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I. PROGRESS

Progress during the mid-March to mid-June time frame was minimal since
the anticipated incremental funding was not received until mid-June and since
the program was redirected from optical systolic array processor outer product
applications to associative memory applications.

Dr. John Gruninger and Mr. Scott Israel of Aerodyne visited NRL on April
2 in order to participate in the redirection of the Aerodyne effort. This
redirection process was completed on June 21 with a joint meeting of NRL and
Aerodyne personnel at Aerodyne.

It was agreed that Aerodyne efforts for the rest of FY'85 would be
focused on the investigation of iterative algorithms for possible optical
implementation of nonlinear novelty filters. A first cut discussion of
relevant concepts has been forwarded to Dr. Lee and is attached as an addendum
to this report. (See Addendum No. 1)

A report on approximate singular value decomposition techniques for il1-
conditioned matrices was prepared and presented at the OSA Special Meeting on
Optical Computing in Reno, NV. in March. A copy of the vugraph presentation is

attached. (See Addendum No. 2)

II. TFUTURE WORK

Drs. Gruninger and Putnam will continue algorithm development for novelty
filter applications. They will visit NRL during the next reporting period to
present progress to that point.

I1I. FINANCIAL STATUS

Spending for this period (four months) - $14,166
Cumulative Spending (through July 5, 1985) - $59,309,.
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ADDENDUM NO. 1
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- AERODYNE RESEARCH Inc

45 Manning Road /1 i ‘
The Research Center at Manning Park - X
Billerica, Massachusetts 01821~ (617)663-9500 f

|
|
July 15, 1985 |

Dr. John Lee
Naval Research Laboratory
Washington, D.C. 20375.

Dear John,
Here are my thoughts and materials for further efforts.

I have included work in rough draft form on the incorporation of weights
and constraints into projection operators. As I mentioned to you earlier, I
have been working on subspace methods and oblique projection methods for some
time now. The draft on weights shows that weighting can be used to improve
the condition number of a memory matrix. A general method for weight selection
may be of considerable use in making recall less sensitive to noise. The
connection between constraints, generalized inverses of several varieties and
subspace methods is briefly outlined in the material labeled Generalized Inverses
and Constrained Projections. There are some algorithms developed that are similar
to the Greville algorithm for the Moore Penrose Inverse. These should be
implementable in optical hardware. These algorithms have been used for image
reconstruction and restorationm. '

The viewgraph material shows an interesting example of constrained and
weighted projection techniques in use as a novelty filter. This work was done
some time ago for a different purpose and was never pursued. The example filter
expects a spectrum which 1s a member of one of eight classes of compounds or is a
mixture of members of the eight classes. The classes are:

aliphatic hydrocarbons R
aliphatic alcohols 2 ROH
aliphatic chlorides . RCal
aliphatic chloro alcohols " RCIOH
aromatic hydrocarbons P
aromatic alcohols 90H
aromatic chlorides fcl
aromatic chloro alcohols $Cci0oH

The example unknown that was testing the filter was a spectrum of 2-Chloro,
4 Nitro Benzyl Alcohol, an aromatic nitro chloro alcohol. The unknown is similar
to the classes present but differs in having a nitro group. Hence there should be

a novelty.
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Three calculations were performed and reported in the Table on the third view-
graph of the package. The first of the three calculations are for a standard
Novelty filter using a Moore Penrose pseudo inverse. The second calculation
included constraints to keep the components of the estimated spectra positive.
The third calculation included these constraints as well as a weighting based
on the unknown itself. This last Novelty filter is not only nonlinear but also
differs from unknown to unknown.

et AR e a

The first filter finds the Novelty as

V= (1— 3o

where N is the Novelty, U 1s che unknown and O, 1s an Oblique projection for the
kth class. P = 15I‘Ok is an orthogonal projection. This filter is the standard

b Al At

s

linear novelty filter.

The second filter has constraints
A
yv= (/-2 Oe) i
~<
ae 7

1 where OK (( = SK >/ o

The third filter has constraints and is weighted with the unknown

y= (/-3 9,) U

3y
v
o g A g g g & g X g

- A .
- ) R
k;‘ where Q(u ) is a function of the current unknown. 1*
e h
- The table of results gives the lengths of the component vectors of the sub- K
- - spaces. The ""Noise" is the Novelty. The negative numbers appearing for the i
= uncounstrained filter are a result of the filter both adding and subtracting ]
' components to attempt to match the novelty. 4
1

Both the constrained and the weighted and constrained filter do a much better 1

job. Almost the entire unknown spectrum is recovered by the weighted novelty filter. ]

For the unknown normalized to unit length the length of the'noise (novelty) is .93. ;

- 1

Efforts over the next few months will focus on Subspace method of Associative b

L Recall. Key areas of interest include: jiu
"l ° Nonlinear novelty filters. ]
o Introduction of nonlinearity through constraints both on known and ]
-:l‘ unknown. Introduction of nonlinearity through input pattern weighting 1
s of filter. 1
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:

° Investigate iterative algorithms for possible optical 5
implementation of nonlinear novelty filters. "4

Efforts in the Fall will include: E
° Recall from partial pattern matching. d
Develop analysis for effects of noise and near linear dependencies ‘4

on partial pattern matching. Investigate effects of weighting on 1

reducing apparent linear dependencies. J

k

I think this is an important area where analysis is needed. Recent work has
been based on Monte Carlo models. (See G. S. Stiles and, Dong Lih Denq "On the

Effect of Noise on the Moore Penrose Generalized Inverse Associative Memory”,
IEEE TRANS PAM I, 7, 358 (1985)).

I hope this material will be of help when Bob Carter comes to see you. 1
will be in Eglin, Florida Thursday and Friday. I will give you-a call and let
you know how to reach me if you have questions then. I will have difficulty

arranging a trip to NRL until after the lst of August. I hope early in August
will be alright.

Sincerely,

<

Jddn H. Gruninger
Senior Applied Mathematician.
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References on Iterative Algorithms e

Yair Censor o]

Finite Series Expansion Reconstruction Method, Proc. IEEE, 71, 409 (1983). !;i

Arnold lent and Yair Censor

"Extensions of Hildreth's Row Action Method for Quadraéic Programming',
SIAM J. Control and Optimization, 18, 444 (1980).

Ronald Schafer, Russell Mersereau and Mark Richards
Constrained Iterative Restoration Algorithms, Proc. IEEE 69, 432 (1981).

Tommy Elfving

On Some Methods of Entropy Maximization and Matrix Scaling
Lin. Algebra and its Applicatioms, 34, 321 (1980).
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CONSTRAINED PROJECTION OPERATORS

The representation of a class as a subspace of its features does not
alvays contain all of the information that in known gbout the class. PFor
example with spectral classes, the absorbances are always positive, but the
subgspaces spanned by a set of spectra include both positive and negative
absorbances. In order to avoid nonphysical spectral estimates as well as
incorrect classificatiouns, it 4s useful to constrain the absorbances to be
positive. We develop below the projection method for two types of
constraints, inequality coustraints and equality constraints. The constraint
sethods are developed in the framework of constrained least squareg. The

result 1is a set of operators for comnstrained oblique projection.

The solution to the least square problem can be expressed as

atnimize (b-Ax)T(b-Ax)

vith respect to x. The solution Ax 1s givea by

ax = AT T - b
vhere P is the orthogonal projector. The inclusion of coustraizts can be
accomplished using Lagranglan techniques. Constraints of the form Gx = 0,
equality constraints and Gx > 0 inequality constraints will be considered.

The more general coustraints relations Gx > h can be converted to the above by
the transformation x = y + GIh vhere GI is the pseudoinverse of G.

Equality Constraints

The least square method with equality coanstraints can be expressed as
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winimize (b-Ax).r (b-Ax)

subject to Gx = O.

The associated Lagrangian is

L(x,A) = %‘!TA:AI - xTA?b - AGx

A saddlepoint solution of L(x,\) is obtained {f

A?Ax + Arb - GTA =0

Gx =0
and A20

A 1s the vector of Lagrange Multipliers.

The solution x of the constrained problem can be given in terms of the

uncoustrained prodblem as

x = x+ (aTa)"2cT)

vhere A\ is given by

-1 .
A== (6T Ty ox

The solution Ax can be expressed as

.

Ax = A QAT tap = Pgd

..............

.......




-1
vhere Q= 1- WA ™ ] ¢

A bit of algebra will reveal that Q is idempotent and hence a projector.

Q2 = Q and further Pé = PQ ,

Q projects the unrestricted solution x onto the constraint subspace.

The residual includes the unrestricted residual as well as the residual

arising from projection onto the

R - 21— T T
subspace that violates the constraints.

Inequality Constraints

For inequality constraints the optimization problem is

Minimize (b—Ax)T(beAx)
Subject to Gx > 0

Following the method outlined for equality constraints the solution for z and
A are obtained from the solution of

(ATA)X - Arb - GTA =0

Gx > 0

A

"

. e oo , [
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AGx = 0 s
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and A20 ]
."4
-
The major difference between equality and inequality comstraints is that ﬁ
the inequality'constraints need not be active. If x satisfies the constraints 3
io that o
4
!
Gx > C then x = x }
A » 0 is the solution. In general for every component ;1 of x that is 1
1
greater than zero, the corresponding Lagrange multiplier Ay is zero. The

nonzero Aj corresponds to active constraints x; = 0. These correspond to
the unrestricted solutions xjy Vviolating the constraints that 1s Gyxy
£ 0. The nonzero iy are given as before x, A and Py have the same

properties. Q however depends on b, if for example

6x = GAA) AT >0 then Q=1 .

Without loss of generality we can sssume that the first k constraints are
insctive and the remalning l-k comstraints are active. Then G can be
partitioned into [G;G6,]T vhere G, corresponds to the active comstraints and
the nonzero Lagrangian components solved for from

i §

- T,\=1.T, .T:
X == (6,076 6

2!

The projection operates Pq for the coustrained least square problem can be

cousidered as a sum of oblique projection operators, one for each class as in

the case of unconstrained least squares.
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RELATION BETWEEN GENERALIZED INVERSES AND PROJECTION METHODS

A relationship between certain generalized inverses and cotstrained
oblique projection operators was identified. The variety of generalized '

inverses suggests that a large variety of potentially useful projection
operators can be generated.

P

Obl{que projectors and constraints can be considered in terms of
generalized inverses of mstrices. A projection operator can be written as

Py w wl vhere w! is the generalized inverse of w. The selection of
the Moore Penrose inverse

UI - ('T')I 'T - (HTH)-I 'T - A'I"T

leads to the orthogonsl projector fw = wa~!wT, The Moore Penrose inverse

is identical to the true inverse for nonsingular mtrices. The existance of
4=l {s besed on the linear independence of the colummns of wv. The Moore
Penrose inverse X satisfies the following four properties:

AXA = A (1
XAX = X (2)
(ax)T = ax (3)
T ‘v\
(XA) = XA (a). :

An example of & generalized {nverse that does pot satisfy the four conditions ‘
is .

Al « 2T0)E 2T

.......................
............
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This inverse satisfies counditions 1, 2 and 4 but mot 3 as

T T

0= a2t 2t ¢ 0T = z(aT2)t A
Condition (3) is equivalent to requiring A Al to be an orthogonal
projection. The oblique projections themselves contain a generalized
inverse. The inverse Al = (ZTA)I ZT 1s called a 1, 2, 4 inverse.! 1In

this oomenclature the Moore Penrose inverse is a 1, 2, 3, &4 inverse.

The construction of Z as

Z=4-3(3B)" (BTA)

insures that 2TA will be singular only if the subspaces spanned by A and B
are oot independent. If the subspaces are dependent then onme or more of the
columns of Z will be of zero length. Yor nonsingular ZTA, the generalized

inverse (ZTA)I can be replaced with the true inverse in Al and 0
respectively. The Moore Pearose inverse 1s identical to the true iaverse in

,T,.I o7

this case. 1If we let (ZIA)I s Y°2°4A) Y’ and substitite this inverse into O

ve have

T T, 7,.1.T,1T

0 = azTa)! 27 = A%t 172

using the Identity (2Ta)(zTa)™! = 1 ylelds

0 = AT T @) 2T - gty A
vhere Q = (YTZTA)I(YTZTA) is a projection operator.

This result is a special case of the following. A generalized inverse of
a oousingular matrix X is equal to the product of an idempotent operator and

the true inverse

bbb
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and the weighted projection is given by

0, = A(?A)I 2!
0, works directly on unweighted vectors. Thus no additional burden over

unweighted projections occurs once Z and O are formed.
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for [y as was obtained in BEq. (7).

The ugse of the incorrect weights in this

model has not had an adverse effect on the solution variances. The weighting
generates a numerically stable model with a well conditioned normal matrix
vhich is easily inverted. This example offers some hope for the use of
veighting schemes which minimize apparent correlatioo or minimize the
Such
schemes are of obvious use in spectral pattern recognition, where spectra from :
different classes may differ significantly only in a few bands. This can be

{llustrated with a comparison of aliphatic hydrocarbons and aliphatic

importance of measurements which are not useful for classification.

P—

slcohols. Figures 1 and 2 show that several features are essentially

identical and hence useless for classification purposes.

The use of weights in oblique projection techniques is attractive.

generated during a learning step, no additional burden will be incurred.

The

weighted projection method can be formulated so that once the projector is

The

classification step is as simple as in the unweighted case.

The form of the

oblique projection operator used here is O, = A(Z"'A.)Iz'r vhere Z 1s a

basis for the projection omto A which is orthogonal to ¢p- That is 2Tp =

0 for any vector B that belongs to ¢p. When using weighted measurements a 2
is sought which is W orthogonal to ¢p-
constructed from

In the unweighted case Z is

2NN

z-4-33"3" 0
[o
E}: Por the weighted case the de:ired 2 1s
- Zeua-WB(BWB) (ATWB)
p - '
L
g . -1
& Then 2B = A'WB - (BWB)(BWB) (ATWB) = 0
B
-
.

AL FA A S
.

...............




contribute to an increase in the condition number and to the correlation

between class 1 and class 2.

A veighting scheme is used which attempts to minimize the apparent

correlation between classes by minimizing the condition number. The following

diagonal weight matrix will cause the apparent correlation to be zero.

1 ‘ 0
1
o1
.
ve =1
\ *
\ 0 1
\ 21

v is & mxxz diagovnal matrix. The model now uses a weighted least squares
calculation. The matrix (A?HA) is diagonal and class 1 appears uncorrelated

vith class 2. The condition mmber Cond(A:wA) = 1, an absolute minimum. We
have

. 2 0 . -l V2 0 \\
(A"WA) = (A'WA) = \
) - 0 1/2

and

/ xl'l - (A’uu-l AT

!

Since these wveights are not the inverse of the covariance of the ne;surement
errors, the covariance of I must be calculated from Eq. (2) rather than Eq.
(3) and in principle will not yield the minimum variances. However
substitution of the required quantities in Eq. (2) yields the same estiﬁa:e




average vectors for class 1l and class 2 respectively. The m features are
measured with equal precision and the features are uncorrelated. The

covariance matrix of the errors can be expressed as Iy ® ¢?l.

1\

-

1
1 1
1 1\
1 1
Let 4 = \ N (5)
1 .

Even though the m measurements are of equal precision, ouly the first will be

useful in dioginguiahing between the two classes. For the minimum distance
classifier X, > X, 1if b belongs to class 1.

Tor this example
T a =2
AA= (__2 ) (6)

the condition number Cond(A;A) = m~1 and the covariasnce can be calculated
from (4) as

2 7 -1 02 | 2-a
zx = g°(A°A) = zz;:TT 2ma . (7)

The uncertainties in X; and X, &re obtained from the di;gonal elements

2 az a 02
‘u T G T

and are independent of m for large m. The inclusion of a large anumber of

precisely measured but unuseful measurements does not reduce gyy but does

-------------



Gauss' Theorem states an important criteria for selection of weights.
The theorez states that the weight which will give minimum variaoce is the
inverse of the covariance of the measurement errors. That is 1f W = £R°1
then the czjj vill be a minimum. This intuitively makes sense as
measurements with large variances will have small weights and measurements
with small variances will be weighted heavily. The minimum variance
covariance matrix for X is given by '

-1

T.-1,T
Iy = (A'ZpA) (3)
1f I3 = ¢21 then
: -1
I, = o2ata) (4)

X

fp is usually not known and the assumption of it being & constant
matrix ¢21 is ubiguitious since {t shows no prejudice against any
measurenents. The unweighted least squares procedure will give an unblased
estimate of X and if the error covariance is a counstant matrix, the unweighted
least squares will give a minimum variance cstiﬁate of X. The penslty for
using the wrong weight (W » ;371) {s the loss of minimm variance. A
critical question concerning minimum variance is hov sensitive is the variance
to the wrong weight. (Note: no weight at all W = 1 {s the wrong weight if
Ip is not a constant matrix.) The selection of measurements or weighting of
measurezents is a standard approach in.pattcrn tecognition. The weighting or

selection is based more on usefulness in distinguishing classes rather than on
coancerns about measurement error. The general rather than accidental suyccess
of such procedures would require that this type of measurement weighting does

not have s large effect ou the covariance. A simple example lends support to

this idea. Consid = a two class problem and a sinmple minimum distance

Q;ﬁ classifier based on b = Ax where A is m x 2 whose columns ‘a; and a, are the
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WEIGHTED FEATURES AND SUBSPACE METHODS

The incorporation of feature weighting into oblique projectors was
considered. Justification for its use is provided below from a standpoint of
least squares theory. The weighting of feacures is based on the statistical
description of the measurement errors. The assumptions are that the average
values of errors are zero and that the variances and covariances are knowu.
I1f the model R = b~Ax is adequate, the errors, Ry, associated with each row
or measurement will be unbiased. By this is meant that with an ensemble of
repeated measurement of by the set of Ry will have zero mean. Using this
ensemble the covariance matrix of the errors, Iz, can be formed. Por

7 obvious Teasous the covariance matrix is often not known. In any eveat the
- estimate of the errors in the solution vector X is related to the covariance
b matrix, Iz. The ensemble of solution vectors {X;]} has a covarisace matrix

T
- . 1
- Iy = A Ip(A0) R $Y)

vhere Al is the pseudoinverse of A. For unweighted least squares the
inverse is the Moore Penrcse inverse, Al = (A?A)’lA?. For weighted
least squares the pseudoinverse can be written Al = (AIVA)“A:R, vhere W
is the weight matrix. The weight matrix must be positive definite. The
covariance matrix for the solution vector, Iy is in the most general
formulation given by

' -1 -1
I - (a%wa)  (aTw I WA) (ATWA) (2)

It is the diagonal elements of Ig, dzjj, that give the errors associated
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The left and right idempotent operators are the projectors (XIX) and (xxI)

respectively. 1f the Moore Penrose inverse is used the idempotent operators
are the identity operators. '

The projection operators developed for coustrained least squares
applications are also cxpressib;e i{n terms of 1, 2, & generalized inverses.

The problem of minimizing AX = b subject to GX = 0 had the solutiocn Pgb
vhere

aqatayt AT and

-1
Q=1- @ et ) ¢

Sublcituting B - (Ar‘-l) cr and sr -G ’1914' Q -] - a(s'ra)-l sr
vith the 1, 2, 4 generalized inverse (sTg~!) sT,

: Referance
EFf Generalized Inverses: Theory and Applications, Adi Ben-Israel and
bgl Thomas N.E. Greville, John Wiley 1974.
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