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AD-A158 324 ABSTRACT

This paper presents a new family of undirected graphs that allows

N processors to be connected in a network of diameter

3/2 1092 N + O(i), while only requiring that each processor be

connected to three neighbors. The best trivalent graphs previ-
ously proposed require a diameter of 2 log 2 N + O(1).
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* 1. INTRODUCTION

*In the design of a network of processors, one important con-

sideration is the interconnection topology. A multicomputer is a

collection of processing elements (processor-memory complexes)

connected by a communications medium. The communications medium

may be shared memory (such as [1) a broadcast bus [2] or

ring [3); or a collection of point-to-point communications

lines [4]. Tf this paper, e-.w++-H-e concerned with point-to-

point networks.

Such a network can be modeled by an undirected simple

graph [5) in which the vertices represent processing elements and

" the edges represent (full duplex) communication lines. To be

useful as an interconnection graph, a graph should have the fol-

lowing properties: /4, -i ,,

1 1. The degree (maximum number of edges incident on any vertex)

should be small. This restriction represents the fact that

a processing element with a large number of line interfaces

is expensive. If different vertices have different de-

grees, either all processing elements will need to be able

to accommodate the maximum number of lines, or more than

one kind of processing element will need to be designed and

constructed.

r 2. The graph should be dense. In other words, the diameter

(maximum distance between any pair of vertices, where the

distance is the number of edges in a minimal path connect--

ing the vertices) should be small relative to the number of

o ..............- * .*.-* .
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vertices. Processing elements not directly connected by a

line will need to have messages relayed by intervening ver-

tices. The number of relays in the worst case should be

kept small.

3. No vertex should be on an unusually high proportion of the

shortest paths. To avoid congestion, the message-relaying

load should be uniformly distributed throughout the net-

work. If many pairs of vertices have shortest paths in-

volving one central vertex, then that vertex must accommo-

date an especially large amount of traffic. As in point 1,

we would be faced with a choice between designing all ver-

tices to handle the worst case, or producing more than one

kind of processing element.

The extreme case of property I is to allow each processor to

* have at most two neighbors. In this case, the best possible to-

-' pology is a ring. Each vertex of a ring lies on the same number

of shortest paths, but the diameter of a ring is equal to half

* the number of vertices.

Several authors have investigated families of trivalent

(sometimes called cubic) graphs, in which each vertex has at most

three neighbors. Arden and Lee [63 have introduced a family of

* graphs called chordal ring networks. The N vertices are arranged

in a ring using two edges apiece. The third edge from a vertex

is a chord connecting it to a vertex IN of the way around the []

ring. Arden and Lee show that the diameter is O(/IN).

The cube-connected cycles of Preparata and Vuillemin [71 are

trivalent graphs with N = n'2n vertices (for any integer n). The Codas

'"Dist lo ial
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vertices are grouped into 2n cycles of n vertices each, conceptu-

ally arranged at the corners of an n-dimensional cube. Each of

the n edges emanating from a corner of the cube is used to con-

nect one of the vertices of the corresponding cycle to a vertex

of a neighboring cycle. Another way of describing the cube-

connected cycles is to label each vertex with a pair (xi), where

X = X0 ...Xn-1 is a sequence of n 0's and l's and i is an integer

in the interval [0,n-l]. The neighbors of vertex (x,i) are

(x,(i+l) mod n), (x,(i-l) mod n), and (y,i), where y =

X 0... xilixi+l...Xnl .  The diameter of the cube-connected cy-

cles is 5/2 ig N + 0(i) (where ig denotes the base 2 logarithm).

Another family of trivalent graphs is based on binary trees.

More precisely, take three balanced binary trees of depth ni, add

a new vertex, and connect it to the roots of the trees. The

resulting graph has N = 3 "2 n+l - 2 vertices and diameter 2n + 2 =

2 ig N + 0(l). Although this graph is denser than the chordal

ring and the cube-connected cycles, it has severe congestion,

with over half of all shortest paths traversing the root vertex.

A generalization of the binary tree, called multi-tree

structured graphs [8), is formed by taking t binary trees and

connecting the root of each to one vertex of a t-vertex cycle.

The leaves of all the trees are then linked together inanother

cycle. Different graphs are produced depending on the choice of

the sizes of the trees, the number of trees, and the order in

which the leaves appear on their cycle. Arden and Lee show that

if t < v/i-, a fairly simple interleaving of vertices can be used

to guarantee a diameter of 2 Ig N + 0(l). They use a heuristic

• - " " " ' ' ".-.".".. .".. . . . . ". ". . .,.,.. . ..'."..-...-..-..... . ..-,-.. . ... ..'..... .... ....- .,. .. .
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search program to find better interleavings for particular values

of N and t, and conjecture, extrapolating from these results,

that a diameter of lg N is possible for arbitrarily large N.

However, they present no general algorithm for achieving this di-

ameter.

In this paper, we introduce a new family of trivalent graphs

with N = 2n vertices (for any n > 2) and diameter bounded by

3/2 ig N. These graphs also have much less congestion than

binary trees or multi-tree structures.

The remainder of this paper is organized as follows: Sec-

tion 2 introduces notation and defines the new family of graphs,

which we call Moebius graphs. Section 3 proves the bound on the

diameter. Section 4 summarizes our results and states some open

problems.

2. DEFINITIONS

Let n denote a fixed integer greater than 1. Let 2 n denote

the set Is = so...sn-l I si G [0,l1).

Conventions Throughout the remainder of this paper, all sub-

scripts are to be interpreted modulo n. The symbol S denotes ad-

dition modulo 2. Throughout section 3, z denotes summation modu-

lo 2; when not specified otherwise, the sum is over all i,

0 < i < n. The weight of s, denoted w(s), is the number of I-

bits in s.

Define two functions f and g (mapping 2 n - 2
n ) as follows:
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f(s 0 ... sn 1 ) = sl...Sn-l

g(s0...sn_3sn_2Sn-I) = SO... Sn_3 n_2n_

Clearly, f and g are permutations of 2n and g = g-1. (The func-

tion f is often called the shuffle exchange [9].) Let Id denote

the identity function on 2

The Moebius graph of order n (so named because the function

f introduces a loop with a "twist") is the graph G = (V,E) with

vertex-set V = 2n and (u,v) e E iff u = f(v) or v = f(u) or u =

g(v) (equivalently, v = g(u)).

Any path of vertices v0 , ...,vk in G can be described by a

sequence P = Pl'''Pk, where for i = l,...,k, Pi e ff,f-l,g} and

v i = Pi(vi-1). We will use the term "path" to mean the sequence

of vertices, the sequence of edges connecting them, or the

corresponding sequence of functions. No confusion should arise.

We will write vk = p(v ).

3. DIAMETER OF THE MOEBIUS GRAPH

In this section we will show that the diameter of the Moe-

bius graph is bounded by L3/2 nj. In fact, we obtain this result

by proving the slightly stronger result that any pair of vertices

is connected by a path of length ( 3/2 nj that only traverses

the f edges in the "positive" direction. More precisely, for any

two vertices s and d. there is a path from s to d of the form

P1'..Pk, where k 1 L3/2 nj and Vi, Pi G ff,g). Since g2 = Id, we

can, without loss of generality, restrict our attention to paths

of the form g0 fglf...fgk, where Vi, gi e (g,ldl. We introduce



6

kthe following notation for such paths: Let x =o X...*xk-I G2.

Then ^ is the path fSE 1 .. g 1  n is the path

g0 fglf... 
9 k-1' where

g : if Xi= 1

Id i xi= 0

Lemma 1 If a G 21 and s = so0... sn-1. then S(s) =t to..=n1

S i+1 for i < n-3
where ti n1 for i= n-2

's ea ei for i= n-1

Proof Clear from the definitions.

Lemma 2 If x = xo ... x n 1 1 S = So0...SniI1 d = do0... dn-l' and d=

R(s), then for i = 0,...,n-1, di = Si xie x i 1 is1.

Proof For k = 0,...,n, let xk = k~1 . k-I

(SO X0 is the empty path, so = s, and sn =d).

A tedious but straightforward proof by induction shows that

for 1 < k < n-I,

sk-Ii for 0 < i < n-k-2

Sn- 4)X for i = n-k-i 1

'k4-i *Xk+i 'Xk+i+l 0 1 for n-k < i < n-2
s - Xkl1 S I for i =n-i

Now consider d =s .x (5n~i

If i < n-3, then
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S1i = n by Lemma 1

= Sn-l+i+I 0 Xni~~ 0nl~+ ED 1 by (I),

since n-(n-1) 1 < i+1 < n-2

If i =n-2, then

1 n-i -

= Sn-2  xn-2 $ 14DXn-l by (1)

If i =n-1, then

S n-lo19x *i1 by LemmalI0 n-i
= S ni 0 X0 EDxnl 401 by (1)

= Si 9xi )x i+l *01

This completes the proof of Lemma 2.

Ljemma 2 is illustrated for the case n = 4 in Figure 1.

Corollary 1 If Z(difsiol) = 0 then there are two strings

x,y e 2 n such that iR(s) = ^(s) = d and x = ~(i.e., xi -= *i 1

for i =0,.n-)

Proof For fixed s and d, Lemma 2 provides n linear equations in

the n unknowns xi:

xil= di 6si M1 0 xi, 0 < i < n (2)

However, these equations are not independent. Solving in terms

of X0 yields

x= X0 0 X (djesj0l), 1 < i < n
j<i

and xO= xO * r (dissiel),
i~n
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so (2) has a solution iff Z(diesiel) = 0. If this condition is

satisfied, the assignments x0 = 0 and x0 = 1 yield two solutions

which are complements of each other.

Corollary 2 If Z(diesi@l) = 0, then there exists a path from s

to d of length less than or equal to 13/2 nI.

Proof The length of any path R is n + w(x). Let i and ^ be the

paths of Corollary 1. Since x and y are complements,

w(x) + w(y) = n, so at least one of w(x) or w(y) (say w(x)) is

less than or equal to In/21. Then the length of R is bounded by

n + In/21 = 13/2 nI.

We now consider paths of the form R.

Lemma 3 Let x, s, and d be as in Lemma 2. If R(s) = d, then

d sn 1 $ x0 S x1  if i =0d. =
S 1s i-1 x i $ xi+1 $ 1 if 1 < i < n.

Proof Similar to Lemma 2.

Lemma 3 is illustrated for the case n = 4 in Figure 2.

Corollary 3 If r(dies iell) = 1, then there exist strings

x,y e 2n such that R(s) = p(s) = d and x y.
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Proof For fixed s and d, Lemma 3 produces n equations in the n

unknowns xi :

X1  = do $ sni 0 X0 (3)

x i+ di D s i- $ 1 * xi , 0 < i < n.

Equations (3), like equations (2), are not independent. Solving

in terms of x0 , we get

xi = 1 $ x0 9 E (dj(sj_lel), 1 < i < n
j<i

and x0 = 1 s x0 * Z (difSi_lil).
i<n

In this case, the equations have a solution iff E(dies il) = I.

If so, the assignments xo = 0 and x0 = 1 yield two complementary

solutions to (3).

Corollary 4 If r(di0si- il) = 1 then there is a path from s to d

of length less than or equal to L(3n-2)/2J.

Proof The length of the path R is n-l+w(x). Let R and j be the

paths of corollary 3. Since x and y are complements, at least

one, say x, has weight w(x) < Ln/2J. Then the length of path R

is bounded by n-1+Ln/2j = L(3n-2)/2j.

Theorem The diameter of the Moebius graph of order n is less

than or equal to L3/2 nj.
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Proof Let s and d be arbitrary vertices. There is a path from s

to d of length < L3/2 nJ if Z(diesisl) = 0 (by Corollary 2), or

if z(di~si-I l) = 1 by (Corollary 4). Since the sum in each case

ranges over all values of i and subscripts are calculated modulo

n, the sums are in fact identical and hence must be either both 0

or both 1.

The observation that Z(dissisl) is the parity of the number

of positions in which di and si agree leads to the following sim-

ple algorithm for calculating paths:

Algorithm

Input: A pair of vertices s and d.

Output: A path from s to d of length L3/2 nJ.

Method: If s and d agree in an even number of positions, define

x = 0 and for i = 0,...,n-2

xi+l = si $ di ( 1 0 xi -

If w(x) < Lni2J, the desired path is i, otherwise it is 9, where

y=x.

If s and d agree in an odd number of positions, let x= 0,

x= d0 * Snl xo, and for i = l,...,n-2, let

x i+ 1 = d i  l si_ $ 1 e xi.

If w(x) 5 Lni2J, the desired path is R, otherwise it is , where

y = x.
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CONCLUSIONS AND OPEN PROBLEMS

We have described a family of undirected trivalent graphs

ying, for each n, N = 2 n vertices and diameter bounded by

/2 nj. We are unable to determine the exact diameter, but for

lues of n up to 11 the actual diameter is F3/2 nf - 2. More

iportantly, although the algorithm of the previous section cal-

Llates an adequate path between any pair of vertices, we know of

) simple algorithm for calculating an optimal path. A related

)en question is the mean distance between pairs of vertices.

As we noted in the introduction, the Moebius graphs have an

cponentially better density than any other infinite family of

jbic graphs of which we are aware. However, they are still far

.om optimal. The only known upper bound on the number of ver-

ices that can be packed within diameter k is the Moore bound

rived as follows: Choose any vertex. There are at most 3 2 k-1

artices at distance k from it. Hence the total number of ver-

ices within distance k of the chosen vertex is 1 + 3"Z 2 i
- =

i<k
. - 2. It has been shown [10,11] that this bound is only at-

3ined by two trivalent graphs: the complete graph K 4 with 4

Lrtices and diameter 1 and the Peterson graph with 10 vertices

d diameter 2. For diameter 3, Elspas [12] gives the densest

3ssible cubic graph (with 20 vertices, two less than the Moore

)und). however, we are unaware of any general results indicat-

ig how far the actual optimum falls short of the Moore bound.

5ing a variety of techniques, we have obtained specific
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trivalent graphs of diameters 4 through 10 with 34, 56, 84, 129,

210, 325,. and 525 vertices, respectively [13]; in each case the

diameter is bounded by 1.1 ig N. A much more elaborate form of

the Moebius construction gives a family of trivalent graphs with

diameter 1.47 ig N + 0(1) [14].

Finally, this paper only considers trivalent graphs. We are

currently studying graphs of higher degrees.
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