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10 A recent survey, although Incomplete, Is ref. 1. It has been shown that a

o high sensitivity ring project would become worthwhile 1f rotation
sensitivities of better than 10(-9) x the earth's rotational rate can be
reached. In this case it can potentially surpass In sensitivity not only the
most advanced techniques for measuring absolute rotation of the earth, V.e.
o Lunar ranging, Lageos, VLBI {(ref. 2), but 1t offers exciting possibilities:

o 1) 1t measures 1n "real time®, directly a component of rotation rate, 2) 1t is
- a Jocal sensor of absolute rotation, 3) 1t can basically be adjusted to be N
most sensitive for slow events (dally-monthly changes of the earth rotation v

vector) or fast events (microseisms, earth quakes, local disturbances of earth

N surface), 4) since it is a local method, the beam can naturally be circulated N
- in vacuum, atmospheric disturbances are eliminated from the beam path. o
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Foreword
. The project of constructing a large laser ring is an end result of
several questions, the more important of them being: a) Why should one
do it? (motivation, expected benefits, comparison with competitive
methods), b) Is the project feasible? (sensitivity, costs,
o compatibility of expected results with a)) c¢) What is the design?
: (technical parameters, stability considerations, output).

Ample literature is available on a). A recent survey, although
incomplefe, is ref. 1. It had become clear that the project would
become worthwhile if rotation sensitivities of better than 10‘9QE
(op="earth rate" = 2n/day) can be reached. In this case it can
potentially surpass in sensitivity not only the most advanced techniques
for measuring absolute rotation of the earth, i.e. Lunar ranging,
Lageos, VLBI (ref. 2), but it offers exciting possibilities: 1) it

measures in "real time", directly a component of rotation rate, 2) it is

)
ES
1

.
.‘
N

a local sensor of absolute rotation, 3) it can basically be adjusted to

be most sensitive for slow events (daily-monthly changes of the earth

]
ke

rotation vector) or fast events (microseisms, earth quakes, local

N

disturbances of earth surface), 4) since it is a local method, the beam
can naturally be circulated in vacuum; atmospheric disturbances are
;i eliminated from the beam path.

The extrapolation to an expected sensitivity of <10‘QQE is done
from data presently available, c¢f the order of 10'5QE (with averaging
times of 1 day), with the theory cf laser noise which is reasonably well
in hand at this time. Much of the data on noise were measured by the
9 author during several summer joos in industry. The 1/f-noise becoming

overseeable (ref. 3), we may now be able to predict <10‘9QE for
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averaging times much less than 1d. Technological improvements in making
high-quality mirrors do continually push back the limits due to white
noise and 1/f noise. The finished ring should become a formidable
sensor of Qg(t), for Fourier frequencies larger than about a reciprocal
year.

This report provides a variety of technical details on the basic
noise limitations in a laser ring and on how to remove obstacles to
reach the required sensitivities; some of the basic calculations on
rings are collected as well as several novel insights into the setting
up are reported. The major results have already been, or are in the
process of being, published.

As a summary of the first year of involvement with the Seiler ring

project, we state that none of the results have yet negated the proposed

performance of it.
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Modeling a large ring resonator gyroscope
Grant No. AFOSR-84-0058
Contract period 1 Feb. 1984-31 Jan. 1985

Report

A
Summary: The results obtained can be divided 1into three

categories: a) A feasibility study with focus on quantum noise and Tow

frequency noise b) Basic modeling of the ring with Gaussian beam and ray ﬁ

Yy,

’
Bog A s

matrices c¢) Technical design: Effect of residual gas in ring on quality

factor and light drag, scanning of beam, effect of misalignment and

S Gid

L
PR

mismatch of source to ring, calibration procedures.

8 el IV IWNN 2 g A

The results show no obstacle yet to the goal of achieving a
sensitivity of rotation rate of better than 10-9 (earth rate) in rings
of 60._‘m2 size. Such a sensitivity which cbrresponds to a change of
earth surface velocity of smaller than 4 cm/day, should surpass Lunar
ranging methods, Lageos methods as well as VLBIl-methods in accuracy,
besides being a *real-time? observational method for earth rotation.
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I. Introduction Zf
=
The content of this report is mainly intended to facilitate the L.
design of large laser rings which act as gyros: They sense, via Sagnac ﬂ
A'ﬁ
effect, the absolute rotation of their structure. Versions with sizes N
—
up to square meters are by now well-known in industry as R(ing) L(aser) !4
A
G(yro)'s. They have been pushed to better performance ever since the )
basic proposal of Rosenthal 4 was published. To guide the reader: two ;j
-
basic equations govern signal and noise of such a gyro: !q
) > >
Signal: Af=(4/2L)AQ 1) 2
. > . . ‘...-‘
This equation translates an absolute rotation rate 2(t) of the ring into E:
a beat frequency aAf (t); ~
)
. 3,.2 o
Noise: Spf=hfo/Q°P 2) o
which represents white quantum noise fluctuations per mode. Hereby, S,¢ :E
is the power spectral density of the output frequency noise af . ‘ﬁ
. hE
This report can be visualized as a study to realize the promise of !1
equations 1 and 2. Most of the results were obtained with a view on :ﬁ
designing the Seiler ring at the AF Academy, but they are of course E;
)
generally applicable to large rings. In certain cases calculations were 11
Ei' done on an active ringlaser. The equivalence in performance of active fj
- -3
- and passive rings 6 justifies such a procedure, although the design A
-
". calls for a "passive" ring at this time.
[j' Whenever a certain topic treated here appeared as a publication,
Eﬁf the latter was substituted for the original text. A rough draft of this
- report was handed out to Seiler lab personnel on 2 Nov. 1984,
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II. Contributions to basic theory of ringlaser
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[I. A. Low-frequency noise in ring laser gyros

II. A. 1 Reprint from SPIE - The International Society
for Optical Engineering (ref. 7)
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2ncy noise in ring laser zyros

4. R. Bilgsr

Abstract

- ~f rin%}aser beat frequenci=s Af{t) =20n3ist azainly
2 30 1/£° noise. Consequently, experia=n<tal rasults
1= Faurier frequency f,

. R a_y is usually somewha®t above ths ja2zn2piin-
. : sty 41121y batw2en Jevices. The most important 1/f
= © -7 riag laser performance. All analyz=21 noise
= % <22 aagnitudes of the noise involved.
-1 7 vrajua2acy noise in sscillators .
.
Lot 32d appearance on IV s2rz22n3, 370223, %
iénsities are plost=2d varsus Foarier .
~funstions) ar2 ess=2nsiilly ibhsent ia ‘E
. aval uatxon of spectra versus Ir2g3u2ncy -
Cas ime r, prop2r account is takaa ~f the E1
arbisrary fraquenzy d=pendsna2}, iiscrace2 -
.- al powsar Sfectral iensity ccmpeonants i
- . 2r ,7 S A3 = 1. Averaging f 1 4
< emmeroth A3/3 = In many publisnad sp2:tra, -
e +.o.-mamcaaso oxhaldl 3iwply oe thtei by smooth spectra i th2 .
. - . La : azoreiaataly obsyed sven in small sampling thear]”‘. .
« . 1t n "2 Swo-33aple variances [Allan variancas). =
no =2xXc2ption. We will restrict our 1liscussion k:
usual extreme spectral purity, such that the t“
in %a2 lasing 3ystem rarely Ll2ads %o 2x2ursiosns ,
iz tne avarags oscillation fraquanzy Sor Wnizh p
a2 particular zase of a riaglaser, . Swas or aor2 &
132 2avity, and the differanc2 fr2quznzy AL i 5
ziang correlatad e=ff2cts on the a2s3:illasions aay

ring laser cutputs show fragquency nois2 waizh is
r zlo2ks. Indeed the irr=ducibl= 1111*un n0i3
lasers {gyros) ovar many hours of sb32rvasion

h 2oamoyn praztice in oascillator wor< w2 prepose4
’ N . . ~

e ‘one-siled) pow2r spechtral i2nsity Sy of the

(or asre) optizal assillations v2r3us Fouriarc

(1)

+ 1,5*1 LTS A

w %n 3n 2quivalant Allan 7arianase?
s30r) = g/t v 22 a_)e® v 4n2a_5/5)7t Ll (2)
A given psWer law in 3 corresponis %o 2 power law in ”A 4nt2 in particular tha% 2 noise

w
SN 5]

2:5ral lanszity proportional %o n_y {flizker acis2) prodases 1 miniaun Allan variance
~3u3 t whiza i3 zalled flizker floor, 2 aain :naracterissic in oscillatory wnizh is 2lWays
#i%a %he pa33iblza 2xseption of aydragen masers”.

'
(4}
~
WU
a3
IS
U
[o"

2y avsid poasibie confusion it aay bde not2d asre that the noise 1°3cus32i n this paper
iz freqasnzy noise wnicn i3 measur21 by 2ounting “h2 sutput aver 1 givaen tiae
int2rval, or alteraataly by zomparing tn2 frequency directly with 2 frejusncy raference.

,_.
<
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4i2 noise is disregarded in practice, altnougn in principle it woull nave to be
inslate?l :n 2 tncrougn digcussion of oscillator noise.

n +ne f£3liswing we present data cbtained from optizal c¢scillators over tne last two
dezades. Taey are shown either as a freguency deviation versus time from a refersnce, as a
powar 3pectral density of the beat frequency, or as an Allan varjance of the beat frequenzy
v2rsas a»eraglng time. Tney form the empirical basis for the 2lassification szhzme above.
We tnen provide scme thoughts on theoreticzal explanations of the observed noise. Finally,
prcjectad ia,a cn noise of large rings are lncluded.

Experimental evidence of laser Trequency fluctustions

Some preliminary information 1is given in ref. 7. Time-Jomain representations are

dicussed in detail in ref. 5 Jne ¢f the earliest documentations of optical frejuency

fluctuations by Jaseja et al ig given in figure 1.

+1

100s - RUN o =015

at
(Hz) or |M W

60 7
at 40 ik
(kHZ)20
or JASEJA-1963
-20 -1
7] o5 ) 1.0 1.5 0 r
t(min 1(d)
Figure 1. Pluctuation of frequency difference Figure 2. Fluctuation of frequency
between two lasers at A= 1.15um difference between two
observed by Jaseja et al. in 1963. countercirculating mcdes at

A= 633 nm in a ring laser
gyro (1982).

The beat note stayed audible ove7 several minutes, i.e. it was of the order of xilchertz.
in contrast %o this is figure obtained on a ring laser in 19282, where <*he beat waz
cbserved not to exceed + 0.7 Hz over 2 1/2 days. The beat frequency has tc be countel cver
a sanpling period of 100 s %o avoid significant guantization errors. The resulting ras-
deviation was ¢ = 0.15 Hz over the whole period.

e
n
T

o

Turniag 8 powar spectral measarements: S versus power input P into a2 mcde was studied
by Xuvatova'9 in 1976 where a PT' dependence was clearly observed over more than a decade of
power, at Fourier frequencie§1where the laser noise was white, fig. 3.

As ea&ly as 1967, 3iegman had already succeeded in separating the noise in a white part
and a £ “-part, with a transition frequen:zy of about 1 kHz, using two separate lasers under
very careful conditions, fig. 4.

T™he following figures /5 through 10) were taken from data on a commercial ringlaser
between 1330 and 1982.

Figure 5 shows a spectrum with a clear 1/f part over one decade. The transitien
freguency is at 5 millihertz. The open circies show the effect of quantizaticn noise as an
additicnal ncise power spectral density far this run with sampling period 12 s. Correcting
f:r 1% zave the white ncise as Indlcated. A different run with 100 s sarpling interval shows
ec:l;siv-ly 1/ ncise, fig. €. The error bars are -he statisti: a‘ "?-‘ arrors of ciusters

100 poinces ‘&2 17%). In fig. 7, a long run (over 3% Zays) shows £ 7% and white noise

,Jr

+x2lugsively. The ncise nas a f~° behavior over an impressive five de~adeq of pewer density,
witn no discerniblL: deviation from equation (1) except possidbly below 7 uHz. Figure 8 gives
2 gqaantitative account of th2 relative spectral purity of ringlaser outputs (SAf/¢ )

ccapared to data cn aydrogen masers given bty Vassot et al.'2 in 1977. Note that the stale
¢f %ne art in bs5h nydrogen amasers and ringlasers has considerably improved since; the
fiicker floors are =stimated to be about two crders of magnitulde lower in both types »f

devices. One of tne better results achieved in rxnglaserq ig given in figure 9, where white
e

rn-ise prevalls at frequencies above 420uHz, with a spectral nsity of sAf = ho
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3 x 137? dz-7Hz; azain, tn2 ovarall spectrum <an very W#all be representa2d by =23qua%sion V).
Not2 2lso that ch2 magnituiss are up Lo a factor 630 differant from those given in Jigura 7.

aé've Allan_variance ver B r i3 given in figure 1J. Jinc2 4ne

i3 xnown”, ths curve o9 versus T can b2 juantitativaly preli
, and v1:e varsa. The flicker floor from figure 7 :0
25 the fli:ker floor from figure 3 is °A/fo = 5.8 x 107

Taeoretical support of =zjuaticn 1)

Whit2 noise term ho

Litsrature abounda at this time in calculations on white noise’E. It i3 2alzculased

&

froa
juantum noise considerations. According to arguaments on quantum fluctuations of a1 systea
far from tarsshold, with complete inversion, at Fourier frequenciss no%t 2xc223ing £ = 53/2
{3 = quality factor of passive optical cavity), 2t quantum-dominated csyx}%arinn frequanzies

£, > ¥T/n, the [one-sided) powsr spaciral density of one oscillation is
10 10s
100Hz<f<2000HZ
®
104
2
Hz (lii-) 3
SAf( Hz ) 1 - Sa¢ Rz /10
102
1011 sIEGMAN-1967 A 1
0.1+ KUVATOVA-1976 . S .
L 1 L
1 10 100 101 102 103 104
PpW) f(H2)
figur2 3. Powar sgpectiral density of a Figure 4. Power spectral density of the beat
ringlaser output at A= 1.15 um. frequency bet#een two lasers at
A= 633 na.
10ohl ll T T T T T T T
100 S (sz) p
At \THz ]
Hz?
SA'(H )
! 4
we-!
100s - RUN
_.1 {
as 10 il L i 1 e 4]
-3 -2 -1 - -
0 0 10 10-3 1072
t(HZ)
f(Hz)
Figure 5. Run wi%h sampling interval 12 3, Figure 5. Run w#i%h 3aapling faterval 130 3.
3howing quan<ization noise as Pure 1/f noise prevails, well
qlgq fr=qunn~iaa ‘apen cirazlas). dozumented via the 2rrar bars of

Tae line £? lwhite no£3°) i3 %“he poiats which ar2 avaragas of
sbtained after sorrection far 130 neighboring individaal power
ta2 juantization noisg. Al 3pectral densities.

lower frequensies, £°° noise

i3 apparent. Udote the 3ize of

the arrors of tne 4ata.
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. 10'25 (..‘l
Ly |
. a0
109 1 oo
\ l..\_l
\e -26 H-MASER -
\ - 10 E '}
. 104 \ E o
- VESSOT et al (1977)
. 12 107271 4
103} 4 3
Sat
H22 j-A4
sar(55) '28
1 -, - —
102 1 0 3
HeNe RING LASER ]
1 -29 .
10 F 10 E
109 -30| BILGER & SAYEH |
t 0 T (1983) 3
[ _SO_R—S-(.ZFNER et al
B r (1980)
0 10° 31 —
10-5 10-4 10-3 10-2 10-1 100 10¢1
10~6 1075 1074 1073 10-2 10! t{Hz)
1(H2}
Figurs 7. Powsar spectral density of 2 9 1/2 Figure 3. Comparison of noise sp=a2tral
jay run. Tne bottom lin2 is the densities of relative fregquency
wiite noise after subiraction of fluctuations of a stat z=0f-tne
quantization noiss. art hydrcgen maser in 1977 ani
a ring laser in 1980.
-6 _ -4 f(Hz) _ _
10 10-5 10 10-3 10-2
r
101
%
~ 100F
N
T b
o~ -
N
z
5
1071
x 1021 101 102 103 104 108
o T{s)
-, : - ] N
o
-, Figure 9. Power spectral density of a Figure 10. Allan variance of two runs on the
< composite S-day run. Equation same ringlaser. The broad aminimun
N {1) fits very well into the indjcates presence of 1/f noise.
¥ | da%a. Quantization noise has
F& been removed [open circles).
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" SAf = nfo/Q P = hoy S L
.'-' et * . - =34 2 L
. n = Planck's constant = 6.63 x 10 VAs“©. ot
X gy
- NE

- At 1iffarence frajuencies large compared to lock-in freguencia2s, the qQuantum noise of <n
;! t¥o {or more] oscillations leading to the beat frequency are considered uncorrelated, 12
- leass in second order, 50 that the power spectral densities =zimply add. For example for

<+ D

..

}} four-mode ring laser the observed beat frequency is expected to have a power spectral :}i
. -_‘.-u
- -
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10d23 ° 3aps 1L gqaality factor and power inpu% are assumed
. oli coaparisons of theory an% experimant are given by Do
3 and Ashdy'’, 2and by 3ilger and oaysh The qualicty ’a~* rof 1
rainsed with r2i3onadble accuracy lerror < 1J€), and tn2 power lost
2a2%21 wisn about tn2 3am=2 ascuracy. in references 7 and 14 %ta2 2e1s
1 was about 30¢ larger than the one calculated tarough 2quation (3).
considered larger.chan tae aeasur=ment 2rrors; incomplate convarsion in

and N, has basn 3suggsstasi. A ratio XN /I =z 3 would azcount for
2. Mor2 pre2is2 :omparisons of white nolce dbservations «with calrulaticr
ant.
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A3 taings 3%2nd at shis time, we may argue that gocd ring lasers operats at "high
regquancies" within a faztor twoe of the white noise given by =3uation (3). This is, in
tself, a ramarkable statzasnt, as very few macroscopic phenomena have beesn shown to possess
uantum-noise liaited benav1or (superconducting levices is another exzmple) In designs of
futur2 riaglaser systema wWe may iadead use 2quation (3) to predizt the "high frequency"
, which aztually may be correct down to frequencies of tne order of a reciprocal
2f. 3. We do not anticipate any dramatic reduction of this level.

W vy

Flicker noise tera n_,

pposed to the term h,, the magnitude of a_; has not been assessed adequately as to
andence on paramsters of tne laser syst2m. Low frequency fluctuations of this xind
2%imes called "bias instabilisy," from ta2 aisguidsd notion that flicker noise may bde
le from dias fluctuations.

12i2% eompariscen Wit aaser

>r 2lo243 {(figur2s 3) woull have us predict flicker floors
actua
izk

c llj sbsarved in ringlasers {(s22 refs. 4 and 7); no dcubdbst
flizx2r ncise i3 responsible.

50K ,2or reasens for flizker noise, quartz cscillators aay serve a3 an
=X 1ag: investigatad a 1 2 variety of quartz oscillators, at resonanze
Ira2qu2nzi2s ! Mz to 25 MHz, and at taaperatures from 1 K to 300 K. They found <th2
ra2mar<able '4 ispandence given in figurs 11

10-20

—
Ae58m2, square
10721 1 A=5145 nm
10-1_
Tt
10722} g b
~ 3 r
z Atpp ¢
2 10723 1 (Hz)
g m"‘)t»
a
w  yg-24 4
,aA“,,, Ta 4t
10725 1 '
10-8 1 d t mo 1y
103 109 107 109
10726 1 r(s)
105 108 107
Q
Pigure 11. 1/f componsnt of power apschral Figure 12, Zstimated Allan 3tandard i=v12-
jensity observad at £ = 1Hz in tion @, of a large ring (58 a1
quartz s3cillatars versus sas and an%icipated sizes of varLa—
qualisty factor of the quartz tions in %he_earth rate at fLiame
zryatala. g2ales of 1273 {1/4h) to 3D
(30 y). T = tidal nffeﬂfs. L=
various lunar effezt 5, T =
Zular resp. Chandler wobbles.
47,21 2xtends over 23ix lezades of 3, 3uggesting 1 fundamental role of the qualisy factor in
T f 2 ise. The ta20r=2tizal apprsaca to 2xplain this depend2nce rests on  the
WPt hnezia that ghonon laxafton time2g r_ in a lattice have a 1/f power 3pectral densi‘y
¢y taema2ives, i.e. Sate = £7 But tne %aalxt factor in a quarhtz cavity i3 related to

p’ viz.
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At this 4time, comparing observed 1/f noises in figures 7 and 3 tensatively wictn
Jagnspain-Jebersfeld law

2 A= -1
fod4fv
equation (6) predizts lower 1/f ncise by about an o~rier of
2vidence of the crucial role of tae laser cavity quality factor
ringlasers with 1lossy elesents in ths cavity Farajay

1/f noise ("bias stadbility") to ringlasers without intracavity

term h_2

te oe guite apparatxs-ifpendent". as opposed o tne

ay produc2 i%. As an 2xaaple, t2aperature flu2tuations a2y pos
tne type

For largs tnermal r=laxation times this spectrum 23sentially provi:
b2 transiuped tarough the temperature sensitivity of tne syster
Wi
o

th an f7> - Jependence. Quantitative estimates of this effect
f tne zonstruction of the laser cavity.

Summary

noise phenomena are well documented in ring lasers: white noijse, 1i2K
m walx noise. The white ncise is r2asonably well linxed <o 3uansum naoise
The 3econd type is tentatively linked to the quality Tacscr of the 2avi
of th2 1losses; the latter play 3 major role in a0st thecrizs trying
in pnysisal £ stems. in ringlasers, a large powsr law dependenc2 on
T to Handel's theory on 1/f noise. The random wal< xain be liaxkel
the support, 2.8. du= to transduced temperature fluztuations.

ct <t O D
s A Ta ey -y

*

conclusions and sugge23tion

om tne forzagoing it is clear that very high Q cavities sheild be attemptei, net only %o

e the quantum noise but even more 5o to dgsrease the 1°f noise. Tae applicaticn of

ideas to large ringlasers, e.g. to the 58 a° ring pras2ntly in the design stage 14t the

er lab (AP Academy, CJ) may prove useful. Estimatad Allan standard deviatisns for suza

ing are shawn in figure 12: At PFourier freguencies of 1 adz down te, 3ay, J.' uiz, the

Jominating role is not played by quintum noise but by 1/f noise. Juantum aoise is expessed

to be negligivle in tnis range. The various peints in figure 12 indicate antizipa<ai

1agnitudes of variations in th2 rotation vector of the 2arth 2t the periods iniizated. Thay
12y then bacom2 visible in the ring output, s1oull the estimated noise materialize.

2
-
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I1. A. 2 Flicker noise in frequency fluctuations
of lasers (ref. 8)

A survey of some experimental data on fluctuations at low Fourier
frequencies suggests a 0‘4 dependence of the 1/f-noise on the quality
factor Q of the passive cavity. We consider this a major information

for designers of ringlaser gyros about long-term noise of such a device.
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Flicker Noise in Frequency Fluctuations of Lasers

M. R. Sayeh and H. R, Bilger
School of Electrical and
Computer Engineering
Oklahoma State University
Stillwater, Oklahoma 74078
Measured power density spectra Sg¢ of frequency fluctu-
ations &f(t) in ringlasers show Ss¢ « 1/v at low Fourier
frequencies v, while quantum noise prevails at higher fre-
quencies. Sdf=(Afg/Q“)(1/v) has been found for the depend-
ence of this 1/v noise (Flicker noise) on the quality factor
0, with As4 (f, =laser frequency). The 0'4 dependence 1is

readily explained by loss (or gain) fluctuations, using a

Van der Pol oscillator.

PACS numbers: 05.40.+j, 06.30.Ft, 42.60.Da, 78.90.+t
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Flicker Noise in Frequency Fluctuations of Lasers

M. R. Sayeh and H. R. Bilger
School of Electrical and
Computer Engineering
Oklahoma State University
Stillwater, Oklahoma 74078
Noise in lasers has been a subject of research for the last two decades

(1]. The simple equation is

Scelv) = (1)
st = 7

(h is Planck's constant, fo=we/2m is the resonance frequency, Q is the
quality factor of the passive cavity, and P is the power loss per mode)
for the one-sided power spectral density (PSD) Sc¢ per mode versus the
Fourier frequency v. Here the frequency fluctuation &6f(t) due to quantum
noise gives an approximate white-noise level which has been verified by
experiment [2,9]. Eq. (1) was generalized by Haken [3].

Let us consider a noise-driven Van der Pol oscillator as a model

for a laser oscillator 747,
w“ 2 . 2
x+[r-(g-YX)JX+mox=N(t). (2)

where x is the mode amplitude, r is energy decay rate, g is the unsatu-
rated gain, y is the saturation parameter, and N(t) is the noise source
due to the spontaneous emission processes.

From this model one can find the PSD of the frequency fluctuations

as [4]
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:;I yrhf N g(v+f )
-. 0 2 0
Seelv) = — (— . +n..1, (3)
- sf 8 (g-r) N, N1(92/91) g(fo) th
.4 ..
4 .
where N; and Np are the populations of the lower and upper laser levels .
respectively, g7 and g, are the level degeneracies, g(f) is the tran- 'f
sition lineshape, and Nth is the number of thermally emitted photons. :J
f? Under 1imiting conditions (Np >> Ny, v << f /0, hf /kT >> 1), Eq. (3) .ﬂ
;{ converges to Eq. (1). :?
;& To realize that noises with Fourier frequency dependent PSD, e.g. gl
‘;: Sse(v) = 1/v (Flicker noise) exist, we consider a noise mechanism from a Ej
fi different source. Let us assume that there exist fluctuations in the id
f loss, r, independent of the existence of white noise, i.e. for the ;ﬁ
purpose of this derivation N(t) in Eq. (2) is set to zero. Now we try !1
to find the PSD of the frequency fluctations due to loss fluctuations. ti
We first establish an approximate solution to Eq. (2) up to first ;j
P
order in p=g-r [5]: ﬂi
RS
) =]
; x(t) = /() 2cos (gugt) , (4) oS
- :":3
- where £ = 1 - u2/16w02, and ¢ = g~-r. The resonance frequency w = £wg :ﬂ
Zi: therefore depends on the loss r, viz. ?j
7 =
=
:
' - -r ‘
w = g - Tg'uTo'— : (5) =
- ]
- -
] 3
KN "4
- "1
~ By making use of g=r in a laser in steady-state operation, we find the {q
~e 3
o fluctuation &f with respect to the fluctuation &r as Qj
L 3
...:: \:;
- 2]
v '
% =
B ",‘1-‘ - - N e e e - ‘.-..\‘ -
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where Q = wy/r.

The PSD of the fractional frequency fluctuation can be related to

the PSD of the fractional loss fluctuation by using Eq. (7) as follows

1

gzat SSr/r(”)

Sse/elv) =
The PSD of 6f/f is related to the PSD of &r/r by the Q~% law. This has
been observed experimentally in quartz oscillators over six decades of
PSD [6]. The proportionality to O'4 thus is independent of the specific
assumptions on the type of loss fluctuations.

Using Handel's quantum theory of 1/v noise [7], one would expect
loss fluctuations to originate from loss processes inside the cavity

whose elementary cross sections of interaction with the electromagnetic

field fluctuate with a 1/v spectrum [8]. In this case we expect

A
Sér‘/r‘(v) T (8)

where A is a constant depending on the nature of the interaction,

Therefore the PSD of the frequency fluctuation per mode can then be

written as
Af2
1
Sgp (V) = —=5 . (9)
64Q

A ring laser gyro (RLG) can be used to study the frequency fluc-
tuations in lasers [9]. Fig. (1) shows a measured PSD of a four-mode

RLG versus Fourier frequency (the RLG was placed in a thermostat with

100 uK temperature deviation). The white noise dominates down to
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6x10-% Hz, Flicker noise (1/v noise) is from 6x10-% Hz to 4x107> Hz, and

)

]/v2 noise predominates at frequencies less than 4x107° Hz. Generally

: |
- "4
3 it has been observed that the PSD of frequency fluctuations of -
» K
[ ringlasers obeys the following relation [10] ;
-

‘li -2 -1 %3
,:_: sz(\)) = h_2 v + h_l\) + hO . (10) ..<
<

We have collected data from different types of RLG, including fig. -

-

1 and we verified that 1/v noise is commonly occurring in most cases. 51

The white noise level, h, in Eq. (11), was ascertained [9]. =

Fig. (2) shows the measured values of h_y, per mode, versus the ::

Y

quality factor Q. The least square fitted line in Fig. (2) gives a i4

value 256 for the constant A in Eq. (10). ;f

The experimental evidence therefore suggests for the 1/v noise L
¢ 3

Sgr(v) =4 % 3 (11) &

sf v -

Q

The 1/f noise in laser systems 1is thus to be considered as a {f

A
fundamental process which affects the output frequency of a laser. 1l/f 11
noise in this model is linked to laser loss mechanisms which are in- '3

flicted upon the photon field. In this sense, it is an even more basic ff

Iy
noise process than white noise. Of course, if in the absence of loss L1
the quality factor goes to infinity, there are no fluctuation effects k%

and correspondingly there would not be any 1/f noise. (There would also ;ﬁ
2

® be no white noise but for different reasons). We note also, that the )
]
= quality factor enters the formula for white noise, Eq. (1), only o
E}f indirectly because spontaneous emission is at the oarigin of white noise. 12
- -}
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This irreducible 1/f noise is of great practical importance, since

- averaging of data containing 1/f noise does not significantly reduce the %a
S

noise level whereas averaging of data containing white noise over a time ;?

T reduces the noise level with 1//T. The 1/f noise is thus a measure of o

o

the ultimate stability of a laser oscillator, as is evidenced by a plot !,

of the Allan variance of any oscillator [8], where the 1/f noise consti- f;

tutes the flicker floor. ;{
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Figure Captions

Figure 1: Typical power spectral density of the frequency fluctuation

§f(t) versus Fourier frequency v. There are three distinct

-

regimes where S«v9 (white noise), Syl (Flicker noise), Say™”

The error bars indicate the statistical accuracy of the ;15

data. This noise spectrum was obtained on ringlaser 42 from a

ek

IﬂA

5-day run with frequency measurements taken every 100 s.

E8

Figure 2: Summary of 1/v-amplitudes versus cavity quality factor Q S
- . .

obtained in three ringlasers, with the best-fitted line ‘v < . :5

A1l ringlasers use HeNe and operate at fg= 474 THz !%

(1=633nm). The error bars of RLG#1 are of the same size as the
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circles.
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II. B. Astigmatic Gaussian beam in plane ring: Stability,
curvature radius of beam, location and size of waist(s)

The fundamental Gaussian beam is the basic signal in optical
circuits, as is the sinusoidal voltage in low-frequency circuits. The
following section reviews application of ray matrices to a closed
optical circuit (plane quadrangle) with the purpose of establishing a
unique complex curvature q along the ring., Radii of curvature and spot
sizes are derived, as well as locations and sizes of waists; the results
are applied to an example (published by the Seiler group) of mode
matching. In the latter case, perfect alignment 1is presupposed.
Various checks have been built in to improve the reliability of the
calculations. The latter make this section a proper base for a computer

program.
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Plane Four-Mirror Ring Cavity:

Waists (Location, Size), Curvature Radii,

Mode Matching

Se

RD' ! D

’ ..’/’

Definitions: Beam travels counterclockwise, CCW. Radius of curvature
of mirror or beam is called positive if concave in the

direction of the beam.

Waist in branch AB: location Sya (off mirror A), size wp., etc.

Radius of curvature of beam entering at A: Ra-
Radius of curvature of beam leaving A: Rp4, etc.
v There are at most four waists in the ring, and either zero or one waist

¥
= in each branch. The length of the branch following A is Sa (positive), g
.-
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etc. The angle between entering and leaving beam at A is 6p etc. Note
that the ring is plane. -
3
. oY
Procedure: Use ray-matrices throughout, and the law of propagation of o
the complex curvature q: »
Qoyt = (A Gin * B)/(C Qin ¥ D) -‘.-:
!;
2
The circuit consists of straight sections and mirrors, For oblique ij;
incidence, a curved mirror is astigmatic, i.e. it has a different focal 5:2
A7
length for sheaths of rays in the plane of the ring (x) and normal to b:
.:' .J
the plane of the ring (y). R
. . . ) o]
Straight section of length S Mirror with focal length f .!1
f 1 S 1 0 .
( o 1 -1f 1

One leg, including first a straight section, and then a mirror:

LR \

P '
/ \ [
N VAR A N W -1/F 1-8/f) .

)

(N ‘

3

):.‘

§ Applying four legs to a ring, starting CCW from ST, at A*:
L

:

]i

[ N ST N B B
P
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-1 -1
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Check whether determinant is 1:
A B
C D

This is a necés.ary condition in a round trip.

=1=AD-8",

Check whether ring is stable; 0 ¢ 1 - (A + D)2/4 ¢ 1

This is required for the uniqueness of the gaussian eigenmode.

Complex curvature q at AY:

From the condition that q is uniquely specified at any point, we get

'ﬁr ["“ .."',‘... . oo "1

ap+ = (A gqpe *+ B)/(C qpe + D) , or %

o

aps = -(D - A)/2C + [B/C + (D - A)2/4 2)]1/2 :

- —
;; (the positive root has to be chosen) .

* 3

?; The root is imaginary, if the ring is stable. Proof: rf

Because of AD - BD = 1, C = (AD - 1)/B, we get Eﬁ

3
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Qs = (A = D)/2C + ([B]/]AD - 1)[-(1 - (A + D)%/4)1%/2,

Also

" -1 -1 2
ﬂl Qae = (D - A)/28 - L1 - (A +0)2/811/2/ B = Ry - j(a/mwpy).

o Location of waist: At the waist the curvature radius of the beam

becomes infinity, R, » = , i.e. g, = j(“wi/x).

By adding a straight section S,p to A, we arrive at the waist, where

2
GswA = GA+ * Syp = Gy = J{mwp/2)

+

o
S
°

,-.ﬁ

A

or Re(aqps + Syp) =0, or Sp = (D - A)/2C = - Re(qp,)

T
.

S A
LLlE WO

Check: a) if SwA > Sp, there is no waist in SA

b) if Syp < 0, there is no waist in Sp.

27

Size of waist: Translation from A to the location of the waist does not

P

change the imaginary part of q, therefore

.
.,

.
t 2

2
mia/A = Im(qp,) = [-B/C - (D - A)2/4c2]1/2,

Radius of curvature at mirror A (before and after reflection)

2'a a'a

From above, we get for the radius just after reflection at A: !Lf

PRSI P T R B R R LI L L . BT VT T L S VR S DU SO D ST

............................................................

...................................
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-1 -1 -1
Re(qpy ) = Ray = (D - A)/2B, or Ry, = 28/(D - A) = [Re(gp, )17}

This can be positive or negative.
Radius of curvature just before reflection at A:

Use ABCD - law:

‘1 _1 '1 '1 _1 _1
RA_ = [fA + (D - A)/ZB] = [fA + Re(QA+ )] = [l/RA+ + l/fA]

Check: Given waist (size and location) and the distance, the following

is true for one branch:

., 2
ga+ + Sya = Ay = J(mwp/2)
-1 2 2
[Rae = J(A/mwg) 171 = §(mwp/a) = Sppe
Equating real and imaginary parts, we get
'1 2 2 2 1)
Ras = -[Sya * Seal(mwg/2)é] , or generally R(z) = #z(1 + ZR/Z

2 2 2
Wy * SwA/(wwA/x)2 , or generally w2(z) = W, (1 + 22/25).

[P Ny ARl
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Here, R and w are the curvature radius and the spot size at a distance z
from the waist, zp is the Rayleigh range, zg = wwg/x, with w, bewg the

waist size.

Spot size at A:

-1 -1 2
Since gpy = Rpp - ] (A/nwA+), we get

-1
was = L)/ (= Im(qpy ))IV/2 = Wy

Waists and radii in other branches:

Two procedures can be applied
1) Recalculate ABCD matrix starting CCW off B, then C, then D. All
the equations above reapply, after all letters A are changed

into B, C, D.

2) Calculate Qg+ Dy transforming g, through one leg with matrix

1 Sa
, or
-1/fg  1-5p/fg
-1 .
g+ = (ap+ * Sp)/(-fg ap+ + 1 - Sp/fg); find Re(ggy),  Im(ags),
-1 -1

Re(agy ), Im(ggy )
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from which all interesting quantities can be evaluated; then proceed to

qc+s and qp+.

Check: Transforming gp, to gas+ should result in the same quantities as

OO R

'
2

before.
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Application: ilode matching paper by Seiler group

(Appl. Opt. 22, pp. 2487-2491, 1933, ref. 9)

Given an almost square, presumably plane, ring with the four sides

78.90 cm (use "cm" to strike a compromise

w wm
@ >
[]] n

78.74 cm in resolution between S and w)

= 78.58 cm

w
(ep]
L}

= 78,74 ¢cm (use A = 632.8 x 10'7 cm = HeNe wavelength in air)

w
(e
Ll

Assume 3 , = 90° exactly.

3 7532 o p |
Find the rest of the geometry 2 : )
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2 2.,
with 6 = (Sp + SD)l/2 = 111,468 cm, calculate 6. through cos-law

NI

‘,-",';:
1 »

2 2
= Sg + S¢c - 2 Sg S¢ cos 8¢ , which gives

R
amaad v

T

e
Tt .
[

= 0
3¢ = 90.233

_ 2 2
Now, 3g = 3 *3' = tan™! Sp/Sy + cos”} ((S¢c - Sg - 52)/(-2555)1,
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which gives

9g = 89.767°.

Since it's a quadrangle, 6y = 360° - 6, - 85 - 8¢ = 89.999°.

The errors appear to be aS ~ 0.01 c¢cm, and the sides ~ 100 cm,

therefore, use rounded values Bp = 90.00°

0g = 89.77°
- 0
8 = 90.23
6p = 90.00° (Trapeze)

Mirror radii (nominally): v.
o
rp=rc = 600 cm  fa,=(ra/2) cos(0p/2)=212.132 cm, fex=(rg/2)cos(8¢/2)=211.706 cm Lj
rg=rp = fAy=(r‘A/2)/COS(GA/2)=424.264 cm, fcy=(r‘c/2)/COS(8(:/2):425.118 cm !1
.‘:j
Round-trip matrix at A: Ei:
;
e

1-(Sc+Sp)/f¢ (Sa*+Sp) (1-(Sc+Sp)/fc)+Sc+Sp A B
Mas = y P,
' r
-(1-(Sc*Sp) /) /fa-1/fc  (1-(Sc*Sp)/fe) (1-(Sp+Sg)/fp)-(Sa+Sg) /f C 0/ as 1]
::i
=
In x-plane in y-plane S
-0
ﬂH
Ny
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+0.2569 +197.817 +0.6299 +256.623

Mas x = Mas,y =

-0.00593 -0.67713 -0.003837  +0.02432

Checks: [Mpy | =1 =[Mpy vi
S, =1 - ((A+ D)%/4) = 0.96 , S, = 0.89.

X

Stable, however, close to limit given by 4 flat mirrors: (S =1).

Calculate Qa+,x> JA+,y » and their reciprocals

QA+, x = -78.694 + j 164.743 QA+,y = -78.917 + j 246.277
-1 ¢ -1 . .
dar,x © -0.002361 - 0.004942 qA+}y— -0.001180 - j 0.003682,

from which the locations and the sites of the waists are:

S

WA, x -Re(qA+’x) = 78.694 cm SwA,y = +78.917 cm

wa,x = [(A/mIm(qpe,)11/2 = 0.05761 cm wy , = 0.07043 cm.
Curvature at A:

RA-,x = +424.95 cm

-1 -1
[fa,x * Relaas )11, Rp. , =+849.59 cm

T a
Ras,x = -423.58 cm = [Re (qpyx)]”! . Rpy,y = -847.47 cm.

Spot at A
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(4o
Way y = 0.06384 cm , WA,y = 0.07396 cm.
Round-trip at C
(since the mirrors at B and D are flat, there can be two waists only)
Exchange S¢ $Sp, Sg ¥ Sp, fa 3 fc, and feed in numbers
+0.2569 +198.052 +0.6284 +256.506
Mo+ ,x = Mo+, y™
-0.005927 -0.67712 -0.003835 +0.02582
Checks: 'MC+,X| =1 'MC+,y| =1
Sy = 0.96 s Sy = 0.89 as above. !ﬂ
qce,x = -78.786 + j 164.941 dc+,y = -78.563 + j 246.3%
i
qc;lx= -0.002358 - j 0.004936 qc;1y= -0.001175 - j 0.003684 !j
SwC.x * 78.79 cm SwC,y = *78.56 cm ,j
We x - 0.05764 cm we,y =  0.07045 cm R,
=\l
Rezx =+ 422.73 cm RC:y =+849.18 cm P
Rea,x = - 424.10 cm Ree,y = -851.30 cm 2
We+,x = 0.063838 cm Wty = 0.07394 ¢cm %n
Note that S, . > S¢, i.e. there is no waist in the branch C, but in T
4
branch D: SwC,x > st,x = SwC,x - S¢c = (78.79 - 78.58) cm = 0.21 cm. '.;
On the other hand, SwC,y <S¢, but actually right at the mirror D. i:
Generally, the tangential and the sagittal waists are not at the same ;i
locations. :;3
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Summary for x-plane

(all data in cm) Ras
SA ~y2y
B 0058 78.90 A
R4.
11——————— Swa —————4]-— +q:<
\
| 78.69
| A \ S»
53 i ! 78.74
7874 |
|
o
L e
'Kc_ - Swe 0.058
4423 | € 779
Ny e ‘
C\ e
R Se -
~42y 78.58 =
Corresponding y-values d
Waist in branch A: SwA = 78.92 cm (about at mirror B), wp = 0.0704 cm ﬂﬁ;
=
Waist in branch C: S, = 78.56 cm (about at mirror D), w. = 0.0704 cm j{q
AN
at mirror A: Ry== +850 cm, Rpy = -847 cm,  wp,=wp_ = 0.0740 cm iu
at mirror C: Rc. = +849 cm, Rcy ==851 cm,  wcye=we_ = 0.0739 cm s
o
o
r
.
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Mode Matching

MO ttél.n’ th R
| rug
L\\::gtr L:/:‘ MWrvor unusf
Wer _f——_‘—#_——__—‘—__~—————~_—___——_—_—_——T\\\\\\\\\\X\\“‘ Wor
—ey ——— 1—__ _ _ B
LASER | _ |
? ’ ', i i
; | 5
! ' ' .
) ‘ . ‘ S
2 0 ZWO‘- Z‘- EH EHOR z
(ref-)

ZiyoL = 4.34 cm WoL = 0.03014 cm x = 126,76 cm ZHOR'ZM=O'29 cm

Iy = IyoL *+ x - (Zyor - Zy) = 4.34 cm + 126.76 cm - (0.29 cm) = 130.81 cm

X + ZyoL * 126,76 cm + 4.34 cm = 131.10 cm

Lyorx =

Wor = 0.05764 cm

(Zyor s evaluated [p. 24881, Zy is measured, Zygg - Zy is evaluated )

To find [, = Lens spot, where the spot sizes, extrapolated from either
side, are equal (note that Z,q., Iy, Zygr are fixed)

2 2 14

)
W= Hot (/g )2(Z) = 2g )% = W 2 + (umiig )2 2] 2=z - ZyoL)

and

]
W% = wop? + (a/mhor)2(Zyop - 20)2 = Wog? + (1/nhgg)? (x - 7)%,
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from which, by subtraction
i 2 ]
HoL? - Wor? = (/m)2L(x = 7)) /Mgp? - (2.2 2)1,

or

WoL? WorZ(Wo 2 - Wop?) = (a/m)20Ng 2(x - 20)% - Wop? 7,2

or
(o *-WoR?) 2 2-2xkig 2 2+1x% g 2+(a/m)2(gy. Hog)? (ge? -wgl) =0,
which is a quadratic equation for ZL.

(Note: ZL = "I" in manuscript; two typos in eq. 2)

Solution of quadratic equation = position of lens with respect to laser

waist.

b - 2 2 2 2
I = I - ZygL = - x Mg %/ (Wgg? - Wo 2) + [x WoL S/ (Wgg? - g 2)

Horizontal case:

With x = 126.76 cm, (note: all in cm)

Worx = 0.05764 cm,

= 0.03014 cm,

=
(o]
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x = 632.8 x 1077 cm,
We get ZL,x =21y = Lo = 77.82 cm
or 2|y = 77.82 + 4.34 = 82.16 cm

Vertical case:

From above, the vertical waist is located Sy, = 78.92 cm CCW from A
(mirror rp), which makes it appear in branch B (Sg4), at Sy -
Sya = (78.90 - 78.92) cm = (-) 0.02 cm, off mirror B (rj). Projecting

this waist to the left of mirror B by 0.02 cm, we get
x = (Zy - 0.02 - 4.34)cm = 126.45 cm, ZWOR,y = x + ZygL = 130.79 cm,

WORY = 0,07043 cm

ZLY = 96.13 cm, or Z y = (96.13 + 4.34) = 100.47 cm.

(If the paper's number Sp - Syp = 0.21 cm is used, one gets Iy =

96.11 cm orZ; y = 100.45 cm, essentially no difference.)

The cylindrical 1lenses for the mode matching are spaced (100.45 -

82.16)cm = 18.29 cm = 2| y - 7 x.

Curvature radii of matching lenses:

-1
fy = R‘l(from laser) - R'l(from ring, x), with




,._
— e

AR
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PR e I
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] 2 (] 2
R(from laser) = 7} x [1 + (nwongL,x)J= 103.96 cm.

2
R(from ring, x) = - (ZWOR,x - ZL,x)(l + ("NOR,x/k(ZOR,x - ZL’X))Z) = -604.84 cm,
or f, = +38.71 cm.
R 1 - -
fy = R™4(from laser) - R~!(from ring, y), with
o 2 ) 24 ;
R(from laser) = ZL,y[1 *("WOL/)\Z),,)J' 117.29 cm.

2
R(from ring, y) = '(ZWOR,y - ZL,y)(l + ("NOR,y /X(ZWOR,y - ZL,y)Z) =-2030.50

cm,

or fy = +110.88 cm

The data agree with those given in Appl. Opt. (paper by Seiler group)
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gf; Di fferent approach to mode matching
F Wa‘isi‘ wai st
:.::. Av////!\\\\\\‘\ 2
):‘ o ff\v e e—————
gj
Given the distance between two waists. and their sizes, calculate dj, ]
dp, f » focus length and location of matching lens. Since the curvature
radius of the beam at a waist is =,
nw2 nwz
! .2
G =i » 4=
The matrix between qi and qp is .
A8\ /1 4 < Lo\ /1 a \_fl-dp/f dprda(l-ay/f)
¢ D 0 1/\-1/f 1/\o 1 -1/f 1-dy/f } o
o
and
t]
Aqp + B (I - #)ay + dy + dp(1l - +)
q2 qu N D = 1 d1 .
cfatl-
or
d d | d o
1 1 2 1 -~
“F (01 92) (1 -47)g = (1 - )qp + dy + dy(1 - ) Oy
-
-
Using the fact the gy, gp are imaginary, we compare real and imaginary ®
parts 25
2 A
Roal 1 22 d; . ]
2al parts - = (- =z w; wy) = d;) + dy(1 - ) to determine f and d; -
* LB
2 e
dl ﬂw2 dz " 2 .:.::
: [ W 1__)_N =
Imaginary parts (1 - 2 ) y ( ra RN ]
-
ST A T e s T e N L L
o e T T e T L e e S




7,00
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4
¥
)
: _ 1 2 2 2 2
b From the latter equation & (- dywy + daw)) = w) - W
. 2 2 RS
- dowyp = dWp ]
- Of‘ f = 2 :Z . v:'_.:
2 Wy = Wy T
Substituting into real part o
‘\ .
() 2 2 2 2 2 ‘ ':]
- 22 W1 W W1 - W -~
N ZWMWy ——7———2=d, +dy - ———5———d, dy

Ll
N
N
‘"
‘e . a

a2 2 2 2 2 2 2
- or =y wwp(wy - wp) = L{dawy = diwp) - dida(wy - wp) 3
: s
] (L = dy + dy) 3
5 2 2 22 2 2 =
3 or LO(L - dl)‘”l - d1w2] = dl(L - d1)(W1 - Wz) = W1W2(W1 - Wz) S

A

2.2 2 2 2 z 2. .0 22,2 2. 22
dylwy - wal + d)[-Lw; - Lwy - Lwy + Lwp] = T3 wiwp(wy - wp) -Lowp,
A

& 2 2 2 2 2. g 222

o or (Wl - Wz)dl - 2LW1 + [L LB + (Wz - wl)(—k—) W1W2] =0,

. Which is identical to the equation above, except for notations.

'\

. Note: The material in the section above has not been submitted for
: publication, as no originality is claimed. However, we consider the

inclusion of the many checks above a considerable improvement over the

pubtished papers in ref. 9, and rather simple for programming.
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II. C. Ray matrix approach to sguare, plane ring with equal mirror
radii: Stability, waist sizes, spot sizes on mirrors, design for
minimum spot sizes on mirrors (minimum diffraction, smallest mirror
size), design for circular spot size on mirrors (near-confocal cavity
for best mode-matching).

The results of the previous section are applied to a highly
symmetric configuration. A square ring has certain advantages: It is
easier to survey than a general ring, the waists are in the center of
the branches (if four equal mirror radii are employed); there are no
"holes" in the stability vs mirror radiMs; manufacturing of four equal
mirrors 1is easier; due to the symmetry, the sagittal and tangential
waists are coincident in the center of each branch; there is also the
pogssibility to produce a circular spot size on each mirror: Since the
injection of an external beam will take place at a mirror, mode-matching
is particularly facilitated in this case by making the backside of the

mirror into a cylinder lens. The beam will then be strictly stigmatic

outside the cavity.

PRI W ST I.

@
Alalal o’

1

‘x4

.
’
e e
RN

3

t
s

@l

’
et

e,
v

.
Lataial

o
e e ey

(]

e
|

1

ettty
S
)
[N




T ——

Stab-1

Ray matrix approach to square, plane ring with equal mirror radii:
ity, waist size, spot sizes or mirror, design for minimum

Spot size on mirrors (minimum diffraction, smalles mirror size),

design for circular spot size on mirrors (near-confocal

cavity for best mode-matching).

Relation between f and R:

In plane of ring (p-plane):

fo

with x =

Since

]

L "
B Y ...|1.1.r. . i ,‘ v y .
x., A N I R .
I T T ] v 8 A
. A A N AT PR I RS S I

SR LN S s am 3
. .

L ) LB
YIRS -,“ e
L . - D P
, L TR T S
i | N vl e At
DR

T

/”A B ’
D

\ d"1(-4 x +10x% - 6x3 + x4) 1 - 10x + 15x2 - 7x3 + x4

the beam "exits"

—
LU

(s-

fs

One loop, starting CCW at st:

o

i o) "1 d\ 1 o} S )
f-11 ( 0 1) \-f'll ’K 0 1, \-
d/f, we get
1 - 6x + 5x2 - x3 d(4

where it enters,

2 (1-6x+5x2-x3) (1-10x+15x2-7x3

d-1(-4x+10x2-6x3+x%)
x0 (1)
xl (- 10 - 6 + 16)
x2 (+ 15 + 60 + 5 - 40 - 40)
x3 (<7 - 90 -850 -1 424 +

x? (+ 1 + 42 + 75 +10 - 4 -

X5 (.6 -35-15+10 + 36

= (R/2) cos 450 = (R/4)\7

Perpendicular to plane of ring

plane):

(R72) V2

= R/(2 cos 45°)

f‘lf)K 0 f)( f'l‘ﬂ( o1

- 10x + 6x% - x3)

+x4)-d(4-10x+6x2-x3)

100 + 24)
60 - 60 -4)

+ 10)

fan e B i e aen b a
4 i
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+x® (+5+7 -6 -5)

x/ (-1 + 1)

+

=]

(This is a good check on numerical errogs)
Note also, that in this case 8= - Cd“/x ()

Stability: (Verdeyen p. 33)
-1 < (A*D)/2 < 1 3

or

."’L’_.'.',
x S

0 < (A+D+2) < 4

So: -1 < (1/2)(A+D) = (2 - 16x + 20x° - 8x3 + %) (1/2) < + 1

Stability of square, symmetric ring
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- Also -1 < (A+D)/2 = [1 - x(x=2) (3-x)/2] < + 1

5K
. A 4
:

From this it is immediately clear that

x <4 (otherwise [A+D)/2 > 1)
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as well as 0 < x .
To insure that inside the range 0 < x < 4 there is stability for any x,

we determine the extrema. 3
S[(A+D)/2)ox = 0 = (1/2)(- 16 + 40x - 24x? + 4x3)

2(- 4 + 10x - 6x2 + x3)

which gives extrema at x =2 : (A+D)/2 = + 1

1l
[}
—

x = 2 +12: (A+D)/2

x =2 - \2: (A+D)/2

- 1 (marginal stability)
ji.e. the cavity is stable evegWhere in the range

0 < x=4d/f <+4

Smallest R, to have stability in p and s: Rpjp = d/ Y2 (7.6m/ f§1= 5.4 m)

;;]
4

Waists: Because of symmetry, they should be in the center between
neighboring mirrors.

To find the round-trip matrix from center to center, do this: fa
St , and start at St L
T )
X
)
o]
3
< - 23 N
! 1\ N/ ’ \ \ <
(ﬁ B! 1 d/2} / 1 0 } /1 d) /1 0 / 1 d/2} 73
‘ | = b : . . \ .
| ' : - =13 /1 ‘ =11/ i . s 4
N LA I B T e W A IS VAR ol LRI B

1

v
+

Again, with x d/f, we get

far Y 1o v 1062 - a3+ XAz (8- 22x + 17x% - 53 4 4/2)(a/2) )

Tr7%YY
AL
o

® ' 0" \\ d"l(- dax + 10x2 - 6x3 + x*) 1 -8x + 10x% - 43 + x%2. .

Here, A'=D'. Also note, that A' + D'=A + D (Stability!)

Check, whether A'D' - C'B' = 1:

(1/2) xO (2) +1/2 x° (-3-80-80-8+2+50+102+22)

"
T
. ’ o ad na Vet

+ (1/72) x! (-16-16+32) +1/2 xb (+10+32+10-5-30-17)

..................................
..........
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o + (1/2) x¢ (+20+128+20-88-80) + 172 x7 (-4-4+3+5) N
‘? + (1/2) x3 (-8-160-160-8+68+220+48)  + 1/2 x8 (+ 172 - 1/2) 9.
+ (1/2) x4 (+1+64+200+64+1-20-170+132-3) =1 ‘
‘ Waists at centers of each branch, w.: 4
h e —
- From previous section: ..,_'.
:i:j R = -28'/(A'-D"); Since A' = D' at each center, it follows that R » =, o
. which indicates a waist. =
- -vJ
;_h Size of waist: -
A 7 2 R
- ' l l / [ r [ L
- ern) wE =80 [1 - (as024] =gy [1 - a2 .
b Since A" + D' = 2A' = A + D, independent of the starting point of the E
round trip. Incidentally, the condition 1 - A'2 50 recovers the 4
P stability condition. "-_-j
! -
At the center of each branch we get thus P
773 ‘
(n1/3) w§ = (4/2)(8-22x+17x2-5x3+x%/2)/ [1 - (1-8x+10x2-4x3+x4/2)2 ] =
which can be factorized, with the result »
T %
-.’>1
- oA
4r wl/n d= (x-2- Y2)(x-2) (x=2+ Y2)/[(1/2) (x-2) (x-2- Y2) (x-2+ \2) Vx(4-x)] ]
)
_:.-'_i
: or 2.
: ? ‘
wo = (a/2n) Vid-x)xo . 2
s )
'-. Within the stability limits 0 < x < 4, the waist w, decreases steadily, ;;'u
. , L
'.“_-: from wy (x » 0) » = (flat mirrors) to Wo (x = 4) = 0; See figure below. T
h - e
. v vi
- Spot size at mirrors, wy: ]
N RN
t" Again, -
4 ™
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(n/2)w§ = B/ [1-(A+D>2/4]=2d(4-10x+6x2-x3)/[(x-z)(x-z- V2)(x-2+12) yx(4-x)1.
Factorizing

wd = 2(xd/n)/ Yx(4=x)

The spot size on the mirrors has a definite minimum versus x = d/f:

(a/ax)[x(4-x)]'1/2 =0 gives x = 2, such that

WMs minimum = VXd/" .

The corresponding waist size at the center of each branch is
Wy = VS(E7E = (17 V2) v;g7; for minimum spot size at mirror ;;3
;i;
Numerical example: X = 514.5nm, d =7.62m sfa
— Wy = 7.90 x 1074 m = 0.8 mn i
—wy = 1,12 x 1077 m ¥ 1.1 mm; o

relation to full width at half-power (see Verdeyen, p. 60)
——

WEWHM = vl]nl w =1.18w .

{y;ﬁi?

Circular beam cross section at any mirror in
square symmetric ring:

First note that the mirror spot size is symmetric with respect to x =

2: Put x' = x - 2, and get
Wl = wh/(ad/m) = [x(1-x/4)1°1/2 = (1-x'2/4)-1/2

j.e w(-x") = w(+x').
Now, the ring is astigmatic, i.e. for a given mirror radius R, the focal

length in the plane of the ring is different from the focal length

normal to the plane.
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From the above it is however possible to choose a mirror radius
such that the spot size at the mirror is circular; simply choose

(d/fp)-2 = 2-(d/fs)
or
d/(R cos 45°/2)-2 = 2-d/(R/2 cos 45°) .
This results in
R =342 d/4 = 1.06d . (d=7.6m>R =8.06m)

To properly mode-match the injected beam, put a cylinder surface on
input mirror and output mirror,

With the above choice of R/d, the spot sizes at the mirrors are wy
= wyp =wy = (Ad/m)1/2 x 1,030 , (only 3% above the minimum

’ ’ spot size possible).

and
d/f

D 2 +2/3

d/fg

2 -2/3 .

Note also that a problem of instabijlity in near-confocal cavities (where

7]
f1 = (d/2) - ¢, but fp = (d/2) + ¢, see Siegman, problem 7 in chpt. 8)

does not appear here: Given the nominal mirror radii R, the actual

ES focal lengths fp and fg are quite removed from f = d/2, viz.

= fo = (4/2)(3/8) ,  fg = (4/2)(3/2),

Li due to astigmatism,

Eij That means that the tolerances of the mirror radii have merely to
E?S be < 25%, to avoid near-confocal instability.
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II. D. Injection errors: Response of ring to offset and tilt
of injecting ray.

In this section, the excursion of a pencil ray off the optical axis
due to tilting and/or offset of an injecting ray is investigated. The
method is reminiscent of orbit calculations in synchrotrons, except that
in this section no wave picture is employed. The solution of the
standard difference equation for rays with such perturbations is
simple. It gives however some insight into the "stability" of a given

ring against injection errors.
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[I. D. Injection errors: Response of ring to offset and tilt of

injecting ray.

(For analytical background see Verdeyen, Chap. 2)

Ray matrix for round trip,

starting at a point ST

Assume an initial offset r, = a, and an initial slope ro=m at ST.

The offset r at any point (off optical axis) on the ring is then given
through a difference e4<2>ron

r(s+2) - (A+D) r(s+l) + r(s) = 0,
where r(s+v) = offset at ST after s +V round trips. The offset
anywhere in the ring is obtained by choosing a non-integer value for s.
Solution: r(s) = rpay Sin (s € +«x)

where Fmax 1S the maximum offset in the ring,

cos 8= (1/2) (A + D) , and
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tan a = [1-(A+D)2/411/2/[(A-D)/2+8r! /r 1.

From r(s = 0) = ry = rpax Sin a , we determine rpa, as

-
1}

nax = (1/8) [(1-AD)rd + B2ri2 + (A-D)B ry ry11/2,

with S = stability condition =  [1 - (A+D)2/4]1/2
(0 <S<1)
The maximum excursion is homogeneous in r, and r;)as it should be. In
the limit of stabi]itxjs + 0, ry,4x diverges.
The same difference equation holds also true for the slopes, viz.
r'(s+2) - (A+D) r'(s+l) + r'(s) =0
with the solution

r'(s) = r'pax sin (s& +x')

cos 8 = (1/2) (A+D) , and

tan o' = [1-(A+D)2/411/2/[(D-A)/2+Cr /rl], so that

Fmax = (1/S) [(1-AD)rs2 + C2r2 4 (D-A)C roryll/2.
Note that since a and a' and the roots are multivalued, there exist in
principle solutions for a« and a' in all four quadrants, given the
initial conditions r, and ry, and the ring matrix. In the following we
will convene rpa., and rpay 8 positive, and a and o' shall be uniquely
specified by choosing them such that r(0) = Fo» (1) = Ary + Brg, as

well as r'(0) = rg, r'(1) = Crgy + Drq-

Special cases:

a) No initial offset, no initial slope: Proper operation.

re = O: Mmax = max = 0, the ray stays on the optical

’
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axis.,
b) No offset, but slope:
o =0, ry = m: Fmax = (8/S)m,  rhay = [(-8C)1/2/SIm
a=0o0r ,a = tan"1(25/(D-A)).

c) Offset, but no slope

. - [} .
. ro = a8, ry = 0: Fmax

[(-8C)1/2/s1a  rhay = (C/S)a
a = tan~l (25/(A-D)), o' =0 or r .

Application to square, symmetric ring with four equal mirrors

IAAAE i

>~

P P

Starting off one mirror, the matrix is, with x = d/f:
[
|
j

/’A B i 7 1-6x+5x2-x3 d(4-10x+6x2-x3)
- ' C D/ ) L a7l (-axr10x2-6x3+x8)  1-10x+15x2-7x34x4
- [ 1-6x+5x2-x3 4(2-x) (x-2+ YE)(X-z-»GE)\
‘ ) \\-(x/d)(Z-x)(x-Z- 12) (x-2+ v2) 1-10x+15x2-7x3+x% /f
where (B/d)x = - dC,
S = (1/2)(x=2) (x=2- V2) (x-2+ Y2)+ [x(4-x)11/2 = [1 - (A+D)2/4]1/2
1-AD = -BC = x(2-x)2(x-2- ¥2)2 (x-2+¥2)2

A - D = (x/d)B = -dC = x(2-x)(x-2- VZ) (x-2+ \'2)
and, as before, AD - BC = 1, with the stability limits
0 <x <4,

For the special cases above

ro =0, rg=m, wegeta=0ornm Fmax = 2dm/[x(4-x)]1/2
2 '= tansl [(4-)/x1V2, 0 pr s 2mg(aex)1/2 i
Fro =3, rp =0 a =tan"l  (4-x)1/2, Mmax = 2a/(4-x)1/2 .?g
a' = 0orr, Phax = (20/)[x/(8-x)1172, i

Generally, the square symmetric ring with equal mirror radii gives

rmax = 2(xr3+d2releaxryry)/2/0x(4-x)11/2, tan o = [x(4-x)11/2(<ry)/(xr +2dr))
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rhax = 20rs2+(xr2/d2)+(rord/d) 1127 (4-x)1/2, tan o' = [(4-x)/x11/2 ri/Lrie(ro/d)].
The offset at a given mirror is given through the relation
r(s) = rpax sin (s 8 +a ), and the slope through
r'(s) = rpax Sin (s 8 + a'),
where now s has a fractional value. Suppose the matrix is evaluated
starting off mirror A in CCW direction. Then
B €A
FA = Tmax Sin (0 & + a)
c 0O rg = max Sin (8/4 +a)
rc = Mmax Sin (9/2 +a)
rp = Fmax Sin (38/4 + a),
during the first round trip. In the second round trip increase s by 1,
etc. Equivalent relations give g: , etc. Three examples are worked out
below. All results are verified by applying the matrix of one leg to
the column vector, i.e.
) L1 0N /Ly /)
. Tl o 1,/ \re )
No initial offset is considered, i.e. with r, = 0, ré = m, we have

)
2dm/[x(4-x)]1/2 . tan a = 0 (o = 0 or 1)

where v is the vth corner.

Fmax

2m/ (4-x)1/2 , tan o' = [(4-x)/x]L/2

Fmax
1. Closed path after one round trip: 8 = 2 m or cos 8 =1 = (1/2) (A+D)
= (1/2) (2-16x+20x2-8x3+x%) Solutions: x =0, 2, 2, 4

Only x = 2 is inside the stability limit: confocal

x = d/f =2 =dm, «a =0 or =

* "max
f? m, a' = tan"l(;tl)= tn/4, + /84 + 1

)
* "max

r = dm sin (s27) = I'2m sin (s2 = + 3n/4)

r.I
/
(a'=3n/4 to get rp = ro = mand rg = (1-x)m = -m)
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S 0 174 172 3/4 1 N
mirror A B C D A N
r/dm 0 1 0 -1 0 (repet.) i ]
r'/m 1 -1 -1 1 1 2

A11 the values have been checked directly.

Example: d = 7.6 m, m=tanl' = 0.00029

ra=rc =0, rg = -rp = 2.21 x 10'3 meter.
2. Closed path after two round trips: 6 = m or cos 8 = -1 = (A+D)/2;

=

Solutions x = 2+ 12, 2+ V7, 2- 12, 2-)

7

d/f = 2 - )Eﬁ (the other solution corresponds actually to 6 = 3n)

X =
~ max ~ (27 dm, X =0
~> pax = 12 2-12m, o' = tan"1[s (1+ V'2)]
= % 3n/8, £ 34/8 + 1«
r= 12 dm sin (sm), r' = [2 )2- V2msin (s 7 + 51/8)
(rg =m, rg = (1-x)m = (¥2-1)m)
S 0 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4
mirror A B C D A B C D A R
r/dm 0 1 2_ 1 0 -1 42 -l 0 repet::
Pl/mo YZ-1 -(r2-1) -1 -1 -(2-1y /7.1 1 1 s

The offsets are only slightly larger than in the confocal arrangement:
Fmax = (1.08) um

3. Two round trips, but with 8 = 3n

x=d/f =2+ 12 fmax = /2 dn  a=0

r'max = §120 Y2+ /2 m o = tani(/51-1)

=+ /8, £t n/8 +

r = \E?dm sin (s3n), r' = i2 Y2+¥Z rn sin (s3n + 77/8) l1
S 0 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4
mirror A B c D A B C , D A
r/dn 0 0 =12 1 0 -1, Ve, -1 0 repet_j
rt/m 1 -(12+1)  (y7+1) -1 -1 y2+1 -(¥2+1) 1 1 3

The stronger focussing makes again slightly larger offsets: Ffmax = 1.41 dm
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Maximum offset in square symmetric ring due to
injection errors: initial slope m, initial offset a
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The figure gives an impression of the expected maximum excursion

due to offset (a# 0, m=0) and due to tilt (m#0, a=0): Going towards the
strong focussing limit x » 4, the excursions diverge. On the other
side, for weak focussing (x + 0), only a tilted ray diverges. It is
quite obvious that from the point of view of minimizing effects of

injection errors, intermediate stability figures are to be sought.
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ﬁi modes (section II.F.); the resulting pulling effects depend on amplitude
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o [I. E. Resonant frequencies of Hermite-Gaussian modes in a ringlaser S
Ig Although the working modes in a ring laser gyro are fundamental E:
. Gaussians, a knowledge of the higher-order eigenmodes is important for ff
é design purposes. Imperfect injection into a ring excites higher-order ;;
| -

o and frequency separation of these modes.

Collins' theory (ref. 10) is applied to a square-shaped ring with -
zero, one, two, four equally curved mirrors (in any one of these four
cases, the other mirrors are plane). Simple formulas emerge which are

useful for design.
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Resonant frequencies of Hermite-Gaussian modes in a ringlaser

L BN

This section presents a general formula for the resonance
frequencies of a given resonator with negligible apertures and symmetric
focusing elements with respect to two normal planes. An astigmatic,
plane, four mirror resonator with spherical mirrors falls in this f’
category. The formula is derived in ref. 10. A configuration is sought L
whereb) proper choice of mirror radii the frequency difference of those E;b

modes to the fundamental mode iS maximized, for minimum interaction. .ji%

The resonator mirrors may be replaced by thin lenses. The
equivalent focal length of a thin lens depends on mirror curvature

radius R and the incident angle of the beam. This is shown in Figure 1. 7!1
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For quadrangular resonators, the resonance frequencies are generally 10

f = (¢/L)[g + (m + O.S)GX/ZW + (n + 0.5)0y/21r] (1)

The parameters are

speed of light in vacuum (the resonator operates in vacuum)

O
"

optical distance coefficient (round-trip path length)

—
1

axial mode number, m, n = transverse mode numbers.
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o = arccos (v u=Xxory) (2)
oulN

o1 <(1/2)(1/ry = [0, (1/I0D), (3)

o = (-172)(1/rg +1Dy ) 1/1D]) (4)

(N = number of mirrors, ry, rp = radii of curvature of the reference

surface.

N
o an = - (DY o ol (5)
f1+f2-d -fz 0 0 . . 0 !

-fz f2+f3‘d2 ‘fz 0 . . 0 |

0 - 0
Dy of = f2 ’ (6)
0 0 Fr-1 fv-179N-1

f; and d; = shown in Figure 2-2.

f-d, -f, 0 0 0
-fl fl+f2‘d1 'fz . o
0 -f . 0
IDN_lle = 1 (7)
0 -
PN-2
0 -2 n-2tfaerdyee
N-1 N-1
0y gl = (0% Nibe (8)
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Now we make use of these equations to find the resonance

frequencies for different square-shaped resonators.
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Square ring with three flat mirrors and one curved mirror (see

figure 3): The equivalent thin lens wave guide is shown in Figure 4.
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In the equivalent lens waveguide (Figure 4), the reference surface is
[ . tentatively placed in a leg which is not adjacent to the curved

mirror. The equivalent focal lengths are

.y
—
"

Rcos 450/2 = (/2/4)R (obliquity angles are all 459)
R/(2cos459) = (v2/2)R

-
—
"

The curvature radii of the reference surface are r;{ » », rp » =, and
N=2.
The angles a, and ay are obtained from Eq. 2

after substituting eq's. (3), (4), and (5) as

" [Dgyol D1y 2l

Z
") 042l

Now we need to calculate [Do of, [D1 2], and

These determinants

are

IDO'OI = fU - L/2

.........
. T T P e
...............
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D = f - L1/2
| 1,2| U /

= -f .
|Do,2| "

Thus,

cos a =1 - L/2fy

Therefore the resonance frequencies are given as follows

f (c/L)[q+(m+0.5)arccos(1-L/§7R)/2n+(n+0.5)arccos(1-L//§R)/Zn], (10)

qmn i}
The stability condition is given by

-1 < cos % <1

or (1/2) < R/L < =» (the stronger focussing tangential plane
dictates the lower 1imit for R).
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Square ring with two diagonally opposite flat mirrors and two equally

curved mirrors (figure 5).
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The equivalent lens wave guide for the square ring is shown in Figure
6. Here, again, ry = rp » =, but N=3 (two curved mirrors).

The angles a, and a, are obtained by Eq. (2) as

X M

UF)
|00ao||02s3|]
cos = ,
%y Dg,3]

where |Dg gl, ID2 3], and [Dg 3| are calculated as follows

= = 2 - -
D¢ ol -f) foe (f -0 -f
2
|Do,3| = fu
fu'l 'fu 2 2
. 105 sl = | ¢ 2f .2y | = 2 -0) -f
= ? u u v v
Thus,
{ ] 2 . 20/2,2 e/t
i; cos au-2(1 - ?rd-l si.e cosa =2(1- ——§—)-1, and c05ay'2(1--——§) -1.

n ' -
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The resonance frequencies are

fqmn =(c/L)[g+(m+0.5)arccos(1-L//ZR) /n+(n+0.5)arccos(1-L/2/2R) /v]  (11)

The stability condition is here
(1/2/2) < R/L » =

Square ring with four equally curved mirrors (see figure 7).

The equivalent lens waveguide for the square ring is shown in Figure
8. This example shows an alternative way to find the resonance
frequencies. It is assumed that the total phase shift due to one round
trip around the resonator must be 2rq where q is an integer. Therefore we
need to find the total round trip phase shift ¢yp.

The longitudinal phase shift is ¢d=kdu (ref. 11) due to the distance

du = L/2 between a lens and a; the transverse phase shift is

= - +0-5
s, (u ) arctan (du/z°u)

e e e e e
e e
NP J30 WA I




where uy = m Oor n.
12

Here, the Rayleigh-length is 24, © (L/8)[fu(4-L/4fu)/(L/8)] .

The total phase shift is therefore
1 2172 1 172
¢tr=4k2 - (m +-7)arctan[fx(4-z/fx)/2] -(n +-7)arctan[fy(4-2/fy)/£] / .

We need to satisfy ¢tr = 2nq; therefore the resonance frequency is

fqmn =(c/L)[q+2(m+0.5)arccos(1-L/2/2R)/n+2(n+0.5)arccos(1-L/4/§R)/n] (12)

Discussion:

The three types of square rings give surprisingly simple, and

similar, results for the resonance frequencies. With a parameter §, §
1,2,4 for rings with 1,2,4 (equal) mirror curvatures, respectively, the
resonance frequencies (10, 11, 12) are given by the same equation for all

three cases as:

fqmn =(cq/L)+(c6/2nL)[(m+0.5)arccos(1-/51/6R)+(n+0.5)arccos(1-L//§%R)] .

A cavity with 4 flat mirrors is contained here is as a special case with

5=4 R+ =,

The spacing of the fundamental modes (m=n=0) is always as usual
af = (c/round trip path length)(ag=1) = c/L (free spectral range)

This is true for any §.

The arguments of the arccosines vary with R. To achieve a specific
operation, given by a point in the stability diagram, &R/2 has to be

chosen properily.

Ty
+
ARSI e

The two stability limits are, for any 6,
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They provide us also with limiting frequency differences.

In the former case ]
b5
*
fq mon = (c/L)q (all m,n modes resonate at the

same frequency for a given q),

A
AR

. AR

in the latter case

LIy

*

fq I (c/L)q + (c/4L)68[2(m + 0.5) + (n + 0.5)]
such that all resonances are either 0, 1/4, 1/2, 3/4 or 1 free spectral
range apart from the fundamental mode.
In the Tatter case, for example, a (q, 0, 0) mode and 2 (g-1, 1, 0)
mode would have the same resonance frequency in a 2 curved mirror ring (6

= 2).
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The problem is therefore to find a ring -configuration where the

"y r
e

]

-

unwanted Hermite-Gaussian resonances are as far away as possible from the

“r "o

desired q00 resonances.

To facilitate the search for a ring configuration with well-spaced

PN wdh

;Ei resonances we developed a graph, Fig. 9, that contains the relative :g
%5 spacing (fq,m,n' fq’o,o)/(fq+1,o’o)(2/5) (6=number of equally curved ;5
?f mirrors) versus a parameter C=2/§L/5R within the stability limits 0<C<l. fﬁ
iﬁﬁ It appears from these calculations, that not much, if anything, can :f
Efi be gained by avoiding these special symmetry cases, as indeed any ~£
%! frequency distribution pattern can be identically reproduced by a square Eﬁ

- resonator with 1, 2, 4 curved mirrors; all what needs to be done is to
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adjust the parameter (L/SR) to the same value.

After these results had been obtained, a scheme was developed where
the (L/6R) was evaluated for optimum discrimination against Hermite-
Gaussians. The results are found, but not included in this report. They

show that the problem of pulling has a unique solution.




A T A M N A A A an A "R S0 a s W B S ge Gai S Bad S rub Al e g0t ool S SRt e i LN e bl et i B e hes B B e -Bagr A v G v Ahe t e T S
)
)

I1. F.Injection errors: Misalignment and mismatching of an injected
Gaussian beam. Effects of offset, tilt, mismatch by creating Hermite-
Gaussian eigenmodes (H.-G.'s). Power loss and pulling of

(fundamental) Gaussian.

A real ring has finite adjustment errors. Since H.-G.'s form a
orthogonal and complete base, such errors can be expressed in an H.-G.
expansion, In real life, a ring behaves indeed that way, as a proper
interpretation of experimental data in ref. 12 shows. The latter was
done, among other things, by us in ref, 13, and is summarized at the end
of this section. We consider this section as a basic contribution to
design of a large ring, and we intend to publish it.

The complexity of our approach is somewhere between our ray approach
(section II.D.) and that of ref. 14, the latter using an expansion in
elliptic wave functions. We treated, separately, three different
adjustment errors: Offset, tilt, mismatch. Only the last type receives
attention in the literature, although it is actually the most benign case,
giving rise to rapidly decaying even-indexed H.-G.'s. The other types
usually have all H.-G.'s in their expansion. The crucial parameter is the
ratio of "misadjustment" to spot width.

We were able to quantitatively explain the data in ref. 12, where
most H.-G.'s were indeed due to misalignment, contrary to the claim stated

therein.

...............................
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II. F. Injection errors: Misalignment and mismatching of an
injecting Gaussian beam. Effects of offset, tilt, mismatch
in creating Hermite-Gaussian eigenmodes. Power loss and
pulling of (fundamental) Gaussian.

II. F. 1 Introduction

In order to obtain a detailed description of the optical modes in
resonators, the diffration theory based on the Huygens-Fresnel's
principle 1is used!l, The fields across the reference surfaces are
extended by means of the Fresnel-Kirchhoff integral in second order to
give the fields everywhere inside and outside the resonator. This

integral is of the form

el - (k/22) [ (x-x4) 2+ (y-y 1) °]

u(x,y,z) = = ISI uo(xgs¥gle dx ody o,

(1)
X,¥,Z = a rectangular coordinate system where the z axis is along the
direction of the wave propagation, Xgs» Yo = coordinates on the surface

of the reference surface mirror, at z, = O.

0
The parameters are:

u(x,y,z) = complex wave amplitude,
Ug(xg»¥o) = complex wave amplitude of input at mirror,

k

wave number = 2n/x ,

S

reference surface,

In order to find a solution for the above integral, it is assumed

that the resonator mirrors are circularly symmetric which basically

e
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leads to Gaussian-Laguerre solutions, or they are rectangularly
symmetric which leads to the Hermite-Gaussian solutions. As a practical
matter, any slight misalignments or mirror imperfections may inhibit
circular modes (Bessel modes),and the resonator may oscillate in

H.-G.'s. Therefore, Hermite-Gaussian solutions are considered in this

report exclusively.

-~ The Hermite-Gaussian solutions for the amplitude u, are

b Can Y2x\ . /2y jk 2,2 .
- umn(x,y,Z)‘(H;z/Zz)I/z b 0 (S )expl- Hr (x+y™) Jexpli(men+l)e] 3
- ° (2) ]
L;:
i;; The parameters are defined as: S

p

4 _ 2 £
Con = T —2 mHn Js E?
E wom 2 min! 5
Wy = waist size, w = spot size, R = radius of curvature of beam phase Lf
m = number of nodes along x axis ]
':.

n = number of nodes along y axis
z, = Rayleigh length = nw%/x

¢ = arctan (z/z,)

nam a0 e ae o e
Caui e e P arit PaRC e
A . AR s e
L .'. l- ., v [ . . "(“' A

iﬁ : _g2/2
r:. v (8) = H (g)e
:;. 23” 2
- Hn(g) = Hermite polynomials of degree n, Hn(g)z(-l)”eE — c .
.- 3&
[ ]
..
An open optical resonator (e.g. Fabry-Perot resonator) is capable
i‘ of oscillating with different axial and transverse modes. As Hausl®
'8
[
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states, the electric field Emn of a sperical Hermite-Gaussian wave

propagating in the z-direction is,

~

M o z Ymn, -jkz_jut
E(xy,2,t) = V[20P] (xu_ - § ¢ —gene Y el (3)

mn n X
with the major component of polarization assumed to be parallel to the
x-axis.
The parameters are:
n = wave impedance

P = total power crossing an arbitrary z-plane

w = angular frequency
X = yunit vector in x-direction
z = unit vector in z-direction

Since the electric field waves are essentially monochromatic waves,

<>
Emn(x,y,z,t) is written as

> >

(X,y,2z,t) = edut,

(x,y,2)

Emn Emn

>

Eqn(X5y,2) only will be used in the following.

The z-component of the electric field 1is generally small with
respect to the x-component, therefore it is omitted., The approximated
electric field is then

>

. -jkz :
E o= v[2nP] u_ e X . (4)

An open resonator can be excited by an external beam. The external

source should satisfy the following conditions:

l. [ts mode should be transferred into a fundamental gaussian ring

mode as completely as possible.
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2. It should have a frequency near the fundamental resonance S
5 frequencies of the resonator.
To fulfill the first requirement, the resonator has to be carefully ]

aligned and matched. We will consider misalignment problems in the

‘. first section of the report.

G Higher-order Gaussian beam modes are wusually wundesirable in
resonator applications since a passive resonant ring laser gyroscope may
give a false rotation signal due to the presence of the such modes.
Irrespective of the amplitudes of such H.-G.'s one tries to design a

resonator so that they appear as far away as possible from the

? fundamental mode. But since there is always a finite linewidth

associated with the resonance frequencies, the tail of the resonance
E does pull the fundamental mode's frequency. Therefore the maximization ' ’
C of the frequency difference between the fundamental mode (TEMOO) and the #?a

5 next higher-order mode is needed.

» I[I. F. 2) Misalignment oy
" A resonator-source system can be misaligned in two ways: ;;%?
a) The resonator becomes misaligned internally, Eﬁj

’ b) The external source is not aligned with the resonator. %-,
The latter is dicussed throughout the report. The new optical axis Effi
of an internally misaligned resonator can be found by applying Iéi*

f variational! calculus (minimize pathlength). The external source can TgEj
. then be explained relative to this new base by the methods outlined ;2€3
below. It is assumed that the resonator fields are given by Eq. (4). fkﬁ

f »
..... e
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In this report; we consider the case where the injected beam is a
TEMgg mode oniy. Three types of external misalignment are considered.
a) Offset source beam:
The center of the injected beam is not on the z-axis (optical axis)
but the beam is parallel to the z-axis, with the same waist size as
that of the resonator.

b) Tilted source beam:
The injected beam makes a finite angle with the z-axis (again, the
waist size is the same as that of the resonator).

c) Mismatched source beam:
The waist size of the injected beam does not match the waist size of
the resonator beam, but the beam shall not be off the z axis nor
shall make an angle with z-axis.

The above types of misalignment are treated 1in detail in the

following subsections.

II. F. 2, 1) Offset Source Beam

As it is shown in Figure 1, the external laser beam is a TEMOO-beam
parallel to the z-axis but the center of the beam is off by e.

The electric field of the injected beam can be written as

>

Eog = J[2P] u'go e K2 & (5)
where
2.2 : .
Upo = 73 exp [- ﬂ%—w—]exp {- %%[(X*‘e)z*fyz]}e”.
wr w
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It is easy to show that the functions uy,(m, n =0, 1, 2, ...) form an
orthogonal and complete set 15’16. It is therefore possible to expand

the injected beam in terms of this set, i.e.

where

*
_£ {m Emn Eq dx dy *
Amn = ——— » £, 1S the conjugate complex of Emn .

f f Emn Emn dXdy

-0 =00

To simplify the analysis, we expand the injected beam at the location of
the waist of the proper resonator modes. It is assumed for this purpose
that all H-G's of such a resonator have their waists at the same

location at which the origin of our coordinate system is placed.

© x * . -3

[0 el e (vL2mP] uhy e K Py axdy, .
T + jkz k2o L L Ut 00ty

[ [ (/[2nP] Unn © Y (v[2nP] Un® )dxdy

at z = 0 we have

=/ ] {Cmnwn(;ix)wn(/z)}{»’ e exp [- LY 0y 4uay  (7)
Wom Wo

A
mn

-00 w0

where we use the fact that R + = and ¢ + 0 as z » 0.

The double integral can be separated into two integrals over x and

y, respectively, It may be written as
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The second integral is wunity for n = 0 and zero otherwise17. Thus,

2
(x+e)
/22X W
C ax {w ( Je "0} forn =0
A =4 ™ f "o (10)
mn [o] forn $£0.

The resulting expansion for an offset TEMoo-mode contains thus TEM -

modes only. The constants are

2 2 1
-e /W 2 Vi ® 2
pee ) i (Pexpl -2(x” + ex)/wgli. (11)
m Wom2 m!  -e "o

A

This can be written as 18

Ano = exp(<’/2wg) (~e/wg)"/ V! (14)

=g

N % 4
it

G

Now the injected electric field can be written as a single sum
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We plot equation (17) in the x plane, where in addition to z = 0, y

is set to zero as well:

2 2

£ -X

;“‘Z -T2
Wo Wo @ I -
Eo= v[2nP] /——22— e e z [(m!) (7__5_ )™ (L8] (18)
Wo m m=0

An example of this expansion is given in Figure 2 through Figure

10. The dimensionless amplitude of the injected beam E6=Eo(w%/8nP);‘2
vs. (x/wo), at y=0=z is given in Figure 2. The beam is offset by an
amount e which is set equal to its waist size wg. The result of
summation for the first seven terms is given in Figure 10. Figures 3 to
9 give an impression of the rate of convergence for this choice e =
Wwo. This is an enormous misalignment. Introducing the offset parameter

£ = 5; ,» we may now evaluate the magnitude of the H-G's created by an
offset TEMyp-mode as

2

1 n "E1/2

A(El,m) = — '51) e (19)
/[m!]

—

II. F. 2. 2) Tilted Source Beam

The external beam crosses the resonator at its waist location under
an angle a. This is shown in Figure 11.

Again, it is assumed that the injected beam is identical to the
TEMgg-mode of the resonator except that it is rotated at the waist by an

angle a. The electric field can be written as

Eo = 7[2nP] {u' 4y e~Jk(z cos a + x sin a)}(_g sin a + x co0s a)
(20)
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2 2

. 2 K -zsinat+xcosa) +

Ugo = {2 7~} exp [- ( 3 a) *y ]
wo mll+(zcosatxsina) /zg] Wo

. 2 2 -
exp{--%g [(-z sina+ x cos a) +y 1} eJ¢.

.’
The vector E; can be written as follows.

Eo=E_ _x+E__z (21)

>

where E,, and E,, are the x and z components of the vector Ej
respectively. Since the resonator's eigenmodes have electric fields in
the x-direction only, see Eq. (4), the injected electric field's x
component only is able to excite the resonator modes. The y component
would go through the resonator freely as there is no conceivable
coupling of an orthogonal vector component in vacuum. He therefore

>
expand the x component (i.e. E, o) of the field E, only:

= b r A E (22)
X0 m=0 n=o ™ N
where
(- -] ao *
-c{ -c{ E Exo dxdy
Amn e = * *
-i -1 Eon Enp dxdy

Now we calculate Amn at z = 0 as before.
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8 . S2x) L2y : 2 3
y Ao = _£ _£ dxdy {Cpp ¥ (=) 0, (505 }{(;,an[wxsina)z] )
2y E:

<

2 2 2 o

_ X CO0S aty -.:.:

WO i . ":::

-e cosa e (-3kx sin o) (23) =

®.

e

As before, it is possible to separate the double integral

b

2 2
(25338 4 jkxsina) 1
- /f WO _>.1
_ X, e
Ain = CpncOS © .-i dx{wm(wo ) o xsina? } ;%
/L +(—;E——0 ] i&
=
2, 2 1 o
@ Sy Y /W z
. [ dytv (Z)e (2% (24)
- n WO TI'WO

The second integral is zero if n # 0 or it is unity otherwise. Ay, may

be written as

o

! / - /2 ina 2--1/2 x’cos’ "0

M€ ocosa [ dxty (525) [1+(X50%) 17 Texp( 2552 - jkxsina)} n = 0
- 0 0 W

. Wo ® ) 2 2 Jkwg
Lr Ao = Cpo COS @ (—2—) -0{ dg{H_(£)expl-5 (1 + cos a)e - (=75~ sina)t]
22 2
wg £ sin o - 1/2
(1 +——) } (27)

220

Amo may be approximated by




o
WO © 5:5}
s mo = Cmo €05 @ (777) _i dg {H_(g) o
n Il 2 2 o !1
- exp(-(1 + cos a)& /2 - jkwgsin a £//2]}. (28) '_.;
s Let us calculate the integral and call it I. i‘;
© _2 2 - ”'j
= [ dem (g)e’t? & *IE (29) -
bd - .‘l
: »
2 kwgsina
-2 . 0 .
where a=%£a,b=— o
Ve
. . !—(
£ By using Euler's formula, "I" can be written as R
]
R w 22 w .2 02 7]
& = [ delH (g)e™® © cos(Be)] - § [ delH (£)e™ & sin (Be)] (30) R
" ” - %
From Ref., [18], we have g
_2
5 .
3 B 1.7
1=1Te %y . bl =] (- (31)
a 25 (TZ' - 1) d
a
j Now, we can substitute for a and b. b
S ]
x 2 2 2
- k wy sin a kw . 2 il —
2 0 0 2z
.' I = '/(—"T—)exp (- —_—2__‘] . Hm [— zﬁ] (- 1N (12 1. -‘—1
T 1+cos a 4(1+cos a) /2(1+cos a) l+cos a 1
! The real part of Ay (i.e. Re[Ag]) and the imaginary part of Apg (i.e. ‘j
2 Im[Aqgl) are written as f'.;_'.,'
-\ S
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»
%E RelA o] = P, for even m (33)
‘E;x and
%
" . ]
- In(Aped = - i Py foroddm (34)
where
2 2 2
—— k wyg sin a
P —JWOCOCOSG/———Z—GXPE 1
m 1+cos a 4(1+cos a)
2
kwg/l+cos a _.
i m
H [— =122 ]
v2(l+cos a) V1+cos a
e
where C o = V———
M
W 2 m!
Now we substitute for C.q in I,
2 2 2
m ,/.-———2 k WO S]n a
Ph = dcosa " exp [ - ——1"
(1+cos a)2 m! 4(1+cos a)
t:' kWg sin m
& H [ ][ 3 (35)
:‘_.:', /2(1+cos a) /1+cos a
-
-. In order to plot these equations and make a numerical example, we
=
f-f would like to inspect the function vs x only at y = z = 0 (waist). The
-
L. .
t‘_'{. injected beam can be written as
. . e )
o* £ = = Y
b Eq = x( f Pmum) +z EZO at z=o (36
F. m=0
.
- - at z = 0
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Figure 12 shows the real part of the injected field, i.e.
Ugp = U'golxs 0, 0) cos (kxsina) cosa . (37)
A tilt given by
-1
£, = a/tan  (wy/L) =1

is chosen (52 is the tilt angle measured in terms of the beam spread.)

For a waist size of wg = 0.002m = 2mm, and a wave number k = (27/633

N x10'9)m'1 = 9.93x106, this corresponds to a tilt angle of a=1.0x10"% rad

=
.A
N
.
._k 1
N
‘-..'
- T

[,y

= 21 arc second. Fig.'s 13 and 14 show two components.

In figure 15, the sum of the first two terms is shown. Comparing

Ty
) .7’ "W". S

it to fig. 12, the quick convergence is evident. Figure 16, with four

Lowoee s Fos 4.4 2 B4

PR . A AR

L . L I I
PR b TR

terms, is indistinguishable from fig. 12. fj:

II. F. 2. 3) Mismatched Source Beam

The injected TEMpp-beam shall have a waist W. The resonator's

eigenmodes shall be Hermite-Gaussian modes with waist size wg. At z =

0, we expand the injected beam in terms of these Hermite-Gaussians, (see
Figure 17).

The injected electric field is

2,2
X .
Yy : ) N
Ey = /énP- —27 e W e R edt o=dkz o (39)

W

As before, we expand E, in the plane z = 0.

PRV

’ 2 2 2 2
Eo= /2nP- 2/nWy expl-(x + y )/Wql. (40)
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a = - s b
N : .
AV #
‘. P
-
P ¥
) mfo nfo Ann Emn (41) N
~ where E:
'::,' ® o, ‘-
i Aan = = = . ]
.::. f f Emn Emn dxdy ‘
X -® - -
.‘-l .‘..
9 After substituting for E,, and Eg, we have .
2 2 2 ."
-X -X -
- — w‘z— -z y
- _ 42 = Wo /2x, Wo ® /2y, Mo
L Amn = Tz Cpy [ e BplgTe T da [ (Se T dy (42)

ml

o
=4
]
8

3

b3
]
8

L3

e ;".‘.MII‘ !.i ‘fn "-"’1_“5'.’ v

Let g=%x—andn=:—§y- then

- wz 2
] 2 Wo *Wg
o 2 - 5 [—]

-t Wo © wO

!_‘ - 7
T mn sz cmn 5 { f Hm(i)e dg}

.::_ (L -0

) 2 .
it Wotw iy
EYSOMCE
. W
- { [ H,(ne dn } (43) 2
,.1_' - .
:E:: 2 ? :\'\
i e 2_ Wo *wg 3
iy In order to make some simplifications, let g = ——— , t = gg, and t' X
_-v:, zw .\\
K 0
° = gn, then »
: ) :.‘
s — 2 2 -
2 Wo ® - ® 't 1 05
- A= /—,—— Cn—z (/[ Hm(-’;-)e tatll f Hn(%)e t 4t (44) R¢
v, Wo m - - B8 o
7 0 Ez
o From Ref. 18, we have 5

: 5
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0 for m, n odd w
o 1 for n = m =0 and wg = Wo L
2 2 mtn
20 o g /nlm! Wo -Wwo —7 .
Z Ty my g 7 7)  otherwise. (45)
wO +w0 (—2)!(7)! wo + Wy

7

Finally the injected electric field can be written as the following

summation.
2 2
i W w
——1 (7] 0
Eo = /ZT'IP ‘/8/"'—-2- _~.__
Wo +w° e
2%, 5, :
@ © Hm(WO )Hn( WO) (wO - Wo) E;ﬂ N ( ) DR
T I { 7 1% 46
m=0,2,.. n=0,2,,, .‘;g .‘2! 2m+n Wy + wo ’.‘1

1t
“rs
LI

o

»
¢

A numerical example is given in Figures 18-24. In mismatching problems

as given above, we may define a mismatch parameter

s

T2 2 2
Wo- wy

.
jwo + Wy

Tt
»

v,

“r v
7.
]

’ ‘-‘v,"'..'—._-',-' ™
AR W .
LLFSPIINE S A

E3 =

In Figure 18, the injected beam amplitude is shown, in arb. units. It

has a mismatch g3 = 0.77 (W = 2w0).

Figures19 to 22 show Ugo, Uo2 ,U20 and Uzzrespectively.
In figure 23, the summation of the first 2x2 terms is shown:

Uoo Ago * Uo2 A20 + U2e Az0 +4:3 Ay,
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Figure 23 shows a kurtosis. 1In Figure 24, the summation of the first 8

x 8 terms is shown.

The peak of this partial sum is within 99% of the peak of the original
curve,

II. F. 3. Application of the results of section II. F. to ringlasers

The misadjustment of an external stigmatic gaussian beam to a ring

gives rise to Hermite-Gaussian eigenmodes in addition to excitation of

i R st

the ring in the proper Gaussian mode. An added complication is the
presence of astigmatism of the ring modes. The latter can be expressed

by the presence of an elliptic ring waist with the two waist sizes Wox

and woy‘

A misalignment, in two dimensions, is then expressed by the offsets

ISP G TR

e and e,, and the tilt angles ay, and a,, see figure 25. A slight

i . P

generalization of the previous section gives then the misalignment

parameters
EX = eX/WOX * (qOX/wOX)aX
g, = e, /mw , +(q . /w )

y ~ fy™Moy T ‘Soy Moy’

where qgy, 4oy are the complex curvatures of the ring modes at the
waists. This simple set of equations is proper, since the propagation
characteristics of the beam 1in the two orthogonal planes are not

coupled,
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Furthermore, a mismatch, see figure 26, is given by the mismatch

parameters
w2 2 w2 2
0o -V 172 0~ Yoy, 1/2
0, = (— 0, = ()
X Wy +tw Y Wt ow
0 ox 0 oy

Note that for perfect adjustment, all parameters are zero.
The power ratio of a H.-G., Pp,/Poo to the power of the Gaussian in the

ring can then be expressed as

Pan/Poo Fa(Ex0)  Fnle,.0 )

m -1 2m . 2 = g 2
where Fm(gx,Ox) (2"m!) |Ox| |Hm[J(1-0x)§x //20x| ,

I}

F(g,,0,) = (2" 10, 12" H [31-00e, 13010,
n-=yy.yY Y n Yy y
judiciously exploiting the previous sections. These equations are
useful to estimate the amount of pulling due to offset, misalignment,
and mismatch.

The power transfer from a misadjusted Gaussian to the ring's
Gaussian is, of course, of interest as well: For pure mismatch, with

coinciding waists, it is simply
Poo/P| =1 - ot (0 » 0, or Oy, P_ = Power of injecting laser).
For pure offset,
2,2, _ 2
Poo/P = exp(-e /wo) = exp[-(Reg)¢]

The figure 27 shows a plot of the latter two equations. They show that

alignment is to be treated more carefully than matching.
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II. F. 4 Experimental test of misalignment and mismatch.

The previous notions were put to the test by applying them to

ety RN e
BRI § A A DA

experimental results obtained by the Seiler group (ref. 12).

In a ring injected by a presumably stigmatic Gaussian beam with no E;
matching circuit, the scanning analysis produced figure 28, The two %{
-

largest spikes were identified as q,0,0 and q+1,0,0 modes, the rest were

labelled "higher-order modes". An analysis of the frequencies involved
verified that they are all H.-G.'s, with indices as given in the figure.
15 such modes were identified.

The fact that one of the most prominent H.-G. was q0l indicated

serious misalignment, as mismatch produces even-indexed modes only.

The fact that the ql0 mode is not visible indicates alignment in
the plane of the ring.

The fact that the q02 mode and the q04 mode were almost equally iﬁ
strong indicates misalignment in the y-direction in general and no major .

mismatch.

On the other hand, the presence of the q20 and the q22 modes allows
an estimate of the mismatch in the x-direction.

Given the optical circuit, the mismatch parameters are

0y = -0.53 * jOo.66 , Oy = -0.40 + jO.76

with [0, ] = 0.84 0y | = 0.87

The misalignment parameter in the x-direction is negligible (good

1®b.

alignment in the plane of the ring), but in the y-direction it is
£y = 0.255 - j0.153

as obtained from a least-squares fit of the H.-G. powers of lines qOl
through q012 to the equation for misalignment (The fit was good to

2.4%). =
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The above result says that the offset in the y-direction was

ey=180um, and the tilt in the y-direction was ay = -49 arc second.

The same paper shows a "partly matched" beam, Fig. 29, where a

QSISO A

spherical lens was placed in a compromise position. The pattern shows,

besides the q02, q20, and qO0l modes, a newly emerging ql0 mode
indicating that now there is also misalignment in the x-direction.

the parameters are
0, = 0.328 + jO, Oy
ref]eﬁting a bigger effort in alignment as well as match.

= 0 + j0.303, |g,|=0.16, |5y|=0‘19

Finally, the "matched" (actually aligned) cavity shows the
fundamental Gaussians only, figure 30,
For “tutorial" purposes, figure 31 shows the cross sections of an offset

and mismatched beam and its expansion into all Hermite-Gaussian

eigenmodes of the astigmatic resonator. The contours are all the same
isophote. Also, the aligned laser is shown to produce only even-indexed o

H.-G.'s. Note that the width Wy of the circular incoming beam is made

equal to the horizontal width w,, of the resonator.
These results suggest an interesting way to keep a large ring

aligned via servos:

1. Pick off the ql0 mode and control with it the horizontal injection.
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2. Pick off the q01 mode and control with it the vertical injection. .“-q
3. Pick off the q02 mode and control with it the vertical complex :fi;
curvature of the beam (y-zoom). N

9
4, Pick off the q20 mode and control with it the horizontal complex Inﬁﬁ
curvature of the beam (x-zoom). ‘"*j
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III. Contributions to design of ringlaser
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III. A. Scanning of an astigmatic beam, and beam evolution: !ﬁ
New method to find beam and evolution parameters

This section contains the first experimental subject we were

"Li?&'}¥ﬁ“.

working on. It was motivated by the desire to establish experimentally

58
the shape and size of an astigmatic beam spot. Scanning by a razor ;:
&:Q
blade ("knife-edge") was recognized to deliver enough information to t*j

[

find the axes of an elliptical spot, and its inclination. The analysis !

proved to be surprisingly simple, and its results easily applicable. fﬂ
Data evaluation via non-linear least squares fitting is applied to find i:
spot parameters as well as beam evolution. The programs are available iij

upon request.

f
[ A
.-I‘LJ

.-
L

In the following, a reprint of a paper is given (ref. 19) which

l'
- )

summarizes this work.
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Knife-edge scanning of an astigmatic Gaussian beam
Hans R. Bilger and Taufiq Habib

The relations for position, spot size, and inclination of the major axis of an elliptical Gaussian beam to knife-
edge scanning data are derived. A knife-edge whose scanning direction is adjustable to any angle has been
employed to scan across a beam in at least three directions. Nonlinear least-squares fit programs have been
developed to check whether a beam is Gaussian, and to evaluate the parameters, with errors, of such an ellip-
tic spot. The evolution of an astigmatic beam in the tangential and sagittal plane is measured.
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. Introduction

Scanning of a Gaussian beam with circular cross
section has been deait with in several papers.! How-
ever, beams with different cross sections or power
density distributions appear often in laser systems ei-
ther as aberrations, e.g., through admixture of Her-
mite-Gaussian beams, or as an essential feature, as is the
case in ring lasers. The extension reported here has
several benefits in the laboratory:

(1) Quantitative determination of the degree to
which a given spot deviates from a circular cross sec-
tion.

(2) Determination of the parameters of an elliptical
spot.

(3) Analytical (least-squares) evaluation of the spot,
including an estimate of the errors of the evaluated
parameters.

Il. Scanning of a Gaussian Beam with Elliptical
Cross Section

The spot size w shall be defined by the following
distribution of the electric field amplitude E:

E(x.y) = Epexp[-(x2 + y2)/w?] (v

for a circular beam spot centered at x = y = 0; the beam
propagates in the direction of the positive z axis.

Extending this to an elliptical cross section with ar-
bitrary orientation (see Fig. 1) and using power density
S (proportional to intensity /), we have

The authors are with Oklahoma State University, School of Elec-
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where w,,w; are the spot sizes along the major and
minor axes, respectively, Py is the total power in the
beam, 2(Py/mw,w;) is the power density in the beam
center, and

x — x9 = x’ cosag = y’ sinap,
Yy = Yo = x’ sinag + y’ cosaq. 3)
Equations (3) include rotation by a tilt angle ay (mea-
sured from the positive x axis in the direction of the
positive y axis) and translation of the beam center to
x0,yo A centered circular Gaussian beam [Eq. (1)] is
included as a special case with xo = yo = 0 and w, = w,
=w.
When a straightedge is placed at x = x, parallel to the

y axis, obscuring the half-plane x < x;, the power
transmitted past the edge? is given by

P(x,) = f"*. [f’:‘- S(x,y)dy] dx. 4)

This double integral can be expressed as a comple-
mentary error function of x;,3 namely,

P(x,) = (Po/2) erfc(u), u = (/2)(x, = ,)/wlag), (5)
with erfc(u) = (2/y/*) f3 exp(—t?)dt, or as*

P(x,)/Pg = Q(v),
with

v = [2/w(ao)|(x, - X,) = (/2)u, (6)

QW) = [1/V 2x)] f " exp(- t2/2)dt,

The function P(x,)/Py is drawn in Fig. 2 vs scanner
position x, for two widths, w, and w»; the center of the
beam is assumed to be at x, = 0. Equation (7) contains
the three parameters of interest w,, wy, and ag. The
apparent width w(«o) is plotted in a polar plot in Fig.
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Sty = 2 F0 exp(~2x"2/w?) exp(~2y’2/w}),  and
¥ Waly
1 w2(crg) = w? cos?ag + wi sinao,
T, (ag) = xq cosag + yo sinag + 1, (¥} S
:::} (x40 is the offset of the translator micrometer). )
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Fig. 1. Elliptical beam spot centered at xq,yo with axes wg and wy
tilted against the positive x axis (horizontal) by ap. The beam goes
into the paper plane (positive z axis). The scanning edge is placed
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Fig. 2. Relative power P(x,)/P, vs scanner position x, for two spot

sizes wy (= 1.5 units on the abscissa) and w- (= 3 units on the abacissa).

The shapes of these curves are identical, except for a difference in w,

for scanning of an arbitrarily placed elliptical beam. The beam
centers are assumed to be at z, = 0,

3 for three different ratios w,/wpy, together with the
actual spot shape (ellipse, dashed line) for w,/w, = 2.
The measured widths w(a,) agree with the widths of the
ellipse at @ = agand a = ay £ 180° where w(ag) = w,,
and at a = ag £ 90° where w(ag) = wp,.

If the scanner is now rotated around the z axis by an
angle a against the positive x axis, the equation for the
resulting width is slightly generalized to

wa) = wl cos{ag - a) + wi sin{ag - a), ®)
Z,(a) = 2o coalag = a) + yg sin(ag — a) + x,0.

For a circular beam with w, = w, = w, the result is again
w(a) = const = w, as it should be.

AR i S A A A e AL e i

e0° 90° 120°

Fig. 3. Polar plot of widths vs scanning angle « for three different
elliptical beam spots (solid curves). The spot for u,/wp = 2 is drawn
as a dashed ellipse.

Three methods have been devised to evaluate
w(a):

(a) Fractional power method: Noting that Qv+
1) = 0.841 = P(x})/Pg, and Q(v- = —1) = 0.159
P(x;)/P, (see Fig. 2), we set the edge such that the
relative power equals these fractions. The positions x;
and x; yield the width w(«) through

Uy ~v- =2 = [Qwla)](x} - F,) - 2/wla)](x] - 1,),

or
wl(a) =x} - x]. 9

In principle, any pair v +v - can be chosen to evaluate w,
but with a given absolute error in P(v), it can be shown
that the pair vy = £1 produces the width with mini-
mum relative error. The center of the beam, X, can be
obtained by setting the scanner such that the trans-
mitted power is halved, see Fig. 2.

(b) Graphical method: This method consists of
plotting the relative power P(x,)/Py vs x; on error
function paper.5 A straight line on this paper indicates
an error function, i.e., that the beam is indeed Gaussian.
The points x and x; can then be used as above to find
w. The center of the beam is again given by P(X;)/Py
= 1/2. This method has the advantage over method (a)
in that it makes use of all the measured scanning posi-
tions, that the latter do not have to be specifically cho-
sen, and that the graph allows a check whether the beam
is Gaussian. It also provides some estimate of mea-
surement errors.

(c) Least-squares method: This third method con-
sists of fitting the @-function into the measured power
vs x, (see Fig. 2), by adjusting the three parameters Py,
w,and ¥,. This method does not require the data to be
normalized with the power P, before analysis. It can
furthermore accommodate a fluctuating total power and
it reduces errors introduced by fluctuating power. The
accuracy of the computer program is not limited to the
usual ~1% of graphical methods. Any observer bias is
eliminated. Finally the program also provides analytic
estimates of the errors of the parameters by calculating
the variance-covariance matrix.6
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Fig. 4. Testof aspotatz = 90 cm off the laser without intervening

optics at 5 angles, 0°, 45°, 90°, 135°, and 180°. The fit w(a) = const

results in w = (653 + 4) um. The sensitivity of the method to detect

ellipticity is demonstrated by the dashed curve where tentatively
wy/we = 0.9 has been set.

Given the measured points P(x,), usually between
five and twenty points covering the range from 0.9 P,
to 0.1 Py, the program fits the function

P(x) = a,Q[2(x — a3)/ay] (6a)

into the points where a; = Py, a2 = w(a),a3 =X,. An
approximation for @ is chosen* which has a maximum
error of £1 X 109 over all arguments v:

Qv) = % + sgn(v)if1/y/(27)]
X (@ + bt + ct2)t exp(~v2/2) — 1/2},

¢ =1/(1 + pjv)),

sgn(v <0)=~1, sgn(v=0)=0, sgn(v>0) =+1,

p =0.33267, a = 0.4361836,
b = ~0.1201676, c = 0.9372980.

The program is iterative. It makes use of initial esti-
mates for a,, a3, a3 and refines these estimates until the
sum of the residuals squared is satisfactorily close to the
minimum. For a set of twenty points, the program
takes ~800-msec CPU time on the VAX 11/750 for four
iterations, which usually leads to convergence.’

M. Parameters of a Gaussian Beam with Elliptical
Cross Section

One scan at an angle a gives w(a) = a;. We need at
least three scans to calculate w,, ws, and ag. In prac-
tice, scans at more than three angles are made. A sep-
arate least-squares fit program then determines the
three parameters above through Eq. (8) or through

wla) = we /[l = ¢2sin?(ao — a)], (8a)

with ¢ = numerical eccentricity = /(1 — w/w?).

Iv. Establishment of an astigmatic Gaussian beam

A He-Ne laser (Oriel model 6697) was used to pro-
duce a well-behaved circular Gaussian beam. Its cir-
cularity was checked by scanning at several angles, see
Fig. 4. A silicon detector (Optics Technology model
610) with a narrowband optical interference filter was

ase APPLIEED OPTICS / Vol. 24,No. 5 / 1March 1985
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Fig. 5. Goniometer to adjust the obliquity angle of the lens. The
reference position is given by retroreflection which originally aligns
the principal axis of the lens with the beam axis = optical axis.

used for detection with background light. The beam
evolution was measured within the first 1.5 m off the
laser front end. The spot size vs z was fitted by the
equation

wlz) = woyv [1 + (z = 2,)2/2§), an

with wg = waist size, located at z = z,,, and zo = Ray-
leigh length = 7w3/\. The waist location z,, was found
near the output mirror of the laser. The waist size was
wo = (316 £ 5) um.

A plano-convex lens with focal length fy = 20 cm was
then placed on a rudimentary goniometer (Fig. 5), which
enabled us to rotate the lens around a vertical axis by
an angle A,y and also around a horizontal axis by an
angle A,. The angle of obliquity® ¢ between the beam
and the principal axis of the lens then becomes

(12)

This angle lies in the tangential plane whose tilt against
the horizontal plane {x-z plane) is given by

¢ = arccos(Cos8ys CosY,).

ap = arcsin{siny,/sing). (13)

The tangential plane therefore contains one of the axes
of the ellipse.

The lens was placed at 2fo = 40 cm from the beam
waist, with the two angles v, = v, = 30°, which results
in the two focal lengths?: fingentia = 9.4 cm and
fsagittal = 16.8 cm. The beam, after traversing the lens,
is expected to have a shape as given in Fig. 6, with the
circle of least confusion®? at z = 15.5 cm; before and
after this point, the ellipse rotates by —90° (ap = 136.5°
to ap = 46.5°). Since the input to the lens is a circular
Gaussian beam, there will be a tangential waist and a
sagittal waist placed approximately symmetrical to 2; ..
There are no focal lines in this case.

The propagation of the beam in the tangential plane
is independent of that in the sagittal plane. Both are
governed by Eq. (11), with two different sets of pa-
rameters: Woe, 2y, 2o, and Wog, 2ws, 20s-

V. Experimental Evaluation of the Astigmatic Beam

The beam was probed at distances 12-60 cm after the
le.ns. This range contains the interesting features (see
Fig.6): primary focus = waist in the tangential plane,
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Fig. 6. Evolution of beam along the z axis. The circular Gaussian

beam enters the lens at 2 = 0. The spots are shown as they appear

in the x-y plane enlarged by X100 relative to the z scale. Immediately

to the left and right of the circle of least confusion, the tangential and
sagittal waists are shown, respectively.

P(xs) (mW)

W(45°) 1 S

0.0l U S
54 56 58 60 62 64 66 68 7.0
X o{mm)

Fig. 7. Scan of astigmatic beam at 2 = 60 cm from the lens at o = 45°.

The least-squares fitted parameters are: total power Py = (1.498 +

0.005) mW, center at X, = (6.309 + 0.002) mm, spot size w(45°) = (783
+ 6) um.

circle of least confusion, and secondary focus = waist
in the sagittal plane.

Figure 7 shows a typical measurement of P(x) at a
distance z = 60 ¢cm from the lens, at a scanning angle a
= 45° with respect to the positive x axis. The least-
squares fit of Eq. (6a) to the fourteen measured points
gives Py = (1.498 £ 0.005) mW, w(45°) = (783 + 6) um,
T, = (6.309 £ 0.002) mm. None of the individual re-
siduals exceeded 8 uW,; a translator with 10-um reso-
lution (smallest division) was used.

After at least four widths are evaluated for each spot,
Eq. (8a) is fitted into the data w{a). Figure 8 shows a
typical fit at z = 35 cm with the result w, = (801 £ 3)
um, ¢ = 0.920 £ 0.003, ap = (46.4 £ 0.4)°, which estab-
lishes the tilt and size of the ellipse at 35 cm together
with the errors. The maximum deviation is 7.5 um; the
average deviation is 4 um.

Finally, the evolution of the tangential spot sizes
w, (z) and the sagittal spot sizes w,(2) is obtained (see

Fig. 8. Polar plot of spot sizes w(a), taken at z = 35cm. The fit gives

w, = (801 £ 3) um, ¢ = 0.920 £ 0.003, ap = (46.4 £ 0.4)°. The rms

deviation of the widths in this plot from the best-fitted solid curve

is 4.5 um. The resulting elliptical spot size is drawn as a dashed
curve.

1500

€
i 1000}

5001-

05 700 300 00 500 800
Z(mm)

Fig.9. Evolution of astigmatic beam vs z (see also Fig. 6). The waist

sizes are woe = (58.0 £ 0.2) um and wo, = (102.0 £ 1.2) um. Theycan

be located with an accuracy of about £2 mm.

Fig. 9) by least-square fitting Eq. (11) into the previ-
ously obtained results. The best-fitted parameters
are

tangential waist wq, = (58.0 £ 0.2) um at z,,, = (118.5
+ 0.9) mm,

sagittal waist wo, = (102.0 £ 1.2) um at z,,, = (201.3
+ 2.5) mm.

The maximum deviation of any point was 8.5 um for
the tangential spot sizes and 14.6 um for the sagittal
spot sizes.

V1. Discussion of Resulls

The methods used here to scan an elliptical Gaussian
beam with a straightedge (razor blade) are based on the
result that the power spilling over the blade has the
same dependence on the position of the blade as is the
case in a circular Gaussian beam, except that the eval-
uated width is a simple function of position and size of
the ellipse. At least three scans need to be done on each
spot, with different angles . If the position of the
tangential plane («,) is known, two measurements

;/g:xld suffice, preferably taken at @ = agand a = ag

1 March 1985 / Vol. 24.No. § / APPLIED OPTICS 889
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_ 2 Two methods were mainly used to obtain a width,
- namely, the fractional power method and the least-
. squares method. The latter established that the beam
S is indeed Gaussian, within the errors. However, sub-
sequent measurements were usually done with the
-~ fractional power method, which is faster. Both meth-
ods yield typical errors of the order of one small division
on the scanner (= 10 um) or less. The data suggest
indeed that translators with a resolution of 1 um would
produce yet smaller random errors.

To test the sensitivity of the methods to detect de-
viations from Gaussian profiles, a Hermite-Gaussian
1-0 mode of the same spot size!? was evaluated. The
calculated result of scanning along the x axis is

[P(x,)/Po)TEM,. .o = (1/2) erfclu) + (u/y/ %) exp(~u?),

u=(/2(x - x,)/w (14)
The major deviation from the error function occurs at
um = £1/4/2 with an amount of \/(2we) = 24%. This
suggests that the detection of admixtures of such ei-
genmodes with a power of less than, say, 10% of the
fundamental Gaussian has to make use of other meth-
ods, e.g., of Fabry-Perot scanning in the frequency do-
main.

It may be noted that by using the least-squares pro-
gram above, an iteration of the type given in Ref. 11 can
be avoided: The program finds directly one waist to
satisfy both the asymptotic slope 1/z¢ = /7w as well
as the minimum wg of the function w(z) = wey/[1 + (2
— 2,,)?/28] with the criterion of minimizing random er-
rors.

This paper is an outcome of research done under
AFOSR grant 84-0058.
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III. B. Vacuum in ring: Residual Fresnel drag
A passive ring can be evacuated. What is the required residual
pressure? We investigated two effects on the output, here we report on
Fresnel drag (section III. C. shows calculations on quality factor).

A portion of this section is published (ref.'s 20, 21).
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Vacuum in ring: Residual Fresnel drag

Light drag is a surprisingly simple means to introduce an

~

anisotropy in the ring. Experimentally, some drag equations have been ;j
verified to the level of 0.1%.22 ii
For a homogeneous velocity field ; of a gas parallel to the light !ﬁ

beam over a distance d, the beat frequency in a ringlaser is to a good ig
Y

approximation given by
Af = (4/AL) (n-1) vd, (1)
where n = index in refraction. For helium this approximation is good to

1%. The quantity (n-1) is proportional to the gas pressure. For an

P
. PR AT AR X I
. e e te B By o Y
. PR RERTINS

ideal gas
(n-l)T,p’A = (To/T) (p/pg) (n-l)To,po’A (2) ;;
T
T = absolute temperature of flowing gas, p = pressure of flowing gas, gl
'—,
To, po = standard conditions. For stationary mass flow, the flow rate f}
M = d(pV)/dt = q(vp) = kT dN/dt = constant (3) 4
(q = tube cross section, V = volume of gas, N = number of gas molecules, -]

k = Boltzmann constant). It follows for the beat frequency due to light

I
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Af = (4/AL) (d/q) (n-1) (To/TpgIM (4)

To,po,x .‘1
The beat frequency is therefore determined by the mass flow rate. The o

velocity vs length is arbitrary and need not be known; the drag is

independent of pressure and pressure gradients along the path, as long

as M is constant and the flow is stationary.

Vacuum Requirement. Inadvertent drag due to moving residual gas has to

be avoided. From the foregoing we can estimate upper limits of mass

flow sources for negligible drag. To push drag effects below 10-7 Hz CjH
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generally we require the sources (inadvertent leaks, outgassing, etc.)
to have flow rates below 1079 Paom3/s, which is equivalent to 1078 torr
2/s.

However, typical information about vacuum 1is given through
pressure, which in turn is related to flow via the pump resistance of
the ring.

It turns out that with mass flow rates even as high as "100 micron
cubic foot per hour" (10'4 Pam3/s) we are already close to the high
vacuum regime. In this regime, the pump resistance R (s/m3) of a

23
cylindrical tube of cross section q and length d, molecular weight m is

3 1/2 3/2
R(s/m ) = (3n/4) (m/2kT) d/q (5)

(m=mass of one molecule) and the pressure difference along such a tube

is
PZ-P1=MRo (6)

Assuming a worst case of "inadvertent" mass flow injection of M = 10-9

Pam3/s farthest away from the pump, d = 7.6 m, and a tube with 1 cm

diameter as above, we obtain
4 27
P, - P, =P, =0.62x10 Pa (=4.7x10 torr)

whereby the pressure Py at the input of a 75 1/s pump would be 1.3x10°8
Pa (= 1x10-10 torr), i.e., negligible. From this we conclude that
reasonable high vacuum conditions have to prevail. They are achievable
in a laboratory with modest cleaning and pumping.

[t should be noted, that an "active" ringlaser requires by

definition material in the 1light path, e.g. the HeNe gas for
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amplification. Indeed much of the residual problems with small
commercial, active, ringlasers are directly related to light drag from
moving gas (Langmuir f]ow)24. The gas pressures needed to sustain the
necessary amplification are so far above those calculated in this
section, that it is considered impossible to render negligible any false
signals (noise) due to Fresnel drag. We consider this true even if
elaborate measures are used to balance mass flow etc, as it is done in

small ring laser gyros.
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III. C. Vacuum in ring: Effect on quality factor

Power loss of a beam due to scattering by a gas was recognized very
early as a source of imperfection, but it was c¢learly considered
negligible., After more important error sources had been eliminated,
this effect got more into the forefront. In a large ringlaser, with
very high sensitivity and quality factors of the order of 1012,
scattering becomes a substantial effect. Fortunately, as this section
demonstrates, even modest pumping will render negligible its effect on
the quality factor of even a large resonator. Rayleigh scattering off
neutral atoms is treated as the only scattering mode. Born and Wol 23
served as a basis of a classic (non-quantum) calculation in this

section.

. . “ e e -, - R T
A AR SV AL PN T SRRID S T i Tl TR W T S N T S
L, B S R T ML R .
s S L e - N e A R Tt PR .
w [N - SO .
LA " . R i SRR Y ERRER . - .
nealnl sl ool Aala a T, § P 2

o
ST B T S T N AN
- MR O SRR R SR O G S S

. o
At .
w0
»te

o bt ans RS Rt L ST S U e I I DA U L I R

W
S diandiin

1

CAPIAP

A

}

()
N

..
o'

B

N

v
o
L

E I AR b T
NN :

.
Z

T 5 v
,P T
" l‘Llnr

T
3

¢,
1
2 A

.

AN L
A
AL

"
"

ey
. K *
R 0

[-‘ Pt
Lterat
. g !

.
"

3
3
1

¢

.o S 'l;l.". - |
‘Cf"‘,'f;{ “atat "

A
i > 3

’

"

” ’l‘

Lt S Y, T,
¢ o 4
PP PG Tl

.(n’t'l

e

'.-‘\‘.n -~ . . ‘l " i
AR at el Rk




Q“jnv“‘w‘ LWk e te . eat wail aeus Sad and anioiedb AL ARG MRt Sadtl a v e § CShali Gl T ~ Y Pl I TN
)

T YW T T IR IR Y AT T TR T T W T W e
.

/
.
- :
¢

i
4
o

P
Il il St ¥
v ey
Tatatu et
2 D

P

]

)
o O}

Vacuum in a ring: Effect on quality factor

7

The residual gas in an evacuated ring will cause scattering losses !lj
of the traversing beam. =
The total scattered power P.. is calculated, and the quality factor ig
Qgc is then obtained by ‘!"i
fi 9 = (W = energy stored) (1) ‘:P
= sc 20 (P, - scattered power) ]
#}i The effect on the overall quality factor Q is then given by the
B
[ contribution of Qg to

. L
'Foi° (2)

O

a4
r y
.

Eq. 2 follows from eq. 1 under simplifying conditions. .

2

Relation of scattered power to Qg.:
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We will assume that the scattered power per interval ax, aPg., fis

proportional to the incident power P: —
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We will also assume that the change of P due to scattering is negligible

throughout the length L, i.e.

1
——PL . (4)
s¢ KSC

P

Here k¢ = extinction length due to scattering.

The power P in the cavity is simply related to the energy W stored in

the cavity through the following considerations:

Assume a monochromatic plane field with rms magnitudes Epmg and

> >

>
HRMS in vacuum, With the Poynting vector S = E x H = (eo/uo)l/2 , the

time-averaged power is

172

P < 8. 8> = (eo/ug) ! Epysh o (ELALE (5)

On the other hand, the energy W is given by

1 - 2 2
W=z [(E.0+H.B)dvVol = gf pyeVol = gof pyclA (6)

(cylindrical mode volume; this assumption is however not critical).
We have therefore from eq.'s 5) and 6):

P = W/(LvYeopo) = (c/L)W = (free spectral range)x(energy stored) (7)
From eq's 1), 4), and 7), we get then

- W, (L/c)P “sc
Q = LI = 2n —— (8)
scC 0 PSC 0 (PL/KSCT A

We have thus to increase the scattering length kge Such that the

) resulting Qg >> Q. The fact that we see the sun indicates that this is
pr
: easy.
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In the following, the extinction length due to Rayleigh scattering

is calculated.

Rayleigh Scattering

We assume dipole scattering only, because it wusually has the
largest scattering cross section,

We assume Rayleigh scattering off individual atoms, for two
reasons:
1) The atomic dimensions d are small compared to the wavelength A used
(no complications from charge distribution in atom): dp;p = 3.03 «x
1020 m, A =5 x1077 m

2) the mean free path length 2 is large compared to the wavelength used

}‘
!
: (no scattering from density fluctions)
3
g g =kT/( /2 = d%p) >> A requires for air: p << 18 kPa (= 135 torr)
. We have then for the total scattered power off one (induced) dipole
h 2 4
Psc,l = (473/3)(C/e Y(Wo/2 ) (9)
, h i = = al® i ic fi
: where the dipole moment W, = aE, = alQEgyg (9a) in an electric field E,,
q with the polarizeability
2
a = (eo/Nv)(e -1) = (eo/Nv)(n - 1) (10)
n? = ¢ (macroscopic) relative dielectric constant of gas,
Nv = volume density of scatterers, in an ideal gas: p = Nv kT (10a).
(p = pressure)

The (total) scattering cross section per molecule is

3 2 24
a3 (e-1) N, (11)

. DI T R YR
RN R
et T

PN O I
“tlet 4t . -y
. v ~

'

v N WA W T W T W T WY T F W _w 1 Te W v W, e e v~
TR S S et and wo s ng mads aeainn Sl sl Sl S St B S A A B AC Al ACER A Sl B w IS A A AP TN S

. N . et n I I R RIS I I S .
B T T I O S S N A S T S W .
PR . PR I N B L

- )

.......

et~
LAY
e - e N S DO R S
. R A A R S R R A R I AR S T e e S e S WA
IR L S R R R RN AN VR A LI WML R A L RN

n
N

.
LR | - <
y e Ty T PR MR S} e e
. a‘ . .. .' .\ ‘- 3 l' ‘e ,Q . . . .
LRI PR I ) et el
) LA e
Pl h AN s .

.. .
AL
P4 :' o :

I . . A4

Ve et

RN

e e N
E Y WO T N L e T

‘,...-..'."-\'.,.

b

’

PR

-

:‘i .- "."...' S

S oaoade

I
14
'

PRl SN




T OV R T WL W W g U Yo T ¥ ARAR I BASL dnd uadh mall AL A A ar S s YA A AN A I SN At ) Cat - il i

129

and the relation for the total scattered power on traversing a length L

is, using equations 4, 5, 8, 9, 9a, 10, and c/“" = 1:

2 .2
8 3 (n-1)L 1
=P NAL =% P=—pPL, (12)
sc sc,l v 3 N A %oc

from which the extinction length «.. can be calculated, with eq. 10a:

sC
2 2 2
3 -1 32 3 - 1) kT
S:__,,l=_§" {n- 1) kT
A A p

using (n2-1)2 = (n-1)2(n+1)2=(n-1)%4,

Using the Lorentz-Lorenz formula and eq. 10a:

n2-1 L

—— = n-1 = const Nv = const%T , or
n +1

(13)
(n-l)p,T,x = (p/po)(T(,/T)(n-l)pO’TQ’A

At standard conditions (p, = 101 kPa =1 atm, T, = 273 K = 0°C), and A =

514.5 am, narp - 1 = 2.79 x 1074, ny, - 1 = 0.3500 x 1074,

We have finally

-t_32 3 1.1 0p
“se T3 R (n I)Po,Tg.A ’ (14)
where Ny = py/kT, = 2.687 x 1025 molecules/m3 (= Loschmidt number)
Quality factor versus scattering:
The final result is then, using eq.'s 14 and 8): E1
K N 3
_ sc _ 3o A T Po
R S L L E (s
PosTosA 2
Given the type of gas (which determines n): Ef
N
-
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Example: 1) Air-filling at standard conditions, A = 0.5145 x 10°% m

|

8x10°° 25x10™")’ 1
2.6/8¢10 _ x (0.5145¢10 ) _ g g9}

Q=1 R4
n (2.940x10 )

SC

[0,

20,000,

Compare this to a square ring with overall finesse F
The latter results in a

OMirpor = FL/A = 1.2 x 1012 (L = 31 'm, » = 0.5145 x 1076 m)

which is about equal to the quality factor due to scattering by air at 1
atmosphere.

With very modest forepumping down to 1 torr = 133 Pa, =6 x 1014

Qsc
i.e. negligibly large compared to even the best hoped-for (achieveable?)
mirror quality factors.

Note also that the optimum pressure for HeNe-plasma for tubes of ~ 1 cm
diameter is somewhat below 1 torr; this means that scattering losses are
negligible even in active ring lasers, if the assumptions above are
satisfied (however, scattering in an ionized gas, and at resonating
atoms would have to be considered separately).

Example 2: A cavity of length L=52 cm produced by Rockwell has an
evacuated finesse of F . 29800 t+ 400 at x = 633 nm. What is the

va
finesse F.. with air filling?

(n-l)Air9 T09P0’A = 633nm= 0.00029170’ T=(273 + ZS)K’ p=P0.

12 [
we get QSC = 1.661x10 , or FSC = QSCA/L = 2.02x10 .

From eq. 2 follows ¢ % = p-l- +'rl‘ = 25%66 * 1 5
Air vac sC 2.02x10

or FAir = 29370
(measured at Rockwell with air filling: 2900 + 400)
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The date are compatible with our calculations, although they are not

- conclusive. The same mirrors, put into a 30 m cavity, would have a

finesse in vacuum of 29800x30/0.52 = 1.719x10%, and letting air in would o
reduce the finesse from S

s

o
2

6 6
F - 1.72x10  to F,. = 0.929x10 .
vac Air

substantial reduction in over—all finesse, or quality factor.

, which would then mean a
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tji III. D. Proposed calibration methods for large ring: Light drag :j
i:’ through gas flow from switchable calibrated leaks, tilting (rocking) g?
- the ring base. ;{f
]

The dynamic range of a large stationary ring is, expressed in earth i*

rotation rates Q¢, from about 10'1OQE to lgg, or, expressed in optical ;@

beat frequencies, from about 100 nHz to 1 kHz, i.e. over 10 orders of iﬂ

magnitude. It turns out that low beat frequencies can easily be ;A

generated via air flow through calibrated leaks: The needed mass flow ?:

requires such low air pressures that the cavity quality factor (section :

III. C.) is not affected. -~

This contribution is already published (ref.'s 20 and 21). Rocking

e

of the base is made possible at the base at the Seiler 1lab. It is

useful for generating large signals.
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Calioration 3f 3 larje passive laser ring
.. 3ilger

Department af €lectrical and Computer Zngineering, Jklanoma State University
Stiilwater, JK 74078

G.L.. Shaw

Frank J. Seiler Research Laboratory
USAF Academy, Zoiaraco 3prings, CO 308au

8.2. Simmons

Frank J. Seiler Research Laboratory
JSAF Academy, Co.arado Springs, CO 80840

Abs:tract
Two types of offects are invest.jatac 3s -2 tnheir potential for caligrating a3 large
ring ana for introgucing test signals 2f «ncwn magnitude: 1) tliting the base 3Ff tne
cing Jy 3 <xNown 3INgi2 anc «iIn «<"gwn I.me 2v2.4tion, ang 2 ytilizing fresnel 2rag “:aom

a controiled flow of 3as.

el

b

L0t roguce

A large, 58 mneter sguare, ring laser 3Jyro .RL3) is neing assempled on tne Jneumactic
isolation platfsrm at ftne “ranmx J. Seiler |\wsearch .acorataory. Teo tecnhnigues for
calinration of the AL #ill 2e czonsigered in tnis presentatisn. In the, first metnod,
the RLG would 2e tiited at 3 precisely «xnown angle 2 vary the effective rdtatiznal
rate. The second metnhod discussed makes use af the Fresnel Jrag from a controilead flow
of gas in the ring.

. An adjustable effect to produce an WS output is dJescribed for several reasons: 1)
to check the linearity of the output, 2) to check properties in the frequency domain, 3)
to calibrate the sensitivity and/or the noise sources acting in the ring, and a) to
introduce a probe signal during initial adjustments. The earth rotation natuyrally

g provides a sizeable rotation rate with a very good signali/noise ratio of the arder aof

- 108;1 put it nas tne Jisadvantages of not peing adjustable and of neing constant as

opposed to an =2ffect leading to a freguency modulation of the output. One advantage of

basing the large RLG on a pneumatically supported platform is that the oase can de
tilted by small angles thus changing the effective rotational rate imposed on the ring.

&;~ The isolation platform can oe maintained at a known tilt to local level to and accuracy :fl
:,j of the orger of 10~° arc seconds by means of closed loop control of pneumatic -
O actuators<. The platform can be offset from level oy as amuch as § arc minutes by N
h . means of these pneumatic actuators. The base can also be excited in 6 degrees of o)
o freedom at small amplitudes from OC to 10 Hz by means of electro-magnetic actuatars. o
j. The light path of the RLG is contained in tubing evacuated to about 10-8 torr. The lq
o Fresnel drag calibration technique would be performed by allowing a small gas flow o
. parallel to the lignt beam, along a portion of thne ring. A knawn gas flow -]
L’. rate estaplisnes a calculable effect on the difference in velocity for the clockwise and o
p. counterclockwise light beams of the RLG, and an expected value for the non-rotating e
:<: output under this condition. e
b - =3
i Range of calibration i‘J
‘}_ Large ring lasers are attractive because of their high sensitivity for rotation and ?j
}:_ low noise. [n the following we will use a square ring laser of A = 58 m2 with t
- perimeter L = 4 /58 m, operating at a wavelength ) = S514.5 nm as basis for discussion. T
» A two mode ring laser nas a beat freaquency output o
S RS
E.-_': Af = 4 A-Q/X L, (1) L
ll where A = surface vector of ring, T a angular velocity vector of absolute rin oK
- 9 -
L rotation, s
& o
3 L
- "
F-‘, 110 / SPIE Vol. 487 Physics of Optical Ring Gyros (1984) -3
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as €quation (1) is iinear in 7, there is no obvious upper limit of output. However,
for convenience we will limit the design consigderations to bandwidths up to earth rate
for the recording of the phase 9 (t), [Af = (l/2m(a¢ /dt)], f.e.,af = 679 Hz
(latitugde 9 = 389 58'). As to the lower 1imit we will assume that quantum noise
lim%ts the performance at high Fourier frequencies. The power spectral density is given
Oy

S.e 4 = 2 (hElQ%?) (2)

with an estimate of finesse F = 1000 or a quality factor Q@ = (L/X )F = 5.9 x 1010, ana
a power level of 500 mw, the white power spectral density would be, at the oscillation
frequency fg = ¢/\ = 583 THz,

S af,w = 1.51 x 10-10 (Hz2/H2),

which allows an accuracy of
SAf = /sAf,W/T (3

for the measurement of the beat frequency over an inteqration time r; e.g., with v =
. 4, an rms frequency fluctuation of the order of 42 nHz can be anticipated. However,
the open-ended limit set oy tgquatiogn (3) is not realizable over arbitrarily long times.
In practice, 1/f noise or even 1/fZ noise of the laser oscillators set a lower

limit4 to tne attainaple accuracy. In today's commercial ring laser gyros, the white
quantum noise turns over into l/f noise at corner frequencies of the order of 10-100Qu

4z. Furtnhermore, tne observea l/f noise is always larger than the Gagnepain-Uebersfelgd
Limit as observed in quartz oscillators®.

Sag,p = ME, A= £2/08 (4)

for lack of ocetter theory, we use Equation (4) to estimate the flicker floor. With fg
= 583 THz ang Q = 5.9 x 1010, s ap ¢ = 2.8 x 10-14/f. The eguivalent Allan
standard deviation

syt =212 x 2.8x10-14 = 197 nkz.
The transition between white noise and 1/f noise appears at Fourier frequencies of about
200 yHz, requiring integration times of about 1l hour to arrive at this flicker floor;

iower limits of peat frequency errors of the order of 10-8 Hz are theoretically

feasible, and a dynamic range of over nine decades of beat frequency is possible, for

wnicn range calibration signals should be provided.

First calipration method: tilting the gyro base
veelov
) A tilt mogifies the output from earth rate. The surfacefA in Equation (1) is made
time-dependent, A —A(t). This can be achieved by rotating an actively controlled pad
around the easttwest symmetry axis. A variety of factors have to be investigated in
such a feasipility study: Reproducibility, adjustibility, hysteresis, effect on

long-term stability. The change of beat frequency due to tilt in the meridional plane
Dy an angle 8a is

SAf(Hz) = (4 A«fi/AL ) cot g da= 4.1 x 103 sq (arc second) (5)
in the example above. To.change the beat frequency by 1 mHz, a lift of Q. i um of the
7.62 m - long pad is required. The "noise" of the tilt {s 10-3 arc second which is

transduced by the ring into a beat frequency fluctuation of §.58 L Hz, well abo
limit given by the flicker floor. uHZ, w ve the

._There is also the possibiiity of rocking tne pag, {.e., to introduce a sinusoical
:;;t‘versus time. Provided that the excitation of eigenmodes of the pad can be
sufficiently suppressed, this manner of introduction of an ac-modulated frequency
decomes an excellent means of generating a calibration signal. An external measurement
of the neignt by using high-performance levelling instruments by electrical or optical
means can certainly be done with an error of 10 ym and possibly of 1 um.

SPIE Vol. 487 Physics of Cpuicet Ring Gyros (1984) 7/ 117
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Second calibration metnog: rresnel 2rag ~:i:n jas flow

z
“

>

Light drag is a surprisingly simple means tao introduce an anisotropy in tge ring. 23
gExperimentally, some drag equations nave been verified to tne level of 3.1%. .&ﬁ
. =

Ffor a homogeneous velocity fleld v of a gas parglle% to the light deam over a o
distance d, the beat frequency is to a jood approximacion given Dy o
A = (a/AL) (n-1) vd, (6) ]

anere n = index of refraction. For helium this approximation is good to 1%¥. The :}1
quantity (n-l1) is proportional to the gas pressure. For an ideal gas -ﬂﬁ
(7) ~

.
""

e B

':Y. SEETRE

- ST )

N s
v

T = absolute temperature of flowing gas, p = pressure of flowing gas, Ty, Pg =
standard conditions. For stationary mass flow, the flow rate

.
()

.

M = d(pv)/dt = gq(vp) = kT dN/dt = constant (8)

(g = tube cross section, V = volume of gas, N = number of gas molecules, k = Boltzman
constant), if a mass flow source is used, for example a calibrated leak as is used in
vacuum work. It follows for the beat frequency due to light drag

s o

.

‘

'.l' .". .."'
L

s L - (9 e
Af (4/AL0) (4/9) (n 1)T°'p°';(ro/rpo)”

The beat frequency is therefore determined by the mass flow rate. The velocity vs !!1

length is arbitrary and need not be known; the drag is independent of pressure and o

pressure gradients along the path, as long as M ls constant and the flow is stationary. oo

N

Estimate of required leak. Assume a helium-filled leak with (n-l)T° Do, A = 3.49
x 10-7. 1he leak 1s to be injected into one leg of the ring having®l 84 tube diameter
and ¢ = 3.3.length. At room temperature (T = 298 K), a Plow rate of M = 2. x 10-4

Pa'm3/s 1is then required to produce Af = 1 mHz. A calibrated He leak af l0Q "micron B
cubic foot/hour” has a mass flow rate of 1.05 x 10-4 Pa.ml/s. If larger beat o~
frequencies are required, air can be used with about eightfold increased drag. e
Nk

Several calibrated leaks can be mounted in opposing legs of the ring, to change R
magnitude and sign of the drag. Thiy can_be switched off_and on at any time. R
Commercially, a large range of 10-11 Pa.m3/s to 10-4 Parm3/s is available which RN

will cover the entire range of beat frequencies from about 10 mHz down into the naoise.

It may also be mentioned that turbulent flow will remove the radial velocity profile and
will produce a more uniform output frequency.®

yacuum Requirements. Conversely, inadvertent drag due to moving residual gas has to be
avolded. rrom the foregoing we can estimate upger limits of mass flow sources for

negligible drag. To push drag effect below 10</ Hz generally we require_the sources
(inadvertent leaks, outgassing, etc.) to have flow rates below 10-? Paem3/s.

However, typlcal information about vacuyum is given through pressure, which in turn is

:? related to flow via the pump resistance of the ring.

}: It turns qut that with mass flow rates even as high as 100 micron cubic foot per hour

- (10=4 Paca3/s) we_are already in the high vacuum regime. In this regime, the pump

- resistance R (s/m3) of a cylindrical tube of cross section q and length d, molecular

% weight a 19

9

- R(s/ad) = (3n/4)(m/2kT) 1/2 g/q3/2 (10)

v
»
¥
a'

4

-
]

and the pressure diffsrence along such s tube is -

Y

v

P, = P, = MR. (11)

Al
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Assuming a worst case of "inacvertent” mass flow injection of M = 10-9 Pa - m3/s
farthest away from tne pump, d = 7,£ m, and a tube with 1 cm diameter as above, we obtain

Py = Py T P2 =¢.6x10%% Pa (=47x10"7 torr)

wheredy tne pressure P: at the input of a 75 i/s pump would be 1.3x10-8 Pa
(= 1x10-10 torr), i.e.| negligible.

From this we conciuce that reasonadle nigh vacuum congitions have to prevall, but
also tnat the loading of vacuum pumps Dy Fresnel drag calibrations is not excessive.
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