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/( 1. Background

"- ) In order to interact intelligently with its environment, a robot must know what objects

are where; that is, it must be able to identify uid locate objects in its workspace. In this
paper, we treat these two tasks under the title of the recognition problem. We will stress

-' localization over identification since in most industrial robotics tasks the identity of the

objects is known. 2
A solution to the recognition problem should satisfy the following criteria:

1. A recognition algorithm must degrade gracefully with increasing noise in the sensory
measurements.

2. A recognition algorithm should be able to deal with partially occluded objects.

3. A recognition algorithm should be able to identify and locate objects from relatively
sparse information. The sparseness of the data may be due to inherent sensor

sparseness, occlusion, or noise.

4. A recognition algorithm should be applicable to different sensor types. While partic-

ular optimizations will be possible for specific sensors, one would like a recognition
technique that serves as a common core for recognition from tactile, ranging, sonar

and visual sensors.

This paper presents an approach to the recognition problem that satisfies these criteria.
The approach operates by examining all hypotheses about pairings between sensed data
and object surfaces and efficiently discarding inconsistent ones by using local constraints

on: distances between faces. angles between face normals, and angles (relative to the
surface normals) of vectors between sensed points.

The method described here is an extension of a method for recognition and local-

ization of non-overlapping parts previously described in [Grimson and Lozano--P&ez 84]
and reviewed in Section 3. The new method is described in Section 4; it han,11€m highly
overlapped parts using either two- dimensional visual data or three- dimensiok.2 range

data (see Figures I - 4). We also report in Section 5 our experience with a n,.w for-
mulation of the geometric constraints that do not decouple position and orientation. A

number of other extensions are described in Section 6 including a technique for dealing
with objects of unknown size. Section 7 is a discussion of our approach to recognition
and a review of related work.

2. Problem Definition

The specific problem considered in this paper is how to identify a known object and
locate it. relative to a sensor, using relatively few measurements. Because we seek a
te'hnique that is applicable to a wide range of sensors, we make few assumptions about

the sensory data. We assume only that the sensory data can be processed to obtain sparse

meaurements of the position and surface orientation of small planar patches of object

surfaces in some coordinate frame defined relative to the sensor. The measured positions

are asuined to be within a known error volum- and measured surface orientations to

S--
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5 Figure 1. Two dimensiional edge data. (a) Grey level images, (b) zecro crossings. (c) thresholded

zero croswings (d) edge fraguments, (e) located object in imnage, and (f) located object.
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Figure 2. Two dimensional edge data. (a) Grey level images, (b) zero crossings, (c) thresholded
". -'. zero crossings (d) edgc fragiurut., (c) located object in image, anid (f) located object.
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Figure 3. Three dimensional range data. (a) Original scene (b) range data where brightness en-
codes height, (c) planar patches with representative points, and (d) located object superimposed
on range data (filled ni circles are data points accounted for).

be within a known error cone. Furthermore, the object may be overlapped by other
unknown objects, so that much of the data does not arise from the object of interest.

If the objects have only three degrees of positional freedom relative to the sensor
(two translational and one rotational), then the positions and surface normals need only
be two-dimensional. If the objects have more than three degrees of positional freedom

(up to three translational and three rotational), the position and orientation data must
be three-dimensional.

Since the measured data approximate small planar patches of the object's surface, we
assume that the objects can be modeled as sets of planar faces. Only the individual plane

equations and dimensions of the model faces are used for recognition and localization.

No face, edge, or vertex connectivity information is used or assumed; the model faces do
not even have to be connected and their detailed shape is not used. This is important. It
is easy to build polyhedral approximations of moderately curved objects, but we cannot

expect these approximiations to be perfectly stable under sensor variations. The positions
of vertices, orientations and lengths of edges, and area of individual faces will afl vary

depending on the position of the object relative to the sensor. Our recognition method
does not rely on the detailed polyhedral model; it. relies instead on aggregate geometric

information about the object's faces. As a result, the method can be readily applied to

"o -. " 'o . . . % , .. . ., .. , . . . , . . . ., .. - - - . € . . .- .- - - - . .:
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t @ Figure 4. Three dimensional range data. (a) Original seee (b) range data where brightness en-
codes height, (c) planar patches with representative points, and (d) located object superimposed
on ra e data (filled in circles are data points accounted for).

curved objects approximated by planar patches.

2.1 Basic Approach

Our approach to model-based recognition is to cast it as a search for a consistent match-

ing between the measured surface patches on the one hand, and the surfaces of known
object models on the other hand. The search proceeds in two steps:

1. Generate Feasible Interpretations: A set of feasible interpretations of the sense data
is constructed. Interpretations consist of pairings of each sensed patch with some
object surface on one of the known objects. Interpretations in which the sensed data
is inconsistent with local constraints derived from the model are discarded.

2. Model Test: The feasible interpretations are tested for consistency with surface

equations obtained from the object models. An interpretation is legal if it is possible
to solve for a rotation and translation that would place each sensed patch on an

object surface. The sensed patch must lie inside the object face, not just on the
surface defined by the face equation.

There are several possible methods of actually searching for consistent matches. For

example, in Grimson and Lozano P6re!z [84] we chose to structure the search as the
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Figure 5. The interpretation tree. A path through this tree represents a set of pairings of
measured patches to model faces.

generation and exploration of an interpretation tree (see Figure 5). That is, starting at
a root node, we construct a tree in a depth first fashion, assigning measured patches

to model faces. At the first level of the tree, we consider assigning the first measured
patch to all possible faces, at the next level, we assign the second measured patch to all

possible faces, and so on. The number of possible interpretations in this tree, given s
sensed patches and n surfaces. is n" . Therefore, it is not feasible to explore the entire
search space in order to apply a model test to all possible interpretations. Moreover,
since the computation of coordinate frame transformations tends to be expensive, we
want to apply this part of the technique only as needed.

The goal of the recognition algorithm is thus to exploit local geometric constraints
to minimize the number of interpretations that need testing, while keeping the compu-
tational cost of eawh constraint small. In the case of the interpretation tree, we need
constraints between the data elements and the model elements that will allow us to
remove entire subtrees from consideration without explicitly having to search those sub-
trees. In our case, we require that the distances and angles between all pairs of data
elements be consistent with the distances and angles possible between their assigned
model elements.

In general, the constraints at the generation stage should satisfy the following crite-
ria:

1. The constraints should be coordinate- frame independent. That is, they should prune
large portions of the search space, independent of the particular orientation of the
object. That is, the constraints should embody restrictions due to object shape and
not to sensing geometry.

2. The constraints should be simple to compute and, at the same time, able to prune
large portions of the search space.

3. The constraints should degrade gracefully in the presence of error in the sensory
measurements.
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4. The constraints should be independent of the specifics of the sensor from which the
data camie. so that they will apply equally to different types of sensors.

In this paper., we deal with two different, but related. sets of geometric constraints.

In the first set position and orientation are decoupled. The decoupling leads to very
efficient implementations, but reduces their pruning power. The second set retains the
natural coupling between positions and orientations. This set is more powerful, but

comnputationally more complex. Both sets are developed first for the case of a single,

isolated object, and then for the case of overlapping objects.

3. Decoupled Constraints

nd
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Figure 6. The constraints between pairs of measured surface patches. A given pair of sensory
points PI.P 2 can be charactcrizcd by the components of the vector d between them, in the

direction of each of the surface normals nI,n2 and in the direction of their cross product,

nl x n2, and by the angle between the two normals n -nI.

In this section we review the method for recognizing non- overlapping parts presented

in [Grimson and Lozano-Prez 841. We begin by deriving a set of coordinate-frame-
independent constraints that were presented there. The first question to ask is what
types of coordinate -frame independent constraints are possible, given that the sensory

data are sparse planar patches. each consisting of a position measurement and a unit

surface normal (see Figulre 6). Clearly. a single patch provides no constraint on the
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model faces that could consistently be matched to it. Therefore, we consider pairs of
patches. Each such pair can be characterized by the pair of unit normals, n, and n 2 ,

and the separation vector between the p,-ch centers* d, as shown in Figure 6.

3.1. The Constraints

First construct a local coordinate frame relative to the sensed data: we use both unit

normals as basis vectors. In two dimensions, these define a local system, except in the

degenerate case of the unit normals being (anti- )parallel. In three dimensions, the third

component of the local coordinate frame can be taken as the unit vector in the direction

of the cross product of the normal vectors. In this frame, one set of coordinate-frame-

independent measurements is: the components of the vector d along each of the basis

directions and tile angle between the two measured normals. More formally,

nl • n2
dfli

d-n2

d-u

where u is a unit vector in the direction of n x n2.

These measurements are equivalent, but not identical to the set used in [Grimson

and Lozano-Prez 84]. In the earlier paper, we used the magnitude of d and two of

its components; this is equivalent, up to a possible sign ambiguity, to using the three

components of the vector. This possible ambiguity was resolved using a triple product

constraint.

To turn these measurements into constraints on the search process, we must relate

them to measurements on the model elements. Since objects are modeled as sets of

planar faces, the relationship is straightforward. Consider the first measurement, n1 "n2 .

If this is to correspond to a measurement between two faces in the model, then the

dot product of the model normals must ,'gree with this measurement. If they do not

agree, then no interpretation that assigns those patches to these model faces need be

considered. In the interpretation tree, this corresponds to pruning the entire subtree

below the node corresponding to that assignment. The test can be implemented efficiently

by precomputing the (lot product between all pairs of faces in the models. Of course,

for the case of exact measurements. the dot product of the measured normals must be

identical to that of the associated model normals. In practice, exact measurements are

not possible. and we must take possible sensor errors into account. Given bounds on the

amount of error in a sensory measurenient, we can compute a range of possible values

associated with the dot product of two sensed normals (see Grimson and Lozano-P6rez

841 for details) In this case. if the dot product of the associated model normals is

contained in the range of possible values associated with the (lot product of the sensed

nornials. then the corresponding assigln(nt of niodel faces to sensed points is consistent.

Similar constraints can be derived for the coniponents of th, separation vector in the

directions of the unit normals. Each pair of model faces defines an infinite set of possible

separation vectors, each one having its head on one face and its tail in tile other. We can

*Tile extent of the patches is a,, ed small.



compute bounds O tile components of this set of vectors in the direction of each of the
face nornals. Again. for an assignment of sensed patches to model faces to be consistent,

the measured value must agree with the preconiputed model values. As in the case of
surface normals above, we can incorporate the effe'ts of error in the measurements by
using bounds on the magnitude of the error to compute a range of possible values for the
components of the sensed vectors, and this range must be consistent with the associated
model range, in order for an interpretation to be consistent.

It is easy to see that these constraints satisfy most of our criteria: they are inde-
pendent of coordinate frames, simple, and general. It remains to establish that they are
powerful and degrade gracefully with noise. Grimson [84 argues from a combinatorial
analysis that these constraints are very powerful, and in the case of data all obtained
from a single object, will converge quickly to a small set of interpretations. The analysis
also shows that the constraints should exhibit a graceful degradation with increasing
sensor noise. These predictions have bleen verified empirically, both by simulation and
by processing real sensory data. Grimson and Lozano-P6rez [84] report on a large set of
simulations run on a series of test objects, for varying types of error conditions.

3.2. Adding A Model Test

Once the interpretation tree has been pruned, there are typically only a few non-
symmetric interpretations of the data remaining. It is important to realize, however,
that these constraints are not guaranteed to reject all impossible interpretations. Let dij
be the distance between two sensed patches, P and Pj. It could be the case that this
measured distance is consistent with the range of distances between faces f,, and f,, but
only if the patches are inside of small regions on the candidate surfaces. Now consider
what happens when adding another patch surface pairing, (Pk, f,,), to an interpretation

that ;lready includes (P,, f,,) and (P, f,). Our constraints permit adding this pairing
only if the distances dik and( dk are consistent with the range of distances between fu, f.
and f,,, f,,, respectively, hi doing this, however, it uses the ranges of distances possible
between any pair of points on these faces. It does not take into account the fact that
only small regions of f,, and f, are actually eligible by previous patch-surface pairings.

Because of this decoupling of the constraints, the fact that all pairs of patch-surface
assignments are consistent does not imply that the global assignment is consistent. To
determine glob;d consistency, we solve for a transformation from model coordinates to
sensor coordinates that maps each of the sensed patches to the interior of tile appropriate
face. There are many methods for actually solving for the transformation, one is described
in Grimson and Lozano Prez 84 t. This iod(l test is applied to interpretations surviving
pruning so as to guaraltee that, all the available geometric constraint is satisfied. As a
side ffect. the model tcst also provides a solution to the localization problem.

When a inodel test is applied to the feasible int erpretations, two effects are noticed.
First. some locally consistent interpretations are discarded as being globally inconsistent.
Second. of the remaining interpretati(ons. many are observed to be almost identical,
differing, for exainple, only in the assignmnit of one or two data points to nearby faces.
To get a more accurate picture of the effectiveness of the reco lgition technique, we can
cluster the interpretations that satisfy the model test on the basis of their associated

• -. -. i i - .. , ... - i - / i l i . .. - ' . ". .. . i . - i .. - , .. i : ." .- , " / . . " . . '- . l] ' -. i.- .- /
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Figure 12. The constraints are recoupled. With each face, we associate a base vector bi, a
tangent vector t, and a normal vector n i . Then any point on a tace can be represented by
b, at4 for sonic a between 0 and the length of the edge.

pi - p 2 = d 12 = b, + ait - bj - a 2 t. (1)

As in the earlier case, we know that we can measure d 1 2 . Because of measurement error,
however, the measured points P and P2 may not lie exactly on the object edges and as
a consequence. what we can measure is

d*2 = b, + alt, + ul - b, - a 2 tj - U2

where u, and u2 are measurement errors whose size can be bounded. We can also

nicasire the suirface normal at the point P, say n. which in the case of perfect data
would equal n,. In general. we will only know that n* is within somne specified angle of

I.

We can compute

*n = M12

baed on our meaiisurements. We know m12 is an estimate of
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Figure 11. The constraints are decouplcd. Consider matching point P, to face fu. point Pj to

face Jr, and point Pk to face f. These assignments are pairwise consisternt. and the sections of

the faces that are feasibie locations for the sensed points are indicated by the sections labeled

ij, etc. The assignment is not globally consistent, however, as indicated by the fact that the

segments for face f, and f, do not overlap.

where t, is the length of the edge. Similarly, a point P2 on face fj can be represented by

p2 = bj + altj a2 E 10, tj].

The vector between two small measured patches is given by

• ~ ~~ ~~. ... .............-.--.-..... °- ..... ;-.--'-'"V- ---.... .. 7" .- '
. ......... :...',.. _ . . ......... ,.... .. ,.. ..-" .... ..... " " u. . "
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of the data obtained arises from objects on the walls, such as bookshelves, or between

the robot anl the walls, such as colunuis. The algorithin first fits line segments to the
range data and attempts to match these line segments to wall segnients. After matching,
the robot can solve for its position in the room.

5. Coupled Constraints

As we noted earlier, tile decoupled constraints typically prune most of the non- symmetric
interpretations of the data, but they are not guaranteed to reject all impossible interpre-
tations. Consider Figure 11, for example. Consider matching point Pi to face f,,, point
P, to face f,, and point Pk to face f, ,. These assignments are pairwise consistent, and
the sections of the faces that are feasible locations for the sensed points are indicated
by the sections labeled ij, etc. The assignment is not globally consistent, however, as
indicated by the fact that the segments for face fA and f, do not overlap. Thus, since
tile points are pairwise consistent with the candidate faces, they are accepted as part
of a feasible interpretation, even though clearly they are not. Using the decoupled con-
straints, it is only after the model test is applied to interpretations surviving pruning
that all the available geometric constraint is exploited. For the case of a single object,
this merely implies some inefficiency. For the case of multiple, overlapping objects, we
may actually miss a correct interpretation. For example, a locally consistent (but glob-
ally inconsistent) interpretation of length M will cause us to ignore a globally consistent
interpretation of length m < M. We would not discover our error until the model test is

applied after pruning of the interpretation tree.

One solution is to interdigitate the model test with the tree generation stage. That
is. whenever we reach a leaf of the interpretation tree, we apply the model test to ensure
that the interpretation is globally consistent. If it is, then we update our global counter
MAX. and continue. If it is not, then we continue our search with the current value
of MAX. The problem with this method is that it may be computationally expensive.
As we stated. the purpose of finding effective local constraints is to enable us to avoid
applying an expensive model transformation, except when necessary.

An alternative solution is to find constraints that maintain global consistency with-
out requiring an explicit model transformation. One such set of constraints is developed
below for the two-dimensional case, and then extended to three dimensions.

5.1. The Coupled Constraints in Two Dimensions

Suppose we consider two edges of an object, oriented arbitrarily in sensor coordinates, as
shown in Figure 12. With each edge we will associate a base point, defined by the vector

b,, a unit tangent vector ti, which points along the edge froni the base point, and a unit
normal vector ni. which points outward fron the edge. Thus, the position of a point P
along edge fi in this coordinate system is given by

p, b, + oti a, E 10, ti]

- .O . . .- % ' -' . . . . .° " - .. ° . .°. ."% ,- .° .. ' .' .'., . .' . " . - ° ." . -'" -% - . - . .° " . .° , ° ' .o.- .." . . " . . '
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a

Figure 10. Three dimensional ranige data with partial verification. (a) Original scene (b) range
data whcre brightness encodles height, (c) planar patches with representative points, (d) legal
interprctationi silperiml)osed on range data (filled in circles are data points accounted for), and -

(c) interpretations that pas~s verification.
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comluter controlled mirrors. A Lisp machine identifies the xy position of points on the

scene illuminated by the laser. The zy positions of these points are then us d to compute

the height above the plane of points intersecting the plane of light. Two lasers stripes,

originating on opposite sides of the camera, are used so as to allow sensing in areas that

would be shadowed for a single laser.

The data obtained from the ranging system is dense along each stripe, but the

distance between stripes is Um(ler program control. The data used in our experiments

(see Figures 3 and 4) were taken at a resolution of 0.03 cnm in the vertical direction and

0.12 cm in the horizontal direction. The resolution in (epth of our data is approximately

0.025 cm.*
Once the depth map is obtained, we preprocess the data to obtain planar patches.

A least square planar fit is done at every data point. Regions are then formed whose

normals are within a user specified angle from some "se(ld" normal. Many techniques

have been developed for obtaining planar regions for range data, e.g. [Faugeras, Hebert,

Pauchon 83], any of these would also be applicable here.

As in the edge fragment case described earlier, we can exploit our knowledge of the
extent of the planar patches to more tightly constrain the matching process. We do

this by selecting, within each )lanar region, four representative points that span the xy

range of the region (see Figures 3 and 4). The matching algorithm is applied to these

representative points and their corresponding normals. As in the case of edge fragments,

we require that all four points be assigned to the same model face.

In some cases, the algorithm will produce several very different interpretations that
account for the same number of data points. In those cases some type of verification

[ €is required. Two simple types of verification tests available for range data are: (a) test
that the computed position and orientation of the model does not have it penetrating

the known support surface, and (b) make sure that there are no known patches whose

xy projection lies on the localized object but whose z value is less than that indicated by

the model. These tests are relatively easy to implement and are effective in many cases

(Figure 10).
Our testing with the range data has been limited to a few objects, such as the

wedge in Figure 10, in rather complex environments. The combined preprocessing and

recognition time for these examples is approximately two minutes but, typically, only

about 30 seconds of that is recognition time. It is the case, however, that the matching

time grows fairly rapidly with the complexity of the model. This growth is due to the

relative weakness of the three -dimensional constraints compared to the two-dimensional

constraints. We expect that the Hough preprocessing will help reduce this problem, but

we have yet to test the three-dimensional preprocessing.

4.7. Range Data from an Ultrasonic Sensor

Michael Drumheller [Drumheller 84] has developed a modified version of time algorithm

described above and applied it to range data obtained from an unmodified Polaroid

ultrasonic range sensor. The intended application is navigation of mobile robots. The

system matches the range data obtained by a circular scan from the robot's position

-'- towards the walls of the room. The robot has a map of the walls of the room, but much

The sensor has a depth resolution of about 1 part in 500 over a range of 12 cm.

. .... . ....... . . . . -. . '-p-'D .. . . . _.
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We have also tested the algorithn in situations where the sign of tile filtered image

could be used to determine the edge normal reliably. The algorithm performs substan-
tially better under these circumstances.

With or without the complete normal, the algorithm succeeds in locating the desired

object in images where the edge data from any single object is very sparse (see Figures

I and 2). To test the reliability of the algorithi on real data. we ran the following set

of tests. A carton containing a total of eight parts selected from three different types of

parts (two types are shown in Figures 1 and 2), was placed under a camera. The carton

was arbitrarily perturbed to randomly orient and overlap the parts and the recognition

process was then applied. This process was repeated 100 times, and in each case an

instance of a selected object was correctly identified and located in the image. The

number of nodes of the interpretation tree actually explored in solving this problem was

found to vary by up to an order of magnitude, depending on the difficulty of the image,

but in al cases a correct interpretation was found.

The time to perform the recognition on this class of problems using the method

described in this paper varies significantly, depending on the complexity of the problem,

whether the complete normal is available and whether the heuristic techniques of section

4.2 are employed. In all cases, the preprocessing to obtain edges is common. In our

current implementation it takes approximately 30 seconds of elapsed time on a Symbolics

3600 Lisp Machine to process an image to obtain 80 edge fragments; this time, however,

can be reduced by an order of magnitude by using existing hardware. We do not include

this time in the times quoted below (all times are for our Lisp implementation).

When the sign of the normal is unknown and without using the Hough preprocessing,

difficult cases such as in Figures 1 and 2 require a minute or more of matching time. In

situations where the overlapping is slight, the matching time is closer to 30 seconds. This

is almost twice as long as the performance of the algorithm on the same images when

the sign of the normal is available. In this case, the typical matching time for lightly

overlapped parts is around 10 to 15 seconds, with the worst-case times ranging from 30
seconds to minutes.

The effect of the Hough preprocessing is to make the recognition time nearly in-

dependent of the complexity of the scene. In our testing, we used the full set of X, y, 9
parameters for clustering the model/data edge-pairings. The Hough preprocessing itself

takes on the order of seven or eight seconds for 80 data edges and 30 model edges. The

recognition time after that is only from two to four seconds. The total recognition time

is usually around 10 seconds. This is slightly longer than tile time required by simple

cases without the Hough preprocessing, but an order of magnitude better than the time
required for the worst cases.

4.6. Range Data from Structured Light

We have applied our algorithm to locating a simple three dimensional object in cluttered

scenes. using relatively dense range data. The range data was obtained from a laser-

striping ;ystem developed by Philippe Brou at our laboratory. The sensor is a vidicon

camera above the scene. On either side of the camera there is a low- power laser at a

known distance and angle from the camnra. Each laser beam is converted into plane of

light by a cylindrical lens; the resulting planes are scanned across the field of view by
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rotations of the object. Clearly, additional sampling of the object should reduce this
ambiguity.

4.5. Edge Fragments from Gray-Level Images

A modified version of the algorithm described here has been applied to locating a complex

object in cluttered scenes, using edge fragments from images obtained by a camera located

(almost) directly overhead. The images are obtained under lighting from several overhead

fluorescent lights. The camera is a standard vidicon located approximately five feet

above the scene. The edge fragments are obtained by linking edge points marked as zero

crossings in the Laplacian of Gaussian -smoothed images [Marr and Hildreth 801. Edge

points are marked only when the gradient at that point exceeds a predefined threshold;
this is done to eliminate some shallow edges due to shadows. The algorithm is applied

to some predefined number of the longest edge fragments.

This application requires extensions to the general method. One point to notice

is that we have large edge fragments rather than small patches; therefore, we can use
the length of the fragments as an additional local constraint. In our implementation,

we do not assign edge fragments to model edges that are shorter than the measured

fragment; we do assign small edge fragments to long model edges. More importantly, we
could compute whole ranges of measurements from the edge fragments (as we do from

model edges) rather than the single values from point-like patches we assume elsewhere.
The constraints would then require that the measured range be contained in the model

• *range. An easy way of approximating these stronger constraints is by treating the edge

as two small patches located at endpoints of the edges, but constraining both patches
to be assigned to the same model edge. Both of these approaches can be generalized to

three-dimensions.

The most difficult problem faced in this application is that we cannot reliably tell
which side of the edge contains the object, that is, the edge normals can be determined
only up to a sign ambiguity. Although region brightness can sometimes be used to

separate figure from ground, it is not always reliable, for example, a light-colored object
on a dark background. The algorithm can be modified to keep track of the two possible

assignments of sign and to guarantee that all the pairings in an interpretation have

consistent assignments of sign. This approach, however, causes a noticeable degradation
in the performance of the algorithm, since it reduces the pruning power of the constraints.

Fortunately, we can use another form of the constraints to reduce the effect of this

anbiguity.

As long as two edges do not cross or are not collinear. at least one edge must be
completely within one of the half planes bounded by the other. This means that the

components along one of the edge normals of all possible separation vectors will always

have the same sign. Given a tentative pairing of two measured edge fragments and two

model edges, we can use this property to pick the sign of one of the normals. The angle

constraint between normals can then be used to consistently select the signs for other

edges in that interpretation. Of course. the sign assignment is predicated on the initial

pairing being correct, which it may not be, so we have lost some prining power in any

case.
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Figure 9. Simulations of overlapping three dimensional parts. Simulations similar to those
shown in Figure 8 were performed in three dimensions, with overlapping parts such as those
shown above.

finding the correct interpretation. When the model test is applied after the generation
of the IT, it will exclude the m + I match, and this will cause the process to find no
consistent interpretation.

Since the technique is much faster, it is of interest to know how often such a method
will fWi to find the correct answer. Thus, in our simulations of 3D overlapping parts,
we have applied this faster, but less reliable technique, and recorded the percentage of
cases in which no interpretation was found. The data reported in Table 11 illustrate
the results of running 100 simulations for each of the ranges of error listed. As in the
2D case, once the interpretations, together with their associated transformations, were
found, they were clustered on the basis of their transformations, and the statistics of
histogramming these clustered interpretations are reported. As well, the percentage of
cases in which no interpretation was found are also listed.

We note that the algorithm appears to be less effective at finding unique interpre-
tations of three- dimensional objects than of two-dimensional ones. hi part this follows
from the slightly weaker form of the constraints in three dinmensions, especially when us-
ing only points of contact. rather tha-n extended regions. As well, objects which exhibit
partial symmetries (especially relative to the amomnt of error inherent in the sensory
data) can frequently lead to multiple interpretations, when using sparse sensor informa-

tion. For example. for the case illustrated in Figuire 0, if the sensory data all happen to
lie on the block- like central portion of the object, and (10 not sample the projecting lip,
the algorithm will discover several inte'rpretations of the data, consisting of symmetric

'CL



15

that the technique can reliably recognize and locate overlapping two -dimensional ob-
jects, e'vvl when only using a few points of sensory data obtained along the silhouette

-:-. of the overl;qping parts. As the amount of the overlapping of the parts becomes more

extensive, the algorithm may begin to find more than one feasible interpretation, but

the number of solutions degrade gracefully. In general. as long as enough points are

sensed on the desired object. the algorithm can locate it. Furthermore, the time to do

the recognition and localization is relatively low: on the order of two or three seconds on

a Symbolics. 300 Lisp Machine. The time grows when the measurement error grows, in

the manner illustrated by the simulations reported in [Grimson and Lozano-P6rez 84].

4.4. Simulations with Three-Dimensional Data

We have performed similar simulations with overlapping three dimensional objects, each

with six degrees of freedom, as illustrated in Figure 9. In this case, a number of polyhedra

are overlapped at random, and the position and orientation of a number of data points

are determined by computing the outermost intersection of randomly-chosen rays with

the polyhedral boundaries. The position and orientation information is then corrupted

by random errors.

The data reported in Table II were obtained using the following technique. Two

objects were overlapped at random, and fifteen points of contact were chosen at random

and then corrupted by random error whose magnitude was bounded by the limits indi-

cated in the table. In this case, the diameter of the object was 3.05 units, so that an

error in positional measurement of 0.15 is roughly 4 percent of the total diameter of the

object.

In the two dimensional case reported in Table I, model tests were directly intermixed

with the generation of the tree of interpretations. That is. whenever a leaf of the tree was

reached, a model transformation was computed and the sensory points were checked to

ensure that the transformation did correctly transform the points onto their associated

faces. While this ensures that the use of the external variable MAX will not exclude

any correct interpretations, the algorithm is potentially slow because of the expense of

computing and applying model transformations. A faster but less reliable alternative

is to generate the tree of interpretations, using the variable MAX to cutoff search as

before, but in this case to simply collect all pairwise consistent interpretations, ordered

by the number of non-null matches. That is, any leaf in the IT is added to a list of

possible interpretations, ordered by the number of real matches in the interpretation.

Once all such interpretations of the IT have been collected into sets of equal length (as

defined by the number of non -null matches), we apply a model test to each interpretation
of a set, starting at the set of interpretations with the largest number of real matches,

and continuing until at least one interpretation is judged to be globally consistent. The

interpretations from the corresponding set that pass a model test constitute the set of

interpretations of the data.

While such a technique is clearly expected to be faster than applying a model test at

each leaf of the tree, it is not guaranteed to find the correct interpretation. In particular,

suppose that the correct interpretation has m real points of contact, but that the pairwise

constraints allow an interpretation with m + 1 non -null matches to pass through. This

will cause MAX to be at least m + 1, and may therefore prevent the search process from

..............................................

......................................- h....... ....
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polygon boundaries. The position wd normal information is then corrupted by random

errors designed to simulate the effect of imperfect sensors (see Figure 8, the small circles

indicate the sensed points).

a

0 C

0

0
0
0

b C

Figure 8. Simulations of overlapping two dimensional parts. A collection of copies of objects

selected from the set illustrated in part (a) was overlapped at random, as illustrated in part (b).

Points of contact were selected at random along the perimeter of the overlapping group, and

corrupted with random error. The circles in part (b) indicate an example of sensory data. The

recognition and localization algorithm then searched for interpretations of the data consistent
with a specific model, as shown in part (c).

For example, the data reported in Table I were obtained by the following simulation
technique. Three objects, two of which were not the object of interest, were overlapped
at random. Given the overlapping parts, twenty points of contact were chosen at ran-
dora and then corrupted by random error whose magnitude was bounded by the limits
indicated in the table. Note that the diameter of the object was 2.506 units, so that an
error in positional measurement of .1 is roughly 4 percent of the total diameter of the
object. Once the interpretations, with their associated coordinate transformations, were

found, they were clustered together into distinct interpretations. To do this, transforms
whose difference in rotational angle was less than - and whose translational components
differed by less than 0.025 were considered to be the same. The data in Table I lists the
results of running this simulation one hundred times for each of the error ranges illus-
trated. Similar results using arbitrary numbers of overlapping parts, and using different
numbers of contact points have also been obtained.

The algorithm performs quite well in this application, even without using the heuris-
tic techniques described earlier. The extensive simulations reported in Table I indicate

....... .. .."
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Figure 7. Hough transform preprocessing establishes initial pairings between model edges and
data edges.

are clustered on the basis of a coarse quantization of these parameters. Each cluster
associates with each data edge a set of candidate model edges; this is precisely what
defines the interpretation tree for our method.

The two-stage matching method, interpretation generation followed by model test,
is then applied to the largest clusters until a valid interpretation is found. The effect of
the initial clustering is to drasticaly reduce the size of the search space at the expense

of initial preprocessing. Typically, data edges in a cluster are associated with only one
or two model edges out of the possible thirty or forty edges in the model. Therefore, the
branching factor in the interpretation tree is cut down from thirty or forty to one or two.

Predictably, this has a noticeable impact on performance. Many of the pairings, however,
are still spurious, due to noise and the fact that the parameters do not completely
characterize position and orientation. Therefore, it is necessary to use the null-face
technique described earlier.

We have tested the resulting method on simulated data as well as on actual data
from three types of sensors. The results are described in the following sections.

4.3. Simulations with Two-Dimensional Data

We have done extensive testing of the algorithm with simulated two-dimensional data of

the type illustrated in Figure 8. A number of polygons, representing the outlines of parts,

are overlapped at random. The position and orientation of a number of data points are
determined by computing the outermost intersection of randomnly chosen rays with the

....o
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The first heuristic technique avoids considering some subsets of the measurements

that are unlikely to lead to the longest interpretation. In particular, once an interpre-

tation I is longer than some threshold, it ignores interpretations in which data points

matched to faces by I are matched to the null face. This heuristic can be easily incorpo-

rated in the depth- first tree exploration we use. Our experience is that this technique

when used with a conservative threshold is quite effective in pruning the search without

noticeably increasing the failure rate. We have used this techniques in all our experiments

with real data reported later in this section.

The other heuristic technique is based on the Hough transform [Ballard 81]. It

does not affect the search algorithm, instead it drastically reduces the size of the initial

interpretation tree. The method works as follows for two-dimensional data. We are

given a set of measured edge fragments and a set of model edges. For each pair of

model edge and data edge, there is a rotation, 0. of the model's coordinate system that

aligns the model edge to the data edge. Then, there is a range of translations, z, y,

that displace the model so that the chosen model edge overlaps the chosen data edge.

If the pairing of model edge and data edge is part of the correct interpretation of the

data. then one of the range of combinations of x, y, 0 obtained in this way will describe

the correct transformation from model to sensor coordinates. All the model/data edge-

pairings corresponding to that legal interpretation will also produce the correct x, y, 9

combination (modulo measurement error). We keep track of the range of x, y, 0 values

produced by each model/data edge-pairing; this can be done with a three-dimensional

array, with each dimension representing the quantized values of one of x, y, and 0.

Clusters of pairings with nearly the same values define candidate interpretations of the

data (see Figure 7).

This technique can serve as a recognition method all by itself [Ballard 81], but in that

context it has some important drawbacks. One problem is simply the growth in memory

requirements as the degrees of freedom increase. A related but more important problem

is the difficulty of characterizing the range of transformations that map the model into

the data in three dimensions. Consider the case of mapping a planar model face into

a measured planar patch. The orientation of the model coordinate system relative to

the sensor coordinate system is specified by three independent parameters, but the con-

straint of making a model plane parallel to a data plane only provides two constraints

(rotation around the plane normal is unconstrained). Therefore, each model/data pair-

ing generates a one parameter family of rotations. Associated with each rotation, there

is a range of displacements that manage to overlap the model face with the measured

patch. Computing these ranges exactly is quite difficult and time consuming.

S-. What we have done is to use the Hough transform as a coarse filter to produce

an iuial set of possible model/data pairings - not to localize the objects. First, each

potential model/data pairing is used to define a range of parameter values related to the

position and orientation of the model relative to the sensor. These parameters, however,

need not be the full set of parameters that define the coordinate transform between

model and sensor. hi two dimensions. for example, the parameter - A may contain only

the rotation angle or both the angle and the magnitude of the displacement vector, or

the full set of angle and displacement parameters. In three dimensions, we can use, for

example. the magnitude of the displacement vector and the two angles of the spherical

coordinate representation of sonic fixed vector on the model. The model/data pairings

..... -
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the sensed data. The following simple method guarantees that we find only the most
complete interpretations.

The IT is explored in a depth-first fashion. with the null face considered last when

expanding a node. In addition. the model test is applied to any complete interpretations,

that is, any that reach a leaf of the IT. i'his choice of tree traversal has the effect of

considering the legal interpretations essentially by length order (where length is taken to

be the number of non-null faces paired with sensed data by the interpretation).

Now, assume an external variable, call it MAX, that keeps track of the longest valid

interpretation found so far. At any node in the tree, let M denote the number of non-null

faces in the partial match associated with that node. It is only worth assigning a null face

to point Pi, if s - i + M > MAX: s is the total number of sensed patches. Otherwise, the

length of the interpretations at all the leaves below this node will be less than that of the

longest interpretation already found. If we initialize MAX to some non-zero value, then

only interpretations of this length or longer will be found. As longer interpretations are

found, the value of MAX is incremented, thus ensuring that we find the most complete

interpretation of the data. Note that if an interpretation of length s is found, then no

null -face assignments will be considered after that point.

Looking for the longest consistent interpretation allows the matching algorithm to

overcome the most severe combinatorial problems of the null-face scheme, but it makes

the algorithm susceptible to a potentially serious problem. One of the bases of our

approach to recognition has been to avoid any global notion of "quality" of match. We

have simply defined generous error bounds and found all interpretations that did not
violate these bounds. Once all the valid interpretations have been found, a choice between

them can be made on a comparative basis rather than on some arbitrary quality measure.

The modified algorithm, however, discards valid interpretations that are shorter than the

longest valid interpretation. Therefore, a long interpretation on the margin of the error

bounds can force us to ignore a shorter interpretation that may be the correct match.

We know of no general solutions to this problem. Quality measures such as how

well the transformation maps the measured patches onto the faces [Faugeras and Hebert

83J are useful but also susceptible to error. Our choice would be to consider all the valid

interpretations whose length is within one or two of the longest interpretation and which

are not subsets of a longer interpretation. This is also heuristic. We have avoided this

issue in the rest of the paper and simply coped with the occasional recognition error.

4.2. Heuristics for Limiting Search

The presence of overlapping objects dramatically increases the search space for recog-

nition. One effect is simply the need for more measurements to ensure that there are

enough measurements on the object of interest. The other effect is the need to consider

many alternative subsets of the measurements. Even when using local constraints and

focusing on longest interpretations, complete exploration of the interpretation tree is
extremely time consuming. We have achieved a significant improvement in recognition

time by using two heuristic techniques. both of which reduce the size of the interpretation

tree that is explored. Both of these techniques may cause the rec'.)gnition process to fail

but. in most applications, one prefers to reduce the recogintion time even at the expense

of occasional failures.

-... "... .-..... . ........... - - - -.... " " .
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transformations. In particular, we cluster solutions whose direction of rotation is within
1.5" of each other. The number of distinct interpretations is greatly reduced.

4. Data from Overlapping Objects

The method described in the previous section assumes that all the data comes from a
single object. In this section we show how the method can be extended to handle data
from multiple overlapping objects.

Assume that all of the sensed patches, except one. originate from the same object.
Let Pi be the extraneous measurement. Usually, it will be impossible to find an inter-
pretation that includes this measurement. But, not all interpretations will fail at level
i in the tree; it may require adding a few more data points to the interpretation before
the inconsistency is noted. It is only when all possible single-object interpretations fail
that we are certain to have at least one extraneous data point.

It may still be possible to find an interpretation of all the data, including extraneous
measurements, that is consistent with the pairwise constraints. It is even possible, by
a fortuitous alignment of the data, for interpretations involving extraneous data to pass
the model test. There is nothing within the approach described here to exclude this
possibility. Of course, the larger the number of patch-surface pairings in the interpre-
tation. the less likely this is to happen. In many cases, it may be necessary to verify
the interpretation by acquiring more data. We will not pursue this point here; we will
assume, instead, that the presence of extraneous points will cause all interpretations to
fail either the local constraints or the model test.

4.1 Generating Interpretations for Subsets of the Data

One straightforward approach to handling extraneous data points is to apply the recog-
nition process to all subsets of the data. possibly ordered by some heuristic. But, of
course, this approach wastes much work determining the feasibility of the same partial
interpretations. Can we consider all subsets of the data without wasting the work of
testing partial interpretations? The simple way we have done this is by adding one more
branch to each node of the interpretation tree., IT. This branch represents the possibility
of discarding the sensed patch as extraneous. Call this branch the null face. The remain-
der of the process operates as before except that. when applying the local constraints,
the null face behaves as a "wild card"; assigning a patch to the null face will never cause
the failure of an interpretation.

It is easy to see that if an interpretation is legal. the process described above will
generate all subsets of this interpretation as leaves of the tree. This is true of partial
interpretations as well as full interpretations since every combination of assignments of
the null face to the sensed patches will still produce a valid interpretation.

The same condition that ensures the validity of this process guarantees its ineffi-
cicncy. We do not want to generate all subsets of a valid interpretation. In general,
we want to generate the interpretations that are consistent with as much as possible of

. . . . .
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d12 •ni.
f-" .

We can compute bounds on the range of errors about the measured value so that
we know that the true value of d 12 • ni lies in the range

d1 2 ni E [M12 - E, M 12 + El

where c can be computed straightforwardly [Grimson and Lozano-P6rez 84].
From (1) we have

d12 "ni = (bi - bj).ni - a 2 (t3 .n). (2)

The first term on the right is a constant and is a function of the object only, independent
of its orientation. Thub, equation (2) provides us with a constraint on the value of a2.
In particular, if tj = 0, then this assignment of patches to faces is consistent only if

'? " (bi - bj).- ni E IM12 - C, M12 + E].

If this is true, then a 2 c.-n take on any value in its current range. If it is false, then
the assignment of these patches P1,P 2 to these faces f, fj is inconsistent and can be
discarded.

In the more common case, when t' • ni $0, we have

a2 t • ni E [(b, - bj). ni -m12 -, (b, - bj) " -nin 12 + E]

Thus, we have restricted the range of possible values for a 2 and hence the set of positions
for patch P2 that are consistent with this interpretation.

Similarly, by using the estimates for d1 2 • nj obtained from the measurements, we
can restrict the range of values for al and. thereby, the position of P1.

We can also consider the coordinate-frame--independent term

d12 ti = (b 1 - bj). t + al - a 2 (ti.ti). (3)

As before, we can place bounds on the measured value for d12 • ti when error in the
sensory data is incorporated. Then, given a legitimate range for a, we can restrict the

range of a2 and vice versa. A similar argument holds for d 12 • t2 -.
These constraints allow us to compute intrinsic ranges for the possible assignments of

patches to faces. The key to them is that we can propagate these ranges as we construct
an interpretation. For example, suppose that we assign patch P to face fi. Initially, the

range for a, is

a, E [Olt).
We now assign patch P2 to face f,, with

a2 E [0,e41
initially. By applying the constraints derived above, we can reduce the legitimate ranges
for these first two patches to sonic smaller set of ranges. We now consider adding patch
P3 to face fk. When we construct the range of legal values for a 3 , we find that the
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constraints are generally much tighter, since the legal ranges for a, and a2 have already

bmn reduced. Moreover. both a, and tk2 must be consistent with a3. so the legal range

for this patch is given by the intersection of the ranges provided by the constraints.

Finally, the refined range of consistent values for a3 may in turn reduce the legal ranges

for al and a2 and these new ranges may then refine each other by another application of

the constraints. and so on. In other words, the hgal ranges for the assignment of patches

to faces may be relaxed via the constraint equations, and in this manner, a globally

consistent assignment is maintained. Of course, if any of the ranges for ai becomes

empty, the interpretation can be discarded as inconsistent without further exploration.

We thus have the basis for a second recognition and localization technique. As

before, we generate and prune a tree of interpretations, by assigning sensed patches

to faces of an object. Here there are two types of constraints. The first is that the

angle between two sensed norials, modulo error in the sensor, must be consistent with

the angle between the corresponding face normals, as in the previous case. The second

involves the relaxation of mutual constraints on the range of positions on a face consistent

with points of contact on those faces, as described above.

5.2. Extensions to Three Dimensions

The constraints derived in the previous section for the two dimensional case can be

extended to three dimensions as well. In this case, we represent points on a face by

bi + aui + fovi

where bi is a vector to a designated base vertex of the face, and uj and vi are orthonormal

vectors lying in the plane of the face. Furthermore, a arid 0 are constrained to lie within

some polygonal region, defined by the shape of the face. In the simplest case,

aE [0, l E [0,B1
Given two points of contact, P and P2, assigned to faces f, and f3, the vector between

them is given by

d12 = bi - b3 + alui + fl3vi - a2Uj - / 2 vi.

As before, we can measure the component of this contact vector in the direction of the
surface normals recorded at each patch. This leads, for example, to an estimate for

d12.n b - biN ) .n, - o2 (uj. n, 02 (Vi. ) 4

As in the previous case, the term on the left hand side of equation (4) is measurable, and

given bounds on the errors in the sensor, actually defines a range

d12 "n1 E [f, h).

The first term on the right hand side of equation (4) is a constant, defined independent

of the coordinate system by the relationship between the two faces. Thus, equation (4)

essentially reduces to a linear constraint of the form

a2 (uj.- n,) + 2 (vi"- nj) E [(b, - bi) .n - h. (b, -bi) .n -
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Figure 13. The intersection of legitimate face ranges for three dimensional data.

A similar expression holds for the other normal nj.

These constraints actually describe a region in a two-dimensional space spanned by
a and ~,as illustrated in Figure 13. Given a current polygonal region of consistency for
a and 3,we can intersect the region with this new range, to obtain a tighter region of
consistency, as shown in the figure. Similar to the two dimensional case, as additional
sensed patches are considered, the constraints they generate may be propagated among
one another. If any polygonal region corresponding to a sensed patch vanishes, the
interpretation is inconsistent and the procedure can stop exploring that portion of the
interpretation tree.

Clearly both the two dimensional and the three dimensional constraints developed
here can be extended to deal with null faces in the same manner as the first algorithm.

5.3. Testing

We have tested the range propagation method on simulated data as well as on actual
data. We will first describe these tests and then discuss our conclusions from these
experiments.
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We have done extensive testing of the algorithm with simulated two-dimensional

data of the type illustrated in Figure 8. As with the results reported in Section 4.2,

a number of polygons. representing the outlines of parts, were overlapped at random,

with random orientation. and with random offset relative to the origin of the sensor's

coordinate system. The position and orientation of a predetermined number of data

points were determined by tracing along equally-spaced rays from the origin of the coor--

dinate system, and computing the outermost intersection of those rays with the polygon
boundaries. The position and normal information were then corrupted by random errors

designed to simulate the effect of imperfect sensors. The number of interpretations ob-

tained under these sensing conditions, using the propagation of ranges of feasible contact
were very similar to those obtained in Section 4.2.

One of the interesting questions to consider for the range propagation technique is to
what extent the implicit recoupling of the local constraints reduces the anount of explicit

exploration of the interpretation tree. To test this, we ran the following set of simulations.

For each of several ranges of sensing error, 100 simulations of the normal recognition and
localization process were run. The number of nodes in the interpretation tree that were
explicitly explored were recorded for each run. Then, using tle same sensory data, a

second run of 100 simulations was performed, now using the range propagation technique

of section 5. Again, we recorded the number of nodes of the interpretation tree that were
explicitly explored. In Table III, we record the median number of nodes explored, over the
set of 100 runs, for both the normal and the range propagation techniques. Finally, we

consider the ratio of the number of nodes explored using the range propagation technique,
to the number of nodes explored for the same data using the normal technique. Here, we

E record the minimum, mean, median and maximum values for this ratio, computed over
the entire 100 runs, as well as the standard deviation of this distribution of ratios. The

results are shown in Table III.
We note that since the error ranges associated with each constraint differ between the

normal constraints and the coupled constraints, it is possible for the coupled constraints

to actually be less effective in removing portions of the interpretation tree. This is
especially noticeable for large values of error in the surface normal. Overall, we see
from the results shown in Table III, that the average number of nodes explored in the

interpretation tree is not significantly reduced from the normal method. Given the
additional overhead associated with computing and intersecting the ranges of feasible
positions along edges, it may not be worth while to use the range propagation method.

We note that these results may differ when considering objects whose faces do not all

form right angles with one another. To test this, we also ran a smaller set of simulations
with a randomly constructed object, shown in Figure 11. The results, summarized in

Table III suggest that this is not a critical factor.

6. Extensions

In this paper we have described a framework for a class of recognition algorithms. We
considered two major variations depending on the class of constraints employed; some mi-

nor variations were employed in dealing with different types of sensors, notably grey -scale
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edges and laser range data. These variations, however, share many common assumptions
as to the structure of the search for consistent matchings. We have assumed, for example,
that we match some subset of the data elements against all the model elements at once;
that we obtain all (longest) consistent interpretations; that the objects have comparable
number of degrees of freedom as the measurements. Beyond these algorithmic assump-
tions, we have preserved sonic assumptions about our domain. We have assumed, for
example, that the data is made up of simple local measurements such as surface patches;
that the model is made up of planar faces: that the dimensions of the objects are fixed and
known a priori. All of these assumptions can be relaxed while retaining the characteristic
flavor of the approach presented here. In this section we briefly explore these extensions.
We have implemented all of these extensions with relatively minor modifications to the
program code.

6.1. Partial Models - Features?

The size of the search space given an object with n faces (and the null face) and s sensed
patches is (n + 1)'. We can reduce the size of the space by reducing the number of sensed
patches and/or the number of model faces. If the input data is relatively dense, as it
is for grey-scale edges, one interesting approach is to define small subsets of the model
faces that are distinctive and match them against all the available data patches. Because
of the non-linear nature of the increase in search space size, it is usually more efficient
to do two matches with half as many faces than a single match with all the faces. This

may not be true, however, in cases where the pruning constraints are very efficient.

Having found one match for a partial model, the rest of the model can be used to
predict where other faces may be found. The model test can be used to verify these
predictions. One difficult problem encountered here involves deciding what counts as
positive and negative evidence for evaluating a hypothesis and how to combine this
evidence to accept or reject a hypothesis. These decisions depend strongly on how reliable
the sensor is and a priori expectations about the data.

The use of a partial model gains some of the combinatorial advantages of feature-
based systems without requiring preprocessing of the data. Of course, this approach also
inherits some of the disadvantages of feature-based systems. In particular, if the data is
very sparse then there is a risk that none of the data corresponds to the selected model

subsets.

Figure 14 shows some examples of matching edge data to partial models.

6.2. Choosing the first interpretation

Most approaches to recognition seek a single interpretation of the data, either the first
consistent one or the best under some measure. In contrast, the approach to recognition
described in this paper has opted for finding all longest consistent interpretations of the
data. This choice was made both for reasons of generality and to avoid having to define
an absolute measure for "goodness of match". This approach may require considering
substantially more pairings of data and model elements than an approach that settled
for the first acceptable match.
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Figure 14. Exanples of matches to partial models in grey-scale edges. Part (a) shows a set of
grey-level edge fragments. Part (b) shows a partial model and part (c) shows the interpretation
of that partial model, both in isolation, and overlapped with the original data. Part (d) shows
a second partial model, for which no interpretation was found.
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We have experimented with a variant of the recognition algorithm that returns the
first interpretation longer than a specified threshold that passes the model test. The

difference in the number of search-tree nodes examined for this variant compared to the
one that returns all interpretations is shown in Table IV. The table also indicates the
number of times that the modified algorithm failed to find the correct interpretation
while the original algorithm did find it. A sample of the data used in these tests is shown
in Figure 8.

b a

Figure 15. Examples of data used when choosing the first acceptabie interpretation. Part (a)
shows a random, non-symmetric part. Part (b) shows an example of data taken from a number
of overlapped parts, similar to Figure 8.

We note that in the data reported for this case, we used a slightly different sensing
technique. Each of the objects was rotated by some arbitrary amount. and then displaced
by an arbitrary vector, whose magnitude was less than some bound. Then a predefined
number of equally spaced rays were traced from the origin of the coordinate system, and

the outermost intersection of each ray with any of the objects was taken as a sensed

point. The position and orientation at this point was then corrpted by noise, and these

cornipted points formed the input to the recognition algorithm.

It can be seen from the data of Table IV that while the number of nodes actually

explored in this first-acceptable mode is significantly reduced, it appears to be at the

expense of finding the correct answer. This is with a relatively high cutoff on the number

of matches needed for an acceptable interpretation, in this case, 10 out of 20. Clearly,

as we reduce this cutoff, the nunber of nodes explored will decrease, but the number of

incorrect interpretations is liable to rise further.

There are several factors that can lead to the high percentage of incorrect interpre-
tations. One possibility is that the symmetric nature of the object used leads to incorrect

interpretations. To test this, we rani a similar set of simulations of the sort illustrated in

Figure 15. using a non-symmetric object. The results, indicated in Table IV, show that

even in this case, a significant number of incorrect interpretations can still occur. This
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suggests that partial symmetries are not the only cause of incorrect interpretations, when
terminating on the first acceptable interpretation. The basic problem is that the length
of an interpretation is not a reliable indicator of quality of match. Many of the matches,
for example, may be from one part of the object and leave another part unconstrained.

6.3. Constrained degrees of freedom

We have assumed that if the objects are constrained to lie on a plane, then the data on
each face is two dimensional. and if the objects are completely unconstrained in position
and orientation then the data is three- dimensional. In many applications, however, we
can obtain three dimensional data on objects constrained to be stably supported by a

known plane. for example. a worktable. If we know the repertoire of the object's stable
states. then we can exploit this knowledge as additional constraint to the matching
process. Given a single data patch. the only candidate model faces for matching to it are
those with similar values of the dot product between the face normal and the support
plane normal. This constraint has the effect of drastically reducing the possible matches.

This constraint is applicable even if we know that the object is not flush on the plane,
but there is a known bound on its tilt relative to the plane.

6.4. More distinctive features

If distinctive features, such as the location of holes or corners, are readily available
from the data. then the algorithm described here can still be applied to exploit the
geometric constraints between the positions and orientations of these features. The
resulting algorithm is similar in effect to the Local-Feature-Focus method [Bolles and

Cain 821.

6.5. Curved Objects

We have indicated that our algorithm is applicable to recognizing curved objects, approx-
imated as a set of planar faces. The tree -pruning part of the algorithm can be extended
readily to recognizing objects composed of planar and curved faces from sparse point-
like measurements. The decoupled constraints described in Section 3 merely compare
measured values to the ranges of distances and dot-products of normals between faces.
These ranges can be computed for curved faces: the main difference is that one gets a
range of dot products between normals, instead of a single dot product as with planar

faces.

The difficulty comes when we try to solve for the position and orientation of the
object given a candidate interpretation. The problem is that normal measurements are
coupled to position on the face. Solving for orientation and position requires, in general,
solving a numerical optimization problem. This process is slow and error prone. In fact,
planar approximations to the object model are probably the best way to get a good initial

giess for the numerical solution. Having found this solution, it is questionable whether

the possible improvement is worth the cost of the numerical iteration.

We note that the examples of grey level edges. shown in Figures 1 and 2, illustrate
the robustness of the technique in the presence of curved objects. The original object
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contains a number of slowly and rapidly curving edges. The model was constructed by

sensing the object in isolation, and fitting straight line segments to the recorded grey

level edges (zero crossings of a Laplacian of a Gaussian operator). As a consequence,

tile model is really al approximation to the actual object, as can be seen in Figure 1.

When sensing the object in different positions, there is no guarantee that the same linear

approximation to the edges will be obtained, and in fact, our empirical experience is that

the straight line approximations obtained under different sensing conditions are almost

always somewhat different. Nonetheless, the recognition technique is robust enough to

treat the differences as additional noise, and still recognize the object, as shown in Figure

1.

6.6. Free Parameters

We have assumed, throughout this paper, that models are metrically accurate, so that

measured dimensions corresponded to model dimensions. This might not be true for two

different reasons: we might be ignorant of some parameters in the sensing operation,

such as viewing distance, or we might be dealing with variable objects, such as a family

of motors. The general recognition approach we have described can be extended to deal

with some of this variability. The basic idea is that for a match of a measurement to

a model entity to be valid, we must make some assumptions about the values of all

unknown parameters, such as object scale. All the matches in a (partial) interpretation

must imply consistent values for the parameters, otherwise the interpretation (and its

descendants) can be pruned.

The application of this method to global parameters such as scale is straightforward.

It might not be so evident that this also applies to model parameters such as the distance

or angle between two faces. The distance and angle range information between faces will

be expressed as functions of the model parameters. Applying the method above requires

us to be able to invert these functions to solve for the range of legal parameters on

the basis of tentative matches between data elements and model elements. The more

complicated the relationship between model elements, the more difficult this is to do. In

particular, angular variation requires solving trigonometric equations.

We have extended the recognition algorithm straightforwardly to allow for a linear

scale factor, as illustrated in Figure 16. As might be expected. we find that the number

of nodes of the interpretation tree actually searched by the algorithm in this case is

increased significantly from the comparable case of a known scale factor. This increase

in the search space can be as large as an order of magnitude. depending on the amount of

error inherent in the sensory data. As well. the mean number of interpretations, given the

same number of data points, is slightly higher in the case of an unknown scale factor than

the case of a known one. Also. as shown in Figure 16. including an additional parameter

in the recognition process may lead to multiple interpretations, in which different values

of the parameter lead to different feasible interpretations.
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Figure 16. Examples of paramneterized two-dimensional models. A scaled version of one of the
models is intermixed with another model. The recognition algorithm correctly identifies the
object, and determines its scale factor as well as its position and orientation. Part (a) shows a
set of sampled data. and part (b) shows the interpretation of that data. Part (c) shows a second
set of samnpled data. Part (d) indicates that several interpretations of the data may be feasible.

7. Recognition as Search: Discussion

In our view of recognition as a search for a match between data elements and model
elements, the crucial questions are the size of the search space and the constraints present
between assignments. Much of the variation between existing recognition schemes can
be accounted for by the cloice' of descriptive tokens to match. Some methods rely on
computing a few very distinctive descriptors (features) that sharply constrain the identity

and/or location of the object. Others use less distinctive descriptors and rely more on
the relationships between them to effect recognition and localization.

The use of a few distinctive features sharply constrains the size of the search space.
The resulting interpretation tree is very narrow and the search process can be very
efficient. As an extreme example, to recognize a soft drink can from visual data, we
could process the image to obtain the UPC bar code, which would uniquely identify the
type of can. Moreover. knowing the position of the UPC code on the can and in the
image would allow us to determine the position and attitude of the can in the scene. Of
course, not all features will be as distinctive as a UPC code. Simpler examples might
include comers, holes. notches and other local features. The idea is that very few such
distinctive features should be needed to identify the object, and the search space can
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be effectively collapsed. Examples of techniques in this vein include the use of a few

extended features [Perkins 78, Ballard 81]. or the use of one feature as a focus, with the

search restricted to a few nearby features [Tsuji and Nakamura 75, Holland 76, Sugihara

79, Bolles and Cain 82, Bolles, Horaud and Hannah 83].

The approach of using a few distinctive descriptors is common to many commercial

systems (see. for example, [Bausch and Lomb 76. Gleason and Agin 79, Machine Intelli-.

gence Corporation 80. Reinhold and Vanderbrug 801). These systems characterize both

the measurements and models by a vector of global properties of binary images, such as

area, perimeter. elongation and Euler number. Because of their global support, these

descriptions do not extend well to overlapping or occluded parts.

Another type of recognition method relies on building elaborate high-level descrip-

tions of the measured data before matching to the model. These approaches also rely

on reducing the size of the search space by matching on a few distinctive descriptors.

Examples of this approach include, for example, [Nevatia 74, Nevatia and Binford 77,

Marr and Nishihara 78, Brooks 81, Brady 821.

Approaches that rely on a few distinctive features have some weaknesses. First, the

cost of the search has been greatly reduced, but at the expense of global preprocessing of

the sensory data. Sensors do not provide distinctive descriptors directly, the descriptors

must be computed from the mass of local data provided by the sensor. In some sensing

modalities, such as tactile sensing, searching for data to build distinctive descriptors can
be very time consuming. Second, heavy reliance on a few features can make recognition

susceptible to measurement noise. If the imaging device is out of focus, for example, so

that the image of the UPC bar code is blurred significantly, recognition may be altogether

impossible. In this case, degradation in the presence of error is not graceful. Third, useful

features are by definition sparse or they cease to be distinctive, this sparsity may be a

problem when dealing with occlusion. In our UPC code example, if some other object
occludes the UPC bar code from the sensor. we will not be able to recognize the can.

This may occur even though virtually all of the rest of the can is available to the sensor.

An alternative approach to recognition relies more on the geometric relationships
between simpler descriptors, rather than on a few distinctive features. The idea is that

these descriptors are densely distributed and not particularly distinctive taken individ-

ually, for example, surface normals fit into this category. In these circumstances, the

search space is large and constraints to prune it are critical. While the size of the search

space explored by these methods will be larger than in the feature-based methods, the
expectation is that the individual tests are very efficient. Representative examples of

such schemes include [Horn 83. Horn and Ikeuchi 83. Ikeuchi 83. Faugeras and ilebert

83, Gaston and Lozano-P6rez 84, Grimson and Lozano-Prrez 84, Stockman and Esteva
84, Brou 841

The key difference between matching on these low-level descriptors and on distinc-

tive features lies in the availability of descriptors. The simpler sensor imeasrements are

likely to be dense over the object. As a consequence. recognition schemes based on such

simple measurements should be applicable to sparse sensors. arid should be less sensitive

to problems of occlusion and sensor error, since an input description can always be ob-

tained and matched to the model. In this paper, we explore a recognition scheme that

uses very simple sensor primitives that cal be computed over the entire object. We rely
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on the power of geometric constraints to keep the combinatorics of the search process
reasonably controlled.

8. Summary

We have presented a recognition technique based oil a search for consistent matches
between local geometric measurements and model faces. The technique offers a number
of advantages: it is very simple yet efficient; it can operate on sparse data; it is applicable
to a wide range of sensors and choice of features: it degrades gracefully with error. In
addition to the advantages of the particular technique, the framework within which it has
been developed has proven useful both to analyze expected performance of this method
and to model a number of other methods. In summary, we believe the approach described
here represents a useful tool in a wide variety of recognition situations.
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Tables

Tablh I No. of Interpretatioiis For Multiple Objects - 2D

Object Angle I)ist Mill 50th 95th

Housing Top 7r/10 .01 1 1 3

.05 1 1 2

.10 1 I 1 5

r/5 .01 1 1 7

.05 1 1 5

.10 1 2 6

ir/4 .01 1 1 4

.05 1 2 4

.10 1 2 14

Table I illustrates statistics in the performance of the localization process for three

overlapping two--dimensional objects, two of which are not the object of interest. Each

row lists parameters of a histogram of the onunber of interpretations consistent with the

local constraints, based on 100 trials with the object randomly oriented with 3 degrees

of freedom. In the table, the angle column lists the radius of the error colic about the

measured surface normal; the dist column lists the error range of the distance sensing.

The min colnui list the minimum number of interpretations observed without a model

test; the 50th cohmn lists the median point of the set of simulations with a model test

and clustering; the 95th colmnm lists the 9 5 th percentile of the set of simulations with a

model test and clustering. As well. the object was overlapped with several other objects

at random, as given by the Objects column. In each case, 20 sensory data points were

used.

Table II No. of Interpretations For Nultiph, Objects - 3D

Object A_gle Dist Mill 50th 95th Missed

Housing 7r/10 .03 1 2 9 .14

.07 1 2 13 .07

.15 1 5 44 .09

z/5 .03 1 5 57 .02
.07 1 47 .03

Table II illustrates statistics in the performance of the localization process for over-

lapping three dim,enional objects. Each row lists parameters of a histogram of the

number of interpretations consistent with the local constraints, based on 100 trials with

the object randomnly oriented with 6 degrees of freedom. As well, the object was over-

lapped with a second object at random. In each case, 15 sensory data points were used.

The missed column reports the percentage of cases in which no interpretation was found,
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due to the separation of the model test from the application of the constrainits; other

columns are as in Table I.

Table III - No. of Nodes -iegla" vs Range Propagation

Obj Angle Dist Med Med lli Mean Med Max Dev

Lip 7r/10 0.10 363( 3382 334 .949 .908 2.479 .281

0.05 2802 2528 .382 .915 .9,38 1.428 .157

0.01 2351 2194 .199 .925 .924 2.286 .218

7r/20 0.10 2457 2323 .217 .954 .950 1.593 .196

0.05 2044 18906 .488 .937 .948 1.318 .101

0.01 2022 1729 .574 .954 .957 1.30) .094

Rald r/10 0.10 5276 3738 .048 .805 .738 3.757 .513

0.05 3761 2682 .237 .744 .746 2.328 .231

0.01 2642 1961 .164 .730 .716 2.070 .208

____ r/20 0.10 1646 1360 .154 .863 .878 1.521 .227

0.05 1251 1050 .155 .841 .868 1.405 .188

0.01 1257 1081 .187 .872 .863 1.587 .180

Table III compares statistics in the performance of the normal localization process,

with the process in which coupled constraints are used to propagate ranges of possible
positions. Each row lists parameters of a histogram, based on 100 trials with the object

randomly oriented with 3 degrees of freedom. As well. the object was overlapped with

another object at ranlom. In each case. 20 sensory data points were used. In the table,

the angle column lists the angle of the error cone about the measured surface normal;

the dist column lists the error range of the distance sensing. The next two columns list

the median number of nodes actually explored in the interpretation tree for the normal

case and for the range propagation case. respectively, taken ovr the 100 simulations.
The following four columns list the miniunun. mean, nedian and maximum obtained

by taking the ratio of the number of nodes explored in the propagation case over the

number of nodes explored in the nornial case. The fizal column indicates the standard
deviation of this histogram of ratios. The process was run using the lip and random

objects illustrated in Figures 15.
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Table IV - No. of Nodes - flegilar vs First Acceptable
()j Angle Dist Mini Medi Max Mill Med Max Mil IMed Max Miss

Lip 37r/20 0.10 104 3516 15811 9 16 5358 0.004',1 0.01 0.3.1 0.44

" 0.05 165 3581 12462 9 274 5113 0.007 0.08 0.46 0.3,4

0.01 317 2912 15386 9 414 7795 0.009 0.14 0.56 0.21

27r/20 0.10 287 293() 10092 9 172 5110 0.007 0.06 0.51 0.38

0.05 196 2682 9541 9 137 4582 0.009 0.05 0.60 0.21

0.01 317 2462 9129 10 466 5754 0.010 0.19 0.72 0.11

ir/20 0.10 186 2178 8614 9 112 31.19 0.009 0.05 0.42 0.23

0.05 249 1919 10302 10 337 4786 0.011 0.18 0.56 0.12

0.01 243 1759 6817 9 358 3291 0.011 0.20 0.51 0.0,4

Iand ir/10 0.10 91 5285 23943 9 1326 9013 0.005 0.25 0.47 0.66

0.05 91 3634 17176 10 1790 6965 0.011 0.47 0.57 0.22

0.01 134 2713 9043 11 1635 6896 0.027 0.56 0.76 0.04

ir/20 0.10 182 1946 6408 9 787 2664 0.03.1 0.42 0.60 0.01

0.05 481 1249 4104 10 586 2182 0.021 0.45 0.56 0.00

0.01 402 1353 5301 11 416 2218 0.027 0.32 0.42 0.00

Table IV compares statistics in the performance of the normal localization process,

and the process in which the technique is terminated once an interpretation with a suf-

ficient number of matched points is obtained. Each row lists parameters of a histogram,

based on 100 trials with the object randomly oriented with 3 degrees of freedom. As well,

the object was overlapped with one other object at random (similar results hold for more

than one occluding object). III each case, 20 sensory data points were used. In the table,

the angle colun lists the angle of the error cone about the measured surface normal;

the dist colun lists the error range of the distance sensing. The next three columns

list the minimum, median and maximum number of nodes actually explored in the in-

terpretation tree for the normal case, taken over the 100 simulations. To test the effects

of terminating the localization process, a cutoff of 10 matched points was used. The

next three columls list the minimum, median and maximum number of nodes actually

explored when the process was terminated in this manner. The next three colunms list

the nfinimum, median and maximum obtained by taking the ratio of the number of nodes

explored in the truncated case over the number of nodes explored in the normal c,se.

Finally the last cohunn lists the percentage of cases in which terminating the process

after 10 points were matched, caused an incorrect interpretation to be accepted. The

process was run using the lip and random objects illustrate-' Figure 15.
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