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I. PROGRESS

Progress during the mid-March to mid-June time frame was minimal since

the anticipated incremental funding was not received until mid-June and since

the program was redirected from optical systolic array processor outer product

applications to associative memory applications.

Dr. John Gruninger and Mr. Scott Israel of Aerodyne visited NRL on April

2 in order to participate in the redirection of the Aerodyne effort. This

redirection process was completed on June 21 with a joint meeting of NRL and

Aerodyne personnel at Aerodyne.

It was agreed that Aerodyne efforts for the rest of FY'85 would be

focused on the investigation of iterative algorithms for possible optical

implementation of nonlinear novelty filters. A first cut discussion of

relevant concepts has been forwarded to Dr. Lee and is attached as an addendumL

*to this report. (See Addendum No. 1)

A report on approximate singular value decomposition techniques for ill-

conditioned matrices was prepared and presented at the OSA Special Meeting on

Optical Computing in Reno, NV. in March. A copy of the vugraph presentation is

attached. (See Addendum No. 2)

* II. FUTURE WORK

Drs. Gruninger and Putnam will continue algorithm development for novelty

filter applications. They will visit NRL during the next reporting period to

present progress to that point.

L III. FINANCIAL STATUS

Spending for this period (four months) - $14,166 j

Cumulative Spending (through July 5, 1985) - $59,309.
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ADDENDUM NO. 1

AERODYNE RESEARCH Inc.
45 Manning Road
The Research Center at Manning ParkBillerica, Massachusetts 01821 (617)663-9500 i',

July 15, 1985 / :i

Dr.~I Jon e

Naval Research Laboratory
Washington, D.C. 20375.

Dear John,

Here are my thoughts and materials for further efforts.

I have included work in rough draft form on the incorporation of weights
and constraints into projection operators. As I mentioned to you earlier, I
have been working on subspace methods and oblique projection methods for some
time now. The draft on weights shows that weighting can be used to improve
the condition number of a memory matrix. A general method for weight selection
may be of considerable use in making recall less sensitive to noise. The
connection between constraints, generalized inverses of several varieties and
subspace methods is briefly outlined in the material labeled Generalized Inverses
and Constrained Projections. There are some algorithms developed that are similar
to the Greville algorithi for the Moore Penrose Inverse. These should be
implementable in optical hardware. These algorithms have been used for image
reconstruction and restoration.

The viewgraph material shows an interesting example of constrained and
weighted projection techniques in use as a novelty filter. This work was done
some time ago for a different purpose and was never pursued. The example filter
expects a spectrum which is a member of one of eight classes of compounds or is a
mixture of members of the eight classes. The classes are:

aliphatic hydrocarbons R
aliphatic alcohols ROH
aliphatic chlorides RC1
aliphatic chloro alcohols RC1OH
aromatic hydrocarbons
aromatic alcohols OOH
aromatic chlorides OCl
aromatic chloro alcohols OC0H

The example unknown that was testing the filter was a spectrum of 2-Chloro,
4 Nitro Benzyl Alcohol, an aromatic nitro chloro alcohol. The unknown is similar
to the classes present but differs in having a nitro group. Hence there should be
a novelty.

A
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Dr. John Lee -2 -July 15, 1985.

Three calculations were performed and reported in the Table on the third view-
* graph of the package. The first of the three calculations are for a standard
* Novelty filter using a Moore Penrose pseudo inverse. The second calculation

included constraints to keep the components of the estimated spectra positive.
The third calculation included these constraints as well as a weighting based
on the unknown itself. This last Novelty filter is not only nonlinear but also
differs from unknown to unknown.

The first filter finds the Novelty as

4/ow,
where N is the Novelty, U is che unknown and 0 is an Oblique projection for the

kkth class. P E O is an orthogonal projection. This filter is the standard
k k

* linear novelty filter.

The second filter has constraints

~A

where aS~ c

The third filter has constraints and is weighted with the unknown

where 4(.)is a function of the current unknown.

The table of results gives the lengths of the component vectors of the sub-
spaces. The "Noise" is the Novelty. The negative numbers appearing for the
unconstrained filter are a result of the filter both adding and subtracting
components to attempt to match the novelty.

Both the constrained and the weighted and constrained filter do a much better

* job. Almost the entire unknown spectrum is recovered by the weighted novelty filter.
For the unknown normalized to unit length the length of the-noise (novelty) is .93.

Efforts over the next few months will focus on Subspace method of Associative
Recall. Key areas of interest include:

0 Nonlinear novelty filters.
Introduction of nonlinearity through constraints both on known and
unknown. Introduction of nonlinearity through input pattern weighting
of filter.
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Dr. John Lee - 3 - July 15, 1985

Investigate iterative algorithme for possible optical
implementation of nonlinear novelty filters.

Efforts in the Fall will include:

0 Recall from partial pattern matching.
Develop analysis for effects of noise and near linear dependencies
on partial pattern matching. Investigate effects of weighting on
reducing apparent linear dependencies.

I think this is an important area where analysis is needed. Recent work has
been based on Monte Carlo models. (See G. S. Stiles and, Dong Lib Denq "On the
Effect of Noise on the Moore Penrose Generalized Inverse Associative Memory",
IEEE TRANS PAM I, 7, 358 (1985)).

4 I hope this material will be of help when Bob Carter comes to see you. I
will be in Eglin, Florida Thursday and Friday. I will give you a call and let
you know how to reach me if you have questions then. I will have difficulty
arranging a trip to NRL until after the 1st of August. I hope early in August
will be alright.

Sincerely,

J ? .G nger
Senior Applied Mathematician.

JHG:sf
Encl.

Ii"I
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References on Iterative Algorithms

Yair Censor

Finite Series Expansion Reconstruction Method, Proc. IEEE, 71, 409 (1983).

Arnold Lent and Yair Censor

"Extensions of Hildreth's Row Action Method for Quadratic Programming",
SIAM J. Control and Optimization, 18, 444 (1980).

Ronald Schafer, Russell Mersereau and Mark Richards

Constrained Iterative Restoration Algorithms, Proc. IEEE 69, 432 (1981).

Tommy Elfving

On Some Methods of Entropy Maximization and Matrix Scaling
Lin. Algebra and its Applications, 34, 321 (1980).
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CONSTRAINED PROJECTION OPERATORS

The representation of a class as a subspace of its features does not

always contain all of the information that in known about the class. For

example with spectral classes, the absorbances are always positive, but the

subspaces spanned by a set of spectra include both positive and negative

absorbances. In order to avoid nonphysical spectral estimates as well as

incorrect classifications, it is useful to constrain the absorbances to be

positive. We develop below the projection method for two types of

constraints, inequality constraints and equality constraints. The constraint

methods are developed in the framework of constrained least squares. The

result is a set of operators for constrained oblique projection.

The solution to the least square problem can be expressed as

i niize (b-Az)T(b-xj)

with respect to z. The solution Ax is given by

A; A(A TA) IATb aPb

where P Is the orthogonal projector. The inclusion of constraints can be

accomplished using Lagrangian techniques. Constraints of the form Gx - 0,

equality constraints and Ox > 0 inequality constraints will be considered.

The more general constraints relations Gx > h can be converted to the above by

the transformation x - y + G th where GT is the pseudoinverse of C.

Equality Constraints

The least square method with equality constraints can be expressed as



iS

minimize (b-Ax) T (b-Ax)

subject to Cx - 0.

The associated Lagrangian is

1 TT T T
L(x,l) - - A Am - A b -Gx

A saddlepoint solution of L(x,X) in obtained if

TX 0

Cx -O

and A>O

A is the vector of Lagrange Multipliers.

The solution x of the constrained problem can be given in terms of the

unconstrained problem as

Z- + (,LTA)-T

where A is given by

-1
A- (G(A T Af 1GT ) GX

The solution Ax can be expressed as

T -1A A Q(A A) Ab PQb

2



QT -1T T - 1
where(AA) G[G(AA) GIG

A bit of algebra will reveal that Q is idempotent and hence a projector.

Q2 q and further 2 p

SPQ

Q projects the unrestricted solution z onto the constraint subspace.

The residual includes the unrestricted residual as well as the residual

arising from projection onto the

R a A(l-Q)(A TA)- A Tb

subspace that violates the constraints.

Inequality Constraints

For inequality constraints the optimization problem is

Minimize (b-AX) T (b-Az)

Subject to Gx > 0

Following the method outlined for equality constraints the solution for z and

A are obtained from the solution of

(A TA)X - A Tb - T - 0

Gx> 0

3
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XGx - 0

and > 0

The major difference between equality and inequality constraints is that

the inequality constraints need not be active. If z satisfies the constraints

in that

Gx > 0 then X-

- 0 is the solution. In general for every component xi of z that is

greater than zero, the corresponding Lagrange multiplier 1i is zero. The

nonzero xi corresponds to active constraints xi - 0. These correspond to* a

the unrestricted solutions xi violating the constraints that is Gizi

< 0. The nonzero 1i are given as before x, L and PQ have the same

properties. Q however depends on b, if for example

G; TG -1A) A b >0 then Q-1

Without loss of generality we can assue that the first k constraints are

inactive and the remaining 1-k constraints are active. Then G can be

partitioned into [G1G2 ]T where G2 corresponds to the active constraints and

the nonzero Lagrangian components solved for from

T -1 T- T
(-G A A) G) G X

22 2

The projection operates PQ for the constrained least square problem can be

considered as a sum of oblique projection operators, one for each class as in

the case of unconstrained least squares.

4



RELATION BETWEEN GENERALIZED INVERSES AND PROJECTION METHODS

A relationship between certain generalized inverses and constrained

oblique projection operators was identified. The variety of generalized

inverses suggests that a large variety of potentially useful projection

operators can be generated.

Ob .que projectors and constraints can be considered in terms of

generalized inverses of matrices. A projection operator can be written as

Pw - v wT where wl is the generalized inverse of v. The selection of

the Moore Penrose inverse

w I. (WTw)I wT . (wTw)-1 VT .- 1 'WT

leads to the orthogonal projector Pv " w67-w T . The Moore Penrose Inverse

is Identical to the true inverse for nonsingular matrices. The existence of

A-' is based on the linear independence of the column of v. The Moore

Penrose inverse X satisfies the following four properties:

AXA a A (1)

lAX a X (2)

(AX)T a AX (3)

T
(XA) -XA (4)

An example of a generalized inverse that does not satisfy the four conditions

is

I (ZTA) T



This inverse satisfies conditions 1, 2 and 4 but not 3 as

O - A(Z A)I Z T 0 - Z(ATZ)I A
T

Condition (3) is equivalent to requiring A Al to be an orthogonal

projection. The oblique projections themselves contain a generalized

inverse. The inverse AI = (ZTA)I ZT is called a 1, 2, 4 inverse. 1 In

this nomenclature the Moore Penrose inverse is a 1, 2, 3, 4 inverse.

The construction of Z as

Z - A- B(BTB)-1 (BTA)

insures that ZTA will be singular only if the subspaces spanned by A and B

are not independent. If the subspaces are dependent then one or aore of the

colimna of Z wili be of zero length. ?or nousingular ZTA, the generalized

inverse (ZTA)I can be replaced with the true inverse in AT and 0

respectively. The Moore Penrose inverse is identical to the true inverse in

this case. If we let (ZTA) - yTZT A)' YT and substitite this inverse into 0

we have

0 - A(ZTA)I Z T -A(TZTA) TZ T

using the Identity (ZTA)(Z TA)- l - 1 yields

0 - A(TT Z TA)I (YT Z TA)(Z TA) Z - AQ(ZT A) ZT

where Q - (yTZTA)I(yTZTA) is a projection operator.

This result is a special case of the following. A generalized inverse of

a nonsingular matrix I is equal to the product of an idempotent operator and

the true inverse
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and the weighted projection is given by

A

0 A works direc.ly on unweighted vectors. Thus no additional burden over

unweighted projections occurs once Z and 0 are formed.

6



for ZX as vas obtained in Eq. (7). The use of the incorrect weights in this

model has not had an adverse effect on the solution variances. The veighting

generates a numerically stable model with a well conditioned normal matrix

which is easily inverted. This example offers some hope for the use of

veighting schemes vhich minimize apparent correlation or minimize the

importance of measurements which are not useful for classification. Such

schemes are of obvious use in spectral pattern recognition, where spectra from

different classes may differ significantly only in a fev bands. This can be

illustrated with a comparison of aliphatic hydrocarbons and aliphatic

alcohols. Figures 1 and 2 shov that several features are essentially

identical and hence useless .for classification purposes.

* The use of veights in oblique projection techniques is attractive. The

weighted projection method can be formulated so that once the projector is

generated during a learning step, no additional burden will be incurred. The

classification step is as simple as in the unweighted case. The form of the

oblique projection operator used here is OA - A(ZTA)1 ZT where 2 is a

basis for the projection onto A which is orthogonal to #B" That is ZTB -

0 for any vector B that belongs to #3. When using weighted measurements a Z

Is sought which is W orthogonal to #B" In the =weighted case Z is

constructed from

T -1 TZ - - B(BB) BTA

For the weighted case the desired Z is

WA (ATWB)

.0

Then ZF3 ATWB -(BTWB)(BTWB) (ATWB) 0

V5



contribute to an increase in the condition nuber and to the correlation

between class 1 and class 2.

A weighting scheme is used which attempts to minimize the apparent

correlation between classes by minimizing the condition number. The following

diagonal weight matrix will cause the apparent correlation to be zero.

1 0

U1 _
F.

V U-1

0 U-1

v is a m diagonal matrix. The model now uses a. weighted least squares

calculation. The matrix (ATWA) is diagonal and class 1 appears uncorrelated

vith class 2. The condition miber Cond(ATWA) - 1, an absolute ainnmm. We

have

2 0 1 (1/2k WQ, ~ ' (A WA)

and

* 1- (ATWA) ATWb12

Since these weights are not the inverse of the covariance of the measurement

errors, the covariance of X ust be calculated from Eq. (2) rather than Eq.

(3) and in principle will not yield the minimum variances. However

substitution of the required quantities in Eq. (2) yields the same estimate

4
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average vectors for class 1 and class 2 respectively. The a features are

measured vith equal precision and the features are uncorrelated. The

covariance matrix of the errors can be expressed as ER - 2i.

Let A (5)
* S

,1 1

Even though the a measurements are of equal precision, only the first will be

useful in distinguishing betveen the tva classes. For the minimum distance

classifier 11 > X2 if b belongs to class 1.

For this ezample

A A (6)

the condition number Cond(ATA) -u-1 and the covarlance can be calculated

fro (4) as

1 4(1) 2m 2-m
E~ 0j (7) 0k 7-

The uncertainties in X, and X2 are obtained from the diagonal elements

2 2

a 2

and are independent of a for large a. The inclusion of a large number of

precisely measured but unuseful measurements does not reduce oai but does

0 3
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Gauss' Theorem states an important criteria for selection of weights.

The theorem states that the weight which will give minimmu variance is the

inverse of the covariance of the measurement errors. That is if W -R - 1

then the a2 jj will be a minimum. This intuitively makes sense as

measurements with large variances will have small weights and measurements

with small variances will be weighted heavily. The mini mi variance

covariance matrix for X is given by

z- (A TA) (3)

* UERc- 2 1 then

2- (A TA) (4)

-R is usually not known and the assumption of It being a constant

matrix a is ubiquitious since it shows no prejudice against any

measurements. The unweighted least squares procedure will give an unbiased

estimate of X and if the error covariance is a constant matrix, the unweighted

least squares will give a minimm variance estimate of X. The penalty for

using the wrong weight (W * .g - ) is the loss of minimu variance. A

critical question concerning minimum variance is how sensitive is the variance

to the wrong weight. (Note: no weight at all V - I is the wrong weight if

Z1 is not a constant matrix.) The selection of measurements or weighting of

measurements is a standard approach in pattern recognition. The weighting or

selection is based more on usefulness in distinguishing classes rather than on

concerns about measurement error. The general rather than accidental success

of such procedures would require that this type of measurement weighting does

not have a large effect on the covariance. A simple example lends support to

this ides. Cousid - a two class problem and a simple minimu distance

classifier based on b - Ax where A is m x 2 whose columns -a, and a2 are the

2



WEIGHTED FEATURES AND SUBSPACE METHODS

The incorporation of feature weighting into oblique projectors was

considered. Justification for its use is provided belov from a standpoint of

least squares theory. The veighting of feacures is based on the statistical

description of the measurement errors. The assumptions are that the average

values of errors are zero and that the variances and covariances are known.

If the model R - b-Ax is adequate,- the errors, Ri, associated with each row

or measurement vil be unbiased. By this is meant that with an ensemble of

repeated measurement of bi the set of Ri will have zero mean. Using this

ensemble the covariance matrix of the errors, EX, can be formed. For

•. obvious reasons the covariance matrix is often not known. In any event the

estimate of the errors in the solution vector x is related to the covariance

matrix, Z. The ensemble of solution vectors fzi} has a covariance matrix

:-,-I AZ Z 
ZX =A ()

where Al is the pseudoinverse of A. For unveighted least squares the

inverse is the oore Penrose inverse, AZ - (ATA)-IAT. For veighted

least squares the pseudoinverse can be written AI - (AT WA)-1 ATw, where W

is the weight matrix. The weight matrix must be positive definite. The

covariance matrix for the solution vector, ZX is in the most general

formulation given by

T' T'1 -1(

* Ex - (A W&) (ATW ZR WA)(A VA) (2)

It is the diagonal elements of ES, o 2 jj that give the errors associated

with Xj.

6. 1



I (X1) X mX XX

The lef t and right idempotent operators are the projectors (XIX) and (X')

respectively. If the 2loore Penrose inverse is used tbt idempotent operators

are the identity operators.

The projection operators developed for constrained least squares

applications are also expressible in terms of 1, 2, 4 generalized inverses.

The problem of minimizing AX -b subject to GI 0 had the solution PGb

whe re

*. T 3

P P AQ(A A) -1A T and

Q 1 (A TA)-1 C TrGA T A) 1G

* Substituting R ;n (ATA71) GT and ST . G yields Q -1 - K(STH)-1 ST

with the 1, 2, 4 generalized inverse (STE71) ST.

leference

Generalized Tn~verses: Theory and Applications, Adi Ben-Israel and
Thomas N.E. Greville, John Wiley 1974.

3

* * . ..

* .. * .

- - - - - - - - - - **~ . * * - .*x



-7.

z

z

C-Cc

- 0 0

L6) LLU

c.. -L 1. 00

4c =0 .-

o = Cj V ). 0 W.

L&4 LU LJ I

C4)0£~ UU

v. ZLU -0o0

C4.. C.



M G

0 -



I-6

CL,

zz

zz

I- 0 -



U

U.

U) L

LU u

U. I- zU U

C 0

X z .

Z 0 LU

- z z



LU-

UL

t~LU
9x2

ca I.- N

in U.

*z Q7LUt
AC 0

2 LU z
0 I- L

- I- L

ca LU

oi 2 L

A. LU

0U LU

U9 LU Z -

0J LU 0i

sU - '.



cm 0.

LU LU = U W

(D go0g

z z LU4-

LU LU 4 4

319 t-I

4 4 0

z- IMz z

3O 3 0 u

LU (DLU(

qc U, CL 0 0

4c ~ - -
4 t- - UL

U,~~~ -,U 7

UU

II



I---

zj

ULU

0a
LUU

LlLU

LU U2

LU I

- -r LUI

W. 0
LU.4

-i

LU

LL- u,

'C = cn
- I, L6

.1U0

It = Ui

II , L

0 0 =
-. Z Z

LL .

LUdip



LU

z

- IC

- I- -

zz
oL



CJ4 CN

z 0

00
o co

4000

CL0

= z
Cc

UL

dL -C



33NUOS8U

a)
z

0

u0

:
=- - c

1= >

a: 0

z cr
cc L)

-4 Z

U

Sh~o S V Z 0 Sf0o Lo,0 00*0-

BON98OSgU

. . . . .. . . . . . . . . . . . .



9fi0 S8'a OE20 czo s1~ Z' 000-

-1

o: u
0
F- :

Cl C=l a:
w J

:z w,
zz >z C)C

C.) 0 1

o 0

LLJ

ShUO 8E*9 OE*u cz. ST*e L09O 0090-

33NU8O9

. . . . A



.33NHU0OU
IE' LT* I I'*0 TZO bcI 8h

NLUJ

C) cn L
0cLU

LU J
z -

0C)

SLU-

33NUG8OS9U



I-

rp-

33NHUdOSeU

M 0~

a.,,

Ln ..
z cno
= c~

=r

C) LI,

LU LJ

33NUG6,S>



10* _.* 000p*- 000 O

uJL

cnv

z ~
z uL

00* 000 01- 00

33USS2



3ONURIOS9U
0 Wo Wo 00*0 Tea- zoaa- co, -

cn

z -i
0

0LU 
cc

z :z

C LUJ

-i z-L

CFO zoo O'O 000 O'- z~o e ~ z
33NUROSw



CC3%

0 LL

LU

CD)

Lo

BON3H3dJIO 0N033S

dl 1



03

z~U~j
CD 

10

cr-i

0 AXE
LL

BON3ii IO ON033S



=C=

Wk LU

= L

z OC

4c
z I

w am

4c

i 4c

CA z

A. U

u -
wU ZK-

-1z
o- 6 1.-

=L



* FILMED

10-85

DTIC


