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islands. The effect of turbulent flow on stability boundaries 1s to expand their size and
to move toward lower vortical frequencies, with large bay areas indicating stable regions
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A rigorous formulation of the governing equations for particle damping involved in in-

teractions of acoustic oscillations with vortical oscillations is derived. Simple examples
of two-dimensional axisymmetric geometries are solved and compared with one-dimensional ap-
; proximations. Tt is shown that there 1s a trend toward decreases in stability with a de-
[ crease in frequencies. However, the one-dimensional calculation overestimates the stability
at higher frequencies. The optimum ranges of diameters for stability, however, are approxi-
; mately the same in both cylindrical and one-dimensional geometries.
. Based on the first and second order perturbation eigenvalue analyses of the flame zone,
) significant new results have been obtained. Calculations are based on impressed pressure
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Fluctuations of all field variables in the second order perturbation are relatively lar-
ger than those in the first order. Two-dimensional response functions are multi-peaked
over all wave frequency ranges, and they also become negative as energy sinks. The combined
effect of radiation and wave frequency upon response functions is significant at downstream
for the first order system, whereas the effect observed at upstream and midstream is more
pronounced in the second order perturbation as compared to the first order. Furthermore,
the radiative heat transfer and the wave incidence angle are likely to influence the re-
sponse functions along the parallel direction, as well as normal to the burning surface.
Most important of all, the velocity coupled responses are exhibited in the second order
perturbation as a nonlinear behavior.
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SECTION I

RESEARCH OBJECTIVES

1.1 Overall Objectives

The subject of combustion instability in solid propellant rocket motors
has been studied by many investigators for the past thirty years. Today, stable
motors are designed routinely and there seems to be little apparent concern .
over combustion instability. Looking into the history of the developmental pro-
cess, however, one finds that more than half of all the motors developed have
been found unstable. If new designs for more powerful motors are proposed, a
prediction as to stability would be difficult unless trial and error procedures )
are repeated with costly experiments. A
The current practice for the prediction of combustion Instability is based b
on crude approximations. In most of the design calculations, one-dimensional 1
analyses are predominatitly used. Seldom are the mean flow calculations per- i}
4

formed using the most modern technology - computational fluid dynamics. In the

cavity of the solid propellant rocket motor are the extremely complicated fluid y
mechanics problems - compressible viscous flow, vortex shedding, turbulent bound- "
ary layers, particle damping (two phase flow), etc. In addition, oscillatory
motions are prevalent, with acoustic and hydrodynamic wave oscillations coupled
toegther. The boundary conditions for this flowfield are the unsteady respons-
es~of "the flame zone distribution of field variables (velocity, pressure, den-
sity, temperature, and fuel fractions). The system may be linearly or nonlin-
early unstable. Steep-fronted waves, erosive burning, and high amplitude re-
sponses as related to the velocity-coupling are the recent subjects of interest
which are not fully understood. It is clear that the motor consists of both
flame zone and cavity, and that these two regions should not be separated in
the analysis. Obviously, this is beyond the current state of the art; but it
is toward this goal that our overall objective must be intended.

Analytical or numerical models should be developed such that future high
performance motors are designed using the computerized procedure. These models
must be based on adequate multi-dimensional governing equations and numerical
methods. The results should also be verified by experimental measurements.

The final product should then be facilitated by an interactive computer graph-
ics system displaying, for example, computed waterfall data from which suitable 1
design decisions can be made.
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1.2 Specific Objectives

2

The overall objective stated above represents our ultimate goal. The re-
search performed during the two year period consists of (1) mean flow calcula-
tions and interactions of unsteady acoustic and vortical oscillations in an
axisymmetric cylindrical cavity, (2) particle damping effects on combustion in-
stability, and (3) unsteady response of the burning surface in solid propellant
combustion.

It is anticipated that these investigations will contribute to the founda-
tions on which further advancements can be made in the future.
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SECTION 2

MEAN FLOW CALCULATIONS AND INTERACTIONS OF UNSTEADY
ACOUSTIC AND VORTICAL OSCILLATIONS IN
AXISYMMETRIC CYLINDRICAL CAVITY

2.1 Summary

The flowfield, such as occurs in solid propellant rocket motors, offers a
fertile ground for fundamental research in fluid mechanics and heat transfer.
Combustion induces not only the mean flowfield, but also acoustic pressure os-
cillations and possibly vortex fluctuations together with turbulent shear
boundary layers. Furthermore, shock waves are commonplace in most instances.
Obviously, a most rigorous analysis taking into account all of these phenomena
would be difficult, if not impossible. However, with the advent of the elec-
tronic computer and the modern technology of numerical methods, it has become
feasible to resolve hitherto unsolved problems.

Despite difficulties in analytical and numerical solutions to the complex
physical phenomena in a rocket motor chamber, many researchers have contributed
to the advancement of analysis and design of sueccessful rocket motors. A large
body of literature exists relative to this subject, the study of which has been
ploneered by Crocco [1], Cantrell and Hart [2], Culick [3,4], and others.
Flandro and Jacobs [5], among others, have noted that vortex shedding may lead
to an instability in solid propellant rocket motors. It is quite possible
that high speed mean flows also affect the stability [6] significantly.

The basic mathematical formulations of combustion instability were con-
tributed by Culick [3,4]. Recently, it has been observed in both full-scale
firings and cold flow simulations that interactions of acoustic and hydrodynam-
ical (vortical) instability can be significant [7-13]. Although it can be ar-
gued that the hydrodynamic instability may not occur in high Reynolds numbers,
the turbulent shear layer instabilities have been found to be affected by vari-
ous combinations of Strouhal numbers and Reynolds numbers. The acoustic field
may interact with vortex motions knewn as the ''feedback' resulting in the vor-
tex generated sound [14]. Some studies [15,16] indicate that the vortices may
undergo "clipping', a phenomenon corresponding to the vortex disruption. It
is also possible that lateral periodic motion of the vortex street known as
"jitters" may lead to partial or complete escape of the vortices [15,16]. Whe-
ther these conditions prevail in large rocket motors in which flow separations
at Interface restrictors or inhibitors are likely to produce vortex motion
must be clarified. No simple models, such as hyperbolic tangent velocity pro-
file for the shear layer [11,17] and temporal or spatial growth theories [18,
19], appear to be adequate for the interactions of acoustic and vortical os-
cillations in a rocket chamber.

In the previous papers [20-22], finite element applications to the com-
bustion instability analysis were discussed. Although a rigorous mathematical
formulation of the stability integral was presented, the mean flow calcula-
tions did not include turbulent flows. Since the turbulent flowfield is in-
volved in shear boundary layers and vortex motions, it is intended that this
subject be considered in the mean flow calculations and, subsequently, in the
stability integral. Shock waves will not be included in the present report.
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The numerical results for certain combinations of acoustic and vortical -
frequencies indicate that stability boundaries for acousties-coupled hydro- -
dynamic oscillations are somewhat similar to the classical hydrodynamic sta-
bility boundaries, but they occur in the form of multiple islands. The tur-
bulent flowfield appears to contribute toward instability, and this trend in-
creases with larger transition angles of the rocket motor cross-section. De-
tails of mathematical formulations, numerical calculations, and example prob-
lems are presented in Reference [23] or Appendix 1.
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SECTION 3

PARTICLE DAMPING EFFECTS ON COMBUSTION INSTABILITY

3.1 Summary

The study of acoustic energy losses due to aluminum particles in the so-
1lid propellant rocket motor combustion chamber has been carried out by a num-
ber of investigators. Epstein and Charhart [1] studied the absorption of sound
in suspensions of non-interacting inert spherical particles and uniform temp-
eratures. The validity of this investigation was subsequently substantiated
by other researchers [2-4]. 1In a rocket motor, the particles are neither spher-
ical nor inert and subjected to nonuniform temperature distributions [5].

Despite the extensive research on the subject of acoustic energy dissipa-
tion due to particle damping in the rocket motor [5-10], calculations of the
stability integral arising from particle damping are limited to simple one-di-
mensional cases.

Thus, the purpose of the present study 1s to demonstrate the feasibility
of mathematical formulations and numerical calculations via finite elements.
Furthermore, interactions of particle damping with fluid viscosity and heat
transfer are included. It is shown that additional boundary and domain terms
arise from integrating by parts "twice" of the Green function stability inte-
gral containing the momentum equation.

Simple example problems of two-dimensional axisymmetric geometries are
solved and compared with one-dimensional approximations. It is shown that
there is a trend toward decrease in stability with a decrease in frequencies.
However, the one-dimensional calculation overestimates the stability at high-
er frequencies. The optimum ranges of diameters for stability, however, are
approximately the same in both cylindrical and one-dimensional geometries.

For the first axial and tangential modes, however, the trends are significant-
ly different from those of the axial mode. The two-dimensional cylindrical
system is more stable than the one-dimensional system for all frequencies.
There is an indication that optimum particle diameters shift toward larger
sizes as the frequencies decrease. For further details, see Reference [13]

or Appendix 2.
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Fig. 1 Axisymmetric cylindrical geometry of a
solid propeliant rocket motor and finite element
modeling with various transition angles: 8=14°,
20°, 34°(48 linear isoparametric elements, 63
global nodes)
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Fig. 2 Patterns of mean flow fields, (a) laminar
flow, (b) turbulent flow, Re=10?, 8=14°
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to the gain of energy, increasing with frequency.
It is interesting to note that the trend of convec-
tion into domain (E) is opposite from the behavior
of the surface convection. Note that energy is
lost due to convection into the domain at a low
frequency, but it gains at a higher frequency, con-
trary to the case of surface convection. This
trend appears to be the result of the turbulent
mean flow field.

Acoustics-coupled vorticity instability growth
constants (a,) versus vortical frequencies for the
laminar flow, with w, = 2553 Hz, Re=10%, 8=14°, are
shown in Fig. 5. In view of negligible positive
growth constants, it is concluded that the system
does not appear to be unstable. |If turbulent flow
is considered, however, several unstable motions at
low frequenciés are observed (Fig. 6). As the
transition angle increases to 6=20°, the system
gradually turns to instability at higher frequenc-
ies for laminar flow (Fig. 7). Such instability
appears to occur at a lower frequency if turbulent
flow is considered (Fig. 8). These trends are more
pronounced as the transition angle is increased to
8=34°, To compare these observations with the case
of a low acoustic frequency combination, the result
of w, = 34 Hz is investigated (Fig. 11). it is
clear that, for a small transition angie (B=14°),
positive growth constants increase in magnitude
significantly, not only at low frequencies, but al-
so at high frequencies in contrast to the case of
high acoustic frequency, wy = 2553 Hz, as shown in
Fig. 6.

The foregoing discussions on acoustics-coupled
vortical instability lead us to a critical point of
re~-examination of the present theory. It is as-
serted that there exists a combination of any a-
coustic frequency with any other vortical frequency
which may produce a certain state of stable or un-
stable motion. It is possible that not al!l combin-
ations of acoustic and vortical freguencies theore-
tically postulated may be excited. |In fact, only a
Vimited number of combinations would be considered
significant in practice. To determine whether any
of the combinations of acoustic and vortical fre-
quencies are excited, one may resort to the plots
of both acoustic and vortical modes of all possible
combinations, the process of which can easily be
automated by means of computer graphics. Such an
effort is currently under progress. As a result of
this analysis, it is possible to construct stabili-
ty boundaries similar to those via solutions of the
Orr-Sommerfeld equation. It is seen that for wy, =
2553 Hz, O=14°, the stability boundaries for acous-
tic-vorticity interactions with various vortical
frequencies versus Reynolds numbers exhibit multi-
ple islands as shown in Fig. 12 for the laminar
flow. If turbulent flow is considered, however,
the stability boundaries expand significantly in
size, and move toward lower vortical frequencies.
It is shown that the critical Reynolds number ap-
pears to be around 400~500. The most interesting
aspect of the multiple~island stability boundaries
is that large bay areas, which indicate stable re-
gions, exist for certain combinations of vortical
frequencies and Reynolds numbers. The trends ob-
served herein are based on the limited number of
data reductions. It is anticipated that more con-
clusive observations will be made available, pend-
ing additional computer graphics data reductions.
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6. Conclusions

There are several major findings in this work.

They are summarized as follows:

(1) A consistent derivation of stability inte-
grals for the growth constants associated with
acoustic and vortical oscillations leads to var~
ious terms which have appeared for the first
time. As a special case, the flow turning term
arises as a consequence of integrations by parts
twice of the convective terms.

(2) The K-€ turbulence mode! appears to provide
reasonable flow fields consistent with the tran-
sition angles of a circular cross-section, which
are used in the calculation of growth constants.

(3) The convection into domain at a low fre-
quency leads to the loss of energy, a trend re-
versed at a higher frequency resulting in the
gain of energy. This phenomenon is contrary to
the case of surface convection, which Is consid-
ered to be the effect of the turbulent mean flow
field.

(4) Unstable motions at low frequencies appear
ta be the result of turbulent flow, Increasing
in maghitude for larger transition angles.

(5) There exists a combination of any acoustic
frequency with any other vortical frequency
which may produce a certain state of stable or
unstable motion. Excitations of such frequenc-
ies may not be assured for all combinations.

(6) sStability boundaries similar to those as
calculated by the Orr-Sommerfeld equation are
constructed for a given acoustic frequency, re-
sulting in multiple islands.

(7) The effect of turbulent flow on stability
boundaries is to expand their sizes and to move
toward lower vortical frequencies, with large
bay areas indicating stable regions for certain
combinations of vortical frequencies and Rey-
nolds numbers.
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Similar'v, for the K-: system, we have formulations presented in the previous sections, a
typical solid propellant rocket motor with an axi-
36 35 (n) (n+1) (n) symmetric cylindrical geometry has been analyzed.
ety w as, Sy As shown in Fig. 1, 48 linear isoparametric ele-
3K, TEE g ments with 63 global nodes are chosen to model! the
. = - cavity geometry. Transition angles for the cross-
JTQ }Tu AT T section of the motor are varied 6=14°, 20°, 34°.
T TN 8 o Various constants used in this analysis in-
2 3 clude the following:
(71) Admittance, AM = 10.0 applied normal to the -
where burning surface for the region designated by a -
38 : through ¢ (Fig. 1) j
?R% = j;(ﬁq@s'i¢yay’i *Re oo @ ) 8 J)dQ (72) Empirical constants in turbulent mean flow :
2 o tk C =0.09 h
3s u | ]
e I R (73) o = 1.0 g
T8 2 o = 1.208 -
T X 8 2
3 SONSEURY C =0.6 K
F2 5
___ -l
* Re 0 (oa.j¢3 * °a®8.j)®Y.jEY}dQ (74 Reynolds number, Re = 10%, 10°, 10° 1
The results of mean flow calculations are :
i shown in Figs. 2-4. In general, turbulent velo- :
= - {OQ¢YKY®B J¢ﬂ nj city profiles are steeper in the vicinity of the ;
2 I wall, and flatter in the core region of the com- i
1 o 5K 0 K)o bustion chamber than laminar velocity profiles.
+ — . + . . These variations are caused by the shear stresses :
Ret“c R YR which are increased by the turbulent effects [29], -
C a similar trend as the turbulent pipe flow [30]. 4
-l e e 0.0 B.+O . However, it should be noted that the recirculation .
Ret 28y, Yt n,jni n,i ni which would occur near downstream, is greatly sup- -
ressed.since the admittance is applied normal to °
the burning surface, contrary to the usual en- .
* ZC '1®B¢YEY}dQ (75) trance boundary condition of a pipe flow in which K
and the boundary velocity is applied parallel to the .
. 1 axis. Separation and recirculation flows appear
S, * J {¢1°8 .KSQYUY. * R o ¢a j¢B 'KB in both the laminar and the turbulent cases as the 4
w1 R J tk +J transition angles are increased. B8ut, in a turbu- y
1 ve B0 @ o ) “ent flow, they appear only at a rela;ively large 4
v SUn . LU sU_ . transition angle since an increase of shear o
Re, a8, Bi Ty, jryi Y.l stresses with turbulence near the wall overcomes §
] & the effect of adverse pressure gradients. 2
+ buﬁbgﬁ}dﬂ - I e X j"jQer (76) Typical results for the growth constants, -]
r Ttk based on the turbulent mean flow, are shown in 4
table 1, listing contributions of various terms in 4
T a2 {28 KS .« 00 the stabllity integrals for the acoustic frequen- ‘
1 b 88°y,jY nYni cies (w = 34 Hz, U76 Hz) in combination with the .
) b K e b K)O vortlcal frequency w = 24 Hz for Reynolds number =
+ — . . L€ Resl0?, and transition angle €=14°, Note that the "
Retdc njas nBRTYL Y so~called pressure coupligg and velocity coupling :
defined as the surface combustion, designated as o
+C .)@BFB Wy }da I R I € K¢ Lar an (A), provide a significant source of acoustic in-
) J stability (aA = 15.458) for wy * 34 Hz, whereas -
Simultaneous iterative solutions of Eqs. (67, for a ﬁigher acoustic frequency (u, = 476 Hz), the K
71) provide the turbulent mean flow field. To- acoustic growth constant assumes v, = -34.255, an X
gether with the eigenvalue analyses for the acous- lndlcatlo? of'stfong stabfllty. The flow turning -
tic field of Eq. (53) and the oscillatory vortical effect Wh:Ch is included in Sh? surfafe.convec- R
field given by Eq. (58), the turbulent mean flow tion, designated as (B?' exhibits a ?|m|lar.trend h
calculations will then provide necessary informa- as the surface combustion, but less in Tagnltude. -4
tion for the calculation of growth constants by for th? Reynolds nuTber a"f the transition angle J
means of Eqs. (33-35). The stability integrals as '"V?St'?ated (Be?|°.‘ '=!“ ?' the effect of vis- P
dictated by €qs. (34-35) can be performed ideally cosity 1s neglc?|bl§ as indicated by (), (F), and o
by the Gaussian quadrature approximations [25]. (G?. However, it u.ll_bc‘Fgund in the.latgr anal- p
ysis that there is a significant contribution -
from the viscous terms through the mechanism of a r
5. Numerical Applications vorticity generatiQn in creating the Reynolds num- g
ber-dependent stability boundaries. The combus- L
To verify the validity of the theory and the tion into the domain, as identified by (D), leads j

a'aa‘a’a

.- T e - A - ‘- - - - - - - = o - - ~
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tions 2 and 3.

4. Finite Element Analysis

The use of finite elements in fluid mechanics
problems has increased significantly in recent
years [25). Especially, finite elements offer
greater flexibilities for the complex geometry
such as combustion chambers in the solid propel~
lant rocket motors. In this paper, finite ele-
ments are used in three parts, i.e., the eigenval-
ue analysis in the classical acoustics and the os-
cillatory vortical field, calculations of mean ve-
locity fields, and stability integrals.

First of all, we return to a classical acous-
tic problem characterized by Eqs. (24-25). Using
Galerkin finite elements, Eq. (24) leads to

2 =
j;(PN,ii + kNPN)oadQ 0 (53)

where @1 is the test function which is set equal

to the trial function such that
PN(xi) = @q(xi)PNa (54)

Eq. (53) can be solved by the finite element ei-
genvalue equation of the form

he gt = 0 (5)

where k., is the wave number from which the acous-
tic frequency wy may be determined,

A= jg %, %490 (56)

Bq = Jé 8 9gd0 (57)

Similarly, the vortical fluctuation Eq. (51) is
cast in the form

(aik , ik | roiky

1A + B g - KC gl =0 (58)

where k denotes the vortical wave number from
which the vortical frequency &N may be calculated.

ik ik
A A
Tk . aB af
= 11
Ag=i 12 (59)
ik ik
A A
al,, GB“_J
where
ik - ; F Ty 4 - ~
1y, J;(°“°B.J’YUYJ * tﬂ%ov.luh)dh

ik = ——
A1812 jw'x'Eev,quzdl

atk j > 4.8 T du

xlﬁzl - n el Y1

I O T R R
iy, t o, YY) tS Yez T2

ik . C g
Blg - J; Lt (60)

ik )
cuﬁ = I(, ‘:rtQBéide (61)

As a result, frequencies of normal acoustic
modes and vortical oscillations can be obtained by
taking the real parts of the eigenvalues of Eqs.
(55,58), respectively. The vorticity growth con-
stants can be obtained by taking the imaginary
parts of the eigenvalues of Eq. (58) [26-29]. How-
ever, the imaginary parts of the eigenvalues of Eg.
(55) are absent because the acoustic growth constants
do not exist in the normal modes.

The mean flow calculations are performed under
the assumption of a steady state, isothermal, in-
compressible flow. It follows, then, that the gov-
erning equations of the mean flow are simplified as
follows:

Gi ;=0 (62)

- - 1~ 1.

LT Re_pr “i.Jj ™ 0 (63)
where

R S N (64)

Reeff Re Re

With an assumption of incompressible flow, the
K-¢ equations can be simplified as follows:

~ 1 1 ~ - -
K=~ (g—K .) . -==— (4, . +10. .

LN Re o, SLN Re, W5 v 9,00

+e=0 (65)

c

- 1 €1 ¢ ,. - -~

e , ~(g—c .) ., ~o==—= (G, , + U, ,)0, .
[ RetoE W) e, K i,j JaiT 0,

e?
Ce, = © (66)

To solve these non-linear equations by Galer-
kin finite elements, the Newton-Raphson method is
used. In order *o reduce computational efforts,
the Jacobian matrices for the flow field and the
K-¢ system are separated, which will then be updat-
ed iteratively between the two Jacobian matrices.
The Newton-Raphson scheme for the velocity field is
given by

(n),, (n+1) (n)
J A = -f 6
pa N (67)
where
x(n#l) - X(n) . Ax(n“) (68)
q q qQ
with
Wy I TR X
pq 8] ik'y'yj ay,koyiB
B T G L S S P (T
Al GLitik Reeff ) Se] ik
¢l I (08, G..e b oy oo
p R BT B2 A T B R
|} 3
. b o -f2 :
Reef( Y] n) _( y u|,Jn‘ ¢
1 &
4 —— u, .n, > }d” 70)
Reeff u'.Jnl ¢ (

o
2

"
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- aﬁh, P = 37?0, u=7y/a, a= (YPO/B)llz

kN
Substituting these relations and Eq. (31) to Eg.
(34), collecting the first two terms of (A) and the
flow turning term, and rewrit ing in the same form
as Eq. (27), we obtain

T) *ndl’

olf_o»
LiZn

2 _ 1 2yp2 o 1% n-p
(k kN)E iBak, I (E Py *

+ Eak I (VP )2 pu-ndr (36)

It is seen that Su*n is equivalent to FLG in terms

of the notations used in [4]. Notice that £q. (36)
above is the same as Eq. (4.14) in [4] neglecting
the particle distribution of the two phase flow.

3. Turbulent Mean Flow And
Fluctuation Vorticities

A glance at Eq. (33) with details given by
Eqs. (34-35) indicates that the flow field, in-
cluding the mean velocity and the vorticity to-
gether with the vortical component of the fluctu-
ation velocity, as well as the acoustic pressure
modes, must be calculated. To this end, we include
turbulent effects on the mean flow field, but at
this time, shock waves are excluded from considera-

tion. Turbulent modelling for solid propellant rock-
et motors has been the subject of controversy parti-

cularly due to complex burning surface phenomena.

Pending development of an adequate model in the fut-
ure, we examine here the K-c¢ model for a computatio-
the Reynolds decomposition becomes

nal purpose. Thus,

ui(xj,t) H Gi(xj) + u;(xj,t) (37)
Then, the time-averaged velocity is defined as

5, = 50,75 (38)
and

(pu)” =0 (39)

It follows that
T = 55.5. + (au )’ 4
UL = GG E (ou;) uj (40)

where the bars, tildes and primes denote time-aver-

aged, mean, and fluctuating values, respectively.

Eqs. (37-40) refer to the time-averaged and fluc-

tuating components of the scalar fields, P and T.

Substituting Egqs. (37-40) into Eqs. (1-4),

the time-averaged governing equations are written

as follows:

24 @iy =0 (41)
i’

L (@) + (53,3, + Toup )+ 5P
Sl ooala .
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In terms of the eddy viscosity hypothesis (30}, th
Reynolds stress - (pu.) uj can be expressed as

TN - 1 -

- (Oui) u_i = :Re_tui,j (‘45)
where

Re, = poaL/ut (46)
with u_ being the eddy viscosity. The eddy viscos-
ity can be expressed as a function of turbulent
kinetic energy K and energy dissipation = by the
Prandti-Kolmogorov law

1 K2
Re CUOE— (117)
where Cu is the empirical constant.
The governing equations for K and = are deriv-
ed from the momentum equation [ 24] as
9K ~ 1
pr=+cu,K, - ( =—K ,) ,
at i, Retck Y|

| ~ ~ .
- + C =

Rey (it 80 e 0 ‘e

€ ]

o + olse (

3t i RetUe s )

C 2

€1 € /~ ~ ~

Re, K (Ui, U0 Gep im0 (9
in which the following non-dimensional quantities
are ubed:

" z I- 3 = 1

K = K/a‘, ¢ cl/a’, Ret OoaL/u[
Furthermore, 9, and oe are the effective Prandtl-~
Schmidt numbers, and CE! and C52 are the empirical
constants.

In addition to the turbulent mean flow, we re-
quire that the vortical component of the fluctua-
tion velocity and the fluctuation vorticity be cal-
culated. In this regard, we set u =T, + eu?,
P=1, and p=] to obtain the fir -t order perturba-
tion momentum equation in the furm

) N T 1
LU ~ALSTAR BT TUR
(50)
1t follows from Eq. (17) and Eq. (50) that
0T T e T, w0 e L
i ivj J Re ""i,j) 3 j,ji
- Ky, = 0 (s1)

The fluctuation vorticity is then calculated
f rom

SRR (52)

in which the vortical component of the fluctuation
velocity u’ . is obtained as a consequence of Eg.
(51). 4
In the sequel, we discuss finite element so-
lutions to all of the equations presented in Sec-
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constant & by equating the imaginary parts between
Eqs. (27) and (29),
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where the superscripts (R) and (1) refer to the
real and the imaginary parts, respectively.
The normal velocity at the surface can be ex-

(R) (1)

pressed in terms of the admittance, A = A + iA
and the mean flow Mach number ® such that

rn = 7R 4 8-y by (31)

i i i i N

whereas the acoustic fluctuation velocity in the
domain is given by

. i 2
u; = — P . (32)
NN N, i

For the purpose of investigating the coupling

mechanism of acoustic and hydrodynamic instabili-
ties, it is convenient to separate Eq. (30) into
two parts:

=, o+ "H. (33)

A and ﬂH

drodynamic contributions, respectively.

where 1 refer to the acoustic and the hy~
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Note that the first term of the boundary in-
tegrals, designated as (8)

N

- 3 ™
ujPN.iPN,ihjd‘

L
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is seen to be icdentical to the three-dinensional
equivalent of the one-dimensiconal flow turning
term which appeared in Culick {3], but which did
not arise in due course of mathematical deriva-
tions for the three-dimensional case [Culick, 4].
To reconstruct the present results in terms of the
same dimensions and notations as in [4], we set
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_Gj.i(u?#uj').i] (12)

The boundary condition can be obtained from the mo-
mentum equation by constructing a dot product with
the normal vector,

P .n, = f (13)

o+ Bl
vJ T, J

] % - ' & -
" fe {((u? + ui) ii *3 (uj + uj) ji}]ni ()

The oscillatory motions in both the acoustic
and the vortical fields are modeled by

P” = pe' Kt (15)

u, = Gfeikt, o o= G?eikt (16)
i i i i

£ = Erelt an

] 1
where k is the complex dimensionless frequency giv-
en by
k = w-ia (18)
Here, the imaginary part a is known as the growth
rate.
Substituting Eqs. (15-18) into the wave equa-

tion, we arrive at the nonhomogeneous Helmholtz e-
quation,

P it k2P = h (19)
and the boundary condition,

-P .n, = f (20)

wi i
The nonhomogeneous terms h and f are given by

o s — B P I o *
- y[T + u¥
h = 'kuiP,i + 'kYui,iP ¥l i,j(uj uJ)

~, Sxy— L ((G* + a7
MR YIS S AR UNTY
O PP S SO 115 10 ol
3% TN Re
2 _ . . . o ~ .
[B_U. |(u +u)'j ui'J(u +uj)’i
-—j'i(u' +“'),i) (2”
and
- Cr e e N 5 ot )T
Erovlikog +up us s ug) + (uf v o T,

4= (0F +00) J.i]}ni (22)

-
Making use of the Green's function integral
{23], it can be shown that

(k? - KI)EZ = [ Gindn . I P (23)
n r

where the unperturbed mode shape'PN and its fre-
quency kN are determined from the classical acous-
tic problem:

Rl Al Al S St

12

P ..+ k¥ =0 (24)
P..n, =0 (25)

and EN is given by

2 . 52
€2 Jé P24q (26)

At this point, an important remark is in or-
der. A close examination of £q. {23) reveals that
the domain integral on the right hand side of £q.
(23) contains the terms from the momentum equation
which were differentiated once. Thus, these terms
must be integrated by parts to produce an acoustic
boundary condition. The resulting domain integral
represents the functional space equivalent to the
mean flow characterized by the Navier-Stokes sys-
tem, This implies that an additional integration
by parts must be carried out such that the familiar
Neumann boundary conditions may be brought to the
surface. The boundary integrals arrived at in this
manner account for the stress and/or the pressure
boundary conditions by means of velocity gradients.
Such Neumann boundary conditions stem from the con-
vective and viscous terms.

In view of these requirements, the resulting
expression upon integration by parts twice of Eq.
(23) takes the form

2 | 2)}E2 u i Al .
(k2 - K2ZJEZ = ivk, J;ulPNnidF + ik (r+1)
— a2 i — a2 s
l} T,Pin,dr 'kujg T, PRdn - ik (2v+1)
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Squaring both sides of Eq. (18) and noting
that

. (28}
Wy kN
for « - 0, we obtain
K- k= -z ¢ Y (29)

Since 1! <« [2wkN‘ from the condition set by £q.

(28), it is now possible to solve for the growth
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stability can be significant {7-13]. Although it
can be argued that the hydrodynamic instability may
not occur in high Reynolds numbers, the turbulent
shear layer instabilities have been found to be af-
fected by various combinations of Strouhal numbers
and Reynolds numbers. The acoustic field may in-
teract with vortex motions known as the ''feedback't
resulting in the votex generated sound [14]. Some
studies [15,16] indicate that the vortices may un-
dergo 'clipping'', a phenomenon corresponding to the
vortex disruption. It is also possible that later-
al periodic motion of the vortex street known as
“jitters' may lead to partial or complete escape of
the vortices (15,16). Whether these conditions
prevail in large rocket motors in which flow sepa-
rations at interface restrictors or inhibitors are
likely to produce vortex motion must be clarified.
No simpie models such as hyperbolic tangent velo-
city profile for the shear layer [11,17] and tem-
poral or spatial growth theories [18,19] appear to
be adequate for the interactions of acoustic and
vortical oscillations in a rocket chamber.

in the previous papers [20-22], finite element
applications to the combustion instability analysis
were discussed. Although a rigorous mathematical
formulation of the stability integral was present-
ed, the mean flow calculations did not include tur-
bulent flows. Since the turbulent flow field is
involved in shear boundary layers and vortex mo-
tions, it is intended that this subject be consid-
ered in the mean flow calculations and subsequent-
ly in the stability integral. Shock waves will not
be included in the present paper.

The numerical results for certain combinations
of acoustic and vortical frequencies indicate that
stability boundaries for acoustics-coupled hydro~
dynamic oscillations are somewhat similar to the
classical hydrodynamic stability boundaries, but
they occur in the form of multiple islands. The
turbulent flow field appears to contribute toward
instability, and this trend increases with larger
transition angles of the rocket motor cross-sec-
tion.

In what follows, pertinent governing equations
are presented, from which the expression for the
growth constant coupling the acoustic and hydrody-
namic oscillations is derived in section 2. Subse-
quently, the K-¢ turbulence model and calculations
of the vortical component of fluctuation velocities
and the fluctuation vorticity are described in
section 3. It is also shown in section 4 that the
finite etement is one of the most expeditious me-
thods of calculation. Numerical results via finite
elements are then displayed and pertinent discus-
sions and conclusions are presented in sections 5
and 6, respectively.

2. Vorticity-Coupled Acoustic
Instability Integral

The basic governing equations for compressible
viscous flow without particle distributions are re-
presented as €ollows:

Continuity

£+ lov) ;=0 (1)

Momen tum

3 1
5Ty (nui) + (Duiuj).j + 7 P,i
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u, ..) =0 (2)

Energy
Co X! ;g + (pu,T) - xil u,P

-2 . - =
e UYL T LY T Mg O

(3)
State

where the commas denote partial derivatives, the
repeated indices imply summing. The following non-
dimensional quantities are used in the above equa-
tions:

172

, P = 5/0o

u; = :i/a. a= (YPO/DO)

T = cp(y-l)?/az. x; = X, /L, t=aill

Re = ooaL/u . P = o/oo

where the double bars denote dimensional quanti-
ties.

Interactions between acoustic and vortical os-
cillations can be introduced by superimposing the
acoustic component upon the vortical component of
the perturbed velocity in the form

u; = Ui + e(y{ + u?) (5)

where the bars, primes, and asterisks indicate the
mean flow, the acoustic and vortical oscillations,
respectively; and € represents the perturbation
parameter. On the other hand, the pressure and the
density are given by

P=1+¢gP” (6)
p=1+¢€p” )

And, the vorticity field is given by

£, = &, + et} (8)
BRI (9)
E? = &'Jkukd (10)
where ﬁjk is the permutation symbol. In view of

Egs. (1-10), it can be shown that the nonhomogen-
eous wave equation takes the following form:
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APPENDIX 1

INTFRACTIONS OF UNSTEADY ACOUSTIC AND VORTICAL
OSCILLATIONS (N AXISYMMETRIC CYLINORICAL CAVITY

T.J. Chung* and J.L. Sohn#*¥
Department of Mechanical Engineering
The University of Alabama in Huntsville
Huntsville, Alabama
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A admittance at the burning surface ical methods, it has become feasible to resolve R
a a sonic velocity ( YPO/D° ) hitherto unsolved problems. |
c specific heat at constant pressure Despfte difficulties in analytical and numeri- J

p cal solutions to the complex physical phenomena in
L length of the combustion chamber a rocket motor chamber, many researchers have con- B
. k complex wave number {w-ia) tributed to the advancement of analysis and design J
; K turbulence kinetic energy of successful rocket motors. A large body of 1lit- R
, M Mach number erature exists relative to this subject, the study 1

P pressure of which has been pioneered by Crocco {1], Cantrell
. Re Reynolds number (OoaL/u) and Hart [2], Culick [3,4], and others. Flandro :
- T temperature and Jacobs [5], among others, have noted that vor- )
) t time ) tex shedding may lead to an instability in solid j
" u, VC]O?ItiCS ] propellant rocket motors. It is quite possible .
. X, spatial coordinates that high speed mean flows also affect the stabili- e
- ty [6] significantly. -
;. *Professor The basic mathematical formulations of combus- B
. *#Graduate Research Assistant tion instability were contributed by Culick [3,4]. A
. This research was supported by AFOSR 83-0084 with Recently, it has been observed in both full-scale g

Dr. Leonard Caveny as technical monitor. firings and cold flow simulations that interac-

. tions of acoustic and hydrodynamical (vortical) in- {
R Copyright © American Institute of Aeronsutics and )
A Astronsutics, Inc., 1984. All rights reserved. .;

seemingly complex phenomena of mutual interactions
between the acoustic and vortical oscillatory mo-
tions. Toward this end, govarning equations for
all variables are constructed, and finite elements
are applied to solye the governing equations. Com-
bustion instability integrals including the mean
flow field, perturbed acoustic oscillations, and
oscillatory velocities and vortices are also deriv-
ed and calculated by finite elements. From the
growth constants for acoustic and hydrodynamic con-
tributions, stability boundaries are determined in
terms of Reynolds numbers. The numerical results
indicate that an overall Instability phenomenon re-
sults from certain combinations of acoustic and
vortical frequencies. It is also found that stabi-
lity boundaries for acoustics-coupled hydrodynamic
oscillations are somewhat similar to the classical
hydrodynamic stability boundaries, but they occur
in the form of multiple islands. The turbulent
flow field appears to contribute toward instability
and this trend increases with larger transition an-
gles of the rocket motor cross-section.

Nomenc lature
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Abstract
A physical phenomenon of interactions between
the acoustic and vortical oscillations is examined a growth constant
herein. This subject is important in rocket motor € turbulent energy dissipation,
chambers when the vorticity field is coupled with perturbation parameter
acoustic pressure oscillations. In the past, the Eijk permutation symbol .
acoustic combustion instability was studied inde- o effective Pra“dtl'SChm'dt."UMbe' . ;
pendently of the hydrodynamic instability induced o finite element interpolation function ]
by vortex motions and turbulent shear boundary lay- £ vorticities "4
. ers. However, it is quite conceivable that these 1<} density K
o two distinctly different oscillations are coupl- Y specific heat ratio R
N ed and interact together in the flow field of a so- u viscosity
i‘» lid propellant rocket motor. The present paper in- r boundary P
: troduces an analytical approach to resolving the 19} domain i

Subscripts and Superscripts

acoustic fluctuation
vorticat fluctuation
turbulence

normal mode

acoustic field
hydrodynamic field

TP Z M ¥

I. Introduction

The flow field, such as occurs in solid pro-
pellant rocket motors, offers a fertile ground for
fundamental research in fluid mechanics and heat
transfer. Combustion induces not only the mean
fiow field, but also acoustic pressure oscillations
and possibly vortex fluctuations together with tur-
bulent shear boundary layers. Furthermore, shock
waves are commonplace in most instances. Obvious-
ly, a most rigorous analysis taking into account
all of these phenomena would be difficult, if not
impossible. However, with the advent of the elec-
tronic computer and the modern technology of numer-
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erence [18] or Appendix 3.
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SECTION 4

UNSTEADY RESPONSE OF BURNING SURFACE IN
SOLID PROPELLANT COMBUSTION

4.1 Summary

The response function as related to the combustion of solid propellants
has been studied by numerous investigators. Some of the review articles in-
clude Culick [1] on homogeneous propellants [2-6] and Cohen [8] on heterogen-
eous propellants [9-14]. Both of them are limited to one-dimensional and
quasi-steady situations. In recent years, some works toward non-steady prob-
lems have been attempted [15-17]. The majority of the discussions of response
functions in the literature are concerned with pressure-coupling usually appli-
cable in the linear stability. Computations of the response function for velo-
city-coupling important in a nonlinear process, however, remain in a state of
infancy, although some initial attempts toward this subject have been made [16,
18].

As noted by Flandro [16], the velocity-coupling may be accommodated by
second order perturbations of multi-dimensional gas/solid governing equations.
This approach deviates drastically from the one-dimensional analysis which has
been adopted for nearly three decades. With modern computers and various tools
of numerical analysis available, however, it seems possible to relax many un-
desirable restrictions. Observations indicate that combustion oscillations
are time-dependent and often nonlinear as influenced by turbulent flowfields,
which may lead to erosive burning and unstable oscillations. Unfortunately,
however, a computational tool for the most exact analysis of complicated phys-
ical phenomena such as these, even if developed, will not fit into the current-
ly available computer. Thus, naturally, some approximations and simplifica-
tions must still be introduced to any theoretical formulations conducive to
numerical analysis.

With this in mind, some additional materials and reassessments concern-
ing the multi-dimensional calculations of combustion response functions are
presented herein as an extension to the previous paper [17]. The influence
of heterogeneity, surface roughness, particulate matter, or turbulence will
not be considered at this time. We include the effect of radiation, adopt a
simple, premixed, single-step laminar flame, expand the solid-gas governing
equations into first and second order perturbations, and finally perform ei-
genvalue analyses. Complicated boundary conditions at the solid-gas inter-
face and flame edges are imposed ideally by means of Lagrange multipliers
together with finite elements. Calculations are carried out for various in-
cident angles of impressed pressure waves at the flame edge boundaries [16].

Computed results show that the natural frequencies are clustered around
low frequency range (w<10). Spatial distributions of field variables cor-
responding to the computed frequencies indicate that the oscillatory behav-
ior is pronounced at upstream and gradually diminishes toward downstream. Re-
sponse functions oscillate in the axial direction with peaks occurring at the
midstream, but diminishing toward flame edges for both first and second or-
der perturbations. It is also shown that two-dimensional response functions
are multi-peaked and may become negative as energy sinks. Finally, it is
seen that the effect of radiation is more pronounced in the second order per-
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Abstract '
i
{

The paper discusses the formulation and solu-
tion strategies to analyze combustion instability
due to aluminum particle distributions in the solid
propellant rocket motor chambers. Specifically, the
finite element method is utilized in order to ac-
commodate complicated geometries and boundary condi-
tions. To demonstrate the validity , one dimension-
al results are first compared with those of analyti-
cal solutions. A similar process is then extended
to handle two-dimensional problems.

Nomenclature

speed of sound

specific heat of particle

specific heat of gas at constant pressure,
volume

specific heat of mixture at constant pres-
sure, volume |
particle diameter

total energy of gas

total energy of particle

drag force

wave number

vector normal to surface

mean pressure

acoustic pressure

Prandtl number

gas constant

temperature of gas

P temperature of particle

r radial coordinate

" gas velocity

up particle velocity

wp particle mass rate of flow

axial coordinate

growth rate

ratio of particle density to gas density
specific heat ratio of gas

specific heat ratio of mixture

total density

density of gas, particle |
tangential coordinate
ratio R/Cy

frequency |
thermal conductivity :
viscosity constant I
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%y finite element interpolation function
£, vorticity vector

T4 dynamic relaxation time

Te thermal relaxation time
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: 1. Introduction
1
]

The study of acoustic energy losses due to
aluminum particles in the solid propellant rocket
notor combustion chamber has been carried out by
a number of investigators. Epstein and Charhart [1]
studied the absorption of sound in suspensions of
non-interacting inert spherical particles and uni-
‘form temperatures. The validity of this investiga-
tion was subsequently substantiated by other re-
searchers{2-4]. In a rocket motor, the particles
‘are neither spherical nor inert and subjected to
‘nonunlform temperature distributions {5].

? Despite the extensive research on the subject
:of acoustic energy dissipation due to particle damp-
‘ing in the rocket motor [5-10}, calculations of the
stability integral arising from particle damping

‘are limited to simple one-dimensional cases.

t

; Thus, the purpose of the present study is to
demonstrate the feasibility of mathematical formula-
tions and numerical calculations via finite elements.
Furthermore, interactions of particle damping with
fluid viscosity and heat transfer are included. It
is shown that additional boundary and domain terms
arise from integrating by parts 'twice" of the

Green function stability integral containing the
momentum equation. A simple example problem is
solved for comparison with the analytical solution.

Coverning Equations

|
' 2.

Conservation 1l: s for the mass, momentum, and
energy in the two~phase flow of the gas/particle mix-
ture are written as follows [5]):

]
Continuity (gas)

LoD
P Pe oy v

T (pgu) = wp (1)

p *
ot U ) = o @

1
Fontinuity (particle)
|
?
|
i

Momentum

,

(p,u + u,) + — (p u.u, + Yi, +Vp=S§
Pyl PpZp X, Dg ij pp P pJ TR

(3)

'\C

Energy

a -
Y ({) e + ('p) + (DXQH + Opep‘lp)

+ o (“I) = Q + @ (4)
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where wp is the particle mass rate of flow and

S= Uy +1v (@ -0 (5)
R
0= 7@ u g g® ©
Jus .
o2 o . oyl 2ui Oug dui duy
¢ = ul3 @ E) T Bk, 3%y - 3x 9%y 2
]
with q(C) and q(R) being the conduction heat flux

and radiation heat flux, respectively.

Combining (1), (2) and (3), we obtain

dy
g 3c * pg(u *“V)u+7yp =TF, +g +S§ (8)
where
du
= - =P .
Fp = =0, [(52) + (¥ - Du]l )
¢ = (Ep - E)wp (10)

Combining (1), (2), and (4) leads to

9T
Tt Cgcv(f "HT + pyru = Q40+ Qp

Su S (e - @uwy + (g - W +u o (D

where
aT
= p ¢+ (u - DT (12
Qp opc[:: Y pl )
Now lct us denote that
u =u+ Su (13)
- T ~P
T =T+ 4T (14)
P P
In view of (13) we rewrite (9) in the form
3u
=-p [+ . i+
Fo algp (o9 ul + 6F) (15)
where

Aty
FEL= o L DTk Cue D (16)

Substituting (15) into (8) vields

T v
= . 7P =H+S 17 )
T “(E Jut T H + S amn + 2 (WDp= == (Q+ ¢+2) (24) N
Jt ~ it K
here :
where 0 .;:.E_ (s u) + 2(u -PVu + V?P
= . 4 = 1 + 2 2=
RTeg g g B a= ol =V -H+T S +B (25)
M- F 4 s where .
Similarly 1 . -
B=—"p: (-"P+H+S) .
“T B . o - .
W an( s (w =TT + Qp (18) 5
j
1
. . . S 'o..'.;".-‘ ! ‘.." . S L "..‘ P --. fat - -.. h
. A A el I T PR L P PO OO L O R G G &‘n e N A '..L-'.‘

" where

asT
= - —2 . K .
6Qp opc { 50t (5 v)ﬁrp + (Sgp 7)T}(19)

with C being the specific heat of the particle.
Substituting (18) into (11) gives

0g(Cy +BO) ST+ 0. (C, + BO) (u DT+ 57+ u
2Q+0+Y (20)

where C,, is the specific heat of gas at constant
volume and

Y=48Q +(e ~e)w +(u -uF_-u-.g
P p P ~p  ~eF

-u- S 21)
To obtain the wave equation we make use of
the perfect gas law

p = pgRT (22)

which is substituted into (20). We then differ-
entiate (20) with respect to time and substitute
from the spatial derivative of (17). Denote the
specific heats of the mixture at constant volume
and constant pressure, respectively, as

. C,+8C . C_+a&C
Cv ST A 8 ’ cp T A 8

it then follows that the gas constant for the mix-
ture takes the form

Substituting (22) and (1) into (20) yields
By (4P T ut (wMp = 2@+ +2) (23)
where ¢ = R/Ev

Z =Y+ (148)C Tw
v P
Now the time derivative of (23) and spatial deri-

vative of (17) are written, respectively, as fol-
lows:

-

32 p,
S0 v

2
u+ p‘;; (Vv w) ]




Substituting (25) into (24) gives

2 2p oy P ) : 92
+oP v w4 ¢y [ -0/ *(u-V)u - V¥

+ TeH+ US4 B] 43

L (u-T)p =6 Q) (26)

For linear stability, we introduce the per-
turbation expansion of 0(¢) as follows:

=
| EERRR R
p=p +p
p= 04+ Ep
e=c+e' ,w =w +aw ,Q=Q+ €
. P P p
- s T (P +s%) , z=2Z +e7
) .
[ - Ho=H+ c(H + 1Y)
ii:s m s g+ (st 4 gh)

where the bar, astrisk, and prime denote the mean
flow, acoustic fluctuation, and vortical fluctua-
tion, respectively.

Now, collecting the terms of 0(c), we have

2.¢

h T2p - _1_2._3_8.% =h @n
7'.,

9

a
where
- b= B o2 + ve@en - v oGk g
- - by ' -
+u* x g 4+u'x ¢ ) ]+ —;agf— T
~ < -~ ~~ a -~
1 - 9 0 1
+ =5 u. + 7-H' + 7.
37 ¥ 5 0 B+vs
i - _g_i ' 1] " 5
. 31 5¢ (Q'+¢+2") (28)
.. where
= =P § P
’ a?= yRT_ = y ~— = oo — (29)
"o p (1+2) Sg

Z' = (I+:) (e'w_ +ew') - ECST'w + 8Q° (30
2L T S FCATwp * 09, )

The nonhomogeneous wave equation (27) {s subject
to the boundary condition of the form

n-Vp' = -f (n
. where
- - oy Ju* -
- f =0 pre + = + V(u u + u-uk)
.. A lal -~
e - (u x Tk +ux T+ u X< )] n - H'n-S'.n  (32)

To remove the time dependent terms, we introduce

:' exponential oscillatfons of the form

:._. pl = i" el.lkt (BJ.I)
:'. 4’ = l—].clnkt (331)
. u* = é*ei“k‘ (33c)
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and

@ .o, 2 = @F,petKE (34)
where k is the wave number defined as

k = % W - 1a) (35)

Substituting (33) into (27) and (31), respectively,
we obtain

25 + k%P = h (36a)
ne Vp = -2 (36b)

The natural modes and frequencies corresponding
to (36) are determined from

v2p Py * kZBN =0 (37a)
D-py=0 (37)

By means of the Green's function integral
and using (3% - (37), it can be shown that

2 _ .2, 1 ~ ~
K = ky + 02 (IﬁdeQ +I ?der) (38)
N Q -
1
where
2
EN Jde; (39)
kQ - kY
f =iz @-Wpyt { = py/ u

- A - A - ~x T
£ [ VP(u'd' + urur) - 7. (ux3*+ u*xﬁ

G'xf)] + V.5' 4+ VeH!

+

- iC—(Q +:'+2') (40)

rhy
1t

0 [iak (§'+34)+7 (u-u*+y- 1)

- uxg* + ﬂxg + U'%x¢)}n - §'-n -fitn (41)

From the definition given by (35) and (38) and
equating the imaginary parts it follows that the
growth rate o takes the form

a = + 4
p t % (42)

where ap is the growth rate due to particle damp-
ing and np refers to the growth rate due to acous-
tic and vortical oscillations of the gas alone,

o =- +§ iﬁ(ﬂ+s)(1)v)ﬁd

p k

+ r.I Q'+ o'+2° )( )de:t ] (43)

and 3
3;2

==Ly m= ; (R) =Ny,

e 2}:‘;\‘,l pa I((‘f +h) * :32) ndl
I e-
- [ R - 1 R
' "'I"x“".‘,d*'k;'f? (190" )ogenar

]
-(:-‘,n)J's;V(;--:).%Nd ~I NUNCR

—;‘;; r u- ((\i'+u*) (n ) f)\,d
Nd N N
:_‘i e ) N ‘ ~ v (I) . -
-  ((9er o+ o) ) ped ) e




where (I) and (R) indicate imaginary and real
parts, respectively.

Note that, in arriving at the stability inte~
trals, it is necessary to perform integration by
parts "twice"” on all terms associated with
the convection, viscous, and drag forces originated
from the momentum equation as the wave equation
was obtained by first differentiating the
momentum equation. This will allow appropriate
Neumann boundary conditions appearing on the
boundary surfaces. A glance at (43) and (44),
however, reveals that only the first integration
by parts was performed on all terms other than
the convective terms arising from the momentum
equations. The remaining terms are yet to be
integrated by parts "one more time" when their
forms of derivatives are explicitly shown.

3. Evaluations of Particle Damping Stability Inte-
gral

3.1 Approximate Analytical Solution

We now return to (43) and examine (16) for
perturbation quantities. The viscous drag
forces are
H' = §F' + o' (45)

F = - p [iak(d' ~ 0') + (u_ VL' + (ﬁ'~V)ﬁp
P P~ R

~p
- (u -7ME' - @'V (46)
o' = (@ - we' + G- 0% (47)
- R T
Similarly,
§' = wTE 43T c 0] (48)

The linear viscous losses due to conduction
heat transfer are contributed from Q'

= KVZT' (1‘9)

O >

The heat transfer interaction energy Z' is given by

' = Y' + Q' (50)
P
where

Y= (142 (@ eu) - B¢ -TYw -g'u

P PP g 7
-5 u' (51)

3Q' = -oC [iak(T! = T') + (u_- ¥ T+ (' 9T
% nl ¢ P P ) P “ ) p

- @ DT - @DT s

Retaining only ‘Fﬁ of (45), ‘Q in (50) we re-
write (43) in the form

-1 oafl o« AT} PR
. Z«N [k\.J('fp .)de.‘+ J' Qp de, 1 (5

from which a simple formula mav be derived for a
linearized one-dimensional problem [S],

,
(l). _1_ - N d ) \ t
‘p"zl_-‘mm)‘*( -DE (7 9

[
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where T, and T arce the dynamic and thermal relax-
ation Cthb, ruxpoctlvcly,

D d

Td = 1811 (55)
3¢ p

Tt 2 Cp d (56)

with pg = density of the condensed material and
and d = average diameter of the particles.

To determine the effect of viscous and heat
transfer losses arising from (48) and (49) we write

a;b) - '2—::., [ ﬁj(g"”-m%dmc Jé'ﬁqu (57a)
N Q 2

assuming an incompressible one-dimensional flow,
we arrive at an analytical solution,

(b) .2 ’wNu y-1
a == 1+ ] (57b)
P d 20 \’Pr

The analytical integraion of (43) is not pos-
sible and it is our approach to provide numerical
integration via finite elements. In what follows
we outline the detailed procedure.

3.2 Finite Element Formulation

The finite element formulation for the stabil-
ity integral due to gas oscillations alone given
by (44) was reported in [11). Thus, our emphasis
in this paper is concentrated on the stability
integral representing only the particle damping as
shown by (43).

Substituting (45) - (52) into (43), we obtain

a =a_ +a_.+a_+a.,+0 58
p pH  pS  TpQ  Tp? Tp2 8
where
_ 1 i .o Ay ~ AvyT s
OtpH ﬁ—g[ ky OPI ((g gp)(gp-V)PN + (g-gp)(gj.‘ﬁr}‘
T
- (o U)(u «)p - (n- u )(u ”)p)
a = et oy, oA av - A
- oy (gp(gp-.) Py + Y (gp-v).VpN
--- Gt 7 BFell I wi ol - "'_"A'«
us (G'-9) Vpy (w7 Tpy (gp g)wppN
- (@' - 8Yw p)ae
~p E‘ wppN)
-2 J S0 ~ . - (I)
- a Op O(YP -4 ) ) de. (59)
U a Sy L
S (n-7) (u¥+u’) . Opy
pS P‘N [kN J’S ~ <~ h
£ 4@ @A) 9
1)
a s Lo ety 22 .
Ty Jk(ul+u1{‘ ST (uxta )'pw)d )
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-

Clh i e e g

= A dl- T VD o)
"o ,E~ [I(n T3 J' 1Tt da 0] 61)
1 ‘ aGi 3R+ ur)
a ., = E (u +u*) -2 —_1
pe ZL 302 3Ix Ix,
N i !
Ju, ALY+ Uy (D)
- __i ___L___l_ 4 A 62
2 ng )xj ]pN 40 (62)

v = (1+0)(e w +ew') - gC(T'-TYw
‘pz °h‘ J[ pp P P

- (50 + §- - 5C [ak(T' - T + (o)™
(~g 5) QP[(P ~p)p

(1)
+LDT - @ - (§'-V)T]] Ppdc (63)

where the superscript (I) denotes the imaginary
part. Note that the boundary terms in oy, apSs
and 1,q have appeared in addition to numerous
other terms representing the viscous forces and
thermal dissipation interacting with particles.

Otherwise, the results are the same as in Culick{5].

To evaluate numerically these integrals, we
introduce three-dimensional isoparametric finite
elements. Any variable X may be interpolated as

X=19¢X (64)
aa

where Wy is the interpolation function with  de-
noting the global node number.

The procedure for the solution of eigenvalues
and eigenvectors for both acoustic and vortical
motions are presented in {11]. Once the natural
modes and frequencies of acoustic and vortical
motions are determined, then the final form of
the stability integral assumes the form

v = JF(Y‘)dT + IG( )d”—I I F(,m)u‘dn
J. J’ J’ G( yrac)didrde (h5)

These integrals are then converted to Gaussian
quadrature of the form

m m R
= w :
¢ Z wi J,l-( i,r‘j)
i=l  j=1
m m m
+ W w W L ron,or 66
L L L FRSICY (0
i=l  j=1 k=l
where W represents the weights and {., N do~

note abscissa of the Gaussian quadrituro 112]

4. Example Problems

To demonstrate the validity of the procedure,
we consider a circular cvlinder problem (Fig. 1) .o
that the results may be compared with the analyvti-
cal sotution given by (54)

The stability integral « {is simplified to
p

1 -2 oy Ay ol
= = aT. (u' - a') vp do
tp _TZhN [j I’p Yp ! Py

Y]

= o - rya
+ J ;oCakNpp(Tp T )deQ ] (67)
Q

In terms of the dynamic and thermal relaxation
times, we obtain

1+ i . ~
P § 1wty -1 i VpN (68)
p 1+ (wTd) ngN
~ ~ 1+ iwt -
T' = T' = ( T ( t)2- 1) (Y 1) (69)
p wr, YOR

The classical acoustic modes py are of the
form

py = cos (koz)cos(mO)Jm(kmnr) (70)
with
kﬁ = k? + k2 (71)
2 mn

P
N kQ = L with

2=0,1,2,. .. and k__ are the roots of the
derivative of Bessel funBfion J (k r) such that

where m =0, 1, 2,

d
ar [Jm(kmnr)] =0, at r = R (72)

Substituting (68) - (72) into (67) yields

..l [ w1y vh
) 26D T+ W (ar)? " PN
0
2
s 2 o C(Y‘—l—— pylrdrdidz  (73)

7 Pyt
Cp 14+, T, ) Cp

Numerical analyses have been carried out with
the following assumptions: £ = 0.2, C(y-1)/C =1
ps/u =1, CPr/C -l, Pr/(y-1) = 1. These assBmp—
tions yield v,= d2/18 and 1¢=d?/12. The results
of calculations based on (54) and (73) for the first
axial mode with various frequencies (w= 300,800,
1,800 Hz) are shown in Fig. 2. Note here that the
trend toward decrease in stability with a decrease
in frequencies is evident for both one and two-
dimensional geometries. However, the one-dimension-
al calculation overcstimates (Fig.3) the stability
(particle damping) at higher frequencies (.=1,800 Hz),
The ranges for optimum diameters for the two-dimen-
sfonal cylindrical svstem (3 microns for  =1,800 Hz;
4 microns for .. = 800 Hz; 6 microns for = 300 Hz)
are still maintained almost the same as in the one-
dimensional approximations.

Referring to Fip. 4 for the first axial and
tangential modes, the treads are significantly dif-
fercnt from those of the axial mode. The two-dimen-
sional evlindrical svstem is more stable than the
onc-dimensional svstem (Fig.3) for all frequencies.
Although the ranges of eptimum diameters remain ap-
nroximately the same as in the case of the axial
mode, there is an indication that they shift toward
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larger sizes as the frequencies decrecase.

In general, Lt {s clear that one~dimensfonal
approxmations for the axisymmetric cylindrical geo-
metrics would lead to erroneous results., The trend
of deviation depends on different modes of oscilla-
tions.

For more complete analysis, the flow field
based on (1) through (22) and subsequent evalua-
tions of the stability integrals (58-63) must be
calculated. Note that there are seven variables:
Ui, upi, T, Tpi' Cgs Ops and p. Therefore, the
required governing equations consiste of (1), (2),
(9), (12), (17), and (20). The drag forces are
based on the Stokes law given by FP.= 3mud(upi-ug)
and Qp=2ﬂ< d(Tp-T) where d denotes the average
particle d“ameter and « is the thermal conductivity.
Initially, all incremental quantities, Sup,, §Tp,

i P
$Fpis 5Qp. lep, and &G are set equal to zero.
Then these values are calculated from the initial
solution and iterations continue until convergence.
The results of this analysis will be reported else-
where.

5. Concluding Remarks

A rigorous formulation of the governing equa-
tions involved in interactions of acoustic oscil-
lations with vortical oscillations have been demon-
strated. The finite element analyses for both flow
ficld calculations and stability integral evaluva-
tions are shown to be convenient.

Simple example problems of two-dimensional
axisymmetric geometries are solved and compared
with one-dimensional approximations. It is shown
that there is a trend toward decrease in stability
with a decrease in frequencies. However, the one-
dimensional calculation overestimates the stability
at higher frequencies. The optimum ranges of diamet-
ers for stability, however, are approximately the
same in both cvlindrical and one-dimensional geo-
metries. For the first axial and tangential modes,
however, the trends are significantly different from
those of the axifal mode. The two-dir.~sional cylin-
drical system is more stable than the one-dimension-
al system fer all frequencies. There is an indica-
tion that optimum particle diameters shift toward
larger sizes a. the frequencies decrease.,
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APPENDIX 3

UNSTEADY RESPONSE OF BURNING SURFACE
IN SOLID PROPELLANT COMBUSTION

T.J. Chung® and P.K. Kim**
Department of Mechanical Engineering
The University of Alabama in Huntsville
Huntsville, Alabama

Abstract

This paper is an update to the earlier paper
concerning the multi-dimensional calculations of
combustion response functions. Our ultimate goal
is aimed at obtaining more precise information on
combustion responses of heterogeneous solid propel-
lants subjected to arbitrary cavity flow fields,
i.e., pressure- and velocity-coupling with turbu-
lent flames and possible effects of radiation.
This paper is a first step toward such a goal. If
multi~-dimensional flow fieclds are allowed, the
combustion responses can no longer be determined
in a closed form, but they would require computer-
1zed numerical analyses for a large system of e~
quations as a result of first and second order
perturbations. All excited frequencies are calcu-
lated by means of eigenvalue analyses, and the
cumhustion response functions corresponding to
these frequencies are determined. For simplicity,
the calculations are limited to homogeneous pro-
pellants and laminar flames. Effects of radiation,
incident angles of impressed pressure waves, and
velocity-coupling by means of the second order
perturbation have been shown.

Nomenclature
a, mean local speed of sound
A radiation boundary area (Eq. A-8)
Ay admittance at burning surface
B frequency factor

c specific heat at constant pressure for gas

£’ activation energy

f fuel mass fraction

F dimensional frequency

F response function

h heat of combustion per unit mass of fuel

H radiation function (Eq. A-8)

1 radiation intensity

k gas thermal conductivity

K dimensionless wave number

H flame length

1 latent heat of vaporization, radiation
mean {ree path

m mass flux

My Mach number at burning surface

n constant exponent {(Eq. 3, A-6), direction

cosine
N conduction to radiation parameter (Eq. 5)

*Professor
**Craduate Research Assistant

This research was supported partially by AFOSR

83-C08B4 with Dr Leonard Caveny as technical monitor.

Copyright © American Institute of Aeronsutics snd
Astronsutics, Inc., 1985, All rights reserved.

P pressure
Pr Prandtl number
9(R) radiative heat flux vector

r burning rate

R gas constant

R, dimensionless distance (Eq. 16)

Re Reynolds number

Re real part of complex variable (Eqs. 33,34)
t time

temperature

gas velocity parallel to the flame surface
gas velocity vector

axial core velocity (Eq. 16)

gas velocity normal to the flame surface
radiation volumetric element (Eq. A-8)
reaction rate

coordinate parallel to the burning surface
coordinate normal to burning surface
oxidizer-fuel ratio

thermal diffusivity

Eq. (3)

constant exponent (Eq. A-6)

perturbation parameter

Eq. (7)

eigenvalue

solid phase eigen function (Eq. B-17)
Lagrange multiplier

dimensionless radiation source function
(Eq. A-9)

pressure index

Eq. (A-14)

mass density

optical depth

angle between normal vectdor to the surface
(Eq. A-8)

finite element interpolation function
wave incidence angle

eigen vector

frequency

albedo

crec

a
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Subscript and Superscript

* dimensional quantity

i,j vector quantity

[ mean or constant value

s solid phase

o flame edge

w radiative surface wall

a, B,y finite element global node number
(o) zeroth order perturbation

(1) first order perturbation

(2) second order perturbation
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I. Introduction

The response function as related to the com-
bustion of solid propellants has been studied by
numerous investigators. Some of the review arti-
cles include Culick [l] on homogeneous propellants
[2-6] and Cohen [8] on heterogeneous propellants
[9-14]. Both of them are limited to one-dimen~
sional and quasi-steady situations. In recent
years, some works toward non-steady problems have
been attempted [15-17]. The majority of the dis-
cussions of response functions in the literature
are concerned with pressure-coupling usually ap-
plicable in the linear stability. Computations of
the response function for velocity-coupling impor-
tant in a non-linear process, however, remain in a
state of infancy, although some initial attempts
toward this subject have been made [19].

As noted by Flandro [16], the velocity-coup-
ling may be accommodated by second-order pertur-
bations of multi-dimensional gas/solid governing
equations. This approach deviates drastically
from the one-dimensional analysis which has been
adopted for nearly three decades. With modern
computers and various tools of numerical analy-
sis available, however, it seems possible to relax
many undesirable restrictions. Observations indi-
cate that combustion oscillations are time-depen-
dent and often non-linear as influenced by turbu-
lent flow fields, which may lead to erosive burn-
ing and unstable oscillations. Unfortunately,
however, a computational tool for the most exact
aralysis of complicated physical phenomena such as
these, even 1if developed, will not fit into the
currently available computer. Thus, naturally,
some approximations and simplifications must still
be introduced to any theoretical formulations con-
ducive to numerical analysis.

With this in mind, some additional materials
and reassessmen s concerning the multi-dimensional
calculations of -ombustion response functions are
presented herein as an extension to the previous
paper [17]. The influence of heterogeneity, sur-
face roughness, particulate matter, or turbulence
will not be considered at this time. We include
the effect of radiation, adopt a simple, premixed,
single-step laminar flame, expand the solid-gas
governing equations into first and second order
perturbations, and finally perform eigenvalue
analyses. Complicated boundary conditions at the
solid-gas interface and flame edges are imposed {-
deally by means of Lagrange multipliers together
with finite elements, Calculations are carried
out for various incident angles of impressed pres-
sure waves at the flame edge boundaries [16].

Computed results show that the natural fre-
quencies are clustered around low frequency range
(.<10). Spatial distributions of field variables
eorresponding to the computed frequencies indicate
that the oscillatory behavior is pronounced at up-
stream and gradually diminishes toward downstream.
Response functions oscillate in the axial direction
with peaks occurring at the midstream, but dimin-
ishing toward flame edges for both first and second
order perturbations. It is also shown that two-di-
mensional response functions are multi-peaked and
may become negative as energy sinks. Finally, {t
is seen that the effect of radiatfon is more pro-
nounced in the second order perturbation compared
to the first order.

2. Governing Equations

The combustion of solid propellants 1is approx-
imated by the Arrhenius law and a one-step forward
chemical reaction. The flame of erosive burning
is assumed to be a premixed laminar deflagration
with a single species (fuel) [15,16].

The basic governing equations of the gas phase
are composed of continuity, momentum, energy, spe~
cies, and state. To non-dimensionalize these equa-
tions, we proceed as follows. Define the flame
length as

e* = k*/ore Rt (1)
op o

where * denotes dimensional quantities, subscript
o indicates the mean value in the chamber, k is the
thermal conductivity, p is the density, p is the
specific heat at constant pressure, and v is the
gas speed normal to the surface.

Introduce, then, the following dimensionless
quantities:

o k% * sp* - TR

bp=p /oo , P=p /zo , T=T /'ro

u= E*/v: , to= t*vo/Q* ) Xy o= xI/R*
M = v;/a: , h= h*/c;r; , E= EX/RT  (2)

where P is the pressure, T is the temperature, u 1is
the mean flow velocity, t is the time, x is the
length, subscript i denotes vector quantity, My 1is
the Mach number at the burning surface, a§ is the

speed of sound (a§ -VGP;IOO with v = c*/c:), c. 1is
the specific heat at constant volume, h"is the Beat
of combustion per unit mass of fuel, subscript «
denotes the flame edge, E is the activation energy,
and R is the gas constant. From these, the govern-
ing equations for the gas phase are non-dimension-
alized and the explicit forms are represented as in
Appendix A (Eqs. A-1 through A-6). The dimension-
less reaction rate explicitly involved in the equa-
tions of energy and species conservation 1is expres-
sed as in Eq. (A-6). Note that the dimensionless
frequency factor B is given by

BT A0 o*
n-—-—‘z’—”—wuhs-—o% (3
o* et o

where 3 is the ratio of solid to gas density, n is
the constant exponent, m is the mass flux, W' 1s
the molecular weight of gas, z is the oxidizer-fuel
ratio, ‘' is the constant exponent and f is the fuel
mass fraction, It is noted that Eq. (A-5) is valid
under the assumption that the perfect gas law for
the reference state holds,

p* = o RT* 4)

o o o

The burning of solid propellants involves ra-
diative heat transfer to some extent as the combus-
tion chamber is an emitting, absorbing, and scat-
tering media. It may be assumed that the boundary
surfaces are gray and diffuse. Thus, the energy
equation is given by

1-Q

= i -

3T - Y
o e B At
( T (u )Tl Y it

1
- Z?-H) - wh =0 (5)

where . is the albedo, N {s the conduction-to-radi-
ation parameter, H is the radiation function, and
n is the dimensionless radiation source function,
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as defined in Eqs. (A-7) through (A-9).

For the solid phase, we assume that the mean
burning rate is constant and the mean surface re-
gression is given by

* * & *
r oovolos (6)
where the subscript s indicates the solid phase.
These and other variables are related as follows:

x, X, & * x Kk Kk, Kk
Ts = Ts/To , r=7¢ /vo s, Y=Y oocpvo/ko

x x k % *2

x k Kk *
t=t aocpvo/ko , L= kscp/kccS (7)
The dimensionless energy equation for the solid
phase takes the form as in Eq. (A-10).

Conversion of solid to gas at the solid-gas
interface may be governed by an Arrhenius law for
the dimensional mass flux
-E

n
S e

* *
m_ =B P s (8)
s s

with E_ = E*/RT" being the dimensionless surface
activation energy. The dimensionless mass, momen-
tum, and energy balances across the interface are

given in Appendix {A-11 through A-13L

3. Perturbation Expansion

As proposed by Flandro [16], the perturbation
expansion of all variables up to and including the
second-order would enable the velocity-coupling, as
well as the pressure-coupling, to be adequat.ly mo-
deled.

(1)

P=1+cP 7 4+e2p7 4, 9
o= ol 4 et 42 10)
RO IO IR O (D
e 18 4 er 4 e2p@ (12)
£ e 4 ee() 42 (13)
Ty = T;O) + eril) + e’riz) + ... (14) .

For simplicity, we may investigate an effect
of an impressed pressure wave approaching the sur-
face at arbitrary incidence given by

P=1+ eetwt[cosk(x; + x*)cos6 + cosKysinf]

+ Lzeizwt[cosK(x: + x*)cos6 + cosKysinf] +...
(15}

where K {s the dimensionless wave number (K =
* &
Z”tF/aovo), w is the dimensionless frequency (w =

ZWﬁF/v*Z), t ig the thermal diffusivity, F is the
dimensionless frequency in Hertz, ¢ is the arbi-
trary incidence angle, and x_ is the antinode. It
is also proposed [16} that aosimple analytical mo-
del for the mean flow streamline in the vicinity of
the surface be siven by

-y/R

u = uc(l - e )L + vj (16)

where u. represents the axial core velocity, and Rc
is the Simensionless distance from the surface.

A

y
32 )
"4
N
4
i
Zeroth-Order System J
All perturbation solutions begin with the ze- y
roth-order system, which is one-dimensional and )
steady-state. Thus, we have
Continuity .
oM oy (17 b
L
Energy 1
(o) 2.(0) ]
dT 4°T - (9 b
—dy_ - T w h (18) 1
Species
df(o) _ dzf(O) - (o) (19) ;_1
dy dy? [
Reaction Rate .
), g0 :
() _ 1 1-T 2 -E/T
w i Bz{ ———T(o) (20) j
<
State y
p{01( oy 1) |
Solid Phase -
(o) -
. dz.r(o) ) r(o)de -0 (22) by
dy? dy N
~Eg(1/T{")- 1/T¢g) >
where r(o) = e s(1/Tg /Ts with Es - E:/RT; 4
(23) -1
«$
Solving (17) through (22) analytically results A
in -
(0) 1 A
o - ;IGS. (24) ;
v(0) - (9 (25) 4
R
£ - L a1l (26) 1
.1
(o) — y/t
Ts = (Ts—Tw)e + T, 27)

and the velocity distribution is given by (16).
The temperature boundary conditions for the gas

phase are obtained as follows:

at the flame edge (y=<)

T(o)(“’) -l

a1 ()

oy -0

at the solid-pas interface

Y

L Eiate s hun an iea Sng See A e e -~r1

(0) (o) _ =
) -l o T
ar¢® 1

s
& )+ =T (

dy

(

Note that the temperature is continuous but its
gradient is discontinuous at the interface.

Perturbation Systems

Perturbation expansions are performed by sub-
stituting Eqs.(9-14) into the governing equations
using the following perturbed variables and Taylor

SO SRR

Y+ L=

.

B A T T R R R T, et e
PCAR PN S CRAOPCIRCA. AU AE ARSIV - P R AT T,
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(28)

(29)

(30)
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series expansion about the origin for the reaction
rate and radiative terms.

(P(‘). C(l), u(l). T(l), f(l), T:l))
-, é(l)» %(x)’ FOy et gy
(¢ () L3(¢), T(Z)’ f(z), Tiz))
- ¢, +(2) é(l)' f(z), £(2)y 120t (45

The results are listed in Eqs. (B-1 through B-9).

The boundary conditions corresponding to these
perturbation equations include the flame edge (y==),
solid-gas interface (y=0), and the location deep in
the solid (y=-=). At the flame edge, the mass
fraction must vanish (Eq. B-10), and the impressed
pressure wave, together with the equation of state
(Eq. 5), will be specified. The temperature bound-
ary condition (Eq. B-12) arises from the assumption
that the flow is isentropic at the flame edge. On
the other hand, the mass flux fractions of the fuel
and oxidizer at the solid-gas interface are assumed
to be fixed by the composition of the propellants
(Eq. B~15). It also follows from Eq. (A-13) and
Eq. (B-9) that the temperature boundary conditions
at the solid-gas interface take an explicit form
as shown in Eq. (B-16). Furthermore, as a conse-
quence of mass and momentum balances across the in-
terface, we arrive at the velocity boundary condi-
tions (Eqs. B-20, B-21). For the location deep in
the solid (y=-s), the temperature assumes a cons-
tant, independent of time, as defined in Eq. (B-24).

The second order perturbation system and the
corresponding boundary conditions can be derived
in a similar manner, and the results are listed in
Eq. C-1 through C-9 and Eq. C-10 through C-25,
respectively.

Finally, the response functions for the first
and secound order systems are calculated from

)

- (1), (9)
PO L Re( e (33)
My P P
and
. (), o
FoloeRe( 2+ ol ) (34)
ﬂb (2)/P(-)
(1) (2)
where and Ab denote the admittance of the

first and second order systems, respectively.

4. Finite Flement Calculations

Fig. | shows the domain of study of the flame
zone ({ y +) with the boundary conditions to be
specified at the flame edge (y=r) and at the solid
interface (y=0). The solid phase (0 y>«x) is e-
liminated from the calculation by providing the
solid-interface boundary conditions.

The finite element equations, by means of i-
soparametric four-node linear elements, are con-
structed in the form

(tua.  +

B;. )X = F. (35)

wvhere X _ denotes the solution vector consisting of
nodal values of the density, velocity, temperature,
mass fraction, and radiation function, {i.e.,

-

- -

. P T I T S .t et
L N R SR W R

A addh- sl ouub el Mbie sne

Xn = [OB, Uggs TB, fB’ HB] (36)
In this formulation, the governing equations (Eqs.
B-1 through B-8) are used for the first order sys-
tem and Eqs. C-1 through C-8 are used for the se-
cond order system. Note that the pressure degree
of freedom is excluded from computational processes
through the equation of state. All boundary condi-
tions (Eqs. B-10 through B-22 for the first order
system; Eqs. C-10 through C-25 for the second order
system) are cast in the form of the boundary matrix
equation,

X, = b 37

mn
where r=1,2,...m, m being the total number of bound-
ary conditions (m=5 in this case). Introducing the
concept of Lagrange multipliers Ar and minimization
of variational principles, we now arrive at the
finite element matrix equations with all boundary
conditions properly imposed.

X F
ny g (38)

qrn 0 Xr br

1hen + By Qg

This represents a system of complex characteristic
equations lending itself to eigenvalue problems.

1uA, + B
SN

en gl _ 0

Qen 0

(39)

These expressions (Eq. 38 and Eq. 39), of course,
represent either the first or the second order per
turbation system. Explicit forms of these equa-
tions are shown in Ref. {17]. Complex eigenvalues
and eigenvectors can be calculated from Eq. (39).
However, the system given by Eq. (38) represents
forced oscillations with F, and b, serving as fore
ing functions. Thus, the gctual amplitudes corre-
sponding to each eigenvalue (natural frequency)
can then be calculated from Eq. (38). From this
information, it is now possible to determine the
response functions corresponding to the first and
second order perturbation systems. Finite element
equations are summarized in Appendices D, E, and F.

5. Discussions

Additional calculations beyond the previous
paper [17] are carried out. 1In particular, first
order eigenvalue solutions and amplitudes corre-
sponding to each of the natural frequencies are
presented. The eigenvalue calculations for the
second order perturbation system are not included
at this time, although the amplitudes for the se-
cond order system corresponding to arbitrarily se-
lected frequencies are computed. The computation-
al domain is as shown in Fig. 1, and the various
~onstants used are as follows: E=10, E =4, L=0.15

Tg=0.35, (=10, My=0,01, 8=1000, 21, rmEel,
ng=0.75, k=1, v=1.27, x*=0, uc=1, R =10, Pr=1.0.
The results of theoeigenvalue analysis. as
shown in Fig. 2, represent 135 frequencies (corre-
sponding to all variables over 135 finite element
nodes). Note that most of these frequencies are

clustered around a low frequency range (w‘lo 0)
¢ and

with peaks occurring at approximately w=10~
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10™, This trend appears to be true for both rad-
iative and non-radiative cases, although cluster-
ing peaks occur at slightly different frequencies.

As reported earlier [17], the spatial distri-
butions of variables corresponding to the comput-
ed frequencies indicate that the oscillatory be-
havior is pronounced at upstream and gradually di-
minishes toward downstream.

Spatial distributions of the calculated re-
sponse functions for the first and second order
systems are shown, respectively, in Figs. 3 and 4
(«=1.83, 2=0,50, N=0.1, S=7/2 and Mb=0.01). Al-
though it is premature to make any reasonable as-
sessments, response functions tend to oscillate in
the axial direction with peaks occurring at mid-
stream but diminishing toward flame edges. This
trend appears to hold true for both first and se-
cond order perturbations. It is certain that this
phenomenon is due to the presence of mean flow.

Fig. 5 shows the frequency dependence of re-
sponse function for the first and second order
systems at location M. It is clear that two-di-
mensional response functions are multi-peaked and
may become negative as observed by T'ilen [15].

The notion of energy sink in connection with nega-
tive response functions was suggested by Flandro
{16], and this may perhaps be possible for an os-
cillatory system. The effect of radiation is more
pronounced for the second order perturbation com-
pared to the first order. In general, damping ap-
pears to prevail at low frequencies for the first
order system. This trend is reversed for high
frequencies. Large negative peaks develop for the
second order system due to radiation at very low
and very high frequencies, with intermediate ran-
ges being subdued.

Effects of albedoes on response functions are
shown in Fig. 6. It is clear that response func-
tions increase with a decrease of albedoes for the
first order response, whereas this trend is not
obvious for the second order response. On the o-
ther hand, for low frequencies, this behavior is
reversed for the case of the first order response
(Fig. 7). Somewhat erratic behavior is observed
for the second order response, although 1t in-
creases negatively with a decrease of albedoes.

In Fig. 8, a directional dependency of res-
ponse functions for the first order perturbation
system (at location M) is shown in polar coordi-
nates. As the incidence angle increases counter-
clockwise, response functions decrease exponential-
ly to the minimum at v=7/2, and start to increase
again in the second quadrant. It may be reasoned
that the wave Iincidence parallel to the burning
surface may enhance the combustion response as op-
posed to the case of normal incidence. Further-
more, t*e influence of incidence directed upstream
appears to be stronger than the incidences direct-
ed downstream. Similar trends prevail for the
case of a second order perturbation system (Fig.9),
except that the response diminishes quickly as this
angle approaches “=7,

6. Conclusions

Efgenvalue solutions to the first order pertur
bation system associated with rocket propellant
combustion have been carried out. Based on this
information, amplitudes of field variables in the
flame zone are determined and response functions
for selected frequencies are computed for both
first and second order perturbation systems.

W

The following conclusions are summarized:

10,

1L

(a)

Most of the natural frequencies are clus-
tered around low frequency range (w<10.0).

Spatial distributions of field variables

corresponding to the computed frequencies
indicate that the oscillatory behavior is
pronounced at upstream and gradually di-

minishes toward downstream.

(b)

(c) Response functions oscillate in the axial
direction with peaks occurring at mid-
stream, but diminishing toward flame ed-
ges for both first and second order per-
turbations.

(d) Two-dimensional response functions are
multi-peaked and may become negative as

energy sinks.

(e) The effect of radiation is more pronounc-
ed in the second order perturbation com-

pared to the first order.

functions are smallest at a nor-
incidence and increase toward
to the surface.

(f) Response
mal wave

parallel
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Appendix A - Governing Equations

(Gas Phase)

Continuity

30

st V. (Du) =0 (A-1)

Momentum

+ (u*Vu] + —5 VP - Pr[V%u

ol a: YMb

+ %V(V'\:)] =0 (a-2)

Energy

3T, eoyrr o XL 2P iy o
ol 3p + (W OT] - 7= 50 = VT + Vg
- wh =20 (A-3)

Species Conservation

of %% + (uVFf] - Pk +w=0 (A-4)
State
P = pT (A-5)

Reaction Rate

-E/T
w = BzT (—-)“fn (a-6)

Radiative Heat Transfer

. S L AT -
Ty " w T -t (a-7)
e T u e_T"
H = I r = dV + I T = cos¢dA (A-8)
T w T
v A w

roe (1-2)T" + Z;H (A-9)
(Solid Phase)

Energy

8 3Ts - aTs 2

-ET'O'E-W—VTB-O (A-10)
(Solid-Gas Interface)

Mass Balance

m o= x> v (A-11)

a( — = -

), = 5, (A-12)
1
z(—) (g)_._‘-rl. (A-13)
. Ao p*

L= ¢ Ry - b R £ = k*/k* (A-14)

c;Tm C;T* 8

Appendix B - First Order Perturbation System

(1) Coverning Equations

Continufity

1w8(1) (°)§(1)

+ 50,

+ Y(p ) =0 (B-1)

(2)

37

Momentum

w5 4 oD (gD 4 () G gy

A1), (0) oy (0 1 oo(8) 22(1)
+0 (u My + YMJ P Pr(Vu

+ % 772ty = 0 (B-2)

Energy

wo(o)f(l) . D(0)(5(0),V).’I‘.(1) . o(o)(g(l),v){ﬂ

+ 3(1)(u(o),v)T(°) - i zil (1) _ 2D

+ Vq§;; -eMhao (B-3)

Species Conservation

w3 4 o (D ( (Vg

ROIORWE

PREAC R
(B-4)

+ 5 Wl L g2

State

(1 o 0300 5(1) () (B-5)

Reaction Rate
T oy 22 (l) e

~(1) _ (0)
w [ (0)2 + 2P - 2 + 2—(-—3
(B-6)
Radiative Heat Transfer
gty = 52 ety L™y o
A - a0y i
v
+ -—-H(’)] e - (B-8)

Solid Phase Energy
~(1) (o)
. (o) oT ~(1) 3T
w83, x 4= s

T s L 3y T 9y

-2 o (8-9)
s
Boundary Conditions
Flame Edge (y==)
£ =0 (8-10)
o) 7wy + 5 1)

= cosK(x: 4+ x )cos® + cosKf*sinf (B-11)

~(1)
~(1) y-1 5(1) _ 1 3T
T () = - P T % TSy ly-t* (B-12)
G(l)(m)‘ - ;ﬁ; sinK(x; + x*)cos® (B-13)
A1)y o L * _
v (=) e sinK2"sin6 (B-14)
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Solid-Gas Interface (y=0)

~(1) ( ) ~(1)
(1) of
£ +-(—3},—)*@( 3 ) [—‘T's_t“
;(1)
- =t (B-15)
Ty
(1)
aT
f(l) -( Sy )+Y’1[—A--SBB>\, L]
Ay i Es EsL i E
S (14+5-2B) + > - >_8,
£ Buy, T, BuT,
(B-16)
where A, = %% [1+ (+s1802) (8-17)
Ts - T,
A= - =T (B-18)
T -T,
Ba--2 23 (B-19)
R (°)
u(l)+ - - _B% (— Fs ¢ (l) +n, )( )+[cosl((x:
Ts
+ x*)cos® + sinb) (8-20)
G(‘)+ = {[(E  + 1)T<l) + (n, - 1)3;]
E -T
A2 80 o *
- Bw(,—r-s + Ng X )}[cosK(xo
+ x*)cosd + sinf] (B-21)
p(oif(ll + S(XlT(oi = cosK(x: + x*)cosb + sinb
(B-22)
Deep in Solid (y=-«)
f:‘%-m)- 0 (B-23)
a1l a1l
T ay = 0 (B-24)
Xm0 y=—

Appendix C -~ Second Order Perturbation System

(1) Governing Equations

Continuity
NEY N (0) (2) A(l)a(l)

. 3(*)g‘°’

12wo

) =0 (c-1)
Momen tum

200$30 4 o0 [(,(0) )5 (D) | (a1 g o)

+ (‘3(2) .V)E(o)] + mc(l)ﬁ(l)

. 8(1)[(3(0),V)§(1) .

FUREMO)

5(2)(2(0)'V)E(°) + ;1? vp(?)

pe(v30 () 4 Loi®y a0 (een

Energy
12000 VFD 4 o (0 4 Gy
¢ G0 4 5

+ 5(1)[(3(0),V)T(1) + (é( )™
+ 5 W gy 4 12w3;—1 p(  g23(®

~(2)  ~(2)

+9qg) ~w "h=0 (c-3)

Species Conservation

120)0(0)?(2) + 0(0)[<‘:(0) 'V)f(z)"'(é(‘)'?)’f\(l)

+ (g(z) -V)f(o)] + 1“)6(‘)?(1)
+ 5(1)[(3(0),V)f(1) (§(1)°V)f(°)]
+ 3(2)(3(0)'V)f(°) - p2f(®) | o(2)

=0
(c-4)
State
5(2) - p(0).’1‘.(2) + a(l)f(l) + B(Z)T(o) (c-5)
Reaction Rate
~(2) ~(1) (1)
~(2) (o), ET ET 2(1)
w =y U A 2 [2P' V- 2
(T(o))z (T(o) Z
(1) ~(1)
f 2(1),2 ~(2) T
+2W]+(P )y + 2P +(—(W)
f(z) (1) (2)
RO (o)’ (o)
(l) (1) (1)
(l)
M <o> +2 m (o)z]
() (1) (1)
T ~(1) £
-2170—) [2p +2—fT°—' 7_

N f(l) E.I.(’)

RO O

+
~

L)

o] =
~
'~
-

o)) ~(1) =8)) (v

EFROK S O RO £(9) :
(Cc-6)
Radiative Heat Transfer
VAE;; [a(T(°))’T(2) . 6(T( )) (T(x)
- ,}—,ﬁ(’)l (c-7)

i . J, [401-2) (18 182 4 (202 (7(1)y2

T
+ Z;H(z)]f;r dv (c-8)

Solid Phase Energy

() 2(1)
2(2) L0 3T . r(l) BTS

R
12w 3 By z gy
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2(2) BT(°)
+

2:(2) _
z 3y -V T 0 (c-9)

(2) Boundary Condition
Flame Edge (y==)
£ =) = 0 (€-10)
o Xy 7 ey 4 5 %y T ey 4 582wy ()

- cosK(x: + x*)cos8 + cosKi*sinB  (C-11)

. 2(2)

(D) = Y21 5(2) _ 13T 7 -
T () 5 P s 5y L-i* (c-12)
G(zk‘ﬁ - - 7%; sinK(x: + x*)cosb (c-13)
C(z)(m) - - —L sinki*sin® (c-14)

Solid-Gas Interface (y=0)

~(2) 2 (1) ~(1)
~2) _ , of of
£ + ( 3y )++ ( _Sy— A "i‘-s +1

) f(l)+] ; 3¢€®) , 5(2), (,;(1) 2
Tg Iy * T, s
~(2) (1)
S, (2 (c-15)
Tg s
~(2)
3T i 1
',1:(2)-( 3 )++ ECG WD(G‘HW ) - LG
Ay Es i Eg
LIPS WL S N
3 T, BuT, (c-16)
Ts - T, 1
where C = —CE—- (A - E ) (c-17)
< -
D= T (c-18)
G = (= T(l)) +2n s (la
Tg Ty
+ ns(ns - 1) (c-19)
E 1)
~(2) _ _ 1 g _s (1)
v, Sw{[ —’fs T &+ ns] 3y +
E ~
+ [2n :.5-T(1)+n(n -+ (=2 s $(1,)?
5 Tg + Tg
E (9)
+ %5 T(za.]( ag L}[cosK(x;+ x*) cos®
s
+ s1n8)? (c-20)
A(z) = (R --——I)[cosK(x + x*)cost + sind]?
where (c-21)
E (E +1)
R= (E 40T, + @,y

1 ~(1)
+ [ (2n, -i,) + (n, -1,

Lo R ab L siuh- st st ML S e ek i S\ S N i S A S SN

— 1 _
+ (ns - 1)[nsTs - %: ] (c-22)
E A(l)
- (.8 (D 3v s (1)
¢ (?—T ++ns)( 3y )++12f1 T
8 s
N T -xm
+n(n 1)+(—T(l) ) + = (2) ](
Ts Tg
(C-23)
p(oif.(zz' + 5(111:(11 + S(ZlT(oi
= cosK(x; + x*)cos® + sind (c-24)
Deep in the Solid
%:2%-m)- 0 (c-25)
27" S
ox y-—mr Jy |ym-o =0 (c-26)
Appendix D -

Finite Element Equations of First Order System

(1) Governing Equations

Continuity
Ty (1) ()
(1ma8 + BaB)DB + CaBi ug, 0 (D-1)
Momen tum
m (1) 1)
(1wA +D B)u + EaBi pg + PaBi TB =0
(D-2)
Energy
= (1) (1)
(1(»(}0le + HaB aB)T - (1“’°us + pae) eg
(1)
- RBGB Hy 0 (p-3)
Species
(1) (’) (1)
(iwA + QGB)fB + RGB B + SQB DB =0
(D-4)
Radiation Function
(1) = )
RCole TB + (RDQB - A B)H =0 (D-5)

Note that explicit forms of these matrices are
shown in Appendix F.

(2) Boundary Conditions

Flame Edge

£ =0 (D-6)
(a 48180 =% (0-7)
T(O)Beogl) + o(°)BBTé’) «B (D-8)
Buy) = 1R (D-9)
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n Bv') = 4T (p-1
- BVB - -10) Momen tum
o = 5o (2) -
. where (2uhyg + Doghuyy” + (Egy + Cgg)Pp
2% (2)
‘_-‘..:_ Sl - (D-11) + Foay Ty " = -1wFB ~ FC, (E-2)
By = Ol _g* (p-12) Energy
L__ 3 BIY-Q SRl wlr HH_ )T (2) - 00 £8P
A= Y;_l [61] 8, (0-13) Y B T PPas RA.8 xgfe ]
- - ﬁasﬂéz) - (12uS g + T, B)oé ) ]
S B = [G1] .8, (D-14) )
S Gl = cosK(x + x*)cos® + coski¥*sind (D~-15) = —inDu * FECL (-3) i
=- H= - —Y—ﬁ; [sinl((x + x*)cosG]B 8 (D-16) Species !
— . (2) (2) <
T = - 21 sinki*s1n (D-17) (izmaﬁ + CCop * 00, B)f + HR as’R !
", . ]
Solid-Gas Interface aBpB = 1wFG, + FH, (E-4) p
-t e E _E _ Radiation Function
) (g, - FB)fé’) - (ET—B )vél) + (T ?—B )ré‘) =T 5 — - ‘*
- 8 s (D-18) RC BTB + (RDC! - A B)H - —FZOl (E-5)
N i E‘ A X Es (1)
e = T B-A)E, + {< Tt LEB-FB]}TB Note that explicit forms of these matrices are
bt BTs T shown in Appendix F.
n
- - %_Bs_ (A-B))) - n L (p-19) (2) Boundary Conditions ]
ﬁ « E n u Flame Edge 1
gl (1S 35 ) i s 5 (2) .
_ 8“8 wBR F, B8 w B R fg =0 (E-6) ]
(p-20) Ala;+s )T(z) -2 (E-7) ]
£ S Br(E ) - A B (22 e (D) 5 F :
8’8 o0 Ber, o TUBE BT r‘ D 4 527,00 = (E-8)
» T g'8 [
‘ s s-T _ _ ‘
--17 D+ (n,-DT, (p-21) Bgo éz) 5 (£-9)
(0) 1) (0) (1) _ -
.:__. (T )r«B + (o B)T (D-22) B (Z) iT (E-10)
s '8
. " where where 3%
. = 4! - - — -
Eg = %2lyug (p-23) A = 3y - (E-11)
bl 3
F, = —=3 (D-24) -
8 3y y=0 BB - °B]y-i* (E-12)
- (9) = _ (0, -
- (g (D-25) Blg=e (™) By (E-13)
37 (o) -
D= (CZ]_,E,% (D-26) 523 =T X )Ba (E-14)
. ol
G2 = cosK(x; + x*)cosf + sin? (D-27) A Y [G”sBF (E-15)
AN,
I B - lc1 - :,(’)r(’)lsxs,2 (E-16)
Appendix E - '
. Finite Element Fquations of Sccond Order System Gl = cosK(x; + x*)cos + coski*sin® (E-17)
! (1) Governing Equations Ho=- \_IH: [sinK(x; + x*)cost']v,‘BB (E-18)
o Continuity
AN 1 -k -
DO Ty 7 () I = - —— sinK«"sin® (E-19)
o (12uh o + B e " +C oy ugy FA (E-1) ™,
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Solid-Gas Interface b, - % {(1+ lss’mzcz)l’“sm —22 } (E-41)
2 =
(EB-FB)f( ) - c (E-20) c, = cosK(x; + x*)cosf + sin® (E-42)
o2 (2) E E b
-C -
Egug gTg =D (e-21) 6y = 20, =2 1 40 (n -1+ 21 (B0 j
MONN L (E-22) Te :
8 8 8Tg (l) E (1) (ns—l)
° ) GA-:B'( )? +(—?—sg+(ns-1)}'l‘ o
(PB + 1= )T(z) =45+ T (E-23) Ts 8 s
(E-44) j
Eleoéz) + EZBTéZ) -8 (E-24) Note that O, denotes the principal angle of the so- ]
11id phase eggenfunction A
where 9
Eg = 0 (E=25) Appendix F -
y=0 Matrices for Appendices E and F ;
p
- (0) - — - (0) <
EIB T “(0) Eg (E-26) Ag=0 Asp ]
PR <
E,p - o) g, (E-27) Bag = Bag * Cag )
by, T - pl%¢
Fy - a_yﬁ (E-28) aBt aBt l
y=0 = _ (9 (o) 4
ok Dog = © 'Bug + 0 Cog ¥ 3 Prhy ]
— L
€= --S_8% (cyE (E-29) (9 .
B RC T 3 B E e E 4 — b
_8 a8t © “af Y"b Cast .
e (1 Llels - (E+DHCPE,  (E-30) (°) j
B8 Bw ¢ T 3 F - 4
s aBi Yub2 J
. b1 a, E o
=g L2 dEgE, (E-31) —. (® ;
Tg aB1 yn.bz Cagt .
E. T-T o(®) :
- 1 s § @ —_—
0g {-1(a1 -z ) + bl) B, o E, (E-32) Cog = __Y._ Ag ]
() (1) 1 — (o) —_—
- F v (1) H,=o0"C_ +D,~hHd
c 5 T, +1 - —’fs ]BES (E-33) al aB af aB
. u (1) 0 = Xo1 £C0) )
D= 4 (€’ ¢ 21l 4y o Y a8
W 3 R s L () .
P = 201 o ;
+ c3]551 (E-34) ar al R
= [
- E (1) Q_ = p(o)c +D
En - g (e 121 4y 2 o8 o8~ "B !
Ts T m w SE 2 (0, y
T,-T a8 ROFEa=O) aB
+ G, 1€ (E-35)
7B
(0) . (2)
0= (C) (TG, + G,1,E (E-16) ng T 2T 8 )
3 5’3 4’a"a (0 4
TS‘T,,( ) . CCug ™ "Cag * Dy !
S0 T ey - 615 57 b (64 — ,
i HH o = R
+n 1.E,} (E-37) o x k
TT 0018 =h oonB 1
T--_l_.J’_f{b[c]E +L[a __1_)[(;
2w G 173373 7 Rwg Y1 3 3 Ty 4 1-0 _(o)3
B N ng
+n IQEG} - LIG,]E (E-38) !
8’3" 33g A
(1) (1) B = 2 A 3
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w03 1
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-— (0)_(0)
S = 2y T A
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(1) (1) (1)
A = [ o9, a0 -2 _T(o) (e 4 2 £ (0)2]
[o1:) L a B f(
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e
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