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sured for all combinations. Stability boundaries, similar to those calculated by the Orr-
Sommerfield equation, are constructed for a given acoustic frequency, resulting in multiple
islands. The effect of turbulent flow on stability boundaries is to expand their size and
to move toward lower vortical frequencies, with large bay areas indicating stable regions
for certain combinations of vortical frequencies and Reynolds numbers.

A rigorous formulation of the governing equations for particle damping involved in in-
teractions of acoustic oscillations with vortical oscillations is derived. Simple examples
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proximations. Tt is shown that there is a trend toward decreases in stability with a de-
crease in frequencies. However, the one-dimensional calculation overestimates the stability
at higher frequencies. The optimum ranges of diameters for stability, however, are approxi-
mately the same in both cylindrical and one-dimensional geometries.

Based on the first and second order perturbation eigenvalue analyses of the flame zone,
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ables (pressure, density, velocity, temperature, and fuel fraction) indicate that the os-
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Most important of all, the velocity coupled responses are exhibited in the second order
perturbation as a nonlinear behavior.

Sia Fur

I. or

SECuRITY CLASSIFICATION OF TH4IS PAOE

* .o* .. ,....o,



MULTI-DIMENSIONAL COMBUSTION INSTABILITY ANALYSIS

OF SOLID PROPELLANT ROCKET MOTORS

ST. 3. Chung, Ph.D.
Department of Mechanical Engineering
The University of Alabama in Huntsville
Huntsville, Alabama 35899

May 14, 1985

FINAL REPORT
AFOSR83-0084

Prepared for
United States Air Force
Air Force Office of Scientific Research
Building 410
Bolling AFB, D. C. 20332

: ~~~~AIR 
ORC9 OF" TCM D SCElNTT FTC RF.S e .A3 '  ' "

" 
.ATIH,_'" j. K- ... ..

C ief Tec'..i,,:, n D'vis on

lip



ACKNOWLEDGEMENT 6

This research was sponsored by the Air Force Office of Scientific Research
under contract AFOSR 83-0084 with Dr. Leonard Caveny as technical monitor.
Many graduate students have assisted in various stages of the investigation.
Among them are P.K. Kim, J.L. Sohn, and S.C. Chen.

4 4,

.°•

...............................................................



TABLE OF CONTENTS

1. RESEARCH OBJECTIVES1

1.1 Overall Objectives 1

1.2 Specific Objectives 1

2. MEAN FLOW CALCULATIONS AND INTERACTIONS OF UNSTEADY ACOUSTIC

AND VORTICAL OSCILLATIONS IN AXISYMMETRIC CYLINDRICAL CAVITY 2

2.1 Summary 2

2.2 References 3

3. PARTICLE DAMPING EFFECTS ON COMBUSTION INSTABILITY 5

I. 3.1 Summary 5

3.2 References 5

4. UNSTEADY RESPONSE OF BURNING SURFACE IN SOLID PROPELLANT

COMBUSTI ON 7

4.1 Summary 7

4.2 References 8

APPENDIX 1 10

*APPENDIX 2 22

*APPENDIX 3 30



SECTION I

RESEARCH OBJECTIVES

1.1 Overall Objectives

The subject of combustion instability in solid propellant rocket motors
has been studied by many investigators for the past thirty years. Today, stable
motors are designed routinely and there seems to be little apparent concern-
over combustion instability. Looking into the history of the developmental pro-
cess, however, one finds that more than half of all the motors developed have
been found unstable. If new designs for more powerful motors are proposed, a
prediction as to stability would be difficult unless trial and error procedures
are repeated with costly experiments.

The current practice for the prediction of combustion instability is based
on crude approximations. In most of the design calculations, one-dimensional
analyses are predominanItly used. Seldom are the mean flow calculations per-
formed using the most modern technology - computational fluid dynamics. In the
cavity of the solid propellant rocket motor are the extremely complicated fluid
mechanics problems - compressible viscous flow, vortex shedding, turbulent bound-
ary layers, particle damping (two phase flow), etc. In addition, oscillatory
motions are prevalent, with acoustic and hydrodynamic wave oscillations coupled
toegther. The boundary conditions for this flowfield are the unsteady respons-
es9af-the flame zone distribution of field variables (velocity, pressure, den-
sity, temperature, and fuel fractions). The system may be linearly or nonlin-
early unstable. Steep-fronted waves, erosive burning, and high amplitude re-
sponses as related to the velocity-coupling are the recent subjects of interest
which are not fully understood. It is clear that the motor consists of both
f lame zone and cavity, and that these two regions should not be separated in
the analysis. obviously, this is beyond the current state of the arti but it
is toward this goal that our overall objective must be intended.

Analytical or numerical models should be developed such that future high
performance motors are designed using the computerized procedure. These models
must be based on adequate multi-dimensional governing equations and numerical
methods. The results should also be verified by experimental measurements.
The final product should then be facilitated by an interactive computer graph-
ics system displaying, for example, computed waterfall data from which suitable
design decisions can be made.

1.2 Specific Objectives

The overall objective stated above represents our ultimate goal. The re-
search performed during the two year period consists of (1) mean flow calcula-
tions and interactions of unsteady acoustic and vortical oscillations in an
axisymmetric cylindrical cavity, (2) particle damping effects on combustion in-
stability, and (3) unsteady response of the burning surface in solid propellant
combustion.

It is anticipated that these investigations will contribute to the founda-
tions on which further advancements can be made in the future.

Z 1
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SECTION 2

MEAN FLOW CALCULATIONS AND) INTERACTIONS OF UNSTEADY

ACOUSTIC AND VORTICAL OSCILLATIONS IN

AXISY-METRIC CYLINDRICAL CAVITY

2.1 Summary

The flowfield, such as occurs in solid propellant rocket motors, offers a
fertile ground for fundamental research in fluid mechanics and heat transfer.
Combustion induces not only the mean flowfield, but also acoustic pressure os-
cillations and possibly vortex fluctuations together with turbulent shear
boundary layers. Furthermore, shock waves are commonplace in most instances.
Obviously, a most rigorous analysis taking into account all of these phenomena
would be difficult, if not impossible. However, with the advent of the elec-
tronic computer and the modern technology of numerical methods, it has become
feasible to resolve hitherto unsolved problems.

Despite difficulties in analytical and numerical solutions to the complex
physical phenomena in a rocket motor chamber, many researchers have contributed
to the advancement of analysis and design of successful rocket motors. A large
body of literature exists relative-to this subject, the study of which has been
pioneered by Crocco [1], Cantrell and Hart [2], Culick [3,4], and others.
Flandro and Jacobs [51, among others, have noted that vortex shedding may lead
to an instability in solid propellant rocket motors. It is quite possible
that high speed mean flows also affect the stability [6] significantly.

The basic mathematical formulations of combustion instability were con-
tributed by Culick [3,4]. Recently, it has been observed in both full-scale
firings and cold flow simulations that Interactions of acoustic and hydrodynam-
ical (vortical) instability can be significant [7-13]. Although it can be ar-
gued that the hydrodynamic instability may not occur in high Reynolds numbers,
the turbulent shear layer instabilities have been found to be affected by vari-
ous combinations of Strouhal numbers and Reynolds numbers. The acoustic field
may Interact with vortex motions known as the "feedback" resulting in the vor-
tex generated sound [14]. Some studies [15,161 indicate that the vortices may
undergo "clipping", a phenomenon corresponding to the vortex disruption. It
is also possible that lateral periodic motion of the vortex street known as
"jitters" may lead to partial or complete escape of the vortices [15,16]. Whe-
ther these cornditions prevail in large rocket motors in which flow separations
at interface restrictors or inhibitors are likely to produce vortex motion
must be clarified. No simple models, such as hyperbolic tangent velocity pro-
file for the shear layer [11,171 and temporal or spatial growth theories [18,
191. appear to be adequate for the interactions of acoustic and vortical os-
cillations in a rocket chamber.

In the previous papers [20-22], finite element applications to the com-
bustion instability analysis were discussed. Although a rigorous mathematical
formulation of the stability integral was presented, the mean flow calcula-
tions did not include turbulent flows. Since the turbulent flowfield is in-
volved in shear boundary layers and vortex motions, it is intended that this
subject be considered in the mean flow calculations and, subsequently, in the
stability integral. Shock waves will not be included in the present report.
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The numerical results for certain combinations of acoustic and vortical
frequencies indicate that stability boundaries for acoustics-coupled hydro-
dynamic oscillations are somewhat similar to the classical hydrodynamic sta-
bility boundaries, but they occur in the form of multiple islands. The tur-
bulent flowfield appears to contribute toward instability, and this trend in-
creases with larger transition angles of the rocket motor cross-section. De-
tails of mathematical formulations, numerical calculations, and example prob-
lems are presented in Reference [231 or Appendix 1.

2.2 References

1. Crocco, L. and Chen, S.I., "Theory of Combustion Instability in Liquid
Propellant Rocket Motors", AGARDograph No. 8, Butterworth Scientific
Publication, London, 1956.

2. Cantrell, R.H. and Hart, R., "Interaction Between Sound and Flow in A-
coustic Cavities: Mass, Momentum, and Energy Considerations', Journal
of the Acoustical Society of America, Vol. 36, April, 1964, pp. 697-706.

3. Culick, F.E.C., "The Stability of One-Dimensional Motions in a Rocket
Motor", Comb. Sci. and Tech., Vol. 7, 1973, pp. 165-175.

4. Culick, F.E.C., "Stability of Three-Dimensional Motions in a Combustion
Chamber", Comb. Sci. and Tech., Vol. 10, 1975, pp. 109-124.

5. Flandro, G.A. and Jacobs, H.P., "Vortex Generated Sound in Cavities",
Progress in Aeronautics and Astronautics, Vol. 37, AIAA, 1975, pp. 521-533.

6. Flandro, G.A., "Stability Prediction for Solid Propellant Rocket Motors
with High Speed Mean Flow", AFRPL-TR-79-98, 1980.

7. Culick, F.E.C. and Magiawala, F., "Excitation of Acoustic Modes in a Cham-
ber by Vortex Shedding", Journal of Sound an Vibration, Vol. 64, No. 3,
1979.

8. Flandro, G.A., "Influence of Vortex Shedding on Acoustic Instability in
Solid Propellant Rockets", 16th JANNAF Combustion Meeting, Sept., 1979.

9. Brown, R.S. et. al, "Vortex Shedding Studies", AFRPL-TR-80-13, April, 1980.

10. Brown, R.S. et. al, "Vortex Shedding as an Additional Source of Acoustic
Energy in Segmented Solid Propellant Rocket Motors", AIAA paper NO. 80-
1092. ATAA/SAE/ASME 16th Joint Propulsion Conference, June, 1980.

II. Michalke. A., "On the Inviscid Instability of the Hyperbolic-Tangent
Velocity Profile", Journal of Fluid Mechanics, Vol. 19, 1964, pp. 543-556.

12. Martin, W.W., Naudascher, E. and Padmanabhau, M., "Fluid Dynamic Excita-
tion Involving Flow Instability", Proc. ASCE, Vol. 101, 1975.

13. Cumpsty, N.A. and Whitehead, D.S., "The Excitation of Acoustic Resonances
by Vortex Shedding", Journal of Sound and Vibration, Vol. 18, No.3, 1971.

14. Yates, J.E., "Interaction with and Production of Sound by Vortex Flows",
AIAA Paper No. 77-1352, AIAA 16th Aerospace Conference, 1977.



4

15. Rockwell, D. and Knisely, C., "The Organized Nature of Flow Impingement
Upon a Corner", Journal of Fluid Mechanics, Vol. 93, Pt. 3, 1979.

16. Rockwell, D. and Knisely, C., "Vortex - Edge Interaction: Mechanisms for
Generating Low Frequency Components", Phys. Fluids, Vol. 23, 1980.

17. Michalke, A.. "Vortex Formation in a Free Boundary Layer According to Sta-
bility Theory", Journal of Fluid Mechanics, Vol. 22, Pt. 2, 1965.

18. Michalke, A.. "On Spatially Growing Disturbances in an Inviscid Shear Lay-
er", Journal of Fluid Mechanics, Vol. 25, Pt. 4, 1966, pp. 521-554.

19. Freymuth, P. "On Transition in a Separated Laminar Boundary Layer", Jour-
nal of Fluid Mechanics, Vol. 25, Pt. 4, 1966, pp. 683-704.

20. Chung, T.J., Hackett, R.M. and Kim, J.Y., "A New Approach to Combustion
Analysis for Solid Propellant Rocket Motors", 19th JANNAF Combustion Meet-
ing, Oct. 4-7, 1982, Greenbelt, MD.

21. Chung, T.J., Hackett, R.M., Chan, S.C., Moon, K.J. and Sohn, J.L., "Three-
Dimensional Vorticity-Pressure Interactions in Combustion Instability Anal-
ysis", 20th JANNAF Combustion Meeting, Monterey, CA, Oct. 16-20, 1983.

22. Chung, T.J. and Chan, S.C., "Particle Damping Effects on Combustion Insta-
bility", 22nd AIAA Aerospace Science Meeting, Reno, Nevada, Jan. 9-12, 1984.

23. Chung, T.J. and Sohn, J. L., "Interactions of Unsteady Acoustic and Vorti-
cal Oscillations in Axisymmetric Cylindrical Cavity", AIM paper 84-1635,
1984.

. . . . . .. . . . .

. . . . . . . . . . . . . .. . . . . . . . . . . . .

.' %. . .. . .



5

SECTION 3

PARTICLE DAMPING EFFECTS ON COMBUSTION INSTABILITY

3.1 Summary

The study of acoustic energy losses due to aluminum particles in the so-
lid propellant rocket motor combustion chamber has been carried out by a num-
ber of investigators. Epstein and Charhart [11 studied the absorption of sound
in suspensions of non-interacting inert spherical particles and uniform temp-
eratures. The validity of this investigation was subsequently substantiated
by other researchers [2-41. In a rocket motor, the particles are neither spher-
ical nor inert and subjected to nonuniform temperature distributions [5].

Despite the extensive research on the subject of acoustic energy dissipa-
tion due to particle damping in the rocket motor [5-101, calculations of the
stability integral arising from particle damping are limited to simple one-di-
mensional cases.

Thus, the purpose of the present study is to demonstrate the feasibility
of mathematical formulations and numerical calculations via finite elements.
Furthermore, interactions of particle damping with fluid viscosity and heat
transfer are included. It is shown that additional boundary and domain terms
arise from integrating by parts "twice" of the Green function stability inte-
gral containing the momentum equation.

Simple example problems of two-dimensional axisymmetric geometries are
solved and compared with one-dimensional approximations. It is shown that
there is a trend toward decrease in stability with a decrease in frequencies.
However, the one-dimensional calculation overestimates the stability at high-
er frequencies. The optimum ranges of diameters for stability, however, are
approximately the same in both cylindrical and one-dimensional geometries.
For the first axial and tangential modes, however, the trends are significant-
ly different from those of the axial mode. The two-dimensional cylindrical
system is more stable than the one-dimensional system for all frequencies.
There is an indication that optimum particle diameters shift toward larger
sizes as the frequencies decrease. For further details, see Reference [13]
or Appendix 2.
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Fig. 4 Patterns of mean flow fields, (a) laminar

flow, (b) turbulent flow, Re=10
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Fig. 1 Axisymmetric cylindrical geometry of a
solid propellant rocket motor and finite element
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global nodes)

I - - -

{d

N =25' Hz,

Fig. 5 Acoustics-coupled vorticity instability
growth constants (cH) versus vortical frequenc-
ies, w 2553 Hz. Re-10

3
, 0-14, laminar flow

Fig. 2 Patterns of mean flow fields, (a) laminar
flow, (b) turbulent flow, Re-10

3
, 0-14n

- - - -i

.. .. - -

Fil. 3 Patte-ns of mean flow fielJs, (a) laminar Fiq. 6 Acoust , - ,upled vortiity instabi I ity
flow, (b) turbulent flow, Re-lO .1 20

°  
growth constints (-H) versus vortical frequenc-
ies, N-

255 3  
HZ, Re=10', --14*, turbulent flow

-. -..- :. ...--. .. .-. -. .'.-' .,.... . .. .-. .-. .. .+ . . . . ... . . ".. ... .. .. -'-" '= - " ' "" " . ". . . . . . . . ..". " " . ."'" - . . .. , , -.- . 'i •



18

7. Culick, F.E.C. and Magiawala, K., ''Excitation 19. Freymuth, P., "On Transition in a Separated

of Acoustic Modes in a Chamber by Vortex Shed- Laminar Boundary Layer", Journal of Fluid Me-

ding", Journal of Sound and Vibration, Vol. 64, chanics, Vol. 25, Pt. 4, 1966, pp. 683-704.

No. 3. 1979. 20. Chunq, T.J., Hackett, R.M and Kim. J.Y., "A

8. Flandro, G.A., "Influence of Vortex Shedding on New Approach to Combustion Analysis for Solid

Acoustic Instability in Solid Propellant Rock- Propellant Rocket Motors", 19th JANNAF Combus-

ets", 16th JANNAF Combustion Meeting, Sept., tion Meeting, Oct. 4-7, 1982, Greenbelt, M.D.

1979. 21. Chung, T.J., Hackett, R.M., Chan, S.C., Moon.

9. Brown, R.S. et. al, "Vortex Shedding Studies", K.J. and Sohn, J.L., "Three-Dimensional Vorti-

AFRPL TR 80-13, April, 1980. city-Pressure Interactions in Combustion Insta-
bility Anaysis", 20th JANNAF Combustion Meet-

10. Brown, R.S. et. al, "Vortex Sheddine as an Addi- ing, Monterey, CA, Oct. 16-20, 1983.
tional Source of Acoustic Energy in Segmented
Solid Propellant Rocket Motors", AIAA paper 22. Chung, T.J. and Chan, S.C., "Particle Damping

No. 80-1092, AIAA/SAE/ASME 16th Joint Propul- Effects on Combustion Instability", 22nd AIAA

sion Conference, June, 1980. Aerospace Science Meeting, Reno, Nevada, Jan.
9-12, 194.

11. Michalke, A., "On the Inviscid Instability of
the Hyperbolic-tangent Velocity Profile", Jour- 23. Morse and Feshbach, "Methods of Theoretical

nal of Fluid Mechanics, Vol. 19, 1964, pp. 54- Physics, Part I and II", McGraw-Hill, 1953.

556. 24. Bradshaw, Cebeci, and Whitelaw, "Engineering

12. Martin, W.W., Naudascher, E. and Padmanabhau, Calculation Methods for Turbulent Flow", Aca-
M., "Fluid Dynamic Excitation Involving Flow demic Press, 1981.
Instability", Proc. ASCE, Vol. 101, 1975. 25. Chung, T.J., "Finite Element Analysis in Fluid

13. Cumpsty, N.A. and Whitehead, D.S., "The Excita- Dynamics", McGraw-Hill, 1978.
'ion of Acoustic Resonances by Vortex Shed-' 26. Li, Y.S. and Kot, S.C., "One-Dimensional Finite
ding", Journal of Sound and Vibration, Vol. 18, Element Method in Hydrodynamic Stability", In-
No. 3, 1971. ternational Journal for Numerical Methods in

14. Yates, J.E., Interaction with and Production of Engineering, Vol. 17, 1981, pp. 853-870.
Sound by Vortex Flows", AIAA Paper No. 77-1352, 27. Saraph, V.A., et. al, "Stability of Parallel
AIAA 16th Aerospace Conference, 1977. Flows by the Finite Element Method", Interna-

IS. Rockwell, D. and Knisely, C., "The Organized tional Journal for Numerical Methods in Engi-

Nature of Flow Impingement Upon a Corner", neering, Vol. 14, 1979, pp. 1257-1270.

Journal of Fluid Mechanics, Vol. 93, Pt. 3, 28. Orszag, S.A., "Accurate Solution of the Orr-
1979. Sommerfeld Stability Equation", Journal of

16. Rockwell, D. and Knisely, C., "Vortex - Edge Fluid Mechanics, Vol. 50, 1971, pp. 689-703.
Interaction: Mechanisms for Generating Low 29. Schlitching, "Boundary Layer Theory", McGraw-
Frequency Components". Phys. Fluids, Vol. 23, Hill, 1960.
1980.

30. Taylor, C., "A Numerical Analysis of Turbulent
17. Michalke, A.,"Vortex Formation in a Free Boun- Flow in Pipes", Computers and Fluids, Vol. 5,

dary Layer According to Stability Theory", 1977, pp. 19-. '
Journal of Fluid Mechanics, Vol. 22, Pt. 2,
1965...

18. Michalke, A., "On Spatially Growing Disburbanc-

es in an Inviscid Shear Layer", Journal of
Fluid Mechanics, Vol. 25, Pt. 4,1966, pp.
521-554.

Acoustic' Surface Surface Surface Combus- Convec- Viscous Dissi-
Frequenc' , Combus- Convec- Viscous ition into tlon into Momen- pative SUM TOTAL
IN(HZ) tion tion DampingI Domain Domain tum Energy ".1

(A) (B) (C) (D) (E) (F) (G) A+ N

I A 15.158 4.176 0.0 1.842 -12.481 -0.3 - 8.996

34_ , ,_ 9.0153
'H - 0.0 0.0 - 0.019 0.0 0.0 0.0193

'A -34.255 -15.667 0.0 25.965 21.608 -0.005 -2.225

476 '2 1766-

- 0.0 0.0 1- 0.048 0.5 •-0 , 0,0484,
_ 1o-" 0- -"

Table I. Contributions of various terms of stability inteqrals based on turbulent mean flow

with ..N(the vortical frequency) = 24 Hz, Re-10', -=41.
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to the gain of energy, increasing with frequency. 6. Conclusions

It is interesting to note that the trend of convec-

tion into domain (E) is opposite from the behavior There are several major findings in this work.

of the surface convection. Note that energy is They are summarized as follows:

lost due to convection into the domain at a low (1) A consistent derivation of stability inte-

frequency, but it gains at a higher frequency, con- grals for the growth constants associated with

trary to the case of surface convection. This acoustic and vortial oscillations leads to var-
trend appears to be the result of the turbulent ious terms which have appeared for the first
mean flow field. time. As a special case, the flow turning term

Acoustics-coupled vorticity instability growth
constants (a) versus vortical frequencies for the arises as a consequence of integrations by parts

laminar flow, with wN - 2553 Hz, Re-10
3
, 6-14*, are

shown in Fig. 5. In view of negligible positive (2) The K-c turbulence model appears to provide

growth constants, it is concluded that the system reasonable flow fields consistent with the tran-

does not appear to be unstable. If turbulent flow sition angles of a circular cross-section, which
is considered, however, several unstable motions at are used in the calculation of growth constants.

low frequencies are observed (Fig. 6). As the (3) The convection into domain at a low fre-
transition angle increases to 0-200, the systemgradually turns to instability at higher frequenc- quency leads to the loss of energy, a trend re-

grdull urs ointaiit a igerfeqen- versed at a higher frequency resulting in the -
ies for laminar flow (Fig. 7). Such instability vese at a h h frenen rstingain t

appears to occur at a lower frequency if turbulent the case of surface convection, which is consd-

flow is considered (Fig. 8). These trends are more the e ecton, which ia co

pronounced as the transition angle is increased to field. 

e-34'. To compare these observations with the case

of a low acoustic frequency combination, the result (4) Unstable motions at low frequencies appear

of W N = 34 Hz is investigated (Fig. 11). It is tQ be the result of turbulent flow, Increasing

clear that, for a small transition angle (8-14*), in macfhitude for larger transition angles.
positive growth constants increase in magnitude s) There exists a combination of any acoustic

significantly, not only at low frequencies, but al-
frequency with any other vortical frequency

so at high frequencies in contrast to the case of which may produce a certain state of stable or
high acoustic frequency, wN unstable motion. Excitations of such frequenc-
Fig. 6. ies may not be assured for all combinations.

The foregoing discussions on acoustics-coupled

vortical instability lead us to a critical point of (6) Stability boundaries similar to those as
re-examination of the present theory. It is as- calculated by the Orr-Sommerfeld equation are
serted that there exists a combination of any a- constructed for a given acoustic frequency, re-

coustic frequency with any other vortical frequency suiting in multiple islands.

which may produce a certain state of stable or un- (7) The effect of turbulent flow on stability

stable motion. It is possible that not all combin- boundaries is to expand their sizes and to move
ations of acoustic and vortical frequencies theore- toward lower vortical frequencies, with large

tically postulated may be excited. In fact, only a bay areas indicating stable regions for certain
limited number of combinations would be considered combinations of vortical frequencies and Rey-
significant in practice. To determine whether any nolds numbers.

of the combinations of acoustic and vortical fre-
quencies are excited, one may resort to the plots
of both acoustic and vortical modes of all possible References
combinations, the process of which can easily be

automated by means of computer graphics. Such an
effort is currently under progress. As a result of i. Crocco, l. and Chen, S.Li., Thenry of Combus-

this analysis, it is possible to construct stabili- tion Instability in Liquid Propellant Rocket Mo-

ty boundaries similar to those via solutions of the tors", AGARDograph No. 8, Butterworth Scienti-

Orr-Sommerfeld equation. It is seen that for w N - fic Publication, London, 1956.
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frequencies versus Reynolds numbers exhibit multi- Momentum, and Energy Considerations", Journal

pie islands as shown in Fig. 12 for the laminar of the Acoustical So:iety of America, Vol. 36,
flnw. If turbulent flow is considered, however, April, 1964, pp. 697-706.
the stability boundaries expand significantly in

size, and move toward lower vortical frequencies. 3. Culick, F.E.C., "The Stabi'ity of One-Dimen-

It is shown that the critical Reynolds number ap- slonal Motions in a Rocket Motor, Comb. Sc.

pears to be around 400-500. The most interesting and Tech., Vol. 7, 1973, pp. 165-175. .

aspect of the multipl i-island stability boundaries 4. Culick, F.E.C., "Stability of Three-Dimensional

is that large bay areas, which indicate stable re- Motions in a Combustion Chamber", Comb. Sci.
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Similar' , for the K-c system, we have formulations presented in the previous sections, a

typical solid propellant rocket motor with an axi-
Ss S (n) (n+l) (n) symmetric cylindrical geometry has been analyzed.OS 3S S S As shown in Fig. 1, 48 linear isoiparametric ele-

.Kfni ments with 63 global nodes are chosen to model the

I B cavity geometry. Transition angles for the cross-
jT )T U section of the motor are varied 0=14", 20*, 34*

.

L7KL (7) cludeVarious constants used in this analysis in-

(71) cuetefloig

Admittance, AM = 10.0 applied normal to the
where burning surface for the region designated by a

S through c (Fig. 1)

- + . 0 )dC (72) Empirical constants in turbulent mean flow
K, 1 3, iYy y,i ReT. ajS3,j

C = 0.09S
(D- =dQ (73) a = .

a - 1.208

)T C = 1.8

:: J ,j'~yyj uC = 0.6

F2

+ a jOt + E 0 ) .r,}d (74) Reynolds number, Re 1 l0', 104, 101

The results of mean flow calculations are
)T shown in Figs.. 2-4. In general, turbulent velo-
---:- t {t P K YDj CD . city profiles are steeper in the vicinity of the

S' 'J Jwall, and flatter in the core region of the com-

+ (bustion chamber than laminar velocity profiles.
4R (P - yKy + P 0 K ) These variations are caused by the shear stresses

Re t awhich are increased by the turbulent effects [29],

C a similar trend as the turbulent pipe flow (30].
However, it should be noted that the recirculatiob

Re a yfj Yi(f,j fli TiI f
1
1 which would occur near downstreamis greatly sup-

ressedsince the admittance is applieO normal to
+ 2C z 0 0y}dS2 (75 the burning surface, contrary to the usual en-

S2CBCa y (trance boundary condition of a pipe flow in which

and the boundary velocity is applied parallel to the
axis. Separation and recirculation flows appear

S J{0Q1SJ 3 Y j + a 0 K in both the laminar and the turbulent cases as the
t k transition angles are increased. But, in a turbu-

I (ent flow, they appear only at a relatively large
- P 6j(i ~ + y, transition angle since an increase of shear

Re a 3j Bi -j Y 'j stresses with turbulence near the wall overcomes

0}d2 Re1 K the effect of adverse pressure gradients.
.n.E dl (76) Typical results for the growth constants,

(1 t ek based on the turbulent mean flow, are shown in
table 1, listing contributions of various terms in

T (ft OK 01 c u . the stability integrals for the acoustic frequen-
T1 8 8 YJ y n '; cies (WN = 34 Hz, 476 Hz) in combination with the

00vortical frequency wN = 24 Hz for Reynolds number

Ret (, K '1 i 3 B,K P y,jCy Re-lO', and transition angle e-14*. Note that the
so-called pressure coupling and velocity coupling

S i .K0d' defined as the surface combustion, designated as
+ tC, ' )dZ - J Re a d' (77) (A), provide a significant source of acoustic in-
c-I Yrdt C stability (riA 

= 
15.458) for wN 34 Hz, whereas

Simultaneous iterative solutions of Eqs.(67, for a higher acoustic frequency (';N = 476 Hz), the
71) provide the turbulent mean flow field. To- acoustic growth constant assumes A -34.255. an
gether with the eigenvalue analyses for the acous- indication of strong stability. The flow turning

tic field of Eq. (53) and the oscillatory vortical effect which is included in the surface convec-

field given by Eq. (58), the turbulent mean flow tion, designated as (B), exhibits a similar trend
calculations will then provide necessary informa- as the surface combustion, but less in magnitude.
tion for the calculation of growth constants by For the Reynolds number and the transition angle

means of Eqs. (33-35). The stability integrals as investigated (Re=l0, =14"), the effect of vis-

dictated by Eqs. (34-35) can be performed ideally cosity is negliqible as indicated by (C), (F), and
by the Gaussian quadrature approximations [25). (G). However, it will be found in the later anal-

ysis that there is a significant contribution

from the viscous terms through the mechanism of a

5. Numerical Applications vorticity generation in creating the Reynolds num-
ber-dependent stability boundaries. The combus-

To verify the validity of the theory and the tion into the domain, as identified by (0), leads

. .- . .
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ik~
tions 2 and 3. j r

k  d (61)

4. Finite Element Analysis As a result, frequencies of normal acoustic

modes and vortical oscillations can be obtained by
The use of finite elements in fluid mechanics taking the real parts of the eigenvalues of Eqs.

problems has increased significantly in recent (55,58), respectively. The vorticity growth con-
years [25]. Especially, finite elements offer stants can be obtained by taking the imaginary
greater flexibilities for the complex geometry parts of the eigenvalues of Eq. (58) (26-29]. How-
such as combustion chambers in the solid propel- ever, the imaginary parts of the eiqenvalues of Eq.
lant rocket motors. In this paper, finite ele- (55) are absent because the acoustic growth constants
ments are used in three parts, i.e., the eigenval- o not exist in the normal modes.
ue analysis in the classical acoustics and the os- The mean flow calculations are performed under
cillatory vortical field, calculations of mean ye- the assumption of a steady state, isothermal, in-
locity fields, and stability integrals, compressible flow. It follows, then, that the gov-

First of all, we return to a classical acous- erning equations of the mean flow are simplified as
tic problem characterized by Eqs. (24-25). Using follows:
Galerkin finite elements, Eq. (24) leads to

2 i = 0 (62)

(Pi kP )D d - 0 (53) 1 jjNii N N =t +o . W i (6 3 ) .

where 0 is the test function which is set equal where

to the trial function such that I I

Re We + e-t(64)
P(x) (x)P (54) eff  Re Ret

N i a i Na
With an assumption of incompressible flow, the

Eq. (53) can be solved by the finite element ei- K-E equations can be simplified as follows:
genvalue equation of the form

2~ - 1 K.) - +4 +. ) i
IAt - k" 

1 
OLE 0 (55) 1,i " ak , Ret ij j, i ,j

+ E= 0 (65)
-where k is the wave number from which the acous-
tic frequency wN may be determined, -_ .- + a 6uI , I Re ,t ), E" ReIt  K ( i~j j'li 1J

A ( 0 .0 , dQ (56) E2
" ,Ce E, 0 (66)

8r= tD 0 $d (57)

.i.. ( 8To solve these non-linear equations by Galer-

kin finite elements, the Newton-Raphson method is

Similarly, the vortical fluctuation Eq. (51) is used. In order *o reduce computational efforts,
cast in the form the Jacobian matrices for the flow field and the

K-c system are separated, which will then be updat-i ik Bik * ik
!Ai + 8  = a 0 (58) ed iteratively between the two Jacobian matrices.The Newton-Raphson scheme for the velocity field is

where k denotes the vortical wave number from given by
which the vortical frequency w N may be calculated. J AX (n+i) .f(n) (67)

pq q p

ik Aik A -1 where
A A i 1 (59) (n+l) (n) n+  (68)

A
I
k Aiki q q q

OLS21  0812j with
where (n)

ik Jpq j +, $_,st ik u J + k ¢k 30¢

+1 * + -~ A )d' (69)
ik

A k .i~" , k R eff ,j 5,j ik
2 (n) + 

v

"Aik 2 ~~~ = )j U''' lyd- j
., J ., J-,

+ ' . )d " u .n.: .
ik U 1' +: : ; ) . R e f 

' '  
v, : j I

+ 4-e u. " (70)k . (60) eeffu ,

O 8 =" ~ j ;-.jik
d

(60) eff IJ j
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ku- aa-/22 u.-u: .u: . - u: .u ." 0 (43))

kN  aRN, P - /P U -/a, a (yPot'U)
1/ 2  

+ 2 -7 . 0,I i(4

Substituting these relations and Eq. (31) to Eq. P 5 oT (44)
(34), collecting the first two terms of (A) and the

flow turning term, and rewrit ing in the same form In terms of the eddyviosity hypothesis [30], the
as Eq. (27), we obtain Reynolds stress - (uY)'uj can be expressed as

(k
2 

- k)E2 = +a -)-nd - (Ou.u- = - (45)
N k) N  ia N  (' N + O a--Z j et u i, j

+ i I (VPN)25'nd~ (36) where

N Re = poaL/ut (46)

It is seen that N1n is equivalent to M bSi in terms with ii being the eddy viscosity. The eddy viscos-

- of the notations used in [4]. Notice that Eq. (36) ity can be expressed as a function of turbulent
above is the same as Eq. (4.14) in [4] neglecting kinetic energy K and energy dissipation ; by the
the particle distribution of the two phase flow. Prandtl-Kolmogorov law

C (47)

3. Turbulent Mean Flow And Re t C

Fluctuation Vorticities where C is the empirical constant.

A glance at Eq. (33) with details given by The governing equations for K and £ are deriv-
Eqs. (34-35) indicates that the flow field, in- ed from the momentum equation (24] as
cluding the mean velocity and the vorticity to- 3K K
gether with the vortical component of the fluctu- " + C i Re K
ation velocity, as well as the acoustic pressure k 'J ,J
modes, must be calculated. To this end, we include
turbulent effects on the mean flow field, but at - . + C .)6 + PE - 0 (48)
this time, shock waves are excluded from considera- Ret ( iJ i' i,j

tion. Turbulent modelling for solid propellant rock- I
et motors has been the subject of controversy parti- 0 L-+ ouic . -E - .
cularly due to complex burning surface phenomena. at *i RetoC 'J 'J

Pending development of an adequate model in the fut- C 2

ure, we examine here the K-c model for a computatio- - , + i)uo+ 0-- (49)
nal purpose. Thus, the Reynolds decomposition becomes t

ui(x.'t) E 6 1(x) + ui(x,t) in which the following non-dimensional quantities

are ubed:Then, the time-averaged velocity is defined as

u. = ui]  (38) K - K/a, E = rL/a
3
, Ret  0 aL/u

and Furthermore, ok and o are the effective Prandtl-

= 0 (39) Schmidt numbers, and C 1 and C,. are the empirical
constants.

It follows that In addition to the turbulent mean flow, we re-
quire that the vortical component of the fluctua-

* 17. -61 + (Pu)'uJ (40) tion velocity and the fluctuation vorticity be cal-
I I I culated. In this regard, we set u. - U. + Eut,

where the bars, tildes and primes denote time-aver-
aged, mean, and fluctuating values, respectively. P-i, and t-I to obtain the fir order perturba -

Eqs. (37-40) refer to the time-averaged and fluc- tion momentum equation in the fc-m

tuating components of the scalar fields, P and T. u '
Substituting Eqs. (37-40) into Eqs. (1-4), + + ' (ui + 0u ) 

I

the time-averaged governing equations are written j u Re iIjj 3 j,
as follows: (50)

It follows from Eq. (17) and Eq. (50) that+- O . 0 (41)

.t , i u ' . + U . L (u , + 1 )

+ + uuu1JJ i.juj Re i .jj 3 j,Ji

7it I j - Ku 0 (51)

- -(6 - ) (42)
Re i,j'+ 3 ,ji The fluctuation vorticity is then calculated

- -f r o m

U(T) + [1 3T + (cui'T'i .from
t - (52)i -ijKUk j .

- . (1iP +u:P) .l
I , I in which the vortical component of the fluctuation

+. -1 ~ .. a.velocity u . is obtained as a consequence of Eq.
Re 3 , iuj,j iU j, ,j ,1J (S ). k

In the sequel, we discuss finite element so-
lutions to all of the equations presented in Sec-

,. .."" " " ,' ." " ""," "" ."'. "', "" ," ."-. " -. -' " ' ". ' ." -" " '" "" .''-.'- '-.".' "'." .' .. ,' .- '- '- ',



. . 13

constant c by equating the imaginary parts between +A (R)- p d - (+I) 2

Eqs. (27) and (29), n n N n
Fn

C , ft I ()n,+ (Y+ )U 
^P(n

E "Y [ i(j I  PN ,n
N I +L [

A) + ~~~k (U~ j i N,i 0 j i PN,i PNj jd

+ Y W [ . 3:)+1) + ( + un 7NB) _
k ^ I Nj.Ni j) F.

(B7- fk(PRe 1 P _n. + n)d."
:kRe Nji N,ij 3 jjN

N [G * + , j , n (C)

(C) + f {-.'i P _ (2y+l1)-iP
N, N N,i

1 (u0 - n+ I;,: ) (D)+ (j + uJ ,j PN,nif d

- -(UIPNjj N,i + u PNi +U i Nj N,ij
+ { i :2 _(2y+I)gIN N \:N

- i, N i N N,i, (E)
(D)

- - (I) + ( (U + :)')( .]P
k u]) ,j i j ,j N,i

(E) + (P P N.. P P .. dI] (34)
Wk2 e N,-ij N,ij +3 Njii Njj

:-._ (uY + u,)(I)+ ^,+ U').)(z (F)
kN j ( i i J]N,ij

H 2 N j1 Z (uui '' j)N,'j

+ Y W + )P N

k Re ,[,J , (OP N ii( )

(F)

(€)~ ~ n +_ ( ( () n ))dr

2 ) 2 '-' (RRe 3 uij ,i ; "()

,~~~~~~~ u .() ^ .R N ~ , + TuI()N u

i Nji N, (E)

(30)

where the superscripts (R) and (I) refer to the +ulU N,ij + u N,ij
real and the imaginary parts, respectively.

The normal velocity at the surface can be ex- y u()-N I 4(V-

pressed in terms of the admittance, A - A CR)+ i k Re i,j j,j Ni)
and the mean flow Mach number N such that iF)

u n (u
R ) 

+ u(I) )n. R AP N/ (31) 2Y(Y-l) 2 . (R) -

R + Re 3 u Iuj i

whereas the acoustic fluctuation velocity in the (J)
domain is given by

u= i (32) u ... ....)P N,}dQ] (35)kNT PN,i j ,a j,i N

For the purpose of investigating the coupling
mechanism of acoustic and hydrodynamic instabili-
ties, it is convenient to separate Eq. (30) into tegrals, designated as (8)

two parts : I C 1 O i n- d 7

* = 'A ~ (~) ~ ' k1  j N,iNa
"t = "A  + 'H " (33) ' N U P ' P ' n

where :tA and -x H refer to the acoustic and the hy- is seen to be identical to the three-diiensional

drodynamic contributions, respectively, equivalent of the one-dimensional flow turning
term which appeared in Culick 131. but %,hich did

CR)- f not arise in due course of mathematical deriva-
- A bM 1 lldF b  tions for the three-dimensional case (Culick, 41.

N [ b To reconstruct the present results in terms of the

same dimensions and notations as in [41, we set

;.::....-:. .......-.......................................... .... . .. ..... . ... ........ .
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r- ji (u i + Ui 1 (12) PN,ii + k2
l - 0 (24)

The boundary condition can be obtained from the mo- P = 0 (25)
mentum equation by constructing a dot product with N,ini

the normal vector, and EN is given by

-.P f (13) E2 P6

where Nu26
f (u + U) + Cu' + u ).

at i,j u; i uj j , i i At this point, an important remark is in or-

1 + der. A close examination of Eq. (23) reveals that
e + R-e + 3 U- + u') }]n (14) the domain integral on the right hand side of Eq.e I(23) contains the terms from the momentum equation

The oscillatory motions in both the acoustic which were differentiated once. Thus, these terms
and the vortical fields are modeled by must be integrated by parts to produce an acousticaceboundary condition. The resulting domain integral

P= Pe ikt (15) represents the functional space equivalent to the
mean flow characterized by the Navier-Stokes sys-

u= u.e ikt , u. u.ekt (16) tem. This implies that an additional integrationI i I i by parts must be carried out such that the familiar
e kt  (17) Neumann boundary conditions may be brought to the

surface. The boundary integrals arrived at in this

manner account for the stress and/or the pressure
where k is the complex dimensionless frequency giv- boundary conditions by means of velocity gradients.
en by Such Neumann boundary conditions stem from the con-

k ft w-i (18) vective and viscous terms.
In view of these requirements, the resulting

Here, the imaginary part ct is known as the growth expression upon integration by parts twice of Eq.
rate. (23) takes the form

Substituting Eqs. (15-18) into the wave equa- - iYk tu /;Nn dP +
tion, we arrive at the nonhomogeneous Helmholtz e- (k N - kN)EN  N NY
quat ion,

. 2, ' p()Ni d r - ik 'a P - ik (2y+l)

and the boundary condition, U dQ + y W + L,) +

4 '1n (2) t eNN,l fr I i
-P .n. . (20) [( + + W +

The nonhomogeneous terms h and f are given by P 
'  

I Jg

ik-i P + iky-. P Y[11u .^ ^ + P) N,I + {u(u " + u) + (u + u P i]dQ

_ .. _ Pr (Ni j I I . Nlj

> + -] + L. r(;(U; I- Re + , Pn,+ I (u, + 6-)+ (ui, j + u*, MuI,i +u l), R r N J ,j

I i , i Re I I r iiNii

(u. + 2iky(y-l) PNlnl]dI + i N,ij
S j u),jii Re t

I ( u* + ) +
+uu 3 1 j ,j N,ede + Re3 -- i ^' " j i f'" 

+  

+
"

- u. .(uY + ,) .] (21) , +

and , (2u)" ^" ^* .)E.(-., + u:), INd (7
f Y{iku i + '.(u + ) (u, + ui ,  J., + 2

1 I u) - (uj J ,J]In that

R-e [(ut ,j 3 I u (22) Squaring both sides of Eq. (18) and noting

Making use of the Green's function integral W -N - k (28
[231, it can be shown that

k - k)E 2 C + r (23) for "1 0, we obtain
(k
2 

- k)E 2- = .i2. kNJ +dF (23

kN -(29)

where the unperturbed mode shape PN and its fre- Since il << 2,k from the condition set by Eq.
T"quency It are determined from the classical acous- N

quecy re (28), it is now possible to solve for the growth

tic problem:



stability can be significant [7-13]. Although it -(U + ] u 0 (2)
can be argued that the hydrodynamic instability may Re i,jj 3 jji

not occur in high Reynolds numbers, the turbulent
shear layer instabilities have been found to be af- Energy

fected by various combinations of Strouhal numbers
and Reynolds numbers. The acoustic field may in- (, (T) -2y-J.L + (ou.T) . - u.P

teract with vortex motions known as the "feedback" 'y -t + , y I ,i

resulting in the votex generated sound (141. Some

studies [15,16] indicate that the vortices may un- + ( -u u -u..u.
dergo "clipping", a phenomenon corresponding to the Re T ' i ,.uii

vortex disruption. It is also possible that later- (3)
al periodic motion of the vortex street known as
"jitters" may lead to partial or complete escape of State

the vortices [15,16]. Whether these conditions P'(
prevail in large rocket motors in which flow sepa- - oT (4)

rations at interface restrictors or inhibitors are
likely to produce vortex motion must be clarified, where the commas denote partial derivatives, the
No simple models such as hyperbolic tangent velo- repeated indices imply summing. The following non-

city profile for the shear layer [11,17] and tem- dimensional quantities are used in the above equa-
poral or spatial growth theories [18,19] appear to tions:

be adequate for the interactions of acoustic and
vortical oscillations in a rocket chamber. u i - 0 P 0 F/0 o

In the previous papers (20-221, finite element .0
applications to the combustion instability analysis T =c p(y-I)T/a

2
, x i a I/L, t - at/L

were discussed. Although a rigorous mathematical

formulation of the stability integral was present- Re P aL/I p 7 /
ed, the mean flow calculations did not include tur-
bulent flows. Since the turbulent flow field is
involved in shear boundary layers and vortex mo- where the double bars denote dimensional quanti-

tions, it is intended that this subject be consid- ties.

ered in the mean flow calculations and subsequent- Interactions between acoustic and vortical s-

ly in the stability integral. Shock waves will not cillations can be Introduced by superimposing the

be included in the present paper. acoustic component upon the vortical component of

The numerical results for certain combinations the perturbed velocity in the form

of acoustic and vortical frequencies indicate that

stability boundaries for acoustics-coupled hydro- . +
dynamic oscillations are somewhat similar to the
classical hydrodynamic stability boundaries, but where the bars, primes, and asterisks indicate the
they occur in the form of multiple islands. The mean flow, the acoustic and vortical oscillations,

turbulent flow field appears to contribute toward respectively; and E represents the perturbation
instability, and this trend increases with larger parameter. On the other hand, the pressure and the
transition angles of the rocket motor cross-sec- density are given by
lion.

In what follows, pertinent governing equations P - I + EP' (6)

are presented, from which the expression for the P - I + EP (7)
growth constant coupling the acoustic and hydrody-
namic oscillations is derived in section 2. Subse- And, the vorticity field is given by
quently, the K-c turbulence model and calculations

of the vortical component of fluctuation velocities 'i + cC (8)
and the fluctuation vorticity are described in
section 3. It is also shown in section 4 that the a .FijkUk,j (9)
finite element is one of the most expeditious me-

thods of calculation. Numerical results via finite a . ' (c0)
elements are then displayed and pertinent discus- i jkkj
sions and conclusions are presented in sections 5 where r is the permutation symbol. In view of

and 6, respectively. ijk

Eqs. (1-10), it can be shown that the nonhomogen-
eous wave equation takes the following form:

2. Vorticity-Coupled Acoustic - _2 P_

Instability Integral P .ii - -, h (11)

The basic governing equations for compressible

viscous flow without particle distributions are re- where 115 '
presented as 4ollows: h- y + U - . (u' + U )

Continuity

+ (u . + u ml + [(u* + u:)
....+ (u.) 0 (I) i I

"Nomentrum + (u'+ u:) ..i + 2 3Moe unj J I jI Re )'t"

-T..uo-, -u u :
7 ;) + (Puiu). +-P 3 U +g j 'j U ju +

...............-
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APPENDIX 1

INTFRACTIONS OF UNSTEADY ACOUSTIC AND VORTICAL

OSCILLATIONS IN AXISYMMETRIC CYLINDRICAL CAVITY

T.J. Chung* and J.L. Sohn**
Department of Mechanical Engineering

The University of Alabama in Huntsville

Huntsville, Alabama

Abstract

A physical phenomenon of interactions between
the acoustic and vortical oscillations is examined a growth constant

herein. This subject is important in rocket motor C turbulent energy dissipation,

chambers when the vorticity field Is coupled with perturbation parameter

acoustic pressure oscillations. In the past, the Eijk permutation symbol

acoustic combustion instability was studied inde- a effective Prandtl-Schmidt number

pendently of the hydrodynamic instability induced D finite element interpolation function

by vortex motions and turbulent shear boundary lay- Ei vorticities
ers. However, it is quite conceivable that these p density
two distinctly different oscillations are coup]- y specific heat ratio
ed and interact together in the flow field of a so- li viscosity
lid propellant rocket motor. The present paper in- F boundary

troduces an analytical approach to resolving the f domain

seemingly complex phenomena of mutual interactions

between the acoustic and vortical oscillatory mo- Subscripts and Superscripts
tions. Toward this end, governing equations for acoustic fluctuation
all variables are constructed, and finite elements - vortical fluctuation
are applied to solye the governing equations. Com- * vortclfct
bustion instability integrals including the mean N normal mode
flow field, perturbed acoustic oscillations, and A acoustic field
oscillatory velocities and vortices are also derv- H hdodyic field
ed and calculated by finite elements. From the H hydrodynamic field

growth constants for acoustic and hydrodynamic con-
tributions, stability boundaries are determined in
terms of Reynolds numbers. The numerical results I. Introduction
indicate that an overall instability phenomenon re-
sults from certain combinations of acoustic and The flow field, such as occurs in solid pro-

vortical frequencies. It is also found that stabi- pellant rocket motors, offers a fertile ground for
lity boundaries for acoustics-coupled hydrodynamic fundamental research in fluid mechanics and heat

oscillations are somewhat similar to the classical transfer. Combustion induces not only the mean
hydrodynamic stability boundaries, but they occur flow field, but also acoustic pressure oscillations
in the form of multiple islands. The turbulent and possibly vortex fluctuations together with tur-
flow field appears to contribute toward instability bulent shear boundary layers. Furthermore, shock

and this trend increases with larger transition an- waves are commonplace in most instances. Obvious-
gles of the rocket motor cross-section. ly, a most rigorous analysis taking into account

all of these phenomena would be difficult, if not
Nomenclature impossible. However, with the advent of the elec-

tronic computer and the modern technology of numer-
A admittance at the burning surface ical methods, it has become feasible to resolve

a sonic velocity ( yPo/po ) hitherto unsolved problems.
c specific heat at constant pressure Despite difficulties in analytical and numeri-
p Pcal solutions to the complex physical phenomena in

L length of the combustion chamber a rocket motor chamber, many researchers have con-
k complex wave number (w-i) tributed to the advancement of analysis and design

. K turbulence kinetic energy of successful rocket motors. A large body of lit-

* M Mach number erature exists relative to this subject, the study
% P pressure of which has been pioneered by Crocco [1], Cantrell

Re Reynolds number (P aL/) and Hart [2], Culick [3,4], and others. Flandro
T temperature and Jacobs [5], among others, have noted that vor-

t time tex shedding may lead to an instability in solid
u. velocities propellant rocket motors. It is quite possible
x i  spatial coordinates that high speed mean flows also affect the stabili-

ty [6] significantly.
'Professor The basic mathematical formulations of combus-

*,'-Graduate Research Assistant tion instability were contributed by Culick [3,4].

This research was supported by AFOSR 83-0084 with Recently, it has been observed in both full-scale

Dr. Leonard Caveny as technical monitor. firings and cold flow simulations that interac-
tions of acoustic and hydrodynamical (vortical) in-

Copy righi ©) Amerlesn Insitute of Aeronanilks endAsironaultis, Inc., 19U. All rights reerved.
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turbation compared to the first order. Further details are presented in Ref-
erence [181 or Appendix 3.
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* SECTION 4

UNSTEADY RESPONSE OF BRNING SURFACE IN

SOLID PROPELLANT COMBUSTION

4.1 Summary

The response function as related to the combustion of solid propellants
has been studied by numerous investigators. Some of the review articles in-
clude Culick [1] on homogeneous propellants [2-61 and Cohen 181 on heterogen-
eous propellants [9-141. Both of them are limited to one-dimensional and
quasi-steady situations. In recent years, some works toward non-steady prob-
lems have been attempted [15-17]. The majority of the discussions of response
functions in the literature are concerned with pressure-coupling usually appli-
cable in the linear stability. Computations of the response function for velo-
city-coupling important in a nonlihear process, however, remain in a state of
infancy, although some initial attempts toward this subject have been made 116,
18].

As noted by Flandro [161, the velocity-coupling may be accommodated by
second order perturbations of multi-dimensional gas/solid governing equations.
This approach deviates drastically from the one-dimensional analysis which has
been adopted for nearly three decades. With modern computers and various tools
of numerical analysis available, however, it seems possible to relax many un-
desira'ble restrictions. Observations indicate that combustion oscillations
are time-dependent and often nonlinear as influenced by turbulent flowfields,
which may lead to erosive burning and unstable oscillations. Unfortunately,
however, a computational tool for the most exact analysis of complicated phys-
ical phenomena such as these, even if developed, will not fit into the current-
ly available computer. Thus, naturally, some approximations and simplifica-
tions must still be introduced to any theoretical formulations conducive tor
numerical analysis.

With this in mind, some additional materials and reassessments concern-
ing the multi-dimensional calculations of combustion response functions are
presented herein as an extension to the previous paper [171. The influence
of heterogeneity, surface roughness, particulate matter, or turbulence will
not be considered at this time. We include the effect of radiation, adopt a
simple, premixed, single-step laminar flame, expand the solid-gas governing
equations into first and second order perturbations, and finally perform ei-
genvalue analyses. Complicated boundary conditions at the solid-gas inter-
face and flame edges are imposed ideally by means of Lagrange multipliers
together with finite elements. Calculations are carried out for various in-
cident angles of Impressed pressure waves at the flame edge boundaries [16].

Computed results show that the natural frequencies are clustered around
low frequency range (w<10). Spatial distributions of field variables cor-
responding to the computed frequencies indicate that the oscillatory behav-
ior is pronounced at upstream and gradually diminishes toward downstream. Re-
sponse functions oscillate in the axial direction with peaks occurring at the
midstream, but diminishing toward flame edges for both first and second or-
der perturbations. It is also shown that two-dimensional response functions
are multi-peaked and may become negative as energy sinks. Finally, it is
seen that the effect of radiation is more pronounced in the second order per-

...................7.... . . .
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* . Ai EUDIX 2...........- - 2

PARTICLE DAXPING EFFECTS
ON COMBUSTtjN INSTABILITY

T. J. Chung*, and S. C. Chan**
Department of Mechanical Engineering

The University of Alabama in Huntsville
Huntsville, AL 35899

-.- Abstract 1. Introduction

The paper discusses the formulation and solu- The study of acoustic energy losses due to
tion strategies to analyze combustion instability aluminum particles in the solid propellant rocket
due to aluminum particle distributions in the solid motor combustion chamber has been carried out by
propellant rocket motor chambers. Specifically, the a number of investigators. Epstein and Charhart [III
finite element method is utilized in order to ac- studied the absorption of sound in suspensions of

commodate complicated geometries and boundary condi- non-interacting inert spherical particles and uni-
tions. To demonstrate the validity , one dimension-! 'form temperatures. The validity of this investiga-
al results are first compared with those of analyti-, ton was subsequently substantiated by other re-
cal solutions. A similar process is then extended searchers[2-4]. In a rocket motor, the particles
to handle two-dimensional problems. !are neither spherical nor inert and subjected to

nonuniform temperature distributions [5].
Nomenclature

I Despite the extensive research on the subject
a speed of sound of acoustic energy dissipation due to particle damp-
C specific heat of particle ing in the rocket motor [5-10], calculations of the

,C specific heat of gas at constant pressure,' stability integral arising from particle damping
p v volume 'are limited to simple one-dimensional cases.

S CpC specific heat of mixture at constant pres-
sure, volume i Thus, the purpose of the present study is to

d particle diameter demonstrate the feasibility of mathematical formula-
e total energy of gas tions and numerical calculations via finite elements.
e total energy of particle Furthermore, interactions of particle damping with
Fp drag force fluid viscosity and heat transfer are included. It
k wave number is shown that additional boundary and domain terms
n vector normal to surface arise from integrating by parts "twice" of the

mean pressure Green function stability integral containing the
p acoustic pressure momentum equation. A simple example problem is
Pr Prandtl number solved for comparison with the analytical solution.
R gas constant
T temperature of gas 2. Governing Equations
T temperature of particle
r radial coordinate Conservation i; s for the mass, momentum, and

gas velocity energy in the two-phase flow of the gas/particle mix-
up particle velocity ture are written as follows (5]:
Wp particle mass rate of flow i
z axial coordinate Continuity (gas)
." agrawth rate
" - ratio of particle density to gas density
Y specific heat ratio of gas g + (Pgu) = wp (1)

y specific heat ratio of mixture --- "
total density

10g'0 p density of gas, particle Continuity (particle)
a tangential coordinate

Cratio R/Cv
W frequency 0 +atio Rp(2
K thermal conductivity at p

viscosity constant
Ir finite element interpolation function Momentum
*vorticity vector

, Td dynamic relaxation time

*t  thermal relaxation time0 + u )i+Vp=S
t (OgU ± lpPP) + g P Pi Pj -i

Energy

Professor of Mechanical Engineering t - + p + V +
* Craduate Student + V ( )

This research was supported by the Air Force Office'
of Scientific Research.
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where Wp is the particle mass rate of flow and where

S = W[V2u + -V (7 -u)] (5) -C [ + (u V)6Tp + ('sup 7)T](19)1 Q -p t - p -p

Vq (C) (R) (6) with C being the specific heat of the particle.
2 u uSubstituting (18) into (11) gives

2 auj U 1  2u1 i (7)
"11 4 ( uj-a pg(Cv + BC) + Og (C + P3C) (u .V)T + p

7
. u

with q(C) and q(R) being the conduction heat flux = Q + ¢ + Y (20)
and radiation heat flux, respectively.

Combining (1), (2) and (3), we obtain where Cv is the specific heat of gas at constant
volume and

39

g 1 + 0g(U .7)u + vp = Fp + a + S (8) Y 6Q + (e - e)w + (u - u)T - u
p~p p ~P - ~- P

-u S (21)where

F HTo obtain the wave equation we make use of
-P + at P -'P

1  
the perfect gas law

= (up - U)wp (10) p gRT (22)

Combining (1), (2), and (4) leads to which is substituted into (20). We then differ-

entiate (20) with respect to time and substitute
;T from the spatial derivative of (17). Denote thegCv - t 

+ 
0gCv(U '7)T + pV'u -

M 

Q + (V + Qp
g g v - p specific heats of the mixture at constant volume

- u S + (ep - e)wp + (u - u)Fp + u • (11) and constant pressure, respectively, as

C, + 3C C + C
where Cv i - , '

+p + B

Qp CPT + (u V)T (12) it then follows that the gas constant for the mix-

= P + _P T ture takes the form

Now let us denote that -C - C = R
p v i+

u = u + .u (13)
--P Substituting (22) and (1) into (20) yields

Tp = T + FT p (14) 3- + (l+ )p V u + (u .V)p = (Q + ¢ + Z) (23)

at

In view of (13) we rewrite (9) in the form
where W R/C

F 7 - -+ (1~ "7) ui + 6F (15) Z , Y + (l+3)C 12
--- P p - P Z Y. +vP+)C

* - whore whereu Now the time derivative of (23) and spatial der-

F= + (u V) u t (U• V) (16) vative of (17) are written, respectively, as fol-
-P p It -P -P lows:

Substituting (15) into (8) yields 2 Op•at + (1+0) -- V" u + P "- (V" u)

SU+ + ((u "7)u + TP = H + S (17) + (.. 't ~ ~+ - (u'V) p - (Q + 1 + Z) (24)

)t ) )

whereP (7t u) + -(u "*;)u + V
2

P

g + = p =v • H + " S + B (25)

H F + where
- -p

Similarly B H+B - "'-• ( 'P+ H + S)

-p - + (u ")T I + Q (18)
O ........

.... .... ... .... .... ....... .... ...
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Substituting (25) into (24) gives and

(Q' , Z , ') - (Q,$,2)eiakt (34)Z •u -, V2p (4

3t- 5 [-where k is the wave number defined as

S + s+ + BI + (u.7)p =C -L(Q++z) (26) k ( (35)
;t t 3a

Substituting (33) into (27) and (31), respectively,

For linear stability, we introduce the per- we obtain
turbation expansion of 0(s) as follows: 2 + k = (36a)

u = u + (u' + u*) n. = -3 (36b)

, + The natural modes and frequencies corresponding

to (36) are determined from
_+ EP

e e + -e' , w = w + Cw' = 0 (37a)n.=7, =0Q+(37b)
n ^ v = 0

+ (' + ;) , = Z + EZ' - N (37b)

H = H + c(H' + H*) By means of the Green's function integral
and using (35) - (37), it can be shown that

Nk2 
= -k2  ( 1 NYd2 + JNdr) (38)

where the bar, astrisk, and prime denote the mean
flow, acoustic fluctuation, and vortical fluctua- where
tion, respectively.

2

i"-" EN  ~ (39)
•.Now, collecting the terms of O(C), we haveN N

1i k
f  

kcY - •-
p' _-_L - h (27) 

=  
(-7) + i T-N

a t
2 =

where - p [ V 2(u'.' + .A - U. * T

h = - o '2(u'u') + V2(u.u*) - "+ u'x)] + V.S' + V'H' - iC (Q'+''+Z')(40)

+ -u. (Vp) + 7-H' + 7.S' - - - + .n . (
a ;t

From the definition given by (35) and (38) and
"--- (Q'+'+z') (28) equating the imaginary parts it follows that the
a it growth rate a takes the form

* where

2=..RT P - " (29) p = + (42)a2 . YT = = (29) =
P = (where ,, p is the growth rate due to particle damp-

ing and q. refers to the growth rate due to acous-

Z'= (+ Ce'w + e w') - PCwT'W + 5Q' (30) tic and vortical oscillations of the gas alone,
p P p p p

The nonhomogeneous wave equation (27) is subject p+ §S)(). Nd,
to the boundary condition of the form N -

n-,p' =-f (31) +r(' 'z) '1(3

wheure and

,.""f= F [ -+5"" + :,~*+ vau-u' + ii,', ,g i-F.I.. 5a?'f(u' +0*)) pN,4 ') .. ndf

r --r (uu * .(R ) "ndr- ,uu +. 11U. ON+ a"u (2.'*.a

- xr* +4\x + u'x,')" 1 - H'n-S' . (32) + ' d I- N -

N. u 1!.
To remove the time dependent terms, we introduce r r

exponential oscillations of the form - (2+l)J .'.)';Nd -J .uid'

iakt..-. p- e 3 " -3 , (,,,* ) )0 d

u' u'c
i
n
k t  (33b) r

• (330kJ u '+G )(l) ')p:d 1 (44)

u* . .:* 
i k

.c .N . .
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where (I) and (R) indicate imaginary and real where T and T are the dynamic and thermal relax-
parts, respectively. ation tmes, respectively,

0d2
Note that, in arriving at the stability inte- Td (55)• " 180 .

trals, it is necessary to perform integration by d 'J
|*. parts "twice" on all terms associated with T Q PrT

the convection, viscous, and drag forces originated t c d(6
from the momentum equation as the wave equation we
was obtained by first differentiating the with 0 - density of the condensed material and
momentum equation. This will allow appropriate and d = average diameter of the particles.
Neumann boundary conditions appearing on the
boundary surfaces. A glance at (43) and (44), To determine the effect of viscous and heat

however, reveals that only the first integration transfer losses arising from (48) and (49) we write

by parts was performed on all terms other than (b) -1 -

the convective terms arising from the momentum a = 2(' '  
dII.(57a)

equations. The remaining terms are yet to be P N "N

integrated by parts "one more time" when their 0
forms of derivatives are explicitly shown. assuming an incompressible one-dimensional flow,

we arrive at an analytical solution,
3. Evaluations of Particle Damping Stability Inte-gral e(b)= ___2

gra W()2 f [1 + I(57b)

3.1 Approximate Analytical Solution d Pr

The analytical integraion of t43) is not pos-
We now return to (43) and examine (16) for sible and it is our approach to provide numerical

perturbation quantities. The viscous drag integration via finite elements. In what follows
forces are we outline the detailed procedure. I.

H' = 6F' + £' (45) 3.2 Finite Element Formulation
. -'p

where The finite element formulation for the stabil-
- [ C' ) - ity integral due to gas oscillations alone given

f!F' = - 0 - ') + 7)6' + W'.V)Up by (44) was reported in [11). Thus, our emphasis
-p p -P - P ~ in this paper is concentrated on the stability

integral representing only the particle damping as
- (us .7)' - (G'.V)u] (46) shown by (43).

""' = u - u)w' + (u' - G')w (47) Substituting (45) - (52) into (43), we obtain
- -p - p -p - p

Similarly, =a + + + + (58)

=i = [V2'a + 31V(7 • )] (48) p pH zpS pQ p pZ

where

The linear viscous losses due to conduction = a np - ) (n(u)(V. --+
heat transfer are contributed from Q', pH NE k N pV,"!p-p "N p

"Q'=.VT (49) "
- (49)~- (n" u)(G"7)nN- n ') N)dr

The heat transfer interaction energy Z' is given by -. . .

Z ' Y , + a+Q (50) u (u .V).V Nk - f pU;? V N .p '_' P

where

,. Y =(l+?)(S'w + e ') - £C(T' - T'w- S"'.u - u"(''V) 'N - G'('V)'VpN~ - (U- u)W' N ..

p p p p -

- • u' (51) (' - ')p d
-p - p'N

,Q' = -,C p[iak(T' - i') + (u. V)T' + (u' .V)T r1-. .()

-aO p pu - 6') Pd] (59)

(u .V)T' - (u''.')TI (52) P ( - /

Rctaining only 
t
F' of (45), *'Q' in (30) we re- A =- 'N

write (43) in the form kP N

- [ C ;l Q'~'0 d 31 ) + - (n . (*)).

N.- k p N p N 3 N

from w hich a simple formula mv be d ,rived for a- [(u,C+u) , +
1 ineirized one-,imnsional problem [5], k N(.0 .T t "

C) 1 ," 'NT N
(54)

p 2 - + ), + ! l+7 7)

1+1~ 'N p N• .-"-" -" ." ." .-- -. -. -. -"-"-i- -" -;-" -.-'. Z " -', -" ."- .. " -. '..- .'-. .-- ..- .. .
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."

A = d- (Vi '8 d 2 (61) The stability integral x is simplified to

CiCi)
= ! W . + 6_ Vu p '

P 2E- 3 x-

'. 4l + a* kIi

3('+u) ( 6)+ CakNP (16 . (67)2 -x Ix.

rep' JIn terms of the dynamic and thermal relaxation

"pZ E2 l )'w -+C(Te-T' times, we obtain-N PPP P

1 + +I5Vd i ^ N (68)(-u + S*u) pC~ ~(pp1+ l dakCT' T') + (u .V) ' u' -u' = ( . Ir) -- i P

p -p p pak
(I)

+ (&;.V)TP (u'V)T' -Nd. (63) 1 + iiT - 1) (yRP6
T' I' + (W+GT) 6N (69)

pt yoR
where the superscript (I) denotes the imaginary
part. Note that the boundary terms in tpH' ',IpS, The classical acoustic modes PN are of the
and tpQ have appeared in addition to numerous form
other terms representing the viscous forces and
thermal dissipation interacting with particles. (kz)cos(m)Jm(k r) (70)
Otherwise, the results are the same as in Culick[51. PN = co sm )mkmn

To evaluate numerically these integrals, we with
introduce three-dimensional isoparametric finite w
elements. Any variable X may be interpolated as

2 
2

(71)
x X (64) k =k +in

where m = 0, 1, 2, . . . , k -- with
where , is the interpolation function with rt de- k Lnotng he lobl nde umbr2. = 0, 1, 2, . . . and k are the roots of the

derivative of Bessel function J (knr) such that

The procedure for the solution of eigenvalues 
m

and eigenvectors for both acoustic and vortical [J(kr)] - 0, at r - R (72)
. motions are presented in (11]. Once the natural dr mmn
-" modes and frequencies of acoustic and vortical

motions are determined, then the final form of Substituting (68) - (72) into (67) yields
the stability integral assumes the form 2

- / J ilL1 p =-21---+ - - 1
y

- 
.[ VPN

A= F()d + G()d7= F(,)ddq p N f+d

(+ _ PNlrdrdgdz (73)+ r )_ (,,o.,.d,,d¢ (65) ep 1+(',1t 2 l N + - - P

Numerical analyses have been carried out with
These integrals are then converted to Gaussian the following assumptions: C. = 0.2, C(.f-l)/C =1
quadrature of the form ps/ = 1, CPr/C,=I, Pr/(y-l) = 1. These ass~mp-

m tions yield Td = 2 /18 and Tt=d 2 /12. The results
Wi) of calculations based on (54) and (73) for the first
W ,rI) axial mode with various frequencies (w - 300,800,

i=l j=l 1,800 liz) are shown in Fig. 2. Note here that the
trend toward decrease in stability with a decrease

m m m
+ .[i- w c j . i)(66) in frequencies is evident for both one and two-

L Z . i~j k i, U dimensional geometries. However, the one-dimension-
i=l i=1 k=l al calculation overestimates (Fig.3) tl- stability _

(particle damping) at higher frequencies (,=l,800liz).
whore W. represents the weights and d, rk - The ranges for optimum diameters for the two-dimen-
note abscissa of the Gaussian quadrature . sional cylindrical system (3 microns for c) =1,800 Hz;4 microns for .. 800 liz; 6 micro:,; for ;.: = 300 Hz)

4. Example Problcms are still maint;ined almost the same as in the one-
dimensional approximations.

To demonstrate the vliditv of the procedure,
we in'o tder a circular cylinder prohlem (Fig. 1) ., Referring to lig. 4 for the first axial and
that th results may be compared with, the ,mnlyti- taingcmitia[ modes, (he trends are significantly dif-
cal solution piven by (54). fer, nt from those of the axial mode. The two-dimen-

si-n.I cylindrical system is more stable than tho
one-dimen,;ional svstcm (Fig.3) for all frequencies.
Aith .li the ranges of optimum dia'meters remain ap-
,rnximat.lv the same as in the case of the axial

mode, th, r,, is an indication that they shift toward

--. . . . . . . . . .
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(a) One-dircns ioiial rodel
I (14 elements, 15 nodes)
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Fig. 1 Finite element models
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geometry
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Fig. 4 Growth constants vs particle dianetor:; for first
axial and tangential mode for cylindrical geometry
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APPENDIX 3

UNSTEADY RESPONSE OF BURNING SURFACE
IN SOLID PROPELLANT COMBUSTION

T.J. Chung* and P.K. Kim**

Department of Mechanical Engineering
The University of Alabama in Huntsville

Huntsville, Alabama

Abstract P pressure

Pr Prandtl number
This paper is an update to the earlier paper q(R) radiative heat flux vector

concerning the multi-dimensional calculations of

combustion response functions. Our ultimate goal r burning rate

is aimed at obtaining more precise information on R gas constant

combustion responses of heterogeneous solid propel- Re dimensionless distance (Eq. 16)

lants subjected to arbitrary cavity flow fields, Re Reynolds number

i.e., pressure- and velocity-coupling with turbu- Re real part of complex variable (Eqs. 33,34)

lent flames and possible effects of radiation. t time

This paper is a first step toward such a goal. If T temperature

multi-dimensional flow fields are allowed, the u gas velocity parallel to the flame surface

combustion responses can no longer be determined u gas velocity vector

i a closed form, but they would require computer- uc axial core velocity (Eq. 16)

i7-d numerical analyses for a large system of e- v gas velocity normal to the flame surface

quations as a result of first and second order V radiation volumetric element (Eq. A-8)

perturbations. All excited frequencies are calcu- w reaction rate

lated by means of eigenvalue analyses, and the x coordinate parallel to the burning surface

combustion response functions corresponding to y coordinate normal to burning surface

these frequencies are determined. For simplicity, z trldiffusivity
the calculations are limited to homogeneous pro- a er. (3)

pellants and laminar flames. Effects of radiation, Eq. (3)

incident angles of impressed pressure waves, and 6 constant exponent (Eq. A-6)

velocity-coupling by means of the second order perturbation parameter

perturbation have been shown. AEq. (7) 
A eigenvalue

X1 solid phase eigen function (Eq. B-17)

A Lagrange multiplier
Nomenclature qr dimensionless radiation source function

(Eq. A-9)
a, mean local speed of sound n pressure index

A radiation boundary area (Eq. A-8) Eq. (A-14)

Ab admittance at burning surface P mass density
B frequency factor T optical depth

c specific heat at constant pressure for gas 0 angle between normal vectbr to the surface

E
p  

activation energy (Eq. A-8)
f fuel mass fraction P finite element interpolation function

F dimensional frequency e wave incidence angle

response function X eigen vector

h heat of combustion per unit mass of fuel frequency

11 radiation function (Eq. A-B)

I radiation intensityI raiaton itenltySubscript and Superscript

k gas thermal conductivity

K dimensionless wave number * dimensional quantity

flame length ij vector quantity
I. li1tent heat of vaporization, radiation o mean or constant value

mean free path s solid phase

mass flux o, flame edge

Mb Mach number at burning surface w radiative surface wall
n constant exponent (Eq. 3, A-6), direction nIy finite element global node number

,osine (0) zeroth order perturbation
con uction to radiation parameter (Eq. 5) (I) first order perturbation

(2) second order perturbation
SP r e'sor -
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I. Introduction 2. Governing Equations

The response function as related to the com- The combustion of solid propellants is approx-
bustion of solid propellants has been studied by imated by the Arrhenius law and a one-step forward
numerous investigators. Some of the review arti- chemical reaction. The flame of erosive burning
cles include Culick [1] on homogeneous propellants is assumed to be a premixed laminar deflagration
[2-6i and Cohen [8] on heterogeneous propellants with a single species (fuel) [15,16].
[9-14]. Both of them are limited to one-dimen- The basic governing equations of the gas phase
sional and quasi-steady situations. In recent are composed of continuity, momentum, energy, ape-
years, some works toward non-steady problems have cies, and state. To non-dimensionalize these equa-
been attempted [15-171. The majority of the dis- tions, we proceed as follows. Define the flame
cussions of response functions in the literature length as
are concerned with pressure-coupling usually ap- = *()
plicable in the linear stability. Computations of o p o
the response function for velocity-coupling impor- where * denotes dimensional quantities, subscript
tant in a non-linear process, however, remain in a o indicates imensval intes, kubsrip
state of infancy, although some initial attempts thermal conductivity, Pl is the density, c is the
toward this subject have been made [19]. p

As noted by Flandro [16], the velocity-coup- specific heat at constant pressure, and v is the

ling may be accommodated by second-order pertur- gas speed normal to the surface.

bations of multi-dimensional gas/solid governing Introduce, then, the following dimensionless

equations. This approach deviates drastically quantities:

from the one-dimensional analysis which has been 0 "*/0 p - P*/P* , T- */*
adopted for nearly three decades. With modern 0 0 0

*V -0 tv*z x0 X*1*
computers and various tools of numerical analy- u= 0 , t =t
sis available, however, it seems possible to relax * h - h*/c*T* E E*/RT (2)
many undesirable restrictions. Observations indi- Mb 0 p
cate that combustion oscillations are time-depen-
dent and often non-linear as influenced by turbu- where P is the pressure, T is the temperature, u is

lent flow fields, which may lead to erosive burn- the mean flow velocity, t is the time, x is the
ing nd nstbleoscllatons Unortnatly, length, subscript i denotes vector quantity, Mb ising and unstable oscillations. Unfortunately, the Mach number at the burning surface, a is the

however, a computational tool for the most exact

analysis of complicated physical phenomena such as speed of sound (a -P/o with Y = c*/c*), c is
these, even if developed, will not fit into the the specific heat at constant volume, hpisvhe I eat
currently available computer. Thus, naturally, of combustion per unit mass of fuel, subscript - .1
some approximations and simplifications must still denotes the flame edge, E is the activation energy,
be introduced to any theoretical formulations con- and R is the gas constant. From these, the govern-
ducive to numerical analysis. ing equations for the gas phase are non-dimension-

With this in mind, some additional materials alized and the explicit forms are represented as in
and reassessmen 9 concerning the multi-dimensional Appendix A (Eqs. A-1 through A-6). The dimension-
calculations of -ombustion response functions are less reaction rate explicitly involved in the equa-
presented herein as an extension to the previous tions of energy and species conservation is expres-
paper [17]. The influence of heterogeneity, sur- sed as in Eq. (A-6). Note that the dimensionless
face roughness, particulate matter, or turbulence frequency factor B is given by
will not be considered at this time. We include B*k*T*3 *n 0*
the effect of radiation, adopt a simple, premixed, B o with B - (3)
single-step laminar flame, expand the solid-gas m,

2
CW 0W 8 _o

governing equations into first and second order p
perturbations, and finally perform eigenvalue where 3 is the ratio of solid to gas density, n is
analyses. Complicated boundary conditions at the the constant exponent, m is the mass flux, W' is
solid-gas interface and flame edges are imposed i- the molecular weight of gas, z is the oxidizer-fuel
deally by means of Lagrange multipliers together ratio, is the constant exponent and f is the fuel
with finite elements. Calculations are carried
out for various incident angles of impressed pres- mass fraction It is noted that Eq. (A-5) is valid
sure waves at the flame edge boundaries [161. under the assumption that the perfect gas law for

sure~~~h wavesnc atat thhfaeodeloudris[1]
Computed results show that the natural fre- the reference state holds,

quencies are clustered around low frequency range P* - 0 RT* (4)
( ,<IO). Spatial distributions of field variables 0 0 0

corresponding to the computed frequencies indicate The burning of solid propellants involves ra-
that the oscillatory behavior is pronounced at up- diative heat transfer to some extent as the combus-
stream and gradually diminishes toward downstream. tion chamber is an emitting, absorbing, and scat-
Response functions oscillate in the axial direction tering media. It may be assumed that the boundary
with peaks occurring at the midstream, but dimin- surfaces are gray and diffuse. Thus, the energy
ishing toward flame edges for both first and second equation is given by
order perturbations. It is also shown that two-di- T"
mensional response functions are multi-peaked and of- + (u'.)T] -. _. - T + - (T
may become negative as energy sinks. Finally, it Y it N

is seen that the effect of radiation is more pro- -
nounced in the second order perturbation compared - 4-r H) - wh 0 (5)

to the first order. where is the albedo, N is the conduction-to-radi-
ation parameter, H is the radiation function, and
n is the dimensionless radiation source function,

.A
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as defined in Eqs. (A-7) through (A-9). Zeroth-Order System
For the solid phase, we assume that the mean All perturbation solutions begin with the ze-

burning rate is constant and the mean surface re- roth-order system, which is one-dimensional and
gression is given by

r P * (6) steady-state. Thus, we have

0 0 S (6) Continuity

where the subscript s indicates the solid phase. (a)v(a)
These and other variables are related as follows: = 1 (17)

T T*/T* r= r*/v* , y y * 0CpV/k Energy
s S0 0 p 0 0(0) 2 T(0)

t * * *
2  

*dT dT W()h (18)t =t 0 0c p vo/ ° 0 A k*c*/k*C s(p)o s Y7

The dimensionless energy equation for the solid Species

phase takes the form as in Eq. (A-10). (0) 2 (0)
Conversion of solid to gas at the solid-gas d -() (19)

interface may be governed by an Arrhenius law for dy dy
the dimensional mass flux Reaction Rate

,* Em sB 
5
e (8) (0) ~j~ 2 ET'

w(O) 1 l-T 2 ~eT (20)
with E = E /RT being the dimensionless surface T (0 e

activa2ion energy. The dimensionless mass, momen- Stste
tum, and energy balances across the 

interface are

given in AppendixiA-11 through A-13L (°)T
( °) 

= 1 (21)

Solid Phase
3. Perturbation Expansion d2T(0) dT(0)

As proposed by Flandro [16], the perturbation -- y
2  - r(d) --y2

expansion of all variables up to and including the
second-order would enable the velocity-coupling, as where r(

°
) - e Ts)with E E/RT*

well as the pressure-coupling, to be adequately mo- s
deled. (23)

P 1 + 2p(1) + Cp(2) + (9) Solving (17) through (22) analytically results

0 (0) + EQ(1) + E20(2) + .(0) P(0) .-T1" (24)
(
0
) 

+ Eu
( 1 ) 

+ E 2
( 2 ) 

+ ... (10) = T(
)  

(25)

T (a) +T(i) u E2(2) +(1

T T ( + tTO' + E2T (2) + (12) f(o) . I (lT(0)) (26)
(0) M 2f(2)

+f + E + (13) T(a) .( -s - )ey/ A + T (27)

T() cl) +E2T (2) s(14) T T

S 9 S S and the velocity distribution is given by (16).

For simplicity, we may investigate an effect The temperature boundary conditions for the gas

of an impressed pressure wave approaching the sur- phase are obtained as follows:

face at arbitrary incidence given by at the flame edge (y-.)

P - 1 + ce tt[cosK(x* + x*)cosO + cosKysin0 T(() - i (28)
0

2-it (0)+ E2e [cosK(x* + x*)cose + cosKysine] +... aT() 020 (1)a 0 (29)
(15)

where K is the dimensionless wave number (K - at the solid-gas interface

2
'F/aovo), w is the dimensionless frequency (w - (a) (a) T (30)

2 TF/v*
2
), t is the thermal diffusivity, F is the T + T - s

dimens~onless frequency in Hertz, is the arbi- dT(0) dT(O) T -T
trary incidence angle, and x* is the antinode. It ( (+ L) -- L
is also proposed [16] that aosimple analytical mo- )dy + +
del for the mean flow streamline in the vicinity of
the surface be given by Note that the temperature is continuous but its

uc(1 - e-y/Rc)i + vj (16) gradient is discontinuous at the interface.

Perturbation Systems
where u, represents the axial core velocity, and Rc

is the imensionless distance from the surface. Perturbation expansions are performed by sub-

stituting Eqs.(9-14) into the governing equations

using the following pertirbe.d variables and Taylor

• ;, ." ~-:Li ;, :. ' : -....... I.: -----: . / '..-.: -.? ' -:,- . ,.
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series expansion about the origin for the reaction
rate and radiative terms. X= [p, uBi, T3, fB, H ] (36)

(p(1), (0, u() T() f (0, TM)) In this formulation, the governing equations (Eqs.
B-i through B-8) are used for the first order sys-

(P () ( () f('))e'Wt (31) tem and Eqs. C-] through C-8 are used for the se-

cond order system. Note that the pressure degree
(2) (2) (Z) (2) (2) (2) of freedom is excluded from computational processes

(P *r U , T , f T T
s through the equation of state. All boundary condi-

(2) -(2) -(2) j(2) j(2) i2wt tions (Eqs. B-10 through B-22 for the first order
system; Eqs. C-10 through C-25 for the second order

The results are listed in Eqs. (B-1 through B-9). system) are cast in the form of the boundary matrix

The boundary conditions corresponding to these equation,
perturbation equations include the flame edge (y=-),
solid-gas interface (y-

0
), and the location deep in rn br (37)

the solid (y---) . At the flame edge, the mass
fraction must vanish (Eq. B-10), and the impressed where r-l,2,. ..m, m being the total number of bound-
pressure wave, together with the equation of state ary conditions (m=5 in this case). Introducing the
(Eq. 5), will be specified. The temperature bound- concept of Lagrange multipliers Xr and minimization
ary condition (Eq. B-12) arises from the assumption of variational principles, we now arrive at the
that the flow is isentropic at the flame edge. On finite element matrix equations with all boundary
the other hand, the mass flux fractions of the fuel conditions properly imposed.
and oxidizer at the solid-gas interface are assumed
to be fixed by the composition of the propellants [BX
(Eq. B-15). It also follows from Eq. (A-13) and 

+ 
B ,(38)

Eq. (B-9) that the temperature boundary conditions qr 0 b
at the solid-gas interface take an explicit form Lr]
as shown in Eq. (B-16). Furthermore, as a conse-
quence of mass and momentum balances across the in- This represents a system of complex characteristic

terface, we arrive at the velocity boundary condi- equations lending itself to eigenvalue problems.
tions (Eqs. B-20, 8-21). For the location deep in
the solid (y--.), the temperature assumes a cons- -uA + Brl qr 0(
tant, independent of time, as defined in Eq. (B-2). - 0 (39)

The second order perturbation system and the qr0

corresponding boundary conditions can be derived
in a similar manner, and the results are listed in
Eq. C-I through C-9 and Eq. C-I0 through C-25, These expressions (Eq. 38 and Eq. 39), of course,
respectively, represent either the first or the second order per-

Finally, the response functions for the first turbation system. Explicit forms of these equa-
and second order systems are calculated from tions are shown in Ref. [17]. Complex eigenvalues

and eigenvectors can be calculated from Eq. (39).
(i) However, the system given by Eq. (38) represents

F +e( b + ) (33) forced oscillations with F and br serving as fore-
r (0)/IP 0) ing functions. Thus, the ctual amplitudes corre-

sponding to each eigenvalue (natural frequency)
and can then be calculated from Eq. (38). From this

(:) information, it is now possible to determine the

F Re( + ) ) (34) response functions corresponding to the first and
.p ~ ~) /second order perturbation systems. Finite element

equations are summarized in Appendices D, E, and F.
whPre andA denote the admittance of the
first and second order systems, respectively. 5. Discussions

Additional calculations beyond the previous
4. Finite Element Calculations paper [17] are carried out. In particular, first

order eigenvalue solutions and amplitudes corre-
Fig. I shows the domain of study of the flame sponding to each of the natural frequencies are

zone (f y ) with the boundary conditions to be presented. The eigenvalue calculations for the
specified at the flame edge (y-1) and at the solid- second order perturbation system are not included
interface (y-O). The solid phase (O',y-_) is e- at this time, although the amplitudes for the se-
liminated from the calculation by providing the cond order system corresponding to arbitrarily se-
solid-interface boundary conditions. lected frequencies are computed. The computation-

The finite element equations, by means of i- al domain is as shown in Fig. 1, and the various
soparametric four-node linear elements, are con- -onstants used are as follows: E-1O, E =4, L-O.I5
structed in the form -

(i.A7 + B )X - F. (35) s0.75, k
-
1, Y-1.27, x*=O, uc-l, Rc.lO, Pr-l.O.

The results of the eigenvalue analysis, as

shown in Fig. 2, represent 135 frequencies (corre-
where X_ denotes the solution vector consisting of sponding to all variables over 135 finite element
nodal values of the density, velocity, temperature, nodes). Note that most of these frequencies are
mass fraction, and radiation function, i.e., clustered around a low frequency range ('10.0)

with peaks occurring at approximately w-10- and
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10
- 3

. This trend appears to be true for both rad- The following conclusions are summarized:
iative and non-radiative cases, although cluster-
ing peaks occur at slightly different frequencies. (a) Most of the natural frequencies are clus-

As reported earlier [17], the spatial distri- tered around low frequency range (w<10.0).
butions of variables corresponding to the comput- (1) Spatial distributions of field variables
ed frequencies indicate that the oscillatory be-

havior is pronounced at upstream and gradually di- corresponding to the computed frequencies
minishes toward downstream, indicate that the oscillatory behavior is

Spatial distributions of the calculated re- pronounced at upstream and gradually di-

sponse functions for the first and second order minishes toward downstream.

systems are shown, respectively, in Figs. 3 and 4 (c) Response functions oscillate in the axial
(u=1.83, 1=0.50, N=0.1, 9=T/2 and Mb=O.01). Al- direction with peaks occurring at mid-
though it is premature to make any reasonable as- stream, but diminishing toward flame ed-
sessments, response functions tend to oscillate in ges for both first and second order per-
the axial direction with peaks occurring at mid- turbations.
stream but diminishing toward flame edges. This (d) Two-dimensional response functions are
trend appears to hold true for both first and se-
cond order perturbations. It is certain that this multi-peaked and may become negative as
phenomenon is due to the presence of mean flow. energy sinks.

Fig. 5 shows the frequency dependence of re- (e) The effect of radiation is more pronounc-
sponse function for the first and second order ed in the second order perturbation com-
systems at location M. It is clear that two-di- pared to the first order.
mensional response functions are multi-peaked and (f) Response functions are smallest at a nor-
mayb m a a smal wave incidence and increase toward
The notion of energy sink in connection with nega- parae toithe ac

tive response functions was suggested by Flandro parallel to the surface.

[16], and this may perhaps be possible for an os-
cillatory system. The effect of radiation is more
pronounced for the second order perturbation com-
pared to the first order. In general, damping ap- 1. Culick, F.E.C., "A Review of Calculations for
pears to prevail at low frequencies for the first Unsteady Burning of a Solid Propellant',
order system. This trend is reversed for high AIAA J., Vol. 7, No. 12, Dec. 1968, pp. 2241-
frequencies. Large negative peaks develop for the 2255.
second order system due to radiation at very low
and very high frequencies, with intermediate ran- 2. Grad, H., "Resonanic Burning in Rocket Motors",
ges being subdued. Commun. in Pure AppI. Math. 2, Mar. 1949,

Effects of albedoes on response functions are pp. 79-102.
shown in Fig. 6. It is clear that response func-
tions increase with a decrease of albedoes for the
first order response, whereas this trend is not stability: Acoustic Interaction with a Burn-

obvious for the second order response. On the o- ing Propellant Surface", J. Chem. Phys., 30,

ther hand, for low frequencies, this behavior is Sept. 1959, pp. 1501-1514.

reversed for the case of the first order response 4. Cheng, Sin-I, "Unstable Combustion in Solid
(Fig. 7). Somewhat erratic behavior is observed Propellant Rocket Motors", in 8th Symposium
for the second order response, although it in- on Combustion, Williams and Wilkins, 1962,
creases negatively with a decrease of albedoes. pp. 81-96.

In Fig. 8, a directional dependency of res-
ponse functions for the first order perturbation 5. Denison, M.R. and Baum, E., "A Simplified Mo-

system (at location M) is shown in polar coordi- del of Unstable Burning on Solid Propel-

nates. As the incidence angle increases counter- lants", ARS J. 31, Aug. 1961, pp. 1112-1122.

clockwise, response functions decrease exponential- 6. Beckstead, M.W. and Price, E.W., "Non-acoustic
ly to the minimum at &=-7/2, and start to increase Combustion Instability", AIAA J., Vol. 5,
again in the second quadrant. It may be reasoned No. 11, Nov. 1967, pp. 1989-1996.
that the wave incidence parallel to the burning 7. Williams, F.A., "Response of a Burning Solid to
surface may enhance the combustion response as op- Small Amplitude Pressure Oscillations", .
posed to the case of normal incidence. Further-
more, L'e influence of incidence directed upstream of Applied Phys., Vol. 33, No. 1962, p. 3151

appears to be stronger than the incidences direct- 8. Cohen, N.S., "Response Function Theories that
ed downstream. Similar trends prevail for the Account for Size Distribution Effects - A
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Model for Effect of Solid Heterogeneity on
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Vol. 14, Jan. 1968, pp. 97-118.
Eigenvalue solutions to the first order pertur- 10. Law, C.K. and Williams, F.A., "A Theory for the

bation system associated with rocket propellant Influence of Solid Heterogeneity on L* In-
combustion have been carried out. Based on this stability", Combustion Science and Technolo-
Information, amplitudes of field variables in the gy, Vol. 6, Feb. 1973, pp. 335-345.
flame zone are determined and response functions
for selected frequencies are computed for both "A Model of Soli ant Cbion

first and second order perturbation systems.
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Appendix A - Governing Equations Momentum

(Gas Phase) iwo°
(  + 0 ( °) (u(  V)u( 1

) + o(
) (P.V)u(O)

Continuity 1 (-):. + (u(+)1uVj).V -u( r[ +P

'- + V( u) 0 (A-i) +-

Mmnm+ ±V(V.u))] = 0 (B-2)
Momentum 3

P[ t- + (u-V)u] + VP - Pr[V
2u Energy

+3vVu)] - 0 (A-2) iwo T + 0 (u )V)T + 0 Cu)

+ V(~u (0 ((A-2)-i) 2''

+ C()(u().*7)T(
O
) - iw Y-P - 72'T

c )
Energy~ '

-T + u-)T] P - 7
2
T + Vq + VqR) - h - 0 (B-3)

[y t -Yq(R) -CR)

- wh - 0 (A-3) Species Conservation

(o)iW ) (a)( (a) -C) (0) -W' C(0)
Species Conservation iwO

(  (  
+ (i(u

(
)
)  + 

(u  
V)f

.f - + (u-V)f] -2f + W 0 (A-4) + -(u(O).V+ -

(1-4)
State 

(B-4)

State

P - OT (A-5) -(,) .(o)-() ^ ) ((0)
P - T T (B-5)

Reaction Rate Reaction Rate

p n n EE(T ) 2C() .()
w - BzT C-)nf e (A-6) ,Ci) (a)[ E - -T(0)2 (0)- 2-O)

Radi tie eatTranser T f6J

Radiative Heat Transfer (B-6)

- 4~* 1 )C7 Radiative Heat Transfer-q (R) = -N" 
(T  

- H )(A-7)

H- 2e dV+ J Te cosdA (A-B) CR) [4(T()) (1) 1 () 1] (B-7)

, +.A w -(') - j- [4()(T()) (
H V - H ( A - )I +- e R

"-r w ^T ]s dA (A-8)8 "

+1. 4() e-

(Solid Phase) Hd-

"Energy Solid Phase Energy

B aT T ^(o) aT) i (O)
-K V

2
T 0 (A-10) 8 (1) +-r a r s

y s it s a--y + a-y

(Solid-Gas Interface) - 72Ti
(
) - ( (B-9)

Mass Balance s ,
(2) Boundary Conditions

m - Or ov (A-11) Fiame Edge (yO)

3t - r )+ (A-12) (o) 6-1)

1 )T T +(0)( () 4 ) ( a)
( ) - (L + -rL (A-13) 0+

* * cosK~x + x )cosO + cosKk sine (B-Il)

LcT* k/k (A-14) T-0

Appendix B - First Order Perturbation System ^0) - i + -(-13)

u .- T) - 0iKx *cs
(i) Governing Equations Mb

-. "_____-C'

Continuity v(() - - - sinKk*sin6 (B-14)

• 
(  

+ 7(()u(i) + (1)u M)) - 0 (B-i)

%: - -. - -, -.
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Solid-Gas Interface (y-0) Energy
__( ) i2 (o)j(2) + (O)[(u().7v) 2  

+ (u2) .V)T(l)

.'.-. L] + ((2).V)T(O )( + iw (IY ()
".'-.~T -. _ H__ )(-1)z[u(O V)i(l) + (G(l).V)T(n)]

aT() 
+) 

+ A - BV(2)( 
-7)T + 12w y j(2) V2(2)

;R + v - 0 (C-3)

( iE EsL E
• +-L s + -s - s A .Species Conservation
"-"+ B ~~(B-16) i2wpf0)(2) + Hu

where X -L I ((2 +(1C)12a)-71hr z- + (1+4iB)11 2] (B-1,) + (u ').)f 0I + i (,) (1)

.A - -(0 (-18)) )+ ( 2)

T + 2 ,(u( 'V)f( - V2f (2) + w ) - 0
B - - (B-19) (C-4)

E (a) State
i -s ( + au [COS * j(2) ()i(2) + (,)-() (2)T(a)Tu [ a ; + + l + 2 Y (C-5)

* + x*)cose + sin6] (B-20) Reaction Rate

+ {[(E + 1) (i(s) +
( 2 )  

. w(0){ )2+ ( 2i (2)
()-. +((T( )

2  
TTo

+ + +  ( +
E T- (2)1 + (a)

-(..A i0 + n x [-.~~}cosK(x* + 2 -- ((') )2 +2)
To + a+070

+ x*)cose + sine] (B-21) i(2) -( (2)

(0)-.(1) -(0) (0) f 2---+( )+".)( I+T ++ -0T + =cosK(x + x*)cosO + sine T f( ) f(o)

4(B-22) + 2P(1)[-2 T-+ 2 f + ET

Deep in Solid (y---) (0) 7T) T(°))2

0 (B-23) f() ET(l)

a -2 )[21(' + 2 + 0)2-0a-) x j -x) 7) (()

-O3r (B-24)___ -- () E~
-- , E+2 f(0) [2 (O ()

Appendix C - Second Order Perturbation System + 2 [2
( ) - 2 -+- 2 + 2

(1) Governing Equations (C-6)

Continuity Radiative Heat Transfer-- i2c. ) + V((°)(2) + (a)u.(a) ^(2) l- (o)) 3(2) ()2

V..(2) + + Vq (R) - Q [4( T( ) T + 6(T
( o

) (j( ))2

-(2)(R (N ~2
+ p u )- 0 (C-i) 2) 1H (C-7)

Momen tum
2wo(O)u(2) + o(O) (0) )(2) + 1) H4(1_j2)(o))3 -(2) + 6(T( '))(

12wup ()u[40 )(T T

+(]~ + ( ) T- dV (C-8)

+ p ')(u(°.)u17 )  + .)u 1,

+ p )(u( ) )u( + 1 - 7 (2) Solid Phase Energy+- ((u V (2) 1) -0()

PrV2u(2)- + .1 12) a 0 -

3~~7u) 0 (C-2) y
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E( E s -0

I,. 39, s(r2 , )

(2) Boundary Condition -o( 1C + nu + 
l T =T 2

+ 
2y -3 8 T

Flame Edge (yre)

s() TT
f w ~(C-10) +nnl +I (= 4) )2r

()T )() + ( , )T ()(oo) + 0()(o)T(°)(o) (C-23)

cosK(x* + x*)cosO + cosKi*sine (C-11) (o)'(2) Y O)(1)-(i) + (a) ()
o + +. + + + +

y ( s y a * (C-12) - cosK(x* + x*)cose + sine (C-24)

Y Wa y 0

( ) - sinK(x + x*)cos (C-13) Deep in the Solid

S b s 0 (1 (-) - 0 (c-25)
()i siK*iE)(-4

ai(2 bai2)

Solid-Gas Interface (y-O) ax (C-6)

f (1 )++ )+ + +
+ - y - s(0 -+ Appendix V

a(y )+  A ( -) Finite Element Equations of First Order System
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j(2)+ T(1)+)2 (1) Governing Equations
-# + C ] (C-15) Continuity
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A l E E Momentum
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(iWbx+ H +i TH L - (iOtB + PT-)
D - -- (C-18)

-R ( H(I) -0 (D-3)
EE C BB

G- (s ') + 2n T
Ta Species
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0  
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T )s + (2) Boundary Conditions
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2  2Flame Edge
+sine] (C-20)
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1  0 (D-6)
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2
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B ) =- (D-10) Momentum

=.". ( l2)

-( +)where t+ 5;;)u(i (E ;7B 2() +

whEnerg

(2)(2

3 Y (D-11) + F T + )FB FC (E-2)
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3y.
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Appendix E -

Finite Element Equations of Second Order System Gl cosK(x* + x*)cose + cosK2*sine (E-17)
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Continuity
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Solid-Gas Interface b . - f(l + 6V 2 ) i n (E-41)I ~ ~~~~ ~ 2C________ ~ i 2 1
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