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1. INTRODUCTION

The stochastic Petri net (spN) model is well suited to formal representation of
concurrency, synchronization, and communication (cf., Marsan, Conte, and Balbo [11],
Molloy [14,15], Natkin [16], Symons [18]). An spN is specified by a finite set of places
and a finite number of transitions along with a normal input function, an inhibitor input
Sfunction, and an output function (each of which associates a set of places with a transition).
A marking of an spN is an assignment of zero or more tokens to the places in the net. A
transition is enabled whenever there is at least one token in each of its normal input
places and no tokens in any of its inhibitor input places; otherwise, it is disabled. A
transition fires by removing one token (per place) from a random subset of its normal

input places and depositing one token (per place) in a random subset of its output places.

Heuristically, an spN changes marking in accordance with the firing of a transition
enabled in the current marking. Each of the transitions enabled in a marking competes to
change the marking and each of these enabled transitions has its own stochastic
mechanism for determining the next marking. At each firing of a transition in the spN,
new transitions may become enabled. For each of these new enabled transitions, a clock
indicating the time until the transition fires is set according to an independent stochastic
mechanism. (There is no restriction to exponentially distributed transition firing times.)
If an enabled transition does not trigger a marking change but is enabled in the next
marking, its clock continues to run; if such a transition is not enabled in the next

marking, its clock reading is abandoned.
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The sPN representation provides a means of generating sample paths for the

underlying stochastic process of a discrete event simulation. This representation is
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particularly useful in connection with non-Markovian systems. The "state of the system

at time ¢" defines the underlying stochastic process of a discrete event simulation. When
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the current state of the stochastic process is s and a previously scheduled event, e,
occurs, the process moves to a new state, s. The marking of an sPN corresponds to the
state of the process and the firing of a transition corresponds to the occurrence of an

event. The graphical representation (bipartite graph of places and transitions) of an spN
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is particularly useful in that it incorporates a cousiderable amount of information about
the set of events that can occur when the process is in state s and the sets of "new

events" and "old events" when event e triggers a transition from state s to state s'.

Although steady state estimation for an arbitrary seN is a very difficult problem,
Haas and Shedler [4] have provided estimation procedures for spN’s that are regenerative
processes. To establish the regenerative property for an spN, it is necessary to show the
existence of an infinite sequence of random time points at which the process
probabilistically restarts. It is often clear that an spN probabilistically restarts when a

particular transition fires leaving the system with a fixed marking. For specific models,

however, it is nontrivial to determine conditioas (distributional assumptions) under
which this occurs infinitely often with probability one. Using recurrence theory (Haas
and Shedler [3]) for generalized semi-Markov processes (Konig, Matthes, and
Nawrotzki [8,9], Matthes [12], Whitt [19]), conditions are given in [4] which ensure that
an SPN is a regenerative process in continuous time with finite expected time between

regeneration points.
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In this paper we focus on sPN’s with special structure and define a symmetric spN.
Informally, an SPN is symmetric if there are mappings of places onto places, markings
onto markings, and transitions onto transitions which preserve the sets of enabled
transitions, the new marking probabilities, the sets of new transitions, and the clock
setting distributions. Symmetric spN’s have application to representation of ring

networks with equally spaced, identical ports; cf. Loucks, Hamacher, and Preiss [10].

Section 2 provides the formal definition of an spN given in [4] along with conditions
which ensure that an spN is a regenerative process and that the expected time between
regeneration points is finite. Using a geometric trials recurrence criterion (Iglehart and
Shedler [6]), Proposition (2.19) postulates the existence of a transition, _e', and a
marking, sb, such that transition e fires and the new marking is sb infinitely often with
probability one. Conditions on the old clocks ensure that the process probabilistically

restarts at these times. This result is the basis for regenerative simulation of spN’s.

Section 3 considers the steady state estimation problem for symmetric seN’s. Under
the assumptions of Proposition (2.19), regenerative cycles defined by the times at which
transition e fires and the new marking is sb can be decomposed into independent,
nonidentically distributed blocks. We show that point estimates and confidence intervals
for characteristics of symmetric functions of the limiting distribution can be obtained by

simulating the symmetric spN in blocks.

In Section 4 we develop estimation procedures for passage times in the spN setting.
Formal specification of a sequence {P;:n 2 1} of passage times in a symmetric SPN
{X():t 2 0} with marking set, S, and transition set, E, is in terms of four subsets

(4,, 4,, By, and B,) of S. The sets B; and B, define the random times {T;.:j 21} at
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which a passage time terminates. (The sets 4; and 4, define the random times at which a
passage time starts.) Proposition (4.1) postulates the existence of e €E and ‘o"be S
such that transition e fires and the marking changes from s, to sb infinitely often with
probability one and these transition firing times correspond to termination of a passage
time with no other passage times underway. Conditions on the "old clocks" ensure that
{(X(T;.),P;' +1):n 2 0} is a regenerative process in discrete time and that the expected time

between regeneration points is finite.

Section 4 provides two estimation procedures for passage times in a symmetric spN.
Each of these procedures rests on the assumption that there exist ee E, sy€ B,, and
so€ B, satisfying the conditions of Proposition (4.1). The regenerative structure
guarantees that P;,-;P as n-wo and the goal of the simulation ig the estimation of

r(f) = E{f(P)}, where f is a real-valued measurable function.

Estimates for 7(f) can be based on measurement of passage times {P,l,:n 211 (a
particular random subsequence of {P;,:n 2 1}) and simulation of the underlying spN in
regenerative cycles. Alternatively, exploiting properties of a symmetric spN, estimates
can be based on measurement of passage times {P;:n 2 1} and simulation of the
underlying spN in independent, nonidentically distributed blocks. This estimation
procedure extracts more passage time information from a simulation of fixed length and
should provide estimates for ~(f) that are relatively more accurate. In Section 5 we
verify that this is indeed the case by showing that the resulting confidence intervals are

shorter.
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2. REGENERATIVE STOCHASTIC PETRI NETS

Following Haas and Shedler {4], formal definition of an spN is in terms of a general
state space Markov chain (GssMc) which describes the process at successive epochs of
transition firing. Let D = {1,2,...,L} be the index set for a finite collection of places and
let E = {e,,e,,...,e5,} be a finite set of transitions. Denote by § the finite or countable set
of markings and for s€ S write s = (s,,5,,...,5;), where s is the number of tokens in place
J» J€ D. Denote the index set of the normal input places for transition e€ E by I(e) < D,

the index set of the inhibitor input places by L(e) S D, and the index set of the output places

by J(e) € D. We assume that
L) I(e) = O
for all e€ E. For s = (5{,5,,...,5; ) € S, set
(2.1) E(s) = {e€ £: 5; 2 1 for je I(e) and 5; = 0 for je L(e)}

so that E(s) is the set of transitions that are enabled when the marking of the spN is s.
When the marking of the spN is s the firing of an enabled transition e€ E(s) triggers a
marking change to s'. We denote by p(s';s,e) the probability that the new marking is s'
given that transition e fires when the marking is s. For all s = (s4,5,,..,5;),
s = (51,55,...,57) € S, and e€ E(s) we assume that p(s’;s,e) > 0 only if

Ds;-15x s} s s; for all je I(e) N (D = J(e)),

(i) s;—~ 1 s5;85;+ 1 forall jel(e) N J(o),

(iii) 5; < :} $ s; + 1 for all jeJ(e) N (D - I(e)), and

(iv) s} = s; for all j€ (D —~ J(e) = I(e)).

The actual enabled transition e which triggers a marking change when the marking is s

depends on clocks associated with the enabled transitions and the speeds at which these
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clocks run. Each such clock records the remaining time until the transition fires. We

denote by 7,; ( 2 0) the deterministic rate at which the clock associated with transition e,

- -..8 when the marking is s; for each s€ S, r,; =0 if ¢ £ E(s). We assume that ry; > 0 for-

some e€ E(s). (Typically in applications, all speeds r,; are equal to one. There are,
however, models in which speeds other than unity as well as state-dependent speeds are

convenient.)

For s€ S define C(s} to be the set of possible clock readings when the marking is s:

C(s) = {(cgmcpp): ¢; 2 0 and ¢; > 0 if and only if e € E(s);

(2.2) c,-r_,',-l ok cjr;j'l for i ¢ j with i sils > 0}.

The conditions in Equation (2.2) ensure that no two transitions fire simultaneously as
defined below. The clock with reading c; is said to be active when the marking is s if

transition e; is enabled (e;€ E(s)). For s€ S and c€ C(s), let

(2.3) £ =4£(sc) = min {c,-r;l},
{ize, € E(s)}

where c,.r;;1 is taken to be + « when ry; = 0. Also set

(2.4) c; = c:(s,c) =c - t‘(s,c)r“-, e;€ E(s)
and
(2.5) i = i"(s,¢) = i such that e;€ E(s) and ¢; (s,c) = 0.

Beginning with marking s and clock vector c, {"(s,c) is the time to the next transition

firing and i (s,c) is the index of the unique firing transition e = e‘(s,c) =ep

(s.c)°

\' -" . '.-".. -, '.\“—
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At a marking change from s to s' triggered when transition e fires, new clock times
are generated for each e'eN(s';s.e.) = E(s') = (E(s) - {e‘}). The distribution function of
such a new clock time is denoted by F(;s',e',s,e’) and we assume that F(0;s',e',s,e’) = O.
Fore' € O(s';s,e°) = E(s) N (E(s) - {e'}), the old clock reading is kept after e fires. For
e € (E(s) — {e'}) — E(s"), transition e (which was enabled before transition e fired) is

disabled.

Next consider a Gssmc {(S,,,C,):n 2 0} having state space

2 = UsixC(s))
SES
and representing the marking (S,) and vector (C,) of clock readings at successive
transition firing times. (The ith coordinate of the vector C, is denoted by Cn.i') The

transition kernel of the Markov chain {(S",Cn):n 20} is

(2.6) P((sx0),A) = p(sisie)  [] Flaps'epsie) [ 1,0
e,€ N(s") e, € 0(s)

where N(s') = N(s':s,e’), O(s) = O(s';s,e’), and
A= {s'} x {(c'l,....c}”)e C(s): ¢} < a; for € E(s')}.

The set 4 is the subset of T which corresponds to the spN changing marking to s' with the
reading c:. on the clock associated with transition e;€ E(s') set to a value in [0,9;]. (We

suppose that the clock setting distributions are such that P((s,c),Z) = 1.)

Finally, the spN is a piecewise constant continuous time process constructed from

the Gssmc {(S,,C,):n 2 0} in the following manner. Set {; = 0 and denote by §, the time

.........................................
.......................................




of the nth transition firing, n 2 0. (We assume that

P{sup o= + eoI(So,Co)} =1 a.s.
n21

for all initial states (§9:Cp)-) Then set

(2.7) X() = SN(‘),
where
(2.8) N = max {n 2 0: $, s

The process {X(¢):¢ 2 0} defined by Equation (2.7) is an spN.

Example (2.9) illustrates the use of the spN framework for formal specification of a
discrete-event simulation. For ring networks with N ports, reference to port index ";" is
to be interpreted as reference to index j—-1(mod N)+ 1. In the graphical
representation of an spN, places are drawn as circles and transitions as bars. Directed arcs
connect transitions to output places and input places to transitions. Tokens are drawn as

black dots.

(2.9) EXAMPLE (Token ring 1). Consider a unidirectional ring network having a fixed
number of ports, labelled 1,2,...,N in the direction of signal propagation; see Figure 1. At
each port message packets arrive according to a random process. A single control token
(denoted by T in Figure 1) circulates around the ring from one port to the next. The time
for the token to propagate from port j~ 1 to port j is a positive constant, Rj_l,
j=12,. ,N. When a port observes the token and there is a packet queued for

transmission the port converts the token to a connector (C) and transmits a packet

followed by the token pattern; the token continues to propagate if there is no packet

R et e T B e Wi R e O R S e S P e I ;,




queued for transmission. By destroying the connector prefix the port removes the

transmitted packet when it returns around the ring.

Assume that the time for port j to transmit a packet is a positive random variable,
Lj. with finite mean. Also assume that packets arrive at individual ports randomly and
independently of each other: the time from end of transmission by port j until the arrival
of the next packet for transmission by port j is a positive random variable, 4 7 with finite
mean. Note that there is at most one packet queued for transmission at any time at any

particular port.

Following [4], take D = {1,2,...,.4N} and E = {e,,e,,...,e55}. (See Figure 2 for

N=12) Set

(2.10) L(e3j_2) = L(e3j_1) = L(esj) =0,

and
(2-12) J(e3j_2) = {4.1 - 3}, J(e3j—l) = {4., - 2’ 4J}| J(e3j) = {4./ - 1’ 4./}'»

J=12,..,N.

The transitions have the following interpretation: e, , = "arrival of packet for
transmission by port j," &3-1 = "end of transmission by port j," and ey = "observation
of token by port j," j = 1,2,...,N. The interpretation of the places is as follows. Let 20
and s = (’1"2'°'°"4N)e S. If the marking of the spN at time ¢ is s then S4j-3 = 1 if and
only if at time ¢ port j is transmitting a packet or there is a packet waiting for

transmission by port j; S4j=2 = 1 if and only if at time ¢ port j is not transmitting a packet
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and there is no packet waiting for transmission by port j; S4j-1 = 1 if and only if at time ¢
port j is transmitting a packet; and S4; = 1 if and only if at time ¢ the control token is

propagating to port j + 1, j = 1,2,....N. (Otherwise s; = 0,/=12,.4N)

Set

S = {(’1"2"""41\(): s; = ODorlforl <js<4nN; sp+ S+ . +sy=N+ 1}.

The set, S, of markings is

(2.13) §= {(-“1,52,---,54”)63'2 Sgj-3 ¥ S4jp=land s, o5, =0forls/s N}.

(It follows that | S| = 321 In any marking there are exactly N+1 tokens. There is
at most one token in each place. Each of the disjoint sets of places {4; — 3,4/ — 2}
contains exactly one token indicating whether or not port j has a packet queued for
transmission. The set of places D - {1,2,5,6,....4N — 3,4N — 2} contains exactly one
token indicating the position and status of the control token. There can never be
tokens at places 4/ — 2 and 4/ — 1 simultaneously, reflecting the fact that there can be

no arrival of a packet for transmission by port ; during a transmission by port j.)

The new marking probabilities are as follows. If e = €2 = "arrival of packet for

transmission by port j," then p(s';s,e) = 1 when
s = ("1"""4(,'—1)'0’1'0""4j"4j+l"""4N)E Sand s = (51"“"4(,'—1)'1'0'0”4j"4j+l"""4N)'
Ife= €31 = "end of transmission by port j," then p(s';s,e) = 1 when

s = (Sl""’SA(j—l)’l'0'1’0"'4j+1"""s4N)e S and S' = (Sl,.-.,540_1),0,1,0,1,34j+1,--.,S4N).

Ife=ey = "observation of token by port j," then p(s';s,e) = 1 when

S = (Sl'..-,s4(’.—1)_1'1’1.0'0,0,54j+1,...,...,J‘N)e S and S’ = (sl,...,.)"U_l)_l,o,l,0,1.0,S4j+1,...,54N)
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and

TAD = inf {5, > S_(D: Xt € By X, _peBi} izt

Note that since the spN is symmetric the sets A’, Alz, B’ , and B’2 satisfy the conditions
which ensure that the start and termination times for the passage times
Pﬁ- = Tj(l) - Sj_l(l) strictly alternate. Denote the successive passage times
Pl,Pz,...,Pf,P;,P%,... enumerated in termination order by {P}:j 2 1}. Set Ty = 0 and let T;

be the termination time for P, j 2 1.

Proposition (4.1) gives conditions which ensure that {(X(T;,),P;,H):n 20} is a
regenerative process in discrete time and that the expected time between regeneration
points is finite. The regenerative structure guarantees (Miller [13]) that P,',.;.P as n-»oo,
The goal of the simulation is the estimation of »(f) = E{f(P)}, where f is a real-valued

(measurable) function and P is the limiting passage time.

We postulate the existence of a transition e and markings sy€ B, and sbe B, such
that a passage time terminates when transition e fires and the marking changes from s,
to ’1'.)' In addition, we assume that no passage times are underway when the marking of
the spN is ‘E)' Formally, denote by I-,(t) the last marking of the spN before jumping to X(¢)

and set

V(8 = (L(1),X(2)).

Denote by G the state space of {V(¢):r 2 0}. Set A’=A'1xA’2 and B'=B’1xB’,

{=1,2,.,N Now set

H’l = {,'e S: (s,s)€ B! - 4' for some s€ S}

Y
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4. PASSAGE TIMES IN STOCHASTIC PETRI NETS

Formal specification of passage times in a symmetric sPN is by means of four subsets

(44, Ay, By, and B,) of the marking set, S. The sets 4, A5, By, and B, in effect

determine when to start and stop the clock measuring 1 particular passage time; cf.

Iglehart and Shedler (7].

Denoting the jump times of the process {X(#):t 2 0} by {{,:n 20}, for k,n 21 we

require that the sets A4y, 45, By, and B, satisfy:

if X(§,_)edy, X(§)edy, XE§,_,,,)€A4;,and X(§, ) €A,

then X(¢ )€ B, and X(¢ )€ B, for some 0 < m < k;

n—14+m n+m

and

if X(¢,_)€B, X(,)€By, X(§ _,, JEB, and X(S,, )€ B,

then X({ JEA, and X( )EA, for some 0 < m < k.

n~1l+m n+m

These conditions ensure that the start and termination times for the specified passage

time strictly alternate.

In terms of the sets 4,, 4,, B;, and B,, define A’1 = {¢§(s): s€ A1,
4l = {65(s): s€4,}, B} = {¢5(s): s€ B,}, and B}, = {ek(s): s€ By}, I =12,.,N. (Recall
that for s€ S, ¢5(s) = ¢g(s) and ¢5(s) = ¢(6571(s)), I = 1,2,..,N. Also recall that for
ec kE, ¢}.:(e) = ¢5(e) and ¢2(e) = ¢E(¢£Tl(e)).) Then define two sequences of random
times {Sj(l):j 2 0} and {Tj(l):j 2 1}: Sj__l(l) is the start time for the sjth passage time
(corresponding to the sets A’, A', B'. and Blz) and Tj(l) is the termination time of this
jth passage time. Set

So(h) =0,

S0 = inf {¢, 2 T(D: X, e 4h, X, _peat}, iz
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Standard arguments establish a ratio formula for r(f).

(3.15) PROPOSITION. Provided that Efr)} < @ and Ef | f(X) |} < o,

E{Y,(N}
E{‘rl}

Hf) = ELfI0} =

With these results Equations (2.22) and (2.23) provide point estimates and confidence

intervals for r(f).

(3.16) EXAMPLE. In the token ring model of Example (2.18), take ¢(j) =/ + 1,

Jj=12,.,N. Set

S' = {se S: Sej-1 = 1 for some j, j = 1,2,...,N}

and consider the function f defined by
f(S) = 1{5'}(5)

for s€ §. According to this definition, r(f) is the steady state throughput of the token

ring. Note that the function f satisfies Equation (3.1) since (for each /) s =1 if

4¢'(N-1
and only if S4G+n-1 = 1, i=1,2,..,N. Arguments given in [4] show that the conditions
of Proposition (2.19) hold provided that the packet interarrival time random variables,

A

j» have new better than used distributions and satisfy a positivity condition:

P{d; < Ry} >0, j=1.2,..N.
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= Pl{81 =n+ l, f(x(gn)) = f(xn)r In < zn’

FXE,_ ) = flx,_ )8, S 2, qeendy € 21} PLXCE,) = o5(sp) }

for all z,,...,z, 2 0, x;,...,x, €S, and n 2 1. Applying Equation (3.14) and then Equation

(3.13), it follows that for all z,,...,z, 2 0 and XqpeeesX, € S

P1{8k+l =n+ 1) f(X(IYk“'")) = f(xn)’ IY +n < z’l’
ﬂx(‘(yk"l-ll-l)) = f(xn-l)’ §7k+n—l < Zn-l""’§7k+1 s zl}
N
= Pfs; =n+1, fIXE)) = fx), t, < 2,
I=1
LX) =[x, 0 8y S 2, g0y < 11} PH{XE, ) = 65(sp}
N
=Y Pif{dy=n+1, fIXE)) = fx,) ¢, S 2,

jm]

f(x(“n-l)) = f(xn—l)’ ;n_l < zn—l"""-l s zl} PI{X(KY,‘) = ¢.IS‘(SE))}

= P1{81 =n+ l’ f(x(gn)) = f(xn)’ {n s Zps f(X(gn—l)) = f(xn—l)' ‘n_l < Zn—l""’gl < 21}

so that (using Equation (3.10)) the pairs of random variables (Y, (N, ):k 2 1} are

identically distributed. [J
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marking is ¢f,(s;,), the definition of a symmetric spN implies that for all z,...z, 2 0,

X1seeesXg € S, and e,.l,...,e,.ne E with p(s;;s -1”",,) >0:

PI{X(,{,.) = ¢.19(xn)' $n S 2 e; = ¢é(e'.n)’
X({n_l) = ¢-lg(xn—1)' In"l < zn-l’e:l-l = ¢é(ei _l)v"ve; = ¢é(el'l)}
= P’{X(In) = ¢f9(xn)' f,, <z, e; = ¢l£(ein)’

X(:n_l) = ¢fg(xn_l)| :n_l < Zn_l,e;_l = ¢£-(e' —l),.-..e; = ¢IE(e',l)}.

! =1,2,...N. Hence, by Equation (3.1),

(3.13)  Py{8; = n + 1, AXQ)) = flxy), £ 5 2,
f(x({n—l)) = f(xn-l)' ;n_l b3 zn-l""’{l < Zl}

= P’{al = N 4 1, ﬂX(In)) = ﬂxn)’ .;n s Zn’

f(x(:"_,l)) = f(xn-l)' gn—l s zn—l""’gl s zl}

for all z,,...,2, 2 0, xy,....x, €S, and n 2 1. But by the independence argument of the first

part of the proof

(3.14)  Pi{8,y =+ 1, AXE, ) = fx), 8y 4n S 2

FXQE, 0 D) = S D08y S 2y gy o S 2 XU, = 650
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Tl = 7"3'“l - Tﬁk and the finite dimensional distributions of {/(X(#)):z 2 Tﬁk}. Observe
that the joint distribution of X(Tpk) = 4’.19(’;)) and the clocks set or reset at time Tﬁk
depends on the past history of the spN only through the new marking ¢fg(sb), the previous
marking ¢fg(so), and the trigger transition ¢§5(e'); this implies that the cycle length 7,
and {f(X(0)):t 2 Tﬁk} are independent of {(Yj(f).'rj):j < k}. It follows that the pairs of

random variables {(Y,(/),7,):k 2 1} are mutually independent.

Next observe that

Yk‘l

(3.10) YN = Y AXED) Bpyr = Smds
M=V e—1
where {n = Tﬁk’ k20. Set § =1y, — Yiem1? k 2 1. It is sufficient to show that for all

Zyseees2y 2 0, Xq,....x, € S,and n 2 1:

Pl{sl =n+ 1’ f(x(gn)) = f(xn)v :n s 2y f(x(:n-l)) = f(xn—l)’fn—l s zll—l""'fl s zl}

(3'11) = Pl{sk.'.l =n 4 19 ﬂx(§7k+")) = f(xn)r f.,k.,.,, < z’l’ f(X("Yk"’"_l)) = ‘f(x’l-l)'

§7k+n—l < zyk+n—1""'§7k+1 s zl}'

k 2 1. Here P -} denotes the conditional probability associated with starting the spN
with marking 4»};(:6) and all active clocks reset at time /=0 according to the

distributions
(3.12) P{Cy; s c} = F(c;05(sp),end5(se) 0 5(e ))

forc 20, ¢€ E(¢;-(:b)). Recall that Co',. is the clock reading associated with transition e,

at time 0. Denoting by P/{:} the corresponding conditional probability when the initial

B » LR
[ R T T BTN @ taa e aTstat@atate o s atalalalwmalae’ ‘ata®aatla- T et b hd taalta"ate S Zal Tan

...........
.................
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= P{X(T}) = ¢5(sp) | X(T!_) = #5(x,_ ). X(T}) = 05(x)},
l=1,2,..,N. The result follows from Equation (3.3). [J

Carry out the simulation of {X(s):¢ 2 0} in random blocks defined by the successive

. P s v - w v v ww T T
. K r'~.',',r. W e e t‘. l', e S 7,
PR W % " a0 7 Lo L. ¢ s

random times {TBk:k 2 0}, defined by

(3.8) Tﬂk = inf{Tf, > Tp : X(Tf,) = ¢f9(sb) for some /, | = 1,2....,N},

F k=1

k21; By=0 and Tﬁo = 0. (Note that the random times {Tp,,:k 2 0} do nor form a

v sequence of regeneration points for the process {X(s):r 2 0}.)

P Set
r_‘.
‘.-:'.
ﬁ k Px B
b
b and
e
[ Th
i Y.(N) = f [X(s))ds,
T i
e P |
e
S
o
- k21.

(3.9) PROPOSITION. The sequence of pairs of random variables {(Y,(/),7;):k 2 1} are

independent and identically distributed.

Proof: The sequence {B8,:k 2 1} are indices of the successive stopping times {T,:n 2 1} at
which transition ¢2(e‘) fires and the marking changes from ¢fg(s') to ¢fg(s;)) for some
X s €S and some I, 1 =1.2,..,N. Thus, by the definition of a symmetric spN, each of the

clocks running at time Tﬂk + was set or can be viewed as having been probabilistically

reset at time Tﬁk' Therefore {X(&):¢ 2 TBk} determines the distribution of
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(3.5)  P{XQ,) = #5(x,), &, = ¢5(e; ) X(§)) = $5(x1), €] = $5(e;), X(E) = $5(x0)}

= P{X($,) = #5(x), &, = ¢5(e; ) X(E)) = $5(x1), €] = ¢5(e;), X(5p) = ¢5(xp},

I =1,2,.,N. Denote by {yfl:n 2 0} the indices of the successive times {{,:n 2 0} at which
transition ¢2(e‘) fires when the marking is ¢fg(s') for some s €S". Equation (3.5)

implies that for all x,,...,x, € S and s;,...,s;e s

(3.6) p{x«ﬁ) = oMx), e = sL(e), XE_) = #5(se X D) = 630x)),
e = ¢}5(e‘), XEp_p) = 4’};(-';)}
_ P{X({YL) _ ¢fg(xn)’ e; - ¢’E(e.), X(IYL—I) = ¢§(S;),.-’X(§Y’l) = ¢§(X1)s

e = $5(€), X(_y) = o5},
!=1,2,.,N. Using the definition of {Tf,:n 2 0}, Equation (3.6) implies that for all
Xqseee X, € St
(.7 P{X(T)) = ¢5(x,), .. X(T]) = 3(x} = P{X(TL) = ¢5(x,), ... X(T}) = ¢5(x)}
1=1,2,..,,N. Applying Equation (3.7) it follows that for all XypeersX, 1 € S:

P{X(T}) = ¢3(s) | X(T2_)) = ¢5(x,_ ), X(T]) = 3(x) }

P{X(TY) = ¢ 5(sp)s X(T2_ ) = ¢3(x _ ), X(TH = 01 (x) }
P{X(TL_)) = o5(x,_)... X(T]) = ¢5(x) }

b PEX(TL) = ¢l5(sp), X(TL_) = 650x,_ )rer X(TH) = 05(x) }
PEX(T, 1) = #5(x, ). X(T]) = $5(x) }

r:l'., * 's"?. —;'-'v-'-'-'-'\‘-..
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3. STEADY STATE ESTIMATION FOR SYMMETRIC STOCHASTIC PETRI NETS
In this section we consider estimation of r{f) under the assumption that the

function f is symmetric in the sense that
(3.1) fis) = flgs(s))

for all s€S and all /=1,2,.,N. Symmetry of the underlying spN implies that
regenerative cycles defined by the times at which the transition ¢}5(e‘) fires and the
marking changes to ¢;(s2,) can be decomposed into independent, nonidentically
distributed blocks. These blocks are defined by the successive times T, at which
transition ¢g(e') fires and the marking changes from ¢fg(s°) to ¢§(:b) for some s € S” and
some [, I =1,2,....N. Estimates for (f) can be based on observation of these blocks.
Proposition (3.2) provides conditions which ensure that (for each /) transition ¢2-(e')

fires and the marking changes to 4»";(.96) infinitely often with probability one.
Denote by {7,:n 2 1} the times T{,Tz,...,T'lv,T;,... in increasing order.

(3.2) PROPO'SITION. Suppose there exists § > 0 such that

(3.3) P{X(TY) = 63(sp) 1 X(T2_)),.. X(TH} 2 8 as..

Then P{X(T,) = ¢5(sp) .0.} = 1 forall I = 1,2,...,N.

Proof: By Lemma 4 of [6] it suffices to show that

(3.4) P{X(T}) = ¢'5(s) | X(T!_ ). X(TD} 2 8 as.

Let e; denote the transition that fires at time $p» 1 2 0. The definition of a symmetric

spN implies that for all x4,x,,...,x,€ § and € rees8 eE: .

‘‘‘‘‘‘‘‘‘
.....
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consistent point estimate

Y(n)
T(n)

A

(2.22) M) =

and asymptotic 100(1 — 2y)% confidence interval

(n)
(2.23) Moy = [m) _ By __]

»H(n) + 172

7(n) nt/2 F(n) n

for r(f). In Equation (2.22)

Y(n) = n~1 Eu: Y,.(N

m=1

and

F(n) = n~1 i T
m=l

where 7, is the length of the mth cycle and Y, (/) is the integral of f(X(-)) over the mth

cycle. The quantity s?(n) is a strongly consistent point estimate for
AN = var (v,(N) = HNHry)

and H_, = 0'1(1 — v), where ® is the distribution function of a standardized normal
random variable, N(0,1). Confidence intervals are based on the central limit theorem

(c.l.t)

n1/2 {?(n) - ’m}

> N(0,1)
U(f)/E{Tl}

as n-»oao,

i Iarardnin
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Also suppose that there exists s€ S such that for all ses’,

(i) the set O(syis .e') = E(sp) N (E(s) — {e 1) = O,

(ii) the set N(sys ,e') = E(sy) — (E(s') = {€'}) = N(spis.e’), and

(iii) the clock setting distribution F(-;sp.e,s,e) = F(-:sb,e',:,e‘) for all e'EN(.r},;s,e‘).

Then {X(#):¢ 2 0} is a regenerative process in continuous time. Moreover, if
(2.21) EfT} - T} sc<w

for all n 2 0 then the expected time between regeneration points is finite.

Equation (2.20) implies that transition 4»}5(;) triggers a marking change to 4»},-(:6)
infinitely often with probability one. Furthermore, at such a time T},, the only clocks
that are active have just been set since 0(¢};(sb);¢é(s').d;i-(e')) =0 foralls eS". .'I’he
joint distribution of X(T:) and the clocks set at time T,} depends on the past history of
§X(9:t 2 0} only through ¢39(s;,), the previous marking qb}(s'). and the trigger transition
4»}5(;). Since the new transitions and clock setting distributions are the same for all s,
the process {X(¢):t 2 0} probabilistically restarts whenever {X(T,l,):n 2 1} hits ¢l~(s6).
Note that the result of Proposition (2.19) also holds if condition (i) is replaced by:

1" O(sb;so,e')#ﬂ and for any e'€ O(s},;so,e‘) the clock setting distribution F(-;s',e',s,e) is
exponential with mean which is independent of s, s', and e. (Assumption (i') ensures that
no matter when the clock for transition e' € 0(’6;-’0".) was set, the remaining time until

transition e' triggers a marking change is exponentially distributed with the same mean.)

Under the conditions of Proposition (2.19), the basic limit theorem for regenerative
processes asserts that X(/)aX as t+«. The goal of the simulation is the estimation of
r(f) = E{f(X)}, where f is a real-valued (measurable) function having domain S. From a

cycles the standard regenerative method (Crane and Iglehart [2]) provides the strongly

L a0S AR e i R ae S il SO IRl Mt ML N A o/ S o T A S AL i~ S o AP AP
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L,,L,,...,.Ly are identically distributed. Under these assumptions the spN is symmetric.

For example, take ¢(j) = j + 1, j = 1,2,...,N. Then

op(4G = 1) + k) =4j + k,

4’5('3(,-1)+k) = €34k
and
¢S(S1’S2""’S4N) = (35,56,...,$4N.31,-..,$4).

Proposition (2.19) (cf. Proposition (4.7) of [4]) gives a set of conditions on the

building blocks of an spN which ensure that the process is regenerative and that the

expected time between regeneration points is finite. Set ¢_ls-(s) = ¢5(s) and
$5(5) = o585 1(s))
for s€ S and /! = 2,...,N. Similarly, set ¢}5(e) = ¢r(e) and

pr(e) = ¢(s571(e))

v ew v S am e aal g
A ARSI AMDARAD
e h R et

[- for e€ E. Recall that {, is the nth transition firing time, n 2 0. Let {Tf,:n 2 0} be an
? increasing sequence of stopping times that are finite (Ifl < = a.s.) transition firing times

such that for some e € £ and S'sS: T) = 0 and

b T,', = inf{t > 1: ~q° at time ¢ transition ¢2(e‘) fires and the marking is 4»{;(:‘) for some s € S'}.

- nzland !l =1,2,..,N.

(2.19) PROPOSITION. Suppose that there exists sy€ S and § > 0 such that

i} (2.20) PEX(TY) = ¢5(sp) 1 X(T2_)),.. X(TD} 2 8 as..
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Let ¢ be a cyclic permutation of the set {1,2,....,N}. In terms of this permutation

define a mapping, ¢p, of D onto D:
(2.14) ¢p(G = DLy + k) = (¢()) = 1)L, + k,

Jj=12,.,Nand k = 1,2,...,.L,. Similarly, define a mapping, ¢z, of E onto E:

(2.15) $E(€G1)p, +1) = (- 1IM, +k*

j=12,.,Nand k = 1,2,...,M,. Also define a mapping, ¢4, of S onto §:

(2.16) $5(S12590mee5L) = (54 (13754 @) Fgp(L))-

For D's D, we write ¢p(D) ={¢p(D:i€D'} and for E S E we write

$p(E) = {¢5(e): e€ E'}.

(2.17) DEFINITION. An spN {X(¢):t 2 0} is said to be symmetric if there exists a cyclic

permutation, ¢, of the set {1,2,...,N} such that:

(i) ¢p(L(e)) = L(¢g(e)), ¢p(I(e)) = I(¢5(e)), and ¢ (J(e)) = J(¢g(e)) for all ec E,

(ii) p(s';s,e) = p(95(s);5(s),0(e)) for all e€ E and s,5' € S, and

(iii) F(-;5',e,5,6) = F(-;¢s(s'),¢5(e'),¢s(s),¢E(e)) for all ¢ € N(s';s,e), e€ E, and 5,5’ € S.

Condition (i) ensures that the induced mappings ¢, and ¢ preserve the sets of normal
input places, inhibitor input places, and output places and thus (using Equation (2.1))
¢5(E(s)) = E(¢g(s)) for all s€ S. Conditions (ii) and (iii) ensure that the mappings és

and ¢ preserve the new marking probabilities and the clock setting distributions.

(2.18) EXAMPLE. In the token ring model of Example (2.9), let N be the number of

ports so that L; = 4 and M, = 3. Suppose that (i) R; = Ry = ... = Rp; (ii) the random

variables Ay Ay,... Ay are identically distributed; and (iii) the random variables
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and when

s = (sl....,s40_1)_1.1.0,1,0,0,s4j+1,...,s4N)e Sand s = (’1"""4(,-1)_1’0’0'1'0'1"4j+l""’541v)'

v

All other new marking probabilities p(s';s,e) are equal to zero.

Note that when transition e, y fires, a token is removed from place 4(j - 1) and a
token is deposited either in place 4j—- 1 or in place 4/, depending upon whether
(’41‘—3"’4,‘-2) equals (1,0) or (0,1). All other transitions are input-deterministic (in that
exactly one token is removed from each input place when the transition fires) and
output-deterministic (exactly one token is deposited in each output place when the

transition fires).

The distribution functions of new clock times for transitions e'eN(s':s,e') are as
follows. If e = €3~2 = "arrival of packet for transmission by port ;" then the
distribution function F(x;s'.e',s,e ) = P{d jsxab I e = €31 = "end of transmission by
port j," then the distribution function F(x:s',e',s,e) = P{L; s x}. If e =e i=
"observation of token by port j," then the distribution function

F(x;s' e',s,e) =1 .
5 ) [Rj—i'“)(X)

We now define a symmetric-sm. Informally, an spN is symmetric if there are
mappings of places onto places, markings onto markings, and transitions onto transitions
which preserve the sets E(s) of enabled transitions, the new marking probabilities
p(s';s.e), the sets N(s';s,e') of new transitions, and the clock setting distributions
F(-is',¢',s,’). Let {X(s):t 2 0} be an sPN with finite marking set, S, and transition set, E.
Throughout this section we assume that D = {1,2,...,L} is the index set of places and
E = {e,,e,,...ep0} is the transition set, where L = LN and M = M;N for some N 2 2.

(We assume that all clock setting distributions have finite mean.)
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so that Hll is the set of all possible markings when a passage time Pfl terminates. Also set

] 1 A, ]
H = {s'e S: for all s€ S,(s,s)€G - (B' U A') and (s1,5,)~(s,s),

] A' " "t 1] ] " "
(5,5 )~(s1,55) for some (sy,5,) € B’, (s1,55) eA'}

AR  Er PP o

so that H’z is the set of all possible markings when a passage time Pf, is not underway.
1

1] g L3 A B - - - - t L] 1 t [ t
(For (s,5),(5,5) € G we write (s,s)~(s,5) if there exists a finite sequence ej,sy,61,55,.--,5,,8,

-

of transitions and markings such that

0 e -
[ i

P(syis' ) p(shis) €y)...p(5sp.e,) > O
and (s',s'l),(s;,,i),(s},s}“) g4', j=12,.,n~1) We assume that

By=B,n(HUHEDn..nHY uE)) v 0

and that So€ Bz-

As in Section 2, let {T,',:n 2 0} be an increasing sequence of stopping times that are

finite (T:, < % a.s.) transition firing times such that for some e €Eand §'¢S: T:, = 0 and
T,’. = inf{t > Tfl_lz at time ¢ transition ¢2(e‘) fires and the marking is ¢fq(s') for some s € S‘},

2 n21and[=12,..N.

N (4.1) PROPOSITION. Suppose that there exists e € E, so€ By, and sy€ B, such that
P(sb;so.e.) >0 and either (i) O(sb;so,e') = E(sy) N (E(sy) - D=0 or (i)

O(sb;so.e') % O and for any e'EO(sb;so,;) the clock setting distribution F(-;s',e,s,e) is

exponential, independent of s, s', and e. Set v(l) = (4’.}:(50)’4’}:(’6)) and suppose there exists
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8 > 0 such that

(4.2) P{V(TY) = I V(T ), s U(TH} 2 8 ass..

Then {(X(7),P,,,):n 2 O} is a regenerative process in discrete time. Moreover, if
1 1
EfT',, - T} sc<w

for all n 2 1 then the expected time between regeneration points is finite.

Proof: Since T} < wa.s. and P{V(T}) = v} | (T)_)),...(TH} 2 6 >0, Lemma 4 of [6]
ensures that transition ¢}.:(e‘) fires and the marking of the spN changes from 4’;‘(’0) to
¢;-(s(',) infinitely often with probability one: Pf¥V( T:) = v(l, i.o.} = 1. Denote by
{ﬂ,i:k 2 1} the indices of the successive passage times {P;:n 2 1} which terminate when

transition ¢}5(e‘) fires and the marking changes from ¢;(50) to 4’};(’6)' Let 7‘0 = B}) =0.

We must show that

() {B}‘:k 2 0} is a renewal process in discrete time

and that forany i} < i, <..<i,(m21)andk 20

(ii) {X(z‘p‘.‘+‘.‘),1’;,:+‘.l+1,....)((7‘31 ,”.m),z’;,}‘“”1 } and {X(T; ),P; o1, X(T; ),P; .} have

the same distribution, and {X(T‘BLHl),P'BlHI+1,...,X(T‘p‘x‘ﬂ.’.),P'pLHmH} is

independent of {(X(T,).P,,,):0 s n < Bi}.

>
13
»
.
»
.

i At time T'p‘x‘ ,» 3 passage time has just terminated with no other passage times underway.
}: Now observe that each of the clocks running at time T'B‘xr + was set or can be viewed as
i having been probabilistically reset at time T'p’n‘ . (Assumption (ii) ensures that no matter
» when the clock for transition e'€ 0(¢}(sb);¢}(:o),¢};(e.)) was set, the remaining time
) until transition ¢ fires is exponentially distributed with the same parameter.) Therefore
'

..........................
...................
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{X(0):t 2 T‘Bk} determines the finite dimensional distributions of X(T’p‘x‘ i P.Bi +is1 fOT
i 2 0 and the distribution of Bz - B,l‘. The joint distribution of x(rp,',) and the clocks
set or reset at time Tp‘x‘ depends on the past history of the spN only through ¢§-(:E,), the

previous marking ¢.ls.(so), and the trigger transition ¢}5(e ). This distribution is the same

for all B,t and therefore (i) and (ii) hold.

Proposition (4.3) of [4] implies that {X(s):r 20} is a regenerative process in
continuous time and E{T‘le‘ - T‘Bf,} < =. It follows, since the state space of the sPN is

finite and the clock setting distributions have finite mean, that £ {ﬂ,t 1 - B,lt} <ew. O

Proposition (4.3) provides sufficient conditions which ensure that Equation (4.2)
holds. We postulate the existence of a distinguished random time T,‘:' in the interval
[ T:_I,T:) and a set {e("):keK(v: )} of distinguished transitions determined by the
marking, v;, at time 7. We make the following sample path assumption: V( ) = v}) when
each of the distinguished transitions occurs prior to some time 7;:' + R, *(v: ).
Proposition (4.3) asserts that the geometric trials recurrence criterion (Equation (4.6)) is
satisfied if the clock setting distributions associated with the distinguished transitions are
"new better than used" (NBU) and-satisfy a "positivity" condition (condition (iii)) which

guarantees the existence of § > 0 as in Equation (4.6). (A positive random variable 4 is

NBU if

PiA> x+ ylA >yl < Pi4 > x}

for all x,y 2 0. Note that every increasing failure rate (IFR) distribution is NBU. Also,
if A and B are independent random variables with NBU distributions, then the

distributions of 4 + B, min (4,B), and max (4,B) are NBU.)
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Recall that G is the state space of the process {¥(1):¢ 2 0}. Let {7 :n 20} be a
sequence of transition firing times and denote the state space of {¥(T):n 2 0} by G*.
Set SW(TT) = {(S5,,C):0 s 1< N(T)}, where N(-) is given by Equation (2.8). Let

eV @ M eE and for vt = (I* x*) € G, set E(v*) = E(x*) and
K(v*) = {k: P e (v}

When W(T) = v*, for ke K(v*) we denote by S, .k(V+) the latest time less than or equal
to T: at which the clock associated with transition e*) was set and by 4, .k(v"') the

setting on the clock at time S, .k(V+)'

(4.3) PROPOSITION. Let e(l),e(z),...,e(’")e E and let {T,’,":n 2 0} be a sequence of
transition firing times. For v*€G™, let {R, 1(vF):ke K(v*)}1, be identically distributed
collections of random variables, independent of {4, 'k(V(T,',")):ke K(V(T))} and K(T}).

Assume that:
(i) Trl:-l < T: a.s. and for VorVpsees¥py € G and v e Gt,

(4.4) PEV(TY) = vg, W(TF) = v, U(TL ) = v _ ... (T)) = vy}
2 P{S, (V) + 4,,0") s TF + R, (1), ke K(*);

VT = v*, UT, ) = V1o AATD) = o}
(ii) for all %) the clock setting distribution F(°;s',e(k),s,e) = F(-;e(")) and is NBU; and

(iii) there exists 8 > O such that for vt € G*

(4.5) 8(v*) = PiA(v*) s R, V1), ke KD} 2 5,

> where the random variable 4 J(v"') has distribution F(-;e(j)) and {Aj(v'*):je K(v*)} are

mutually independent and independent of {R n _j(v"'): j€ K(vHi.
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Then
(4.6) P{V(TY) = I (T2 _)... . (TD} 2 8 as

so that P{V(T}) = v} i.0.} = 1.

Proposition (4.3) follows directly from Proposition (2.16) of [3] since the process

fV(2):r 2 O} is a generalized semi-Markov process with state space, G, and event set, £.

(4.8) EXAMPLE. In the token ring model of Example (2.17), take ¢(j) =/ + 1,
Jj=12,.,N. Set s,=(1,0,0,0,..,1,00,0,1,0,0,1) and ’E) = (1,0,1,0,1,0,0,0,...,1,0,0,0).

Take e = e and
S. = {(51.52,...,S4N)€ S: S4N = 1}

(where S is given in Equation (2.13)) so that T,I, is the nth time at which port 2 observes
the token, n 2 1. (Note that X( T,ll) = 4’}:(’6) if there is a packet queued for transmission
at each of the other ports and port 2 starts transmission of a packet at time T ,l, The spN
§X():1 2 0} changes marking to ¢;.(s6) when transition qb}:(e‘) fires and the current

marking is 4’}:(’0)-) Observe that T,l, < w a.s. since

EfTy ~T_} s NR; + NE{L;} <

for all n2 1. Take e =, , (m = N). Let T be the first time after T:_, at which

1

the control token leaves port 1 (transition ¢}5(e.) becomes enabled). Take R, .k("+) = R,

for all vt e G*. Since the spN has marking 4»}(:6) at time T,l‘ if each transition €52

enabled at time T: fires before ¢}5(e3) fires, condition (i) of Proposition (4.3) is satisfied.

Assume that for j=1,2,...,N: (i) the distribution of Aj is NBU and (ii)

TET L. L™
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N
80y = [l &=21] 8,=8>0.

ekt =1
Then P{V(T}) = v} i.0.} = 1.
’.i:‘: The definition of a symmetric spN implies that, for the process
E {(X(T:.),P;' +1):n 2 0}, regenerative cycles defined by the times at which the transition

¢i-(e.) fires and the marking changes from 4’.1'(’0) to ¢_lg(s6) can be decomposed into

o independent, nonidentically distributed blocks. These blocks are defined by the

successive times 7, at which transition ¢£—(e‘) fires and the marking changes from ¢_'s.(s.)
to "g‘(’;)) for some s €S  and some I, 1=12,.,N. Estimates for characteristics of
limiting passage times can be based on measurement of passage times contained in these

blocks. Denote the state space of the process {¥( Tﬁ):n 2 0} by G' and set
(4.8) v = (#5(s0).5(sp),
1=1.2,..,N.

Denote by {T,:n 2 1} the times T},TQ,...,TY,T;.... in increasing order.

(4.9) PROPOSITION. Suppose there exists § > 0 such that

(4.10) P{V(TY) = I (TE_)),.. . (T} 2 6 ass..

Then P{V(T,) = v i.0.} = 1 for all / = 1,2,...,N.
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Arguments analogous to those given in Section 3 establish Propbsition (4.9). Using

symmetry of the spN, the idea is to show that

(4.11)  P{VTH = I UT}_) = S5 _ s T = 85000 }

= P{W(T) = HI VT _) = 650 _ v (TY) = 450090}

for all vg,vy,....v,_; € GY. (For v = (5,5) € GN we write $5(v) = (#5(s),95(s)).)

Carry out the simulation of {¥(s):¢ 2 0} in random blocks defined by the successive

random times {’I‘pk:k 2 0}, where

(4.12) Ty, =int{T}, > Ty : V(Tp) = v, for some [, I = 1,2,...N},

n
k=1

k21; By =0 and T’B0 = 0. Each epoch Tﬂg corresponds to the termination of a passage
time with no other passage times underway. (Note that the random times {T’Bk:k 20} do

not form a sequence of regeneration points for the process {(X(T}),P,,):n 2 0}.)

Set a; = B, — Bk—l’ k 2 1. According to this definition a; is the number of passage

times in the kth block. Also set
a
Yl(f) = 2 f(P;)

j=1

and denote the analogous quantity in the kth block by Y, (f), k 2 1.

(4.13) PROPOSITION. The sequence of pairs of random variables {(Y,(f),a;):k 2 1} are

independent and identically distributed.

Proof: As in the proof of Proposition (4.1), observe that at time Tﬁu defined by Equation

(4.12) a passage time has just terminated with no passage times underway and each of the
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clocks running at time Tpk + was set or can be viewed as having been probabilistically
reset at time Tﬁk‘ Therefore {X(¢):¢ 2 Tﬂk} determines the distribution of
a; 41 = Br4+1 — By and the finite dimensional distributions of P'ﬁk +isq1 fori 2 0. The joint
distribution of the clocks set or reset at time T'pk depends on the past history of tiie spN
only through X(rp,,) = ¢fg(sb). the previous marking ¢fs.(so), and the trigger transition
¢2(e‘). It follows that the pairs of random variables {(Y,(/),a;):k 2 1} are mutually

independent.

Recall that {, is the time of the nth transition firing and denote by e; the trapsition
that fires at time §,, n 2 0. Also recall that C, is the vector of clock readings at time {,
and that Cn,i is the ith coordinate of the vector C, for e¢,€ E(S,). Let z,.,, 20,

Xqse.- X, €S and & re8 € E with p(x;;x -1"’:’,‘) > 0. It follows from the definition of a

symmetric spN that

(4.14) Pi{X(,) = ¢5(xp), 8y S 2,0 €, = #ELe;), X(E,_) = #5(x,_)),

. 1 . _ 4l
$pmt S 2ppr g1 = ¢E(e",.-1)""' ey = ¢5(e)}

= Pi{XQ5,) = 65(x)), 8y S 2,0 € = 85, ), X(E,_)) = #5(x,_ ),
gn—l s zn-l’ e:l-l = ¢IE(ein_l)""' e; = ¢’E(el'1)}

for all /=1,2,.,N. (Here P,{-} denotes the conditional probability associated with
starting the spn with marking ¢§(56) and all active clocks reset at time ¢ = 0 according to

the distributions

P[CO,I Scl = F(C;ng(slo),ei,¢}9(so),¢é(e.))
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forc 20, ¢,€ E (¢};(sb)); P,{-} denotes the corresponding conditional probability when the

initial marking is ¢fg(sb).)

Next suppose that X(0) = ‘6 and that all active clocks are reset at time /=20
according to the distributions F(c;s},,ei,so,e'), e,€ E(sp). Set X = ¢§.(X(l)) and

XI(I) = ¢§(X(l)), ¢ 2 0. Observe that for each sample path of {X(s):t 2 0} and all n 2 0,
X'E _)eATr = {$31(s): s€ 4} and XP(§,) € AT = {$51(5): s€ 4,}
for some m, if and only if X"(f’l_l) € AT' and X‘({n) € A% for some m;. Similarly,
X', _)eBT = {6T1(s): s€ By} and X'(§,) € BF' = {45(s): s€ B,}
for some m, if and only if X‘(;‘n_l)e BT and XJ(In)e B for some m,. Since
S(m) = inf {¢, 2 T(m): X¢,) € 47, X§,_ ) € 4T}
and

T(m) = inf {¢, > 5, (m): X(¢,) € BY, X¢,_ € BT}

for all m, Equation (4.14) implies that

(4.15) Pyfay=n+1,P, 1 S0 Py S Yy Py S 91}

=Pay=n+ 1, Py S yprs Py Sy Py Sy}

for all 1 =1,2,...,N, y;05.---p41 20, and n 2 0. By the independence argument in the

first part of the proof it follows that
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(] ' ' I,
(4.16) Pyfar,,=n+1, Py . S Vper Ppm—l S Ypreees Py i1 S 010 X(T‘Bk) = ¢5(sp) }

= Pfay = n 4 L Py S g, Py S s Py S 00} P KT = 640}

foralln 20 and ! = 1,2,...,N. Using Equation (4.15) this implies

N
' ' ' !,
121 Pi{ayuy=n+ L, Py Sy Pp i S Vpes Py S X(Tg) = ¢5(sp)}
¥ ' ' ' 1,
=3 Play=n+1, P Sy Py S g Py S} PI{X(Tp) = 65(sp) }
=]
¥ ' ' ' 1,
=3 Pay=n+ L P Sy Py v Py s} PI{X(TR) = ¢5(sp) }
iml
so that

PI{“k+1 =n+1, Pﬂkn S Vparr Pﬂ“l-l S Ypreees Pﬁk"’l < yl}
=Pi{ay=n+ 1L, Py S ypyys Py Sy Py}
and the pairs of random variables {(Y,(f),a;):k 2 1} are identically distributed. [J

Standard arguments establish a ratio formula for /() = E{f(P)}.

(4.17) PROPOSITION. Provided that E{r;} < =, PIP€D()} =0 and E{|f(P) |} < =,

ELY,(N)}
E{GI}

E{fAP)} =
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With these results, based on n blocks (cf. Crane and Iglehart [2]) a strongly consistent

point estimate for (/) is

Y(n)
a(n)

(4.18) Hn) =

and an asymptotic 100(1 — 2y)% confidence interval is

_. s(n) (n)
(4.19) M) = [R,,) J B _—v_]
E(n) nl/2 E(n) nl/z

where sz(n) is a strongly consistent point estimate for az(f) = var (Y;() = r(Nay).

Confidence intervals are based on the c.l.t.

nl/2 {¢(n) - r(f)}
0(/)/5{01}

(4.20) > N(0,1)

as n-wao,

(4.21) EXAMPLE. In the token ring model of Example (2.18), consider port access
times measured from the arrival of a packet for transmission by some port until the start
of transmission by the port. This sequence of passage times is specified by the four
subsets A4, = {(:l,...,:”,)eS: s =35=0}, 4,= {(5)s---s54y) € S: 5y = 1 and 55 = O},
B = {(:l.....:‘N)GS: sy =0and sy =1}, and B, = {(’1"""41\/)5 S: sy =1and s, = 0}
The set of all possible markings when a passage time Pj terminates or is not underway is
H = (51,550 SV €5:54y 35y =10rs, ,=1}. Then B, » @ and

5o = (1,0,1,0,0,1,00,...,0,1,00)€ B,. The random times {rp,:k 2 0} correspond to
terminations of access times which occur when there is no packet queued for transmission

at any of the ports. Propositions (4.13) and (4.17) hold provided that the packet

interarrival time random variables are exponentially distributed. (The random time 71, is
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the nth time at which port / + 1 observes the token, n 2 0. Note that {¥( 7;):n 2 0} is an
irreducible, finite state discrete time Markov chain so thét P{V(ZJ,,) = v{, io}l=1 1t

foliows that P{¥(T,) = v{, io}=1foralll=12,.,N)

5. STATISTICAL EFFICIENCY

Section 4 provides two estimation procedures for passage times in a symmetric SPN.
Each of these procedures rests on the assumption that there exist e‘eE, so€ By, and
sbe B'z satisfying the conditions of Proposition (4.1). The regenerative structure
guarantees that P;.->P as n-« and the goal of the simulation is the estimation of
(/) = E{f(P)}, where f is a real-valued measurable function. (We assume that the

function f is such that E{| f(P) |} < = and P{Pe€ D(f)} = O so that ratio formulas for (/)

hold.)

Estimates for /f) can be based on measurement of passage times {P,l,:n 2 1} and
simulation of the underlying SPN in regenerative cycles defined by the times 7:, at which
V(T:.) = v(l). Alternatively, exploiting properties of a symmetric spN, estimates can be
based on measurement of passage times {P;,:n 2 1} and simulation of the underlying spN
in independent, nonidentically distributed blocks defined by the times T:, at which
V(T,,)e {v(‘,,....;{;' }. This estimation procedure extracts more passage time information
from a simulation of fixed length and should provide estimates for ~(f) that are relatively
more accurate. In this section we verify that this is indeed the case by showing that the

resulting confidence intervals are shorter.

....................................
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For ¢ 2 0 let ml(t) be the number of passage times {P,I,:n 2 1} completed in (0,] and

denote by {B,l‘:k 2 1} the indices of the successive termination times {T":n 2 1} at which

W(T,) = v}. Set

a}: = ml(T‘B,l‘) - ml(T’Bl ),

k=1

ml(fa{)

j=m' (T, )+1
pk—l

k 2 1. Also set

@) = var (FA) - Anad).

Then by Lemma (4.1) of Iglehart and Shedler (5],

ml(l)
A1 aeh-nn
(m‘m P )

(5.1)

) 172 ) : > N(Ovl)
(Etrl) "o} (N/Etal}

. 1,2 1 2 1_
as twow provided that E{(a;) } <e and E{(Y;(|1/1)) } <. Here 7, = T'Bl - T'Bx .
k k=1
Since the numerator in this c.l.t. and the limit (N(0,1)) is independent of the transition
¢}5(e.) and the markings 4’.19(’0) and 4’;’(’2)) which define the cycles, so is the denominator;

this is a consequence of the convergence of types theorem (Billingsley [1], Theorem 14.2).

Thus, the quantity
1/2
&N = (Eirlh)  “dl(n/Elal}

is an appropriate measure of the statistical efficiency of the estimation procedure based

on cycles.
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Now let m(s) be the number of passage times {P,',:n 2 1} completed in (0,7]. Set

a = m(T'B’x) - m(T‘Bl ),

k=1
m(T;{)

vn= 3 AP,

jﬂm(r 1 ) +1
ﬁk"l

and
(o(N)? = var (Y, (N = r(Nay).

Again using Lemma (4.1) of [5],

vaf 1 o

2 P) -

(i Z 8 )

(5.2) 1’/ . = N(0,1)
(Efri}) o()/Elay}

as t-+ew provided that E{(al)z} < o and E{(Yl(lfl))zl < . Now observe that the
numerator and the limit in this c.l.t. is independent of whether the passage times
{P;':n 2 1} are measured in regenerative cycles (defined by transition ¢}5(e.) and markings
¢5(s)) and ¢i(sp)) or in blocks (defined by ¢r(e), ¢5(s,), and k(s for all

{=1,2,..,N.) Therefore,
1. /2
ef) = (5{71}) 0(/')/5{01}

is an appropriate measure of statistical efficiency of the estimation procedure based on

blocks.

a . .
S o ® .  _w



- .« g -
........

39

Note that when the passage times {P::n 2 1} are used to construct point and
interval estimates for ~(f), the half-length of the confidence interval is proportional to
el(f"), and when the passage times {P;:n 2 1} are used, (with the same constant of
proportionality) the half-length of the confidence interval is proportional to e(/).

Proposition (5.3) asserts that under mild regularity conditions on the function f,

(N < (.

(5.3) PROPOSITION. For all functions f such that Ef | f(P) |} < » and P{P€ D(f)} =0,

e(f) < el(j).

. Proof: It is sufficient to show that

2
(5.4) (o2 s M (o1
and
(5.5) Efa,} = N E{a}}.

To establish Equation (5.4), for ¢ 2 0 set

m(s)
W = 3 fP) — f(NHm@).

Jj=1
Now observe that {X(s):¢ 2 0} is a regenerative process by Proposition (2.19) and that,
with respect to this process, {W(s):r 2 0} is a cumulative process in the sense of

Smith [17] with

E{W(Tpx) - W(T,
k

pk—l

)} = E{Ykm - '(Dak} = 0.
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Thus, by Theorem 8 of [17],

(5.6) lim var (W(1)) - (o(f))2.
tww 4 E{‘l’}}

Next recall that {P,:n 21} is the sequence of passage times Pl,Pz,....P?',P;.Pz....

enumerated in termination order and therefore

m() N {~'®
S ) —rNm@) = 9 3 AP) ~ Anmin g,
J=1 Im] [ j=i

where m’(t) is the number of passage times {Pf':n 2 1} completed in (0,/]]. Now set

m'(@)

W) =3 AP - Apm()
j=l1

so that

N
W) = 2 w()
=1

and by the Cauchy-Schwarz inequality

N
var (W()) < 2 var (W) + 2 {var (W9(1)) var (W‘(t))}l/z
I=1 jal

2
- [g: {var (W’(:))}l/z] :

lml

Equation (5.4) follows since

2
im YA (VW) _ ')
! Efrl)

I L
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for 1 = 1,2,...,N. To see this, fix / and let {B;‘:k 2 1} be the indices of the successive
termination times {T,:n 2 1} at which W(T}) = »{) Observe that {W/(:):1 20} is a

cumulative process so that by Theorem 8 of [171,

lim Yar (W) - (o'(f'))2
¢ E{rh}

--o0

where ‘rL = T,BL - T, and

k=1
@M’ = var (K - HNab).

with ai - m’(TBi ) - m’(T'ﬂz ) and

k=1

m'(T'ﬁp
nn= 3 .
j-m’(fp, )+1

k=1
The definition of a symmetric spN implies that E{-r'z} = E{-r;} and
I av2 1 1
(0'(N) = var (Y,() = H(Nay).
To establish Equation (5.5) set

N
m(f) = 2 m’(t)
im1

and observe that {m'(¢):t 2 0} and {m(¢):t = 0} are cumulative processes with respect to

§X(2):t 2 0}. Moreover,

i EnO1_ Elel
e ! Ef{r}}
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and

_ Eim'()}  Eldh}
lim = .
t->c0 t E{f’z}

Again, since the spN is symmetric, E{r'l} =E {1-;} and E{aé} = E{a;} so that

Lo B0} _ Eia}!’
PR t E{,i}

l=1,2,..,N.0
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Figure 1. Token ring.
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