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INTRODUCTION

LA

Computer modeling of the optical properties of particulate materials is a

valuable technique that is useful in research concerning atmospheric aerosols

either natural or man-made (smoke screens). It is also important in develop-

ment of camouflage paints or coatings and has uses in the description of

the optical and thermal properties of materials which are important in such

areas as insulation, solar collection, remote sensing and related topics.

Such computer simulations have been seriously hampered by lack of the optical

constants (the real and imaginary parts of the complex refractive index), ,

particularly in the infrared spectral region, for many materials that may

prove to be of technical significance.

A considerable body of recent research has gone into the development of

methods for extracting the optical constants of solids1'2'3  At the time

of the inception of this work the status of the problem was that isotropic

materials such as amorphous solids and cubic crystals were well described

by a complex refractive index which varies with the frequency of the

radiation. That refractive index could be obtained by well known techniques-. "

involving the measurement of the reflectance spectrum of such materials

either at two angles4 two polarizations, 5 or a combination of transmittance

and reflectance6 . It would normally be thought that in order to obtain the
'.

values of two quantities such as n, the real and k, the imaginary part of

the complex refractive index, m at any frequency two measurements would be

needed as just discussed. However, use of a single measurement (at each

frequency) has been employed with considerable success in recent years (i.e.

7
using classical dispersion theory) . In brief, by invoking an assumed

spectral line shape (the Lorentz shape) one can make a single measurement

AL Arthur D. Little, Inc. .1 i::::'



of reflectance or of transmittance over a considerable spectral band and
L-A

Fit the data to a set of dispersion parameters (Lorentz line parameters)

either using a reflection or transmission method.

Another method has had much usage over the years, i.e., Kramers Kronig 8'9

analysis. This method involves a relationship between n and k, but requires

that the spectrum be measured over all frequencies or that an adequate -i

estimate be made of the high and low frequency values. These values at wave-

:ergths or frequencies inaccessible to measurement must be known in order

that the values within the spectral range of interest be not distorted. This

is not true of the classical dispersion parameter method, as it has been

shown I0 that regardless of the values outside the range of interest, if the

-eflection bands are well fit within a given spectral range, the optical

constants obtained are appropriate for that range.

Another advantage of the classical dispersion theory approach to extraction

of optical constants is the convenience for computations of storing the

information in a small file of 3N + 1 parameters where N is the required

number of oscillators. Such tables of e the dielectric constant at high

of the independent oscillators are very small relative to the multitude of r,

values of n and k required to make computations at a large number of spectral

frequencies.

The optical constants are calculated as needed at any frequency by the use

N
of the Lorentz formula m : + k 2

k= I + k -
k k'

where E is the complex dielectric constant. Tvnicallv, snrnew',-t less than

90 lines, occasionally as Few as 1 or 2 can he used to renresent the entire ;,

spectrum thrnunhout the infrared renion.

/L Arthur D. Little, Inc.



It has been shown that in cases where the absorption coefficient is large

the reflection method works quite well 2'11 and in cases where the absorption

coefficient is small compared to the refractive index (organics) a trans-

mission method using a Brewster angle of incidence is appropriate 12 .

The optical constants so derived have been used together with our theoretical

methods to predict or simulate the spectra of particulate materials 13 , lunar

soils 14, paints12 and aerosols 15.

Extensions of these methods to uniaxial symmetry crystals have been carried

7
out' and in practice turn out to be straightforward. Such crystals are

treated as if they were, in fact, composed of two independent materials; K-

one corresponding to the ordinary ray, one corresponding to the extraordinary

ray. These separate refractive indices are used to make suitable calculations

of cross sections for the materials involved and then combined in a 2 to

16, 171 ratio (E± c :E l!c) assuming that the particles are randomly

distributed in orientation. c refers to the crystallographic high symmetry

axis. This technique has proven to result in simulated spectra very closely

approximating the measured spectra. The natural extension of this method

to biaxial crystals is obvious for those of the orthorhombic system. Using ____

a polarizer and appropriate crystal orientations one may extract three sets

of optical constants I and when theoretical computations for powders or

aerosols are made these are used in ratio of 1 to I to 1 for (Ell a,

Ei b and E 1c ) again assuming no preferred orientation.

3
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L_.

The present report details how the methods for obtaining the optical constants

have been extended to the low symmetry monoclinic and triclinic crystal

systems. We were aided in developing our methodology by finding two papers ije

dealing with the monoclinic problem18'19. These papers suggested a method of

carrying out a dispersion theory analysis for monoclinic crystals using ..

measurements obtained from the a-c crystallographic plane. We studied the work S

of these authors and combined their approach with the approach that we have

already taken with respect to the simpler crystal systems . The results of

this work applied to gypsum were published in Ref. 20. In that paper we not

only derived the optical constants for gypsum, but showed that these optical

constants were appropriate for simulating the emittance spectra of gypsum

powder using our previously developed theory. We also used the parameters

developed by the Russians18'19'21 for spodumene and showed that, as with

gypsum the optical constants are indeed suitable for modeling the emittance

of powders. Further monoclinic work has recently been submitted for publica-

tion22 concerning the mineral orthoclase.

The most difficult problem, that of triclinic crystals., was attacked using

the insights gained by the study of the monoclinic problem. The theoretical

paper concerning the method of carrying out the analysis was, in fact, the

firt3ne ubishd 2
first one published 2 during the work on this contract. A reduction of that

method to practice was later published using Chalcanthite (CuSO4 5 H20). 24

Thus the body of our work on this contract has been described in four publica-

tions.

* 4D l

4
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However, some of the details have not yet been published. The following

section will delineate the unpublished work. That work includes study of the

monoclinic substance alabaster, which is polycrystalline gypsum. It is

intended as an example of the usefulness of carrying out classical dispersion
analysis of materials for which sufficiently large single crystals are not -;

available. We had previously carried out such analysis for quartzite but

needed to show that the same type of analysis could be carried out for the

low symmetry crystal systems. ?"

In addition, we show a comparison of the measured experimental emittance of .

chancanthite powder to the predicted spectrum using the optical constants of

LA
that triclinic crystal. This was not included in the paper on chalcanthite

owing to the simplicity of the spectrum, which we felt would not contribute

materially to the paper.

Another biaxial crystal powder, orthorhombic enstatite was measured and its

spectrum simulated using optical constants previously obtained11.

Finally, the triclinic problem as discussed in Reference 27 proved quite

difficult to implement in such a way that the convergence was entirely satis-

factory. While the optical constants obtained proved useful and sensible we

believe that the convergence could yet be improved. We therefore did not

previously describe the mathematics of the computer program in detail, but

feel that it should be presented here, if only to give readers a chance to

improve on our algorithms.

5.
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II. Numerical Method for Triclinic Crystals

A. Preface

In the description of the numerical methods used to fit the theoretical spectra to the observed
spectra, it is assumed that the reader is conversant with references 2 and 23. In the present
work we follow the scheme outlined in the latter paper with certain exceptions, the principal
change being that we use normalized eigenvectors in place of the eigenvectors (a1 , b1 ),

(a2 , b2 ) defined by Equations (43) through (46) in reference 23. We also use numerical
subscripts 1,2,3 to designate x, y, z axes, respectively.

B. Dielectric Tensor of Triclinic Crystals

1. Discussion of Eigenvalue Problem

In order to apply our usual method to find the Lorentz line parameters we must calculate
the derivatives of Jr, ,1j2 + 1r, 2 12 and hence r, , and r1 2 with respect to all the

parameters. As an instructive preliminary, however, we shall study the unusual eigenvalue

problem.

exj=pjj = 1,2 (1)

which plays a central role in the derivation of the reflectance of triclinic crystals. In equation
(1) we have set

e 1 1  6 1 2  6 1 3

t (2)

1 2 e22 6 2 3  ,the dielectric tensor

E613 e2 3 e 3 3

I

xj X , the augmented eigenvector (3)

= , the eigenvector (4)2 )
and pj is the eigenvalue, which may be found by solution of the quadratic equation

AL Arthur D. Little, Inc.



6_ pj 61 613L

612 e2 2 - pj E23  = 0 (5)

6e3 23  633

We normalize the eigenvector x. so that

+ 2 1 (6)

Let a, = 612 623 - e13 (22 - Pj) (7)

61 2 e1 3 -623 (e , -pj) (8)

C. = (611- Pj) (622 - Pj) - 62

a.
Then - (10)

X) 0 11)

X33 (a? +b) (2
! c (12)

(a? + b3) i
Kj

On account of the symmetry of e, the vectors 5 & are orthogonal. We take the sign

p .

''6

7
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I 
of the second eigenvector so that

~X1 =x22 , x12 = (13),(14)

This choice of sign convention is arbitrary, but it is imperative to stick to one convention.

Ours makes the determinant

Xl I Xl 2

= 1 (15)

X2 1 X2 2

instead of -1.

In terms of the components of the normalized eigenvectors we find the amplitude reflectances

to be

12 2
1 1  2

2 + 1 (16)

r1 I X1.

+ + q2

II
where p I 2 [Refq.)>OJ (18)

S.. Before we leave the eigenvector problem, we calculate derivatives of the eigenvalues and ~
augmented eigenvector x, with respect to the elements of e in anticipation of our later

need for them.

5..

8
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To start, take the differential of Eq. (1)

edx + dex =dp + pd" (19)

The subscript j has been omitted, but remains understood. Multiply by T (the superscript T

stands for "transpose")

Tedx + Tdex =dpT + p Td" (20)

Note T = 1 and (T+d T) (+d) I so

T -0 (21)

Thus we have

Tedx + Tdex =dp (22)

Since x= + (0 (23)
X3

it follows that

'= ex - e 0 (24)
\x/

or 623 (25)

T T6T3T
Therefore Tedx = dxe = pdx - dx 3  X (26)

" But dxT " 0 (27)

. so Tedx = -x 3 (e1 3 dx, + e, 3dx. + e3 3 dx-3 ) (28)

Because the third element of " is zero we see that

e1 3x 1 + e,.1,. + e3 3x3  0 (29)

tt:"
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and, therefore, e, 3 dxl + e 2 3 dx 2 + e 3 3 dx 3 = - de,3 - x2 de2 3 - x3 de 3 3  (30)

so Tedx = XiX3de13 + x2x 3 de 2 3 +x3 de 3 3  (31)

Substitute this result into Eq. (22) to find

dp= Tdex + xxdel 3 + x2 x 3 de 2 3 + x2de 3 3  (32)

Now all we have to do is to let one dea, be non-zero at a time to find the partial

derivative of p with respect to the element of the dielectric tensor ea. The results may

be summarized very simply.

apj a 2 Opj _ 
-

- L 2x .x j (a 0) (33)

act'

or even more succinctly

ap.
aeo (2 - 4) xaj x (34)

U",..

where 5ap is the Kronecker symbol (unity when a= 3, zero otherwise)

We still must calculate the derivatives of x, I, x2, and x 31 with respect to the elements ea.

We cannot solve Eq. (19) for dxj 1, dx_ ,, dx 3 1 because the matrix of the coefficients of these

differentials is singular [Eq. (5) 1 ,but Eq. (21) supplies an independent condition. Since

, and , are orthogonal, it follows that dx 1 , and dx,. are proportional to x , and x, 2,

respectively. In fact we may write

dx11 =ActxXl de, dx, 1 = A x,,de, dx3 1 =(Apx3 2 +Bap)decp (35)

We also find, when we assume only one deo* . 0, that we can write

de x = u, deap (36)

u 3

10
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with u.= xo1  for a=3

U01= x,1 'ug=Xai fora g#

the otherwise undefined components of u being zero.

Now substitute Equations (35) and (36) into Equation (19) and divide by deo. In

expanded form we see that

61 62 13\ P, 0 0X12 /
612 622 623- 0 P, 0 , 2 +

13 623 e33/ \(0 0 ) ( X3 2 (
Fi

= aP._.I x21 - U2 (37)
(E 0 U3

U Since e x2 = P2 2 ,the first two rows of (37) are seen to yield the two equations for

Ao and Bo

(p2 -pI)x 1 2 Ao+el3 BO=Xt 1  -ul
4..-' a1

(38)

(P2 PI) x22 Acep+e23 -BO-x2 -"I U 2

Equation (38) can be solved by Cramer's rule. For the determinant A we find

A = (P2 -P1 ) e 33 x31  (39)

since e, 3 X2  6 1 3 X- 2  6,7 e 3 x 1- 1 e =
3 x (40)

hence (e 2 3 XlS -61 3 x. 1 ) ap -623 "1 +6 1 3U 2  (41)

(P2-P1 )633 X3 1

X1IU1 + XlU 2  -- ,

B =o (42)
63 3 X 3 1

/L Arthur D. Little, Inc. 11



All that remains is to evaluate these expressions for pairs a & 3 to find

* A, - x,, 1  BI =0 0
P2 - PI

A12 -P2 -PI B12 =0

A (2e 1 3 A1 +e23 A 1 2 ) B _x = (43)A 1 33 = - X1 B I
e 3  

e 3 3

A2- Xx2 =-A,, B 2 2 =0

A P2 - P1

A 2 3 - (2e 2 3 A- 2 +e 1 3 Al 2 ) B2 3 -

e3 3 " 3

X 3 1 X 3 2  X 3 1

A 3 3  B3 3  -

P2 -P e 3 3

The derivatives are calculated from the equationsI
ax11 =Ao ,
aeto3

ax 2 1  Aa0 X1(ae -At3 -(4

ax 31

aecto Actg X3 2 + Be

The derivatives of x3 j are not going to be needed later, but are included here for completeness

of the exposition.

L
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2. Calculation of Dielectric Tensor from Lorentz Line Parameters L_.

Two sets of coordinate axes must be defined in this aspect of the problem. One is fixed
in the crystal, the other is fixed in the interferometer spectrometer.

The axes of the crystal will be called x, y & z. Let the x-axis be identical with the a-axis of the

crystal. Let the y-axis be in the a-b plane but perpendicular to the x-axis. The z-axis is

placed perpendicular to both x-axis & y-axis to form a right handed system (xyz). .4

The axes in the interferometer are such that the plane of polarization of the light incident

on the crystal face is along the 1-axis; the light propagates along the 3-axis. The 2-axis

is chosen perpendicular to the 1- & 3-axes to form a right handed system (1, 2, 3).

To model the experiment on the crystal, the crystal properties, expressed in the (x, y, z)

axes must re rotated into the (1, 2, 3) system. To do this we must set up a rotation

matrix S (R is reserved for reflectance) with elements S.. chosen so that
gilj

$2 is the unit vector expressed in the interferometer or lab system (45a)

(S31)

S22 and S23 are the unit vectors y and z expressed similarly (45b)

Now suppose we know the dieletric tensor, e_ referred to the crystal axes. Then the tensor

in the lab system is

e SZ ST  (46)

aea"
and S ST  (47)

ap Qk aPQk

under the assumption that the Lorentz lines occur independently of each ocher (instead of
in orthogonal triads) we have, in the crystal system " "

.:y'

13A
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K

e= 0 + VkVk TL (48)

k=1

where 7' has components e- ey etc. & is a symmetrical tensor representing
xx'

the dielectric constant at high frequencies.

= sin 0k Cos 4* )

" Vk = sin 0k sin 4 k giving the orientation of the dipole (49)

" 8k, a' =k ,the usual resonance formula. (50)

1 + i' 21 i)k Vk Vk

We further define Lorentz line parameters PQk as follows:
'ft, K

C'.PO I PO 2 PO 3

p 02 04 05 (51)

o3 P05 o6

Plk = Sk

p 2 k = "/k/Vk

-2 (52)
P3k =V

P4k = 0k

PSk =(lk

• In order to perform "Newton's Descent" to calculate the best parameters to minimize the
evil 2I, we need the matrix UUT whose elements are

Eq

(v ,p) (53)
,' p~k  aPC

.i e2=l

14
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where E is the total number of experimental reflectance measurements made and Qk, XK run

over all possible values that have been defined.

As before

aR 2 2Re r', arl r. 2 arl 54

rPkk + 1 2  12  (54)

aPPk aP~k

arij r, ari 00°q

I * and j (6 terms : 6=11,12,13,22,23,33) (55)
if ' ap~k  CIO a %a a~

2x 1 X2 (56)
S i n c e r t 2 - - - + 

(

,. \1+ q, + q/ )

& r12 12x, X,1  (57)rl2 2Xl x! i+ql + +qr

we write

ari - arij ax1 I ar " aX. 1 + jr- 1q

aeo ax, aea ax 1  aeo aq1  aeo aq2  ac.

From (56) & (57) we see

- "x~ - 2x2j159)

'"axt I +qj a~x!1 +q, I + q,'

ar x-, ar, 2 (
2.2. - 2x11 (60)

ax, I + q, ax 2 +ql I +1 q,

2xr ar, 2x x , .
ar12 1 11 2 (61)

aq, (1 +q2 aq, (1 +q, )2

V1.5
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.:

arli 2x2 r12 2x 22 x2 1  (

aq2  (1 +q 2)
2  aq2  (1 +q 2)

2

We have already demonstrated that

I I = ACP x1 12 = 22 63)

and the A, have been found to be

A l I 2 -" - - pL
P2 - P-

(64)

" 2 -2P

A 21 1 1 1
p P

2 14

A13  (2613 A11 +623 A 1 2)/e3 3  .-

4" A22 = - AI 1

*" (65)
A 2 3 = - (2623 A,2 + 61 3 .A 2)/633

A 3 3 = x3 1 x3 2 /(P - PI)

Obviously, from (33), we have

'aq 3q..

-/ x 2  Xxj/,(66)
aja e o .; -

So the computation of r is defined. We must therefore calculate the derivatives -"- a ",'S.. "

.,: aeo

-. For the entire matrixJ ~ap

.,

16
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ae -S "T (67)

aPkk aP~k

1 So we confine ourselves to the calculation of ae" and suppose the results will be rotated

aP k

*. numerically into the (1,2,3) (lab) system.

To start with,

:7 _ (100\ 01/ 10
ac _ 000 " 00 etc. (68)
aP0 0 

1aP2 0

S- The first three derivatives of the Lorentz line part of the affair are unchanged from before:
-a L

(V VT = V , = 1,2,3 (69)

aPk aPQk

-1 Dk  I +ip, k - P3k( 170)
aPIk D

aL L

k Lk
-i V (71)

a P2k Dk

ak --1. (72)
aP 3 k Dk

*1 " aavk avT "
But (vkvTL) = vT + v. Lk' = 4.5 (73)

aPk aP2 k aP~k/ Y

.i-.

17
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aVk (Cos P4k COS P5k COS P4k s P5k 4- P4k) (74)

aP 4 k

k - (-sin P4k sin P5k sin P4k O P5k 0C) (75)

Obviously avk T aVT \T
- V I = k (76)

apk 2k.

A Fortran program embodying these methods was written and used to fit the observed

spectra. Convergence, however was not satisfactory for reasons that are still unknown.

All of the algebra and the coding was checked by independent computation. To perform

the checking, a program was written for a HP41 CX to calculate the reflectance R as a
function of the Lorentz line parameters. Derivatives were checked by comparing values

obtained by the Fortran program with those obtained from the HP41CX by numerical

-, differentiation.

+,,I

N.
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III. Simulations of Powder Spectra using Derived Optical Constants

As mentioned above, the usefulness of our derived optical constants can be

evaluatpd by examining the spectra simulated with them in comparison to

measured emittance spectra of powders. Such comparisons were carried out in

References 20 and 22 during the contract. Figure 1 shows such a comparison

Tor chalcanthite powder. This comparison shows good agreement between the

exper ental data and the simulated spectrum using the three sets of optical

constants derived in Reference 24. The spectrum is, however, so simple that

we did not believe it provided a convincing proof of the validity of our

method.

A better case is shown for enstatite in Figure 2. The three sets of optical

constants for this material had been derived previously by classical

dispersion theory1 I. As enstatite is orthorhombic it was used as a test of Fn
our use of a 1:1:1 ratio of the three sets of optical constants for randomly

oriented biaxial powders where the crystal axes are orthogonal.

modeling purposes with those crystals for which a sufficiently large single

crystal cannot be obtained. The method we have chosen to attempt for such

materials consists of measuring the reflectance spectrum of a polycrystalline

sample and obtaining optical constants as if this material was isotropic. The

resulting values are clearl not rigcrouF. representing the surface (Fresnel) 2.

averaged spectrum, as this average is differt it from the average (cross,-

sections) that would be appropriate for modelin of particulate materials.

Nonetheless, this idea has been explored and found useful in the past.2 '25

19
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In order to carry out the same kind of test of "pseudo" optical constants

for a low symmetry crystal we chose to use alabaster which is a poly-

crystalline form of gypsum.

A sample obtained from Wards Natural Science Establishment was cut and

polished and its reflectance spectrum obtained using our Digilab FTS 15C

Interferometer Spectrometer with the Harrick NIRA 20 attachment. Rapid

convergence to the Lorentz line parameters was obtained. The values for

alabaster are given in Table 1. The. resulting fit is shown in Figure 3.

In Figure 4 we show the similatea spectra of the gypsum powder of Reference

20 using both the true optical constants derived from single crystal gypsum

and "pseudo" optical constants obtained from alabaster. We have used an

option in our powder theory program that allows for the contributions of

asperities on the gypsum particles here which results in a sl'ghtly differ-*
ent intensity than shown in the theoretical spectrum of Reference 20. As is

evident the pseudo optical constants do not give as good a fit to powder

data as the true optical constants. The nature of that defect is principally

that the simulated emittance features are much weaker than those observed.

This is a similar result to that obtained in our previous quartzite experi-

ment but more striking. We believe the discrepancy to result from the

difficulty of obtaining a suitably high reflectance on alabaster which is

hard to polish well owing to its soft character. A further discrepancy is

-1
the relative large size of the feature near 600 cm compared with either

the experiment with gypsum powder or the simulation with the true optical

constants.

.i
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4, - IV. Summary

Methods for derivation of the optical constants of materials belonging to

the triclinic and monoclinic crystal systems have been developed. These

optical constants were shown to be useful in modeling the emittance spectra

of powders in the infrared region. The rigorous method, which can only be

used for single crystals, provides better results than an approximate method

which must be used if sufficiently large single crystals are not available.
a-

The bulk of this work has been published or submitted for publication in

. ~, four papers. They are:

1. A. G. Emslie and d. R. Aronson, Determination of the Complex Dielectric

Tensor of Triclinic Crystals: Theory, J. Opt. Soc. Am. 73, 916 (1983)

2. James R. Aronson, Alfred G. Emslie, Ellen V. Miseo, Emmett M. Smith and

Peter F. Strong, Optical Constants of Monoclinic Anisotropic Crystals:

Gypsum, Appl Opt. 22, 4093 (1983)

3. James R. Aronson, Alfred G. Emslie and Peter F. Strong, Optical

Constants of Triclinic Anisotropic Crystals: Blue Vitriol,

Appl. Opt. 24, 1200 (1985)

4. James R. Aronson, Optical Constants of Monoclinic Anisotropic Crystais:

Orthoclase, submitted to Spectrochimica Acta (1985)
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