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rescarch workers and publications.

PRP PP S S ST SO~ S PPN, S, LS. WAL YORE WA S S T T




MR/ M T i e S el gy aad ) N W
- LR RN Y S N T T Y T T T T

REPRODUCED AT GOVERNMENT | XPE &4

A PHYSICAL SCIENCES

1. Modelling and Apvlications

Theoretical mechanics is a fruitful source of interesting
nonlinear partial differential equations and our work on non-

linear wave egquations and variational inequalities 1s directly Mﬂﬁ#ﬂ@*

"YYW . Y T . - s oam v e

motivated by fundamental problems in fluid and solid mechanics.
Industrial applications also give rise to many interesting

and novel models and the Oxford Study Groups with Industry

prcvide a continuing source of such applications. These
include a variety of free and moving boundary problems, in froppe
particular phase change problems of various kinds. Parabolic

equations occur more frequently than any others in industrial
applications, and we have lately come across several "forward-
backward" equations in which the time-like direction changes
sign. Counter-current heat or mass transfer devices clearly
lead to such equations. Otner parabolic equations have arisen ﬁ@ﬁﬁﬁ'
in the modelling of combustion in porous media, which also Y
leads to a free boundary problem, and heat flow in turbine
blades,

A particular nonlinear diffusion equation, the so-called

TR TR T T T

"porous medium equation", has received much attention in

Oxford and elsewhere in the past few years. Amongst many .
other applications, we have investigated it as a model for RERAS
tne growth of volcanoes.,

Other equations investigated under this heading have been

S ; 3 u du | Ju

N o T
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P wiiich arises as the limit of a hyperbolic equation describing

underwater cable oscillations, and
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(ii) ;2- [h3(1+cp) 335- = a—z {h(l + cp)}, plk,t) =0,

[

where hi(x,t) wit) + c0x¢(t‘, .o
§ .
2

6 = ¢y = © J_% xp dx,

and

X
c, ™5 + (w= 1) = Fsint+ c3 J-% pdx,
with p=w-1=w=0 at t =0,

which is a model for a tilting gas bearing.

2. Nonlinear Wave and Diffusion Equations Soluble by Inverse

Scattering or B8cklund Transformations

(i) Inverse Scattering

A number of nonlinear wave equations of importance in
application, such as the Korteweg-de Vries equation, the sine~-
Gordon equation and the nonlinear Schrédinger equation, have
the property that they can be solved by the method of inverse
scattering, which in effect reduces their solution to that of
a linear integral equation, the so-called Gel'fand-Levitan
equation, This leads to a rich field of investigation into
the properties of similarity solutions of the equations.
Similarity solutions are frequently important for studying
asymptotic properties of general solutions, and we have been

able to show that the similarity solutions of these equations

are solutions of the class of ordinary differential eguations
(known as the Painleve transcendents) which have the property

that singularities of solutions (other than poles) depend only

TNgh e
on the equation and not on the particular solution. We have FﬁgﬁﬁWﬂ
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viplored this connection between the partial differential
cquations and the Painlevé transcendents and have obtained
important implications for both. In particular, we have
leen able to give a global asymptotic behaviour for solutions
cf the Painlevé transcendents which is comparable with the
sort of results that are normally expected only for linear

eguations.

(ii) The Porous Medium Equation

The simplest version of the porous medium equation is
é% (™1 %%) = %%. Like the K d V equation, this equation
also possesses Bdcklund-type transformations in the case
m = -1, in which case it can be reduced to the linear heat
equation. More generally a method exists for relating
solutions for a value of m = mg to those for m = my - 2,
In the so-called “"fast diffusion" case, m< 1, certain
estimates on the Cauchy data have been derived for the
solution to exist for all t 2 0, and we can heuristically relate

the phenomenon of finite-time extinction in the case m < -1 to

that of finite-time blow-up in the "slow-diffusion" case, m > 1.

3. Analysis of Diffusion Equations

(i) Blow~-up of Solutions

We have investigated the blow-up of positive solutions of

nonlinear diffusion equations of the form
a4, = Au + f(u),

holding in some domain & in R™ with u = 0 on 3R. The
nonlinearity f{u) is typically of the form up(p > 1) or

u . . .
e, The questions of interest are whether the solution blows
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up and, if it does, how it blows up and in particular whether
the set at which it first becomes infinite consists of just

one point or can be a region of non-zero measure. We have "XF'~}
proved a number of results for the problem, under very general .

conditions, including:

(a) the solution does not bluw up near the boundary,
(b) if n =1, and the initial data u(x,0)
has just one "hump”, without necessarily being symmetric about

the hump, then blow-up, if it occurs, occurs at just one

point,
{c) the result (b) can be extended to spherically symmetric
solutions in any number of dimensions,

(d) estimates can be obtained for the rate of blow-up.

{ii) Combustion

We have investigated several problems on combustion theory,
including the existence and stability of diffusion flames, and
the existence and uniqueness of the so-called Liﬁ§n~type

problems (ordinary differential equations which govern the

structurec of the conbustion in the reaction-diffusion zone).

(iii) Critical Sobolev nxponents

We have becen interested in the equation

-Au = P 4 u,

holding in some domain Q in Rn, with u =0 on 3Q.
Here p 1is the so-called critical Sobolev exponent, i.e,

p=1(n+ 2)/(n-2), where n 1is the dimension of the space.

The significance of this value of p 1is that, if p is

less than the critical value, then existence of the solutions
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u: the problem can be obtained by variational techniques,
and this has been known and studied for some considerable
time. I£f p 1is the critical value, then the variational
techniques fail, and indeed, if A = 0 and @ is, say,
cenvex, then it is known that there is no solution. The
introduction of the term Au can however change this,
and Brezis and Nirenberg have recentlv proved that, if
n =3 and  1is the unit sphere, then there exists a
cesitive solution if and only if %nz < A< ﬂ2.
This result is not only intriguing as a problem in
analysis, It also has significance for other fields, such
as isoperimetric inequalities, differential geometry, and
solutions of the Yang-Mills equation. It does seem that
the case of critical Sobolev exponents is unexpectedly
prevalent, and that the more we understand it, the better.
To this end we have studied two aspects of the problem.
First, when n =3 and Q 1is a sphere, a celebrated
thecorem by Gidas, Ni and Nirenberg says that the solution
must be radial, so that the problem is in fact and 0.D.E.
But the Brezis-Nirenberg proof is a P.D.E. proof, and we
have succeeded in rectifying this by giving a simple proof
using O.D.E. methods.
More important is the extension of the result to the
situation where @ is not a sphere but a general domain
in R, While work on this is not yet complete, the
answer seems to be as follows,
Let  G(x,y,') be the Green's function for the operator
-4 + A in Q, with Dirichlet boundary conditions. As is

well known,

BN T N P AP R AP
BRI ] e

. o . T T T T T ettt
LN . SN T A e

P AT A SRR
ket S ST RPN MR JPNY 3R NI WY

U#whxﬁw?
P

i Rt

‘u., ;:._,;}

RS

Sa .
.t Tom LIRICIRC) -'-...-“-‘- - - - - -t . tatLeL - - - - hd
Tatalatatalata et Tt e ety e e T e N et T TR e e e T e



e e T e T AT e Te B
Y WA AP PP SO AT Sl Sl LA A AP

REPRODIICED AT GOVFRANMENT £ XPENSE

G(x,y,x) = 'ﬁl—};‘_—}‘,‘]‘ - h(x,y,A},
wiiere h(x,y,A) 1is a smooth function in Q, with the
properties that

h(x,y,0) > 0, (1)

3% hix,y,A) < 0.

If we consider h(x,x,A), this is then a decreasing function
of A, and so there is, in view of (1), a first value of

x> 0, say AO' such that h(x,x,A) has 0 as its minimum,
at x5, say. Then the range of A for which a solution
exists is A, < A< Al’ where Al is the first eigenvalue
of -A in Q, and further, as X ¢ AO' the solution

tends to a spike-type solution with spike at Xqe

1. Other Analytical Investigations

(1) Existence of Steady Vortex Rings

This is a matter of investigating solutions of the

equation

holding in some domain  in RZ; with u =0 on 2990.

If the function £ is rearranged, (and the application to
vortex motion is that f represents the vorticity which
does always move in two-dimensional fluid motion so as to
remaia a rearrangement of itself), then the solution u
changes and we are interested in the energy IQIAUI2 and
in particular in whether its maximum and minimum (as £ is
rearranged) can actually be attained. We have shown

that the maximum is always attalned through a specific
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rvarrangement of £, but the minimum is attained if and

only if £ 1is of one sign.

(ii) Interior Transition Layers for Elliptic Differential

Equations

Wwe have been concerned with equations of the form

-EZAu = fz(g2 - uz)u, (2)
iy o : . 1 2 .
holding in some domain & in R or R”, with u =10 on
e, Here both f and g are smooth functions of x and
both are strictly positive. Results for the positive

solutions of (2) are well established, but knowledge of
other branches of solutions is scarce. In the present work
positive and negative solutions are pieced together across
lines partitioning the domain and variational arguments are
framed in an attempt to locate these nodal lines (where the
solution vanishes) so that the composite function is every-
where a solution of (2). Heuristic arguments suggest that
there is a close relationship between these nodal lines and

lines L which render stationary the functional defined by

J fg3ds.
L

(iii) Water Waves

We have investigated some properties of solitary waves,
particularly those associated with the Froude number F,
which is given by Fz = cz/gh, where ¢ 1is the velocity
of the wave, g the acceleration due to gravity and h
the depth of the fluid at infinity. The proof that F > 1
for a solitary wave has previously been available only as
the result of a long and complicated argument, but we have

succeaded in giving a short and simple one.

s e . L . PRI
B S PRI




HEPRODUCTD AT GOVERNMENT | Moo

it had also been conjectured that F > 1 implies
cxponential decay at infinity of the height of the solitary

wave, and we have succeeded in proving this conjecture.

{iv) Over-determined Systems

we have investigated a system of partial differential
«wrintions involving five equations in two unknown functions.
The systen arises frem attempts to design the most efficient
furnm of flowmeter for measuring fluid flow in pipes (in
varticular, blood in blood vessels), and was raised at one
of the Oxford Study Groups with Industry. We have succeeded
in answering the problem completely by giving the most

ceneral solution to this over-determined system.

i) biuations of Catalvsis Theorv

In the production of chemicals, catalysts are often
reiuired to convert gaseous reactants into useful products.
Yreuently the catalyst is in the form of a porous pellet
and the gas nust diffuse into the interior of the pellet so
that the catalyst there is fully utilised. Depending upon

3

the relative rate of diffusion and reaction, temperature

r.
13

concentration gradients are set up across the pellet,

and their determination is essential for the calculation

0f the over—-all rate of conversion. The modelling of

these processes within the pellet leads to a set of parabloic
sartial differential equations, and a first step in the study
~I these is to determine whether there exist steadystate

utions, and if so, how many of these there are,

we lnvestigated aparticular one-dimensional steady-

state equation
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with the boundary conditions
v'{d) = 0, vil) =1,

‘he parameters ),R,y being all positive and p a non-
revative integer. This seems to be typical cf mecre
cimeral situations, and we have proved that if the activa-
ti.n energy Y is sufficiently high, then the number of

solutions must be essentially either one or three (depending

uron the other parameters in the problem).

(1) Ineqpalities

There is a famous ineqguality due to Hardy, Littlewood
and Pdlva which states that if h, £, g are positive

functions with h spherically symmetric and decreasing,

Laen
‘ !/ H [ - ( | IS
on(ix -y E)g(y)dxdy s ] hjx-y|)£*(x)g* (y)dxdy,
R ARM R xR"

wnere f*, g* are the spherically symmetric decreasing
carrangenents of £, g. We have shown that the inequality
i5 in effect strict unless £, g are spherically symmetric
and decreasing, and this has applications in various vari-
(=10ai situations in proving that the winner in a variational

rroblem has to be spherically symmetric.

5. Free and Moving Boundary Problems

This is an area which has been studied in Oxford for
Aany vears and several different aspects are pbing considered

at the moment. & sumnmary of some of the work done up to

1731 is given in Weak and wvariationa: methads for inoving

L A 2y
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of two. A study in one space dimension of several popular
methods shows this problem is common. The implicit midpoint
rule did the best out of those tested. In general,
efficiency suffers markedly when accuracy is required. Our

model has been submitted for publication.

3. Numerical Methods

For egqns. (1) in gwo space dimenrsions cn arbitrary dcmains
we discretise in space with quadratic isoparametric finite
elements, giving near second order convergence and piecewisc
quadratic approximation of the domain boundary. This trans-
forms the PDEs into a large set of sparsely coupled nonlinea:
ODEs. For the Thomas system the ODEs have a stiffness ratio
in excess of 106. Hence we use a variable-order, variable-
step Gear solver to step through time. Our program, althouyh
quite efficient, takes 10 - 200 minutes CPU time per pattern.

For the rabies model, egns (3), in two space dimensicns
we have used a variable-order, variable-step Adams method
after discretising in space with finite elements. To study
the computed wavespeed in one space dimension we use the
Euler, High Order Taylor, Trapezium rule and lmplicit Miu-
point rule methods. It is common for these methods to
produce waveforms travelling at speeds in error by up to

factor of two,

References
1. K4len, A., Arcuri, P., Murray, J.D., (1983) to appear.
2. Kaplan, C., (cd) (1979) Rabies: The facts, Oxiord
University Press,
3. Kauftuw.n, S., Shymko, R., Trodoort, Ko (1978) Ceaee ey,
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of the disease, y is the death rate, and D is related to
the size of the forays into other fox territories made by the
disoriented infectives. We assume that the normally terri-
torial fox doesn't "diffuse", ignoring the expeditions made
by adolescent foxes striking out on their own. We also
assume logistic growth for normal foxes, and that the incuba-
tion period is unimportant to the overall dynamics. The

equations may be nondimensionalised to give

au _ - Uy
T ru(l k) uv

{(3*)
IV _ _ 2
T ulv d) + Vviu .

We are interested in the speed of propagation of the epi-
zootic, and in ecological strategies for controlling tho

spread of the disease.

A standard phase plane analysis foullcws from a first
integral of the system and gives conditions for the cuisten-e
of travelling waves as well as a lower bound on the wavo-
speed., Further results nave been found using simple encrgy
methods which are useful numerically.

After cstimating the parameters in (3) we turned to
numerical simulations. Rabies will inevitably return to Byt oo
s0 we considoered a domain with the shape of Britain and in+r
asingle rabid fox on the coastline. Travelling waves woe:e
produced, and this simple model suggests optimal struat-ogic.
for control in the form of intensive culling in a small
buffer zonc to contain the outbreak. The strategy is suppoe
by field data (sce Killen et al. 1983, or Kapl.n 1977}).

An interesting numerical problem arose from the e
to compute accurate wavespeeds,  Using standard metheo g

Pwor gpace e hnenn the speesd e an crror by ape b
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20.

stability of the developing patterns is greatly increased
by nonhomogeneous boundary conditions. Also once a pattern
is established it is very persistent with respect to guite
large changes in the parameters. This robustness is a new
feature in reaction-diffusion patterns and has far-reaching
implications as regards the applications to biology. For
example, we have const;ucted prepattern models for chick
limb chondrogenesis and for Lepidopteran wing ocelli forma-
tion which may explain a number of experimental results,
and which suggest new experiments. (We are in fact currentlvy
interacting with experimentalists on the chick limb model.)
Regarding the simulations, we have constructed parameter
space "maps" which show the effect on patterns of varying
various parameters. The equations are intrinsicially
difficult to solve (they are very stiff), and each map
requires at least 20 computer runs which take 10 to 200

minutes CFPU time each.

2. Travelling Wave Models

Another large class of phenomena in biology are thosze

which exhibit travelling waves, epidemiology providing many

examples. We have developed a simple model fcr the spre.:d
of a rabies epizootic among foxes. The model equations ar.
9S - rs(1 - 3) -
T rs(l K) olS
(3)
31 = gIS - ul + DV2I
ot

where $ and I are the population densities of suse el T
and infected foxes, r 1is the birth rate, K 1is th

ing capacity, o 1is a measure oi the infocticunne..
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We have considered one and two space dimensions in simula-
tions, but our analysis holds for higher dimensions. For
simplicity we restrict the parameters in (1) so that therc
is only one steady state, U, ¥, which we use as initial
condition for perturbation analysis.

We are interested in creating a specific pattern or

sequence of patterns by a continuous change of the parameters;

moreover, we demand robustness of these patterns with respect

to perturbations in any parameter. For homogeneous boundary
conditions, i.e. u - 4 =0 or %% =0 or %% + k(u - q) =0,

the standard linear analysis of (la) gives conditions cn vy, 2,
f and g for diffusive instability (see e.g. Murray 1981).
h;ﬁl Extending this analysis and with the aid of simulaticns of (1),
we have shown why homogeneous boundary conditions produce a
model system sensitive to perturbations; furthermore, the

importance of the number of space dimensions was demonstrate.l.

We have also shown how to adjust the parameters to excite

selectively single modes, i.e. eigenfunctions uy of the
RN Laplacian operator:
v?u + k% =0 (2)

on § with homogeneous boundary conditions on 32.

We have also considered nonhomogeneous boundary cond:-
tions, i.e. u = u, # 4, so that the boundary acts as a
source or sink of the morphogens. At the same time
biological evidence was reported in the literaturc susig.ot-
ing these boundary conditions are plausible (sce Meinhnyr foes
for discussion). Results obtained indicate these bounl.oy
condition: should produce much more robust systoms, and oo

numerical simulations confirm these prediction:. The
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B. BIOLOGICAL SCIENCES

The following is a summary of the work that has been

done. Work on all the problems is continuing.

1, Morphogenesis Prepattern Mocdels

The formation of biological patterns from homogeneous
tissues is of paramount importance in understanding morpho-
genesis., Reaction~diffusion models were first applied by
Turing (1952), and have recently found many applications,
e.g. Murray (1981), Meinhardt (1978, 1983), Kauffman et al.
(1978), etc. However, except for simple gradients, the
patterns produced by these models are very sensitive to
perturbations in domain shape, size, boundary and initial
conditions, and other parameters.

We have studied the Thomas reaction-diffusion equations,
Thomas (1975), as a general model for morphogenetic pre-
patterns with chondrogenesis in chick limb bud (see Wolpert
1977 for biological background) and ocelli formation in
Lepidopteran wings (see Nijhout 1980) as particular cascs.

The model equations are

g{- = 7y + Y (u,v)
(la)
%% = BVZV + yg(u,v)
with
uv
f(u,v) = u, - u = g ————y3
’ 0 1+u+ku2
(1b)
uv
g(u,v) = fx(v0 -Vv) -aq

1+u+ku

on some domain 2 with appropriate boundary condition:.
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2
q ay
in 0< x< 1, 0< y< 1, where
.;s.‘,..:;- ~-«.

Viy)

can change sign.
Eigenfunction expansions for such problems lead to interesting

questions of completeness which we have investigated.

The
implications of such analysis for finding an efficient

numerical scheme are currently being studied.
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. certain behaviour and confirm the accuracy of numerical
programs., Numerical solutions extend the range of under-
standing of heat transfer into the required areas of practical
concern.

We have developed methods for the accurate and efficient
solution of nonlinear heat equations. These methods can

find the heat flux as accurately as the temperature itself,

LN

Moving boundaries for two-phase materials can also be handlcd.

For accurate modelling the diffusivity of the material
of interest needs to be experimentally determined, and fairly
accurately. The glycerin/air test has been used to determine

the diffusivity of a layered material. We have numerically

.n‘r_-v,v-,Fvv_ T——

e e simulated the response of a two-layer medium in this test, and

outlined a procedure for evaluating the diffusivities of each

of the two layers from the experimental output.

(ii) Soil Deformation

A new project has arisen from modelling soil behaviour.
The work involves developing a coupled set of hyperbolic/
ﬂﬂu»nvxi» elliptic differential equations, mildly nonlinear in the
: elastic zone, and very nonlinear in the plastic zone, of
soil deformation. A major difficulty lies in understanding
the boundary conditions and the ensuing singularities in the
solution. A numerical program has been developed and will
.§$$Ras«u be compared with experiments being run in the Engineering

Department.

(iii) Counter-Current Problems

As a result of studies of counter-current heat oxchanaes
- and other industrial devices, we have become inteorcestoed in

problems typified by
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between the continuum of steady states which are possible

under critical conditions.

(v) The porous medium equation mentioned in 2(ii) also has
free boundaries at which u =0 when m > 1. One feature
of such an equation which has both mathematical and physical
Zg;%rﬁfvf interest is the existence of a "waiting time" before the free
boundary (i.e. the boundary of the region where u(x,t) > 0)
begins to move. By constructing specific similarity solu-

tions and using comparison theorems, it has been possible to

obtain results about the existence and length of the waiting

time for general initial data, and further conjectures have

been made which still await proof.

(vi) As a result of the research into free and moving boundzary
problems carried out here since 1972, researchers from Oxford
have been involved in the organisation of a series of inter-
"disciplinary international conferences in the subject,
involving both theory and application.. The first of these
:;mwm‘ i was in Oxford in 1974 and this was followed by Gatlinburg

1977, Durham (U.K.) 1978, Montecatini (Italy) 1981, and now
Bordeaux 1984, The U.S. Army has generously supported thzsa2

conferences and participated in many of the discussions.

4, Numerical Methods

5 (i) Heat Transfer in Turbine Blades

Heat transfer preformance in turbine blades is of vital
concern to aircraft engine designers, and an understandinj
of this requires an ability to solve the nonlinear diffusicn
cquation (with time-dependent coecfficients) in at least two

space dinensions, Approximate analytical solution aen e

VacidXd ANAWNEIAOD LV G 3000uddINd




A A e S e S At A M M Aine S M s

14,

occur and to understand the physical significance of the
weak solution of the mathematical model. Some cother
research on weak solutions of Stefan problems in thin lavers
(motivated by o0il extraction problems) has also keen carried

out,

{(iv) Thermal Runaway with Phase Changes

Thermal runaway is here defined as heating of a host
medium by a foreign body as a result of conversion of
mechanical to thermal energy in a way which does not decrease
with time. It is important in a number of practical applica-
tions including friction welding, stick-slip motion in earth-
gquakes and meltdown of nuclear reactors; it may alsoc be a
mechanism for the motion of magna or ore bodies under the
action of gravity. In several of these situations, the
host medium should really be modelled as a fluid whose temper-
ature decreases exponentially with temperature, the temperziu:e
rise resulting from friction caused by the applied force.
These models are unwieldy to analyse even in the asymptotic
limit of rapidly varying viscosity. The current study
concerns the simulation of such flows by Stefan problems in
which the host medium melts to a constant viscosity liquid
at a prescribed temperature, In appropriate parametor
regimes, the motion of the molten layer can be analysed
using lubrication theory and the resulting nonlinear

diffusion equations enable a new kind of criticality to be

defined in which steady motion can only occur when a cartain
prescribed force acts on the foreign body. Larger or smaller
forces result in indefinite heating or cooling respectively

and a stubility analysis is still needed to distinguich
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for combustion waves, which travel through the porous
medium in response tc air being blown in at velocity v.
It has been discovered recently that these combustion

waves cease to exist when v = and what happens

v .
crit!

> . .
when v vCrit is being looked at currently.

(iii) Stefan Problems

The problem of alloy solidification has been studied
intensively during the past decade but remains largely
unsolved. The principal difficulties are the analysis of
the field equations, which are a pair of diffusion equations
coupled through the phase boundary conditions, and the
occurrence of singularities in the phase boundary even when
very simple Stefan type models are adopted. No-one has yet
developed an acceptable regularisation procedure for these
simple models, but we have recently carried out an analysis
of singularity development in Stefan problems in two or more
space dimensions. This work has been done in the hope thart
it will indicate which kinds of regularisation are likely to
be successiul. Our results indicate that blow-up can occur
more readily in two space dimensions than in one, and that
cusp development is generic.

Some work on the regularisation problem has also been
carried out under the U.S. Army Grant using the so-callcd
"phase field" model which smoothes the interface and tends
to a surface tension model as a certain parameter tends to
Zero,

The existence of mushy or "two-phase" regions in

classical Stefan problems has also been of long-standiin

interest in Oxford and further work has rccently boeen carrie

out to establish rigorous conditions for musly regrons
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which turns on the reaction above a critical temperature;
the second stage involves the diffusion of oxygen from the
mainstream gas to the site of the reaction in the fibres,
and it is this stage wh.ch controls the strength of the
reaction. This second stage does not appear in con-
ventional flame theory, but is a feature of the present

SN work.

(b) The simplest physical processes involve heat storage
in the solid, radiation and conduction of heat through the
porous material, heat transfer between the solid and the
gas, and convection of mass and heat by the gas movement.
Highly nonlinear radiation of heat through the combustion
zone, together with heat storage in the solid, help give
porcus medium combustion an entirely different behaviour

to that of conventional combustion theory.

(c) At its simplest the above considerations imply that

a highly nonlinear coupled set of partial differential
equations governs the behaviour of the combustion. These
equations comprise two first-order hyperbolic equations and
one second~order parabolic. An efficient and robust
numerical method for the solution of these equations has

been found, which can be readily extended to more complicate!l
practial situations. The new numerical method takes only
about four times the effort required to solve a linear heat
equation; it copes with the strong nonlinearities by a

Newton iteration.

(d)  The success of the analytical and numerical worbh i shewn
by the good aqreement with cxperiment of the muweryoeal oo nlt
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boundary problems by C.M. Elliott and J.R. Ockendon

(Pitman Research Notes in Mathematics, No. 59).

(i) Elliptic Variational Inequalities

We have been interested in the existence and quali-
tative behaviour of solutions cof a variaticnal ineguality

whicn relates to the suspension of a liquid drcp on a soap

film. The modelling of the physical problem was done by
Professor T.B. Benjamin and a research student A.D. Cocker,
and the analysis of the problem by A.D. Cocker, Professor
A. Friedman and Dr. J.B. McLeod. We have also analysed

the related problem of a rigid body resting on a membrane.

(ii) Combustion in a Porous Medium

Combustion in a porous medium involves the study of
problems such as fire or flame fronts burning through
loosely packed coal beds or tobacco fibre. We have
successfully modelled this process, in that theoretical
and numerical results agree to about 10% with the corres-
ponding experimental results. The key experimental
variables are temperature in the burning material, gas
velocity through the porous material, and products of the
combustion process.

The simplestmodel involves coupled parabolic/hyperbolic
} partial differential equations, an area in which little
previous resecarch has been done. Some results of the work
are as follows.
(a) The simplest model (to give realistic results) of the
combustion process is a two-stage reaction: the first stage

is of the standard Arrhenius type, and acts as a switeh
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