E440	289
------	-----

,		_
	AD	
	Law and the second s	

TECHNICAL REPORT ARLCB-TR-85017

and the second of the second second

NEW POWDER TECHNOLOGIES FOR MOLYBDENUM ALLOY GUN BARREL LINERS

J. M. BARRANCO

SAUL ISSEROW

JUNE 1985

315

AD-A158

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER LARGE CALIBER WEAPON SYSTEMS LABORATORY BENET WEAPONS LABORATORY WATERVLIET N.Y. 12189

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacture(s) does not constitute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

Accession For NTIS GRA&I DTIC TAB Unannouneed Justification \square By_ Distribution/ Availability Codes Avail and/or Special

- HALL

DDC DUALI7 1

REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION N	0. 3. RECIPIENT'S CATALOG NUMBER
ARLCB-TR-850 7	HP-A15831	5 .
4. TITLE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVERE
NEW POWDER TECHNOLOGIES FOR M	OLYBDENUM ALLOY	
GUN BARREL LINERS		Final
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		A CONTRACT OR GRANT NUMBER(A)
I. M. Barranco and Saul Isser	ow (see reverse)	
9. PERFORMING ORGANIZATION NAME AND A	DDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
US Army Armament Research & D	evelopment Center	AMCMS No 6910 00 H840 021
Benet Weapons Laboratory, SMC	AR-LCB-TL	PRON No. 1A4250781414
Watervliet, NY 12189-5000		
11. CONTROLLING OFFICE NAME AND ADDRE	55	12. REPORT DATE
US Army Armament Research & D	evelopment Center	June 1985
Large Caliber Weapon Systems	Laboratory	13. NUMBER OF PAGES
Dover, NJ U/801-5001	I dillacant from Controlling Odling	35
	t ditterent most Controlling Office) 15. SECURITY CLASS. (of this report)
		INCLASSIETED
		154. DECLASSIFICATION/DOWNGRADING
	·	SCHEDULE
16. DIST THITION STATEMENT (of this Report)	
Approved for public release:	distribution unlimit	ed.
······································		
17. DISTRIBUTION STATEMENT (of the abotrac	t entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the abetrac	t entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the abetrac	t entered in Block 20, 11 different	from Report)
17. DISTRIBUTION STATEMENT (of the about ac	t entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the about of	t entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the abetrac	t entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the about of 18. SUPPLEMENT (ARY NOTES Presented at Powder Metallurg	y in Defense Technol	from Report) ogy Seminar, AMCCOM,
 17. DISTRIBUTION STATEMENT (of the about of the about of	t entered in Block 20, if different y in Defense Technol ember 1984.	from Report) ogy Seminar, AMCCOM,
 17. DISTRIBUTION STATEMENT (of the about occupies) 18. SUPPLEMENT (ARY NOTES) Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 	t entered in Block 20, it different y in Defense Technol ember 1984. ngs.	from Report) Ogy Seminar, AMCCOM,
 DISTRIBUTION STATEMENT (of the obstreet SUPPLEMENT (ARY NOTES Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi KEY WORDS (Continue on concerned of the second secon	y in Defense Technol ember 1984. ngs.	from Report) ogy Seminar, AMCCOM,
 DISTRIBUTION STATEMENT (of the observed) SUPPLEMENT (ARY NOTES Presented at Powder Metallurg DOVET, New Jersey, 24-26 Sept Published in Seminar Proceedi KEY WORDS (Continue on reverse elde if nec Molybdenum Alloy Powder 	y in Defense Technol ember 1984. ngs.	from Report) ogy Seminar, AMCCOM, er)
 17. DISTRIBUTION STATEMENT (of the observed) 18. SUPPLEMENT (ARY NOTES) Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse side if nec Molybdenum Alloy Powder Gun Barrel Liner 	y in Defense Technol ember 1984. ngs.	from Report) ogy Seminar, AMCCOM,
 17. DISTRIBUTION STATEMENT (of the abetraction of the abetrac	y in Defense Technol ember 1984. ngs.	from Report) ogy Seminar, AMCCOM, er)
 17. DISTRIBUTION STATEMENT (of the abetract 18. SUPPLEMENT (ARY NOTES Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde if nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength 	y in Defense Technol ember 1984. ngs.	from Report) ogy Seminar, AMCCOM, er)
 17. DISTRIBUTION STATEMENT (of the observed) 18. SUPPLEMENT (ARY NOTES Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde II nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength Compression Strength 	t entered in Block 20, it different y in Defense Technol ember 1984. ngs.	from Report) ogy Seminar, AMCCOM, er)
 17. DISTRIBUTION STATEMENT (of the observed) 18. SUPPLEMENT (ARY NOTES Presented at Powder Metallurg DOVET, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde if nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength Compression Strength 29. AMSTRACT (Continue on reverse edde (continue) 	y in Defense Technol ember 1984. ngs.	from Report) ogy Seminar, AMCCOM, er)
 17. DISTRIBUTION STATEMENT (of the observed) 18. SUPPLEMENT (ARY NOTES) Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde if nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength Compression Strength 20. AMSTRACT (Continue on reverse edd) : cont Molybdenum is an attractive m 	y in Defense Technol ember 1984. ngs.	from Report) ogy Seminar, AMCCOM, er) g gun barrel erosion because
 17. DISTRIBUTION STATEMENT (of the abetract 18. SUPPLEMENT FARY NOTES Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde II nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength Compression Strength 20. AMSTRACT (Continue on reverse edd): cont Molybdenum is an attractive m 	y in Defense Technol ember 1984. ngs. 	from Report) ogy Seminar, AMCCOM, er) g gun barrel ercsion because es. In previous efforts.
 17. DISTRIBUTION STATEMENT (of the abetract 18. SUPPLEMENT TARY NOTES Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde II nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength 20. ABSTRACT (Continue on reverse elde II nec Molybdenum is an attractive m of its high melting point and molybdenum has been unsatisfa 	y in Defense Technol ember 1984. ngs.	<pre>from Report) ogy Seminar, AMCCOM, er) g gun barrel erosion because es. In previous efforts, coarse grains and strong</pre>
 17. DISTRIBUTION STATEMENT (of the observed) 18. SUPPLEMENT (ARY NOTES) Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde 11 nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength 20. ADSTRACT (Continue on reverse elde 1 oct Molybdenum is an attractive m of its high melting point and molybdenum has been unsatisfa anisotropy in conventionally 	y in Defense Technol ember 1984. ngs.	<pre>from Report) ogy Seminar, AMCCOM, er) g gun barrel ercsion because es. In previous efforts, coarse grains and strong Powder metallur 7 offers the</pre>
 17. DISTRIBUTION STATEMENT (of the observed) 18. SUPPLEMENT (ARY NOTES) Presented at Powder Metallurg DOVET, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde II nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength Compression Strength 20. AMSTRACT (Continue on reverse edd) / cont Molybdenum is an attractive m of its high melting point and molybdenum has been unsatisfa anisotropy in conventionally opportunity to overcome these 	y in Defense Technol ember 1984. ngs. 	<pre>from Report) ogy Seminar, AMCCOM, er) g gun barrel erosion because es. In previous efforts, coarse grains and strong Powder metallur;; offers the technologies for preparing</pre>
 17. DISTRIBUTION STATEMENT (of the observed) 18. SUPPLEMENT (ARY NOTES) Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse side if nec Molybdenum Alloy Powder Gun Barrel Liner Hot isoctatic Pressing Bend Rupture Strength Compression Strength 20. AMSTRACT (Continue on reverse side): out Molybdenum is an attractive m of its high melting point and molybdenum has been unsatisfa anisotropy in conventionally opportunity to overcome these and consolidating powders are 	y in Defense Technol ember 1984. ngs. 	<pre>from Report) ogy Seminar, AMCCOM, er) g gun barrel erosion because es. In previous efforts, coarse grains and strong Powder metallur;; offers the technologies for preparing estigated to permit</pre>
 17. DISTRIBUTION STATEMENT (of the abetract 18. SUPPLEMENTATARY NOTES Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde II nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength Compression Strength 20. AMSTRACT (Continue on reverse edd): see Molybdenum is an attractive m of its high melting point and molybdenum has been unsatisfa anisotropy in conventionally opportunity to overcome these and consolidating powders are 	y in Defense Technol ember 1984. ngs. and identify by block number aterial for resistin mechanical properti ctory because of the processed material. deficiencies. New therefore being inv	<pre>// // // // // // // // // // // // //</pre>
 17. DISTRIBUTION STATEMENT (of the observed) 18. SUPPLEMENT TARY NOTES Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde II nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength 20. ABSTRACT (Continue on reverse edd): cont Molybdenum is an attractive m of its high melting point and molybdenum has been unsatisfa anisotropy in conventionally opportunity to overcome these and consolidating powders are 	y in Defense Technol ember 1984. ngs.	<pre>from Report) ogy Seminar, AMCCOM, or) g gun barrel erosion because es. In previous efforts, coarse grains and strong Powder metallur;; offers the technologies for preparing estigated to permit (CONT'D ON REVERSE; </pre>
 17. DISTRIBUTION STATEMENT (of the observed) 18. SUPPLEMENT (ARY NOTES) Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde if nec Molybdenum Alloy Powder Gun Barrel Liner Hot isoctatic Pressing Bend Rupture Strength Compression Strength 20. APSTRACT (Continue on reverse elde : con Molybdenum is an attractive m of its high melting point and molybdenum has been unsatisfa anisotropy in conventionally opportunity to overcome these and consolidating powders are 	y in Defense Technol ember 1984. ngs. and identify by block numb aterial for resistin mechanical properti ctory because of the processed material. deficiencies. New therefore being inv	<pre>// // // // // // // // // // // // //</pre>
 17. DISTRIBUTION STATEMENT (of the observed) 18. SUPPLEMENT (ARY NOTES) Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde if nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength Compression Strength 20. AMSTRACT (Continue on reverse edde : ose Molybdenum is an attractive m of its high melting point and molybdenum has been unsatisfa anisotropy in conventionally opportunity to overcome these and consolidating powders are DD : JAN 73 1473 FDr W OF 1 NOV 65 	y in Defense Technol ember 1984. ngs. and identify by block numb aterial for resistin mechanical properti ctory because of the processed material. deficiencies. New therefore being inv	<pre>// // // // // // // // // // // // //</pre>
 17. DISTRIBUTION STATEMENT (of the abetract 18. SUPPLEMENTARY NOTES Presented at Powder Metallurg Dover, New Jersey, 24-26 Sept Published in Seminar Proceedi 19. KEY WORDS (Continue on reverse elde II nec Molybdenum Alloy Powder Gun Barrel Liner Hot Isoctatic Pressing Bend Rupture Strength Compression Strength 20. AMSTRACT (Continue on reverse edd) (new Molybdenum is an attractive m of its high melting point and molybdenum has been unsatisfa anisotropy in conventionally opportunity to overcome these and consolidating powders are DD 10. 1000 1473 FDFT ON OF 1 NOV 65 	y in Defense Technol ember 1984. ngs. and identify by block number aterial for resistin mechanical properti ctory because of the processed material. deficiencies. New therefore being inv	<pre>// // // // // // // // // // // // //</pre>

ARE REPORT. AND REACHING THE AREA

v v

7. AUTHORS (CONT'D)

Saul Isserow Army Materials and Mechanics Research Center Watertown, MA 02172

20. ABSTRACT (CONT'D)

utilization of the benefits of molybdenum for this and related applications. Work will be reported on alloy powders prepared by various methods with emphasis on rapid solidification, either by rotating electrode (REP and PREP) or by plasma melting (PMRS, plasma melted rapidly solidified). To date, consolidation has been primarily by hot isostatic pressing (HIP).

TABLE OF CONTENTS

	Page
BACKGROUND	1
APPLICATION OF POWDER METALLURGY	3
POWDER PREPARATION	4
CONSOLIDATION	5
MECHANICAL TESTS	6
RESULTS	6
Qualitative Observations	6
Mechanical Properties of Compacts	8
DISCUSSION	9
SUMMARY AND CONCLUSIONS	10
REFERENCES	11

Ś

1

)

Š

G

TABLES

I.	POWDERS USED FOR HIP EVALUATION	13
11.	R.T. PROPERTIES OF HIP SPECIMENS	14
111.	MICROHARDNESS OF TZM MOLYBDENUM ALLOY POWDERS KNOOP (kg/mm ²)	16

LIST OF ILLUSTRATIONS

1.	Steps in processing a two-stave linear of molybdenum.	17
2.	TZM cylinder arc cast (AMAX) and roll formed (Rollmet). Reduced from 6" 0.D./4" I.D. to 5" 0.D./4" I.D. (55 percent reduction-in-area).	17
3.	(a) Longitudinal section of the cylinder shown in Figure 2.(b) Transverse section of the same.	18 18
4.	Rotating electrode process (REP).	19

53536

		Pa
5.	Principle of the transferred arc plasma (PREP).	2
6.	Plasma melted and rapidly solidified (PMRS) powder process.	2
7.	TZM spherical powder produced by the rotating electrode process (REP) - (a) powder, SEM, and (b) polished and etched microstructure.	2
8.	TZM spherical unsieved powder (mean particle diameter 220 µm) produced by the rotating electrode process (REP) and HIP densified at 1500°C at 30 Ksi for three hours indicating point contact sintering - (a) tensile bar fracture surface SEM and (b) polished and etched microstructure.	2
9.	TZM spherical powder produced by the plasma electrode rotating process (PREP) and HIP densified at 1600°C at 30 Ksi for four hours - (a) three-point bend fractograph SEM and (b) polished and etched microstructure.	2
10.	TZM spherical powder, SX207 (average particle diameter 24.7 µm) produced by the plasma melting and rapid solidification process (PMRS) - (a) powder, SEM and (b) polished and etched microstructure.	2
11.	TZM spherical powder, SX?07 (average particle diameter 24.7 μ m) produced by the plasma melting and rapid solidification process (PMRS) and HIP densified at 1600°C at 30 Ksi for three hours - (a) three-point bend fractograph, SEM and (b) polished and etched microstructure.	2
12.	Mo-0.1% Co co-reduced powder of small particle size $(1.7 \ \mu\text{m})$ and low apparent density $(2.36 \ g/cc)$ showing powder packing segregation with cracking occurring during the HIP densification cycle at 1400°C - (a) transverse view across the can diameter showing macro segregation, (b) variation in grain size across interface with crack, and (c) powder surfaces SEM.	2
13.	Mo-0.1% Co co-reduced powder densified by the HIP process at 30 Ksi for three hours at the temperatures indicated (a) 1300°C, (b) 1400°C, and (c) 1500°C.	2
14.	Bending load vs. deflection for PREP, PMRS, (SX-207) spherical powders, HIP densified: 30 Ksi, three hours at 1500°C, 1600°C.	2
15.	Compression stress vs. strain for PREP, PMRS (SX-207) spherical powders, HIP densified: 30 Ksi, three hours at 1500°C, 1600°C.	3
	ii	

16.	Bending load vs. deflection for Mo-0.1% Co, HIP densified: 30 Ksi, three hours at 1300°C, 1400°C, 1500°C.	31
17.	Compression stress vs. strain for Mo-0.1% Co, HIP densified:	32

Page

Compression stress vs. strain for Mo-0.1% Co, HIP densified:
 30 Ksi, three hours at 1300°C, 1400°C, 1500°C.

بر مربع مربع

Ĩ.

BACKGROUND

Erosion of gun barrels is still a problem for current weapons and for projected systems with sustained rapid fire requirements. Microscopic changes in the barrel surface frequently provic evidence of the following: melting of the surface layer, white layer embrittlement in gun steel, and often, heat checking and embrittlement. Such changes ultimately lead to macroscopic changes that degrade gun performance and accuracy. These changes are collectively referred to as erosion.

The erosion of a gun barrel is not uniform along its length, but is localized near the origin-of-rifling (0.R.), being less severe in the muzzle region. The use of a short liner can provide a suitable bore surface at or near the 0.R. to overcome the most severe erosion. The ideal liner should be fabricated from a material with good thermal, chemical, and mechanical properties. A thermal resistant material would need a high melting point with high specific heat and good thermal conductivity. Resistance to thermal and chemical shock is necessary under conditions of rapid heating and cooling in the presence of chemically active propellant gases. Suitable mechanical properties are needed to prevent deformation of lands or grooves, with little wear and with resistance to cracking under firing conditions.

Molybdenum appears to be the ideal erosion-resistant liner material. Some objections might be raised because of differences in coefficient of expansion and modulus of elasticity. In addition, compared to steel, arccast molybdenum is soft and lacks ductility. These latter shortcomings can be reduced greatly by alloying and proper mechanical working, while innovative liner design may alleviate the others. The alloy TZM contains nominally 0.5

percent titanium, 0.08 percent zirconium, and 0.02 percent carbon (by wt.) with the balance molybdenum. TZM attains an unworked or annealed hardness of 20 Rc, while working to a 50 percent reduction-in-area increases hardness to about 30 Rc with favorable ductility. Molybdenum with 0.1 p:rcent cobalt (by wt.) behaves similarly.

Attempts were made during World War II to fabricate molybdenum liners from tubes bored from swaged rods (refs 1,2). Such liners failed after only a few rounds; transverse and longitudinal cracks were observed. A helical twisted 0.50 cal liner was also introduced (ref 3). This liner consisted of a two-stave component, starting with forged flat stock joined by a hot twisting operation as shown in Figure 1. This design was an attempt to improve the normally weak transverse strength associated with large grained uniaxially worked material. Unfortunately, the seams opened up during firing, allowing hot gases to penetrate, causing spalling to occur along the edges. The World War II work is summarized in Reference 4. The follow-on post-war work is covered in References 5 and 6.

のなめたませんというないというというという。それなどのため、それならのないないです。それないないで、それないないで、それないないないで、たちにないない、「「「「「」」」のないないです。

- ¹"Investigation of Gun Erosion at the Geophysical Laboratory," Vol. I, July 1941 to July 1943, OSRD 3448, Report No. A-203, Geophysical Lab., CIW, March 1944.
- ²"Investigation of Gun Erosion at the Geophysical Laboratory," Vol. II, July 1943 to December 1943, OSRD 3449, Report No. A-204, Geophysical Lab., CIW, March 1944.
- ³J. W. Marden, "Fabrication of Molybdenum as a Gun Liner Material," OSRD 6494, Final Report No. A-423, October 31, 1945, Westinghouse Electric and Manufacturing Co., Inc.
- ⁴F. Palmer, "Molybdenum," Hypervelocity Guns and the Control of Gun Erosion, Summary Technical Report of Division 1, NRDC, AD 221585, Washington, D.C., 1946, p. 370.
- ⁵G. Cohn, "Barrels for Automatic Weapons," Summary of Research and Development 1946 to June 1955, F-A 2251, AD 314698, Franklin Institute, December 1959. ⁶G. Cohn, "Barrels for Automatic Weapons," Summary of Research and Development
- 1955 to 1960, F-A 2461, AD 325116, Franklin Institute, May 1961.

A recent Benet Weapons Laboratory program unsuccessfully attempted to hot roll an arc-cast blank 22 inches long, with a 6-inch 0.D. and 4-inch I.D., to fabricate a 105 mm liner. Circumferential and longitudinal cracking occurred as shown in Figure 2. Maintaining the temperature and the reductions per pass of the roll extrusion process were critical. Extremely coarse grains were observed as shown in Figure 3. Cracking along the grain boundaries was also common. The excessive grain size and low transverse strength resulting from the ingot metallurgy approach have led to emphasis on powder metallurgy to achieve fine-grained isotropic molybdenum components.

APPLICATION OF POWDER METALLURGY

Powder metallurgy merits investigation for gun barrel requirements now that new technologies are available for preparation and consolidation of powders. These technologies offer the possibilities of improving standard compositions or making new compositions practical. Pre-alloyed powders can now be prepared by methods that lead to greater compositional uniformity and finer grain size through rapid solidification of molten globules. In addition, a rather new processing method, hot isostatic pressing (HIP), is now well established; it offers a path to substantial, even complete consolidation of the powders with retention of the benefits of fine grain size and isotropy.

This report describes the results of a study on rapidly solidified TZM powders prepared by two processes, rotating electrode and plasma melting. Also included is molybdenum with 0.1 percent cobalt (Mo-0.1% Co) obtained by co-reduction. Consolidation was sought by HIP under various conditions. Evaluation was based on microstructural examination and determination of mechanical properties.

POWDER PREPARATION

Two versions of the rotating electrode process, the basic REP and the modified version (plasma rotating electrode process, PREP) were used by Nuclear Metals, Inc., Concord, MA (refs 7,8). For the REP, a water-cooled tungsten-tipped cathode is used to strike an electric arc to the rapidly rotating TZM alloy anode from which molten droplets are centrifugally flung into an inert gas chamber as shown in Figure 4. The solidification rate is moderate, being 10^{3°}C/sec or slightly higher. This process requires anode feed stock of high mechanical integrity and a smooth finish.

TZM powder was also prepared by PREP, shown schematically in Figure 5. In this version of the process, a helium plasma arc is the heat source instead of the tungsten-tipped cathode, which has been found to introduce tungsten contamination. Both versions of the process have essentially the same constraint on the lower limit of particle size. The process is inherently limited to relatively coarse particles (ref 9).

Much finer powder was prepared by GTE Sylvania, Towanda, PA using its proprietary plasma melting rapid solidification process (PMRS). This relatively new process (ref 10) uses a powder blend with a liquid binder. The PMRS process for TZM starts with the alloying elements titanium and zirconium

⁷P. R. Roberts, "Commercial Atomization by the Rotating Electrode Process," Seminar Preprint, <u>Atomization Processes:</u> Current and Future, Toronto, P/M .84, June 19, 1984.

⁸P. R. Roberts, "Rotating Electrode Process," Metals Handbook, <u>Powder</u> <u>Metallurgy</u>, Vol. 7, Ninth Edition, 1984, p. 39.

 ⁹B. Champagne and R. Angus, "Fabrication of Powders by the Rotating Electrode Process," <u>International Journal of Powder Metallurgy</u>, Vol. 16, No. 4, 1980.
 ¹⁰R. F. Cheney, Plasma Melted and Rapidly Solidified Powders," GTE Products Corporation, Presented at the Annual Meeting of the Materials Research Society, Bocton, MA, November 14-17, 1983.

added as carbides and/or hydrides. The powder, blended with the binder, is spray dried into droplets or agglomerates which are sintered, sized, and then passed through an inert plasma flame followed by quenching into inert gas, as shown in Figure 6. The result is a homogeneous spherical powder with each powder particle containing the alloying composition so desired. The solidification rate is faster than for the REP or PREP process with cooling rates at about $10^{5\circ}$ C/sec. The mean particle size for this process has been typically in the 20 µm range, while for the rotating electrode process 220 µm is not an uncommon mean particle size. Process parameters for PMRS can be adjusted to achieve even finer powder.

The program also included the Mo-0.1% Co (wt.%) alloy produced by a co-reduction chemical process. This is not a rapid solidification process, but it presumably insures a homogeneous distribution of cobalt in the molybdenum. The parti is was less than 2 µm.

CONSOLIDATION

HIP consolidation of the canned powder was performed by Industrial Materials Technology, Inc., Andover, MA. The cans, typically made of titanium, were three-quarters-inch in diameter and up to eight inches long. After being filled with the molybdenum alloy powder, the cans were evacuated and sealed. HIP was in argon for three hours at 30 Ksi at temperatures from 1300 to 1600°C, as shown in Table II. After the HIP cycle, the cans were machined off to leave the bare compact for sectioning into specimens for metallography and mechanical testing.

MECHANICAL TESTS

Bend and compression values were determined from all HIP specimens. The bend bars (ASTM E-23) were machined with the same dimensions as a Charpy bar with a notch (N) or without a notch (S for smooth). The slow bend tests performed on these bars were done with an Instron Universal Testing machine at a cross-head speed of 0.02 in./min with a low voltage differential transformer (LVDT) gage to measure bend deflection. Tests conducted on these bend bars gave values for bend yield and bend rupture strength as well as flexural modulus (not compensated for machine compliance) and fracture energy. The compression specimens measured three-eighths inch in diameter and one inch long. This specimen allowed the yield strength and modulus (not compensated for machine compliance) to be measured in compression and also served for density determination from weight and volume.

Metallographic evaluation was done using the scanning electron microscope (SEM) and employing standard polishing and etching procedures.

RESULTS

Qualitative Observations

The powders used in this study are listed in Table I. Various photomicrographs are shown in Figures 7 to 13. As-produced powders are in Figures 7 and 10, respectively, for REP and PMRS. The other photomicrographs show HIP samples.

The REP and PREP powders had approximately the same particle size with a median of the order of 100-200 µm. Figures 7a and b, respectively, show the exterior surface and microstructure of REP powder. These coarse spherical

powders did not densify fully even at the higher HIP temperature 1600°C. The first attempt at 1500°C left voids as shown in Figure 8. For the next attempt, the temperature was raised to 1600°C. In addition, the powder was sieved to obtain the 200 mesh (74 microns) fraction for HIP. These changes reduced the porosity, but did not eliminate it (Figure 9). Voids and prior particle boundaries are still evident. Some improvement is indicated by the occurrence of transparticle fracture in the bend specimen (Figure 9a) compared to mostly interparticle fracture previously (Figure 8a).

The PMRS powder was much finer having a median diameter of 24.7 µm with very fine grains within each powder particle (Figure 10). HIP at 1600°C gave full densification (Figure 11) with only slight remnants of prior particle boundaries. These observations are consistent with the substantial increase in fracture energy compared with the PREP powder HIP at 1600°C (145.3 vs. 47.7 ft-1b).

For the Mo-0.1% Co powder, the co-reduction method of preparation was tried after the lack of success with elemental blends. Such blends had shown segregation of these elements upon sintering. The co-reduced powder had a mean particle size below 1.7 µm. This powder, with a low apparent density of 2.36 g/cc, sometimes agglomerated during the canning process. This agglomeration was evident after HIP as shown in the microstructures in Figure 12. Packing density variations caused by agglomeration resulted in a grain growth phenomenon in a specific area with the larger grains surrounded by smaller grains. The result was a crack running through this area to the inside of the can. Increasing HIP temperature from 1300 to 1500°C resulted in excessive grain growth as shown in Figure 13. The fractograph of the broken

bend bars shows consistent intergranular fracture mode for all three HIP temperatures used.

Mechanical Properties of Compacts

The results of the mechanical tests summarized in Table II and plotted in Figures 14 through 17 reflect response to HIP parameters. Additional hardness values of TZM spherical powders are shown in Table III.

The HIP consolidated PREP powders exhibited low bend rupture strengths and fracture energy even for the smooth bar. The PMRS powder reached full theoretical density and achieved higher mechanical properties as seen in Figure 14. In constrast, the compression tests (Figure 15) showed higher strengths for compacts prepared from the PREP powder.

The co-reduced Mo-0.1% Co compacts showed lower strengths in both bend (Figure 16) and compression tests (Figure 17) as the HIP temperature was successively increased from 1300 to 1500°C. The inferiority of this material relative to both types of TZM powder is seen in the mechanical properties, most notably the fracture energy shown in Table II. The co-reduced Mo-0.1% Co powder was so fine as to have so low an apparent density (2.36 g/cc) and so strong an agglomeration tendency as to make it difficult to achieve a uniform fully densified compact.

In light of these results, effort is now concentrated c the PMRS process, initially TZM and subsequently richer alloys. In fact, the first go-around included a partially successful attempt to prepare a molybdenum alloy with high cobalt content of the order of four percent (by wt.). The continuing activity is first devoted to establishing conditions for producing TZM powder with uniform distributions of alloying elements and secondly, to

controlling oxygen and carbon contents.

DISCUSSION

TZM powders produced by either version of the rotating electrode process did not densify adequately even under the most severe HIP conditions. The bend tests showed low fracture energies associated with voids and fracture at prior particle boundaries. The inadequate consolidation is attributed to the inherent coarseness of powders prepared by this process. Consolidation was not appreciably helped by prior screening of the powder to recover a finer fraction (-200 mesh) for HIP consolidation at 1600°C.

The plasma melting rapid solidification process is capable of producing much finer powder. The benefit of the finer powder size was demonstrated by the HIP densification of the powder and by the consequently enhanced mechanical properties. Compacts were also shown to retain a fine grain size even after exposure to temperatures as high as 1600°C during HIP. The retained fine grain size should be beneficial for any subsequent working to a required shape for service applications such as needed in a gun liner.

It should be noted that the first lot of TZM powder supplied by the PMRS process is not necessarily representative of the capabilities of the process. Control of the process parameters is necessary for achieving optimum composition and particle size. The lack of process refinement was present in this lot which was found to be compositionally unsatisfactory in at least two respects: segregation of the titanium and excessive oxygen content was present. Work is now proceeding to overcome these deficiencies. Meanwhile this route appears most promising for relatively inexpensive preparation of a

standard molybdenum alloy such as TZM and also new compositions that will exploit the benefits of rapid solidification.

SUMMARY AND CONCLUSIONS

いたがないというという。ためたいのなから

X

1. Rapidly solidified powders of the molybdenum alloy TZM were prepared by two methods, rotating electrode and plasma melted rapidly solidified method. These powders were consolidated by hot isostatic pressing and mechanical properties were determined for the compacts.

2. Rotating electrode powder is inherently coarse and therefore difficult to consolidate in the absence of significant deformation. Full densification was not achieved with the TZM powders even under the most drestic HIP conditions using temperatures to 1600°C and pressures as high as 30 Ksi (207 MPa) up to three hours duration.

3. Plasma melting of sized agglomerates from the PMRS method results in much finer powder. Encouraging results were obtained with this powder consolidated by HIP. Process improvements are needed to control uniformity of composition and the presence of interstitials, but this method is considered most promising for TZM and other molybdenum alloy compositions.

4. Powders of Mo-0.1% Co (by wt.) were prepared by co-reduction. These powders were very fine and tended to agglomerate. They did not respond well to HIP.

REFERENCES

- "Investigation of Gun Erosion at the Geophysical Laboratory," Vol. I, July 1941 to July 1943, OSRD 3448, Report No. A-203, Geophysical Lab., CIW, March 1944.
- 2. "Investigation of Gun Erosion at the Geophysical Laboratory," Vol. II, July 1943 to December 1943, OSRD 3449, Report No. A-204, Geophysical Lab., CIW, March 1944.

- 3. J. W. Marden, "Fabrication of Molybdenum as a Gun Liner Material," OSRD 6494, Final Report No. A-423, October 31, 1945, Westinghouse Electric and Manufacturing Co., Inc.
- F. Palmer, "Molybdenum," Hypervelocity Guns and the Control of Gun Erosion, Summary Technical Report of Division 1, NRDC, AD 221585, Washington, D.C., 1946, p. 370.
- G. Cohn, "Barrels for Automatic Weapons," Summary of Research and Development 1946 to June 1955, F-A 2251, AD314698, Franklin Institute, December 1959.
- G. Cohn, "Barrels for Automatic Weapons," Summary of Research and Development 1955 to 1960, F-A 2461, AD 325116, Franklin Institute, May 1961.
- P. R. Roberts, "Commercial Atomization by the Rotating Electrode Process," Seminar Preprint, <u>Atomization Processes: Current and Future</u>, Toronto, P/M 84, June 19, 1984.
- P. R. Roberts, "Rotating Electrode Process," Metals Handbook, <u>Powder</u> Metallurgy, Vol. 7, Ninth Edition, 1984, p. 39.

- 9. B. Champagne and R. Angus, "Fabrication of Powders by the Rotating Electrode Process," <u>International Journal of Powder Metallurgy</u>, Vol. 16, No. 4, 1980.
- 10. R. F. Cheney, "Plasma Melted and Rapidly Solidified Powders," GTE Products Corporation, Presented at the Annual Meeting of the Materials Research Society, Boston, MA, November 14-17, 1983.

Material	Manufacturers	Type Powder	Particle Size Average (µm)	Apparent Density (g/cc)
TZM(REP)	Nuclear Metals	spherical	220.0	6.22
TZM (PREP)	Nuclear Metals	spherical	74.0	6.33
TZM (PMRS)	Sylvania-GTE	spherical	24.7	5.32
Mo-0.1% Co	AMAX	irregular/ co-reduced	1.7	2.36

TABLE I. POWDERS USED FOR HIP EVALUATION

1.15

TABLE II. R.T. PROPERTIES OF HIP SPECIMENS*

						Three-Poi	nt Slow Be	nd Test		Comp	ression
Material	Code	HIP Tenp °C	Hardness Rockwell Rc	Density kg/m ³ 10 ³	Yield Ksi (MPa)	Rupture Str Ksi (MPa)	Flex Mod psi 10 ⁶ (MPa) 10 ³	Max Defl mils (µm)	Fracture Energy inlb (Joule)	YS .2% Ksi (MPa)	Modulus psi 10 ⁶ (MPa) 10 ³
TZM (PREP)	11(N)	1500	8.6	9.6	73.6	73.6	22.9 (157.9)	4.3 (109.2)	2.6 (0.3)	61.5 (424.0)	10.5 (72.4)
	12(N)	1600	15.3	10.0	73.1	73.1 [29.8 (205.5)	3.2 (81.3)	1.9 (0.2)	65.0 (448.2)	17.0 (117.2)
	8(S)	1600	15.8	6.6	53.6 (369.6)	111.5 (768.8)	13.2 (91.0)	22.1 (561.3)	47.7 (5.4)	65.0 (448.2)	15.3 (105.5)
TZM (PMRS)	15(N)	1500	20.0	10.1	85.8 (591.6)	85.8 (591.6)	21.8 (150.3)	5.2 (132.1)	3.6 (0.4)	59.9 (413.0)	9.7 (66.9)
	16(S)	1500	20.0	10.1	69.3 (477.8)	127.0 (875.6)	9.8 (67.6)	35.2 (894.1)	87.4 (9.9)	59.9 (413.0)	9.7 (66.9)
	17(N)	1600	18.0	10.1	79.7	79.7	21.7 (149.6)	4.9 (124.5)	3.2 (0.4)	53.4 (368.2)	13.0 (89.6)
	18(S)	1600	18.2	10.1	61.3 (422.6)	126.0 (868.7)	9.7 (66.6)	57.1 (1450.3)	145.3 (16.4)	53.4 (368.2)	13.0 (173.7)
Mo-0.1% Co	16(S)	1300	15.7	10.1	73.2	73.2 (504.7)	14.9 (102.7)	5.2 (132.1)	4.9 (0.6)	88.4 (609.5)	25.2 (173.7)
	21(S)	1400	13.6	10.1	65.3 (450.2)	65.3 (450.2)	14.1 (97.2)	4.9 (124.5)	4.1 (0.5)	94.0	40.5 (279.2)

TABLE II. R.T. PROPERTIES OF HIP SPECIMENS* (CONT'D)

Modulus ps1 10⁶ (MPa) 10³ 10.4 (71.7) 20.3 (140.0) 11.6 (80.0) Compression Test 73.0 | (503.3) 58.7 | (404.7) 57.0 | (393.0)| (MPa) YS •2% Ksi .2 (0.02) (10.) Fracture Energy in.-lb (Joule) 4.6 (0.5) ۲. 1.3 | (33.0)| .8 (20.3) 5.5 | (139.7) Test afls (m) Max Defl Three-Point Slow Bend |Flex Mod | | psf 10⁶ | |(MPa) 10³| 19.3 | (133.1) 12.7 (87.6) 17.5 (120.7) 57.7 | (397.8) 18.3 | (126.2)| 10.01 (68.9) Rupture (MPa) Str Ksi 42.3 | (291.6) | 18.3 | (126.2)| 10.0 | (68.9) Ksi (MPa) Yield | Density | |kg/m³ 10³| 10.1 10.1 10.1 Hardness Rockwell 14.0 13.6 13.6 Rc HIP Temp °C 1400 1500 1500 32(N) 54(S) 43(N) Code Mo-0.1% Co Material

0.394 in Charpy bar (N) notched, (S) smooth 0.357 diameter compression specimen by one-inch long *30 Ks1 - Three hours

TABLE III. MICROHARDNESS OF TZM MOLYBDENUM ALLOY POWDERS

KNOOP (k_g/mm^2)

Size Range (Mesh) 	Test Load (Grams)	PREP Lot 4562-1	REP Lot 4562-2	PMRS SX-207
BWL				
-60 + 80	50	339.0	254.0	-
AMMRC (82)		:		
-35 + 45	100	244.2	272.5	-
- 35 + 45	50	256.8	241.8	-
-170 + 230	50	380.7	353.2	-
AMMRC (83)				, ,
-170 + 230	50	442.0	444.0	-
-170 + 230	25	486.0	463.0	-
-250	25	-	-	623.0

Figure 1. Steps in processing a two-stave liner of molybdenum (ref. 3).

Figure 2. TZM cylinder arc cast (AMAX) and roll formed (Rollmet). Reduced from 6" 0.D./4" I.D. to 5" 0.D./4" I.D. (55 percent reduction-in-area).

(b)

Figure 3. (a) Longitudinal section of the cylinder shown in Figure 2 (50%). (b) Transverse section of the same (50%).

(a)

(b)

Figure 7. TZM spherical powder produced by the rotating electrode process (REP) - (a) powder, SEM (300X), and (b) polished and etched microstructure (200X).

に見たいというないというできたとしていたというできたというためであるためのでもとなっていたとうというないであるというできたとう

ないでしたいというというというとうと

いったいというというという

(a)

(b)

Figure 8. TZM spherical unsieved powder (mean particle diameter 220 µm) produced by the rotating electrode process (REP) and HIP densified at 1500°C at 30 Ksi for three hours indicating point contact sintering - (a) tensile bar fracture surface SEM (125X) and (b) polished and etched microstructure (100X).

(a)

(b)

Figure 9. TZM spherical powder produced by the plasma electrode rotating process (PREP) and HIP densified at 1600°C at 30 Ksi for four hours - (a) three-point bend fractograph SEM (300X) and (b) polished and etched microstructure (200X).

Figure 10. TZM spherical powder SX207 (average particle diameter 24.7 µm) produced by the plasma melting and rapid solidification process (PMRS) - (a) powder, SEM (300X) and (b) polished and etched microstructure (1000X).

<u>1</u>

(b)

Figure 11. TZM spherical powder, SX207 (average particle diameter 24.7 µm) produced by the plasma melting and rapid solidification process (PMRS) and HIP densified at 1600°C at 30 Ksi for three hours -(a) three-point bend fractograph, SEM (1500X) and (b) polished and etched microstructure (500X).

.

*

773

Figure 12. Mo-0.1% Co co-reduced powder of small particle size (1.7 µm) and low apparent density (2.36 g/cc) showing powder packing segregation with cracking occurring during the HIP densification cycle at 1400°C - (a) transverse view across the can diameter showing macro segregation (20X), (b) variation in grain size across interface with crack (100X), and (c) powder surfaces SEM (4000X).

Polished and etched microstructures (500X).

Intergranular fracture surfaces produced by three-point bending of bars (0.394 in. sq.) SEM (1500X).

Figure 13. Mo-0.1% Co co-reduced powder densified by the HIP process at 30 Ksi for three hours at the temperatures indicated (a) 1300°C, (b) 1400°C, and (c) 1500°C.

ŀ

Corrression stress vs. strain for Mo-0.1% Co. HIP densified: 30 Ksi, three hours at 1300°C, 1400°C, 1500°C. Figure 17.

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

	NO. OF COPIES
CHIEF, DEVELOPMENT ENGINEERING BRANCH ATTN: SMCAR-LCB-D	1
-•·DA	1
- .	1
-DR	1
-DS (SYSTEMS)	1
-DS (ICAS GROUP)	1
-DC	1
CHIEF, ENGINEERING SUPPORT BRANCH	
ATTN: SMCAR-LCB-S	1
-SE	1
CHIEF, RESEARCH BRANCH	
ATTN: SMCAR-LCB-R	2
-R (ELLEN FOGARTY)	1
-RA	1
RM	. 2
-RP	1
-RT	1
TECHNICAL LIBRARY	5
ATTN: SMCAR-LCB-TL	
TECHNICAL PUBLICATIONS & EDITING UNIT	2
ATTN: SMCAR-LCB-TL	
DIRECTOR, OPERATIONS DIRECTORATE	1
DIRECTOR PROCUREMENT DIRECTORATE	1
JAGOION, INVOLUMI JINSVIUMIL	1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE	1

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: SMCAR-LCB-TL, OF ANY ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

がた山

	NO. OF COPIES		NO. OF COPIES
ASST SEC OF THE ARMY RESEARCH & DEVELOPMENT ATTN: DEP FOR SCI & TECH THE PENTAGON WASHINGTON, D.C. 20315	1	COMMANDER US ARMY AMCCOM ATTN: SMCAR-ESP-L ROCK ISLAND, IL 61299	1
COMMANDER DEFENSE TECHNICAL INFO CENTER ATTN: DTIC-DDA CAMERON STATION	12	COMMANDER ROCK ISLAND ARSENAL ATTN: SMCRI-ENM (MAT SCI DIV) ROCK ISLAND, IL 61299	1
ALEXANDRIA, VA 22314 COMMANDER US ARMY MAT DEV & READ COMD		DIRECTOR US ARMY INDUSTRIAL BASE ENG ACTV ATTN: DRXIB-M ROCK ISLAND, IL 61299	1
ATTN: LRCDE-SG 5001 EISENHOWER AVE ALEXANDRIA, VA 22333	1	COMMANDER US ARMY TANK-AUTMV R&D COMD ATTN: TECH LIB - DRSTA-TSL	1
COMMANDER ARMAMENT RES & DEV CTR US ARMY AMCCOM ATTN: SMCAR-LC SMCAR-LCE SMCAR-LCM (BLDG 321)	1 1 1	WARREN, MI 48090 COMMANDER US ARMY TANK-AUTMV COMD ATTN: DRSTA-RC WARREN, MI 48090	1
SMCAR-LCS SMCAR-LCU SMCAR-LCW SMCAR-SCM-O (PLASTICS TECH EVAL CTR,	1 1 1	COMMANDER US MILITARY ACADEMY ATTN: CHMN, MECH ENGR DEPT WEST POINT, NY 10996	1
BLDG. 351N) SMCAR-TSS (STINFO) DOVER, NJ 07801 DIRECTOR	2	US ARMY MISSILE COMD REDSTONE SCIENTIFIC INFO CTR ATTN: DOCUMENTS SECT, BLPG. 448 REDSTONE ARSENAL, AL 35898	2 34
BALLISTICS RESEARCH LABORATORY ATTN: AMXBR-TSB-S (STINFO) ABERDEEN PROVING GROUND, MD 21005	1	COMMANDER US ARMY FGN SCIENCE & TECH CTR ATTN: DRXST-SD	1
MATERIEL SYSTEMS ANALYSIS ACTV ATTN: DRXSY-MP ABERDEEN PROVING GROUND, MD 21005	1	220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901	

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER, US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-LCB-TL, WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.

ドウンチンチントン

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

	NO. OF COPIES		NO. OF COPIES
COMMANDER US ARMY MATERIALS & MECHANICS RESEARCH CENTER ATTN: TECH LIB - DRXMR-PL WATERTOWN, MA 01272	2	DIRECTOR US NAVAL RESEARCH LAB ATTN: DIR, MECH DIV CODE 26-27, (DOC LIB) WASHINGTON, D.C. 20375	1 1
COMMANDER US ARMY RESEARCH OFFICE ATTN: CHIEF, IPO P.O. BOX 12211 RESEARCH TRIANGLE PARK, NC 27709	1	COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/DLJ AFATL/DLJG EGLIN AFB, FL 32542	1 1
COMMANDER US ARMY HARRY DIAMOND LAB ATTN: TECH LIB 2800 POWDER MILL ROAD ADELPHIA, MD 20783	1	METALS & CERAMICS INFO CTR BATTELLE COLUMBUS LAB 505 KING AVENUE COLUMBUS, OH 43201	1
COMMANDER NAVAL SURFACE WEAPONS CTR ATTN: TECHNICAL LIBRARY CODE X212 DAHLGREN, VA 22448	1		

いたからいとう

.

: `

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER, US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-LCB-TL, WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.