and SE decision changes

* per decision change point.

At statement 4190 the next record from file 17 is read into NDEC and DECVLO. A
value for NDEC which is greater than zero indicates a continuation of decision change
point information and causes a transfer back to statement 4040. If NDEC is not positiveit will be -1 indicating the start of data for the next LRU. In this case the first 3 values

of DECVLO are used for UCLSL, UCLSH, and UCLIN, respectively.

Statements from 4200 to 4300 process the SRU cost sensitivity results written to
file 18 by subroutine UCLSA. Statements from 4300 to 4400 process the LRU MTBF
sensitivity results written to file 19 by subroutine MTBFSA. These two sections contain
logic and statements which are essentially identical to that just described for LRU cost
sensitivity results.

2.8 Block Data Subroutine

i This subroutine contains data statements to initialize values in the arrays CHARS
and LOCAT.

2.9 Subroutine LRUCMP

LRUCMP is called by MAIN, MTBFSA, and UCLSA. Its function is to compute
inventory stock levels and life cycle SCRAP option costs for an LRU. The argument
LPTR is a pointer to an LRU data record.

The routine computes monthly and life cycle repair demand rates for the LRU. The
monthiy rate is used in equations which determine pipeline spares quantities and
associated LRU inventory stock levels. The equations for these quantities and the life
cycle SCRAP option costs are presented and described in Chapter 3 of the NRLA User's
Guide.

2.10 Subroutine FMCMP

FMCMP is called by MAIN, MTBFSA, and UCLSA to compute repair level option
costs for an LRU failure mode. The arguments LPTR and FMPTR are used as pointers to
an LRU record and failure mode record, respectively.

The routine computes the life cycle logistics costs as described in the NRLA User's
Guide and saves them in the arrays DEPOLC, SCRPLC, and BASELC. The expected
number of maintenance man-hours required monthly for the failure mode is computed and
saved in FSEUHD and FSEUHB for depot and base level repair, respectively.

I
,! 15

oO. . . o.. - . * "o.' o. .o.oo.*oo. o *.o .- o*-.*Lo' .*. °. * .* ' -.oo°°o-:°°,o."°+ .'o°°°. °°.o ..-. -"

The first action is a call to subroutine SETNET which constructs the network
relationships. Subroutine RESET is then called to initialize the network flow. The
minimum cost (maximum flow) solution for the network is determined by subroutine
MAXFLO. Finally, subroutine OUTPUT is called to display the optimal SE and item
decisions.

Prior to performing the sensitivity analysis computations, the program saves the
contents of certain arrays which define the optimal solution. Specifically, STATE for
node status plus CAP and FLOW for arc status. In addition, two random access files are
established for temporary storage of data by the sensitivity analysis subroutines. A
computed GO TO is then executed to transfer to statement 2025, 2035, or 2055 for LRU
cost, SRU cost, or LRU MTBF sensitivity, respectively.

LRU cost sensitivity is done for each LRU with a call to subroutine UCLSA. In
UCLSA the sensitivity results are written to a sequential binary data file, file code 17. In
MAIN a REWIND is executed for the file and the first record read into memory.

The nested loops DO 2050, for each LRU, and DO 2040, for each failure mode,
control SRU cost sensitivity. The analysis is done by UCLSA which writes the results to
file 18. After statement 2050 the first record from file 18 is read.

For LRU MTBF sensitivity the loop DO 2060 is executed for each LRU. Subroutine
MTBFSA is called to do the computations and write the results to file 19. After the loop,
the first record of sensitivity results is read back into memory for subsequent display.

2.7 Output of Results

The display of repair level decisions details is done in the DO loop from statement
3000 through 5000. At the beginning of the loop are write statements which print the
LRU input values and some computed failure rate values. Then, for each failure mode of
the LRU, the loop DO 4000 is executed to print failure mode and SRU data. The program
prints the input data factors, from failure mode and SRU data records, plus the computed
logistics costs and the optimal repair level decision for the failure mode or SRU.

Statements between 4000 and 5000 control the writing of information resulting from
the three types of sensitivity analysis. The statements prior to 4200 process the
information on file 17, LRU unit cost sensitivity results.

In this section, the first action is to read a record from file 17 which indicates the
number of decision change points, NDEC, and the low side LRU cost, DECVLO. If the
number of decision change points is less than two a message is written indicating no
decision changes. Otherwise, processing proceeds by writing a header line describing the
input cost and sensitivity range plus two lines showing the cost values associated with the
decision change points. The loop DO 4081 is executed to examine the cost values
associated with each change point and from them determine where the set of optimal
baseline decisions will print. A line is then printed which has "*****" positioned to be
above the optimal baseline decisions.

The loop through statement 4160 is then executed for each failure mode of the LRU.
A record is read from file 17 which contains 10 integer values each of which is -3, -2, -1,
1, 2, 3, or 4. The values provide coded information on decision changes. The values 1, 2,
and 3 indicate the decisions depot, scrap, and base, respectively. The 4 indicates no
change from the previous decision and the negative values -1, -2, and -3 indicate a change

14

...........................- t -t - -

SEPF SEPL XTITM

1001 1 85 1 3

2002 4 76 1 7

2003 5 771 -1 1
20 0 4 5 0 7 8 t_,- 1 4 1

2005 6 79 -I 15
: >2 0 0 6 1 , 6 6 ,- 1 6

5001 2 86 -1 12

6002 8 81 -1 18

6003 9 82 -1 19

6004 55 83 -1 20

6005 10 84, 2 13

6006 68 68 2 17

3 21

3 22

"- 3 23

3 24

3 25

3 26

3 27

3 28

-"-2 29

-2 30

-2 31

-2 32

-2 33

-2 34

-2 35

-2 36

-4 3 7

4 4
4 41

FIGURE 7. SECODE TO ITEM LINKAGES

13

...

The second section, from statement 620 through 630, is essentially identical to the
first. The only difference is that it processes the SE requirements which are specified by
failure mode.

At statement 635 the subroutine FMCMP is called to compute the life cycle logistic
costs associated with each LRU failure mode. The total cost computed for each repair
level option (base, depot, and scrap) is saved in an array. The individual cost equation
values and the option totals are written to a temporary random file.

Finally, each failure mode is checked for an associated SRU. The processing for
each SRU includes updating SEXREF and NXTITM to include the SRU's SE requirements,
calling SRUCMP for cost computations, and saving the cost values in arrays and on a
temporary random file.

Figure 7 shows the linkage from each SE through SEXREF and NXTITM to each item
requiring the equipment. For SECODE 1001 the SEPF and SEPL entries specify that the
linked list of items requiring the SE starts with the first SEXREF-NXTITM pair and ends
with the 85th pair. The entries in NXTITM are the links to successive pairs. Thus, the
first value in NXTITM, 3, points to the third pair; the third value, 11, points to the
eleventh pair; the eleventh value points to the thirteenth pair; the 13th points to the 21st;
the 21st to the 29th; and so on. The list terminates at pair 85 where the value of NXTITM
is zero. The SEXREF values for this linked list are 1, -1, 2, 3, -2, 4, . . . The positive
values are pointers to LRU failure modes which require SE resource 1001 for their repair.
Similarly, the absolute value of each negative number is a pointer to an SRU requiring
resource 1001.

2.5 Display of Item to SE Relationships

The printed output pages displaying the item to SE relationships are produced
starting at statement number 750. Preliminary actions include initializing values and
writing heading information. This is followed by a loop through statement 784 which is
traversed for each LRU.

Within this loop is another, through statement 782, which is executed for each
failure mode of each LRU. At the beginning of the inner loop are logical IF statements
which control the writing of page headers and LRU related data. Then, by using the
appropriate entries in the array ITMSEN, an X is placed in array LINE for each SE
required for LRU repair. When the X's are then written out they are printed in a column
under the associated SECODE number. The X's in LINE are then replaced by spaces and
processing is done for an SRU.

SRU processing is similar to LRU processing in that a line of Xs is constructed and
written out to reflect the SE requirements specified in ITMSEN.

After the item to SE relationships table has been written, the arrays SRCE, DEST,
CAP, and FLOW, which were used for temporary storage of SE code numbers, are cleared
to zero. Then, if any SE resource has no item references a message is printed to alert the
user. Finally, subroutine SECMP is called to compute SE quantity requirements and life
cycle costs.

2.6 Network Solution and Sensitivity Analysis

The network solution and sensitivity analysis function is programmed from
statement 2000 to statement 3000.

12

o-:

o°

-................................ l.................

77* -r' i-. V- 97 1 T.~ Z - . W--.~ -r

I1C' -1 '0 o'.I0

cnl C ~ el C .1 ain

0..0

co G CJ 0 C-41 0 A'0 -

- -4

94 4A- 0 % '
(A ' r~ ' r

zz

C" -4

u - r " 0 '4L

,-4 - 0 1

'0 ~ z

000 000 0 0

4 0.

c.2

- 0

"I HO

oA z

) e'

Next the data cards that specify the SE requirements for LRU and SRU repairs. The
cards are read at statement 590 and the data processed by the statements from 350 to
400, 450 to 500, or 550 to)90 for LRU, LRU failure mode, and SRU requirements,
respectively. The processing in each of the three sections is essentially identical. The-put card is matched to the appropriate LRU, LRU failure mode, or SRU data record.
Each SE identifier on the card is matched against the SECODE entries of the SE data
records. For each match a pointer to the SE data record is saved in the next available
element of the array ITMSEN and the appropriate LRU, LRUFM, or SRU record is updated
to point to the new element of ITMSEN. In addition, the number of valid SE code matches
is kept by the variable NSE for validation against the corresponding entry in NSERL,
NSERFM, or NSERS.

Beginning at statement 595 the pareto change factors are read from file 5 and
processed. If there are no pareto change factors, control is passed to statement 600.

Figure 6 illustrates the structural relationships between SE, LRU, LRUFM, and SRU
data records developed during the data input and verification section of the program. The
FRSTFM and LASTFM entries for LRU05 point to rows I and 2 of LRU failure mode data.
Similarly, the failure mode records for LRU09 are in rows 3 through 6. The entries in the
SRUPTR column contain pointers from the LRU failure mode records to the SRU records.
The pointers from SRU records to LRU failure mode records are contained in the column
LRUPTR. SE utilization input data is contained in the array ITMSEN. Each entry of
ITMSEN is a pointer to an SE data record. For LRU05 the entry in NSERL indicates two
SE references and the 2 in SEPTL indicates that the last of these SE pointers is the second
entry of ITMSEN. The NSERL and SEPTL entries for LRU09 specify 8 SE pointers with
the last one the tenth entry in ITMSEN, entries 3 to 10. The zeros in the NSERFM column
indicate that the failure mode has no SE requirements other than those specified in the
LRU record. SRU requirements for SE are specified in ITMSEN and referenced by NSERS
and SEPTS.

2.4 LRU and SRU Cost Computations

Cost computations and some related processing is accomplished by a DO loop from
tatement 600 through statement 690. The loop is executed for each LRU and within it is

a loop through statement 680 which is executed for each LRU failure mode.

At the beginning of the outer loop the subroutine LRUCMP is called to compute
inventory levels and life cycle costs for the LRU. The inner loop is then executed using
the LRU related values in FRSTFM and LASTFM as pointers to the appropriate sequence
of failure mode records.

At the beginning of the inner loop two sections of code are executed which
accomplish an inversion of the LRU and LRU failure mode data in the ITMSEN array. At
the beginning of the first section an arithmetic IF is done for the LRU's value in array
NSERL. A negative value produces an error message indicating that an SE reference card
was not supplied for the LRU; a zero value indicates no SE references for the LRU; and a
positive value indicates the number of LRU SE references contained in ITMSEN.

As the entries in ITMSEN are successively processed the value NXREF is
incremented to point to the next available entry of SEXREF (SE cross reference array)
and NXTITM (next item in list). When the first item reference for an SE is encountered
the SE arrays SEPF and SEPL will both be set to the value NXREF. As additional item
references are processed, the value in SEPL is used to locate the LAST entry in the linked
list, NXTITM at LAST is updated to point to the next reference (NXREF), and an item
pointer is saved in SEXREF at NXREF.

10

L)n

(C31.

%D

-

tun) LAO V)V5 V

This node is then processed (scanned) by examining every arc going out of this node
and every arc going into the node. If the STATE of the node at the other end of an arc is
I (unlabelled) then a label will be assigned to that node and it will become labelled-and-
unscanned (STATE = 2) if:

a. the node is at the end of an outgoing arc and the arc flow is less than its
capacity, or

b. the node is at the end of an incoming arc and the arc flow is greater than zero.

When all outgoing and incoming arcs have been processed the current node is assigned
STATE = 3, labelled and scanned. At this point the STATE of the sink node is checked. If
it is not labelled processing will be transferred to statement 3030 to find the next
labelled-and-unscanned node.

A label on the sink node indicates that a flow augmentation path from the source to
sink exists. This path is traversed in reverse order, from sink to source, by using the
labelling information in the array NPATH. The labelling information is also used when
computing a new flow for each arc in the path.

The two stage process, labelling and then augmenting, is repeated until no
augmentation path can be found. This condition indicates that the maximum flow and the
minimum cut have been found.

The flows in arcs out of the source node are then summed because it represents the
total life cycle repair cost. The total cost for support equipment is also determined by
examining the STATE associated with each depot and base support equipment node.

2.17 Subroutine OUTPUT

OUTPUT is called from MAIN to print the optimal solution results. This includes
support equipment decisions plus LRU and SRU repair level decisions. Decisions are
determined by using the STATE values assigned to nodes during the first stage of the
labelling algorithm in subroutine MAXFLO. An arc of the network will be a member of
the minimum cost cut for the network if the source of the arc is a labelled node and the
destination node for the arc is an unlabelled node (see Flows in Networks, page 18). This
property, combined with the fact that the source node for the network will always be
labelled and that the sink node for the network will always be unlabelled, permits easy
identification of SE and item decisions.

The first part of the routine prints the results for depot and base support equipment.
A depot SE will be part of the minimum cost solution if its network node is unlabelled.
Conversely, a base SE will be part of the minimum cost solution if its network node is
labelled.

This is followed by the loop DO 3600 which is traversed for every LRU failure mode.
For each failure mode the variables NODEL and NODER are used as pointers to the
STATE for the left node (depot) and the right node (base), respectively. The two values in
STATE are tested and a transfer to statement 3460, 3470, or 3480 is executed
corresponding to depot repair, scrap, and base repair. Next, if the failure mode has no
associated SRU a transfer is made to statement 3493, 3500, or 3510 for the proper WRITE
statements. If there is an SRU the STATE of its left and right side nodes are testeJ and a
transfer is made to 3530, 3550, or 3570 for the appropriate depot, scrap, and ba-! WRITE
statements.

23

• ,• , Ii mk ,,, -- mmi-,,lm n................l.h..........."-n.. n"

After the DO 3600 loop the totals for LRU, SRU, and SE costs are \;,,ritten and a
RETURN executed.

2.18 Subroutine UCLSA

UCLSA is called from MAIN to determine the effects of LRU and SRU unit cost
changes. The routine was originally written to determine if decision changes would occur
as the LRU unit cost was varied across a range of values and to display the results of this
investigation. The routine was modified, by adding logical IF statements and SRU cost
computations, to determine and display the effects of SRU cost variations. Arguments to
the routine include an LRU pointer, a failure mode pointer, a zero-one indicator for LRU
versus SRU computations, plus factors specifying the low end and high end of the cost
range to be investigated.

Processing in the routine is essentially the same for LRU and SRU analyses. For an
LRU analysis the low end LRU cost is used to calculate new network arc costs and the
new network is solved for optimum repair level decisions. Next, network arc costs and the
optimum repair decisions are found using the high end LRU cost. Then, if the decisions at
the low end, the middle, and the high end are identical appropriate messages are written
to an output print file. If the sets of repair decisions are not identical then a binary
search across the cost range is conducted to find all points at which repair decision
changes occur. As each change point is found appropriate information is written to an
output print file and also summarized on a temporary disk file for retrieval and printing by
MAIN. The details for this processing are presented in subsequent paragraphs with the
LRU versus SRU differences highlighted.

At the beginning of the routine are initialization statements for certain variables
(e.g., NREC, NDEC, SAFILE, and LCRCMI) and WRITE statements to print the
parameters for the analysis. The initialization and WRITE statements will be somewhat
different for LRU versus SRU analyses. In addition, for an SRU analysis the subroutine
arguments for the SRU cost range to be examined are used to compute a corresponding
LRU cost range. Incorporating this range translation and a modification where costs are
computed permits the SRU analysis to be accomplished with the LRU analysis logic.

Next, at statement 30 the low and high dollar values for the cost range examined are
computed and written to file code 17, for LRU analyses, or file code 18, for SRU analyses.
Then, the loop DO 39 is executed to initialize the values in SADECL, for each LRU failure
mode, and in SADECS, for the corresponding SRUs. Each failure mode and each SRU has
10 values available to it in these arrays for recording decision changes during sensitivity
analysis. The first of these values is initialized to 1, 2, or 3 to indicate that the optimal
decision using the unmodified input factors was depot, scrap, or base, respectively. The
remaining 9 values are initialized to 4 to indicate "no change in decision from the previous
decision point". With this definition for 4 an entry into the arrays only needs to be made
if a decision change actually occurs.

After these preliminary steps the sensitivity analysis investigation starts bv
examining the low end of the cost range. At statement 200 the variables SF and IRETRN
are assigned in preparation for a transfer to statement 1000. At 1000 the LRU unit cost is
modified by multiplying it by SF and subroutine LRUCMP is called to compute new values
for LRU logistics costs. Then, the loop DO I 100 is executed to compute new logistics cost
values for each LRU failure mode and for each associated SRU. Conditional logic is
included in the loop so that the cost of each SRU is modified during an LRU analysis bu:t
the cost of only one SRU is modified during an SRU ana!vsis. .'lso in the loop are

24

%-.

.. , statements to assign the new logistics costs to the appropriate arcs in the network
structure. After the loop a transfer is made back to statement 110 where calls to RESET
and MAXFLO occur. RESET is required because the newly computed logistics costs will
be smaller than those they replace and, therefore, cause some arcs to have flow greater
than capacity. The characteristics of the optimal solution found by MAXFLO (i.e., the
state of each node plus the capacity and flow for each arc) are saved in the arrays
LOSTAT, LOCAP, and LOFLOW by the loops DO 120 and DO 130. Also within these loops
are statements to restore the characteristics of the baseline optimal solution (from the
arrays OPSTAT, SAVCAP, and SAVFLO) and to determine if the low end decisions are
different than the baseline decisions. If there are no decision differences a message is
written out; otherwise, subroutine DECIDE is called to write messages stating the decision
changes. Low end processing is completed by writing the total cost for the low end
decisions and saving appropriate values in DECVLO and DECVHI.

Processing for the high end of the sensitivity cost range is done from statement 200
through 240. Parameters are set and a transfer to statement 1000 is made so that high
end logistics costs can be computed and assigned to the associated network arcs. Upon
return from the cost computation logic the subroutines RESET and MAXFLO are called to
determine the high end optimal solution. High end computations are completed by saving
the characteristics of the solution (in HISTAT, HICAP, and HIFLOW) and restoring the

- characteristics of the baseline solution.

The binary search for decision change points occurs from statement 300 to
statement 400. The search begins with the loop DO 310 which tests for decision changes
in two intervals -- between the low end and the middle, and between the middle and the
high end. One or more change points will exist in an interval only if the decisions at the
end points of the interval are different. Therefore, if the 3 sets of state values (in
LOSTAT, STATE, and HISTAT) are identical there are no decision changes across the
range of investigation. In this case an appropriate message is written and execution
transfers to statement 470.

When decision change points do exist they could be in one interval or in both
intervals. Since only one change point can be located at a time the latter situation is
handled by building a push-down stack of search problems. Whenever it is determined that
two intervals must be searched for change points the characteristics of the higher interval
problem are written to the random access files 13 and 14. The problems on the files are
later retrieved and solved using a last-in first-out criteria (i.e., a LIFO queue). When only
the lower or upper interval contains a change point the width of the interval is compared
to a predefined tolerance value, UCDLTA. If the width is less than UCDLTA a transfer to
statement 400 occurs; otherwise, the interval width is bisected by using an LRU unit cost
midway between the interval end point values. For the new LRU cost, logistics costs are
computed and assigned utilizing the logic following statement 1000; RESET is called at
statement 390; the optimal solution is found by MAXFLO; and a transfer back to
statement 300 restarts the search for a decision change point.

As previously stated, processing commences at statement 400 when the interval
containing decision changes is not wider than the tolerance width value. Processing

*includes writing a message which specifies the item cost values at the interval end points,
saving the end point cost values in DECVLO and DECVHI, calling DECIDE to write the
specific decision changes, and writing the total life cycle repair costs.

25

........ . ..-..

If another problem exists on files 13 and 14 it is retrieved and a transfer to
statement 380 occurs to continue the search for decision change points. When no
additional problems exist messages are written to indicate that no changes exist between
the last change point located and the high end of the sensitivity cost range. Then, the
loop DO 490 is executed to restore the arrays CAP and FLOW from SAVCAP and SAVFLO.

The last section of logic, from statement 510 through 600, writes summary
information from the sensitivity investigation. The section is reached either when all
change points have been found and detailed or when the eleventh change point has been
found. In the latter case the summary information is written for the first ten points, to
clear the arrays for additional data, and then processing transfers back to continue with
the eleventh point. In either case the first summary data record written to SAFILE will
specify the number of change points found (NDEC) and the item cost at the low end of the
decision intervals. An IF test is done to determine if NDEC is 1. This value indicates that
there is only one set of decisions across the entire cost range (no decision change points)
and results in a RETURN back to MAIN. For NDEC greater than one, writes to SAFILE
occur which specify, for each change point, the item cost at the high end of the decision
intervals, the failure mode repair decisions, the SRU repair decisions, the number of
LRU/SRU decision changes, and the number of SE decision changes. Then, if more than
ten change points exist the arrays SADECL and SADECS are reinitialized and processing
resumes at statement 416; otherwise, a RETURN to MAIN occurs.

2.19 Subroutine DECIDE

DECIDE is called from UCLSA and from MTBFSA. Its purpose is to specifically
determine the decision changes identified by the sensitivity analysis routines and
document the changes on an output print file. Both sensitivity rou:ines contain two
CALLs to DECIDE -- the first to document changes from the baseline decisions to the
low end of the sensitivity range, and the second to document each change point located --
within the range of sensitivity investigations.

The two arguments INDI and IND2 are each set to zero or one by the calling routine
to control comparison processing within DECIDE. A value of one for INDI means the
decision changes between the low end and middle of an interval are to be documented,
while a zero means changes between the middle and high end are to be documented. IND2
is one in the first call from UCLSA and MTBFSX to reverse the decision change direction,
that is, a one means document changes from the middle to the low end rather than from
low to middle (or middle to high) as is the case when IND2 is zero.

The routine is composed of three logical sections: one for depot SE changes, one for
base SE changes, and one for LRU failure mode and SRU changes. The first two are short,
straightforward, and essentially identical. The third is significantly longer but is also free
of complexity. Each of the three sections contains dual sets of logic. One set uses the
node state values in arrays LOSTAT and STATE, when INDI is one; while the other set
uses values in STATE and HISTAT, when INDI is zero. Because the logic sets are identical
in other respects the dual nature of each section will be ignored and the remainder of this
description will present the logic for INDI equal to I.

The first section is the DO 30 loop which is traversed for each depot SE.
Corresponding values in LOSTAT and STATE are compared. If the values are equal there

26

* [- I - .* -*-.

. ..: is no decision change for the SE and, therefore, no further processing in the loop. Values
which are different indicate differing SE requirements between the low end and middle
decision solutions. In this case a message describing the change is written, a counter for
the number of SE changes is incremented, and the loop begins for the next depot SE.

The DO 50 loop is used to document the decision changes for base SE. It is logically
identical to the depot SE loop -- it tests for changes using LOSTAT and STATE, writes
messages for the changes, and increments the count of changes.

The logic for LRU failure mode and SRU decision changes is in the DO 260 loop and
is very similar to the logic for SE just described. The biggest difference is that the
decision for an SE is determined from the state value for its single network node, but the
decision for a failure mode or SRU is determined from the state values of its two nodes.
For this reason, IF statements at the beginning of the loop test two LOSTAT values and
then assign the value 1, 2, or 3 (for depot, scrap, or base) to the variable LOLVL. Similar
tests on two STATE values result in a 1, 2, or 3 assignment to the variable MIDLVL. Now,
if LOLVL and MIDLVL are equal there is no decision change for the failure mode; if they
are different there is a change. Further processing in the loop is dependent on the
existence of an SRU associated with the failure mode. If there is no SRU then either a
message is written if there is a failure mode decision change, or processing continues with
the next failure mode if there is no decision change. The existence of an SRU
necessitates checking it for a decision change before proceeding. Logical IF tests using
the SRU node values in LOSTAT and STATE result in the assignment of a 1, 2, or 3 to
LOLVL and to MIDLVL. If an LRU and/or SRU decision change has occurred an
appropriate message is written, a counter for the number of LRU and SRU changes is
incremented, and the loop continues. After all failure modes and SRUs have been
processed the count of item changes is saved in NLSCHG and a RETURN occurs.

2.20 Subroutine MTBFSA

MTBFSA is called from MAIN to determine the effects of changes in the MTBF for
an LRU. The effects could be changes in failure mode repair level decisions, SRU repair
level decisions, and/or changes to SE decisions. Arguments to the routine include a
pointer to an LRU record and factors specifying the low end and high end of the MTBF
range to be investigated. The logic flow and structure is essentially the same as in
UCLSA. The differences exist primarily because UCLSA has dual sensitivity capability,
LRU cost and SRU cost, and because there is an inverse relationship between MTBF and
life cycle cost rather than the direct relationship between item cost and life cycle cost.

Just like UCLSA, the beginning of the routine has initialization statements for
certain variables (e.g., NREC, NDEC, etc.), WRITE statements to document the
subroutine's parameters, and initialization statements for the arrays SADECL and
SADECS.

This is followed by statements to investigate sensitivity in the low end of the MTBF
range. The logic parallels UCLSA in that new costs are computed and assigned by
statements at the end of the routine; the new cost network is solved and its
characteristics saved in LOSTAT, LOCAP, and LOFLOW; and solution differences are
documented by DECIDE if there are any. The only significant difference from UCLSA is a
call to SECMP. This is required because the lower MTBF value results in more item
failures; thus, it could result in a higher SE requirement (e.g., 2 units instead of 1).

27

"" -

. .

Next, the optimal solution for the high end of the MTBF range is found and its
characteristics saved in HISTAT, HICAP, and HIFLOW. Once again, SECMP is called in
case SE requirements have changed as a result of the new MTBF.

Statements from 300 to 500 contain the binary search logic for the decision change
points. The procedure mirrors the corresponding section of UCLSA except that an
additional test for changes in SE quantities is required. A change in quantities is signalled
by a change in life cycle SE costs coupled with no decision changes.

Statement 500 is reached when a decision change point interval has been narrowed
down to no larger than the predefined tolerance value DELTA. The decision changes are
documented by subroutine DECIDE and the next interval to be searched is retrieved from
files 13 and 14. When no additional problems exist to be solved a transfer to 600 occurs so
that a final message can be written and the arrays CAP and FLOW restored.

Finally, the statements after 700 summarize the sensitivity results to file 19 just as
UCLSA writes to files 17 and 18. Then, at 800 parameters are set so that LRU and SRU
costs can be recalculated to reflect the input MTBF value. This is required because the
cost computation routines also compute and save monthly maintenance man-hours which
affect SE quantity requirements and are directly affected by LRU MTBF values.

.2

r28

.

Appendix A: Variables Dictionary

This appendix is primarily an alphabetical listing of FORTRAN variable names used in
the NRLA program. The list contains dimensioning and descriptive information for the
variables assigned to COMMON areas and for other significant variables.

Some program variables are not listed and described here. Some were omitted
because their usage is restricted to only a few successive lines of code and the variable's
function is clear from the context. For example, in the MAIN routine the variable
C2DC2S is used for the sum of C2D and C2S and then used in a WRITE statement to print

the sum. Other variables were omitted because the value and function are implied by the
name. For example, the program uses ZERO for 0., MINUSI for -1, PLUSI for +1., and
IMON, IDAY, IYR as integer values for the current date's month, day, and year.

For each variable in the list three columns of information are provided. The first
column contains the variable name and, if applicable, dimensioning information below it

." within parentheses. The dimensioned size may be an integer constant, like (20) for CARD;
an integer variable, like (MAXNOD) for BACKSP; or a combination of variable and

' constant, like (MAXLFM, 2) for LFMWUC. Where a variable appears as a dimension it
should not be interpreted as "variable dimensioning". The proper interpretation is that the
dimensioned size will vary among different applications but all arrays dimensioned with a
particular variable need to be the same size. To clarify this point, the variable BASESC is
shown with the dimensioning specification "(MAXSRU)". This indicates that BASESC

needs to be dimensioned for the maximum number of SRUs in the program's input data
file. Thus, BASESC may be dimensioned for 20 SRUs in one application but for 40 SRUs in
another. In addition, regardless of the specific dimensioned size for BASESC it needs to

". be the same size as other SRU related arrays (BMMHS, BRLDS, etc).

The second column of information for each variable indicates the labelled COMMON
area containing the variable (COSTF, MSDAT, etc.) or indicates the name of the
subroutine(s) containing the variable if it is not in a COMMON area. Subroutine names are

. easily differentiated from COMMON names because they are indented by one space in the
. column. For some variables the second column value is "N/A" to indicate that the

COMMON and subroutine classification are "not applicable" -- variable names used in
many subroutines but not included in a COMMON area (I, J, K, etc.).

A definition for each variable is given in the third column of information. This
*. column may also describe the function of the variable and will specify, for user input data
.. values, the units associated with the variable (dollars, pounds, etc.) and the source data

record for the value.

p
* -.% . *. . . ~

;.3 m - V) u J

4) u v l

EU~~# m- u-- . - ~ U ~ 0 A
0.0 &-0 E X ~ v c

I~~Eu' *-c~~ 4)U i

CL

4* 5z4 Z) >0 E2 5L
c a- CL a. F- ad - CCv0 0 a. 0 "4W

IO n&r 4 u ~ o u

In og .- 'o C E

E 0. 0. v 0

-0 u
i... 6 >u, . . .

u- UJ.4, S 08 E U
u U V U..0

K0 L0&-L.".;,

0; <> CL

u~~~ u U

0 0

S. E> ce

c >E w.. C4

c 0 ECO v- L- 0
&' 00 - E-E-

0 E ~ CEE

"@ L. JU- Ci

z .- to -0 C

0 0 0 o) a)

> a3
'A U' V rd~ .8 -- V n

4)~ ~ -
4-r

0 . 31)

E E 4

..- E

- . -4 W " .4. E.'I... c,* * * * C. E w* " w) t

~> o4,
00E. u E E uEu E. 0E E

E >L. 0 0. .0
-u U, .- 4, .

V. 7j 0L L- wC

o 4 ~ CL . 4, m . > m. > ~
m UC u 0 a"

ig 8 . ,4
U

MU 0 '-
4,. >, 4

00 .- 0 0, c 40 a , 0
CL- 4". - I

V)~ *0 -U

a4- ~ ~ 0-0aa(
V, 0, o rd 0 0 4,-

o V v L - 5L v IL -

o Li. m~ M >i 0 D 0L
un Q- V. L. M M- L

U -VU V 47 v m U

E3: 4)2 E(

...................................

-.*Z'' * . .

-~)U

4L .c vC4)C
bC '~ < C 4)

D W
4) * u 0 C

4 0 4)
C0 ro Z-0

0 > - ~4-. C >

wo C o rQ > C4 - U0
04 >rj .C 0> 0' - r% 4 C UL

UCC m- cc)E
0 ~) c4 * 4) C: Ih~ >0 ..

U44 .E c u 0 0-

0)> ro 0 ~~-v) ~ V)
- 'u 00 C U 4 C 0C

'a. 04) L. *.. -u LLJ .- oc
.C 4 - V) 0 4) C *~

roo U .L UM4)1 mo4M

O' %n 0 'V--.E20' 4
"a-4 '4- 0 C C CC 0

>u. U> Wr 0V)
'Z)) -V

0~4) 4)'.9 4-N :
E OL -) ~ h o U C EE C v v0 U. 0 0'. 4 , r- M

V; ". ! d C4 - '

0 C "h C)- 0 C. 0) 4

0 0':

.: 0 LL 0 Z
05 E 0. > -

o od L- C: LU LUL
E > o- 1-- if) I 0f

>) 0 2-IV o, LU U 0

S0~ 41 4 - (Du

E~ 0Q - E- L- 0m - '4= <J(>
IVU UO U 0 m

*~~e 9-) :3 L--- - - - - -; . - -

c4 0 V)) (
:3 ,. nj

0 0) U.: CC U ,4 0 u
0 0 a t .-

-C 4- 04) ei
4

v4).L C
V DC: 0 (0-0 0 E .cw 0

0 V U I

4) L..
4

0C c -. (
_ ~0C 4 C 0 C c~.0 C 0 c -C 0E4-0

0 ~~ V~ IV
4) O Z .Q.

(U 4)4 00~)04

0 CL V) g -C*~.~E

> 00- 04 O, w n0
Z 0 V) C0 -0 'D c C: V) 4)C

o 4J -
a V~ 0~ Ct 0E 0fl).je -C41)

L))-4 C 0) -

=0 4- m11 0 0-V 0 1 E

c) E
cu -X0 0 1, V)U) to - 1"

o c0 0 -C 0 0 - L0 0 E 0 0. 0
<w - 0

0~~ ~ 0 '' .

0 0 0 01 0 0 0) 0

0 C:

z 4) 0

c. >1 0). 4) (
0 o3 v E~ L.

LM 4)> 0 0 oo "V*

0 o-4 4)0 -a)

tA 0 ~ ~ 4) 0 E

V m vE ce 4) 0 0 0 :)~ " 2-AV

~~4).0 0r ' >~ :7 0.U-~~440

0 -V)~j Jce 4) m .93 Li~
0 0-J E~ -' -14 ~ L

E)U '; 4)) C.

.9 o v 4)> 00 4) (V 0-4C--.(

0 0E Ln L- I

- L- ~E4 0

*vC. -0 , U,0

- CEO- *' E-.- -i'- .o ~ ~
OO0U C.-J 0 0 - " 0 z0 0 : C

C 0-Y c 4)
-~c4 0.0u,

6.6~r 0 0o z

V -

0 H .0 0' Q0 olI
o (U 0

7 C -w-CL

ox oc X=0 00) C

0 2 a-

35 D0 0 u

t) -0 Q) (

-C) :D.
-

.2-

M' E

'iD 0"-J-
0 0 cy4 ~a

0-

0 0- 0C
4u44 W Vv rdC 04 E w

0) 0 r

n I-. (U

>- >*- >*C * d

0 c0

- c -I cj- - I

H LJJ 0 -. ix

~~ cr;,. un~U ~ '~ u-

U- -LL, L LU- U. U- LI.

*j
*j *.4*.-j

..........

4

E >. U o.o
0. 0~0

tJ~~- C i .j n.' r

~(U

- ~ r C. ~n~.
S, E) >. >< 0)

0~ - E L7

E 0- 0 I 0

u rr v 0' ~ O(1 L.4 r- r .

O0, >9QJ >.)a.
2 ~ ~ 4 0 ~) .

eauE~~~Z C'-. D cL.to

z: V- -. :3 -

E 0 IV E r UU
V/ U LV LU

0 o0

0,~~ . (mA r) Uj
it Li- a v ,

m %- :) - Vr
o 0 4 0 4)L.5- - 0 :) f

.. . . . 7 * "-.. -U. CL 0 '0 'y*

a 4) 4

i 0

~~4 to~ ~

~~~~ 4 ) E 6 '-)4

m~ D 0 > 4 ~ C Z

0 0 v L .

o 0 Z)
0 ~ .0 4v 0 04-' 

4 ~~
.0 oz C) "a 0- -. ~ 0 )

0) 0 U 0) 0 -

~ N ~ .. 0 0 0 O0 )%
0 2 N m 4, u 0C 0 - O ~ ~
41 oo o

W-, - 4- 0LU .

5. 0 o~r 0.- O u,

~~~v'~~M E - 2 .E T ~ * 4

*0 c 0 ~ -
E~ 4) un V) r- 1

z I

<4:4:O4: < < < <8
Vl) Ln-

0 0 0 0 -j 4 0 U. 0.. < <

LLI

-e

49

Z E

. A4 L.- 0 . fo

0 v 0 t P

-t SO~ - U

U, %M L 0

W- L.b t- " -:

0~
4,-

u
JV

0E 0 Uc 0 0 oo0,

cc) EC E.~- >~ ~CL
0- -

Lu - v o v) -0 Q

C Z .- & - . U

to "a m) .- - .

E- r- S- 0

0 Ln0A4

00 Q 0 0

>, 0

0 H -0-0 EE 00 0
CL UU 4)(v

o 0 r 0 0 0- C 0x t'- C

V) -

>. E

4~~ i E LL.-
-L qjU

0 V 0 LU 0 4

&~4 Lc W q) 4. 0 ~
:1E.4 .cu c V)2 0).

-I 0 UJ 4 c (

00 4- .- z
C u 4) a 4- V

4) 4) C0 . i- V

U0 0 M44 >1 00 > V)

C: U- 4LL VQ)4~.~

L-~ ; E~ -a CJ'- ~u ~ 0
'u LL u- E 4u 01 4 .c o

cUU Co r -o (

cu 0 n0 r.

0_1- 0- I- c- 0. I- 1 L.-

0. o E 0 0o 0U. 0. ; 0 W .0

LL-3 , D -a U

> z, -3 V) LU E X >UX-

*4 0 A 0 0z~ E

4, & W - .! r 1 >

C.......................
.................................

u) *E 4'E
4) U00 C C

E EC
00 r-- U 11 -0)'

U~4 co o 77
C k- >L E J 0 4

E A .~. 2c 4

V) 0' 4)) 0L

0- cr. v0

rzy -0 OU 0- r

U L. I.. wV) mj'

C0 j V'~ to-. Q4- "0 4U

2: C.-m t %).- -s

!3 to z1 0 4V z3 :Dk U. %
bo~ 0o)

>w :3 c C V Du

Vn V' -. 6

oU 1! ...

*'.~ Uj '-' cc V)- -o c- - -

***-*c** - ~ r r ~ . - -

4) ~ 4)) s

0 0

4'0 L-t E4 . > E 4-
o ~ 4) lu C tv '

.C 0 0 "0~U4 -0W W 00
V - .; a. 4 4

0 =. 0U
4 - m 'o C

:) .- L. L..- Z

C 4)4 CU -. W 0 %
-a . -Y 4_ -C 'd %4 ~ v m

4).. +.. a.. *e*4U41 V >'
"~ u) 0 C 0)4 L V) 4)

V 41 04),

(nD Cu E 4)00

-1 ..~
4) (U)4 >.~ 'u- U (uU "

4)) <- zE

I- 0 q- 0 -aJ -

Osi r uJ 0 r0 0

0 0 0

0 V JU "0-
c~~0 0 -U

m' Ei E 00 0 0 .v a.- 4

-. ,. *; -. * .- * *. -).m *..
"a 4 s- .- U-L . -;

:
E - c 0'U

4. 4 ... C

J C) 4) 4).C-.

.j ~ > U, r

UZ,

0 o' 0 , V0U.J.O

4A~' to LW

0 D- -- +I.

> 0 v. >
01 0 V) 0 o o 0u

> -u 'o; jt ii- I. /L

A -Z cc T- 0 E 5

4 -

............................. z t *.

E E

*5 a a~f .- 3 U.
4. >L

U 0 U w. 2 M V
C- V -

c . 0' 0

0) u4 0 >,~

iv -

00 E > v ~
C~~ ~~ >) i~

~~- j'o 10CL ~
>4 0 0ga

Eu~~0 0 IL C u~

x 0 . 0:w V
ot w- t. L. oU, U

.0 -

*u -8 - ro

w >

45SE0

4-1. L. I.0)' ;E.. 0 0 - o

>1 0 ivL 0

.2 0V . V .2 .2 0at 0> 0~ 0 0

4- 4l. >1 0, t'> wI 0 0) U>

E 0 4- in &. '0 ;) X
OgU 0 WO v v >

0 e4- 0.
4

0 >) "

E 4)- U5 4): v U)O 4))

-J- .-J Z1 W

0 -*4. a . - o A&
0 ~~~ 0 0M

cs 0 V)C0.
*U ~ ~ ~ ~ 0 EU+.EU-

0C 0 E

-e v)~ 00 2T09t.2 v . 4

u E

CE~ 0 In IVtoEn
-' *En 0'E O' E.C EC -

oE o 0U- -.. g

A0 R. 41 at nt

C C.

10 4 Z 10 5 wv'ov

%" 0 3 1 .m .- 5 L
IV u o. >E >-0>LVL.

EU C u > zi o..M0) 0 0~~
vJ 0 4' 0-n 0- 0- a.0- a

C 41 41

u. *

to . C* **

44-

v- 4 0 0~

vs V0 to 0~0' 4

In In ~ 0 ' *0 .-.o 0.c

-0 * 4 a

0 0 0 v r-J~

'0 -1 C. .
0 0 *4 0-J n~4

0 .8 .00
0o t I-~ - '0 t0

a4 0 v ,u C 00

8' o' u0 E -

0 E> -0
41

L
0 v o

o0 >

E 'o " 0 .0 o

00 0 Z.. LIu J0

ZE" E~~
o~ M

V0 u. >LI-

610 kV. U. U

0

U. U. U

V.. 'p
'p...

0 4)
4' +-j 4-' 4'4

ul b) 4o 4!2 .

0' L.L >

.C* v

00 c EC
4) 4u u 0 V

~ 00 0' 0
fU 4)

.- V to0 *V4 v~

0U. EU 4) 04 0 C

4' oc c) cWo 0 u. 4

4n41 0'. ;0;

L. I- I I I -S. I +, 0 c. .- 4

2' 04 0) ,4) 04) .-.. -) 0 0

M~' . ~ * *4 ft 0 4n 8) "a " M.

> r- w -

o~b o m '

0 0.

.0 0 c -J W...Z Q zj -

L. C L. 000 000 0-

E... -
...

Oak L ... 1
3 'iF. 5-

UU

U, ~ 0

"210

00-

U, u E

o. - 0 r > > An

4.- E 4 EE

.--- C * 4 ,, ,

L.4. L.4 0- &

D - N -v o)
Q C

UIU V Ifl 4,""

.00 - . 0 c :3 "04 4

. c w lu > v

o 0 2:, E -,f

-. 0

w0. -4 0 to to'*

1.,. , °

0~~~ <

-. C -

0
7 -JJ

38. '-

L " 0.. >
00

,.-,. .* 1.-

b: C: E: o

.. U)- - ' ,,,4).
C~~,G0 uU0

Q ~ 0.00 0) ~ ~ ~ 0m , W= . -) . 4

0 W4 u '0U t

-' qJ4,. , , *,.',. ,
LE Z

o4 vu~ 4) 0 0 2 ~4
u

4~ CO4 '0fl tofl 0. 00 . 4"

0. C

W 0

-. tA . Ma c E

0 ~ >n 0>.W 000 04 o 4

Uu 0

0 0 ,Z Z Z = -

.- a r. ,

0 0)1
- V to r- > Z 0 E

G~ 0 < t; 0L
>0

0 0 1 0> 0 W u l
8-r -,- ,- o0 Z

":::::"37

'-'" 0 " Z" "" "" o " 0 0

U

U Q 4 u U- 4
:31 'A4)4

: 44) ?t -3

CL + 7Z V E~ 6 r 2L

.4- L. L.4 co 0 4,00V--W w'i -0r U c
-U .- U ~

t~ o tvI uu4EuU g
0 1) - > ~ * 'V 0 In v: 0j V)u

L.4 Un in) u), 4)
C ~ L 4-L tvl 0 iUUL 0. 4

CU V) c. n V

U~ . u' E
E~1 0 UV-' M.-.

0lG tv tv tv 4) i~4

fA ~~ ~ 0) 0+)o 01

z)c L.L 0 c4

D U o u 0% uu

>1 0d 0. 0 ~ u"
v U << 0. 4 ~

'A0-

----- ---- ---- ----- ---- ---- ----- - -. -C-

-~~~~ -

0)0
0E r

4) 4) 4, E)

.r 00 4 0 W M. E'U
w o. .to UJ EU

0 .c -C.* IV C
0 EU

L0 ow CC -0 0

~9+. -,j U C- o
>C4 -C- .

U~U4 0. o
U- 40 0 4j- "0 ~ EU

9.4-~ 4.- - c .- 4 .- .
'0 0U 0i 0. 4; EU bo-U) X ~ 0j) ~ 1 c

o I.- 4 - C-

4),

0u "u Z 0 v0 U OW 0 0 . 0 0 t

ILI 0v EU eva ez 9

a~ to v V) & au v~ 0-w L
E. u4 9. EU, to c v' 41'

>LV ILV > = -&, & ZL. z -- a)' a- '0 0 >.c
' U to 0' cm: m :1 m 4- V)m CV

CL CL CL a. CL

cEU4 u V

0' auJ ULt Jt,

o UI U to X. x
-U < u u 0 < 0 U -e 0LL.

V) V)

52)a .~ J' f

w V .u~--...

000

Z) U)
00

41 . 0 4)

V)4 0z 04) 4

00 .4. 0~ 0 .C14
0C o~ 0J

-4) % 0c L 0

u4 .c 0 L. -O 4)

m)- tv 4, U
c--~~ o- >1 0)- ~ . 4 4 C 40o a :D 0 -L

C) 4) C> 0) 0> 4) V) 0
04) ~ ~ ~ ~ ~ 0 0L 410~) C- ~ -

v~) 0 0 4U) 04 4 L

0 i 00- 0- 0. 0 ~ 0- o~ 04 .- W

>.r'/~ >0~ E 4) >4L.)(J -

c 4.144 c 1 '4 U) r_~ >4 0. c4 >) 4- L

004 Z."- 0 0 CO 0 :>00

0* 1- 0 +,U a~ 4-4 4-0

o 4 4 41 > z0 0 m 4 0 oL
to +- - U Xo .

W4 41 0- C/U 0 . - 0

41 4

%- . 0

4 "

b- c

U) 0c 41 E~ S. m
c > U -0L/" o"

,6,,, 4) .) .X 4-

i q. tv) °to- .a - .?, ,-.-E ~ L

. v - S . x # %

C C 410 m ' a > a. < U<

.0 2! 61
0

>Eh 0 Z~. O.

E El 2 Z. +. .9

• . 0-0" 0. 0 0 S. . Li- "

- .--5L.

to 0 CZ 0 4

0 *z < .

CE'
-0 ca 0 < ,

Cc Ccu

0- 3 CL

CE Ln CE

54

m(

". P . ' # ; -" .° o".. .° o" " " " " " "°
°
" "" " = ." ,, " " " " " " " ? - P -" " - "E . .

41 n
UEY0 0. - - 4 9

4)- V) 0
UU)) UO U

4

'U~ > &Mu .c -0 - UJ~
U) 0 ~U) U w -

aU 0) 'U Z9 -0.

0 V 0 0c 03 0 0 vi, w

E) U
4

"0 U U U.. Dc 0
) m ,.c -Y C. C4 .

'U c 4) 0 .
0 J t -. -0 0~' E)'--. C 0 L- -0 E

0t V)4 'U 'U) t'U) 'U- ,)" a= 0. ~ c0

C ~ 0C - 0- c v it 0'U g)0 U4 O4)IaC

'Uv 'q4)' '- - U 'U U U -0 1
>.c4E rN- m v0 >Ij -c >>E 41~ O

0'. 0 U 0U O) 04) 0 :30
04) 'U.- 0 L.W 4.

'U.Y 41 Cg 'U Ul 'U0'.~.

ZY c- tw u- H ..
L- OH .

'V 0 0- 00- 0- 00V
0 00 1
V) L- ;.t tu 1 0

o E

;;jI L- IA IA (; Z Z - +.,WU)')< u.< 1; '4x 0) IV Uv (V z 4

~~~ UJ ~ <
v~ ~ U,;a

IA~ ~~~~~~ IA' A A I A AI

'_c5) V

m~. L E .



UTU

-C 0- - 4,

E c

. ~ .! £- .b. ~ ~ -V V

bg 4, 4m 4,-k,
U 0- v mu m O'

0 E ,

o 0 0L. 4

*r- > .

C4O 0 L.

to..cz to~-

> >
0 0O 0

IL U- Uv C, U

t0 u a
A- - E- C-r - - A

o4 E



i-.i .0

to 0. 44j

E v. 0 0 o .4
4- zu r- w4- &

o o to cd tv

ocE - g COU 0.00 0O
c:~~ to2 0 (O U

wU L. -- 4 u--

~~~~~ '-2 U c' flCO L' ,
to. L4-' tv U4 C U

L. W
U CC 0 L. 0 ~ O*

L0 to LL '-00ja

r-V 4- 04 C V

o r- EL v 0

'U C L
+- tI L-

0 " 0 ., ,0r i0
U') 0 00 0*-0 ,

U v 0- I I- 0)); W

*1 4' 5:i

* **

-C 0- C

00
0 .1 0.
.c 0. E C L.

0. m) u 0 CIO ~ 0 m

4v 0
> . 0 0 t. 4L

- c 'J. r-- w ..

CZ *. 0

>tk 4.. -amo 0>0 m
0 :2uj* -0-CL

0 0

*~~~ 0 0 u~I.0

6i.r.O 0 -

c0 tC 0)) 0)
0I 6n,. 4.. 4 0 h+ 0 0

o4 L- 0 0

eo 0u 4)-

o 4)*. r.B u

0 c; w 0 W-0 0
0 -0 0 o mUC. U. i

oV Zii m to 0 "aE
.o w -;a * d 'Ift

00 </ z <

>0 Z). 0U 0UU. , U. U. U.

) LU -4 'n V

>58 'A, x MX

Z < V7* <...<..=..............

4)- u 00 t0

:D. 4) (

0) V))-- V 4)0# 0

o0 t 0 Lr~- r

C:V V) 4) 0 co -0V)

v) 0 0 0.z z 0- 4) U

- ~ 0 0

-C -4- rn 0-

>o 0 0 0)4 V >0 o CL

rn4) 0 0

o) 4 E ai c V

0 > 0 >

-0) C S

ru u< E

0 .0

rn - tn. V) V .) V

.1* 59

-~~~~V ..
V)-.

X -- U-V
< V.

.C. < <

APPENDIX B. NRLA Program Array Dimensions

Introduction. The purpose of this Appendix is to provide detailed information about
the dimensioned sizes of arrays in the program. The program user needs this information
so that he can determine if the default array sizes are adequate for his data file or if
some tailoring of array sizes is necessary.

The arrays of the program can be grouped according to the type of data they hold.
One such classification is shown in Table B.1 with the number of arrays of each type and
the default size for each array. As the Table indicates, there are 16 arrays for support
equipment data and they can hold information for up to 20 support equipment resources.
Similarly, there are 16 arrays for LRU data which are dimensioned for up to 25 different
LRUs. The adequacy of the default sizes can be determined for some classifications by
simply counting input data records (e.g., support equipment and LRUs). For other
classifications, network nodes and network arcs, a simple formula is used to determine the
array size requirements.

Where the default sizes are insufficient, program changes are required. These
changes must be made in the main routine of the program and in every subroutine (except
SORT). Although the program changes are straightforward and relatively simple, they
must be done accurately. Errors committed while redimensioning arrays could cause
program aborts or, even worse, could cause computational errors which could remain
undetected.

The remaining paragraphs of this Appendix give details about the dimensioning
statements for the array classes listed in Table B.1. A figure is provided for each
classification showing the program's dimensioning statements with their default sizes and
with increased sizes. The Appendix concludes with a discussion of data file changes
required as a function of redimensioning arrays in the program.

Support Equipment. Arrays for support equipment data are contained in the labelled
common areas SEIN and SECOMP as shown in Figure B.la. The default size for these
arrays is 20. For data files containing more than 20 SE resources, these 16 arrays must be
increased in size to accommodate the input data. In addition, the value for MAXSE must
be changed so that it is equal to the new dimensioned size for the arrays. Figure B.lb
shows the arrays dimensioned for up to 35 SE resources and MAXSE changed accordingly.

LRUs. As LRU factors are read, from type '31' data records, they are stored in the
arrays shown in Figure B.2a. These 16 arrays need to be dimensioned at least as large as
the number of LRU data records in the input file. Figure B.2b shows the arrays changed
to allow up to 40 LRU data records and the value for MAXLRU changed to specify the
new maximum sizes.

LRU Failure Modes. The arrays for LRU failure mode input data, from type '41'
data records, and the arrays for computed values are defined in the labelled COMMON
areas LFMDAT and FMCOMP, respectively. These 27 arrays are shown in Figure B.3a
with their default dimensions. Increased array sizes allowing up to 90 failure modes are
shown in Figure B.3b with the appropriate change to MAXLFM.
NOTE: There are four other arrays for LRU failure mode related data which must be
dimensioned the same as the arrays of Figure B.3. Three of these are listed with Item to
Arc Pointers and the other with Sensitivity Analysis arrays.

60

TABLE B.l. NRLA Program Array Classifications

Array Classification No. of Arrays Default Size

Support Equipment 16 20
LRUs 16 25
LRU Failure Modes 27 40
SRUs 33 40
Item-to-Arc Pointers 8 40
SE Cross Reference 3 210
Network Nodes 6 200
Network Arcs 7 400
Sensitivity Analysis 13 mixture

SRUs. The 33 arrays defined for SRU input values and for SRU computed values are
shown in Figure B.4a with their default sizes. Figure 3.4b shows the arrays redimensioned
to accommodate up to 80 SRU data records, type '51' records, in the input file.
NOTE: There are six other arrays for SRU related data which need to be dimensioned the
same as the arrays of Figure B.4. Five of these are listed with Item to Arc Pointers and
the other with Sensitivity Analysis arrays.

Item to Arc Pointers. The 8 array in the COMMON area ARCPTR provide storage
space for pointers from item data to the corresponding network arc data. The arrays
LDARC, LSARC, and LBARC contain the LRU failure mode data to network arc pointers.
These 3 arrays need to be dimensioned the same as the other failure mode related arrays.
The 5 remaining arrays contain pointers from SRU data to the corresponding network arc
data values. Figure B.5a shows the arrays with their default sizes and Figure B.5b shows
them modified to be consistert with MAXFLM and MAXSRU of Figure B.3 and B.4,
respectively.

SE Cross Reference. The 3 arrays of the labelled COMMON area SEXDAT contain the
item-to-SE requirements data and that data inverted into SE-to-item relationships.

As SE requirements data is read from the type '321, '42', and '52' data records, it is saved
sequentially in the array ITMSEN. Consequently, the size requirement for this array can
be determined by counting the SE Resource Numbers specified on the '32', '42', and '52'
records. The dimensioned size for ITMSEN must be assigned as the value for the variable
MAXITM.

The arrays SEXREF and NXTITM are used for the SE-to-item relationships. In general,
these arrays need to be larger than ITMSEN. This occurs because an SE Resource Number
from a type '32' card (LRU requirements) is stored once in ITMSEN, but it requires a
separate entry in SEXREF and NXTITM for every failure mode of the LRU. Thus, if a '32'
card has 4 SE Resource Numbers, it will use 4 entries in ITMSEN. Then, if the
corresponding LRU has 10 failure modes, it will need 40 entries of SEXREF and ITMSEN.
Similarly, if the LRU has 20 failure modes, it will need 80 entries of SEXREF and
NXTITM. Therefore, determining the array size requirements for SEXREF and NXTITM is
a two part computation.

61

...-......-........-..-....... ?-'--:- ::-::- i'-.'.':i'.,'-:' ?-:--:--:

G10,-1 C TEMPORARY DATA INPUT AREAS
01032 COMMON /TEMPIN/ICC,CARD,WUC,C1 ,C2,Cl2,C2PREV,SEN,SERN,IJAME,
U1033 & CHiARi,NIJ,Nl4,INOUN,IDAY, IYR, IPAGE
01034i INTEGER CARD(20),WUC(2),NAME(2),ChiARS(15)
01C35 INTEGER C1,C2,C12,C2PHEV,SEN,SERN(j6)

01056 C TYPE & DIMENSION STATEMENTS FOR SUPPORT EQUIPMENT (SE) DATA
01057 C SUPPORT EwUlPMENT INPUT VALUES
0105b COMNUN /SEIN/XSE,LINE,CADB,TECHDP ,TRNGW ,TRNGC,CODb,FDb,
U1059 & OPHHS,NSLCl,bSYHRS
01060 INTEGER X6E(20,.5),LINE(20)
01o61i DINENSION CADB(20),CODb(20)
010b2 DIMENSION FDO(20),OPhRSC2O),NSECI(20),bSYHRS(20)
0106) C COhPUTED SE VALUES
U)100L4 COMMON /SLECOMIP/SECODE,SEPF,SEPL,REQMT,USEHiRS,SEURSECOST,
OLUo , & SEARCP,NUFISEh,NDSE,NbSE
01066 INTEGERI ' ECODE(20),SEPF(20),SEPL(2O),REQMT(20),SEARCP(2O)
0100)C'! DIMENS10N USEhHS(20),SEUR(20),SECOST(20)

V; C, DATA MAXE/20/

Fi~u-e 1.1a. Support equipment arrays with default sizes.

001C TEMPORARY DATA INPUT AREAS
010: 2 COMMON /TEMIPIN/ICC,CAID,WUC,C1 ,C2,Cl2,C2PREV,SEN,SEN,NAME,
u0cO3j CHiARS ,N13,N14, IMON, 1DAY, IYR, IPAGE

bl ,_ 4 INTEGER CARD(20),WUC(2),NAMIE(2),CHARS(15)
u010-- INTEGER C1,C2,C12,C2PREV,SEN,SERN(51)

0105b C TYPE & DIMENSION STATEMENTS FOR SUPPORT EQUIPMENT (SE) DATA
01051 CSUPPORT EQUIPMENT INPUT VALUES

01 05oCOMXON /SELIN/XSE,LINE,CADb,TECHDP,TRNGW,TRNGC,CODb,FDb,
OI'J5 & OPHRS,NSECI,bSYHRS
010U60 INTEGER XSE(35,3),LINE(35)
01001i DIMENSION CADB(35) ,CODb(35)

DIMENSIO FDj,,PR(5),NSECI(35),bSYHRS(35)

010bj C COMPUTED SE VALUES
o1IC64 COhtuN /SECOMP/SECODE,SEPF,SEPL,REQMT,UEIIRS,SEUR,SECOST,

1 ,tj & SEARCP, dMSLR,NDSE,N3SE
U10t)'i INTEGER SECODE(35),SEPF(35),SEPL(35),REQMT(35),SEARCP(35)

I t 7 INEN.SiON USEIIRS(35),SEUR(.j5),S5ECOST(35)
DATA MAX-SL/-i5/

Fibu-e L. lb. Suppo-t equipmen a--ays with increased sizes.

i~,ure b.1.)uppo-t equipment a--ays.

01340 C ARRAYS FOR LRU DATA (DATA FOR ALL FAILURE MODES
01350 C LRU DATA INPUT VALUES
01-36U COMMON /LRUDAT/NLRU,LWUC,UCL,MTbF, RIP,UF,QPA,WOTL,LRCTC,DRCTO,
OIJ70 & bRCT,LRUNAM,NSERL,SEPTL,F-RSTFM,LASTFM'
01.3b0 G
u1-)9 INTEGER LWUC(25,2),LRUNAM(25,3)
01400 REAL MTbF
U1410 INTEGER FRSTFM(25),LASTFM'(25),SLPTL,(25)
01420 DIMENSION UCL(25,MTbF(25),RlP(2),UF(5),PA(25),WOTL(25)
014_)U DIMENSION DRCTC(25),DRCTU(25),bRCT(25),NSERL(25),TFAILP(25)
01440 DATA MAXLRU/25/

Fi6u-e 6~.2a. LRU arrays with default sizes.

01340 C ARRAYS FUR LRU DATA (DATA FUR ALL FAILURE MODES
Glj5U C LRU DATA INPUT VALUES
01360 COMMON /LRUDAT/NLRU,LWUC,UCL,M;TBF,RIP,UF,QPA,WGTL,DHCTCDRCTO,
01. 70 & bRCT,LRUNAM,NSERL,SEPTL,FRSTFM,L.ASTFM
C 1 AU C
61390 INTEGER LWUC(40,2),LkUNAN(40,3)
01L400 REAL N'Tbi:
01410 INTEGER FRSITF!:(4U),LASTFM(40),SEPTL(40)
01420 DIMENSION UCL(40),M!TBF(40),RIP(JJO),UF(40),QPA(40),WGTL(40)
014_)U DIMENSION DRCTC(40),DRCTO(40),BRCT(40),NSERL(40),TFAILP(40)
01440 DATA MAXLRU/40/

Fi6u-e b.2b. LRU ar-ays with increased sizes.

E'i~u-e L.2 LRU arays.

63

G0154(1 C
01550 C ARRAYS FUR LRU FAILURE MGDE DATA
011"60 c FAILURE MODE DATA INPUT VALUES
01570 COUMMON /LFMIDAT/LFMiS,LFMWUC,FM,'NUM,FAILP,UCPPFMl. TPPFMi,NPPAFM,
0156c) & F1M1SEiIR, hAbFM , DtMM1iIFM, b11M[HFfN, TDPLFM ,TRWLFt ,ITRCLFVM, NTULFh,

0,o & 1.1BLFM!,NSERFM1,LFMUD,LFMUS,LFIMOb,SEP'F'M,NFMS,SRUPTR,OPDECL
01600 INTEGER LFKWUC(40,2),OPbECL('40)
01610 DIMENSION FAILP(140),UCPPFM(140),WTPPFM(4U),NPPAFM(40),F'~SEHR(140)
01620 DIMENSION NABFM(40) ,DMMiF~i.(140) ,BMMHFM('40) ,TDPLFM(40)
01630 DIMENSION THWLFM(40),TRCLFI(140),NTDLFM(14U),NTBLFM(L40)
016140 DIMENSION NSERFM(40),LFMUD(40),LFMOS(40),LFMOD(140)
011650 INTEGER 6RUPTH(J40),SEPTFM(40),FMNUM(40)
01L)60 DATA 1'AXLFM/14O/
01670 C QUANTITIES COMPUTED BY SUBROUTINE FMCMP
01660 COMiMON/FMCOMP/DEPOLC,SCRPLC,BASELC,TLCDF,FSEUfiD,FSEUHMS
01090c D)IMENSION DEPOLC(40),SCRPLC(140),BASELC(140),FSEUHID(40),FSEUHlb(40)

Fi~u'e B..)a. LRU failu-e mode a--ays with default sizes.

01040 C
015560 C AhRAYS FOR LRU FAILURE MODE DATA
61560 C FAILURE MODE DATA INPUT VALUES
0157(0 GOMMON /LFMDAT/LFMS,LFMWUC,FMNUM,FAILP,UCPPFM,WTPPFM,NPPAFM,
U15BO & FMSEHR,NABFM,DMMfIFM,BMMHFM,TDPLFM,TRWLFM,TRCLFM,NTDLFM,
61590 & NTBLFM,NSERFM,LFMOD,LFMOS,LFM(.i,SEPTL M,,NFMS,SRUPTR,OPDECL
01600 INTE6ER LFMWUC(90,2),OPDECL(90)
.20160 DIMENSION FAILP(90),UCPPFM(90),WTPPFM(90),NPPAFM(90),FMSEIR(90)
u1b06 DIMENSION NAbFM(90),DMMHiFM(9O) ,BMMH-FM(90) ,TDPLFMC9O)
u10.ji DIMENSIGN T'RWLFMi(90),TRCLFM(90),NTDLFM(90),NTBLFM(90)
01b40 DIMEN61GN tSERFM(90),LFMOD(90),LFMOS(90),LFMOb(90)
Olu5U INTEGER SHUPTR(90),SEPTFW(90),FMNUM(90)
c1000 DATA MAXLFrh/90/
01070 c QUANTITIES COMPUTED bY SUBROUTINE FMCMP
01660 COMM0)N/FMC0MP/DEPOLC,SCRPLC,bASELC,TLCDF,FSEUHiD,FSEUHib

01090DINENSlufN DEPOLC(90),SCRPLC(90),bASELC(90),FSEUHD(90),FSEUl~b(90)

Fi6u-e b.3b. LHU failure mode a--ays with inc-eased sizes.

Fi~u-e b., LRU failu-'e mode arrays.

.........................

U 1710 C
- ~01720 C ARRAYS FOR 6RU DATA

017130 C SRU DATA INPUT VALUES
017140 COMMON /SRUDAT/SFMS,SWUC,SRUNAM,UCS,UCPPS,WGTS,WTPPS,SDRCTC,
01750 & SSEHR,SDRCTO,SL3RCT,NPPAS,NABS,DMMHS,BMMHS,TDPS,TRWS,
01760 &TRCS,NJTDS,NTbS,NSERS,SOD,SOS,SOb,SEPTS,NSRUS,LRUPTR,OPDECS
01770 INTEGER SWUC(40,2) ,SRUNAM(40,2)

* 01780 INTEGER OPDECS('40)
01790 INTEGER SFMS,SOD(L40),SOS(140),SOB(LIO),SEPTS(40)
01500 DIMENSION UCS(40),UCPPS(40),W4GTS(40),WTPPS(40),SDRCTC(40)

* 01610 DIMENSION SDRCTO(40),SbRCT(40),NPPAS(JO),NABS(40),SSEHR(40)
01820 DIMENSION DNMfkS(4U),BMMHS(J4O),TDPS(4O),TRWS(40),TRCSC4O)
01830 DIMF.;SION NTDS(140),NTBS(40),NSERS(40),LRUPTR(40)

* 018140 DATA MAXSRU/140/
01650 C QUANTITIES COMPUTED BY SUbROUTINE SRUCMP
01860 COMMON /SCOMP/DEPOSC,SCRPSC,bASESC,BRLDS,BRLSS,SbRCTP,SBRCTL,

*01870 & SSLUHD,SSEUiB
01660 DIMENSION DEPOSC(140),SCRPSC(40),bASESC(140),BRLDS(140),bRLSS(40)
01890 DIMENSION S6EUHD(40),SSEUIB(40)

Fi~u~e L.14a. SRU ar-ay with default sizes.

01710 C
-01720 C ARRAYS FOR SRU DATA
*01730 C SRU DATA INPUT VALUES
-017140 COMMON /SRUDAT/SFMS,SWUC,SRUNAM,UCS,UCPPS,WGTS,WTPPS,SDRCTC,

6 17150 & SSE~iR,SDRCTOj,SBRCT,NPPAS,NABS,DMMHS,BMMiS,TDPS,TRWS,
01760 & TRCS,NT'iDS,NTbS,NSERS,SOD;,SOS,SOB,SEPTS,NSRUS,LUPTI,OPDECS5
01770 INTEGER SWUC(60,2),SRUNAM(8O,2)

*01780 INTEGER OPDECS(80)
01790 INTEGER SFMS,SOD(80),SOS(80),S0b(80),SEPTS(bO)

*01800 DIMENSION UCS(8O),UCPPS(80),WGTS(80),WITPPS(80),S DRCTC(80)
01810 DIMENSION SDRCTO(80) ,SBRCT(80) ,NPPAS(8O) ,NABS(80) ,SSE~iR(80)
01820 DIMENSION DM~ihS(80),BMMHS(80),TDPS(80),TRWS(5O),TRCS(8U)
01630 DIMENSION NTDS(80),NTBS(80),NSERS(80),LRUPTR(80)
016140 DATA MAXShU/bO/

*olbSO C QUANTITIES COMPUTED BY SUBROUTINE SRUCMP
*01860 COMMON /SCOMP/DEPOSC,SCRPSC,bASESC,bRLDS,BRLSS,SbRCTP,SBRCTL,
*01b70 &SSEU11D,SSEU11b

01680 DIMENSION DEPOSC(80),SCRPSC(bO),BASESC(80),B3RLDS(80),B3RLSS(bO)
01590 DIMENSION SSEUfJD(60),SSEUHb(80)

Figu"e B.L4b. SHU array with increased sizes.

* Figure b.14. 6RU a--ays.

65

U L 2, 1, CUAICO /ARCPTh/LDARC,L~oAhC;,Lf,-LAhC,ScSsARc,s5LARC,
* 4,2%0 SbSARC,SbDARC

U222L IIbTEGE LDAhC(L40) ,L!SAkC(LO) ,LbANC(L40)
023 INTEGER SDARC(40),SSARC(40),SbARC(4O),SBSARC(4O),SBLARC(40)

Figure b.5a. Item to a'-c poinite- arrays with default sizes.

*02190 C
0CLOO COMMON /ARCPTR/LDARC,LSARC,LDARC,SDARC,SSARC,SbARC,
U2210 & SbSARC,SBDARC
02e2c IN4TEGER LDARC(9O),LSARC(90),LbARC(90)

* 022"G INTEGER SDARC(80),SSARCC8O),SbARC(bO),SBSARC(bO),SBDANc(8o)

Fibur-e b.5b. Item to arc poiniter arrays with increased sizes.

F16u-e b.5. Item to arc poin~ter arrays.

0151C C
U1920 L ARRAYS FOR SE CROSS REFERENCE
01930 COMMON /SEXDAT/SEXREF,NXTITM,ITMSEN
01,'40 It1TEGE~h SEXREF(210),NXTITM(210),ITMSEN(210)

* 01956 DATA MAXHEF,MAX1TM/210,21I/

Fi~u-e B.6a. SL cross referenice arrays with default sizes.

0,19 10 L

019 0 C ARhAYS FOR SE CROSS REFERENCE
L 01,:Cj COMM01, /SEXDAT/SEXREF',NXTITIh,ITM/SEhi
C1940 INTEGER SEXREF(500),NXTITM'(500),ITMSEN(250)

01950 ATA MAXkLF,MAXITM/500,250/

Fibu'e b.6b. SE cross reference arrays witth increased sizes.

*Fi~,u' L.6. SE cross reference a-rays.

66

The first part uses each type '32' card separately. The number of SE Resource
Numbers on the card is multiplied by the number of failure modes identified for the
corresponding LRU. The second part of the computation is summing these individual
products, plus the number of SE Resource Numbers on type '42' cards, plus the number of
SE Resource Numbers on type '52' cards. This sum is the number of SE-to-item
relationships.

Figure B.6a shows the SE cross reference arrays with their default dimensions.
Changing the dimensions to allow up to 250 entries on '32', '42', and '52' data records and
to allow up to 500 SE-to-item relationships is shown in Figure B.6b. Note that MAXREF is
set to 500 to correspond to the dimensions for SEXREF and NXTITM and that MAXITM is
set to 250 to match the dimension for ITMSEN.

NETWORK NODES. The six arrays for network node information are shown in
Figure B.7a with their default size of 200. The size requirement for these arrays is
computed using the formula:

2+(No. of SE) +2* (No. of LRU failure modes) +2* (No. of SRUs)

For a data file with 33 SE resource data cards, 85 LRU failure mode data cards, and
75 SRU data cards, the computation would be:

2+(33) +2*(85) +2*(75) = 355

Figure B.7b shows redimensioning to this size and changing the value of MAXNOD to equal
the new size. This computed value, 355, provides precisely the amount of space required
and, therefore, has no allowance for additional SE, failure modes, or SRUs which might
subsequently be identified. Consequently, it should be dimensioned slightly larger.

An alternate method for determining the array sizes is to use the maximum array
sizes for SE, LRU failure modes, and SRUs rather than the actual, or anticipated, number
in a data file. Thus, the above formula becomes:

2 +(MAXSE) + 2*(MAXFLM) +2*(MAXSRU)

Using values from Figures B.lb, B.3b, and B.4b, the result is:

2+(305) +2*(90) +2*(80) =377

NOTE: See the Sensitivity Analysis paragraph for 2 additional arrays of network node
data which must be changed when MAXNOD changes.

NETWORK ARCS. Arrays for network arc data values are located in the labelled
COMMON area ARCDAT as shown in Figure B.ga with their default dimensions. The size
requirement for these arrays is computed using the formula:

(No. of SE) + 3* (No. of LRU failure modes) + 6* (No. of SRUs) + (No. of SE-to-item
relationships)

The last term is determined as described previously for the SEXREF and NXTITM arrays.
Similar to the network node computation, an alternate form for the formula using
maximum array sizes is:

(MAXSE) + 3* (MAXLFM) + 6* (MAXSRU) + (MAXREF)
67

-- T -4

01970 C
01980 C VECTORS FOR NETWORK SOLUTION DATA

01990 COMMON /NODDAT/NNODES,NPATH,DLTAFL,STATE,OPSTAT,FWDSP, ACKSP
02000 COMMON /NODPTR/LDSE,LDLRULDSRU,LbLRU,LSRU,LbSE,LNODE

02010 C NODE LABELING DATA
02020 INTEGER NPATH(200),DLTAFL(200),STATE(200)

' 02030 INTEGER OPSTAT(200)
02040 C NODE FORWARD & BACKWARD SCAN POINTERS

* 02050 INTEGER FWDSP(200),BACKSP(200)

02060 C DATA MAXNOD/200/

Figu-e b.7a. Network node arrays with default sizes.

01970 C
019b0 C VECTORS FOR NETWORK SOLUTION DATA
01990 COMMON /NODDAT/NNODES,NPATHDLTAFLSTATE,OPSTAT,FWDSP,BACKSP

02000 COMMON /NODPTR/LDSE,LDLRU,LDSRU,LBLRU,LBSRU,LBSE,LNODE
02010 C NODE LABELING DATA
02020 INTEGER NPATH(355),DLTAFL(355),STATE(355)
02030 INTEGER OPSTAT(355)

02040 C NODE FORWARD & BACKWARD SCAN POINTERS
02050 INTEGER FWDSP(355),BACKSP(355)
02060 C DATA MAXNOD/355/

Figure b.7b. Netwo-k node a-rays with increased sizes.

Fizu-e b.7. Network node arrays.

68

ooA

0207U C ARC DATA
02080 COMMON /ARCDAT/NARCS,JUMbO,SRCL,DEST,CAP,FLOW,BKPTR,SAVCAP,SAVFLO
02090 INTEGER SRCE(400),DEST(40O),CAP(400),FLOW(402).bKPTR(400)
02100 INTEGER SAVCAP(L400),SAVFLO(402)
02110 DATA MAXvb/400/

Figure 8.8a. Network arc arrays with default sizes.

02070 C ARC DATA
02080 COMMON /ARCDAT/NARCS,JUMEO,SRCE,DEST,CAP,FLOW,bKPTR,SAVCAP,SAVFLO
02090 INTEGER SRCE(1270),DEST(1270),CAP(1270),FLOW(1272),BKPTR(1270)

*02100 INTEGER SAVCAP(1270),SAVFLO(1272)
02110 DATA MAXARC/1270/

Figure ib.8b. Network arc arrays with increased sizes.

Figure b.d. Network ace arrays.

02120 COMHON/SENSIT/INDSAT,LOSTAT,HISTAT,LOCAP,IIICAP,LOFLOW,hIFLOW,
U 2150 & NDEC,SADECL,SADECS,DECVLO,DECVHI,NLSCHG,NSECHG,LOCAT
02140 INTEGER LGoCAT(15)
C 2150 INTEGER LOSTAT(200),HISTAT(20U)
02160 INTEGER LOCAP(400),HICAP(1400),LOFLOW(400),kiIFLOW(400)
02170 INTEGER SADECL(40,10),SADECS(40,10)
02180 DIMENSION DECVLO(10),DECVHII(10),NLSCHG(10),NSECIG(10)

A.Figure B.9a. Sensitivity analysis arrays with default sizes.

* 02120 COMMON/SENSIT/INDSAT,LOSTAT,HISTAT,LOCAP,fIICAP,LOFLOWHIFLOW,
*021.'0 & NDEC,SADECL,SADECS,DECVLO,DECVHI,NLSCHG,NSECHG,LOCAT

02140 INTEGER LOCAT(15)
02150 INTEGER LOSTAT(355),HISTAT(355)
02160 INTEGER LOCAP(1270) ,HICAP(1270) ,LOFLOW(1270),HIFLOW(1270)
02170 INTEGER SADECLC9O,10),SADECS(80,10)
02180 DIMENSION DECVLO(10),DECVHI(10),NLSCHG(10),NSECHG(10)

Figure B.9b. Sensitivity analysis arrays with increased sizes.

Figure IXY9. Sensitivity analysis arrays.

69

L v _ -. _ . ". .I ,,

Using values from the nodes computations and using 500 for both SE-to-item
relationships and MAXREF these formulas give:

(33)+3*(85)+6*(75)+(500) = 1238

(35)+3*(90)+6*(80)+(500) = 1285

Figure B.8b shows the arc arrays dimensioned to hold data for up to 1270 network
arcs. As shown, the value of MAXARC must be set equal to the dimensioned size. Also,
it is mandatory that the arrays FLOW and SAVFLO be dimensioned for 2 values larger
than MAXARC. (The program uses the values 'MAXARC+I' and 'MAXARC+2' as
subscripts for these arrays.)

SENSITIVITY ANALYSIS. Arrays in the labelled COMMON area SENSIT are used for
temporary storage of values by the program's sensitivity analysis subroutines. These
arrays are shown Figure B.9a with their default sizes.

Two of these arrays, LOSTAT and HISTAT, must be dimensioned for the maximum
number of nodes in the network (MAXNOD), that is, for the same size as the arrays in
Figure B.7. The arrays LOCAP, HICAP, LOFLOW, and HIFLOW must be dimensioned for
the maximum number of network arcs (MAXARC); see Figure B.8. The arrays SADECL
and SADECS hold up to 10 values per LRU failure mode and SRU, respectively.
Consequently, the first dimension value for these arrays needs to match MAXLFM and
MAXSRU, respectively. Figure B.9b shows the results of changing the default values to be
consistent with Figures B.3, B.4, B.7, and B.8. (Note that the arrays LOCAT, DECVLO,
DECVHI, NLSCHG, and NSECHG do not need to be redimensioned. This is also true for
the arrays CARD, WUC, NAME, CHARS, and SERN in the labelled COMMON area
TEMPIN.)

SUMMARY OF DIMENSIONING REQUIREMENTS. As indicated in previous
paragraphs, the arrays of the program can be listed in sets such that all arrays in a group
must be dimensioned consistently. This grouping is a minor reorganization from the one in
Table B.1 and is shown in Table B.2.

The fourth column is labelled MAXLRU to indicate that it is an alphabetical listing
of the arrays which must be dimensioned for the maximum number of LRUs in the user's
data file. The column contains the same 16 array names shown in Figure B.2.

Similarly, the seventh column lists the arrays for support equipment data. Each of
these must be dimensioned for the maximum number of SE resources in the user's data
file.

The third column is labelled MAXLFM to indicate that each array must be
dimensioned for the maximum number of LRU Failure Modes in the user's data file. The
column contains the 26 arrays of Figure B.3, plus 3 arrays from Figure B.5, and I array
from Figure B.9

All arrays for SRU data are shown in the last column - 32 arrays from Figure B.4,
plus 5 arrays from Figure B.5, and I from Figure B.9. The columns labelled MAXARC and
MAXNOD contain the network arc related arrays and the network node related arrays,
respectively.

The two remaining columns, labelled MAXITM and MAXREF, show the arrays for the
SE cross reference data.

70

V) V) UO uJ

(JUu coI
V) V) UuuW WV -I-) <u =) V

V)01 LLV

*L c c 0 V)1:

4)) > U

E <

E

41-

V)~

D < 04E E.L

7'z

x)V a < 0

0~~~~~ < WW*.<*.a.*.[I UU

IMPLICATIONS FOR DATA FILES. Changes to array sizes may require changes to
some file definition control cards and/or file definition statements in the program.
Changing the dimensions for LRU failure mode arrays requires a change for file code 15,
and changes to SRU array dimensions requires a change for file code 16. Similarly,
changes to network node arrays affect the file definition for file code 13, and changes to
network arc arrays affect file code 14. Figure B.10 shows the IBM compatible file
definition statements, in the main routine of the program, appropriate for default sized
arrays and those definition statements modified to be consistent with Figures B.3, B.4,
B.7, and B.8.

72

6. '. -

0 3 u C ltm- FlhS'Il PARAMETER AFTER I(I IS> IhE LIMEN61UNEL SIZE FOR --

SC IBM- LRU FAILURE MLDES, FC-15
L24L C lt Shu'S ,FC-16

C2 'G DEFINE FILE 15-(40,24,U,NI5)
C23tc C DEFINE FILE 16(40,2b,U,h16)
UL .)Ll C I V FORTRAN. V > STATEMENTS:
0236'-2 C VS RECL IS 24 *4 FOR FC-15
U "., L6. C VS RECL 15) 2L *U FOR FC-16
023U4 OPEN (UNIT=15,STATUS='UNKNO)WN' ,ACCESS='0IRECT' ,RECL='9b,

G2 6 & FORN='UNtFORMATTED')
C236t OPEN (UNIT=16,S2'ATUS:'UN KNOW ' ,ACCESS='D1RECT' ,RECL=104,
()236 & FORM='UNFORMATTLD')

1055,L C IBM FILL DEFINITIONS FOR RANDOM FILES 13 & 14 - SECOND PARAM.
10600 c lbt: WITHIN '(' IS MAXNUD+3 & MAXARC, AFTER FIRST RUN
10610 C Ibm CHANGE TC THE LOWER NUMBERS NNODES.3 & hARCS
1062L1 C
I bt L L, L EFINE FILE 1.(50, Oj),U,h1'))
10640 C DEFINE FILE 14(50,4OG,U,N14)
10L 'L L mM) FCRTRAN VS STATEMENTS:
1C651 C VL RECL FOR FC-13 I.; (MAXNOD + 3) * 4
lC652 C VL RECL FOR FC-14 IS t-iXARC * 4
1 65-) C VS AFTER FIRST RUN, USE NNODES+3 AND 14ARCS IN FORMULAS

L,6L 4 OPEN (UNlIT:13,STATUS ='SCRATCII',ACCESS='DIRECT',RECL~bl2,
& F6HM='UtJFGRMATTED')

106 tlOPEN (UNIT=11J,STATUS='SCRATCII' ,ACCESS='DIRECT',
%U57 RLCL=16Q0,FORM='UNFORMATTED')

Fi~u'e L.10a. File aefi'nition statements fo'r default sizes.

0 2 lu C SEI RECORD SIZE FOR RANDOM FILES 15 & 16
O2e-22 C ibFM FIRST PARAMETER AFTER I(' IS THE DIMENSIONED SIZE FOR -

02 C IL16r LRU FAILURE MODES, FC-15
02--40 C 1b~f SRU'S , FC-16
L2350 C DEFINE FILE 15(90,24,U,1-15)
0 560 C DEFINE FILE I6(o,6,U,N16)
02361 C IbN FORTRAh VS STATEMENTS:
C2,6 C VS RECL IS 24 * 4 FOR FC-15
02-)LD C VS RECL IS 26 # 4 FOR FC-16
02364 OPEN (UNIT:15,STATUS' 'UNKNOWN' ,ACCESS='DIRECT' ,RECL:96,

02JO5 FORM='UNFORMATTLD')
02)66C OPEN (UNIT=16,STATU6='UNKNOWN' ,ACGESS:'DIRECI' ,RECL=104,
02367 & FURM='UNFOJRMATTED')

1DU39G C Ibl- FILE DEFINITIONS' FOR.i RANDOM FILES 13 & 14 -- SECOND PAhAM.
lCbOG C lBM WITHIN I(' IS MAXNOD+3 & MAXARO, AFTER FIRST RUN
106 10 C ibl, CHANGE TU ThE LOAERH NUNAbERS NNUDLS.3 & NAkCS
1062C C
100jO- C DEFINE FILE 1j(50,358,U,N13) s
10640 C DEFINE FILE 14(50,1270,U,N14)
1U650 C IBM FORTRAN VS STATEMENTS:
VIOjbI C VS RECL FOR FC-13 IS (MAXNOD + 3 4
10052 C VS" RECL FORh FC-14 IS MAXARC * 4

1065.3 C VS1 AFTER FIRST RUN, USE NNODES+3 AND NARCS IN FORMULAS
10654 OPEN (UNIT~l3,STATUS-='SCRATCH',ACCESS='DIRECT',RECL=1432,
10055 & FCRM='UNFORNATTED')

* 10656 OPEN (UN1T=14,STATUS='SCRATCH' ,ACCESS:'DIRECT',
* 10657 & RLCL=5080,FORM:'UNFORMATTED')

Figure B.1Ob. File definition statements for increaaed sizes.

Fliiu'e L.10. File definition statements.

APPENDIX C. Additional Dimensioning Requirements

Introduction. This appendix was prepared to supplement Appendix B, NRLA
Program Array Dimensions.

Programs Updated with Changes #5. If your copy of the NRLA program has
been updated with NRLA Changes #5, February 1984, an additional dimen-
sioning requirement exists.

The array SERN must be dimensioned to MAXSE + 16. In the default
case, the SE arrays are dimensioned to MAXSE = 20. Thus, the default
size for SERN is 36.

If the SE arrays were increased to 35 as in fig B.1, page 62, the
dimensioned size for SERN must be increased to 51 as shown below.

SERN with default size:

1090 INTEGER C1,C2,C12,C2PREV,SEN,SERN(36)

SERN with increased size to match MAXSE = 35:

1090 INTEGER C1,C2,C12,C2PREV,SEN,SERN(51)

As with the other dimensioning changes, this change must be made 14
times; once in the main routine, once in Block Data, and once in every
subroutine except SORT.

Programs Updated with Changes #6. If your copy of the NRLA program has
been updated with NRLA Changes #6, May 1984, the dimensioning process
has been greatly simplified. To redimension, only the PARAMETER
statements need to be modified. These PARAMETER statements are located
in the main routine, in BLOCK DATA, and in every subroutine except SORT.

The following example shows redimensioning the program from the
default dimensions to accomodate 35 SE, 40 LRUs, 90 LRU failure modes,

80 SRUs, a cross-reference size of 500, 355 nodes, and 1270 arcs. (See

Appendix B for how to determine array sizes required.)

PARAMETER statements with default values:

1035C FOLLOWING ARE THE PARAMETER STATEMENTS
1036C TO ADJUST DIMENSIONING REQUIREMENTS SIMPLY CHANGE
1037C THESE VALUES IN ALL SUBROUTINES
1038C
1039 PARAMETER (MAXLRU=25,MAXFM=40,MAXSRU=40)
1040 PARAMETER (MAXSE=20,MAXREF=210,MAXITM=210)
1041 PARAMETER (MAXNOD=200,MAXARC=400,MARCP2=402)
1042 PARAMETER (MAXSEP=36)
1043C

PARAMETER statements with increased array sizes:

1035C FOLLOWING ARE THE PARAMETER STATEMENTS

74

: , '. .. ,L , . : . .:. .. " . . . ,. . ..

1036C TO ADJUST DIMENSIONING REQUIREMENTS SIMPLY CHANGE
1037C THESE VALUES IN ALL SUBROUTINES
1038C
1039 PARAMETER (MAXLRU=80,MAXFM=90,MAXSRU=40)
1040 PARAMETER (MAXSE=35,MAXREF=500,MAXITM=500)
1041 PARAMETER (MAYNOD=355,MAXARC=1270,MARCP2=1272)
1042 PARAMETER (MAXSEP=51)
1043C

Dimensioning NRLA Without Use of PARAMETER Statements. If your FORTRAN
does not support PARAMETER statements, the following procedure should be
followed to dimension NRLA.

1. Following the guidelines in Appendix B of the NRLA Programmer's

Guide, determine the array sizes needed to fulfill your program
requirements.

2. Delete or comment out all the PARAMETER statements.

3. Make the appropriate changes to the program arrays. Using
global changes, change all occurrences of the specified string to the
numbers computed in Step 1 as follows:

Change all to the maximum
occurrences of number of

(MAXLRU LRUs
(MAXFM Failure modes
(MAXSRU SRUs
(MAXSE Support Equipment (SE)
(MAXSEP MAXSE + 16
(MAXITM SE specified on "32, 42, or 52" cards
(MAXREF SE to item relationships
(MAXNOD Network nodes
(MAXARC Network arcs
(MARCP2 MAXARC + 2

NOTE: Changing all occurrences of the string without the "(" in front
of it, will result in some changes being made that should have remained
unchanged. For example, if all occurrences of "MAXLRU" instead of
"(MAXLRU" were changed to "40", the line "IF (NLRU.LE.MAXLRU) GO TO 320"
would have been changed to "IF (NLRU.LE.40) GO TO 320". As long as you
never redimensioned the model, this extra change would be fine. However,
if you do need to redimension the model, this line could be easily
overlooked and could cause errors.

4. To make statements such as "IF (NLRU.LE.MAXLRU) GO TO 320"
executable, DATA statements must be inserted in the program to give
these variables values. For example, if you had dimensioned NRLA to have
40 LRUs, 90 failure modes, 80 SRUs, 35 SE, 500 SE specified on "32, 42,
or 52" cards, 500 SE to item relationships, 355 nodes, and 1270 arcs,
the following statements must be inserted in each subroutine:

75

,- ' -' -, "--.--- "'"- ,,x. . .,"-"-'- -" '. :- .,.. -. -'.?''-. -..-.--..-...--..................-...........

DATA MAXLRU,MAXFM,MAXSRU/140,90,80/
DATA MAXSE,MAXSEP,MAXITM,MAXREF/35,51 ,500,500/
DATA MAXNOD,MAXARC,MARCP2/355,1270,1272/

76

FILMED

10-85

DTIC

