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INTRODUCTION

Computer modeling of the optical properties of particulate materials is a
valuable technique that is useful in research concerning atmospheric aerosols

either natural or man-made (smoke screens). It is also important in develop-

ment of camouflage paints or coatings and has uses in the description of f
the optical and thermal properties of materials which are important in such :_“\;:‘
areas as insulation, solar collection, remote sensing and related topics. E’j
Such computer simulations have been seriously hampered by lack of the optical I;:
constants (the real and imaginary parts of the complex refractive index), ;:r‘:‘
particularly in the infrared spectral region, for many materials that may "::';
prove to be of technical significance. T\
A considerable body of recent research has gone into the development of —;
methods for extracting the optical constants of soh‘ds]’z’3. At the time ' L}:Iji
of the inception of this work the status of the problem was that isotropic {:}.t\\
materials such as amorphous solids and cubic crystals were well described ::;%
by a complex refractive index which varies with the frequency of the iti
;ﬂ radiation. That refractive index could be obtained by well known techniques (_:E:
n: involvirg the measurement of the reflectance spectrum of such materials E.:é
E either at two angles4 two po]am’zations,5 or a combination of transmittance “\‘-
and reflectanceG. It would normally be thought that in order to obtain the ‘-’:.,:
‘;i' values of two quantities such as n, the real and k, the imaginary part of —-‘—.‘
’f" the complex refractive index, m at any frequency two measurements would be h—:
; needed as just discussed. However, use of a single measurement (at each “J
5 frequency) has been employed with considerable success in recent years (i.e. ,r"
y using classical dispersion theory)7. In brief, by invoking an assumed "'i:"‘
[:' spectral line shape (the Lorentz shape) one can make a single measurement :
. ok
:‘. A\ Arthur D. Little, Inc. ,--..
............ e S ; o




of the Lorentz formula m2 = € =

of reflectance or of transmittance over a considerable spectral band and
Fit the data to a set of dispersion parameters (Lorentz line parameters)
either using a reflection or transmission method.

Another method has had much usage over the years, i.e., Kramers Krom‘gs’9
analysis. This method involves a relationship between n and k, but requires
that the spectrum be measured over all frequencies or that an adequate
estimate be made of the high and low frequency values. These values at wave-
:engths or frequencies inaccessible to measurement must be known in order
that the values within the spectral range of interest be not distorted. This
is not true of the classical dispersion parameter method, as it has been

shown]O

that regardiess of the values outside the range of interest, if the
~eflection bands are well fit within a given spectral range, the optical

constants obtained are appropriate for that range.

Another advantage of the classical dispersion theory approach to extraction
of optical constants is the convenience for computations of storing the
information in a small file of 3N + 1 parameters where N is the required
number of oscillators. Such tables of e  the dielectric constant at high
frequency Vv K the frequency, Sk the strength and v k the damping for each

of the independent oscillators are very small relative to the multitude of
values of n and k required to make computations at a large number of spectral

frequencies.

The optical constants are calculated as needed at any frequency by the use

N g
»t I K 9
k=1 1+1Yk(_:;;k)_(:T)

vhere ¢ is the comnlex dielectric constant. Tvnicallv, samawhat lagg than
20 1ines, occasionallv as few as 1 or 2 can be nsed tn renresent the entire

spectrum throushout the infrared renion.

A\ Arthur D. Litle, Inc.
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It has been shown that in cases where the absorption coefficient is Targe
the reflection method works quite we]]z’]] and in cases where the absorption
coefficient is small compared to the refractive index (organics) a trans-

mission method using a Brewster angle of incidence is appropriate]z.

The optical constants so derived have been used together with our theoretical
methods to predict or simulate the spectra of particulate materia1s]3, Tunar

14 12 and aeroso]sls.

soils ', paints
Extensions of these methods to uniaxial symmetry crystals have been carried
out7 and in practice turn out to be straightforward. Such crystals are
treated as if they were, in fact, composed of two independent materials;

one corresponding to the ordinary ray, one corresponding to the extraordinary
ray. These separate refractive indices are used to make suitable calculations
of cross sections for the materials involved and then combined in a 2 to

1 ratio (EL ¢ :E l!c)]6’ 17

assuming that the particles are randomly
distributed in urientation. ¢ refers to the crystallographic high symmetry
axis. This technique has proven to result in simulated spectra very closely
approximating the measured spectra. The natural extension of this method

to biaxial crystals is obvious for those of the orthorhombic system. Usihg
a polarizer and appropriate crystal orientations one may extract three sets

cf optical constantsn

and when theoretical computations for powders or
aerosols are made these are used in ratio of 1 to 1 to 1 for (E!l a,

Ell bandellc) again assuming no preferred orientation.
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The present report details how the methods for obtaining the optical constants

have been extended to the Tow symmetry monoclinic and triclinic crystal

systems. We were aided in developing our methodology by finding two papers

18,19

dealing with the monoclinic problem . These papers suggested a method of

carrying out a dispersion theory analysis for monoclinic crystals using

measurements obtained from the a-c crystallographic plane. We studied the work

of these authors and combined their approach with the approach that we have

2. The results of

already taken with respect to the simpler crystal systems
this work applied to gypsum were published in Ref. 2C. In that paper we not
only derived the optical constants for gypsum, but showed that these optical
constants were appropriate for simulating the emittance spectra of gypsum
powder using our previously developed theory. We also used the parameters

18,1921 ¢, spodumene and showed that, as with

developed by the Russians
gypsum the optical constants are indeed suitable for modeling the emittance
of powders. Further monoclinic work has recently been submitted for publica-

tion22

concerning the mineral orthoclase.

The most difficult problem, that of triclinic crystals, was attacked using

the insights gained by the study of the monoclinic problem. The theoretical
paper concerning the method of carrying out the analysis was, in fact, the

first one pubh’shed23 during the work on this contract. A reduction of that

method to practice was later published using Chalcanthite (CuSO4°5 HZO)' 24

Thus the body of our work on this contract has been described in four publica-

tions.
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However, some of the details have not yet been published. The following
section will delineate the unpublished work. That work includes study of the
monoclinic substance alabaster, which is polycrystalline gypsum. It is
intended as an example of the usefulness of carrying out classical dispersion
analysis of materials for which sufficiently large single crystals are not
available. We had previously carried out such analysis for quartzite25 but
needed to show that the same type of analysis could be carried out for the

Tow symmetry crystal systems.

In addition, we show a comparison of the measured experimental emittance of
chancanthite powder to the predicted spectrum using the optical constants of
that triclinic crystal. This was not included in the paper on chalcanthite

owing to the simplicity of the spectrum, which we felt would not contribute

materially to the paper.

Another biaxial crystal powder, orthorhombic enstatite was measured and its

spectrum simulated using optical constants previously obtained]].

Finally, the triclinic problem as discussed in Reference 27 proved quite
difficult to implement in such a way that the convergence was entirely satis-
factory. While the optical constants obtained proved useful and sensible we
believe that the convergence could yet be improved. We therefore did not
previously describe the mathematics of the computer program in detail, but
feel that it should be presented here, if only to give readers a chance to

improve on our algorithms.
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Il.  Numerical Method for Triclinic Crystals

A. Preface

In the description of the numerical methods used to fit the theoretical spectra to the observed
spectra, it is assumed that the reader is conversant with references 2 and 23. In the present
work we follow the scheme outlined in the latter paper with certain exceptions, the principal
change being that we use normalized eigenvectors in place of the eigenvectors (a1, by ),

(a2, b2) defined by Equations (43) through (46) in reference 23. We also use numerical
subscripts 1,2,3 to designate x, v, z axes, respectively.

B. Dielectric Tensor of Triclinic Crystals

1. Discussion of Eigenvalue Problem

In order to apply our usual method to find the Lorentz line parameters we must calculate

the derivatives of Ir, |> + Ir;;|> and hence r,, and r;, with respect to all the .
parameters. As an instructive preliminary, however, we shall study the unusual eigenvalue
problem.

.= C 1= )
€ x; pJS’J,J 1,2 (1)

which plays a central role in the derivation of the reflectance of triclinic crystals. In equation
(1) we have set

€11 €12 €3

(2)
€= €12 €22 €23 »the dielectric tensor
€13 €23 €33
Xy
X; = Xa; , the augmented eigenvector {3)
X3
Xy
§j = X, , the eigenvector (4)
2j
0

and P, is the eigenvalue, which may be found by solution of the quadratic equation
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€11 "PJ €y2 €13
€12 ezz-Pj €213
€:3 €23 €33

We normalize the eigenvector X; S0 that

2 2
2 4+ x2. =
Xjj X2 1

Let ;= €5 €23 — €13 (€22 = p;)

b= €, €13 — €23 (6, — Pj)

o«
|

= (€1, —Pj) (€32 "'PJ-) — €},

Then x;, = ——4

Ny

n? 2\
(% + Q)

On account of the symmetry of ¢, the vectors §; & {, are orthogonal. We take the sign

/N Arthur D. Little, Inc.

= 0 (5)
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of the second eigenvector so that

X11 S X2 , X172 T —Xq;

(13),(14)

This choice of sign convention is arbitrary, but it is imperative to stick to one convention.

Ours makes the determinant

X11 Xy2

Xo1 X22

instead of —1.

(15)

In terms of the components of the normalized eigenvectors we find the amplitude reflectances

to be

1 +q, 1+q,

i
D

2 2
X1 Xi2

Fya = 2 X511 X2 -

1+q,

where q; = pj”2 [Re(q;) > 0]

(16)

(17)

(18)

Before we leave the eigenvector problem, we calculate derivatives of the eigenvalues and
augmented eigenvector x ) with respect to the elements of € in anticipation of our later

need for them.
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To start, take the differential of Eq. (1)

edx +dex = dp¢ + pd¢

The subscript j has been omitted, but remains understood. Multiply by §T (the superscript T

stands for “‘transpose’’)
¢Tedx + {Tdex = dpgT¢ + psTag
Note ¢T¢ =1 and (¢T+d¢T) (¢+df) =1 so
¢Tdg=0
Thus we have

§‘Tedx + g‘Tdex =dp

0
Since x=¢+{ 0
X3

it follows that
0
€ = €x — e(O
X3

613
or €§ = p8 — [ €23 | x,
€33
T T T T3
Therefore $ledx =dx el =pdx'{ —dx’ | €23 | X3
€33
But axTe=0
SO ;Tde=—x; (elld'\'l +623dx: +€33dX3)

Because the third element of { is zero we see that

€13X) * €23¥% +€3X3 =0

w

/N Arthur D. Little, Inc.
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(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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and, therefore, €,3dx, + €;3dX, + €33dx; = — ;,de,3 = Xod€y 3 — X3dess (30)
o) tTedx = x;x;d€, 3 + XoX3dey s + x2 degs (31)
Substitute this result into Eq. (22) to find

dp = tTdex + x,x: de, 3 + X, X3des 5 + x2des 5 (32)
Now all we have to do is to let one deaB be non-zero at a time to find the partial

derivative of p with respect to the element of the dielectric tensor € - The results may
be summarized very simply.

op. op;
P = x?; P = 2x Xgi (o # B) (33)
d€qn & aeaﬁ %
or even more succinctly
ap;
e T (27849 x5 % (34)
d of D)

where 50‘5 is the Kronecker symbol {(unity when a=§, zero otherwise)

We still must calculate the derivatives of x, , x,,and x,, with respect to the elements €ap:
We cannot solve Eq. (19) for dx, ,, dx.,, dxs, because the matrix of the coefficients of these
differentials is singular [Eq. (5) ] , but Eq. (21) supplies an independent condition. Since

¢, and ¢, are orthogonal, it follows that dx, , and dx,, are proportional to x,, and X, ,,
respectively. In fact we may write

dx)) =AugX), degg, dxyy = Aog x._,zdeaﬁ ,dxy, = (Aaﬁxy_,-l-Baﬁ)deaﬁ (35)

We aiso find , when we assume only one deaﬁaﬁo, that we can write

de x, = u, deaﬁ (36)
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with Uy = Xg
Uy = X8y » U= X o) for a#

the otherwise undefined components of u being zero.

fora=8

Now substitute Equations (35} and (36) into Equation (139) and divide by deaﬁ. In
expanded form we see that

€11 €12 €3 pp 0 0 X1 2 0
€12 €22 €33 )| -— 0O p O Agg | X22 | F 0
€13 €23 €33 0 0 O X32 Baﬁ
Xy Uy
=01 [ x| - w (37)
o€
off Uy

Since € X, = p, §, , the first two rows of (37) are seen to yield the two equations for

Aaﬁ and Bocﬁ

(P2=p1) X12 Agg €13 Byg= X1,y b _ u,
aeaﬁ
(38)
(P2 — P1) Xa2 Aaﬁ'*‘ezs 3043:4‘(21 oy — U
aeoﬁ
Equation (38) can be solved by Cramer’s rule. For the determinant A we find
A=(py—py) €33 X3 (39)
SINCE €33X)2 ~ €;3X22 = — €33X2; — €13X; | = €33X3, (40)
hence (€23X1; ~ €13X21) 9Py — €23 Wy HE 53U, (41)
aeaﬁ
A(Xﬁ = —
(P2=p1) €33 X34
XUy + X2 U, _ail_)‘_
€of
Bog= (42)

€33Xa,
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All that remains is to evaluate these exprassions for pairs o & 8 to find

A,y = i1 Ry By =0
P2 — D
X31 — X11 -
A, B, =0
P2 — Pi
A I (2613 Ay, t€23 Ap2) B, . =— U
13 13
€33 €33
X X - -
P2 — P
1 X21
Az =— — (26,3 Axa Y613 Ay,) By3=——
€33 €33
_ X31 X532 _ X
Az =——— B33 = - —
P2 — D €33

The derivatives are calculated from the equations

0Xy1 = AggXi2
aeaﬁ

X241

aeaﬁ

—_— = Adﬁ X34 + Baﬁ

The derivatives of x5, are not going to be needed later, but are included here for completeness

of the exposition.
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2. Calculation of Dielectric Tensor from Lorentz Line Parameters

Two sets of coordinate axes must be defined in this aspect of the problem. One is fixed
in the crystal, the other is fixed in the interferometer spectrometer.

The axes of the crystal will be called x, y & z. Let the x-axis be identical with the a-axis of the

crystal. Let the y-axis be in the a-b plane but perpendicular to the x-axis. The z-axis is
placed perpendicular to both x-axis & y-axis to form a right handed system (xyz).

The axes in the interferometer are such that the plane of polarization of the light incident
on the crystal face is along the 1-axis; the light propagates along the 3-axis. The 2-axis
is chosen perpendicular to the 1- & 3-axes to form a right handed system (1, 2, 3).

Ta model the experiment on the crystal, the crystal properties, expressed in the (x, vy, z)
axes must re rotated into the (1, 2, 3) system. To do this we must set up a rotation
matrix S (R is reserved for reflectance) with elements Sij chosen so that

Sy is the unit vector/x\ expressed in the interferometer or lab system (45a)
S31

Sl 2 Sl 3 A A

S;, Jand | S,; ) are the unit vectors 'y and "z expressad similarly (45b)
S32 S33

Now suppose we know the dieletric tensor, €, referred to the crystal axes. Then the tensor
in the lab system is

e=5¢egsT (46)

3 2
and = =g & g (47)

0Py Opgy

under the assumption that the Lorentz lines occur independently of each other (instead of
ir orthogonal triads) we have, in the crystal system
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K
~ = G T
€=¢e>+ Vi Vit Ly (48)
k=1
where e has components e> | €7, etc. & is a symmetrical tensor representing
the dielectric constant at high frequencies.

sin 8, cos <I>k
v, =| sin 8, sin L giving the orientation of the dipole (49)
cos (Jk

S
L, = K , the usual resonance formula. (50)

1+i7k."_ _(2)?
Yy Vg

We further define Lorentz line parameters pg, as follows:

Por Po2  Po3
€ = Po  Pos  Pos (51)
Pos  Pos  Pos
- N
Pip = S
Py = Yi/¥
_ =2 (52)
Py = i g
Py = 0,
P, =®
sk k )

In order to perform **Newton’s Descent” to calculate the best parameters to minimize the
evil2®, we need the matrix UUT whose elements are

E

3R aR
E :— e:P) = (n,,p) (53)
aka apRK

e=1
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e,

where E is the total number of experimental reflectance measurements made and 2k, Ax run

-

over all possible values that have been defined.

2

P As before
N
d dR L .
— = 2Ref 1, or, I, 01,
;‘ A aka — — (54)
“ Py 0Py
i
7-_;."
ar. dr.. O€
< and 0= 2 0 T g ioms ¢ ape1112,13,22,23,33) (55)
oy dpg, b Oeqp opg
n;»":
2 2
2
X X 56
. Since r;, =2 [ + 2] (%0
§ :\:‘:_,‘ l+q, 1+aq,

N Dn (L Y
>

e s
( & oy = 2%, 8, |—— - - | (57

we write

el e
’

arij arij ax“+ Brij bx.“ . arij aql . E)rij aq2

- aeaﬁ 0X,, aeaﬁ 09X, aeaﬁ aq, aeaﬁ a4, aeaﬁ

(8¢,
e From (56) & (57) we see

. or 4 x dar 1 1
= . —2 o o ~ (59)
’ 0%y I'+q, 0y L+q, l+a,

. 2%y - (60)
2 X4, l +q, 0%, l+q, 1+q,

U {8 SRRt | L o PR P | f LS A CRA i

T
v N
QO
]

2
- X3y o IS
11 arl,_ 2%y Xy

= (61)
aq, (1+q,)? 3q, (1+q))?

,
e,
e
—
—
y
I}
I

&
¥

f‘l
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2
E)r“=_2x21 or

12 _ 2X;9 Xy

3q, (1+q,)? 9, (1+q,)?

We have already demonstrated that

0Xy1 = Apg¥ys 0Xy, = Agp ¥y
aeaﬁ aeaﬁ

and the Aaﬁ have been found to be

2 X

p2_pl

All

2 2
_ X T Xy

pz'pl

Apy = = (615 Apy Tey5 Apylegs 3
Ay = A,

Ayy = — (2655 Ay 63 Apy)lE;5

Ay3 = = X3y X3,/(P, = P))
Obviously, from (33), we have

aqi
o€

_ 9,

14 2 M =
GRS} Xoj Xgi/9

oo aeaﬁ

r..
So the computation of —2— is defined. We must therefore calculate the derivatives

aeaﬁ
de
of For the entire matrix
aqu
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(62)

(63)

(64)

(65)

(66)
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So we confine ourselves to the calculation of 3¢ and suppose the results will be rotated

0Py
numerically into the (1,2,3) (lab) system.
To start with,
N 100 ~ 010
gfp- = (o000} ° g_ep_ ={100] et (68)
01 000 02 000

The first three derivatives of the Lorentz line part of the affair are unchanged from before:

d aL
— W L) = vyl —%, 2=1,23 (69)
ka aka
d
.__.Lk_ = —, D, = 1+ip, v - psku2 (70)
opy Ly
L L
L (71)
3p,y, D,
d .
_Lk- = pz —[l- (72)
ap3k Dk
ov ovl
But & (v = [—5 T 4y, — | L. 2= 45 (73)
Apgy Pox Opgy
17
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vy = (cosp,, €OSpg, ,COSP,, Sinps, , — sinp,,) (74)
0P,y
avz
5;; = (—sin p,, sinpg, , sin P, cosps, ,0) (75)
Obviously dv vl \T
T = [y, £ (76)
Py, 0Py,

A Fortran program embodying these methods was written and used to fit the observed
spectra. Convergence, however was not satisfactory for reasons that are still unknown.

All of the algebra and the coding was checked by independent computation. To perform
the checking, a program was written for a HP41CX to calculate the reflectance R as a
function of the Lorentz line parameters. Derivatives were checked by comparing values

obtained by the Fortran program with those obtained from the HP4ICX by numerical
differentiation.
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IIT. Simulations of Powder Spectra using Derived Optical Constants

As mentioned above, the usefulness of our derived optical constants can be
evaluated by examining the spectra simulated with them in comparison to
measured emittance spectra of powders. Such comparisons were carried out in
References 20 and 22 during the contract. Figure 1 shows such a comparison
tor chalcanthite powder. This comparison shows good agreement between the
exper‘mental data and the simulated spectrum using the three sets of optical
constants derived in Reference 24. The speétrum is, however, so simple that
we did not believe it provided a convincing proof of the validity of our

method.

A better case is shown for enstatite in Figure 2. The three sets of optical
constants for this material had been derived previously by classical

1]. As enstatite is orthorhombic it was used as a test of

dispersion theory
our use of a 1:1:1 ratio of the three sets of optical constants for randomly

oriented biaxial powders where the crystal axes are orthogonal.

Finally, there remains the problem of obtaining useful optical constants for
modeling purposes with those crystals for which a sufficiently large single
crystal cannot be obtained. The method we have chosen to attempt for such
materials consists of measuring the reflectance spectrum of a polycrystalline
sample and obtaining optical constants as if this material was isotropic. The
resulting values are clearl, not rigcrous. representing the surface (Fresnel)
averaged spectrum, as this average is different from the average (cross
sections) that would be appropriate for modelin, of particulate materials.

Noretheless, this idea has been explored and found useful in the past.z’zs.
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In order to carry out the same kind of test of "pseudo” optical constants &{

o 2
:tﬁ for a low symmetry crystal we chose to use alabaster which is a poly- %
oy

crystalline form of gypsum. ig

Q- 8
| [

S

! i
f ﬁj A sample obtained from Wards Natural Science Establishment was cut and ;%
e polished and its reflectance spectrum obtained using our Digilab FTS 15C ;ﬁ
’EQ Interferometer Spectrometer with the Harrick NIRA20 attachment. Rapid %;
x convergence to the Lorentz line parameters was obtained. The values for éé
ti alabaster are given in Table 1. The. resulting fit is shown in Figure 3. EE
4

et}

~

aZ

In Figure 4 we show the simulateda spectra of the gypsum powder of Reference

x

r
t~ W W M

‘E; 20 using both the true optical constants derived from single crystal gypsum
. and "pseudo" optical constants obtained from alabaster. We have used an g%
Ikg option in our powder theory program that allows for the contributions of %3
Oy asperities on the gypsum particles here which results in a sl'ghtly differ- gz
l ent intensity than shown in the theoretical spsctrum of Reference 20. As is &{?
é; evident the pseudo 2ptical constants do not give as good a fit to powder Eg
data as the true optical constants. The nature of that defect is principally ES
o that the simulated emittance features are much weaker than those observed. %g
2& This is a similar result to that obtained in our previous quartzite experi- ig
§ ment but more striking. We believe the discrepancy to result from the Eﬁ

i

3: difficulty of obtaining a suitably high refiectance on alabaster which is "
- hard to polish well owing to its soft character. A further discrepancy is ff
£ the relative large size of the feature near 600 cm-] compared with either =
L

. the experiment with gypsum powder or the simulation with the true optical 'i
2
constants. ;:

o ‘;L
. 2
[ %
22 %
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Iv. Summary

Methods for derivation of the optical constants of materials belonging to
the triclinic and monoclinic crystal systems have been developed. These
optical constants were shown to be useful in modeling the emittance spectré
of powders in the infrared region. The rigorous method, which can only be
used for single crystals, provides better results than an approximate method

which must be used if sufficiently large single crystals are not available.

The bulk of this work has been published or submitted for publication in

four papers. They are:

1. A. G. Emslie and J. R. Aronson, Determination of the Complex Dielectric

Tensor of Triclinic Crystals: Theory, J. Opt. Soc. Am. 73, 916 (1983)

2. James R. Aronson, Alfred G. Emslie, Ellen V. Miseo, Emmett M. Smith and
Peter F. Strong, Optical Constants of Monoclinic Anisotropic Crystals:

Gypsum, Appl Opt. 22, 4093 (1983)

3. James R. Aronson, Alfred G. Emslie and Peter F. Strong, Optical
Constants of Triclinic Anisotropic Crystals: Blue Vitriol,

Appl. Opt. 24, 1200 (1985)

4. James R. Aronson, Optical Constants of Monoclinic Anisotropic Crystais:

Orthoclase, submitted to Spectrochimica Acta (1985)
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