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1. INTRODUCTION

The stochastic Petri net (SPN) model is well suited to formal representation of

* concurrency, synchronization, and communication (cf., Marsan, Conte, and Balbo (111,

Molloy [14,151, Natkin [161, Symons (18]). An SPN is specified by a finite set of places

* and a finite number of transitions along with a normal input function, an inhibitor input

function, and an output function (each of which associates a set of places with a transition).

A marking of an SPN is an assignment of zero or more tokens to the places in the net. A

transition is enabled whenever there is at least one token in each of its normal input

* places and no tokens in any of its inhibitor input places; otherwise, it is disabled. A

transition fires by removing one token (per place) from a random subset of its normal

input places and depositing one token (per place) in a random subset of its output places.

Heuristically, an SPN changes marking in accordance with the firing of a transition

enabled in the current marking. Each of the transitions enabled in a marking competes to

* change the marking and each of these enabled transitions has its own stochastic

mechanism for determining the next marking. At each firing of a transition in the SPN,

* new transitions may become enabled. For each of these new enabled transitions, a clock

* indicating the time until the transition fires is set according to an independent stochastic

mechanism. (There is no restriction to exponentially distributed transition firing times.)

If an enabled transition does not trigger a marking change but is enabled in the next

marking, Its clock continues to run; if such a transition is not enabled in the next

marking, its clock reading is abandoned.
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The sPN representation provides a means of generating sample paths for the

underlying stochastic process of a discrete event simulation. This representation is

particularly useful in connection with non-Markovian systems. The "state of the system

at time " defines the underlying stochastic process of a discrete event simulation. When

the current state of the stochastic process is s and a previously scheduled event, e,

occurs, the process moves to a new state, s'. The marking of an SPN corresponds to the

state of the process and the firing of a transition corresponds to the occurrence of an

event. The graphical representation (bipartite graph of places and transitions) of an SPN

is particularly useful in that it incorporates a cousiderable amount of information about

the set of events that can occur when the process is in state s and the sets of "new

events" and "old events" when event e" triggers a transition from state s to state s'.

Although steady state estimation for an arbitrary SPN is a very difficult problem,

Haas and Shedler [4] have provided estimation procedures for SPN'S that are regenerative

* processes. To establish the regenerative property for an SPN, it is necessary to show the

* existence of an infinite sequence of random time points at which the process

*. probabilistically restarts. It is often clear that an SPN probabilistically restarts when a

particular transition fires leaving the system with a fixed marking. For specific models,

however, it is nontrivial to determine conditions (distributional assumptions) under

which this occurs infinitely often with probability one. Using recurrence theory (Haas

and Shedler [3]) for generalized semi-Markov processes (Konig, Matthes, and

Nawrotzki [8,9], Matthes [12], Whitt [19]), conditions are given in [4] which ensure that

an sPN is a regenerative process in continuous time with finite expected time between

regeneration points.

.................................................... °. * "."• •• , o. o. ..o°.'° o " " . ." °."
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In this paper we focus on SPN'S with special structure and define a symmetric SPN.

Informally, an SPN is symmetric if there are mappings of places onto places, markings

onto markings, and transitions onto transitions which preserve the sets of enabled

transitions, the new marking probabilities, the sets of new transitions, and the clock

setting distributions. Symmetric SPN'S have application to representation of ring

networks with equally spaced, identical ports; cf. Loucks, Hamacher, and Preiss [101.

Section 2 provides the formal definition of an SPN given in [4] along with conditions

which ensure that an SPN Is a regenerative process and that the expected time between

regeneration points is finite. Using a geometric trials recurrence criterion (Iglehart and

Shedler [6]), Proposition (2.19) postulates the existence of a transition, e , and a

marking, S;. such that transition e" fires and the new marking is s; infinitely often with

probability one. Conditions on the old clocks ensure that the process probabilistically

restarts at these times. This result is the basis for regenerative simulation of sPN's.

Section 3 considers the steady state estimation problem for symmetric SPN'S. Under

the assumptions of Proposition (2.19), regenerative cycles defined by the times at which

0!

transition e fires and the new marking is s0 can be decomposed into independent,

nonidentically distributed blocks. We show that point estimates and confidence intervals

for characteristics of symmetric functions of the limiting distribution can be obtained by

simulating the symmetric sPN in blocks.

In Section 4 we develop estimation procedures for passage times in the SPN setting.

Formal specification of a sequence IPn:n > I} of passage times in a symmetric SPN

IX(t):t k 01 with marking set, S, and transition set, E, is in terms of four subsets

(A1 ,A 2 , B,, and B2) of S. The sets B1 and B2 define the random times 2. :-j a 11 at

DJ

2)

...,.,.- ... -. ...• . ... ,.,....,.. -. ,,-..-..: ..... .. . . .. .....- < : .-..-.. .... ,- ....... ... <. .: ,-.,: -. ... ..:..:
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which a passage time terminates. (The sets A1 and A2 define the random times at which a

passage time starts.) Proposition (4.1) postulates the existence of e E and so'$; S

such that transition e* fires and the marking changes from so to s; infinitely often with

probability one and these transition firing times correspond to termination of a passage

time with no other passage times underway. Conditions on the "old clocks" ensure that

J(X(7'n),P '+):n z 0} is a regenerative process in discrete time and that the expected time

between regeneration points is finite.

Section 4 provides two estimation procedures for passage times in a symmetric SPN.

Each of these procedures rests on the assumption that there exist e CE, so cB 1 , and

s;8C satisfying the conditions of Proposition (4.1). The regenerative structure

guarantees that Pn.,P as n-owo and the goal of the simulation is the estimation of

r(f) - Ejf(P)}, where f is a real-valued measurable function.

Estimates for r(J) can be based on measurement of passage times {Pl:n 2 11 (a

particular random subsequence of {Pn:n a 11) and simulation of the underlying sPN in

regenerative cycles. Alternatively, exploiting properties of a symmetric SPN, estimates

can be based on measurement of passage times IPn:n > 1) and simulation of the

underlying SPN in independent, nonidentically distributed blocks. This estimation

procedure extracts more passage time information from a simulation of fixed length and

should provide estimates for r(f) that are relatively more accurate. In Section 5 we

verify that this is indeed the case by showing that the resulting confidence intervals are

shorter.
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2. REGENERATIVE STOCHASTIC PETRI NETS

Following Haas and Shedler (4], formal definition of an SPN is in terms of a general

state space Markov chain (GSSMC) which describes the process at successive epochs of

transition firing. Let D = {1,2,...,Ll be the index set for a finite collection of places and

let E - [el,e2,...,eM1 be a finite set of transitions. Denote by S the finite or countable set

of markings and for se S write s = (sj,s2,...,L) , where sj is the number of tokens in place

j, je D. Denote the index set of the normal input places for transition ec E by l(e) r D,

the index set of the inhibitor input places by L(e) r D, and the index set of the output places

by (e) r D. We assume that

L(e) n l(e) = 0

for all ec E. For s = (sls2 ...,$L) C S, set

(2.1) E(s) = {ee E: sj a 1 for je I(e) and sjf 0 for je L(e)l

so that E(s) is the set of transitions that are enabled when the marking of the sPN is s.

When the marking of the SPN is s the firing of an enabled transition ee E(s) triggers a

marking change to s'. We denote by p(s';s,e) the probability that the new marking is s'

given that transition e fires when the marking is s. For all s f 142,..sL),

s (sCs,...,L) S S, and ee E(s) we assume that p(s';s,e) > 0 only if

(i) s- 1 < s; < sj for all je l(e) fn (D - J(e)),

(ii) Si - 1 s s; < sj + 1 for all jc l(e) n J(e),

(iii) si S s; s j + 1 for all je J(e) n (D - l(e)), and

(iv) j; = sj for all je (D - J(e) - l(e)).

The actual enabled transition e which triggers a marking change when the marking is s

depends on clocks associated with the enabled transitions and the speeds at which these

....... .... ... .......... .. ;........ .... ..... *. -* .. -.. .. .' --. '. -= ..--.- *.'-,- -'.. *-,--.-.- ".,'',
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clocks run. Each such clock records the remaining time until the transition fires. We

denote by rj ( 2! 0) the deterministic rate at which the clock associated with transition e,

-.. s when the marking is s; for each sE S, rs - 0 if e, % E(s). We assume that r., > 0 for

some e1EE(s). (Typically in applications, all speeds r,, are equal to one. There are,

however, models in which speeds other than unity as well as state-dependent speeds are

convenient.)

For se S define C( to be the set of possible clock readings when the marking is s:

C(s) = P(cl,...,cM): cj > 0 and c, > 0 if and only if eic E(s);

(2.2) cir-1  j cZ for i A j with cj.cjrrs, > 01.

The conditions in Equation (2.2) ensure that no two transitions fire simultaneously as

defined below. The clock with reading c, is said to be active when the marking is s if

transition e is enabled (eiE E(s)). For se Sand cc C(s), let

(2.3) t* = t (s,c) = min Icir.l},
Ii:ej E E(s))

where cr,- I is taken to be + ao when rs = 0. Also set

(2.4) c = c,(s,c) = c, - t(s,c)r,,, e, r E(s)

and

(2.5) -= i (s,c) = i such that eE E(s) and c (s,c) = 0.

Beginning with marking s and clock vector c, to(s,c) is the time to the next transition

firing and i(s,c) is the index of the unique firing transition e = e (s,c) =ei,(,C) .

". % ". ,. . -~~~ ~~~~..,..* . .. ....... .. .... ... .. .. .. .. .. .. , .. , , '. .,. . •. .j . - .. ,'-,
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At a marking change from s to s' triggered when transition e fires, new clock times

are generated for each e'c N(s';s,e*) = E(s') - (E(s) - felj). The distribution function of

such a new clock time is denoted by F(.;s',e',s,e*) and we assume that F(O;s',e',s,e*) = 0.

For e' C O(s';s,e) f E(s') l (E(s) - e,), the old clock reading is kept after e* fires. For

e'c (E(s) - fel) - E(s'), transition e' (which was enabled before transition e* fired) is

disabled.

Next consider a GSSMC {(Sn,Cn):n k 01 having state space

I U (WsiX COD)
sES

and representing the marking (Sn) and vector (Cn) of clock readings at successive

transition firing times. (The ith coordinate of the vector C. is denoted by C,,,.) The

transition kernel of the Markov chain {(Sn,C,):n > 01 is

(2.6) P((s,c),A) = p(s';s,e) fI F(ai;s',e,s,e*) lI 1[0 ](cO)'

e, C N(s') e, E OW )

where N(s') - N(s';s,e'), O(s') = O(s';s,e), and

A x 1i' x .... CQs'): c -s a, for e16 Es)

The set A is the subset of I which corresponds to the sPN changing marking to s' with the

reading c' on the clock associated with transition eC E(s') set to a value in [0,ai]. (We

suppose that the clock setting distributions are such that P((s,c),M) = I.)

Finally, the SPN is a piecewise constant continuous time process constructed from

the GSSMC {(Sn,C,):n a 01 in the following manner. Set ro - 0 and denote by r,, the time



of the nth transition firing, n z 0. (We assume that

P{sup tn = + I (SOCO)} = 1 a.s.
n~1

for all initial states (So,Co).) Then set

(2.7) X(t) SNl),

where

(2.8) N() = max In k 0: rn < '.

The process IX(t):t a 01 defined by Equation (2.7) is an SPN.

Example (2.9) illustrates the use of the SPN framework for formal specification of a

discrete-event simulation. For ring networks with N ports, reference to port index "j" is

to be interpreted as reference to index j - 1 ( mod N) + 1. In the graphical

representation of an SPN, places are drawn as circles and transitions as bars. Directed arcs

connect transitions to output places and input places to transitions. Tokens are drawn as

black dots.

(2.9) EXAMPLE (Token ring 1). Consider a unidirectional ring network having a fixed

number of ports, labelled 1,2,..., N in the direction of signal propagation; see Figure 1. At

each port message packets arrive according to a random process. A single control token

(denoted by T in Figure 1) circulates around the ring from one port to the next. The time

for the token to propagate from port j - 1 to port j is a positive constant, R..,

j = 1,2,...,N. When a port observes the token and there is a packet queued for

transmission the port converts the token to a connector (C) and transmits a packet

followed by the token pattern; the token continues to propagate if there is no packet

"* . . . . . . . . . . . .. .
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queued for transmission. By destroying the connector prefix the port removes the

transmitted packet when it returns around the ring.

Assume that the time for port j to transmit a packet is a positive random variable,

LP. with finite mean. Also assume that packets arrive at individual ports randomly and

independently of each other: the time from end of transmission by port j until the arrival

of the next packet for transmission by port j is a positive random variable, Aj, with finite

mean. Note that there is at most one packet queued for transmission at any time at any

particular port.

Following [4], take D = 11,2,...,4N and E = Jel,e2 ,...,e 3Nl. (See Figure 2 for

N = 2.) Set

(2.10) L(e 3 .- 2 ) = L(e 3j_l) = L(e 3j) = 0,

(2.11) 1(e 3j.2) = 14j - 21, I(e 3.j 1 ) 1 14j - 3, 4j - 11, 1(e 3j) = 14(j - 1)1,

and

(2.12) J(e 3 ._2 ) = 14j - 31, J(e 3 . 1 ) = 14j - 2, 4j}, J(e3j) = 14j - 1, 4jj,

j = 1,2,...,N.

The transitions have the following interpretation: e 3j- 2 = "arrival of packet for

transmission by port j," e3j- 1 =- "end of transmission by port j," and e3j = "observation

of token by port j," j = 1,2,...,N. The interpretation of the places is as follows. Let 1 ! 0

and s = (Sl,32 .... 4N) C S. If the marking of the SPN at time i is s then s4j_3 = 1 if and

only if at time t port j is transmitting a packet or there is a packet waiting for

transmission by port j; s£2 = 1 if and only if at time I port j is not transmitting a packet

4J-2K <~I.&.ix-f-
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and there is no packet waiting for transmission by port j;, s4j.. 1 = 1 if and only if at time t

port j is transmitting a packet; and s4j = 1 if and only if at time t the control token is

propagating to port j + 1, j = 1,2,...,N. (Otherwise sj = 0, j = 1,2,...,4N.)

Set

S' = f(sl52 .... s4N):sj=0or 1 for 1 i! ~ 4N- s, + s + + =N+ 11.

The set, S, of markings is

(2.13) S - l(s1,S2,...,s4N) E S': S4j-3 + s4J_2 1 and s4j_2s4j- 2 0 for 1 < j : N}.

(It follows that I S[ 3N2N-
. In any marking there are exactly N+1 tokens. There is

at most one token in each place. Each of the disjoint sets of places 14j - 3,4j - 21

contains exactly one token indicating whether or not port j has a packet queued for

transmission. The set of places D - {1,2,5,6,...,4N - 3,4N - 21 contains exactly one

token indicating the position and status of the control token. There can never be

tokens at places 4j - 2 and 4j - 1 simultaneously, reflecting the fact that there can be

no arrival of a packet for transmission by port j during a transmission by port j.)

The new marking probabilities are as follows. If e = e3i_2 = "arrival of packet for

transmission by port j," then p(s';s,e) = 1 when

s = (SsI ...S4(...),Ol,0,S4j,s4j+lI .... ISC ) E S and s' = (sl,...,s4 1.), OOls4jls4j+l.....s4N).

If e = e3j.. = "end of transmission by port j," then p(s';s,e) = 1 when

s (s,....s 4 .. i),1 ,
0 ,1 ,

0
,s 4j + 1 ..... S4N) c S and s' = (s 1 +.....S4Q-.1),0 11,0 , 1 ,s4j+ I,".'S4N)"

If e e3j - "observation of token by port j," then p(s';s,e) = 1 when

s i ( j ... ,s4-1)-1l,00,0,S4j+1 ......... s4JV) E S and s' = (s,-..... 4Q-1)-1011 10,10,S4j+1 ... S4N )
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and

T~. 1) in mth> S. I(/): X(r,,) 6 B, X(,_1 ) c B', j 2: 1.

Note that since the SPN is symmetric the sets A1 , A1 , B1 , and Bt satisfy the conditions

which ensure that the start and termination times for the passage times

P'.= - T.(I)- S. (I) strictly alternate. Denote the successive passage times
J J I-1

plp 2  ,V plp 2  enumerated in termination order by IP':j > 11. Set =f0 0 and let 74
t1' ?.. 1'' I' 2' 2*.by.

be the termination time for P', j z 1.

Proposition (4.1) gives conditions which ensure that I(X(T;n),P'+l):n a' 01 is a

regenerative process in discrete time and that the expected time between regeneration

points is finite. The regenerative structure guarantees (Miller [13]) that P, ,P as n--,o.

The goal of the simulation is the estimation of r(f) = ELf(P)1, where f is a real-valued

(measurable) function and P is the limiting passage time.

We postulate the existence of a transition e° and markings s0 B 1 and s5E B2 such

that a passage time terminates when transition ee fires and the marking changes from so

to s;. In addition, we assume that no passage times are underway when the marking of

the sFN is s0. Formally, denote by L() the last marking of the SPN before jumping to X(t)

and set

V(t) =f (L(t),X(t)).

Denote by G the state space of [V(t):t > 01. Set A1 = AxA2 and B1 = B1 xB,
1 21 2'

I = 1,2,...,N. Now set

t= Is'o S: (s,s') B1 - A' for some sc S1
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4. PASSAGE TIMES IN STOCHASTIC PETRI NETS

Formal specification of passage times in a symmetric SPN is by means of four subsets

(A, A2 , B1, and B 2 ) of the marking set, S. The sets A 1, A2 , B1 , and B 2 in effect

determine when to start and stop the clock measuring i particular passage time; cf.

Iglehart and Shedler [7].

Denoting the jump times of the process {X(i):i z 01 by {1 ,:n > 01, for k,n > 1 we

require that the sets A1, A2, B1 , and B 2 satisfy:

if X(rn_ ) CA 1 , X( n)cA 2, X(rnl+k) CAI, and X(rfn+k) EA2

then X(rn 1I+m) B 1 and X(rn+m)C B 2 for some 0 < m : k;

and

if X(rn_ ) e B1, X(" n) c B2, X('n-l +k) C B1, and X(rnf+k) e B2

then X( n-l+m) EA 1 and X(rn+m) cA 2 for some 0 < m < k.

These conditions ensure that the start and termination times for the specified passage

time strictly alternate.

In terms of the sets A1, A2, B1, and B2, define A' = s: l,

A' = 1s(s): sEA 2 }, B1 = 101(s): sEB 11, and B1 = f{ks(s): seB 2 }, I= 1,2,...,N. (Recall

1 1that for se S, os(s) = os(S) and OS(S) = 0(ost-l(s)), 1 = 1,2,...,N. Also recall that for

e E, *I(e)= OE(e) and 1(e) = ,E(, 1(e)).) Then define two sequences of random

times [Si(/):i 2 01 and [Tj():j > 11: S J.- (I) is the start time for the jth passage time

(corresponding to the sets Al, A2 , BI, and B2) and Tj(l) is the termination time of this

jth passage time. Set

So() = 0,

S/I1) =inf a j') ~n n- CA 1
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Standard arguments establish a ratio formula for r(J).

(3.15) PROPOSITION. Provided that E{r I} < ac and E IJf(X) II < ,

r(J) = Eff(X)1 = E Y(J)I

With these results Equations (2.22) and (2.23) provide point estimates and confidence

intervals for r(f).

(3.16) EXAMPLE. In the token ring model of Example (2.18), take #(j) = j + 1,

j = 1,2,...,N. Set

S' f Is cS: s4=i f 1 for some j,j= 1,2j....N}

and consider the function f defined by

f(s) iS'}(s)

for se S. According to this definition, r(f) is the steady state throughput of the token

ring. Note that the function f satisfies Equation (3.1) since (for each I) salt(i)_ ! = 1 if

and only if $4(j/)-I -= 1, j = 1,2,...,N. Arguments given in [41 show that the conditions

of Proposition (2.19) hold provided that the packet interarrival time random variables,

Aj. have new better than used distributions and satisfy a positivity condition:

PIA, < RNI > 0, j- 1,2,...,N.
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-P11 81 =n + 1, f(X(t,) f(x,), t,, : Z,

= i, I n- ZnI..,1'i Zi P 1 [X(G7) = ~Sj

for all zl,...,z, 2! 0, xl,...,xn 6 S, and n k 1. Applying Equation (3.14) and then Equation

(3.13), it follows that for all z1 ,...,z, 2t 0 and x,,....x,, c S:

P118k+l = n + 1, f(X(r7 k,,)) = f(x,,), r~ n, !5 Zn,

fx~yk+fl 1 )) = fix,,1 ), ryk+n-I :9 z Yk+ : zii

N

= P118 1 = i + 1, f(X(r,,) fAx,), rn : n

"(P-d)= f(xn- 1 ), r, z, 1 .. 1 !5 z 1 I Pi {X(r, (= )

N
P, IS,{6 = n + 1, fiX(r,,) fix,,), rn, :5Zn

ftx~n-d)= fix,,..), rn- !5 zn- 1,... 1 5 z 1 1I P11Xmrk = S)

=P1 181 = n + 1, fiX(td) = f(x,), t', z,,, f(X(rn 1 )) = f(x,, 1 ), n- !5 Zn, 1,..,* z,

so that (using Equation (3.10)) the pairs of random variables I(Yk(f),-rk):k 2: 11 are

identically distributed.0
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marking is *s(s ), the definition of a symmetric SPN implies that for all zl,...,z,, 2 0,

X1 ..-.,Xn C S, and ea ,...,ea x CE with p(sk;sk...,e,.) > 0:

PIXG)- .Akxd,, t . T Zn,, en

r -') # *(X , f, :5~ z -I (ei= ),...,e* = el

=PiLX~rn) = *S(xn), tn f- Z, en - 4O(ei.),

r - OS(Xn-i)' tn-I z,11 ,, = I n-1 )...'e' OE

I-1,2,...,N. Hence, by Equation (3. 1),

(3.13) P1 181 - n + 1, fiX~')) - fAxn), t, '- Zn,

fiX(r,, 1 ) - f(x...), n-I :5 Zn-l"r i'5**11

P=8 -"~~ n + 1, A(XU')) = flx,), tn :9 z.

"(f-d)- f(x,,i),nI : rn-i .. It :9 2i1

for all 21 ,...,z,, z 0, x1 ,...,x,, C S, and n a 1. But by the independence argument of the first

part of the proof

(3.14) PiIIk. - n +s 1, AtX(yk+n)) - fix), r Yk+ n

...........................................................................
Y n- R ..-..I .. . . ..Yk
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Tk+ - - and the finite dimensional distributions of f(X(t)):t a T#1. Observe

that the joint distribution of X(Tk)= S(s;) and the clocks set or reset at time Tpk
I ,

depends on the past history of the SPN only through the new marking OS(So), the previous

II.marking 01(so), and the trigger transition 0E(e); this implies that the cycle length rk+l

and fJfX(t)):t > T I are independent of {( Y(f),Tr):j < k}. It follows that the pairs of

random variables {( Yk(f),k):k > 11 are mutually independent.

Next observe that

(3.10) 'k(f) = X f(X(m)) [rm+l - W,

where r Yk= T~k' k >0. Set k m Yk - Yk _1, k > 1. It is sufficient to show that for all

ZI ...,zn >O , xl,...,xn CS, and n >: 1:

P1181 = n + 1, f(X( .)) = f(xn), n z: , f(X('_)) = f(xn_1),'_-1 : z, 1-', 1 5 z1}

(3.11) = 18{k+I = n + 1, f(X(tTk+n)) - f(xn), yk+ n  zn, f(X(k+nl)) = f(Xn-d)

ryl,+n-1 5 z Yk+n-1,..., Yk+ l :5 Z ,

k z 1. Here P1 I'1 denotes the conditional probability associated with starting the SPN

Iwith marking *s(s0) and all active clocks reset at time t = 0 according to the

distributions

T. cl - F*;0
(3.12) PICo. j 4 = F(c;6s(s),e,,.(So)4,i(e ))

for c > 0, eic E(.0s(so)). Recall that C0,j is the clock reading associated with transition e,

at time 0. Denoting by P 1.} the corresponding conditional probability when the initial



.7.-

(. 1 8

- PfX(7) -. _(sd) I. X(i_- 1) -,),...,X(T) 01(= )

I - 1,2,...,N. The result follows from Equation (3.3). 0

Carry out the simulation of lX(t):t > O} in random blocks defined by the successive

random times IT#,:k > 01, defined by

(3.8) 17nf4- > T _X(74n) *S$(sO) for some 1, 1 1,2,...,N}

k > 1; PO = 0 and 7o = 0. (Note that the random times Tk :k> 01 do not form a

sequence of regeneration points for the process IX(t):t 2 01.)

Set

Pk-I

and

S= fr~~ /fX(s))ds,

TPA

kph-.

k 1.

(3.9) PROPOSITION. The sequence of pairs of random variables {(Yk(f),1k):k > 11 are

independent and identically distributed.

Proof: The sequence IPk:k > 11 are indices of the successive stopping times {Tn:n k 11 at
i * i1

which transition *(e) fires and the marking changes from 0s(S ) to 0$(s O) for some

s c S and some 1, 1 = 1,2,...,N. Thus, by the definition of a symmetric SPN, each of the

clocks running at time 7"# + was set or can be viewed as having been probabilistically

reset at time T.," Therefore IX(t):t > Tk I determines the distribution of

[. .

-. . . .o . **

. . . . . . . . .
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(3.5) PIX(r'q) = 0s(xn), e." - I(e 1.),..,X~ 1 ) = S(X1), L E IEej), X(G0 ) O S(X,)}

=PIX(r-) = 0'(X.), en = OE(e.), ... ,X(G) = OS(XIl 1 = 4(ei,), XGr0 ) =S( (x)],

1=1,2,...,N. Denote by I ':n z 01 the indices of the successive times Jr~n2 01 at which

*transition *E(e ) fires when the marking is oS(s) for some s oE S*. Equation (3.5)

implies that f or all xl,... ,x,, C S and sP. .,sn 6 S*

(3.6) *PI,, X Ery) X.1) = *sSIsn),..( ) = 1E ) ~.

'= OE( )I X(L'1 )= ()

e- 0 Pf (e *x), e~r =-1 E(e),X(,)=@,.,(T

*I =1,2,...,N. Using the definition of 174,:n k 01, Equation (3.6) implies that for all

(3.7) PIX(Tnl) = 4(xn),...,X(T1) = 04(x,)} = PIX(T,,) = 44'(xn), ... ,X(74) = (j

I=1,2,...,N. Applying Equation (3.7) it follows that for all xl,...,x 1  S:

P{X(T) #(s ) IX(T 1,)i 0'(xn- 1 ),",X(7) =1x~

PIX(Tn1) - S(SO), X(7T_ 1) -01(x~ 1 ),...,X(T~l) = 4l(xl)}

PIX(4_1)- 4O(x _1 ).--,x(T1) 0 (X,) I

P{X(74n) = SS ' X(74 _) =O'(_,..X71)0 x)

P~~~ 447 , .1(x _...)...,X(74,) -=0 S(xj) I
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3. STEADY STATE ESTIMATION FOR SYMMETRIC STOCHASTIC PETRI NETS

In this section we consider estimation of r(f) under the assumption that the

function f is symmetric in the sense that

(3.1) f(s) =A](()

. for all sc S and all -1,2,...,N. Symmetry of the underlying SPN implies that

regenerative cycles defined by the times at which the transition *'(e ) fires and the

marking changes to *S(sO) can be decomposed into independent, nonidentically

distributed blocks. These blocks are defined by the successive times T. at which

transition (e') fires and the marking changes from 01(s) to 0s(S0) for some s E S" and

some 1, 1 = 1,2,..., N. Estimates for r(f) can be based on observation of these blocks.

Proposition (3.2) provides conditions which ensure that (for each 1) transition o(e

fires and the marking changes to 0 $(s0 ) infinitely often with probability one.

Denote by {T:n > 11 the times T' 7.,... T',... in increasing order.1' It.. 1t2

(3.2) PROPOSITION. Suppose there exists 8 > 0 such that

(3.3) P{X(T") =#S'0) IXT' j),...,X(T1) 8 a.s..

Then PIX(Tn) - (6) i.o.I = 1 for all I =- 1,2,...N.

".. Proof: By Lemma 4 of [61 it suffices to show that

(3.4) P{X(7) - (o)X(74 ),...,X(74,)} a 8 a.s.

• Let e. denote the transition that fires at time tn, n > 0. The definition of a symmetric

SPN implies that for all x0 ,x ,...,x n C S and e ,. .. ,e E

. .. ................ ~. . .



15

consistent point estimate

(2.22) (n) Y(n)(n)

and asymptotic 100(1 - 2 y)% confidence interval

A z(2.23) 1(n) = n) _ s(n) n) + F -m s(n)(n) n1/2 (n) n1/ 2

for r(J). In Equation (2.22)

T(n) = n-  7 Y (J)
rn-1

and

n

(n) = n-1 '
m-1

where rm is the length of the mth cycle and Ym(f) is the integral of f(X(.)) over the mth

cycle. The quantity s2 (n) is a strongly consistent point estimate for

a(C) = var (Y (/) - r(JT)

and zl = (1 - ), where 0 is the distribution function of a standardized normal

random variable, N(0,1). Confidence intervals are based on the central limit theorem

* (c.l.t.)

ni/2 lkn) -
* N(0,1)

a(J) /I-E 1 I

as/..- ...

. . . . . . . .
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Also suppose that there exists sc S such that for all s*C S%

(i) the set O(so;s,e) - E(s') n (E(s) - {e*) = 0,

.* (ii) the set N(so;s,e) - E(s4) - (E(s) - 1e}) - N(so;s,e), and

(iii) the clock setting distribution F(';So,e' ,s*,e') = F(;S',,/) for all e6 N(s;se).

Then {X():: a 01 is a regenerative process in continuous time. Moreover, if

(2.21) - TI c c < a

for all n : 0 then the expected time between regeneration points is finite.

1',

Equation (2.20) implies that transition 4(e) triggers a marking change to #Ss1o)

- infinitely often with probability one. Furthermore, at such a time T, the only clocks

". that are active have just been set since O(O(sO);4(s ),4(e)) =0 for all s*E S*. The

joint distribution of X(Tn) and the clocks set at time T' depends on the past history ofn n

{X(t):t z 01 only through s), the previous marking 4(s), and the trigger transition

i(e). Since the new transitions and clock setting distributions are the same for all s£,

the process IX(t):t 2 01 probabilistically restarts whenever 1X(T1):n ' 1 hits '01(

Note that the result of Proposition (2.19) also holds if condition (i) is replaced by:

(i') O(s;;sO,e)# and for any e'e O(s;;so,e) the clock setting distribution F(.;s,e,s,e) is

exponential with mean which is independent of s, s', and e. (Assumption (i') ensures that

no matter when the clock for transition e'E O(so;So,e) was set, the remaining time until

* transition e' triggers a marking change is exponentially distributed with the same mean.)

Under the conditions of Proposition (2.19), the basic limit theorem for regenerative

processes asserts that X().mX as I-oo. The goal of the simulation is the estimation of

r(f) - Etf(X)}, where f is a real-valued (measurable) function having domain S. From n

cycles the standard regenerative method (Crane and Iglehart [2]) provides the strongly

o............................. .

. . . . .. . . . . . . . . . . . . . . . . . . .

. . . .. . . . . . . . . . . . . . . . . . . . . .
° '°o°' " ". °'° " """"°-'°*', -' - "'" .' o o" - ° '- '- °'°*" -" ° " ' °"" """ "° '% 0 . . . * ," % ' . ." .. ' -""" 

" ° '

"*"'
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L1,L2 ,...,LN are identically distributed. Under these assumptions the SPN is symmetric.

For example, take #(j) = j + 1, j = 1,2,...,N. Then

•OD(4(j- 1) + k) = 4j + k,

-0E(e3(jl)+k) = e3j+k,

and

#S(S1,*2.,2S4N) = (sS,s6,...,4 1 NSI1 ,...,S4).

Proposition (2.19) (cf. Proposition (4.7) of [4]) gives a set of conditions on the

building blocks of an SPN which ensure that the process is regenerative and that the

expected time between regeneration points is finite. Set os(s) = OS(s) and

(S) = os(01-(s))

for sC S and 1 = 2,...,N. Similarly, set 0E(e) = oE(e) and

#V(e) - 4SE('O - (e))

for ee E. Recall that rn is the nth transition firing time, n > 0. Let 174-:n > 01 be an

increasing sequence of stopping times that are finite (74- < cc a.s.) transition firing times

such that for some eCE and S rS: 7 = 0 and

74 n = infit > 7n- at time t transition WE(e) fires and the marking is 0s(S ) for some s c Ss

n z 1 and I = 1,2,...,N.

(2.19) PROPOSITION. Suppose that there exists s0e S and 8 > 0 such that

(2.20) PIX(T')= 4() IX(T ),...,X(Tl) a 8 a.s. .

.. . ...."" ' "" ' """"-..-. . .'-.-'-......' .- ."" ' - . . ' ".''..... ""...." "'" ""'"""""."." "-' " ".
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Let 0 be a cyclic permutation of the set J1,2,...,Nj. In terms of this permutationIdefine a mapping, #D, of D onto D:

(2.14) *D((J - 1)LI + k) I(j) - 1)L I + k,

j - 1,2,...,N and k = 1,2,...,L1 . Similarly, define a mapping, #E, of E onto E:

(2.15) Q(--)M1+k) =e,)

j = 1,2,...,N and k = l,2,...,M1 . Also define a mapping, #S, of S onto S:

(2.16) *s(SlS2,...,SL) =(S@D(1)*@.(2),...,s#D(L)).

* For D' T D, we write *D(D') = Io.D0: ic D'] and for E' r E we write

*E(E) = {#E(e): ee E'.

(2.17) DEFINITION. An SPN {X(t):t > 01 is said to be symmetric if there exists a cyclic

permutation, #, of the set {1,2,...,N] such that:

(i) #D(L(e)) = L(iE(e)), ,D(J(e)) = 1(OE(e)), and OD(J(e)) = J(E(e)) for all ee E,

(ii) p(s';s,e) = p(#S(s');0s(s),#E(e)) for all eC E and s,s'c S, and

(iii) F(.;s',e',s,e) = F(.;,s(s'), E(e'),OS(s),OE(e)) for all e' e N(s';s,e), e1 E, and s,s' C S.

Condition (i) ensures that the induced mappings #D and OE preserve the sets of normal

input places, inhibitor input places, and output places and thus (using Equation (2.1))

*E(E(s)) - E(OS(s)) for all se S. Conditions (ii) and (iii) ensure that the mappings Os

and #E preserve the new marking probabilities and the clock setting distributions.

(2.18) EXAMPLE. In the token ring model of Example (2.9), let N be the number of

ports so that L1 - 4 and M 1 - 3. Suppose that (i) R 1 - R 2  ... - RN; (ii) the random

variables AI,4 2 ,...,AN are identically distributed; and (iii) the random variables



.p

and when

S(s ,... ,s 4 ( ./ ) _ lo',,10,0,S4 j+ I,...s 4 N) C S and s' - (s I '..'s4(-)- ' ',0,t ,S4J,.... s4N)"

All other new marking probabilities p(s';s,e) are equal to zero.

Note that when transition e3j fires, a token is removed from place 4(j - 1) and a

token is deposited either in place 4j - I or in place 4j, depending upon whether

(s4j..3,s4r_2) equals (1,0) or (0,I). All other transitions are input-deterministic (in that

exactly one token is removed from each input place when the transition fires) and

output-deterministic (exactly one token is deposited in each output place when the

transition fires).

The distribution functions of new clock times for transitions e'C N(s';s,e) are as

follows. If e' = e3j2 "arrival of packet for transmission by port j," then the

distribution function F(x;s',e',s,eI ) = P{AJ < xj. If e' = e3 ,- = "end of transmission by

port j," then the distribution function F(x;s',e',s,e) = PLj < x}. If e' = e3j =

"observation of token by port j," then the distribution function

F(x;s',e',s,e) 1 (x).

We now define a symmetric SPN. Informally, an SPN is symmetric if there are

mappings of places onto places, markings onto markings, and transitions onto transitions

which preserve the sets E(s) of enabled transitions, the new marking probabilities

p(s';s,e), the sets N(s';s,e*) of new transitions, and the clock setting distributions

F(.;s',e',s,;). Let IX(t):t a 0) be an SPN with finite marking set, S, and transition set, E.

Throughout this section we assume that D = {1,2,...,L} is the index set of places and

E - {el,e2,...,e M j is the transition set, where L = LIN and M = M 1N for some N > 2.

(We assume that all clock setting distributions have finite mean.)
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so that H,1 is the set of all possible markings when a passage time Pn terminates. Also set

A'

H C'-- S: for all s S,(s,s') C G - (B1 U A') and (s' 1,S )-(s,s'),

A'
s for some (',s) E B', (sl',s2) C A'}

so that H2 is the set of all possible markings when a passage time P/n is not underway.
A1

Al f I r #

(For (s,s'),(i,j') C G we write (s,s')~(s,:') if there exists a finite sequence eOSlel,s2,...,sn,en

of transitions and markings such that

~s ;S ,%)~s :s7'e ) ... p(;sn'e") > 0

and (s',sl),(s$,s,(sj+1) 'A, j - 1,2....n - 1.) We assume that

and that sC B'.

As in Section 2, let 17-:n k 01 be an increasing sequence of stopping times that are

finite (7t < ac a.s.) transition firing times such that for some e C E and S*rS: 40 = 0 andS*

7=- = inf It > 74 : at time t transition IE(e) fires and the marking is pS(S ) for some

n z 1 and I 1,2,...,N.

(4.1) PROPOSITION. Suppose that there exists e* C E, soC B1, and so C B2 such that

p(sO;sO,e) > 0 and either (i) O(s'O;sO,e) = E(so) fl (E(so) - {el]) = 0 or (ii)

O(sco;so,e ) 0 and for any e'C O(s';sO,e9) the clock setting distribution F(.;s',e',s,e) is

exponential, independent of s, s, and e. Set v6 = (S(sO),oS(so)) and suppose there exists

. (,.SsO) S-O.)...s.pose..ee.eist
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8 > 0 such that

(4.2) P{V(T,) = I v ,),...,vc )} a 8 a.s..

* Then [(X(7n),Pn+1 ):n > O is a regenerative process in discrete time. Moreover, if

E{Tn+1 - T1} !c < -

- for all n k 1 then the expected time between regeneration points is finite.

Proof: Since Tn < c a.s. and P[V(T) = d I V(T'_),.V 8>0, L-emma 4 of [61

ensures that transition oi(e ) fires and the marking of the SPN changes from *S(sO) to

S(sO) infinitely often with probability one: P{V(T1) = vo i.o.} = 1. Denote by

{lk:k z 11 the indices of the successive passage times [P':n > 11 which terminate when
II*'

transition oi(e) fires and the marking changes from 4S(so) to OS(So). Let T'0  O = 0.

We must show that

(i) {P;:k > 0 is a renewal process in discrete time

and that for anyi I <:2<...<m(m > 1) andk >0

(ii) IX(' ),P' ,...,X( ) ,P' + I and {X(7 T),P; +,...,X(, ),P. + have
PIC+5i Pk~j1 1  Pk+5 ~k ++5m+I( ,P

the same distribution, and X(f + ),P' I ,X(... ),P' I is

independent of {(X(74n),Pn+I):O :9 n < ft }.

At time T4, a passage time has just terminated with no other passage times underway.

Now observe that each of the clocks running at time T,i + was set or can be viewed as

having been probabilistically reset at time 7.t. (Assumption (ii) ensures that no matter
I I I 1 "

when the clock for transition e'c O(4(so);s(so),OE(e )) was set, the remaining time

until transition e' fires is exponentially distributed with the same parameter.) Therefore

I, . -. -, . - ' ._ , " _ . " ". ". , ., ,, ,. • . • - • . . . - - -. ." , . . . .. . .. .. .• • .
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[X(t):t a 70,,1 determines the finite dimensional distributions of X(T i), i for

i z 0 and the distribution of 1 1 The joint distribution of X(T ) and the clocksk-1 - Pk1 A

set or reset at time t!.i depends on the past history of the SPN only through 4Os(So), the

previous marking qS(so), and the trigger transition 4oE(e*). This distribution is the same

aloral and therefore (i) and (ii) hold.

Proposition (4.3) of [4] implies that IX(t):t ; 01 is a regenerative process in

continuous time and EfT', i - T, 11 < m. It follows, since the state space of the SPN is

1 1;

finite and the clock setting distributions have finite mean, that Elk+l < 0

Proposition (4.3) provides sufficient conditions which ensure that Equation (4.2)

holds. We postulate the existence of a distinguished random time 7n in the interval
Op 1 lek

[T,_1 ,Tl) and a set if(k):kcK(v+)} of distinguished transitions determined by the

marking, v+ , at time 77 . We make the following sample path assumption: V(T1) i when

each of the distinguished transitions occurs prior to some time n + Rn (V+).

Proposition (4.3) asserts that the geometric trials recurrence criterion (Equation (4.6)) is

satisfied if the clock setting distributions associated with the distinguished transitions are

"new better than used" (NBU) and-satisfy a "positivity" condition (condition (iii)) which

guarantees the existence of 8 > 0 as in Equation (4.6). (A positive random variable A is

NBU if

PIA > x + yIA > A < PIA > x

for all xy a 0. Note that every increasing failure rate (IFR) distribution is NBU. Also,

if A and B are independent random variables with NBU distributions, then the

distributions of A + B, min (A,B), and max (A,B) are NBU.)
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Recall that G is the state space of the process IV():t a 01. Let ITn :n k 01 be a

sequence of transition firing times and denote the state space of [V(7'+):n > 01 by G+ .

Set J,(Tn) - [(S,,C):0 s I < N(Tn), where N(.) is given by Equation (2.8). Let

e(1),e(2 ),...,e(m) C E and for Y+ - (1+,x +) C G+ , set E(v+ ) = E(x + ) and

K(v+) 1 fk: e(k) C E(v+)}.

When V(T.n) - v+ , for k C K(v+ ) we denote by Snk,(v+) the latest time less than or equal

to T~at which the clock associated with transition e(k) was set and by An (V+ ) the

setting on the clock at time S,.k(v+).

(4.3) PROPOSITION. Let e(1),.... e E and let 17+:n k 01 be a sequence of

transition firing times. For v+ C G +, let 1Rn (v+):k C K(v+)1, be identically distributed

collections of random variables, independent of IAnk(V(7n+)):ke K( V(T))I and , (Tn ).

Assume that:

(i) Tn : T a.s. and for v0,v1 ,...,v 1 e G and v+C G+,

(4.4) P{V(T) Y', V(7-)= v+, V(T 1 ) - ,...,V(T) = vo}

: PIS,,(v + ) + A, (v+ ) s 7 + Rf,.k(v+), kC K(v+);

V(Tn) v +, V(T_,)- v_,...,V(TI) =y o

(ii) for all e(k) the clock setting distribution F(.;se(k)s,e) = F(.;e(k)) and is NBU; and

(iii) there exists 8 > 0 such that for v+  G+

(4.5) 8(v+) = P{Ak(v + ) r 'Rn(v+), k K(v+)} > 8,

where the random variable A (v + ) has distribution F(;e(J)) and [A v+):i-cK(v+)l are
unn

mutually independent and independent of IR n.(v+):j e K(v+) 1.

- - - - - -
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Then

(4.6) P{V(T) = v'I V(T )} V 6 a.s

1' so that PIV(T1) - v1 i.o. = 1.

* •Proposition (4.3) follows directly from Proposition (2.16) of [3] since the process

I V(t):t a 01 is a generalized semi-Markov process with state space, G, and event set, E.

(4.8) EXAMPLE. In the token ring model of Example (2.17), take #(j) = j + 1,

j = 1,2,...,N. Set so = (1,0,0,0,...,1,0,0,01,O,0,1) and S= (1,0,1,0,1,0,0,0,...,1,0,0,0).

Takee = e3 and

S = I(sls2 ... , 44) C S: s4 N= 11

(where S is given in Equation (2.13)) so that TI is the nth time at which port 2 observes

the token, n a 1. (Note that X(T$) - 4(s O) if there is a packet queued for transmission

at each of the other ports and port 2 starts transmission of a packet at time T"1. The SPN
! i,

{X(t):t z 01 changes marking to os(SO) when transition 0E(e*) fires and the current
IE

marking is #S(so).) Observe that T < ao a.s. since

EIT- 1 <NR 1 +NEIL, <o

for all n a 1. Take e•-' = e3 _2  = N). Let 7n be the first time after T1  at which
- n-1

the control token leaves port 1 (transition #E(e ) becomes enabled). Take R1nA(V +) = R1

for all v+ G+ . Since the SPN has marking 0S(s;) at time T' if each transition e

enabled at time Tn7 fires before 4 lE(e3) fires, condition (i) of Proposition (4.3) is satisfied.

Assume that for j 1,2,...,N: (i) the distribution of Ai is NBU and (ii)

...................
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= P(A < R,) > 0 so that

N8(v+)= rl 8, a j=8 >o0
jeK(v) j-1

Then PV(1) - Vo i.o.j - 1.

The definition of a symmetric SPN implies that, for the process

{(X(T0,),P,'+,):n > 01, regenerative cycles defined by the times at which the transition

*(e) fires and the marking changes from 4(s 0 ) to #i(s0) can be decomposed into

independent, nonidentically distributed blocks. These blocks are defined by the

successive times T. at which transition I (e) fires and the marking changes from 9S(s)

to *S(SO) for some s' S" and some I, I 1,2,...,N. Estimates for characteristics of

limiting passage times can be based on measurement of passage times contained in these

blocks. Denote the state space of the process I V(T74):n > 01 by G1 and set

(4.8) ,0o

* 1 ,= 1,2,...,N.

Denote by {Tn:n a 1 the times T', .. T1 ... in increasing order.

(4.9) PROPOSITION. Suppose there exists 8 > 0 such that

(4.10) P V(T1) v', V(T 1_),..., V(Tl) , 8 a.s..

Then PIV(Tn) - v i.o.} = 1 for all 1 1,2,...,N.
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Arguments analogous to those given in Section 3 establish Proposition (4.9). Using

symmetry of the SPN, the idea is to show that

(4.11) P V(T) y vI V(T,'() ,0(_),...,V()= o)

{V( 7-) = 7o, V(7_,) = ,I _,-), = 0(VO)}

for all Vo,.v.,vn-, C Gf. (For v = (s,s') c GN we write 4's(V) = (oS(s),S(s')).)

Carry out the simulation of I V(t):t > 0 in random blocks defined by the successive

random times IT Pk > 01, where

ff(4.12) = inf174- > t ) = V for some 1, 1 1,2,...,Nl,

k k 1; 0 = 0 and I'0 = 0. Each epoch T'pk corresponds to the termination of a passage

time with no other passage times underway. (Note that the random times 17'p :k > 01 do

not form a sequence of regeneration points for the process I(X(7n),P'n4 ):n > 01.)

Set ak = Pk - Pk-1' k z 1. According to this definition ak is the number of passage

times in the kth block. Also set

a1

Y (J) = . ftP)
j-1

and denote the analogous quantity in the kth block by Yk(f), k a 1.

(4.13) PROPOSITION. The sequence of pairs of random variables {(Yk(f),ak):k 2 11 are

%Z independent and identically distributed.

Proof: As in the proof of Proposition (4.1), observe that at time 7,,, defined by Equation

(4.12) a passage time has just terminated with no passage times underway and each of the
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clocks running at time 70, + was set or can be viewed as having been probabilistically

reset at time 7opk. Therefore [X(t):1 k 7 determines the distribution of

ak+l - Pk+i - P1k and the finite dimensional distributions of P ,+i+I for i 2 0. The joint

distribution of the clocks set or reset at time Tk depends on the past history of the SPN

only through X(7k)= S(S0), the previous marking *S(so), and the trigger transition

#i(e°). It follows that the pairs of random variables {(Yk(J),ak):k 2 11 are mutually

independent.

Recall that rn is the time of the nth transition firing and denote by en the transition

that fires at time rn, n > 0. Also recall that C. is the vector of clock readings at time r.

and that C,,, is the ith coordinate of the vector Cn for eiC E(Sn). Let zl,...,zn z 0,

xl,...,xn C S and e C .... E with p(xk;xk_i,eik) > 0. It follows from the definition of a

symmetric SPN that

(4.14) pl{X( n,) = 4(xn), tn T Zn, en = #(e, ), X( n-) =- 41(xi),

!5z ~~-i e,, 1  (e1  ),... = #(ei )I

P,{x(',) = s(x,,), r, I z,., e = *(ei). X_i) = (_)

rn-1 2 n-l' n_ - OE;e el-OE

for all I -1,2,...,N. (Here PI .1 denotes the conditional probability associated with

starting the SPN with marking OS(s0) and all active clocks reset at time t = 0 according to

the distributions

PCo., ! cl I
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for c z 0, eic E(#s(so)); P1 11 denotes the corresponding conditional probability when the

initial marking is s1

Next suppose that X(O) = so and that all active clocks are reset at time I = 0

according to the distributions F(c;sO,e,so,e), ei E(sO). Set X 1(t) = 4(X(t)) and

X -(t) 1 (X(t)), t > 0. Observe that for each sample path of IX(t):t z 01 and all n a 0,

xl(rn)CAmI = {*m1(s): sEAlI and X'(n)CAm' = [-l(s): sEA 2I

for some mI if and only if XAn 1 ) E A"' and X(rn) c Am' for some mi. Similarly,

xl(r'nl ) C Bmn = *I'(s): se B1 1 and Xl(r, ) E Bm' = f{0l(s): se B 2 }

for some m, if and only if Xl(t 1) f Bmn and Xl(rn) C Bm for some mi. Since

Sj(m) = inf Irn > Tj(m): X(r n) E Am, X(rn_ 1)EAT}

and

Tj(m) = infn > Sj-I(m): X(rn) F B', X(rnl) E B'm}

for all m, Equation (4.14) implies that

(4.15) P1{a 1 = n + 1, P;.+I y.+,, Pn : y. .. , : 9 y,}

-PiJIal - n + 1, Pn~l :9 ynp+i, P. y,..- P, :5 yi}

for all I = 1,2,...,N, ylY 2 ... ,Yn+ > 0, and n a 0. By the independence argument in the

first part of the proof it follows that

~~~.•..... ....... - . .. -. ,.." .......... ,-.- ,'..''... -.. ,-,''
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(4.16) Pdjk+ - n + 1,SP+ 1  
' ~ 1  (~

- P11a, = n + 1, P.,.1  yn~+1, P.' : y,,,..., P, : 'y 1  P1 {X(T', ) =

for all n a 0 and I = 1,2,... ,N. Using Equation (4.15) this implies

N

=~a+ = nJ +1 I' Pk+!n +1 P~I P , y,,.. P'1 +I y1} PX(T'k)0'

N

- P1 1a, n + 1, P,,.,. I- yn,,~, P,,' y,,,..., P1 ! y1 } PlXT,) =

so that

Pjak+I = n + I Pk+l Yfl+i Pk+1- 1  ' . PPk+l :5Y1

= P1 1a, = n~ + 1, P"+ !' Yn P3,, :5 y,,., P1 :5 Y1 1

and the pairs of random variables I(Yk(f),ak):k 2: 11 are identically distributed. Q3

Standard arguments establish a ratio formula for r(fl - EltP) I.

(4.17) PROPOSITION. Provided that Ej1T 11 < a, PIPE DOf) 1 0 and Ef LA(P) I I <,

ElY 1 (fl I
EIJfP)I ___

Efall
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With these results, based on n blocks (cf. Crane and Iglehart [2]) a strongly consistent

point estimate for r(f) is

A Yn
(4.18) r(n) = (n)

and an asymptotic 100(l - 2 -y)% confidence interval is

(4.19) (n) - n) - s(n) 1/2 , n) + z (n) s 1)

where s2(n) is a strongly consistent point estimate for a2(J)= var (Y 1(/)- r(f)al).

Confidence intervals are based on the c.l.t.

n ~)- ,'('j)
(4.20) , N(0,1)

as n-mao.

(4.21) EXAMPLE. In the token ring model of Example (2.18), consider port access

times measured from the arrival of a packet for transmission by some port until the start

of transmission by the port. This sequence of passage times is specified by the four

subsets AI =- I(sI,...,s 4 N) E S: 1 = s3 = 01, A 2 - {(sl,...,SN) C S: s, - I and s3 = 01,

B1 - 1(s,...-,N)CS: s3 = 0 and $4N = 11, and B2 = 1(1,...,s 4N) S: $3 = 1 and S4N = 01.

The set of all possible markings when a passage time P terminates or is not underway is

HI- 1 (01,S2 .... ,4N) 1 S:st41 3 S4 ,1 =1 or s4 1-2 = 11. Then B 2 0 0 and

- (1,0,l,0,0,1,0,0,...,0,1,0,0)C B. The random times IT4,:k z 01 correspond to

terminations of access times which occur when there is no packet queued for transmission

at any of the ports. Propositions (4.13) and (4.17) hold provided that the packet

interarrival time random variables are exponentially distributed. (The random time 74 is
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the nth time at which port I + 1 observes the token, n z 0. Note that IV(7,):n z 0} is an

irreducible, finite state discrete time Markov chain so that P[V(T7n) = V, i.o.I = 1. It

follows that PtV(Tn) - j i.o.1 = 1 for all 1 = 1,2,...,N.)

5. STATISTICAL EFFICIENCY

Section 4 provides two estimation procedures for passage times in a symmetric seN.

Each of these procedures rests on the assumption that there exist e * E, soeB 1 , and

soE B satisfying the conditions of Proposition (4.1). The regenerative structure

guarantees that P,eP as n-wac and the goal of the simulation is the estimation of

r(f) = Etf(P)}, where f is a real-valued measurable function. (We assume that the

function f is such that El If(P) II <* and P{PeD(f)} = 0 so that ratio formulas for r(f)

hold.)

Estimates for r(J) can be based on measurement of passage times IPI:n a 11 and

simulation of the underlying SPN in regenerative cycles defined by the times 7'n at which

V(7Tn) = v1. Alternatively, exploiting properties of a symmetric SPN, estimates can be

based on measurement of passage times [P,':n > 11 and simulation of the underlying SPN

in independent, nonidentically distributed blocks defined by the times 71n at which

V(7n) c I,, This estimation procedure extracts more passage time information

from a simulation of fixed length and should provide estimates for r(f) that are relatively

more accurate. In this section we verify that this is indeed the case by showing that the

resulting confidence intervals are shorter.
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For t > 0 let ml(t) be the number of passage times [lP,:n > 11 completed in (0,t] and

denote by [{p:k 2 11 the indices of the successive termination times [l7n:n z 1] at which

V(7'.) 1. Set

a= mI(71i) - I

m'(T'#,)

= k (DP=) 1j-MI'(7,_ )+1

k > 1. Also set

(a1 =() var (1Y - a

Then by Lemma (4.1) of Iglehart and Shedler [5],

roI(t)

, Xf(PJ) -r(D)
(5.1) mI/() j., N(O,1)

(Eli4) o(J)I[all

as t-,ao provided that E{(a) I <ao and EI(YI(IfI)) I <. o. Here 1 T -Pk _.

Since the numerator in this c.l.t. and the limit (N(0,1)) is independent of the transition

I 1
OE(e ) and the markings #S(sO) and OS(S0) which define the cycles, so is the denominator;

this is a consequence of the convergence of types theorem (Billingsley [1], Theorem 14.2).

Thus, the quantity

= -(Eir) / (l)/Ela I

is an appropriate measure of the statistical efficiency of the estimation procedure based

on cycles.
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Now let m(t) be the number of passage times IP :n a 11 completed in (0,]. Set

=n f r (Pi;)
j-m(T' 1 )+I

and

2
(0()) = var (Y 1 (f) - r(J)aj).

Again using Lemma (4.1) of [5],

t'1/2 ( 1t(t 7 f(P') -r(f))

(5.2) mW) j-1 ,
1 1/2(El I I) lo(f)/Ealal

as t-'o provided that E{(al) 2 < o and EI(Y( If 2))} < w. Now observe that the

numerator and the limit in this c.l.t, is independent of whether the passage times

Pn:n > 11 are measured in regenerative cycles (defined by transition 41(e.) and markings
11 1 * II ,

*S(sO) and OS(s0)) or in blocks (defined by *E(e ), *S(sO), and os(so) for all

I - 1,2,...,N.) Therefore,

e(m) = (E{T1I) /am()/Etal

is an appropriate measure of statistical efficiency of the estimation procedure based on

blocks.
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Note that when the passage times IPn:n a 11 are used to construct point and

interval estimates for r(f), the half-length of the confidence interval is proportional to

et(j), and when the passage times IP':n k 11 are used, (with the same constant of

proportionality) the half-length of the confidence interval is proportional to e(f).

Proposition (5.3) asserts that under mild regularity conditions on the function f,

(5.3) PROPOSITION. For all functions f such that E If(P) I I <as and P{PE D(f)] f 0,

Proof: It is sufficient to show that

* (5) (((f)2  21 2(5.4) (O(W) S N2 (ao(/))

and

(5.5) Efall NE~a1i.

To establish Equation (5.4), for t > 0 set

m(t)w(:) = ftP ) - ,(Jm(:).

j.I

Now observe that {X(t):t a 01 is a regenerative process by Proposition (2.19) and that,

with respect to this process, {W(O:t a 01 is a cumulative process in the sense of

Smith [17] with

EjW(7,i)- w kr1 = E[Yk(f- r()aki= 0.

Pk k-1
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Thus, by Theorem 8 of [17],

2
.(5.6) lir var (W(t)) _ (o(J))

ErI

Next recall that lPn:n 2 11 is the sequence of passage times P1 P2 p'.... PI P 2- . 1 12 2 2 1

enumerated in termination order and therefore

MW) N I(m'(s)
X flP,) rtf) M(1) 7 (~

.. where ml(t) is the number of passage times [P":n 2 11 completed in (0,t]. Now set

i:." W(t) =" 2 flP~j) - r(Jm/(:)

so that

"/ N

1-11

and by the Cauchy-Schwarz inequality

N 1/2
var (W(t)) ! var (W(t)) + " {var (O()) var (W(t))}

1 --1 j~'I
- °l

S" {var (W'(t)} .

Equation (5.4) follows since

, .'var (W (I)) ( ! ( 2))

,-.. .. . tE j rj ,K-I

1-.. ET 1

L
•
..................................................... .

. . ~ .~ *- **.,~ -, - - - -
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. for I= 1,2,...,N. To see this, fix I and let {tk:k k 11 be the indices of the successive

termination times t7',:n k 11 at which V(7 n) - vi0. Observe that IW (): 0 is a

• :cumulative process so that by Theorem 8 of [17],

var(W'(t)) (a'(f))Jim f
t

Ej 2 1

where 4=7Tk' -7 T and
k k-I

(a(W)) = var -

with a m (7A) - m(Tli ) and

A: k k-I

k)+1

The definition of a symmetric SPN implies that E{TI2 = E 1 21 and
1 2 = .1i.(f) l

(o W) =var ( (2 J- r(f al.

To establish Equation (5.5) set

Nre(I) = Mlt

1-1

and observe that jml(t):t a 01 and m(t):t > 01 are cumulative processes with respect to

" IX(t):t a 01. Moreover,

lim Elm(t)) Efall
- t--- t EIr1 )

Ej'

. . . ..*
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and

Efm'OI)_ Eta2 1lira 21-

I IIt---s ttEat'

Again, since the SPN is symmetric, E[i1 1 = E[ 2 } and Eja2 } - Efa2 } so that

lr Elm(t) = Eta,)

EI'r1 I

* l-1,2,...,N. I"
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Figure 1. Token ring.
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