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A. PHYSICAL SCIENCES

1. Modelling and Applicationi-

Theoretical mechanics is a fruitful source of interesting

nonlinear partial differential equations and our work on non-

linear wave equations and variational inequalities is directly

motivated by fundamental problems in fluid and solid mechanics.

Industrial applications also give rise to many interesting

and novel models and the Oxford Study Groups with Industry

provide a continuing source of such applications. These

include a variety of free and moving boundary problems, in

particular phase change problems of various kinds. Parabolic

equations occur more frequently than any others in industrial

applications, and we have lately come across several "forward-

backward" equations in which the time-like direction changes

sign. Counter-current heat or mass transfer devices clearly

lead to such equations. Other parabolic equations have arisen

in the modelling of combustion in porous media, which also

leads to a free boundary problem, and heat flow in turbine

blades.

A particular nonlinear diffusion equation, the so-called

"porous medium equation", has received much attention in

Oxford and elsewhere in the past few years. Amongst many

other applications, we have investigated it as a model for

the growth of volcanoes.

Other equations investigated under this heading have been

(i) 2u _ 3u 3ut
ex2  ' a

which arises as the limit of a hyperbolic equation describing

underwater cable oscillations, and

I. . . . . . . . . .
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(ii { 4h-(]cp } = {h(l + cp) } '  p( -± ,t) = 0,
(ii (l + P (I + cp) 0 ,

where h(x,t) = w(t) + coX(t,

0 = c _ xp dx,

and

c2  w + (w - i) = F sin t+ c pdx,
2dt 2

with p = w -1 = 0 at t = 0,

which is a model for a tilting gas bearing.

2. Nonlinear Wave and Diffusion Equations Soluble by Inverse

Scattering or BAcklund Transformations

(i) Inverse Scattering

A number of nonlinear wave equations of importance in

application, such as the Korteweg-de Vries equation, the sine-

Gordon equation and the nonlinear Schr6dinger equation, have

the property that they can be solved by the method of inverse

scattering, which in effect reduces their solution to that of

a linear integral equation, the so-called Gel'fand-Levitan

equation. This leads to a rich field of investigation into

the properties of similarity solutions of the equations.

Similarity solutions are frequently important for studying

asymptotic properties of general solutions, and we have been

able to show that the similarity solutions of these equations

are solutions of the class of ordinary differential equations

(known as the Painleve transcendents) which have the property

that singularities of solutions (other than poles) depend only

on the equation and not on the particular solution. We have 6

1*

} " -. '. , . -" -'. " -" . ..-.* - - , .. , - .-. " ] " .. ] ' -.-. ' ' ' '. ' .- ' .. -- - . . . . . _ . .-.- . - - - - ' : -' '
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xp.iored this connection between the partial differential

O quations and the Painlev6 transcendents and have obtained

important implications for both. In particular, we have

1' en able to give a global asymptotic behaviour for solutions

of the Painleve transcendents which is comparable with the

.;urt of results that are normally expected only for linear

t~quations.

(ii) The Porous Medium Equation

The simplest version of the porous medium equation is

a-- (UxM14 3) = Like the K d V equation, this equation

also possesses Bhcklund-type transformations in the case

m = -i, in which case it can be reduced to the linear heat

equation. More generally a method exists for relating

solutions for a value of m = m 0 to those for m = m 0 - 2.

In the so-called "fast diffusion" case, m < 1, certain

estimates on the Cauchy data have been derived for the

solution to exist for all t - 0, and we can heuristically relate

the phenomenon of finite-time extinction in the case m < -1 to

that of finite-time blow-up in the "slow-diffusion" case, m > 1.

3. Analysis of Diffusion Equations

(i) Blow-up of Solutions

We have investigated the blow-up of positive solutions of

nonlinear diffusion equations of the form

u, = Au + t(u),

nholding in some domain f2 in R with u = 0 on DO. The

nonlinearity f(u) is typically of the form uP(p > 1) or

U The (lucstions of interest are whether the solution blows

• : .- . -. - .. . , : ..'' . .".. . . ...-..-.-.... .,......, '. " .- ' -.. " .o. ..-. .. • . . . - . . - * . - .
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up and, if it does, how it blows up and in particular whether

the set at which it first becomes infinite consists of just

one point or can be a region of non-zero measure. We have

proved a number of results for the problem, under very general

conditions, including: -

(a) the solution does not blow up near the boundary,

(b) if n = 1, and the initial data u(x,O)

has just one "hump", without necessarily being symmetric about

the hump, then blow-up, if it occurs, occurs at just one

point,

(c) the result (b) can be extended to spherically symmetric

solutions in any number of dimensions,

(d) estimates can be obtained for the rate of blow-up.

(ii) Combustion

We have investigated several problems on combustion theory,

including the existence and stability of diffusion flames, and

the existence and uniqueness of the so-called Linen-type

problems (ordinary diffrential equations which govern the

structure of the corA.,ution in the reaction-diffusion zone)

(iii) Critical Sobolcv ixponents

We have been int ... ;ted in the equation

-AU -- Up + \U,

nholding in some domain P, in Rn , with u = 0 on 3.

Here p is the so-called critical Sobolev exponent, i.e.

p = (n + 2)/(n - 2), where n is the dimension of the space.

The significance of this value of p is that, if p is

less than the critical value, then existence of the solutions

I

.... . .;.-.; . . . -..- . -. - .. .-.-. .. . . . .... . ... .- --- . -. - .
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,: the problem can be obtained by variational techniques,

an:d this has been known and studied for some considerable

time. If p is the critical value, then the variational

tcchnicues fail, and indeed, if X = 0 and Q is, say,

c-;nvex, then it is known that there is no solution. The

introduction of the term Xu can however change this,

an:. Brezis and Nirenberg have recently proved that, if

n 3 and 1. is the unit sphere, then there exists a

2 2
rEsitive solution if and only if k < X < 2r

This result is not only intriguing as a problem in

aLIysis. It also has significance for other fields, such

as isoperimetric inequalities, differential geometry, and

solutions of the Yang-Mills equation. It does seem that

the case of critical Sobolev exponents is unexpectedly

prevalent, and that the more we understand it, the better.

To this end we have studied two aspects of the problem.

First, when n = 3 and .Q is a sphere, a celebrated

tlieorem, by Gidas, Ni and Nirenberg says that the solution

:aus;t be radial, so that the problem is in fact and O.D.E.

But the Brezis-Nirenberg proof is a P.D.E. proof, and we

have succeeded in rectifying this by giving a simple proof

using O.D.E. methods.

More important is the extension of the result to the

situation where Q is not a sphere but a general domain

in R While work on this is not yet complete, the

answer seems to be as follows.

Let G(x,y,\) be the Green's function for the operator

-A + , in R, with Dirichlet boundary conditions. As is

well known, Z'

...........................-........-.. "...... .. ,'.,,-.". . ...-. ... ,. .,.• . ,, . .- .. , ,.,,.- ... .. ,.
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1o
G -x h(x,y,X)

G(x,y,A) = 47 ) x-y-

wiiere h(x,y,X) is a smooth function in S, with the

properties that

h(x,y,0) > 0, (l)

3 h(x,y,X) < 0.

If we consider h(x,x,A), this is then a decreasing function

of A, and so there is, in view of (1), a first value of

A > 0, say A0, such that h(x,x,X) has 0 as its minimum,

at x0, say. Then the range of X for which a solution

exists is X0 < X < X1, where A1  is the first eigenvalue

of -A in Q, and further, as X + X0 the solution

tends to a spike-type solution with spike at x0.

4. Other Analytical Investigations

(i) Existence of Steady Vortex Rings

This is a matter of investigating solutions of the

equation

- Au = f,

2
holding in some domain Q in R2 , with u = 0 on ai.

If the function f is rearranged, (and the application to

vortex motion is that f represents the vorticity which

does always move in two-dimensional fluid motion so as to

remain a rearrangement of itself), then the solution u

changes and we are interested in" the energy JI Au12 and

in particular in whether its maximum and minimum (as f is

rearranged) can actually be attained. We have shown

thnat the maximum is always attailled through a specific

. -. ..... ............................ . . *
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rurrangement of f, but the minimum is attained if and

only if f is of one sign.

(ii) Interior Transition Layers for Elliptic Differential

Equations

We have been concerned with equations of the form

-E 2Au = f 2(g2 _ u 2)u, (2)

holding in some domain Q in R or R , with u = 0 on

K12. H{ere both f and g are smooth functions of x and

both are strictly positive. Results for the positive

solutions of (2) are well established, but knowledge of

other branches of solutions is scarce. In the present work

positive and negative solutions are pieced together across

lines partitioning the domain and variational arguments are

framed in an attempt to locate these nodal lines (where the

solution vanishes) so that the composite function is every-

where a solution of (2). Heuristic arguments suggest that

there is a close relationship between these nodal lines and

lines L which render stationary the functional defined by

L fg 3ds.

(iii) Water Waves

We have investigated some properties of solitary waves,

pirticularly those associated with the Froude number F,

which is given by F 2 = c 2/gh, where c is the velocity

of the wave, g the acceleration due to gravity and h

the depth of the fluid at infinity. The proof that F > 1

for a solitary wave has previously been available only as

the. result of a long and complicated argument, but we have

sccecded in giving a short and simple one. '

• " ' , --,l"--,, ,,6 - -- : - . , : o: . . . . " : -, .- . - ; . .. - . -.-... -. -,
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iL had also been conjectured that F > 1 imp]ies

:.l:,t 1 tId u eCay at infinity of the height of the solitary

,.Avu, and we have succeeded in proving this conjecture.

iv) Over-determined Systems

We have investigated a system of partial differential

:,c;tions involving five equations in two unknown functions.

Ti: system arises from attempts to design the most efficient

-: Cof flowmeter for measuring fluid flow in pipes (in

:)rt~cular, blood in blood vessels), and was raised at one

of the Oxford Study Groups with Industry. We have succeeded

i:. answerinq the problem completely by giving the most

cn ral solution to this over-determined system.

v) ,:uat:ion,; of Cata1lys is Theory

:n the production of chemicals, catalysts are often

.,i'U~r00 to convert gaseous reactants into useful products.

':,{ucntly the catalyst is in the form of a porous pellet

:'_ the gas must diffuse into the interior of the pellet so

th ] the catalyst there is fully utilised. Depending upon

the relative rate of diffusion and reaction, temperature

,in& 2oncentration gradients are set up across the pellet,

'Ind their determination is essential for the calculation

of the over-all rate of conversion. The modelling of

these processes within the pellet leads to a set of parabloic

.-arti4al differential equations, and a first step in the study

tnese is to determine whether there exist steadystate

.utions, and if so, how many of these there are.

;e invstigatedaparticular one-dimensional steady-

Stt equ ition
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V " I ( 5 V ) u - / V

wit1 tu iouridary conditions

v'( 0 = , V !) = 1,

,he parameters X,B,y being all positive and p a non-

E,.X.ItiVe integer. This seems to be typical of more

-,nr:ii situations, and we have proved that if the activa-

t:. n energy y is sufficiently high, then the number of

solutions must be essentially either one or three (depending

uv-n the other parameters in the problem).

(vi) Ineo-ualities

There is a famous inequality due to Hardy, Littlewood

and Poiva which states that if h, f, g are positive

functions with h spherically symmetric and decreasing,

h(: -ylf(x)g(y)dxdy S h(x-yl)f*(x)g*(y)dxdy,
Rn xn Rnxn

R XiR nR x Rn

*:I.erc f*, g* are the spherically symmetric decreasing

-. rr,-ngIents of f, g. We have shown that the inequality

in effect strict unless f, g are spherically symmetric

, fc cecrEasing, and this has applications in various vari-

t.jt:I[ stut tions in proving that the winner in a variational

:rob Im has to be spherically syruletri.c.

-. Free and Moving Boundary Problems

This is an area which hias been studied in Oxford for

.ears ano several different aspects are bing considered

dt the morzlent. , summri C<f some of the work done up to

1 i. given in Weak and variationa- methods for -movini
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of two. A study in one space dimension of several popular

methods shows this problem is common. The implicit micpcint

rule did the best out of those tested. In general,

efficiency suffers markedly when accuracy is required. Our

model has been submitted for publication.

3. Numerical Methods

For eqns. (1) in two space dimensions on arbitrary d n

we discretise in space with quadratic isoparainetric finittc

elements, giving near second order convergence and piecewisc

quadratic approximation of the domain boundary. This trans-

forms the PDEs into a large set of sparsely coupled nonline u

ODEs. For the Thomas system the ODEs have a stiffness ratio

in excess of 106. Hence we use a variable-order, variable-

step Gear solver to step through time. Our program, althouL::

quite efficient, takes 10 - 200 minutes CPU time per pattern.

For the rabies model, eqns (3), in two space dimensions

we have used a variable-order, variable-step Adams method

after discretising in space with finite elements. To sltudyv

the computed wavespeed in one space dimension we use the

Euler, High Order Taylor, Trapezium rule and Implicit Yr:-

point rule methods. It is common for these methods to

produce waveforms travelling at speeds in error by u-. t,

factor of two.

Reference;

1. K.len, A., Arcuri, P., Murray, J.D., (1983) to a-[jer..

2. Kaplan, C., (ed) (1979) Rabies: The facts, Oxzord

mtivrsit y Pre;;

3. K.iuf!h;iin, _-., Shyfmko, R. , Klt,:, t, F. I ; ) : i'

N idXJ ).tI JVUJAUI) iV (JJJItjuud, tll
• '." " i : - $ - -. . " • '-' . . ' " .°' ". -i " ' . , " i , . , . -. . . .. ... ' .: ' ". ' ' ' .
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of the disease, p is the death rate, and D is related to

the size of the forays into other fox territories made by the

disoriented infectives. We assume that the normally terri-

torial fox doesn't "diffuse", ignoring the expeditions made

by adolescent foxes striking out on their own. We also

assume logistic growth for normal foxes, and that the incuba-

tion period is unimportant to the overall dynamics. The

ecuations may be nondimensionalised to give

;u ru(l - ) - uvatk
(3*)

v 29= u(v -d) + V uat

We are interested in the speed of propagation of the epi-

zootic, and in ecological strategies for controlling thL

spread of the disease.

A standard phase plane analysis follows from a first

integral of the system and gives conditions for the ,xi ,

of travelling waves as well as a lower bound on the wcv. -

speed. Further results have been found using simple en-r.,x'

methods which are useful numerically.

After estimating the parameters in (3) we turned t-)

numerical simulations. Rabies will inevitably return t Bri

so we cons id,red a domain with the shape of Britain :in ,

a single- rbiJ fox on the coastline. Travelling waves w

produced, and this simple model suggests optimal st rt ,i,

for control in the form of intensive culling in a small.

buffer zone to contain the outbreak. The strategy is: w;.

by field dlatai (see K llen ot al. 1983, or Kap] zn 1977).

An interesting numerical prohlem aros. from , r .

to computo accurate waves [c cs. Using stan tard m,'th,.: i 1

, H, . .' H . ; - - ! ' ' VI W i . I I I I, , 1' , ' I  I I

.6NJdX.-,'Nk-AO9 iV UJjIUuIdJU
" .. o-. . . - .- - -. .. . . • . . . .. ,. ,. . ,. . . . . . . .

,..-. .... -... .... ., ..., ... . ..., ....., .- . ... ,.. ... . .-. . .. .. . • ...... . . . . . . . . ., --
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stability of the developing patterns is greatly increased

by nonhomogeneous boundary conditions. Also once a pattern

is established it is very persistent with respect to quite

large changes in the parameters. This robustness is a new

feature in reaction-diffusion patterns and has far-reaching

implications as regards the applications to biology. For

example, we have constructed prepattern models for chick

limb chondrogenesis and for Lepidopteran wing ocelli forma-

tion which may explain a number of experimental results,

and which suggest new experiments. (We are in fact current>

interacting with experimentalists on the chick limb model.)

Regarding the simulations, we have constructed parameter

space "maps" which show the effect on patterns of varying

various parameters. The equations are intrinsicially

difficult to solve (they are very stiff), and each map

requires at least 20 computer runs which take 10 to 200

minutes CPU time each.

2. Travelling Wave Models

Another large class of phenomena in biology are thosc,

which exhibit travelling waves, epidemiology providing nvI

examples. We have developed a simple model fcr the snr,,:

of a rabies epizootic among foxes. The model equations ciir.

;S S
3= rS(l - S

l_ = oIS - I + DV21
;t

where S and I are the population densities of :u:,'

and infected foxes, r is the b rth rate, K i:; t-

ing capacity, I is a measure ot: the infecti ,]:,11-',

SNddXi .NMNWJAO'J IV U J19 tiudi

.
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We have considered one and two space dimensions in simul-t-

tions, but our analysis holds for higher dimensions. For

simplicity we restrict the parameters in (1) so that there

is only one steady state, a, v, which we use as initial

condition for perturbation analysis.

We are interested in creating a specific pattern or

sequence of patterns by a continuous change of the parameters;

moreover, we demand robustness of these patterns with respect

to perturbations in any parameter. For homogeneous boundary

conditions, i.e. u - u 0 or = 0 or + k(u - i) = 0,

the standard linear analysis of (la) gives conditions cn y, .;,

f and g for diffusive instability (see e.g. Murray 1981).

Extending this analysis and with the aid of simulations of (1),

we have shown why homogeneous boundary conditions produce a

model system sensitive to perturbations; furthermore, the

importance of the number of space dimensions was demonstratc.'.

We have also shown how to adjust the parameters to excite

selectively single modes, i.e. eigenfunctions uk of the

Laplacian operator:

2 2(2
Vuk + k2Uk = 0

on Q with homogeneous boundary conditions on a2.

We have also considered nonhomogeneous boundary coni-

tions, i.e. u = ub / a, so that the boundary acts as a

source or sink of the morphogens. At the same time

biological evidence was reported in the literature ,u;L1'i, --

ing these boundary conditions are plausible (see Mcini .':

for discussion). Results obtained indicate thses heoliP '

cond It on. s.hould produce much more rebux, t .:;t.:ems , .,Ini ,

numerical simulations confirm these prvdi :tion: . 'Il

ISNJdX:i IN3AN.3AO9 LV UJ i ,UUUdJH
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B. BIOLOGICAL SCIENCES

The following is a summary of the work that has been

done. Work on all the problems is continuing.

1. Morphogenesis Prepattern Models

The formation of biological patterns from homogeneous

tissues is of paramount importance in understanding morpho-

genesis. Reaction-diffusion models were first applied by

Turing (1952), and have recently found many applications,

e.g. Murray (1981), Meinhardt (1978, 1983), Kauffman et al.

(1978), etc. However, except for simple gradients, the

patterns produced by these models are very sensitive to

perturbations in domain shape, size, boundary and initial

conditions, and other parameters.

We have studied the Thomas reaction-diffusion equations,

Thomas (1975), as a general model for morphogenetic pre-

patterns with chondrogenesis in chick limb bud (see Wolpert

1977 for biological background) and ocelli formation in

Lepidopteran wings (see Nijhout 1980) as particular cases.

The model equations are

u V2u + Yf(u,v)

(Ia)

av S 2v + yg(u,v)
~3t

with

f(u,v) = u0 - u - a 2
l+u+ku

(lib)

g(uv) = (X(v0 - v) - uv

I +u+ku 2

on some domain Q with appropriite boundary codit flfl:.

?."AdX4 i VJ3N^3AOD IV UJII#UUddJU
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' :' .r, :IV(y) - y
oX 2

in 0 < x < 1, 0 < y < 1, where V(y) can change sign.

Eigenfunction expansions for such problems lead to interesting

. .questions of completeness which we have investigated. The

implications of such analysis for finding an efficient

numerical scheme are currently being studied.

I
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S

certain behaviour and confirm the accuracy of numerical

programs. Numerical solutions extend the range of under-

standing of heat transfer into the required areas of practical

concern.

We have developed methods for the accurate and efficient

solution of nonlinear heat equations. These methods can

find the heat flux as accurately as the temperature itself.

Moving boundaries for two-phase materials can also be handled.

For accurate modelling the diffusivity of the material

of interest needs to be experimentally determined, and fairly

accurately. The glycerin/air test has been used to determine

the diffusivity of a layered material. We have numerically

simulated the response of a two-layer medium in this test, and

outlined a procedure for evaluating the diffusivities of each

of the two layers from the experimental output.

(ii) Soil Deformation

A new project has arisen from modelling soil behaviour.

The work involves developing a coupled set of hyperbolic/

elliptic differential equations, mildly nonlinear in the

elastic zone, and very nonlinear in the plastic zone, of

soil deformation. A major difficulty lies in understanding

the boundary conditions and the ensuing singularities in the

solution. A numerical program has been developed and w.ill

be compared with experiments being run in the Engineerin,.-

Department.

(iii) Counter-Current Problems

As a result of studies of counter-current heat c:vchin"--,

and other industrial devices, we have become intere!,'tl ill

problems typified by

.. dX INIVANWIAO'J iV U(JIIUUUdJU
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between the continuum of steady states which are possible

under critical conditions.

(v) The porous medium equation mentioned in 2(ii) also has

free boundaries at which u = 0 when m > i. One feature

of such an equation which has both mathematical and physical

interest is the existence of a "waiting time" before the free

boundary (i.e. the boundary of the region where u(x,t) > 0)

begins to move. By constructing specific similarity solu-

tions and using comparison theorems, it has been possible to

obtain results about the existence and length of the waiting

time for general initial data, and further conjectures have

been made which still await proof.

(vi) As a result of the research into free and moving boundary

problems carried out here since 1972, researchers from Oxfcrd

have been involved in the organisation of a series of inter-

ri-ciplinary international conferences in the subject,

involving both theory and application-. ile first of the. -

was in Oxford in 1974 and this was followed by Gatlinburg

1977, Durham (U.K.) 1978, Montecatini (Italy) 1981, and now

Bordeaux 1984. The U.S. Army has generously supported thee

conferences and participated in many of the discussions.

4. Numerical Methods

(i) Heat Transfer in Turbine Blades

Heat transfer preformance in turbine blades is of vital

concern to aircraft engine designers, and an understandini

of this requires an ability to solve the nonlinear diff ti!;,i

equation (with time-dependent coefficients) in at, ll::;t.

space dinhnsin.,;. Approximate' ana]ytia'i :l utl I

,,' 4 iNI!N3AOD IV JJIUUid.W
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occur and to understand the physical significance of the

weak solution of the mathematical model. Some other

research on weak solutions of Stefan problems in thin layers

(motivated by oil extraction problems) has also been carried

out.

(iv) Thermal Runaway with Phase Changes

Thermal runaway is here defined as heating of a host

medium by a foreign body as a result of conversion of

mechanical to thermal energy in a way which does not decrease

with time. It is important in a number of practical applica-

tions including friction welding, stick-slip motion in earth-

quakes and meltdown of nuclear reactors; it may also be a

mechanism for the motion of magna or ore bodies under the

action of gravity. In several of these situations, the

host medium should really be modelled as a fluid whose temper-

ature decreases exponentially with temperature, the temper.,:

rise resulting from friction caused by the applied force.

These models are unwieldy to analyse even in the asymptotic

limit of rapidly varying viscosity. The current study

concerns the simulation of such flows by Stefan problems in

which the host medium melts to a constant viscosity liquid

at a prescribed temperature. In appropriate paramete.r

regimes, the motion of the molten layer can be analysed

S.. using lubrication theory and the resulting nonlinear

diffusion equations enable a new kind of criticality to 1,h,

defined in which steady motion can only occur when a cortatin

prescribed force acts on the foreign body. Larger or -mall-1v

forces result in indefinite heating or cooling rest'L't iv,'1V

and a it.biiity analysis is still needed to di.tinji':h

--, X .LN3IVNW3AOD JLV OMflUU dti



for combustion waves, which travel through the porous

medium in response to air being blown in at velocity v.

It has been discovered recently that these combustion

waves cease to exist when v = vcrt and what hapens

cr-

when v > v crit is being looked at currently.

(iii) Stefan Problems

The problem of alloy solidification has been studied

intensively during the past decade but remains largely

unsolved. The principal difficulties are the analysis of

the field equations, which are a pair of diffusion equations

coupled through the phase boundary conditions, and the

occurrence of singularities in the phase boundary even when

very simple Stef an type models are adopted. No-one has yet

developed an acceptable regularisation procedure for these

simple models, but we have recently carried out an analys;is

of singularity development in Stefan problems in two or more

space dimensions. T"his work has been done in the hope t -at

it will indicate which kinds of regularisation are likelY to

be successf ul. Our results indicate that blow-up can occur

more readily in two space dimensions than in one, and that

cusp development is generic.

Some work on the regularisation problem has also been

carried out under the U.S. Army Grant using the so-called

"phase field" model which smoothes the interface and tcnd ;

to a surface tension model as a certain parameter tends to

z ero.

The existence of muslyor "two-phase" regions in

classical Stefan problems has also been of long-standini~

interest- in oxford and further work has recently Ai

out to c'stahl i sl rigoro.US con ij tions for musib' r '(j

!iNjdx J .jN;1YNJAWU IV 0 JJ1 WWUkj4
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which turns on the reaction above a critical temperature;

the second stage involves the diffusion of oxygen from the

mainstream gas to the site of the reaction in the fibres,

and it is this stage wih controls the strength of the

reaction. This second stage does not appear in con-

ventional flame theory, but is a feature of the present

work.

(b) The simplest physical processes involve heat storage

in the solid, radiation and conduction of heat through the

porous material, heat transfer between the solid and the

gas, and convection of mass and heat by the gas movement.

Highly nonlinear radiation of heat through the combustion

zone, together with heat storage in the solid, help give

porcus medium combustion an entirely different behaviour

to that of conventional combustion theory.

(c) At its simplest the above considerations imply that-

a highly nonlinear coupled set of partial differential

...... equations governs the behaviour of the combustion. These

equations comprise two first-order hyperbolic equations and

one second-order parabolic. An efficient and robust

numerical method for the solution of these equations has

been found, which can be readily extended to more complicc.Le

practial situations. The new numerical method takes only

about four times the effort required to solve a linear he:tt

equation; it copes with the strong nonlinearities by a

Newton iteration.

(d) Thl ;ucceJ:; of the analytical and numerical worY- i:.

by th, qwld nqrcen&;it with e:,I< rin('nt of the nui,,r),.i1 i, ,I,
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-,:,A... "boundary problems by C.M. Elliott and J.R. Ockendon

(Pitman Research Notes in Mathematics, No. 59).

(i) Elliptic Variational Inequalities

We have been interested in the existence and quali-

tative behaviour of solutions of a variational ineuuality

which relates to the suspension of a liquid drop on a soap

film. The modelling of the physical problem was done by

Professor T.B. Benjamin and a research student A.D. Cocker,

and the analysis of the problem by A.D. Cocker, Professor

A. Friedman and Dr. J.B. MoLcod. We have also analysed

the related problem of a rigid body resting on a membrane.

(ii) Combustion in a Porous Medium

Combustion in a porous nedium involves the study of

problems such as fire or flame fronts burning through

loosely packed coal beds or tobacco fibre. We have

successfully modelled this process, in that theoretical

and numerical results agree to about 10% with the coz-res-

ponding experimental results. The key experimental

variables are temperature in the burning material, gas

velocity through the porous material, and products of the

combustion process.

The simplestmodel involves coupled parabolic/hyperbolic

partial differential equations, an area in which little

previous research hasc been done. Some results of the work

are as follows.

(a) The simplest model (to give realistic results) of the

combustion process is a two-stage reaction: the fi.rs;t stcTw

is of the standard Arrhe:nius type, and acts a-' a ;wit h
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