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Technical Report Summary

Malin's (1980) first-order single scattering theory has been extended to study the

scattering of surface waves as well as body waves by distributed point scatterers in a

layer.d medium. The scattered waveform itself is generated and examined instead of

its energy envelope. The theory used allows 1) mode conversion 2) wave type

conversion 3) finite scatterer distribution, and 4) the effect of attenuation from

scattering as well as intrinsic absorption. The cases studied are for elastic or slightly

attenuative media with any kind of source and receiver at any place in the layered

structure. This direct calculation of coda waves provides us an immediate description

of the relation of coda and scattering. The objectives are to find 1) the effect of layer-

ing on scattering, 2) the effect of scatterer distribution on recorded vertical and hor-

izontal motion, 3) the relation of scattering Q to intrinsic Q, 4) the scattering behavior

of surface and body waves, and 5) the superposition of scattering waves to form the

coda. The generation of body waves by 'locked mode' approximation, which makes

the body wave a subset of the 'surface wave', is extensively studied. The prelimilary

results explain some observed coda behaviors surprisingly well. We find a larger

geometrical spreading for near scatterers, which is caused by mode conversion or

wavetype conversion because of the wide angle scattering. This makes the spreading

correction higher for early part of coda which may compensate the low Q observed in

early coda of regional earthquakes. This study is of practical value as an effort to

understand the complicated coda phases.
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Synthesis of Coda Waves in the Layered Medium

Chien-Ying Wang and Robert B. Herrmann

Introduction

Because of recent interest on attempting to extract useful information from the

coda, a theoretical study of coda waves is urgently required, especially since the theory

lags behind observations. Most of current coda analyses are based on Aki's (1969)

backscattering model, which was extended by Herrmann (1980) to determine coda Q.

This model treats the coda as a smoothly decaying envelope which is formed by many

randomly scattered waves. Figure la is a real seismogram from the ECTN network.

The envelope has an exponential decaying form. Taking a closer look, however, the

decay is not so uniform. Figure lb shows the rectified signal. The seismogram looks

as if it is composed of many small 'pulses' or'beats'. This is even more obvious after

bandpass filtering at 1 Hz (Figure lc). It is interesting to see if such pulses can be

analyzed separately.

Since the scattered wave is the result of an averaging process for waves reacting

with randomly distributed scatterers, most theories take a stochastic approach and

describe the total wavefield by several statistical quantities. Mean power spectral den-

sity is frequently used, for instance (Aki, 1969; Sato, 1977). Using such an approach,

the analysis of data provides a gross description of the distributed inhomogeneities and

the scattering process, but some ambiguities arise. The problem of distinguish

between scattering Q and intrinsic Q is a typical example (Aki, 1982; Dainty, 1984).

For our study, we choose a deterministic approach to investigate the effect of scatter-

ing on the generation of coda. We will directly examine each individual scattered

pulse generated in the layered medium.

Sato (1984) proposed a scattering model which describes the body wave scattering

due to a plane wave incident on the scatterers. A similar model is also found in Wu
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and Aki (1985). This model considers the wave type conversion, scattering pattern,

scatterer size, etc., but only for body waves in a homogeneous whole space. From

another view point, Main (1980) constructed a scattering model using surface wave

normal mode theory. An important feature of this model is that it is able to handle

multi-layered medium. The rays scattered by the inhomogeneities in a layered struc-

ture, such as the earth's crust, are numerous. It is only by using mode theory that

scattering in such a medium can be treated.

In this study, we extend Malin's first-order single scattering model to create the

scattering 'pulse' from scatterers situated in the layered structure. A simple review of

this method is provided with the derivation largely simplified. In order to include the

body wave scattering, we also discuss the 'locked mode' approximation (Harvey,

1981), which makes the body wave a subset of the surface-wave contribution. Each

individual scattered wave is examined in detail rather than its statistical average. The

study is directed toward understanding the nature of the scattered waves under

different conditions. This enables us to analyze the behavior of each scatterer, and

hence makes it easier to isolate important factors which may be lost in an averaging

process.

First-Order Single Scattering Theory

The model considered is a layered medium (Figure 2) with inhomogeneities dis-

tributed at some restricted regions in it. The inhomogeneous region is assumed to be

small compared to the wavelength. We call it a scatterer parcel. If the parcel is not

small enough to be thought of as a point, we can divide it into several small parts and

perform an integration to find the total field. For this study we just consider the point

scatterer. This point scatterer generates secondary waves when acted upon by the

incident wave. The scattered wave has the form of pulse with limited duration (Figure

3). The coda is thought to be composed of numerous such scattering pulses.
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To satisfy the Born approximation (weak, single scattering), the inhomogeneities

are assumed to be small perturbations of the background material:

P =Po + 6p

Czd -=Co W + bCJ*a

p is the density and Cd is the elastic constant. For the isotropic elastic medium con-

sidered here, CI*'s recuce to the Lame's constant X or the rigidity j . Since we just

discuss the scattering from a small parcel, the mean behavior of these inhomogeneities

is not assumed. These three parameters p, X, and p, can be reduced to a single param-

eter, if there exist relations among them. Sato (1984) used the velocity perturbation;

6a 6,6
a

and adopted Birch's law relating the density and wave velocity

Iffal p+ao ---blp +bo

(a's and b's are constant). This results in

±p X _ (2 + v)
p p i

The value of v is kept at 0.8 in this report. will be the only parameter needed to

describe the inhomogeneity variation under these assumptions. Wu (1984) used

different values for density perturbation and elastic constant perturbation which results

in two different types of inhomogeneities; impedance type and velocity type, each of

which has different scattering properties. To reduce the number of independent

parameters, we just use one parameter f to represent them.

As indicated by Hudson (1977), the scattered field for any first-order scattering

theory can always be expressed using the representation theorem:

ul') =f dV{ 6p W2 Gi' u? - 6CjI aiG? au° }
For the isotropic elastic case, this is equivalent to

.............................................................. ..............-... :.......,:
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where u? is the wave field incident on the inhomogeneous body, and G? is the Green's

function for the corresponding boundary conditions. For the case of body wave in a

homogeneous space, G? has the form as given by equation (4.30) in Aki and Richards

(1980), which is used by Sato (1984) and Wu and Aki (1985). For the case of a sur-

face wave in the layered medium, G? can be determined by the normal mode theory

(Malin, 1978).

The surface wave case is easier to construct since the incident wave and the scat-

tered wave are trapped in the layers and propagate two dimensionally. From the sur-

face wave mode theory (Wang, 1981), the incident wave field, which has the mode

order m and wave type v ( v-R for Rayleigh wave and L for Love wave), has the

form

-s a. i e kZi

V2r 'kmx

"am EE I
2 vc, "g, Y10.'

J - [Ur, , -iUs ],.r

LU - [OU, ,O 0

where

k = wave number,

x = the distance between the source and the scatterer,

a = amplitude factor,

c - phase velocity,

g = group velocity,

Io = energy integral of surface waves.

U, Us, U# = displacement eigenfunctions at the radial,

vertical and tangential direction,

?;:;-"; . . . . . . . .";" ": -, ¢ :.. :. .; '-. . . . . . . . .: :"::,-.:... ::- ._; J. -. - -- ;-..;::.:."- ;";-,
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The source term s. for double-couple and explosive sources is given in the Appendix

I. The Green's function with mode n and wave type ql for the wave field after scatter-

ing is

IG! 1 U 1a, e 4  (3)
\/2ir "k.r

R~U = [r~COSO U'.Sina ,iU, r'~ e

RR = [UrcosO Ursino -iU.

LU = [U-sin -Ucos attrer

LR = [U'sin- , - U'COSO 0 L .i~

r is the distance from the scatterer to the receiver. The scattering angle 0 and the

receiving angle 4 are defined in Figure 2a. These angles are important since they

control the recorded wavefield. Scattered P-SV waves can appear on the receiver hor-

izontal component defined as tangential with respect to the source.

Substituting these functions into the equation (1), the scattered wave field "um.

which includes the conversion from mode m of wave type v to mode n of wave type q,

is written a3

du dV Yam xa s.R.e- i( ' kn+ 'kr)+i-
a21rv ' k~x "k~r

•(6pW 2 "A.,- 6X -Bmn- 6p -C,) (4)

where

mRA. Um U,. cose + Um US,
RMB, =( k. U,. - aU,,) ( Rk kUm - OsuD)

t0.. -2 ( Rk,.Un RkaUmCos32 + a,U,,,au,,)

+ ( "k.U,. + a,U..) ( RkU,. + a,U,.) cose

'Am. =-Um UO. sin$

M'CI,, ="- RkmUnm LksUs sin 20

aU,. ( 8,U. + Rk.U,,) sine

RA.. -U,. Ur. sine

:. -. i :. .-.. , .. .-- . . . ..-.-.-.-..-. . . . . ..-. . . . ..-.-. . ..-.. .. = :i :::i i , . . ;. : . . .,:.
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iaC. = Lk.U,= ltk.U,, sin20

+ aU,. (aU. + "k.U,.) sine

'Am ==U0, UO. cose"
U'cm4 -kMU#- Lk.Uj. cos20 + a.Uom a. Uo. cose

We also define a scattering term F.. as

de- 4 " 'k + }r +-

"Fm. =fd e 2' 2(bpW2 '"A.- bX "B,,,- 61 Cm) (5)

=1 dVe' 2 f'u pw2 "A..- (2+v)X "BBm- (2+v), "C,',m]}

=f dV~e- 2= ' f "D=

The final total field solution is the sum over all modes and conversions for all scatter-

ers in the region. The scattering term F corresponds to the 'volume factor' of Wu and

Aki (1985) if the Green's function related term D is not included. For a point

scatterer, we simply use

-i( tk + 'tk~r)+i.!-

"Fm. =6Ve 2 f Dm.

with 6V having the dimension of unit volume.

Scattering Q

To include the effect of energy loss due to scattering, Malin (1978) considered a

correction which consevers energy to the first order by choosing a specific correlation

function for the scattering cross section. Although we are interested in the behavior

of each individual point scatterer, the scattering coefficient, or equivalently the cross

section, is still needed when defining the scattering Q.

Let us consider a small scatterer parcel containing distributed inhomogeneities.

For a single point scatterer, we can use a deterministic scattering formula. However,

when a wave is incident on this scatterer parcel, the size of the scatterers within it, the
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relative distance between individual point scatterers, and the wavelength of the

incident wave will determine the partition of energy being scattered. From scattering

theory, the parameter describing this property is the 'cross section' (Ishimaru, 1977,

p.10). Within a unit of the scattering angle, the differential cross section ad is defined

by

ad =--lim r ( scattered energy flux density)
r-oo ( incident energy flux density) (6)

The total scattering cross section is obtained by integration over all angles:

a. 0 ad dO
2r

When scatterers are distributed with the mean density n (particles per unit area at a

constant depth for a two dimensional case), the scattering coefficient a which charac-

terizes the intensity of the scattered wave excitation is given by

a =n a,

The reciprocal of a is usually called the mean free path. Scattering coefficient a thus

defined is equivalent to the turbidity in the two dimensional case as compared to Aki

and Chouet (1976).

To obtain the energy flux density, the wave field excited in the layered medium

should be taken into account:

< Iu r> =w 2 f dzp0 <uu*>

<> means the average over the ensemble. Using equations (2) and (4), it is not

difficult to find the scattering coefficient for mode pairs mn, and types v,7 by setting r

in equation (6) as the distance between the scatterer and the receiver:

" U (8)>
V"Ctm a  =n f dO

2w < u-f[>

-_ I-a f n < ""F-a> dO

1 U,,, "g. fn < Y'm,> dO

2r ° . .. 21

. . ~ ~ ~~~~~~.. .. . . . . . . . . . ... .. " " .° " ° ," -" ' .. -
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fAw fn < "F2> dO

Now we have the problem of defining the average behavior of the function

< mF-t> . Taking a closer look at the scattering region (Figure 2b), the scatterers are

distributed over a plane axea and the phase term in FM. (equation 5) is actually

e - =-  e - ik+v - r -C)

=e- ikmx- ik ur e- cl kmr k rt)

- e - ik , x- ik r e -F ''79''rr'~

VD - is called the Bragg vector. Hence, in evaluating F.. from equation (5),

Fm. =f dV{I e ~l2 [C(,z) e'c' r] Dm*(z)}

=f dsle-  2
- r  (kB,z) Din(z)}

where we have made a two dimensional Fourier transform for the scatterer distribu-

tion spectra in the horizontal direction (Kennett, 1972). The ensemble average of

F. is thus

<FMA> =f dzdz{ < (kz) (kB,z')> Dm.(z) Dm.(z')}

> , the correlation function of inhomogeneity distribution, is usually given by a

form of an exponential function or a Gaussian function (Chernov, 1960). Assuming

that this function has a small side lobe, i.e., small correlation distance in the exponen-

tial form, we have a simpler form:

The term in the bracket, which describes the condition of scatterer distribution around

the point considered, will be kept together and called a scattering attenuation unit (U)

U.. is in the unit of km4 . If U.. is maintained as a single value in the calculations,

................
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this is equivalent to stating that the scattering environment is similar for all waves pro-

pagating in the layered medium. The expression above is perhaps too simplified. The

correlation function must be specified if an accurate scattering cross section is desired.

In this study, we just use the simplest form c examine its possible effect.

The scattering coefficient thus has the from:

S-_MA Us. [I- e'1 +- M2 + Me]

= mA Us, - ae 4 +- fe 2] (7)
L~fif m~ j 1 2 1

L a = aaA Us, [L L1 4 + e]

=~ -U.L U,, -L~. 'Ie 4 + - LL2]

8's are given in the Appendix 1. We have used the distance r between the scatterer

and the receiver to define the scattering coefficient (equation 6) and to calculate the

incident energy flux and the scattered energy flux by fixing on the source-scatterer-

receiver geometry. The mode pair mn reduces its energy by e- u(r+ x) after trveling the

distance from source to scatterer to receiver. The effect thus caused by the scattering

of inhomgeneities is called the scattering attenuation.

Numerical Experiment I: Mode-conversion and Scatterer location

With the velocity model chosen (CUS model, see Table 1), we generate the

eigenfunctions of surface waves, mainly the Lg wave, up to 5 Hz. Using these, the

scattered waves are created by specifying the source (depth, mechanism), the receiver

(distance, instrument), the scatterers (location, material variation, and scattering

intensity), and the attenuation condition (intrinsic Q and scattering Q). To make the

problem easier to follow, we fix the following, except as indicated otherwise:

source depth - 10 km

scatterer depth = 5 km

...............................................
-. . . . . . . . . . .

o. . . . . . - .. . . . . . . . . .



source time function =parabolic with base 0.4 second.

receiver distance 100 km

waveform received = ground velocity

inhomogeneity variation = 5%

mode conversion =up to 10 neighboring modes (due to computer

restriction on speed and storage)

wave type conversion =yes

An arbitrary source mechanism was used and the effect of its radiation pattern is aver-

aged out by distributing several scatterers on the ellipse. In this section, we will dis-

cuss the properties of the scattered waves under different scattering conditions but

ignore the problem of scattering and intrinsic attenuation at this moment. The so

called 'diagonal selection' rule (Main, 1980) which states that a particular mode of

surface wave mainly scatters into the same mode without significant conversion will be

en examined first. Sacattering from different locations, e.g., distances, depths, scattering

angle, etc., are also discussed.

Malin (1980) used scattering coefficient of vertical component from an acoustic

model to justify the diagonal selection rule. Since the scattered wave instead of its

energy envelope is generated here, this rule will be discussed by examining the resul-

tant waveforms. Two cases are studied; one is for the wave type conversion (from R

to L and L to R), and the other for the mode conversion. Figure 3 shows the

waveforms of signals directly from the source ( surface wave) or from a scatterer

(scattered waves) after traveling the same distances as indicated at the ends of seismo-

grams. Scattered waves have more high frequencies and are of shorter duration than

the surface waves. The major difference is in the excitation of the fundamental mode.

The fundamental mode excited by the source does not excite the scatterers as well at

high frequencies as do the higher modes. This is a function of the eigenfunction distri-

bution with depth.
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Figure 4 examines the effect of wave type conversion on scattering. In this figure

and those that follow, the number of kilometers indicates the total scattering distance,

i.e. the distance from the source to the scatterer plus the distance from the scatterer to

the receiver. The distance from the source to the receiver is fixed at 100 km. The

angle in degrees is the location of the scatterer on an ellipse which has the source and

the receiver at its foci and the coordinate origin at its center. Zero degrees indicate the

scatterer is behind the receiver, and 90 degrees indicate that the scatterer is equidistant

from the source and receiver. Three different components: vertical Z, radial R (with

respect to source-receiver coordinate), and the tangential T are also indicated. In each

pair of traces of Figure 4, the lower one includes the wave type conversion and the

upper one does not. For each distance, each pair of traces is plotted using the same

scale. From this comparison, we find that the wave type conversion is not obvious

except at short distance for wide angle scattering. The Z component seems to be more

independent of this effect than the other components. Thus it is concluded that the

wave type conversion is important only for the horizontal components at short dis-

tances. It is at these distances that wide angle scattering occurs. For large scattering

distances relative to the source-receiver distance, backscattering is all that occurs from

the the geometry.

Figure 5 illustrates the effect of mode conversion. Three cases are displayed in

which the number of modes permitted to be converted to other near neighboring

modes are 1, 5 and 10. In addition, the effects of wavetype conversion are also shown.

The scattered waveforms are created by combining the effect of seven scatterers

evenly distributed on the ellipse defined by the scattering distances. The amplitude

scale of plotting for every scattering distance is the same. As in Figure 4, the Z com-

ponent seems stable and does not accumulate as much contribution from other modes

except at the short distance where mode conversion must still be considered. On the

other hand, the R and T components (Figures 5b and 5c) are sensitive to the number

. . .
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of modes allowed to convert each other and to the wave type conversion. A low

mode, low frequency motion can be seen (Figures 5b and 5c), which is caused by the

conversion of higher modes to lower modes during the scattering. These results do

not support the diagonal selection rule, although the use of it alone will not cause

major differences in the coda excitation For the elastic medium, the energy exchange

by the mode conversion is important especially for the two horizontal components.

The mode conversion can be looked upon analagous to a change of incident angle on

the layered medium after scattering. It describes the effect similar to the scattering

pattern for body body wave illustrated in Aki and Richards (1980, chap 13). Figure 6

is a similar display as Figure 5 but for an explosive source with the scattering distance

at 110 km. A noticeable tangential component is obtained which is simply a result of

scatterer geometry. Mode conversion and wave type conversion are both important at

this scattering distance.

The location of the scatterer at different positions with respect to the source and

the receiver is important in exciting the scattered wave. Figure 7 is for scatterers at

different locations on an ellipse at scattering distances of 110, 300, and 500 km. The

amplitude of each trace is normalized to the same distance using a 1/r (m=L.O) rule

which will be discussed later. In these figures, waves from three different double-

couple sources are summed to average out the radiation pattern effect. We can see

that the amplitude changes along different azimuth. An amplitude relation between R

and T components is observed, e.g., when R is large T is small. It is worth noting that

a scatterer close to the source or the receiver is not necessary to create large scattering.

From the variation of amplitudes around the ellipse, we can see an averaged effect of

scattering pattern.

We next examine the effect at different vertical depths. A result is shown in Fig-

ure 8. The displays are for scatterers at the distances 200 km (Figure 8a) and 500 km

(Figure 8b). The effect of two source depth 10 km and 25 km corresponding to the

. ... .. . . . . . . . . . . . ..
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upper and lower sets of traces are shown. A Q model 1OU0.5Q, which will be

explained later, is also applied. It is found that the scatterer at greater depth preferen-

tially excites the scattered waves with the higher phase velocities. The scatterer in the

upper sedimentary layer (0.5 kin) is capable of generating well dispersed, long duration

scattering waves. Because of dissipative attenuation, the shallow scatterers yield

waveforms that lose their energy and frequency content faster, which makes them

more comparable to the the effect of deeper scatterers. At larger propagation dis-

tances, the difference between scattered waves at different depths is gradually reduced,

although the effect of attenuation may still be seen. In Figure 8b, we can see that the

high frequency components are attenuated for shallow scatterers where Q is low after

traveling long distance. But their amplitudes and waveforms are not too much

different except for the low frequency fundamental mode. This indicates that a

scatterer at any depth in the crust generates a similar scattered signal.

Numerical experiment II: Scattering Q and Intrinsic Q

As shown in the previous section, the scattering coefficient is a function of the

correlation between scatterers, the inhomogeneity size, and the incident wave length.

To make the problem easier to solve, we defined a scattering attenuation unit (U..)

from which we obtained the scattering coefficient a after taking into account the angu-

lar scattering variation. The amplitude decay is given by e-/i where r is the scatter-

ing distance. In fact, this is a definition of turbidity which is used to describe the

scattering energy loss mechanism (Dainty, 1981). In our model, the scattering

attenuation is assumed the same for different scatterers which are distributed ran-

domly and uniformly along scattering wave path passing through them. We will exam-

ine the effect of scattering on the wave energy loss and compare this with the attenua-

tion due to anelastic absorption. The anelastic attenuation is calculated by perturbing

the elastic constants and combining with the intrinsic Q values.
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Figure 9 shows the effect of different levels of scattering attenuation from scatter-

era at a 5 km depth and a 110 km scattering distance. Three plots, a, b, and c

correspond to 10, 100, and 1000 scattering units (U.). It is found that high frequency

signals are just partially absorbed for different U,. values at this short propagation dis-

tance. The effect of scattering attenuation seems to broaden the pulse, i.e., redistri-

bute the wave energy over longer time range.

Figure 10 shows an example with scattering distance extended to 300 km. Figure

10a is for the scatterers at 5 km depth and 10b for the scatterers at 0.5 km depth. The

uppermost trace in this figure is the reference trace which does not involve any Q

effect. Other traces are named by the symbol pUqQ which is read as scattering Q hav-

ing p U,. and intrinsic Q having values from the model q. The basic Q model used is

Q 300 for upper 20 km and 2000 for the rest in the CUS model. 2Q indicates

twice as much attenuation as 1Q, e.g., QO=45o. It is obvious that the scattering Q

reduces the high frequency energy less than intrinsic Q. This means that the scatter-

ing Q is not too sensitive to the scattering environment. If the anelastic part of struc-

ture does not dissipate all high frequency signal, the scattering Q may not reduce it

even under strong scattering conditions. Furthermore the scattering Q reduces the

scattered pulse amplitude but does not affect its frequency content much as can be

seen from the traces in 10UOQ and 40UOQ. In Figure 10b, we also find that the

scattering Q seems to suppress the lower mode signals and enhance the high frequency

higher modes. However, this feature probably depends on the velocity model used.

From this test, we conclude that the effect of scattering Q and intrinsic Q are

apparently different.

If the scattered arrivals from different distances constitute the coda at different

lapse time, the frequency content of these pulses may indicate the effect of Q at

different places of coda. To examine this effect, we generate the scattered pulses at

two distances: 200 km and 500 km under different Q conditions. These are shown in

... .. ... . -.. . -.-. .. , ..-.. .. .: ...... ..- - .. ..-... . . .. .... .. . .......... . . -...-
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Figures 11 and 12. The Parts a and b are for the scatterer depths at 5 km and 15 km

at these depths the Q0 values are different. The spectra of the traces are also plotted,

shifted by a factor of ten for clarity. One thing revealed from this test is that the

scattering attenuation absorbs the high frequency signal equally well irrespective of the

scattering distance or the scatterer depth. This is shown by the difference in the slopes

between the first and the second spectra. This is due to the fact that a similar scatter-

ing environment is assumed when calculating scattering coefficient a. The intrinsic Q,

on the other hend, attenuates the high frequency signals rapidly for the shallower

scatterer where intrinsic Q is low. Figures 12a and 12b can be thought of as two

extreme cases: in 12a intrinsic Q dominates, and in 12b scattering Q dominates. The

final Q value must result from the interaction of these two attenuation mechanisms.

If the data show a strong frequency dependence at high frequency range, it is possible

this is the attenuation from deep structure and the effect of scattering Q prevails. At

the low frequency (<I Hz), it is difficult to tell the difference between these two

mechanisms.

Numerical Experiment III: Geometrical Spreading

Aki (1969) proposed a scattering theory which describes the coda waves of a local

event as being composed of backscattered waves from many random distributed inho-

mogeneities in the lithosphere. A relation from his model, which has been widely

used in the literature, is

A(w It) =C(w)t7e- W'/2Q,

where A(w it) is the average peak-to-peak amplitude around the frequency w and the

time t, C(w) is the coda shape function which includes the scattered wave excitation

term and a dispersion correction, t-" is for geometrical spreading, and the exponential

term describes the dissipative attenuation. The value of v is taken as 1.0 for body

waves, 0.5 for surface waves, and 0.75 for a diffusion model (Aki and Chouet, 1976).
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Treating coda of local earthquakes (distance < 100 km), the source and the receiver

are set at the same place to simplify the calculation of backscattering time in this

model. Sato (1977) proposed a modification of the geometrical spreading factor for

near scatterers which create waves arriving at the receiver just after the direct wave.

This modification takes into account the separation between the source and the

receiver and is used for regional earthquakes (Pulli, 1984). Kopnichev (1977) also

derived a similar correction by considering the ellipticity of the scatterer surface for

arrivals at a given time. In fact, this correction represents a geometrical change of the

scatterer distribution ranging from a flattened ellipsoid to a shape similar to a sphere at

large distances (from an ellipse to a circle for surface waves as illustrated in Figure

2a). It is purely a geometrical adjustment. However, as discussed in preceding sec-

tions, the scatterers at the near distances yield significant mode conversion and wave

type conversion. A more complicated nature of scattered waves is expected there.

Similarly, because of the importance of scattering angle in controlling the scattering

mechanism (Wu, 1984), its effect must be significant at short distance where the

scattering angle changes abruptly. In this section, we will measure this effect from

simple nuerical studies. The result indicates that the so called 'Sato's correction'

which gives a heavier geometrical spreading correction in the early part of coda than

Aki's formula is still too small as the scattered wave energy changes rapidly between

modes and wavetypes at near distances.

In order to see the variation of geometrical spreading factor, we generate many

scattered pulses at different scattering distances , ignoring dissipative attenuation, both

of intrinsic and scattering. An averaged peak-to-peak amplitude is then measured ,

with narrow band filtering if needed, and plotted in log-log scale with the distance.

One of the results is shown in Figure 13a. The scattering distance is spacing by 10 km

up to 600 km and the receiver is kept at 100 km from the source. It is obvious that

there exists two slopes. A steeper slope with amplitude d- )pping rapidly with the dis-
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tance is seen in the front part. A similar tendency is also observed for the tangential

component (Figure 13b). In these figures, the unfiltered scattered wave (upper one)

and the filtered scattered wave all follow similar trends. This is due to a similar fre-

quency response for scattered wave even traveling over different distances (see Figure

11). Figure 14 shows a similar amplitude decay for the west United States model

(Table 1). Here we have set the source-receiver distance at 300 km (Figure 14a) and

at 100 km (Figure 14b). The rapid amplitude decay happens at the scatterer distances

smaller than about 600 km and 200 km respectively. Hence, we may define the region

with scattering distance smaller than twice the source-receiver distance as an 'unstable

region' which has a rapid decrease in amplitude, and a 'stable region' at larger dis-

tances which has a spreading factor close to one. This distance separation agrees with

that of 'Sato correction' of twice the source-receiver distance. Note that the decay rate

in unstable region is greater than that in stable region by 0.5-1.0. This value is larger

in WUS model than in CUS model (Table 1). Taking this into account, we propose a

geometrical spreading correction basing on an extension of Sato's (1977) model to the

surface wave:

-- 1) fora< 2

where a is the ratio of lapse time on the coda to the Lg wave propagation time and a is

between 0.5 and 1.0. This correction is plotted in Figure 15.

In propagating in a layered medium, not only does the amplitude of the scattered

pulses decay with the distance but its duration also increases because of surface wave

dispersion. Figure 16a displays the scattered pulses at different distances and Figure

16b is a linear regression which shows the rate of duration expansion. The GUS model

exhibits an approximate increase in duration of 0.05 sec/km while WUS model exhi-

bite an increase of 0.5 sec/km. Because a thicker sedimentary layer, the WUS model

is said to be more dispersive. This dispersion induced pulse duration expansion must

be considered when summing all pulses to form the coda.
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Numerical Experiment V: Superposition of Scattered Pulses

We have discussed the properties of a single scattered pulse. The next question

is how these pulses are combined to form the coda. In this section, we will conduct

an interesting experiment using the parameters determined in the preceding sections

to synthesize the coda envelope. From recent studies of coda Q of regional earth-

quakes, Pulli (1984) and Shin and Herrmann (1985) both observed a lower Q values

from the early part of coda. Der et al. (1984) also mentioned an obvious coherence

difference between early coda and later coda. This section will attempt to propose an

explanation to these observations.

From the study of scattered pulses just discussed, we make the following assump-

tions; 1) the shape of scattered pulse can be approximated by an exponential function

te- " 2) the width of the pulse depends on its traveling distance following

duration=*distance ; 3) the maximum amplitude of the pulse decays as e /tm , where

the exponential term describes the effect of attenuation including intrinsic or scattering

Q, and It is the geometrical spreading factor; 4) the pulses arrive at the receiver in a

random manner, thus the number of pulses in a time interval at any time of seismo-

gram is assumed to be approximately constant. To take into account reasonable varia-

tion, we also allow a 10% random variation for the parameters: m (spreading factor), a,

(duration expansion) and dtp (pulse interval). We will discuss the pulse at 1 Hz with

the propagation velocity 3.5 km/sec.

With each pulse defined, the coda is then synthesized by summation of many

pulses. One example of synthetic coda thus formed can be seen from Figure 16 where

every individual pulse and the coda envelope after summation are plotted assuming

different parameters. Since the energy of random arrivals is mixed, we use root-

mean-square rule to form the coda enevlope. After constructing the coda, we then

apply the Aki-Chouet's (1976) model with surface wave spreading correction , i.e.,

i/tP*6 , to calculate the coda Q value. The Q values at two regions, first 100 second and
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the rest, are calculated separately. Here a sliding window with 10 seconds length

(Pulli, 1984) is also used when taking points from the coda shape. The cases for

different values of m, a. and dtp, which represent different scattering conditions, are

examined. The coda Q values thus obtained are summaried in Table 2 when theoreti-

cal Q value is kept at 1000 and in Tajle 3 when Q is 150.

One astonished result revealed by this simple test is that the pulse spreading fac-

tor, m, is the most important factor which controls the coda shape decay. The dura-

tion factor and the pulse density, on the other hand, only have limited effect on the

coda formation if the pulses are crowded together enough to make a smoothly decay-

ing coda shape as usually observed. The dispersion of scattered pulses in the layered

medium, which causes the duration increase, dose not affect the coda as much as first

expected (Dainty, 1984). We also found that for a low Q region (Table 3) the coda

decays rapidly, thus not too many pulses are needed and its Q value comes out fairly

stable. The coda is said to be 'saturated' by attenuation. For high Q region (Table 2),

different pulse parameter will play an important role on the coda formation.

Two different Q estimates are also observed in this test. The early part of coda

always has a lower Q value. Since the pulses in the front have high amplitude and

short duration and pulses in the later part are lower and longer, the decay of the coda

shape composed of these pulses must be more rapid in the early part. This effect is

due to pulse duration increase induced by dispersion. This is another factor affecting

the early part coda shape, which makes the 'unstable region' defined before even

more unstable.

As a result of repeating the above experiment for different combination of

parameters m, a, and dtp, we obtained a prelimilary understanding of the constitution

of coda by the summation of scattering waves:

1) For a high Q region, such as the eastern United States, the manner scattered

pulse decay with the distance, because of geometric spreading or mode conversion,
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controls the value of Q determined from coda shape. A large m value in the early part

of coda (unstable region) has a major effect on Q value. This is the case predicted in

Figure 17a.

2) For a low Q region, such as the western United States, the pulses which arrive at

the receiver to form the coda are strongly affected .-Y the attenuation and thus the

coda shape is a stable estimator of Q. This is shown in Figure 17b.

3) The pulses with longer duration yield a longer tail which in turn leads to a higher

Q estimate, but this effect is not so outstanding as expected.

4) If the pulses do mix to form the coda, the density of pulse arrivals is not very

important with respect to the final coda Q values. This is due to the fact that the

pulses are superposed by means of the energy which reduces the difference in he

number of pulses.

5) Estimation of coda Q using only earlier parts of the coda requires knowledge of

the rate of correct geometrical spreading term there.

Numerical Experiment V: Body Wave Scattering

The theory of body wave scattering in the earth has been widely discussed from

the points of view of scattering from a discrete volmue ( Knopoff, 1959; Wu, 1984) or

superposition of scattered body waves (Sato, 1984). These theories, however, use a

plane wave reacting with the scatterer in a whole space or at most a halfspace. In this

section, we will discuss body wave scattering in the layered medium. The layered

earth structure is an important factor which provides a circumstance for waves to react

with inhomogeneities by trapping waves in the layers. We will simply extend the

theory developed for surface waves, i.e., Lg waves, to body waves by using 'locked

mode' approximation (Harvey, 1981). This is done by adding a rigid cap layer at great

depth in the original model to trap the body waves. In doing this, the body waves

become a subset of the surface-wave filed. Hence, we can easily extend the first-order
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scattering theory to cover this part of scattering signals.

If the technical difficulties mentioned in the Appendix II can be overcome, the

body wave scattering waveform will be generated as shown in Figure 18. Three comn-

ponents of ground motion with scatterer at 110 km distance and 5 km depth in the

CUS model are displayed. The scattered waveform for surface wave is also plotted for

comparison. As expected, the scattered waveform still resembles the shape of direct

waves. Body wave scattering is strong around the P and S arrivals. This is probably

caused by the P to P and P to S scattering after the P wave and S to S scattering after

the S wave. The scattering from S to P seems weak. We can also see some body-wave

and surface-wave scattering interaction in front of or after the main pulses. Since the

amplitude of scattered body waves is much smaller than scattered surface waves, we

extract the body wave scattering part by windowing and display them at a larger scale

as shown in Figure 19. Results at three scattering distances are presented. The body

wave scattering is complicated for this layered structure. The shear scattering is strong

on the two horizontal components. Because of the compicated scattered waveform, it

is easier for the generation of body wave coda especially at high frequencies after

superposition of such pulses.

Next we check the body wave scattering under different attenuation condition. In

Figure 20a, we plot the scattered pulses including body waves, surface waves and their

spectra. The first trace is the pulses from full wave scattering, the second is a

representation of the body wave part from the first trace, and the third trace is the

surface wave scattered pulse which is generated by using crustal surface-wave modes

only. Their spectra are plotted with the third (surface wave) two amplitude order

lower. After applying Q models due to scattering attenuation or intrinsic attenuation,

we obtain the attenuated scattering pulses as shown in Figures 20b and 20c. It is

interesting to see that the body wave scattering suffers much less attenuation than sur-

face wave scattering especially in high frequency range. Th is can be seen more
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apparently in Figure 21 where spectra under different Qconditions are plotted for sur-

face and body wave scattering respectively. Figure 21a is for scattering distance at 250

km and 21b at 500 km. In these figures the high frequency spectrum slopes do not

show as much variation for body-wave scattering as for surface-wave scattering. The

body-wave scattering contains higher frequencies initially and its energy is not much

attenuated by either intrinsic or scattering attenuation. This might make the body

wave scattering dominant at high frequencies as observed by Shin and Herrmann

(1985).

Conclusion

After examing the behavior of scattered pulses generated in a layered medium,

we have the following conclusions:

1) The 'diagonal selection' rule which predicts no mode conversion is not proper for

scattering in the layered elastic medium. Mode conversion must be considered espe-

cially for the horizontal components or at short distances.

2) The wave type conversion between Rayleigh and Love waves, on the other hand,

can be ignored except at short distances.

3) The scatterers near the surface can generate well dispersed scattered waves, but

they also lose energy faster because of dissipative attenuation. The combined effct of

attenuation and layering makes the scatterer depth dependence less significant.

4) The variation of scattering Q does not affect the value of apparent Q as much as

the intrinsic Q. For the same scattering environment, the attenuation of high frequen-

cies from scattering Q does not seem to depend much on the scattering location.

5) It is difficult to make a distinction between the effect of scattering Q and intrinsic

Q on the final Q value.

6) Larger geometrical spreading decay is found in the early part of coda. It falls off

by a factor of t70 , to 0' faster than the later part. The geometrical correction in the
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early unstable region of coda is suggested to be larger than the simple Sato's correc-

tion. This is caused mainly by rapid mode or wave type conversion from scatterers at

near distances.

7) If the scattering pulses which constitute the coda are dense enough, which is

required to make a smooth decaying coda envelope, the geometrical correction factor

will control the value of coda Q.

8) The body-wave scattering internally yields higher frequency arrival than the

surface-wave scattering. It also suffers less attenuative absorption than the slower sur-

face waves.

9) The effect of layering on the coda formation is very important. Because of wave

trapping in the layers, even a weak scatterer distribution may create oberverable coda.

*O This layering is the same reason that makes the Lg phase the most dominant phase in

regional earthquakes seismograms.

0o

(-'.'-. . . .
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Appendix I

I. Source Function:

For a double couple source, the source mechansim can be determined by the dip

d , slip s, and strike .0 in the following forms:

'"",dU, 1 RdU
RS RkUD + U k Ur) Rdd + i( Rk Uf-) Rd.

z 2 dz
L L dU O I.Lk URd, - i- --z Rd.

where

R,=- sind coss sin24' - --sin2d sins cos20

Rdd =sins sin2d

Rd =-cos2d sins sino - cosd coss cosO

R:, -sind cowa cos2O - i-sin2d sins sin20

R, =cosd cowa sinO + cos2d sins cosO

.......................
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For an explosive source, only the Rayleigh wave has a source function:

RS --- dU, _ k U,
ds

Ls 0.

[I. Scattering angular integration:

The angular integrations for determining the scattering coefficient (Equation 6)

are

e4 Coc2

( 2 =AO4 + Coc? + 20oc2co + Eo(ajcI+aoC2) + FoboC2

eo =Ao4 + Bobo2 + Coc 2 + Doab 0 + EoaoCo + Foboco

where

A0 =(Vpj 2  BO =((2+v)\) 2  Co -((2+v),) 2

Do =- 2v(2+v)p\w2  Eo =- 2v(2+v)psw, Fo =2(2+v)2Xp

And a's, b's, and c's for RR conversion are

Sa, =-U.U. so -U,,U,,

bo - (k.U,.- .U,.) (k.U,.- a.U,.)
c2 -2k.U,.kU. cl -(k.U..+aU,)(k.U,,+aU,)
C0 -'28,U,8,U, 3

for RL,

at -U.Uo. ao =0
bo ----

C2 -kmU, nkaU, cl zUnm(sU#n+kU.mSzUin co =0

for LR,

&I ==U".U. So MW0

bo -0

c2 -k.Umk.Um c1 -a,u,..iUr,+k.u,.,uU,. C -0

and for LL,

N . . ..U..U... 
. .O
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bo =0

c2 =k.Uo.k.U#. cl =8,OUoa.Uou co C 0

Appendix II

Locked Mode Approcimation

The locked mode approximation proposed by Harvey (1981) is used to synthesize

body waves by surface wave normal mode theory. A rigid cap layer is placed at great

depth of the original model. This acts as to trap the leaking modes and force them to

become the locked modes (Watson, 1972). From normal mode theory, the imposition

of this cap layer makes the branch line shrink and open a space to accept the leaking

modes as they migrate from lower Riemann surfaces into the real wavenumber axis.

Equivalently, this breaks down the continuous wavenumber response of body wave

into discrete wavenumber spectra of surface waves.

The locked mode approximation method inherits most of the merits of surface-

wave normal mode theory. The advantages of this method include:

(1) The layer response is independent of the source or receiver positions. A data file

of layer response can be set up first, which takes most of computation time. The data

file can then be applied to many different source and receiver configurations without

repeating the calculation of layer responses.

(2) The parameters used in calculation are mostly real numbers which help in saving

space and computation time. The attenuation effect can be included easily by using

perturbation theor (Anderson et. al. 1965).

(3) The method can handle a wide range of frequencies, say 0.001 to 1000 Hz, as well

as an arbitrary number of layers.

(4) All of the rays possibly excited in the model are automatically included. This
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makes the method appropriate to use especially for complicated models and large dis-

tances. This is also the goal generalized ray theory attempts to reach.

(5) The position of pole (locked mode) is exactly known, and its contribution can be

correctly calculated. This is significant compared to other wavenumber integration

methods. Those methods usualy use complex frequencies to shift the poles away from

the integration path, i.e., real wavenumber axis before taking the direct integration

(Bouchon, 1979). Since the integrand (layer response) varies very irregularly along

the wavenumber axis, it is difficult, if not impossible, to find a scheme which is really

efficient to sample the integration path especially for large distances or high frequen-

cies. The locked mode theory dose not have this problem. Since it knows where the

pole is, it can estimate the pole contribution exactly.

To make the 'locked mode' approximation feasible, several requirement need be

fulfilled beforehand.

(1) All of the dispersion values in the frequency range of interest must be found com-

pletely. Insufficiently determined dispersion values always produce unsatisfactory

results. However, the number of locked modes generated is always very large, say

1000 modes. Efficient handling of this large number of modes is an important thing in

using 'locked mode' approximation. Wang and Herrmann (1980) proposed a method

called jumping method which attempts to follow each pole at succeeding frequencies

rather than to find them independently. This method has been proved successful

especially for high frequency data. Recently, this has been further improved to

prevent mode missing when the phase velocity of a mode becomes equal to a layer

velocity. The dispersion curves bend abruptly at these places (Kerry, 1981). But this

method is not perfect. The modes are sometimes jumped over in certain cases. After

some effort, we finally realize that there may not exist a perfect pole searching scheme

which can fit any kind of problem within limited computation time. To solve this
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problem, an independent procedure was designed to 'patch up' the missing part based

on the dispersion data already found.

(2) The pole position (dispersion value) must be located accurately. In a recent paper,

Schwab et al. (1984) showed that dispersion values can be calculated at almost unlim-

ited frequency by using the Knopoff (1964) matrix method. He has successfully

tested Harkrider's model (Harkrider, 1970) at a frequency as high as 10,000 Hz. We

do not use Knopoff's theory, instead, the conventional Dunkin (1965) compound

matrix is applied but with extensive modification. Using the same model, we calculate

the dispersion values and the results are as good as Schwab's. The problem of accu-

racy of dispersion value is now well solved.

(3) The terms which enter the final solution of normal mode theory need also be cal-

culated accurately. These terms include eigenfunctions, amplitude factor, ellipticity,

and attenuation factor (gamma). Using some analytic expressions developed by Wang

(1981) following Harkrider (1980), these parameters can now be calculated very pre-

cisely. The amplitude factor which corresponds to the pole residue is a sensitive

parameter difficult to determine. Rather than taking direct derivative (Harvey, 1981),

it is calculated by the energy integrals (Aki and Richards, 1980, chap 7). The value of

the Lagrangian can be used to judge the accuracy attained. Our results up to now

have all passed this test.

There seems no theoretical difficulty for locked mode approximation method

now. However, this method has an internal weakness. That is where to put the cap

layer and how to remove the unwanted effects caused by it. Two erroreous phases

might be generated by this artificial layer; one is the cap layer phase which is caused by

real arrivals reflected from the cap layer, and the other is the truncation phase men-

tioned by Harvey (1981). The truncation phase arises from a phase velocity filter

which is used to suppress the cap layer phase. To avoid a cap layer phase coming too

i .. ... "...'.'i- - .'i .. . . .." '.'i ".. ..-.-...... 'i . .-- . -- "... ..--.... .. ... ..... .



- 31

early, a deeper layer should be used for larger receiver distance. However, a deeper

cap layer traps more waves or equivalently creates more modes. For example, 455

modes for 200 km cap layer becomes 1248 if the cap layer is placed at 800 km. A

compromise must be set to conserve computational effort. The velocities of cap layer

must also be defined carefully. They need be large to yield the desired body waves in

the crust, but not too large to generate too many additional poles. Here is our experi-

ence, which can just be used as a rule of thumb. If Ve. is the velocity of cap layer

which is at L km depth and V is the layer velocity above the cap layer, a relation can

be derived assuming simple reflection:

l-r

1-r
r represents the reflection coefficient desired from the cap layer and R is largest dis-

tance to be used. The value of r around 0.4 is suggested, which makes V, 2.5 times

lager than V. and the cap layer depth grossly equals to the distance. However, if the

phase velocity filtering is done properly, the distance range can be extended (at least

doubled).

A proper phase velocity filter can partly smooth out the unwanted cap layer

phase, but not entirely. However the phase velocity filter itself also " troduces a noise

caused by the trunction of filter. The truncation phase may change position and shape

in the synthetic seismograms using different phase velocity filter values. Hence, it can

be identified by comparing the seismograms obtained from different phase velocity

filters. A frequency varying phase velocity filter, sometimes, is found useful in

suppressing the truncation phase.

Figure 22 and 23 show some synthetic seismograms made from the locked mode

approximation. In Figure 22, the tangential component at distances from 100 too 500

km is generated using a simplified one layer over halfspace model (SCM, Wang and

Herrmann, 1980). The arrival time of each phase can be exactly identified. Figure 23
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displays ten basic seismograms for the CIJS model from double-couple and explosive

source at a distance of 200 km. These seismogram are really of high quality.
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TABLE 1

Central United States Model (CUS)

d 0 p Qf

1 5.00 2.89 2.5 600 300
9 6.10 3.52 2.7 600 300

10 6.40 3.70 2.9 600 300
20 6.70 3.87 3.0 4000 2000

8.15 4.70 3.4 4000 2000

West United States Model (WUS)

d R p Q, QA

2 3.55 2.06 2.20 170 85
3 6.15 3.27 2.79 300 150

18 6.15 3.57 2.79 300 150
8 6.70 3.93 2.97 1000 500
8 6.70 3.73 2.97 1000 500

7.80 4.41 3.35 2000 1000
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TABLE 2
Q Values of Synthetic Coda

(Theoretical Q = 1000)

G.S. D.E. DIST=ooKm DIST=300Km
(m) (%)

-dtp= 5 10 dtp=l 5 10
0.01 1118 897 717 1058 1146 1051

_. 1066 990 991 1025 1110 1028

0.05 1308 1358 952 1148 1001 1263
1.0 1091 1067 1104 1080 1133 1113

0.1 1211 1174 1178 1215 1307 1235
1153 1129 1089 1090 1089 1093

0.15 1254 1373 1271 1681 1276 1470
1181 1164 1165 1152 1140 1140

0.01 326 318 304 512 402 458
618 628 633 652 712 645

0.05 353 317 332 519 520 589
1.5 643 651 662 685 682 690

0.1 380 348 387 588 607 514
, 643 657 679 698 692 721

0.15 387 384 355 674 710 624
652 633 702 725 723 691

m -- = =

0.01 202 200 196 338 304 369
447 455 464 404 528 474

0.05 202 195 206 342 338 354
2.0 451 459 429 507 505 516

0.1 208 208 203 370 375 349
451 451 483 519 513 510

0.15 217 205 206 428 412 458
463 460 469 534 533 518

0.01 138 141 136 231 255 233
348 333 343 405 377 449

0.05 146 141 141 248 245 238
2.5 338 348 336 398 403 394

0.1 151 142 139 268 270 273
348 352 381 416 411 413

0.15 15 150 145 312 299 332
356 357 357 423 415 427

G.S. - Geometric Spreading Factor - I/r m

D E. - Duration Expansion - ar
DIST - Scattering Distance
dtp - time interval for succeeding pulses.
In each pair, the upper number is for coda between
0 and 100 second and the lower one is for 100 and
300 second.
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TABLE 3
Q Values of Synthetic Coda

(Theoretical Q 150)

G'S. D.E. DIST=100Km D IST=300Km
(Mn) (a.,)

d-pl1 5 10 dtpf=1 5 10

0.01 153 148 142 152 154 151
152 151 149 151 153 151

0.05 161 162 153 161 157 159
1.0 160 159 160 161 162 161

0.1 166 166 164 181 180 180
177 176 175 181 178 179

0.15 177 175 174 217 221 226
197 197 198 207 205 210

0.01 115 114 112 132 123 128
138 138 138 139 142 139

0.05 121 116 118 137 140 143
1.5 145 145 146 149 148 148

0.1 128 125 127 155 157 156
159 161 182 167 165 170

0.15 139 135 131 190 187 176
17C 174 184 192 189 193

0.01 94 94 93 116 111 119
127 128 128 131 133 129

0.05 96 95 97 120 120 122
2.0 133 134 131 138 139 139

0.1 101 101 100 137 138 137
_____ 146 145 147 155 156 157

0.15 109 104 106 168 166 177
162 163 162 178 177 179

0.01 77 78 78 100 104 100
1 117 116 117 123 120 127

0.05 81 80 81 107 106 104
2.5 121 122 121 129 129 129

0.1 86 82 81 122 126 120
134 136 137 148 145 147

0.15 92 89 83 154 147 154
150 150 147 164 167 170
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(a)

200

100

(b)

Figure 2. The scattering of waves in the layered medium. (a) is the overview with the
ellipses whose major axis length is indicated by the number. The source and the
receiver are separated by 100 km. (b) is the sideview. Scattering occurs in a small
region within a layer.
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Figure 3. A comparison of waveforms of direct surface waves and the scattered waves.

The numbers at the end of each seismogram indicates the source-receiver distance for
surface waves and the source- scatterer-receiver distance for the scattered waves.
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Figure 4. Wave type conversion test. The upper trace in each pair of seismograms does
not include wave type conversion and the lower one does. The tests are for scatterers
at the distance 110 km and 300 kin, and at the angles 0, 90 150 degrees on an
ellipse.
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Figure 5. Mode conversion test. Cases discussed are for mode conversion permitted
up to 1, 5 and 10 modes. Three scattering distances 110 kin, 300 km and 500 km are
included. Two Columns correspond to cases with or without wave type conversion
respectively. Plots a, b and c are for three different components.
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Figuare 6. Mode conversion test for an explosive source. The scattering distanceisa
110 km. At this distance, both mode conversion and wave type conversion are
important.
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Figure 7. Ile effect Of scattering at different location of an ellipse. Tree traces at
each lo0ion are for the satrer at the distaces 110 km, 300 km and 500 km withthe 0 ource-receiver dista0ce at 100 km. Ile amplitude of each trace has been
normalized. Ile time span covered is 30 seconds. Plots a, b and c are for threedifferent components.-7 2
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Figure 8. The effect of scatterer depth. (a) shows the tangential component with 200km scattering distance and (b) is vertical component with scattering distance at 500kmn. A Q model 10U0.SQ is also applied. The scatterers at different depths excitesimilar scattered pulses. The amplitudes do not differ much. This is due to the effectof the structure layering and the attenuation.
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Figure 9. The effect of different degree of scattering attenuation. The scattering
distance is 110 km and the scatterer is at the depth of 5 km. The source-receiver
distance is 100 km. High scattering attenuation partially absorbs high frequency
components and broadens the scattering pulse.
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Figure 10a, A comnparisonz of the effect of scattering Q and intrinsic Q. The scatterers
are at th e depth of 5 kmn and the scattering distanceis30k.lUQmasosca ter ng att nu tio u it U. and double anelastic attenuation as given by Q m odelill Table I. Note that the frequency content of the nUOQ cases is very similar.
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Figure l0b. Same as tar Figure 11a, but tor the scatterers at the depth 0.5 km. The
e ff ect at scatte rin g Q seems to enhance the high trequency and higher mode signals.
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Figure Ila. The scattering waveforms and their spectra under different attenuation
conditions. The scattering distance is 200 km and the scatterer is 5 km deep in CUS
model. The high frequency components are attenuated equally in both cases. The
spectra plotted are in the same sequence as the seismograms but shifted by a factor of
ten for clarity. T7heir high frequency spectra slopes are also indicated.
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Figure l1b. Similar as for Figure 11a, but for scatterer at 15 km deep. Scattering Q
absorbs the high frequencies in the main pulse. The anelastic attenuation is weaker
because of the deeper scatterer.
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Figure 12a. A comparable case to Figure 11. The scattering distance is 500 km now.
After traveling large distance, the high frequencies are absorbed especially for anelastic
attenuation. In this case, the anelastic Q controls the decay of wave energy.
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Figure 12b. Same as for Figure 12a, but for scatterer at 15 km deep. Note that the
high frequency spectrum slope difference between OUOQ (undissipative) and 10UOQ
(scattering attenuation) cases are very similar for all cases in Figures 11 and 12. The
scattering Q is dominant in controlling the frequency decay.

......................|... . . . . . . . ..- L



-56-

(a)

1. 0

Z COMPONENT
CUS MODEL

-1.31 S-Ri 100 KM

i+

+ HA
0
-j

" 3Hz

.. 4L13 300 ;to 40 00 (

IST CKM)

) Figures 13. The geometrical spreading factor for scattering waves in the layered
:-" medium. Displays are for Z component (a) ad SH component (b) with epicentral
i distance at 100 km in CUS model. The scattering distance varies from 110 km to 600
,- kin. The top curve is from the average peak-to-peak amplitude of composed scattering
I_-" waveforms, ad the lower two curves are for amplitudes after narrow bandpass filtered
- at I Hz ad 3 Hz respectively. No Q has been applied. Because of mode conversion,

we can see much fast amplitude decay in the front part <,200km).
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Figure 14. Scattering geometrical spreading in the WUS model. Two components,
vertical and tangential, are displayed. (a) is for source -receiver distance at 300 km
and (b) at~ 100 km. Note that the slope changes at 600 km for (a) and at 200 km for
(b). The WUS model has more rapid geometrical decay rate than the GUS model.
The slope difference between the two regions is also larger.
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Figure 15. A modification of geometrical spreading correction of Sato's surface-wave
scattering model. A higher decay rate of t-* 'V to t-' due to mode conversion and wave-
type conversion is assumed for the lapse time ratio smaller than 2.
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Figure 16a. Scattering pulses at different scattering distances. A Q model 1OUIQ has
been applied. We use this to measure the pulse duration expansion with traveling
distance.
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Figure 16b. The duration change measured from Figure 16a are plotted in linear scale
with the distance. A duration expansion rate 0.05 with distance is obtained. The
upper and lower sets of data are from SH and Z synthetics, respectively.
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Figure 17a.. Superposition of scattering pulses to farm the coda envelope. This
simulates the eastern United States case. Spreading factor m largely affects the coda
decay. Also note that the analysis of first part (1) and the rest (II) yields different
apparent Qvalues.
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Figure 17b. Same as for Figure 17a. This simulates the western United States case.
Since the pulse superposition has been saturated by the rapid decay due to Q, the
inferred Q is not dependent upon the shape factors of the individual scattered pulses
much.
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Figure 18. A comparison of body wave and surface wave scattering. The scattering
distance is 110 km with epicentral distance at 100 km in the CUS model. Some body
and surface wave scattering interaction can be seen.
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Figure 19. Body-wave scattering expanded at three scattering distances. The scattered
waveform is complicated and contains high frequencies. P-wave scattering is strong on
the Z component, and S-wave scattering is strong on the two horizontal components.
The complicated waveforms show the ray path effect in the layered structure.
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Figure 20a. The spectra of body-wave and surface-wave scattered pulses. Three traces
are for complete, body-wave only, and surface-wave only. The spectra of surface-
wave only is shifted down by a factor of 100 for clarity. Note that the spectra of the
scattered body waves is enriched in high frequencies, even though no attenuation is

*1 included.
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Figure 20b. Same as for Figure 20a with a scattering Q included. The attenuation or
body-wave scattered waveforms is less than the surface-wave scattered arrivals.
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Figure 20c. Same as for Figure 20a with an anelastic Q applied. Again, the body wave
scattering shows stronger resistance to attenuation.
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Figure 21a. The decay of high freluency component under different attenuation
conditions for surface-wave and body-wave scattering. The body-wave scattering shows
much smaller attenuation compared to surface-wave scattering attenuation. Each
spectrum has been shifted by a factor of ten for clarity.
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Figure 22. The synthetic seismograms from 'locked mode' approximation. SH
component from a single layer over h-Jlfspace model (SCM) is plotted with different
epicentral distance. The arrivals from (Afferent reverberation are followed through the
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Figure 23. Ten basic type complete seismograms generated by locked mode
approximation method. The seismograms rather have excellent quality.


