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A recent survey, although incomplete, Is ref. 1. It has been shown that a
high sensitivity ring project would become worthwhile if rotation
sensitivities of better than 10(-9) x the earth's rotational rate can be
reached. In this case it can potentially surpass in sensitivity not only the
most advanced techniques for measuring absolute rotation of the earth, i.e.
Lunar ranging, Lageos, VLBI (ref. 2). but It offers exciting possibilities:
1) it measures in *real time', directly a component of rotation rate, 2) it is
a local sensor of absolute rotation, 3) It can basically be adjusted to be
most sensitive for slow events (daily-monthly changes of the earth rotation
vector) or fast events (microseisms, earth quakes, local disturbances of earth -.

surface), 4) since it is a local method, the beam can naturally be circulated
in vacuum, atmospheric disturbances are eliminated from the beam path.
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Foreword

The project of constructing a large laser ring is an end result of

several questions, the more important of them being: a) Why should one

do it? (motivation, expected benefits, comparison with competitive

methods), b) Is the project feasible? (sensitivity, costs,

compatibility of expected results with a)) c) What is the design?

(technical parameters, stability considerations, output).

Ample literature is available on a). A recent survey, although

incomplete, is ref. 1. It had become clear that the project would

become worthwhile if rotation sensitivities of better than 109 E

(QE="earth rate" = 27T/day) can be reached. In this case it can

potentially surpass in sensitivity not only the most advanced techniques

for measuring absolute rotation of the earth, i.e. Lunar ranging,

Lageos, VLBI (ref. 2), but it offers exciting possibilities: 1) it

measures in "real time", directly a component of rotation rate, 2) it is

a local sensor of absolute rotation, 3) it can basically be adjusted to

be most sensitive for slow events (daily-monthly changes of the earth

rotation vector) or fast events (microseisms, earth quakes, local

disturbances of earth surface), 4) since it is a local method, the beam

can naturally be circulated in vacuum; atmospheric disturbances are

eliminated from the beam path.

The extrapolation to an expected sensitivity of <10 9nE is done

from data presently available, of the order of 1O 6 E (with averaging

times of 1 day), with the theory of laser noise which is reasonably well

in hand at this time. Much of the data on noise were measured by the

author during several summer joas in industry. The 1/f-noise becoming

overseeable (ref. 3), we may now be able to predict <IO9E for

- . - v -. v v v v.. ,.. -. . .
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averaging times much less than 1d. Technological improvements in making

high-quality mirrors do continually push back the limits due to white

noise and 1/f noise. The finished ring should become a formidable

sensor of Q(t), for Fourier frequencies larger than about a reciprocal

year.

This report provides a variety of technical details on the basic

noise limitations in a laser ring and on how to remove obstacles to

reach the required sensitivities; some of the basic calculations on

rings are collected as well as several novel insights into the setting

- up are reported. The major results have already been, or are in the

* process of being, published.

- As a summary of the first year of involvement with the Seiler ring

* project, we state that none of the results have yet negated the proposed

performance of it.

S.
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Report

Summary: The results obtained can be divided into three

categories: a) A feasibility study with focus on quantum noise and low

frequency noise b) Basic modeling of the ring with Gaussian beam and ray

matrices c) Technical design: Effect of residual gas in ring on quality

factor and light drag, scanning of beam, effect of misalignment and

mismatch of source to ring, calibration procedures.

The results show no obstacle yet to the goal of achieving a

sensitivity of rotation rate of better than 10"9 (earth rate) in rings

of 60 1 2 size. Such a sensitivity which corresponds to a change of

earth surface velocity of smaller than 4 cm/day, should surpass Lunar

ranging methods, Lageos methods as well as VLBI-methods in accuracy,

besides being a 4real-timeo observational method for earth rotation.
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I. Introduction

The content of this report is mainly intended to facilitate the

design of large laser rings which act as gyros: They sense, via Sagnac

effect, the absolute rotation of their structure. Versions with sizes

up to square meters are by now well-known in industry as R(ing) L(aser)

G(yro)'s. They have been pushed to better performance ever since the

basic proposal of Rosenthal was published. To guide the reader: two

basic equations govern signal and noise of such a gyro:

4+

Signal: Af=(4/XL)Ao- 1)

This equation translates an absolute rotation rate Q(t) of the ring into

a beat frequency Af (t);

Noise: SAf hf3/Q 2P 2)

which represents white quantum noise fluctuations per mode. Hereby, SAf

is the power spectral density of the output frequency noise Af

This report can be visualized as a study to realize the promise of

equations 1 and 2. Most of the results were obtained with a view on

designing the Seller ring at the AF Academy, but they are of course

generally applicable to large rings. In certain cases calculations were

dnne on an active ringlaser. The equivalence in performance of active

6.and passive rings justifies such a procedure, although the design

calls for a "passive" ring at this time.

Whenever a certain topic treated here appeared as a publication,

the latter was substituted for the original text. A rough draft of this

report was handed out to Seiler lab personnel on 2 Nov. 1984.
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C-.: >w rej-iency noise in ring l.aser -y ros

H-. R. Bilg-er

3t 1lwater, 2lklahoma 74378
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Art/ 2a!*nose idsregarded in practice, altnougn in principle it woull nave t.,. be
in~lule, :n a tnorougn discussion of oscillator noise.

toe f wing we present data obtaned from optical osc ilators over tne last t

deii11es. They are shown either as a frequency deviation versus time from a reference, as a
power spectral density of the beat frequency, or as an Allan variance of the beat frequency
versus averaging time. Tney form the empirical basis for the -lassification sheme above.
We tnon provide some thoughts on theoretical explanations of the observed noise. Finally,
prcjected data on noise of large rings are included.

Experimental evidence of laser frequency fluctuations

Some preliminary information is given in ref. 7. Time-domain representations are
dicussed in detail in ref. g. One of the earli est documentations of opti cal frequency
fluctuations by Jaseja et al. is given in figure 1

100s -RUN Ca 0 15 Hz

(Hz) 0(Hz

40 i
(,.HZ)

2
0'
0- JASEJA-1963

-200 05 1.0 1 5 110 2

t(d)

Figure 1. Fluctuation of frequency difference Figure 2. Fluctuation of frequency
between two lasers at X= 1.15 m difference between two
observed by Jaseja et al. in 1963. countercirculating modes at

= 633 nm in a ring laser
gyro (1982).

The beat note stayed audible ove- several minutes, i.e. it was of the order of kilohertz.

-n contrast to this is figure 2 obtained on a ring laser in 1982, where the beat was
observed not to exceed ± 0.7 Hz over 2 1/2 days. The beat frequency has to be counted cver
a sampling period of 100 s to avoid significant quantization errors. The resulting rms-
deviation was T = 0.15 Hz over the whole period.

Turning to power spectral meIsurements: S versus power input P into a mode was studied
by Kuvatova I O in 1976 where a P- dependence was clearly observed over more than a decade of
power, at Fourier frequencies where the laser noise was white, fig. 3.

As early as 1967, Siegman had already succeeded in separating the noise in a white part
and a f -part, with a transition frequency of about 1 kHz, using two separate lasers under
very careful conditions, fig. 4.

The following figures (5 through 10) were taken from data on a commercial ringlaser
between 1980 and 1982.

Figure 5 shows a spectrum with a clear I/f part over one decade. The transiticn '

frequency is at 5 millihertz. The open circles show the effect of quantization noise as an
additional noise power spectral density for this run with sampling period 1D s. Correcting
f:r it qave the white ncise as indicated. A different run with 100 s sa.ti= nterval snows

1::lsi'; 1 f no ise, fg. . The error bars are the statisti: a (rs errors cf clusters
: u0 points '± 1: ). In fig. ', a long run (over 9' rays) shows f , 2 - and white noise

exclusively. The noise nas a f- behavior over an impressive five decades of power density,
with no discernibiz deviation from equation (1) except possibly below 3 pHz. Figure 8 gives
a quantitative ac.count of the relative spectral purity of ringlaser outputs (SAffcompared to data cn hydrogen maers given by Vessot et al. 1 2 in 1977. Note that the staie
if the art in b-th hydrogen masers and ringlasers has considerably improved since; the

flicker floors are estimated to be about tvo orders of magnitude lower in both types of
devices. One of tne better results achieved in ringlasers given in figure 9, where white
r'ise prevails at frequencies above 1O0diz, with a spectral ensity of S ho

. ..... l P. ... .. ,..... .. .(-. - ...... .........



9 x 13~ Hz-iz; again, tne overall spectrum can very dell be represented by etuatin .1).
Note also that the Magnitudes are up to a factor 630 iifferent from those given in figure 7.

A representaive A lln.varian~e vers s r is given in figure 13. Since the transformati~n
between 3 and IT is known7 , the curve TA versus T can be quantitatively prelictei friu pser
spectral nsit es, and vice versa. The flicker floor frcm figure 7 ....fpsD,,nds t I f -
46 x 10 '3 , whereas the flitker floor from figure 9 is aA/fo = 5.8 x 13 .

Tneoretical support of e nuat~cn '1

White noise term ho

iterature abounds at this time in calculations on white noise 13. :t is 2ajculatel -.- m
quantum noise considerations. According to arguments on quantum fluctuations of a system
far from threshold, with ccmplete inversion, at Fourier frequencies not exceeding f = f

: quality factor of passive optical cavity), at quantum-dominated osciia ion fre uen es -"
fl >> kT/h, the 'one-sided) power spectral density of one oscillation is

10 10 5 \"- ~100Hzcf 2000Hz %"

10

S H2 1- S, ( 10)

102

"- 0.1- K101 SIEGMAN-1967

1 10 100 101 102 10 3  10 4

P(,uW) f(Hz)

Figure 3. Power spectral density of a Figure 4. Power spectral density of the beat
ringlaser output at k= 1.15 tm. frequency between two lasers at] '] - k : 6 3 3 n m .

_ _ _I__ _ _ _ _ _,__ _ _ _i__ _I

f-i
10 f- 1 Z2N"

7," SAf ( -
4"-4

f 1010 - ,\,RUN"

A 100s -RUN

I.o

So- 3 o-10- 3  10-2 1

f(Hz)
Figure 5. Run with sampling interval 1 3, Figure 6. Run with sampling interval 100 s.

showing quantiz.tVI.n noise a- Pure I/f noise prevails, wellhigh frequenzies ,)pen circles). docsmented via the errir bars of
T!ie line f' :,white noi3e) is the points which are averages i f
obtained after correction fir 130 neighboring individual power
tne ilantization noisq. At spectral dens;ties.
lower frequen~ies, f-' noise
is app-arent. Jote the size of
the errors of tne data.

44 / SPIE Vol 487 Phys,cs of Optical Ring Gyros (1 984) --4
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DORSCHNER el al

1o)-311 
(1980)

10-5 10-4 10-
3  10-2 10-' 100 10.1

10- 10-5 '04 10- 10-2 10- 1 (Hz)

7igure 7. ?o)wer spectral density of a 9 1/2 Figure 3. T.omparison), of noi)se spectral
day run. The bottomn line is the densities of reative freqien~y
w-lite n,')ise after subtraction of fluctuations of a state-cf-tne
quantization noise, art hydrogen maser ~n 1977an

106 10-5 10-4 f(Hz) 10-3 10-2 a ring laser in 193.

101 0

10 1-

2

10~ (Hz2 )

10-

foI

*1012 no- L 101 102 103 104 105

N' T (S)

Figure 9. Power spectral density of a Figure 10. Allan variance of two runs on the
composite 5-day run. Equation same ringlaser. 'he broad minimum
(1) fits very well into the indicates presence of 1/'f noise.
data. Quantization noise has

K. been removed (open circles).

S M f h f / 2 ? h o ,

n =Planck's constant = 6.63 x 10-~ 34VA s2.

e At difference fraquenicies large compared to lozk-in frequencies, the quintum no7ise of r, e
two (or more) oscillations leading tl the beat frequency are considered uncorrelatel, at
leaa- in seco -nd order, so that the power spectral densIties simply add. For example fo-r a
four-mode ring laser the observed beat frequency is expected to have a power spectra.

SPIE Vol 487 Physics of Optical Ring Gyros (7984) /45
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if fo -, iff j uality factor and power input are sue toeth
'nm m~re~ o~e. Publisnet_ csparisons )f theory an,~ experiment -are given by Dorschner

C t 3- by Eammons and Ashby ~ ani by 3iLger and 3ay-eh . The iuality falctor of I pass3ive
c avi ty an be ietermined with re'aas,-nable accuracy (error < 1,39), and theiz poer lost in the
c:avi ty :can be estimated wi. tn about te same accuracy. :n references 7 and 14 tne measured
w0n1i te no ise Ilevel1 was abou t 50' tlar ger than t he o ne calculat ed through equat ion (3) Th e
lifference- is conrsidiered lar-,er. than the measurement errors; incomplete conve rsion in t he-

lasng eves 1 an ~1hasbee sugesed. A ratio N/N 3 would a-ccount for the
0 bse-rved difference. M4ore prec!ise 2omparisonis of white noise observations *wdith calculations
are clearly important.

As things stand at this time, we may argue that good ring lasers operate at "high
frequencies" within a factor two of the white noise given by equation (3). This is, in
itself, a remarkable statement, as very few macroscopic phenomena have been shown to possess

* uantum-noise limited behavior (superconducting devices is another example). In designs of
future ringlaser systems we may indeed use equation (3) to predict the Thigh frequency"
lower limit, which actually may be correct down to frequencies of the order of a reciprocal
lay, see ref. 8. 'ie do not anticipate any dramatic reduction of this level.

Flicke noise term h

As opposed to the term ho, the magnitude of hn1 rhas not been assessed adequately as to
tne dependence on parameters of the laser system. LWfrequency fluctuations of this kind
~re som.-etimes called 'bias instability," from the misguided notion that flicker noise may be
Juccar-able frocm bias fluctuations.

1-quick compariso-n with maser coc&s 'figure 3) would have us predict flicker flo ,-3
zs ,in -excess of the ones actually observed in ringlasers ',see refs. 4 and 7); no doubt

z>s-e aceln of corre lated flicker noise is responsible.

:n an attempt to Look for reasons for flicker noise, quartz oscillators may serve as -in
ex~~mle. agneoain et a110 investigated a large variety of quartz oscillators, at resonnance

frq enieis I MHz to 25 MHz, -and at temperatrsfo 1 K to 300 K. They found the
remarkable _ dependence Siven in figure I1I

* A - 58 in
2
. squ~are

(Hz)X -514 5 n

0-40

4 2 L. L4

.,023 - (Z 3

01

___ C A0L

0A.0

lO03 10 o ad t5  
'07 109

Fiue1. 1f opnn fpoe pcrl Figure 12. Estimated Allan standard de1~
density observed at f =1Hz in tion at of a large ring 5

*quality factor of the quartz tions in *te eathreo aria-
crytas.scales Of 1)33 -'1/4h) to 1 a

3Y). T=tidal effects,
various lunar effec-ts, E
Luler reap. Chandler wobbles.

~., -n xtends over six decades of 3, su3gesti*ng afundamental role of the quality factor in

t:e ' ise. The taeoretical appr.cach to explain this dependence rests on the
'pchei hat phonon relaxation times r !in a lattice have a 1/f power 3pectral -tensity

~aemse lis i f .But tile quality facotor in a quartz cavity is related to
'L3SP lossvil rp viz.N

46 /SPIE Vol 48 7 Physics of Optical Ring Gyros t 1984)
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T.ing the Po Wer spectral densi t ies on b.oth sidles produces i nleed1 ai Q -la. ±-.elne
a!. mor eo-v er prcpose tnat the pr p-rti onali ty factor be in the nei g'bo-rnoo-d o±f o-ne i .e.

=AQ f wit'h A =1I

stne~ t7 v hypothesis can be successfilly transplanted int.- laser systems realns tob
* ~ ~ ~ ' sen. -o.vestigation of the following aspects of ob~erved 1,'f no-ise is desiraible:

1 . Dependence on the losses, or Iuaiity f:tnr ' is Q~apparent?~
2. Dependence on beam power (whicn. way to enter the lo-sses?)
3. Dependence on bias :is 11f largely compensated?)
4. Dependience on cavity construc:tion 'temperature coefficient, elscproperties, Ma1s?)

At this time, comparing observed 1/If noises in fi gures 7 and 3tentaIti vely wi to ne
3agnepain-Uebersfeld law

2 .4 -1-

we note that equation (6) predicts lower I /f noise by about an -rier :of magnitude.

Ini rect ev idence of the cruci Al role of toe laser cavi ty qual ity fact,)r is ao fac t troat
ma=ne rc_ Ja ringlasers with lossy elements in the cavity (Faraday -oa~3, e.g.)a~

infericr in I1/f noi se ("bi as stabil1i ty") to ri nglasers wdithout i ntracav ity el m,2 ts

*Random wilk termh-

* s term is known tobe quite appaa -is-deedn i as 'sm' sel t.- toe i deo tii
* atOMi c system itself may produce i t. As an example, temperature flutution3 :nfluy p o

relaxaioin spectrum of tne type

*For large thiermal relaxation times this spectrum essentially provides a f~ so ur ce wri ica may
be trns~ued tnrough the temperature sensitivity of tne system into ba rqec os

*of the c onstruction of the laser cavity.

Summary

7*re-?- major noise phenomena are well documented in ring lasers: White noise, flc'_ker
no7-se, and ranidom walk noise. The white noise is reasonably well linkel to 1.itntum noie fo

he osc iIa to r. The second type is tentatively linked to the quality :at -f the cay i.t;
1Ifsnectra of the lo7sses; the latter play a major role in most theo-ries trying t,,

explai-n 1.'f r.oise in physical fstems. in ringlasers, a la-rge power law de,-nodenc-e on
oldlend support to Handel's thneory on 111f noise. Thie random wal< in 'he liake! t

flictA-itions in the support, e.g. due to transduced temperature fluctuations.

Conclusio-ns -ini suggestions

*From the foregoing it is clear that very high Q cavities shoild be attempted, not only-, to
lecrease the quantum noise but even more so to Iecrease thne 1 'f noise. Tne ipplication of
thiese i ieas ,to large ringlasers, e.g. tote5I ring pre sently in the design stage --t the1
33eiler lab (AP Academy, CO) may prove useful. Estimated Allan standard deviations frsuch,
a ring are sho~wn in figure 12: At Fourier frequencies of 1 mHz- down to , say, 0.1 uHz, the
dominating rl is not played by quintum noise but by 1fn~e unu os sep~e
t-- be negligiole ir, this range. The various Points in figure 12 indicate anticipa.ted .

magnitudes of variations in the rotation vector of the earth at the periods mu c ated. The-y
naay then become visible in the ring output, s-iouli thie estimated noise materialize.
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II. A. 2 Flicker noise in frequency fluctuations

of lasers (ref. 8)

A survey of some experimental data on fluctuations at low Fourier

frequencies suggests a Q-4 dependence of the 1/f-noise on the quality

factor Q of the passive cavity. We consider this a major information

for designers of ringlaser gyros about long-term noise of such a device.
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Flicker Noise in Frequency Fluctuations of Lasers

M. R. Sayeh and H. R. Bilger
School of Electrical and
Computer Engineering

Oklahoma State University
Stillwater, Oklahoma 74078

Measured power density spectra Saf of frequency fluctu-

ations 6f(t) in ringlasers show Saf - 1/v at low Fourier

frequencies v, while quantum noise prevails at higher fre-

quencies. S~f=(Afo/Q )(1/v) has been found for the depend-

ence of this 1/v noise (Flicker noise) on the quality factor

0, with A-4 (fo=laser frequency). The - dependence is

readily explained by loss (or gain) fluctuations, using a

Van der Pol oscillator.

PACS numbers: 05.40.+j, 06.30.Ft, 42.60.Da, 78.90.+t
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Flicker Noise in Frequency Fluctuations of Lasers

M. R. Sayeh and H. R. Bilger
School of Electrical and

Computer Engineering
Oklahoma State University
Stillwater, Oklahoma 74078

Noise in lasers has been a subject of research for the last two decades

[1]. The simple equation is

3
hf
= -- (1)

Q P

(h is Planck's constant, fo=Wo/27r is the resonance frequency, 0 is the

*quality factor of the passive cavity, and P is the power loss per mode)

for the one-sided power spectral density (PSD) S6 f per mode versus the

Fourier frequency v. Here the frequency fluctuation 6f(t) due to quantum

noise gives an approximate white-noise level which has been verified by

experiment [2,9]. Eq. (1) was generalized by Haken [3].

Let us consider a noise-driven Van der Pol oscillator as a model

for a laser oscillator r4].

2 2
x + Er - (g - yx )]R + wo x : N(t) (2)

where x is the mode amplitude, r is energy decay rate, g is the unsatu-

rated gain, y is the saturation parameter, and N(t) is the noise source

due to the spontaneous emission processes.

l From this model one can find the PSD of the frequency fluctuations

as [4]

.... "-.
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yrhf N2 g(v+f

S~f(0) :E N2 _N1 (g2 /g) 0(3)
S (V) + n (3)8n (g-r) o

where N1 and N2 are the populations of the lower and upper laser levels

respectively, g, and g2 are the level degeneracies, g(f) is the tran-

sition lineshape, and nth is the number of thermally emitted photons.

Under limiting conditions (N2 >> N1 , v << fo/Q, hfo/kT >> 1), Eq. (3)

converges to Eq. (1).

To realize that noises with Fourier frequency dependent PSD, e.g.

Szf(v) i/v (Flicker noise) exist, we consider a noise mechanism from a

different source. Let us assume that there exist fluctuations in the

loss, r, independent of the existence of white noise, i.e. for the

purpose of this derivation N(t) in Eq. (2) is set to zero. Now we try

to find the PSD of the frequency fluctations due to loss fluctuations.

We first establish an approximate solution to Eq. (2) up to first

order in p=g-r [5]:

x(t) V(I() 2 cos ( w t) (4)

'Y0

where E = 1 - u2/16wo2, and i = g-r. The resonance frequency w = o

therefore depends on the loss r, viz.

2W29r (5)
z 0

By making use of g=r in a laser in steady-state operation, we find the

fluctuation 6f with respect to the fluctuation Sr as

•--



Sf I r (6)f = - ,
8Q

where Q :o/r.

The PSD of the fractional frequency fluctuation can be related to

the PSD of the fractional loss fluctuation by using Eq. (7) as follows

I

S f/f(v) 14 S5 1 (v) (7)
64Q

The PSD of Sf/f is related to the PSD of 5r/r by the Q-4 law. This has

been observed experimentally in quartz oscillators over six decades of

PSD [6]. The proportionality to Q thus is independent of the specific

assumptions on the type of loss fluctuations.

Using Handel's quantum theory of l/v noise [7], one would expect

loss fluctuations to originate from loss processes inside the cavity

whose elementary cross sections of interaction with the electromagnetic

field fluctuate with a 1/v spectrum [8]. In this case we expect

S (v) V (8)5r/r v

where A is a constant depending on the nature of the interaction.

Therefore the PSD of the frequency fluctuation per mode can then be

written as
2

Af

Sf (v) = f 164Q v

A ring laser gyro (RLG) can be used to study the frequency fluc-

tuations in lasers [9]. Fig. (1) shows a measured PSD of a four-mode

RLG versus Fourier frequency (the RLG was placed in a thermostat with

100 WK temperature deviation). The white noise dominates down to
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6x10 -4 Hz, Flicker noise (1/v noise) is from 6x10 -4 Hz to 4x10 - 5 Hz, and

I/v2 noise predominates at frequencies less than 4x10-5 Hz. Generally

it has been observed that the PSD of frequency fluctuations of

ringlasers obeys the following relation [10]

-2 _1

S6f(v) = h_2  v + hlv + ho (10)

We have collected data from different types of RLG, including fig.

1 and we verified that 1/v noise is commonly occurring in most cases.

The white noise level, ho in Eq. (11), was ascertained [9].

Fig. (2) shows the measured values of h_ I, per mode, versus the

quality factor Q. The least square fitted line in Fig. (2) gives a

value 256 for the constant A in Eq. (10).

The experimental evidence therefore suggests for the 1/v noise

2

Saf(v) 4 -0 1
Q V

The 1/f noise in laser systems is thus to be considered as a

fundamental process which affects the output frequency of a laser. 1/f

noise in this model is linked to laser loss mechanisms which are in-

flicted upon the photon field. In this sense, it is an even more basic

noise process than white noise. Of course, if in the absence of loss

the quality factor goes to infinity, there are no fluctuation effects

and correspondingly there would not be any 1/f noise. (There would also

be no white noise but for different reasons). We note also, that the

quality factor enters the formula for white noise, Eq. (1), only

indirectly because spontaneous emission is at the Drigin of white noise.
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This irreducible 1/f noise is of great practical importance, since

averaging of data containing 1/f noise does not significantly reduce the

noise level whereas averaging of data containing white noise over a time

T reduces the noise level with i/IT. The 1/f noise is thus a measure of

the ultimate stability of a laser oscillator, as is evidenced by a plot

of the Allan variance of any oscillator [8], where the I/f noise consti-

tutes the flicker floor.
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Figure Captions

Figure 1: Typical power spectral density of the frequency fluctuation

af(t) versus Fourier frequency v. There are three distinct

regimes where S-v° (white noise), Sv-
1 (Flicker noise), S'v-T

The error bars indicate the statistical accuracy of the

data. This noise spectrum was obtained on ringlaser #2 from a

5-day run with frequency measurements taken every 100 s.

Figure 2: Summary of I/v-amplitudes versus cavity quality factor Q

obtained in three ringlasers, with the best-fitted line,--2 '

All ringlasers use HeNe and operate at fo= 474 THz

(x=633nm). The error bars of RLG#1 are of the same size as the

circles.
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II. B. Astigmatic Gaussian beam in plane ring: Stability,

curvature radius of beam, location and size ot waist(s)

The fundamental Gaussian beam is the basic signal in optical

circuits, as is the sinusoidal voltage in low-frequency circuits. The

following section reviews application of ray m4trices to a closed

optical circuit (plane quadrangle) with the purpose of establishing a

unique complex curvature q along the ring. Radii of curvature and spot

sizes are derived, as well as locations and sizes of waists; the results

are applied to an example (published by the Seiler group) of mode

matching. In the latter case, perfect alignment is presupposed.

Various checks have been built in to improve the reliability of the PL
calculations. The latter make this section a proper base for a computer

program.
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T.

Plane Four-Mirror Ring Cavity:

Waists (Location, Size), Curvature Radii,

Mode Matching

Definitions: Beam travels counterclockwise, CCW. Radius of curvature

of mirror or beam is called positive if concave in the

direction of the beam.

-, <

Waist in branch AB: location SWA (off mirror A), size wA., etc.

Radius of curvature of beam entering at A: RA.

Radius of curvature of beam leaving A: RA+, etc.

There are at most four waists in the ring, and either zero or one waist

in each branch. The length of the branch following A is SA (positive),



etc. The angle between entering and leaving beam at A is eA etc. Note

that the. ring is plane.

Procedure: Use ray-matrices throughout, and the law of propagation of

the complex curvature q:

qout : (A qin + B)/(C qin + D)

The circuit consists of straight sections and mirrors. For oblique

incidence, a curved mirror is astigmatic, i.e. it has a different focal

length for sheaths of rays in the plane of the ring (x) and normal to p

the plane of the ring (y).

Straight section of length S Mirror with focal length f

0 1 -1f 1
Q 1 X'U)

One leg, including first a straight section, and then a mirror:

i 1 0 /1 S 1-°

(-1f 1 0 1 -1/f 1-S/f it

Applying four legs to a ring, starting CCW from ST, at A+:

. . .. *.



SAB 1'S, B '1SC 1/ SO

4- AS

Check whether determinant is 1:

A B

C D

This is a nectsary condition in a round trip.

Check whether ring is stable* 0 4 1 -(A +D)
2/4 1

This is required for the uniqueness of the gaussian eigenmode.

Complex curvature q at A+:

From the condition that q is uniquely specified at any point, we get

qA+ (A qA+ + B)/(C qA+ + D) ,or

qA+ =-(D A)/2C + [B/C + (D A)1/4 C2 )]1/2

(the positive root has to be chosen)

The root is imaginary, if the ring is stable. Proof:

Because of AD -BD =1, C (AD -1)/B, we get



i

I..
'"'qA+ : (A -D)/2C + (1BI/ AD 11i )[-(I - (A + D)2/4)31/ 2 .,i:

Al so

-11 2
qA+= (D - A)/2B - j[1 - (A + D)2/411/ 2/ B - RA - j(X/TrWA+).

Location of waist: At the waist the curvature radius of the beam

becomes infinity, Rw + , i.e. qw J(w P-

By adding a straight section SwA to A, we arrive at the waist, where

2
qswA qA+ + SwA = q j(7WA/X)

or Re(qA+ + SwA) 0 , or SwA : (D - A)/2C = - Re(qA+)

Check: a) if SwA > SA, there is no waist in SA

b) if SwA < 0, there is no waist in SA.

Size of waist: Translation from A to the location of the waist does not

change the imaginary part of q, therefore

2":"" 22 11.2
nWA/X = Im(qA+) = C-B/C (D A)2/4C2 ]I/2.[* S

Radius of curvature at mirror A (before and after reflection)

, From above, we get for the radius just after reflection at A:

- . ... ... ..



• - -1 -1 i -
Re(qA+ ) = RA = (D - A)/2B, or RA+ = 2B/(D - A) [Re(qA + )

.> This can be positive or negative.

*Radius of curvature just before reflection at A:

Use A B C D - law:

-1i
-1 -1 R- 2

qA+= (1 qA- + 0 )/(-fA qA- + 1), or qA- A -

-1 -1
SqA+ + f A

or

-1 - -1
-(D A)/2B. + Re(qA+ ) 1  = [l/RA+ + 1/fA ]- 1

Check: Given waist (size and location) and the distance, the following

" . is true for one branch:

qA+ + SwA : qw = -J(lrwA/X)

or
-1 2 2

[RA+ j(x/nA+)] ]- j(nwA/X) SwA.

Equating real and imaginary parts, we get

RA+ -[SwA + SwA(rwA/)] , or generally R(z) ± -z(1 +

S2 2, or generally w2(z) wO (1 + z2/z).

wA+ wA + wA/ (wwA/ x V0- +

. *.



Here, R and w are the curvature radius and the spot size at a distance z

from the waist, zR is the Rayleigh range, zR = 2 with wo belig the

waist size.

Spot size at A:

-1 -1 2
Since qA+= RA+ j (x/nwA+), we get

WA+ = [(X/r)/(- Im(qA~+))]1/2 = wA_

Waists and radii in other branches:

Two procedures can be applied

1) Recalculate ABCD matrix starting CCW off B, then C, then D. All

the equations above reapply, after all letters A are changed

into B, C, D.

2) Calculate qB+ by transforming qA+ through one leg with matrix

i SA

(or
-i/fB  I-SA/fB'

-i

qB = (qA+ + SA)/(-fB qA+ I - SA/fB); find Re(qB+), Im(qB+),
-1 -1

Re(qB+ ), Im(qB+ ,

Ut



AO

from which all interesting quantities can be evaluated; then proceed to

qC+, and qD+.

Check: Transforming qD+ to qA+ should result in the same quantities as

before.
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Application: Node matching paper by Seiler group

(Appi. Opt. 22, pp. 2487-2491, 1933, ref. 9)

Given an almost square, presumably plane, ring with the four sides !
SA =78.90 cm (use "cm" to strike a compromise

SBS 78.74 cm in resolution between S and w)0.

SC= 78.58 cm .
so 78.74 cm (use x =632.8 x 107cm HeNe wavelength in air)

Assume 9 A 900 exactly.

-~~ A

Find the rest of the geometry

'3 -'

2 2
with 5 (SA + S D)112 =111.468 cm, calculate ac through cos-law

2 2
52 S C 5 -2 S8 SC cos eC ,which gives

9C 90.2330 .

2 2
Now, 9 i a tan 1I SD/SA COS-' I~ 5c - B -2/-SSI
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which gives

=89.7670.

Since it's a quadrangle, OD= 3600 6A 6 B - = 89.9990.

The errors appear to be AS 0.01 cm, and the sides 100 cm,

therefore, use rounded values 6A =90.000

e= 89.770

* ec = 90.230

OD =90.000 (Trapeze)

Mirror radii (nominally):

* .rA=rc 600 cm fAx=(rA/2) cos(eA/2)=212.132 cm, fCx=(rC/2)cos(eC/2)=211.706 cm

rB=rD =fAy=(rA/ 2)/cos(eA/2)=424.264 cm, fCy=(rC/2)/cos(eC/2)=425.118 cm

Round-trip matrix at A:

l-(SC+SD)/fC (SA+SB)(1-(SC+SD)/fC)+SC+SD A B

* ~ A+ ( l-(SC+SD/fC)/fA-1/fC (1-(SC+SD)/fC)(l-(SA4SB)/fA-(SA+SB)/fA.)C D)A+

In x-plane in y-plane

lop.



.3q

+0.2569 +197.817 +0.6299 +256.623

)A, MA+ .

(-0.00593 -0671 -0.003837 +0.02432

Checks: IMA+,xI I MA+,Y"

Sx 1- ((A + D)2/4) =0.96 S, y 0.89.

Stable, however, close to limit given by 4 flat mirrors: (S 1).

*Calculate qA+,x, qA+,y and their reciprocals

qA+,x -78.694 + .j 164.743 qA+,y -78.917 + J246.277

=-0.002361 - 0.004942 q-1ly -0.001180 - j 0.003682,

from which the locations and the sites of the waists are:

5wA,x -Re(qA4. x) =78.694 cm SwA,y ' 78.917 cm

wA,x Cx/ir)Im(qA+,x)]1 2
=0071c wA,y =0.07043 cm.

Curvature at A:

*RA..,x = +424.95 cm = If~ + Re(qA+ .x)]V
1 , RA-,y =+ 849.59 cm

-. RA+,x =-423.58 cm =[Re (qA+X)Y 1  RA+,y -847.47 cm.

Spot at A



WA+,x =0.06384 cm WA+,y 0.79 cm

Round-trip at C

(since the mirrors at R and D are flat, there can be two waists only)

Exchange SC SA SB S D, fA f c' and feed in numbers

= +0.2569 +198.052 0.24 +256.506

\-0.005927 -0.67712 1\-0.003835 +0.02582

Checks: IMC+,XI 1 IMC+,yI I

5X =0.96 ,S>, 0.89 as above.

=C, -78.786 +J164.941 qC = -78.563 + .i246.3-90

qCl= -0.002358 j 0.004936 qCly -0.001175 -i0.003684

S WC x = 78.79 cm 5wCY = +78.56 cm

WC,X = 0.05764 cm WC'y = 0.07045 cm

RC;x + 422.73 cm RC-Y =+849.18 cm

C+x= - 424.10 cm RC+y I -8130c

*wC+,x = 0.06388 cm WC+,y = 0.07394 cm

Note that SwC'x > SC, i.e. there is no waist in the branch C, but in

brnhD WC,x 5wD,x 5wC,x - SC =(78.79 - 78.58) cm 0.21 cm.

uOn the other hand, SwC'y 'c SC, but actually right at the mirror D.

Generally, the tangential and the sagittal waists are not at the same

locations.



Summary for x-plane
(all data in cm) A

S AvA

79.791I

C .2

-&12q 7.3

Corresponding y-values

Waist in branch A: S =78.92 cm (about at mirror B), WA 0.0704 cm
WA

Waist in branch C: SwC =78.56 cm (about at mirror D), wc_ 0.0704 cm

at mirror A: RA-= +850 cm, RA+ = -847 cm, WA+=WA 0.0740 cm

at mirror C: RC_. +849 cm, RC+ =-851 cm, WC+=WC. 0.0739 cm

hr-7



Mode Matching Latne

0- ZwOL Lal -wR

ZWOL =4.34 cm W0L 0.03014 cm xvd 12.6c zRZ=.9c

*ZM ZWOL + x - (WOR -ZM) =4.34 cm + 126.76 cm -(0.29 cm) =130.81 cm

*-ZWORx= x + 7WOL + 126.76 cm + 4.34 cm 131.10 cm

WOR -0.05764 cm

(ZWOL i s eval uated [p. 2488], ZM i s measured, Z14OR -ZM 1 i s eval uated)

To find ZL =Lens spot, where the spot sizes, extrapolated from either

side, are equal (note that ZWIOL, ZM, ZWOR are fixed)

2 2 -2 ZO)2 2 + (x~o)24 , =Z O
WL =WOL+ (X/TWOL)2 ZL 2WO 2O 2XnO L (L Z WL

and

WL 2 W 2 + (xno)2(Zwo -Z)
2 

= O 2 + (,/T0)2 (X ZI),
L4O rO O Z O XwO

.
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from which, by subtraction

2 WOR2 =(X/IT) 2 [(x -Z)/WR - (ZL2/Wo2 )],

or

WOL2 WOR2(WOL2  WOR) = Xlr WOL2( ZL)2  WOR2 ' 2

or

* (WoL2_WO 2) Z 2-2xWoL2 ZL+Ex2 WO 2+(X/r)2(WL W)2 (o 2 _W0 2)]=O,

which is a quadratic equation for ZL.

(Note: ZL ="Z" in manuscript; two typos in eq. 2)

Solution of quadratic equation =position of lens with respect to laser

waist.

ZL Z ZL -ZWOL -x WOL 2/ (WQR2 -WOL2) + [x2 W OL 21NOR 2 -WOL 
2)

+ ~/)2WOL2 WOR2 +X WOL/(WOR2 -O

Horizontal case:

With x =126.76 cm, (note: all in cm)

WORx = 0.05764 cm,

WOL = 0.03014 cm,



= 632.8 x 10-7 cm,

We get ZL,x = ZLx : ZWOL : 77.82 cm

or ZLx = 77.82 + 4.34 = 82.16 cm

Vertical case:

From above, the vertical waist is located SWA 78.92 cm CCW from A

(mirror r2 ), which makes it appear in branch B (S4 ), at SA -

SWA = (78.90 - 78.92) cm = (-) 0.02 cm, off mirror B (rl). Projecting

this waist to the left of mirror B by 0.02 cm, we get

x (ZM - 0.02 - 4.34)cm : 126.45 cm, ZWOR,y x + ZWOL : 130.79 cm,

WORY 0.07043 cm

'= 96.13 cm, or ZLY = (96.13 + 4.34) : 100.47 cm.ZLy

(If the paper's number SA - SWA = 0.21 cm is used, one gets ZLY :

96.11 cm orZL,Y : 100.45 cm, essentially no difference.)

The cylindrical lenses for the mode matching are spaced (100.45 -

82.16)cm 18.29 cm ZL,Y - ZL,X.

Curvature radii of matching lenses:

f : R'(from laser) - R-(from ring, x), with

. . . . . . . .
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N.

R(frorn laser) : ZL,X [1 + ( rW ZL,x)= 103.96 cm.
02

2 )2) -604.84cm
R(from ring, x) = - (ZWOR,x ZL,x)(I + (1WOR,x/X(ZOR,x - ZL,x))) cm,

or fx +88.71 cm.

-1

f = R-1 (from laser) - R-1 (from ring, y), with
y

2I
R(from laser) = ZL1,[*(1WoL/AZL)2 117.29 cm.

2
R(from ring, y) = -(ZwOR,y - ZL,y)(I + (lWOR,y /X(ZwOR,y ZL,y)2) -2030.50

cm,

or f = +110.88 cm

The data agree with those given in Appl. Opt. (paper by Seiler group)

"....-.° °....." . . ........ . . . .. . . °.-. .. °, ,, .:k, .
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Different approach to mode matching

Given the distance between two waists. and their sizes, calculate dj,

d2, f focus length and location of matching lens. Since the curvature

q radius of the beam at a waist is

2 2

The matrix between q, and q2 is5

A I I d2)(1/f I ( dl ): -2/ dld2(1ldl/f)\

and (1d/
Aq1 + B (1 )q- + d, + d 2( -

=Cqj + 0 d

q,~ + 1-

or

I1( d1  d2  d
- ~(q, q2) + (1 q - = (1 + d, + d2(1

*Using the fact the qj, q2 are imaginary, we compare real and imaginary

parts

2
I Tr 22 d

Real parts - ~( ~ w, w) d, + d2( to determine f and d,

2
d1  irw d T 2

Imaginary parts (1 - )~- w~ ( f X'

-.
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2 2 2 2
From the latter equation T-dIw 2 +d 2w1) =W 1 -W 2

2 2
d2w1 -d 1w2

or f 2 2
W1 W

Substituting into real partS

22 2 2 2
2 22 Wi- W2  W1  W2

-7W1 2 --- d, d2  - 7 d, d2
d 2W d 1 -d 1W2  d 2W1 -dIW 2

2
7T 22 2 2 2 2 2 2

or -~~ 2( 1 - 2) =L(d 2wI 1W d 2) - ~ 2(Wl -W 2)

4(L =d, + d2)

2
2 2 2 2 2 222 2

or L[(L -dj)w 1  d1w2] dj(L -d 1 )(W1 -W 2) =-p- wlw 2(wl -W 2)

2E2 2 2 2 2 2 T2 2 22 2 2W2
d - w2] + d [-Lwl Lw2 -Lw 1 + Lw2] -7 wIw2(wl w2) -L w1,

2 2 2 2 2 2 2 2 ~2 22
or (w, - -d 2Lw1 +- EL w, (W2 -WO 1 ) w1W2] 0

Which is identical to the equation above, except for notations.

Note: The material in the section above has not been submitted for

publication, as no originality is claimed. However, we consider the

inclusion of the many checks above a considerable improvement over the

published papers in ref. 9, and rather simple for programming.
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II. C. Ray matrix approach to square, plane ring with equal mirror

radii: Stability, waist sizes, spot sizes on mirrors, design for

minimum spot sizes on mirrors (minimum diffraction, smallest mirror

size), design for circular spot size on mirrors (near-confocal cavity

for best mode-matching).

The results of the previous section are applied to a highly

symmetric configuration. A square ring has certain advantages: It is

easier to survey than a general ring, the waists are in the center of

the branches (if four equal mirror radii are employed); there are no

"holes" in the stability vs mirror radius; manufacturing of four equal

mirrors is easier; due to the symmetry, the sagittal and tangential

waists are coincident in the center of each branch; there is also the

porsibility to produce a circular spot size on each mirror: Since the

injection of an external beam will take place at a mirror, mode-matching

is particularly facilitated in this case by making the backside of the

mirror into a cylinder lens. The beam wil then be strictly stigmatic

outside the cavity.

-iS -
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Ray matrix approach to square, plane ring with equal mirror radii:

Stab-lity, waist size, spot sizes or mirror, design for minimum I
Spot size on mirrors (minimum diffraction, smaTle_;tmirror size),

design for circular spot size on mirrors (near-confocal

cavity for best mode-matching).

f d f Relation between f and R:

In plane of ring (p-plane):

fp = (R/2) cos 450 = (R/4) T'
J ff Perpendicular to plane of ring

-- (s-plane):

fs R/(2 cos 450) (R/2) C2

One loop, starting CCW at st:

A B 0 1 d 1 0 1 d 1 0 1 d 1 0 1 d

(C , -fll 0 1 f 0 1 ,f-Q 0 1 (-f-ll 0 1

with x = d/f, we get

C d-l(-4 x +lOx2 -6x 3 + x4 ) I lOx + 15x2 - 7x3 + x4

Since the beam "exits" where it enters,

A B
= ? (6x+5x2_x3)(lx+15x2_7x3+x4)_d(4_l0x+6x2_x3)

C D d'l(-4x+lOx 2-6x3+x4 )

- x0 (1)

+ x1 (- 10 - 6 + 16)

+ x2 (+ 15 + 60 + 5 - 40 - 40)

+ x3 (-7 - 90 - 50 -1 + 24 + 100 + 24)

+ x4 (+ 1 + 42 + 75 + 10 - 4 - 60 - 60 -4)

+ x5 (6 -35 -15 + 10 + 36 + 10)

Uq

° 1
l-*



+ 6 5+ + 7 -6 6 )

+ X7 (1+ 1

(This is a good check on numerical erro~s) I
Note also, that in this case B= Cd /x H

Stability: (Verdeyen p. 33)

-1 4 (A±D)/2 < 1

orj
0 (A+D+2) 4

So: -1 < (1/2)(A+D) (2 - 16x + 20x2 - x3 + x4) (1/2) +1

Stability of square symmetric ring

X=I

Als I1 A D 1 I x x-) ( -)2Fromthisit i imediaely learth/
x < (oterwie \AD /2> 1



as well as 0 1 x

To insure that inside the range 0 < x < 4 there is stability for any x,

we determine the extrema.
D[(A+D)/2yd/-x 0 =(112)(- 16 + 40x -24x

2 + 4x3) =2(- 4 10lx -6x
2 
+X

3)

which gives extrema at x = 2 (A+D)/2 = + 1II

x = 2 + Nf: (A+D)/2 =- 1

x =2 - \2: (A+D)/2 =-1 (marginal stability)

i.e. the cavity is stable everwhere in the range

0 <x =d/f 4+ 4

Smallest R, to have stability in p and s: Rmin =d/ 1,2 (7.6m/1 2 =5.4 m)

Waists: Because of symmetry, they should be in the center between

neighboring mirrors.

To find the round-trip matrix from center to center, do this:

o Sot , and start at St

-3

~C' D'I * 0 1 f \f11 [ O 1i \-f-11j 0 1 g

Again, with x d/f, we get

/A' B'\ 1-8 +lx 4 3 + x/2 (8 -22x + 17x2  5x3 + x/2)(d/2)'\

* ~C' D'' d cF(- 4x + lOx2 
-6x

3 + x4) 1-8+lx 2
-4x x/2

Here, A'=D'. Also note, that A' + D'=A + 0 (Stability!.)

Check, whether A'D' -C'B' =1:

(1/2) x0 (2) + 1/2 x5 (-8-80-80-8+2+50+102+22)

+(1/2) x1 (-16-16+32) + 1/2 x6 (+10+32+10-5-30-17)



+ (1/2) x2 (+20+128+20-88-80) + 112 x7 (-4-4+3+5)

+ (1/2) x3 (-8-160-160-8+68+220+48) + 1/2 x8 (+ 1/2 -1/2)

+ (1/2) X4 (+1+64+200+64+1-20-170+132-8)=1

Waists at centers of each branch, w0

From previous section:

R =-2B'/(A'-D'); Since A' D' at each center, it follows that R

which indicates a waist.

Size of waist:

(2E,\ w =B'/ [i- (A'+D') /4] B'/ I - A-2]

Since A' + D' =2A' =A + D, independent of the starting point of the

round trip. Incidentally, the condition 1 -A' 2 >0 recovers the

stability condition.

At the center of each branch we get thus

(r/.X) W~ 2 (d/2)(8-22x+17x2-5x3+x4/2)/ 1i (1-8x+10x2-4x3+x4/2)2j

which can be factorized, with the result

4ir wo/x d=(x-4)(x-2- C2~)(x-2)(x-2+ VY2)/[(1/2)(x-2)(x-2- Y7)(x-2+ 27) ') x(4-x)]

or

uWithin the stability limits 0 4 x <4, the waist wo decreases steadily,

from wo (x + 0) + (flat mirrors) to wo (x 4) =0; See figure below.

Spot size at mirrors, wM:

Again,



,'2

= B/ )-(A+D)2/4](=2d(4-10x+6x2-x3)/F(x-2)(x-2-  t2)) V -x(4-x)].

Factorizing

2 = 2(xd/rr)/ (-~

The spot size on the mirrors has a definite minimum versus x = d/f:

(a/ax)[x(4-x)] - /2 = 0 gives x = 2, such that

WM, minimum = /xd/- .

The corresponding waist size at the center of each branch is

w= VAd/2 (1/ "') for minimum spot size at mirror

Numerical example: X 514.5 nm, d = 7.62 m

wo = 7.90 x 10-4 m = 0.8 mm

--- WM  1.12 x 10- m 1 .1 mm;

relation to full width at half-power (see Verdeyen, p. 60)

wFWHM -VI 1ln2Z w =1.18 w

Circular beam cross section at any mirror in
square symmetric ring:

First note that the mirror spot size is symmetric with respect to x :

2: Put x' x- 2, and get

w2  w2/(Xd/n) = [x(l-x/4)]-I/ 2  :(Ix'2/4)-1/2
Mi

i.e w(-x') w(+x').I
Now, the ring is astigmatic, i.e. for a given mirror radius R, the focal

length in the plane of the ring is different from the focal length

normal to the plane.

Re

"-°"
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From the above it is however possible to choose a mirror radius

such that the spot size at the mirror is circular; simply choose

,'.-''" (d/fp)-2 :2-(d/fs) ii '

or

d/(R cos 45°/2)-2 = 2-d/(R/2 cos 450)

This results in

R 3 %'2 d/4 1.06 d (d = 7.6 m R = 8.06 m)
b"

To properly mode-match the injected beam, put a cylinder surface on

input mirror and output mirror.

With the above choice of R/d, the spot sizes at the mirrors are wM

WM,P : wM,s = (Xd/ir) 1/ 2 x 1.030 (only 3% above the minimum
spot size possible).

and
d/f = 2 + 2/3

p

d/fs : 2 - 2/3

Note also that a problem of instability in near-confocal cavities (where
II -.

fl= (d/2) - , but f2 = (d/2) + e, see Siegman, problem 7 in chpt. 8)

does not appear here: Given the nominal mirror radii R, the actual

focal lengths fp and fs are quite removed from f = d/2, viz.

fp (d/2)(3/4) , fs : (d/2)(3/2),

due to astigmatism.

That means that the tolerances of the mirror radii have merely to

be < 25%, to avoid near-confocal instability.

I-
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II. D. Injection errors: Response of ring to offset and tilt
of injecting ray.

In this section, the excursion of a pencil ray off the optical axis

due to tilting and/or offset of an injecting ray is investigated. The

method is reminiscent of orbit calculations in synchrotrons, except that

in this section no wave picture is employed. The solution of the

standard difference equation for rays with such perturbations is

simple. It gives however some insight into the "stability" of a given

ring against injection errors.

6
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*
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II. D. Injection errors: Response of ring to offset and tilt of

injecting ray.

(For analytical background see Verdeyen, Chap. 2)

Ray matrix for round trip,

X7 starting at a point ST P

'A B"

C D m 'N

00

Assume an initial offset ro = a, and an initial slope ro=m at ST.

The offset r at any point (off optical axis) on the ring is then given

through a difference e4-,,o'

r(s+2) - (A+D) r(s+l) + r(s) = 0,

where r(s+-) = offset at ST after s +V round trips. The offset

anywhere in the ring is obtained by choosing a non-integer value for s.

Solution: r(s) = rmax sin (se "Icx)

where rmax is the maximum offset in the ring,

cos e (1/2) (A + D) ,and

' .1.

..... .... .... .... .... .... ........ . . ..
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tan = [1-(A+D)2/4]1 /2/[(A-D)/2+Br;/ro].

From r(s 0 0) = ro = rmax sin c , we determine rmax as

rmax (I/S) [(1-AD)r2 + B2r'2 + (A-D)B ro r0  ]

with S = stability condition l - (A+D)2/4]1/2  .

(0 S 1)

The maximum excursion is homogeneous in ro and ro as it should be. In

the limit of stability S + 0, r,,7, diverges.

The same difference equation holds also true for the slopes, viz.

r'(s+2) - (A+D) r'(s+l) + r'(s) : 0

with the solution

r'(s) = r'max sin (sS +Wc')

cos 6 : (1/2) (A+D) , and

tan ' -(A+D)2/4]/2/[(D-A)/2+Cr so that

r'max : (1/S) [(1-AD)r;2 + C2r 2 + (D-A)C ror;]1 /2 .

Note that since c and c' and the roots are multivalued, there exist in

principle solutions for a and a' in all four quadrants, given the

initial conditions ro and r , and the ring matrix. In the following we

will convene rmax and rmax as positive, and a and c' shall be uniquely

specified by choosing them such that r(O) : ro, r(1) : Aro + Bro , as

well as r'(0) ro, r'() : Cr0 + Dr,.

Special cases:

a) No initial offset, no initial slope: Proper operation.

ro = ro; 0: rmax = rmax'  0, the ray stays on the optical

.1
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axis.

b No offset, but slope:

r0=~,~A= : max (B/S)m, rra [(B) 1 /m

a=0 or , '=tan- 1(2S/(D-A)).

c) Offset, but no slope

=a, r; 0: rma =[BC)
1/2/Sla r~ax =(C/S)a

a=tan-1 (2S/(A-D)), a'=0 or ~

Application to square, symmetric ring with four equal mirrors -

Starting off one mirror, the matrix is, with x =d/f:

(A B / 1-6x+5x2-x3  d(4-10x+6x2-x3)

.C \d±(-4x+Ox2x~+ 4  1-l0x+15x2-7x3+x4

71-6x+5x2-x3X d(2-x)(x-2+ r7)(x-2- VT2)

*where (B/d)x -dC,

S = (1/2)(x-2)(x-2- ',/-)(x-2+ VY). [x(4-x)]1/2  El1 (A+D)2/4J1/2

1-AD = -BC = x(2-x)2(x-2- Y2)(x2. 2)

A - D (x/d)B =-dC x(2-x)(x-2- V2)(x-2+ V")

and, as before, AD -BC =1, with the stability limits

0 x 4.

*For the special cases above

ro =0, r = m, we get a=0 or nr rmax =2dmII[x(4-x))1/2

a=tan-' [(4-x)/x]1 /2, r~x=2/4x 1/2

*ro a, r 0 cc= tan 1  (4-x)1 '2, rma = a(-1/

a=0 or w , r~,ax =(2a/d)[x/(4-x)]1/2.

Generally, the square symmetric ring with equal mirror radii gives

~ 02+xr~r~ 1/2/Cx(4-x)] 1/2, ta x(4-x)] 1/2(-r)(r+d~

2(xr+d~ 2+dror) -o)/(r +dr;

max*'* 0 0*O*****
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rax=2[r'2+(xr /d2)+(r r,'/d)] 1/2/(4-x)1 2  tan a' =[(4-x/] 1  r/r+(/d]

The offset at a given mirror is given through the relation

r(s) =rmax sin (s e + a , and the slope through

r'(s) =r~Xax sin (s + a'),

where now s has a fractional value. Suppose the matrix is evaluated

starting off mirror A in CCW direction. Then

B+-

rA =rmax sin (0 e + a)

C D rB rma sin (e/4 aA

rC = rmax sin (9/2 +at)j

rD rmax sin (3e/4 + ac),

during the first round trip. In the second round trip increase s by 1,

etc. Equivalent relations give rA etc. Three examples are worked out

below. All results are verified by applying the matrix of one leg to

the column vector, i.e.

(rv 'V (1 / I d\( \/ ~ 1  ~ 1/' where v is the vth corner.

No initial offset is considered, i.e. with ro 0, r = m, we have

rmax 2m[(-) 1  , tan a 0 (a=0 or wr)

r~x= 2m/(4-x)1/2  ,tan a' = [(4-x)Ix]1/2

* *1. Closed path after one round trip: e 2 wr or cos e 1 =(1/2) (A+D)

=(1/2) (2-16x+20x2-8x3+x4) Solutions: x = 0, 2, 2, 4

Only x = 2 is inside the stability limit: confocal

x =d/f =2 + rm din, a=0 or i

+, *rax = t2 m, a'=tanI(i1)= j w/,4 , w /4 +n
r = dm sin (s2'r) r' = 12 m sin (s2 wt +3r/

(a 1/ to get rA ro m i and r (l-x)in -in)



s 0 1/4 1/2 3/4 1
mirror A B C D A
r/dm 0 1 0 -1 0 (repet.)
r'/m 1 -1 -1 1 1

All the values have been checked directly.

Example: d = 7.6 m, m tan 1' V 0.00029

rA = rC = 0, rB = = 2.21 x 10-3 meter.

2. Closed path after two round trips: e 7 r or cos 0 : -1 = (A+D)/2;

Solutions x : 2+ 12, 2+ IT, 2- 17, 2-)F

x = d/f = 2 -12 (the other solution corresponds actually to e = 3n)

- rma x = t'2dm, kX = 0
= 2 2- i2m, c' : tan'l[± (1+

= ± 3 n/ 8 , ± 3 n/ 8 + "

r = 2drr sin (sit), r' : ( }2- 7nsin (s i + 5i/8)

(rA : m, rB = (1-x)m : ( Y-I)m)

S 0 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4
mirror A B C D A B C D A
r/dm 0 1 2 1 0 -1 -? -1 0 repet."
r'/m 1 y'-Z -(y--) -1 -1 -(F2-1) i-I 1

The offsets are only slightly larger than in the confocal arrangement:

rmax : (1.08) Jm

3. Two round trips, but with 0 =3

x d/f 2 + V 2 rmax 6 dm = 0

r' I T 7=2' m ' :tan±(C'Z-1)max

- ± ~n/ 8 , ± w/8 + i

r : 2 dm sin (s3n), r' ; '2 102+ rn sin (s3w + 7,r/8)

S 0 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4
mirror A B C D A B C A
r/dm 0 0 -0 2 1 0 -1 V' -1 0 repet
r'/m 1 -()2+1) (11'+1) -1 -1 f2+1 -~ 1 1

The stronger focussing makes again slightly larger offsets: rmax = 1.41 dm

U,,
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Maximum offset in square symmetric ring due to
injection errors: initial slope m, initial offset a

3 -S /a,,-ldi,

C 3



The figure gives an impression of the expected maximum excursion

due to offset (a 0, m=O) and due to tilt (mAO, a=O): Going towards the

strong focussing limit x + 4, the excursions diverge. On the other

side, for weak focussing (x + 0), only a tilted ray diverges. It is

quite obvious that from the point of view of minimizing effects of

injection errors, intermediate stability figures are to be sought.

U
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II. E. Resonant frequencies of Hermite-Gaussian modes in a ringlaser

Although the working modes in a ring laser gyro are fundamental

Gaussians, a knowledge of the higher-order eigenmodes is important for

design purposes. Imperfect injection into a ring excites higher-order

modes (section II.F.); the resulting pulling effects depend on amplitude

and frequency separation of these modes.

Collins' theory (ref. 10) is applied to a square-shaped ring with

zero, one, two, four equally curved mirrors (in any one of these four

cases, the other mirrors are plane). Simple formulas emerge which are

useful for design.

1 1
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Resonant frequencies of Hermite-Gaussian modes in a ringlaser

This section presents a general formula for the resonance 0

frequencies of a given resonator with negligible apertures and symmetric

focusing elements with respect to two normal planes. An astigmatic,

plane, four mirror resonator with spherical mirrors falls in this -0

category. The formula is derived in ref. 10. A configuration is sought

whereby proper choice of mirror radii the frequency difference of those

modes to the fundamental mode iS maximized, for minimum interaction.

The resonator mirrors may be replaced by thin lenses. The

equivalent focal length of a thin lens depends on mirror curvature

radius R and the incident angle of the beam. This is shown in Figure 1.

,f : .P.._4tl

Ar, r A 03 " /
A t

00

A I 'n .

fo --":

>0

For quadrangular resonators, the resonance frequencies are generally 10

f (c/L)[q + (m + 0.5)ot /21T (n + 0.5)a /27r] (1)
qmn x y

The parameters are

c = speed of light in vacuum (the resonator operates in vacuum)

L = optical distance coefficient (round-trip path length)

q axial mode number, m, n = transverse mode numbers.

. -o- .
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arccos(~~N / x or y) (2)
%i1 N

p 1 =(1/2)(1/r, ID o, o/I1I1D, (3) j

NN=(112)(1/ r + DN.D 1 1  (4)

(N =number of mirrors, rl, r2  radii of curvature of the reference

surface.

1l 2- -fN(5

I

f1+f-d -f 0 0 0

-f f2 +f-d -f 2 0

I ~ 0o =f 006

0 0 -fN-i N-2- N--N-

f-1 dN 1 000

-fO ff

I,NI = -) pf (8)
p=i
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Square ring with three flat mirrors and one curved mirror (see

figure 3): The equivalent thin lens wave guide is shown in Figure 4.

qo ,

Y1 00 00

In the equivalent lens waveguide (Figure 4), the reference surface is

tentatively placed in a leg which is not adjacent to the curved

mirror. The equivalent focal lengths are

fIx = Rcos 450/2 (,/2/4)R (obliquity angles are all 450)

fly = R/(2cos450 ) : (v2/2)R

The curvature radii of the reference surface are r1  , r2 * , and

N=2.

The angles ax and ay are obtained from Eq. 2

after substituting eq's. (3), (4), and (5) as

CosI o,ollD1,21 1/2

D00

Now we need to calculate IDo,o?, ID1,2?, and 0Do,21. These determinants

are

0 o : f - L/2

.......



I1D1 21 =f - L/2

4O 1021 -

Thus,

cos =1 L/2f v

Therefore the resonance frequencies are given as follows

f =(c/L)[q+(m+0.5)arccos(l-L'/R)/27r+(n+0.5)arccos(l-L/2 R)/2r]. (10) -

qmn

The stability condition is given by

-1 Cos 1

or (1/2) < R/L < (the stronger focussing tangential plane
dictates the lower limit for R).
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Square ring with two diagonally opposite flat mirrors and two equally

curved mirrors (figure 5).

?2

e ee

The equivalent lens wave guide for the square ring is shown in Figure

6. Here, again, r, r2 +, but N=3 (two curved mirrors).

The angles a x and cy are obtained by Eq. (2) as

I D , 0 1 D , 112
Cos a U IDHD 3 1

1013

where IDo,oI, ID2,31, and JD0,31 are calculated as follows

2f -.2x -f 2 2
IDOo 01 2(f f

f f

ID0 31 =fW*

f ~ 2 2
* 12t3l -f 2f -.2 Z 2(f W-) -f

Thus,

Cos clj= 2(l -!-I ,i.e cosi., =2(1- -- )1, and cosa :2(1. R -1.
f R
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The resonance frequencies are

f :(c/L) [q+(m+O .5)arccos (I-L/vrR)/7+(n+O .5)arccos (I-L/2v R)/,,] (11)
qmn

The stability condition is here

(1/2/2) < R/L >

Square ring with four equally curved mirrors (see figure 7).

* A R

e,
V V

The equivalent lens waveguide for the square ring is shown in Figure

8. This example shows an alternative way to find the resonance

frequencies. It is assumed that the total phase shift due to one round

trip around the resonator must be 2wq where q is an integer. Therefore we

need to find the total round trip phase shift tr"

The longitudinal phase shift is d=kd (ref. 11) due to the distance

d= L/2 between a lens and a; the transverse phase shift is

S-(u~ + 0.5) arctan (d/Z 0 )

U
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where u m or n.
1/2

Here, the Rayleigh-length is zo (L/8)[fij(4-L/4fo)/(L/4)1

The total phase shift is therefore

(m + 11rcanfx4- - /2 1/2
tr= 4kz-)arctan[f (4-/f -)/]-(n + 7 )arctan[f y(4-z/fy)/I],

We need to satisfy 27tr : 2q; therefore the resonance frequency is

f =(c/L)[q+2(m+0.5)arccos(1-L/2/ZR)/+2(n+0.5)arccos(l-L/4/2R)/] (12)
qmn

Discussion:

The three types of square rings give surprisingly simple, and

similar, results for the resonance frequencies. With a parameter 6, 6 :

1,2,4 for rings with 1,2,4 (equal) mirror curvatures, respectively, the

resonance frequencies (10, 11, 12) are given by the same equation for all

three cases as:

f q :(cq/L)+(c6/27L)[(m+0.5)arccos(l-/- L/6R)+(n+0.5)arccos(l-L//26R)] ,qmnI

A cavity with 4 flat mirrors is contained here is as a special case with

'-." 64, R+ .

The spacing of the fundamental modes (m=n=O) is always as usual

Af = (c/round trip path length)(Aq=1 ) : c/L (free spectral range)

This is true for any 6.

. The arguments of the arccosines vary with R. To achieve a specific

operation, given by a point in the stability diagram, 6R/t has to be

chosen properly.

* The two stability limits are, for any 6,

:. -. . .. .. . : . . . . .. , . .. . ..U., .. . - . . . . . . . . . . .: ... > , - . . -.: .. . . .. .. . . . .
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L (R + -, all and--= 2 (mirrors with

mirrors flat) t R maximum curvature)

They provide us also with limiting frequency differences.

In the former case

fq,m,n : (c/L)q (all m,n modes resonate at the
same frequency for a given q),

in the latter case

fq n (c/L)q + (c/4L)6[2(m + 0.5) + (n + 0.5)]

such that all resonances are either 0, 1/4, 1/2, 3/4 or 1 free spectral

range apart from the fundamental mode.

In the latter case, for example, a (q, 0, 0) mode and a (q-1, 1, 0)

mode would have the same resonance frequency in a 2 curved mirror ring (6

: 2).

The problem is therefore to find a ring -configuration where the

unwanted Hermite-Gaussian resonances are as far away as possible from the

desired qOO resonances.

To facilitate the search for a ring configuration with well-spaced

resonances we developed a graph, Fig. 9, that contains the relative

spacing (fm-fq,OO)(fq+l,0,)(2/6) (6=number of equally curved

iirrors) versus a parameter C=2/r2L/R within the stability limits O<C4l.

It appears from these calculations, that not much, if anything, can

be gained by avoiding these special symmetry cases, as indeed any

frequency distribution pattern can be identically reproduced by a square

resonator with 1, 2, 4 curved mirrors; all what needs to be done is to

............................................................. . -
- , •. . . ° -. % *, -.. - - .* " o• • -. - % .' • " - % °.,-. % . ' % . . •. -, -. , , . " - - • -. -. .."-. ,.* -*%



RESONANCE FREQUENCIEOF.
HERMITE-GAUSSIANS IN SQUARE RING'
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Example:
1 curved+3 flats (8=1): Copt=O.5O (R=5.66)



adjust the parameter (L/6R) to the same value.

After these results had been obtained, a scheme was developed where

the (L/6R) was evaluated for optimum discrimination against Hermite-

Gaussians. The results are found, but not included in this report. They

show that the problem of pulling has a unique solution.

-1°"-
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II. F.Injection errors: Misalignment and mismatching of an injected

Gaussian beam. Effects of offset, tilt, mismatch by creating Hermite-

Gaussian eigenmodes (H.-G.'s). Power loss and pulling of

(fundamental) Gaussian.

A real ring has finite adjustment errors. Since H.-G.'s form a

orthogonal and complete base, such errors can be expressed in an H.-G.

expansion. In real life, a ring behaves indeed that way, as a proper

interpretation of experimental data in ref. 12 shows. The latter was

done, among other things, by us in ref. 13, and is summarized at the end

of this section. We consider this section as a basic contribution to I

design of a large ring, and we intend to publish it.

The complexity of our approach is somewhere between our ray approach

(section 11.0.) and that of ref. 14, the latter using an expansion in

elliptic wave functions. We treated, separately, three different

adjustment errors: Offset, tilt, mismatch. Only the last type receives

attention in the literature, although it is actually the most benign case,

giving rise to rapidly decaying even-indexed H.-G.'s. The other types

usually have all H.-G.'s in their expansion. The crucial parameter is the

ratio of "misadjustment" to spot width. m

We were able to quantitatively explain the data in ref. 12, where

most H.-G.'s were indeed due to misalignment, contrary to the claim stated

therein.

. . .
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II. F. Injection errors: Misalignment and mismatching of an
injecting Gaussian beam. Effects of offset, tilt, mismatch
in creating Hermite-Gaussian eigenmodes. Power loss and

pulling of (fundamental) Gaussian.

II. F. 1 Introduction

In order to obtain a detailed description of the optical modes in

resonators, the diffration theory based on the Huygens-Fresnel's

principle is used'I . The fields across the reference surfaces are

extended by means of the Fresnel-Kirchhoff integral in second order to

give the fields everywhere inside and outside the resonator. This

integral is of the form

jk _j(k/2z)[(xxo)2+(y-yo) 2 I
u(x,y z) :_z f" f Uo(Xo,Y0)e dxOdY 0,

S

(1) -.
x,y,z = a rectangular coordinate system where the z axis is along the

direction of the wave propagation, xo, Yo : coordinates on the surface

of the reference surface mirror, at zo  0.

The parameters are:

u(x,y,z) = complex wave amplitude,

uo(xo,yo ) = complex wave amplitude of input at mirror.

k = wave number =2x

S : reference surface,

U In order to find a solution for the above integral, it is assumed

that the resonator mirrors are circularly symmetric which basically
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,'1
leads to Gaussian-Laguerre solutions, or they are rectangularly

symmetric which leads to the Hermite-Gaussian solutions. As a practical

matter, any slight misalignments or mirror imperfections may inhibit

circular modes (Bessel modes),and the resonator may oscillate in

H.-G.'s. Therefore, Hermite-Gaussian solutions are considered in this

report exclusively.

The Hermite-Gaussian solutions for the amplitude umn are

Cmn •/2x n (x2 2U (X,Y,Z) /2 (m -n2)exp[- Rk - )]exp[j(m+n+l) ](l+Z /Z o
(2)

The parameters are defined as: (2
2I

Cmn V[ ]m+n
w 0Tr 2mnm!n!

wo  waist size, w : spot size, R radius of curvature of beam phase

m = number of nodes along x axis

n = number of nodes along y axis

2
zo  Rayleigh length = wo/X]

$=arctan (Z/Zo)

Hn(E) Hermite polynomials of degree n, H n)=(-1)ne 2 n

22

An open optical resonator (e~g. Fabry-Perot resonator) is capable

of oscillating with different axial and transverse modes. As Haus 15

I ';". .'.-' -.- . -: - '.--..." -y . . . '.. . . .- . v.. ......- ' --- -. .. .- i
J .... . . "- .. . ".,, . '. - . S " •...." . - .. - "-• - . . . - . .. .



p.-.

states, the electric field Emn of a sperical Hermite-Gaussian wave

propagating in the z-direction is,

+ DuEm(X,y,z,t) = [2P] Xm- j z mn -jk 3t)
mn (xu mn x )e Z e (3)

with the major component of polarization assumed to be parallel to the

x-axis.

The parameters are:
I

n = wave impedance

P = total power crossing an arbitrary z-plane

w = angular frequency

x = unit vector in x-direction

z = unit vector in z-direction

Since the electric field waves are essentially monochromatic waves,

Emn(x,y,z,t) is written as

E mn(x,y,z,t) = E mn(X,yz)eJt.

Emn(x,y,z) only will be used in the following.

The z-component of the electric field is generally small with

respect to the x-component, therefore it is omitted. The approximated

electric field is then

E = /[nP] u jkz
E V2nP] ux . (4)mn mn _

An open resonator can be excited by an external beam. The external

source should satisfy the following conditions:

1. Its mode should be transferred into a fundamental gaussian ring

mode as completely as possible.

S. .

• • . .. . . - . • . .. . . ... ' • .. . .
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2. It should have a frequency near the fundamental resonance

frequencies of the resonator.

To fulfill the first requirement, the resonator has to be carefully

aligned and matched. We will consider misalignment problems in the

first section of the report.

Higher-order Gaussian beam modes are usually undesirable in

resonator applications since a passive resonant ring laser gyroscope may

give a false rotation signal due to the presence of the such modes.

Irrespective of the amplitudes of such H.-G.'s one tries to design a

resonator so that they appear as far away as possible from the

fundamental mode. But since there is always a finite linewidth

associated with the resonance frequencies, the tail of the resonance

does pull the fundamental mode's frequency. Therefore the maximization

of the frequency difference between the fundamental mode (TEM 0 ) and the

next higher-order mode is needed.

II. F. 2) Misalignment

A resonator-source system can be misaligned in two ways:

a) The resonator becomes misaligned internally,

b) The external source is not aligned with the resonator. -A1

The latter is dicussed throughout the report. The new optical axis

of an internally misaligned resonator can be found by applying

variational calculus (minimize pathlength). The external source can

then be explained relative to this new base by the methods outlined

below. It is assumed that the resonator fields are given by Eq. (4).

. . ".



In this report, we consider the case where the injected beam is a

TEM 0 mode only. Three types of external misalignment are considered.

a) Offset source beam:

The center of the injected beam is not on the z-axis (optical axis)

but the beam is parallel to the z-axis, with the same waist size as

that of the resonator.

b) Tilted source beam:

The injected beam makes a finite angle with the z-axis (again, the __

waist size is the same as that of the resonator).

c) Mismatched source beam:

The waist size of the injected beam does not match the waist size of

the resonator beam, but the beam shall not be off the z axis nor

shall make an angle with z-axis.

The above types of misalignment are treated in detail in the

following subsections.

II. F. 2. 1) Offset Source Beam

As it is shown in Figure 1, the external laser beam is a TEMoo-beam

parallel to the z-axis but the center of the beam is off by s.

The electric field of the injected beam can be written as

Eo  /[2nP] u'00 e -jkz (5)

where

2 2 2 ik 2 2Ubo - 2 exp [-(x+) +y ]exp {-k [(x+)2

wi w2  2R Y

I
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It is easy to show that the functions umn(m, n = 0, 1, 2, ... ) form an

orthogonal and complete set 15,16 It is therefore possible to expand

the injected beam in terms of this set, i.e.

E0 = s . An E (6)EO E Amn Emn (6

m=o n=o

where

f f Emn E0 dx dy ,
Amn C o , E is the conjugate complex of Emn

f f Emn Emn dxdy

To simplify the analysis, we expand the injected beam at the location of

the waist of the proper resonator modes. It is assumed for this purpose

that all H-G's of such a resonator have their waists at the same

location at which the origin of our coordinate system is placed.

f f 4 2 ,PJ u* eJz)(V[2IP] u 0, e 'z)dxdy.>_'.-0 -0 ( [2 P Umn
A f f u mu' 0 0dxdyamn * jk -jk I - Um

f f (/[2nP] umn eJkZ)(V[2nP] umne )dxdy - ® -0
-00 -00wnm

at z =0 we have

f ® /2x (2 (x+)mn mnn[ n 0 exp 20 + , dxdy (7)

where we use the fact that R + and + + 0 as z + 0.

The double integral can be separated into two integrals over x and

y, respectively. It may be written as
2

2 2 2 1

Am- 2X)e w° f dy{ (Y)e "y /  -- "
-n 0n -m wo

........ W 0 . .. .. .
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The second integral is unity for n =0 and zero otherwise17  Thus,

A - C m Wo (10)
mn{JCmo fx{pL.) 0 ~ fr=

0 for n#

The resulting expansion for an offset TEMoo-mode contains thus TEMmo-

modes only. The constants are

2 2 1
NO1W 2 72

Ama (7----) fdx{H( -)exp[ -2(x X Ex)/w2]. (1

This can be written as 1

Amo exp(-e /2 2o( rno~/,/mi (14)

Now the injected electric field can be written as a single sum

+ CO +

E0  A E (15)
mo M0 m

or
2 2

2 +

+ - 2w 0  e Lk- 2 2 001 M

*H v'2x (17)
m W



0.0

-,~As E,:. 3Wb 0. 0, 0 '

-L1 ..................

.. . .. . . . . . . . . . . . . . .

... .. . .. . ... . . . .

. .. . . ... . . .. . . .. . .. . .... .. . . .. . . .. . . . .



. . .. .. ... . . . . . . . . . . . . . . . . . .

.............)

0. I.. . . . . . . . . . . . . . . .. . . . . . ... . . . . . . . . . . .. . . . . . .

.. . ... .. . . . . . .. .. . . . . . . . . . . . .. I.. . . . . . . .

.. ... ... . . . .

0.50

S. .. .. .... 1

If . .. . .... . . . .. . . . . . . .

.....................................-



We plot equation (17) in the x plane, where in addition to z = 0, y

is set to zero as well:

2 2
-- -x

2 2Wo Wo .i m /2xto= /[2nP] ' e e z[(m!) (--) Hm(- )] x (18)
W0  m=o m w

An example of this expansion is given in Figure 2 through Figure

10. The dimensionless amplitude of the injected beam Eo=Eo(wo/8nP)

vs. (x/wo), at y=O=z is given in Figure 2. The beam is offset by an

amount e which is set equal to its waist size wo. The result of

74 summation for the first seven terms is given in Figure 10. Figures 3 to

9 give an impression of the rate of convergence for this choice s =

Wo. This is an enormous misalignment. Introducing the offset parameter

,= we may now evaluate the magnitude of the H-G's created by an

offset TEM 00 -mode as

2
) m

A(El,m) : (-l)m e (19)• . /[m!]

II. F. 2. 2) Tilted Source Beam

The external beam crosses the resonator at its waist location under

an angle a. This is shown in Figure 11.

Again, it is assumed that the injected beam is identical to the

TEMoo-mode of the resonator except that it is rotated at the waist by an

angle a. The electric field can be written as

E0  V[2nP] {u'oo eJk~z o a + x sin }(-z sin a + x cos a)
(20)

-, -%p
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where

2 22

U-0 0  { 2 2 2 } exp [2 -zsinc+xc2+ ]
w0 i[1+(zcosa+xsina) /zO] w0

exp{- R [(-z sin a + x cos a)2 2 e

The vector E0  can be written as follows.

+

E0 = E x + E z (21)xo zo

+

where Exo and Ezo are the x and z components of the vector E0

respectively. Since the resonator's eigenmodes have electric fields in

the x-direction only, see Eq. (4), the injected electric field's x

component only is able to excite the resonator modes. The y component

would go through the resonator freely as there is no conceivable

coupling of an orthogonal vector component in vacuum. We therefore
+

expand the x component (i.e. ExO) of the field E0 only:

Exo = r. A Emn (22)
m=o n=o

where
CO

f f E mn Exo dxdy

A :
mn 0 C

f Emn E mn dxdy
- w -az

Now we calculate Amn at z =0 as before. ~

% %I
-Pr. Pr



COI

A f dxd{fC ' ' /Y)
mn mn m WO nwWO 2[1+(xs ) ]

-00 -OD ___7

e Cos a e (-jkx sin a) (23)

As before, it is possible to separate the double integral

(xCOS + jkxsina)

A C Ccos a f dx{f ()
mn mn -00 m wO ,( s In 2

2 2 1

~y W 2 (24
f dyti(-)e (--2-) } 24

-00 0 TWo

The second integral is zero if n 0 or it is unity otherwise. Amn may *
be written as

Am sn2-12 X2 CS2 a~
JUtC Coafd .( 2) L.L(-Z /J xAJ -T- jkxsiiia)} n 0

COS a - 0f 2 2 jkw0  f

A C CO a-f d~{H (E)exp[--! (1 +cos a)E -(--72-sina)E]

wO 2 sin 2a -1/2

(1+ 2~----- (27) _

2z0

Am0 may be approximated by



wo 00
A C m c os~ 7- d {H (E)

2 2 0
exp[-(1 + cos ci)E /2 -jkwosin a E//2'}. (28)

Let us calculate the integral and call it I.

CO -2 2.

I fd {Hm -~[a +jb ]1  (29)

2
whr -.2 1+cos - kwosinct
w ee a = ~--- ,b =___

By using Euler's formula, "I" can be written as_

-2 .22 C-2 2

I f d[H m(E)e-a E cos(6E)J j f d [Hm (E)e E~ sin (t3 )J (30)

From Ref. [18], we have

b m -
/r 4az b 1 7

I =-e HE . /~(..~ (31)
a m2( 1)

a

Now, we can substitute for a and b.

2 2
k w0 sin ai kwo si m

Im~m 2 are write as

V()ep
.,'.*.* ~ x. ...

*-.--.-............- c..- a). ..o..a
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Re[Am0  r for even m (33)

and

j.Im[Amoil j P m for odd m (34)

where

2 2 2
m kwosin ct

m IT

kw0/1+cos a sn a
H TIEL

*m /2('+cos a) V1+cos a

where Cm0
w0  2

Now we substitute for Cmo in m

2 2* 2
- 2 k w0 sin a

.m OS 2 exp[ 2Pm(1+cos 2 ) 2mm, 4(14-COS2 a)

kw0
'H 1 i (35)
m L 7V2(1+cosa) 'lC a

In order to plot these equations and make a numerical example, we

would like to inspect the function vs x only at y z =0 (waist). The

injected beam can be written as

=X( P mum + zE at zzo (36)

at z =0
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,4. P2

Figure 12 shows the real part of the injected field, i.e.

,A u' °°(x, 0, 0) cos (kxsina) cosa . (37)

A. tilt given by

2= a/tan' (w°/L) 1

is chosen (&2 is the tilt angle measured in terms of the beam spread.)

For a waist size of w0 = 0.002m = 2mm, and a wave number k = ( 2 7r/6 3 3

xlO 9 )m- 1 = 9.93x10 6 , this corresponds to a tilt angle of a=1.0x10 4  ad

= 21 arc second. Fig.'s 13 and 14 show two components. K
In figure 15, the sum of the first two terms is shown. Comparing

it to fig. 12, the quick convergence is evident. Figure 16, with four

terms, is indistinguishable from fig. 12.

II. F. 2. 3) Mismatched Source Beamn

. The injected TEMoo-beam shall have a waist W. The resonator's

eigenmodes shall be Hermite-Gaussian modes with waist size wo. At z

0, we expand the injected beam in terms of these Hermite-Gaussians, (see

Figure 17).

The injected electric field is

2 2 ,-j
= n - e W e 2 e e x (39)

As before, we expand Eo in the plane z 0 .2j 2 2 2

Eo /2,nP" 2/wWo exp[-(x + y )/W]. (40).

. . " ..
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- A E (41)
m=0  0 rn run

where

f f E, EO dxdy

A mn -0 m

f' f E* Er d xdy

After substituting for Erun and Eo, we have

2 2 2p
-x -x

-A - '2 00 WO V2 W O Wa
An ?~ Cn f Je H (~~)e dxl f~n ~e 0dy (42)

Et - 2x an n 12y-

L-adet then
W0  W

2 2
2WO +W0

24

2 Wa W

An V--72 C -p-{-f H (E)e d~l

W

f H (fl) dn 1(43)

2 2
2 Wa +WO4

In order to make some simplifications, let a 2 ~- t = E, and to

$n81, then

2

An / C n7 fH (1)e&t 2t Hn ()e t J (44)

m mnm a n

From Ref. 18, we have8



0 for m, n odd

1 for n m =O0andwo =WOj

2w00  /~m!2 2 m+n
Vnm (----~ tewise. I

Finally the injected electric field can be written as the following

summation.

2 2

to WO Wo
Wa +wa

H (V2x) __2t 2 2 m+ n
(-)H-= (46)Yim, 2mn w 0 w

A numerical example is given in Figures 18-24. In mismatching problems

as given above, we may define a mismatch parameter

= 2 2

In Figure 18, the injected beam amplitude is shown, in arb. units. It

has a mismatch E3= 0.77 (WO = 2wO).1

Figuresl9 to 22 show Uao, U02 ,Uo and Uurespectively.

In figure 23, the summation of the first 2x terms is shown:

U00 Aoo U02 A20 + U2c, A20 +q., A j

.A
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Figure 23 shows a kurtosis. In Figure 24, the summation of the first 8

x 8 terms is shown.

14 14
A u

M=0 ,2 ,.. n=0 ,2 mn mn

The peak of this partial sum is within 99% of the peak of the original

curve.

II. F. 3. Application of the results of section II. F. to ringlasers

The misadjustment of an external stigmatic gaussian beam to a ring

gives rise to Hermite-Gaussian eigenmodes in addition to excitation of

* the ring in the proper Gaussian mode. An added complication is the

presence of astigmatism of the ring modes. The latter can be expressed

'* by the presence of an elliptic ring waist with the two waist sizes wox

and woy.

A misalignment, in two dimensions, is then expressed by the offsets

Ex and e y and the tilt angles ax and ay, see figure 25. A slight

generalization of the previous section gives then the misalignment

"- parameters

i!" x = x/Wox oxWox) x

1w + +(q 1w )Y y /oy oy oy y

where qox, qoy are the complex curvatures of the ring modes at the

waists. This simple set of equations is proper, since the propagation

characteristics of the beam in the two orthogonal planes are not

coupled.
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Furthermore, a mismatch, see figure 26, is given by the mismatch

parameters

2 2 2 2
-. 0x = (O°"Wx)2 1/2, Oy = (w°2 "w°0  I/

WO 2 1/ )Ow 1/2

W + w ox W0 + Woy

Note that for perfect adjustment, all parameters are zero.

The power ratio of a H.-G., Pmn/POO to the power of the Gaussian in the

ring can then be expressed as

Pmn/POO = Fm(xO) • F ( y,O y),

where F m( x : (2 mm')_ lxl 2m 2xx //' 2,

n I 2nl~[ j(I_0 ) O 2 2"

Fn(yOy) = (2 nn) y1 ,n 2 I2n yy 0y In il~y y /10y

judiciously exploiting the previous sections. These equations are

useful to estimate the amount of pulling due to offset, misalignment,

and mismatch.

The power transfer from a misadjusted Gaussian to the ring's

Gaussian is, of course, of interest as well: For pure mismatch, with

coinciding waists, it is simply

-P P= 1 - 04  (0 0x or Oy, PL : Power of injecting laser).

|* For pure offset,

POO/PL = exp(-C 2/w2 O exp[-(ReE)2 ]

The figure 27 shows a plot of the latter two equations. They show that
ao

~~alignment is to be treated more carefully than matching.".
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II. F. 4 Experimental test of misalignment and mismatch.

The previous notions were put to the test by applying them to

experimental results obtained by the Seiler group (ref. 12).

In a ring injected by a presumably stigmatic Gaussian beam with no

matching circuit, the scanning analysis produced figure 28. The two

largest spikes were identified as q,O,O and q+1,0,O modes, the rest were

labelled "higher-order modes". An analysis of the frequencies involved

verified that they are all H.-G.'s, with indices as given in the figure.

15 such modes were identified.

The fact that one of the most prominent H.-G. was qO1 indicated

serious misalignment, as mismatch produces even-indexed modes only.

The fact that the qlO mode is not visible indicates alignment in

the plane of the ring.

The fact that the q02 mode and the q04 mode were almost equally

strong indicates misalignment in the y-direction in general and no major

mismatch.

On the other hand, the presence of the q20 and the q22 modes allows

an estimate of the mismatch in the x-direction.

Given the optical circuit, the mismatch parameters are

0x = -0.53 ± jO.66 , Oy = -0.40 ± jO.76

with JOx= 0.84 lOyl 0.87

The misalignment parameter in the x-direction is negligible (good

alignment in the plane of the ring), but in the y-direction it is

y = 0.255 - jO.153

as obtained from a least-squares fit of the H.-G. powers of lines qO1

through q012 to the equation for misalignment (The fit was good to

2.4%).

"o S

~~~~~------------------------.- . , . .,,.-., . o° , .°'"-.°~..° , . ,



c 0 _ _

0 ai

w L0
x+

0 04

Ca)Y

'I- ~ c N

Cl, 111 1

- IN

aM-



kr 0

0

CI
0 Y)

I- 0
xN

0 0



/ II ".

The above result says that the offset in the y-direction was

Cy=1
8Oum, and the tilt in the y-direction was ay = -49 arc second. A

-,

The same paper shows a "partly matched" beam, Fig. 29, where a

-" spherical lens was placed in a compromise position. The pattern shows, -.

besides the q02, q20, and qO1 modes, a newly emerging qlO mode

indicating that now there is also misalignment in the x-direction.

the parameters are

0 x 0.328 + jO, 0y 0 + jO.303, l~xl=0.16, Ey=O.1 9

reflecting a bigger effort in alignment as well as match.

Finally, the "matched" (actually aligned) cavity shows the

fundamental Gaussians only, figure 30.

For "tutorial" purposes, figure 31 shows the cross sections of an offset

and mismatched beam and its expansion into all Hermite-Gaussian

eigenmodes of the astigmatic resonator. The contours are all the same .,

isophote. Also, the aligned laser is shown to produce only even-indexed

H.-G.'s. Note that the width W0 of the circular incoming beam is made

equal to the horizontal width wox of the resonator.

These results suggest an interesting way to keep a large ring

aligned via servos:

1. Pick off the qlO mode and control with it the horizontal injection.

2. Pick off the q01 mode and control with it the vertical injection.

3. Pick off the q02 mode and control with it the vertical complex
curvature of the beam (y-zoom).

4. Pick off the q20 mode and control with it the horizontal complex

curvature of the beam (x-zoom).
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III. A. Scanning of an astigmatic beam, and beam evolution:
New method to find beam and evolution parameters

This section contains the first experimental subject we were

working on. It was motivated by the desire to establish experimentally

the shape and size of an astigmatic beam spot. Scanning by a razor

blade ("knife-edge") was recognized to deliver enough information to

find the axes of an elliptical spot, and its inclination. The analysis

proved to be surprisingly simple, and its results easily applicable.

Data evaluation via non-linear least squares fitting is applied to find

spot parameters as well as beam evolution. The programs are available

upon request.

In the following, a reprint of a paper is given (ref. 19) which

summarizes this work.
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*Knife-edge scanning of an astigmatic Gaussian beam

Hans R. Bilger and Taufiq Habib

The relations for position, spot size. and inclination of the major axis of an elliptical Gaussian beam to knife-
edge scanning data are derived. A knife-edge whose scanning direction is adjustable to any angle has been
employed to scan across a beam in at least three directions. Nonlinear least-squares fit programs have been
developed to check whether a beam is Gaussian, and to evaluate the parameters, with errors, of such an ellip-
tic spot. The evolution of an astigmatic beam in the tangential and sagittal plane is measured.

I. Introduction where Wo,Wb are the spot sizes along the major and
Scanning of a Gaussian beam with circular cross minor axes, respectively, P0 is the total power in the

section has been dealt with in several papers.' How- beam, 2(Po/lWoWb) is the power density in the beam
ever, beams with different cross sections or power center, and
density distributions appear often in laser systems ei- z - x0 = x' cosao - y' sinao,
ther as aberrations, e.g., through admixture of Her-
mite-Gaussian beams, or as an essential feature, as is the y - Yo - x' sinao + y' cosao. (3)
case in ring lasers. The extension reported here has Equations (3) include rotation by a tilt angle ao (mea-
several benefits in the laboratory: sured from the positive x axis in the direction of the

(1) Quantitative determination of the degree to positive y axis) and translation of the beam center to
which a given spot deviates from a circular cross sec- xo,y0. A centered circular Gaussian beam [Eq. (1)1 is
tion. included as a special case with xo = yo = 0 and w. = Wb

(2) Determination of the parameters of an elliptical = w.
spot. When a straightedge is placed at x = x, parallel to the

(3) Analytical (least-squares) evaluation of the spot, y axis, obscuring the half-plane x < x,, the power
including an estimate of the errors of the evaluated transmitted past the edge2 is given by
parameters.
II. Scanning of a Gaussian Beam with Elliptical =- = . _. S(xy)d>1 dx. (4)

Cross Section This double integral can be expressed as a comple-
The spot size w shall be defined by the following mentary error function of x,,3 namely,

distribution of the electric field amplitude E: PMx.) - (Po/2) erfc(u), u - (%/2)(x. - "!.)Mwao), (5)

E(xy) = Eoexp[-(x 2 +y 2)/w2] (1) with erfc(u) = (2/-V/i')f exp(-t 2)dt, or as4

for a circular beam spot centered at x = yv = 0; the beam P(z.)/Po Qv), v - [2/w(ao)l(x. - .) (/ 2)u, (6)
propagates in the direction of the positive z axis.

Extending this to an elliptical cross section with ar- with
bitrary orientation (see Fig. 1) and using power density

(proportional to intensity I), we have Q(u) [1//(21)l J ,. p(- t2/2)dt.
2 P0 an

S(X'y') = ----- ezp(-2x 2/w!) exp(-2y'
2/wl), (2) and

U~I WO~W5
w 2(ao) = w. co2o + W1 sin2 ao,
E.(ao) - xo cosao + Yo sinao + xz (7)

(x,o is the offset of the translator micrometer).

The authors are with Oklahoma State University. School of Elec- The function P(x,)/Po is drawn in Fig. 2 vs scanner
trical & C(omputer Engineering. Stillwater. Oklahoma 74078. position x, for two widths, w I and wt_; the center of t he

Received 24 September 1984. beam is assumed to be at x, - 0. Equation (7) contains
0003-6935/85/05068605$02.00/0. the three parameters of interest w, Wb, and n0. The
C 1985 Optical Society of America. apparent width w(ao) is plotted in a polar plot in Fig.

O8 APPLED OPTICS I Vol. 24, No. 5 1 Mwch 1085
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Fig. 3. Polar plot of widths vs scanning angle a for three different
Fig. 1. Elliptical beam spot centered at zoyo with axes w0 and Wb elliptical beam spots (solid curves). The spot for U'o/Wb = 2 is drawn
tilted against the positive x axis (horizontal) by ao. The beam goes as a dashed ellipse.
into the paper plane (positive z axis). The scanning edge is placed

at z*.

Three methods have been devised to evaluate

2(a) Fractional power method: Noting that Q(v+ =
0.841 1) = 0.841 = P(x+)/Po, and Q(u_. -1) = 0.159 =

0.8 P(x:)/Po (see Fig. 2), we set the edge such that the
i relative power equals these fractions. The positions x+

• and x yield the width w(a) through
0.6 v+ - v- fi 2 = [21w(a)(x. --. ) - [2/w(a)(x -

*or()

0.41 In principle, any pair v+v_ can be chosen to evaluate w,
but with a given absolute error in P(v), it can be shown
that the pair u± = 4.1 produces the width with mini-

~mum relative error. The center of the beam, £,, can be.2, obtained by setting the scanner such that the trans-

0.5----------------------------mitted power is halved, see Fig. 2.
(b) Graphical method: This method consists of

w2 plotting the relative power P(x5 )/Po vs x., on error
-°4 -2 0 2 4 function paper5 A straight line on this paper indicates

xis an error function, i.e., that the beam is indeed Gaussian.
Fig. 2. RelativepowerP(x,)/Povsscannerpositionx. for twospot The points 4 and x; can then be used as above to find

sizes w1 (= 1.5 units on the abscissa) and w2 ( =3 uniton the abscissa). w. The center of the beam is again given by P(Y5s)/Po
The shapes of these curves are identical, except for a difference in w, = 1/2. This method has the advantage over method (a)
for scanning of an arbitrarily placed elliptical beam. The beam in that it makes use of all the measured scanning posi-centers are assumed to be at m, 0. tions, t the latter do not have to be specifically cho-

sen, and that the graph allows a check whether the beamis Gaussian. It also provides some estimate of mea-3 for three different ratios ww/wb, together with the s n
actual spot shape (ellipse, dashed line) for wa/Wb - 2. (c) Least-squares method: This third method con-
The measured widths w(ao) agree with the widths of the sists of fitting the Q-function into the measured powerellipse at a - a0 and a - a0o r 180v where w(ap) = we, vs xt (see Fig. 2), by adjusting the three parameters P,
and at a te a 90 where w(a) = Wb. tru h

If the scanner is now rotated around the z axis by n oralid iTh mthd poe ot beore n alyis It can
angle a against the positive x axis, the equation for the n or a ccommodath t e a fluctuatingetoalss powe an

1' resulting width is slightly generalized to itrucserors intrmoduced by fluctuatingtoa power The
= w- cos2(ao - a) + w sin2(ao - a), accuracy of the computer program is not limited to the

..- (8) usual -1% of graphical methods. Any observer bias is
E.(a) = zocoe(ao - a) + yo sin(ao - a) +- z,O. eliminated. Finally the program also provides analytic

For a circular beam with w, = w- w, the result is again estimates of the errors of the parameters by calculating
w(a) - coast - w, as it should be. the variance-covariance matrix.6

1hhrch~ 1965 / Va. 24, NO.5 I APPLIED OPTICS 967
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Fig. 5. Goniometer to adjust the obliquity angle of the lens. The
Fig. 4. Test of a spot at z = 90 cm off the laser without intervening reference position is given by retroreflection which originally aligns
optics at 5 angles, 00, 45", 900, 135 . and 180°. The fit w(a) =conist the principal axis of the lens with the beam axis = optical axis.
results in w =(653 1* 4) m. The sensitivity of the method to detect
ellipticity is demonstrated by the dashed curve where tentatively ue o eeto ihbcgon ih.Teba

wb/w. = 0.9 has been set. ue o eeto ihbcgon ih.Teba
evolution was measured within the first 1.5 mn off the
laser front end. The spot size vs z was fitted by the

Given the measured points P(x5 ), usually between equation
five and twenty points covering the range from 0.9 P0 w(z) ff wov Il + (z - z 12 /z4l, (11)

to 0.1 P0 , the program fits the function
with Wo = waist size, located at z = zn,, and 20 = Ray-

P(x = aiQl2(z - aa/ail '~a leigh length ff rw /X. The waist location zo, was found

into the points where a1 ff Po, a2 = w(a), a3 = £s. An near the output mirror of the laser. The waist size was
*approximation for Q is chosen 4 which has a maximum wo = (316 4- 5) Aro.

error of 4-I x 10- s over all arguments u: A piano-convex lens with focal length fo = 20 cm was
then placed on a rudimentary goniometer (Fig. 5), which

Q(v) 1/2 + sgn(v)lf1/ /(2r)J enabled us to rotate the lens around a vertical axis by
* ) (a + bt + ct2)t exp(-v 2/2) - 1/21, an angle Xh and also around a horizontal axis by an

t= 11(1 + plul), angle ,,. The angle of obliquity8 4 between the beam
and the principal axis of the lens then becomes

sgn(v<0)=-l, sgn(v=0)=0, sgn(v>0)=+l,

p = 0.33267, a = 0.4361836, 0 ' afrccos(cosyj= cosef,). (12)

b = 0.10166.c 0.37280.This angle lies in the tangential plane whose tilt against

The program is iterative. It makes use of initial esti- thhoinalpne(-pae)sgvnbyJmates for a1,a2,0a3 and refines these estimates until the ao =
f arcsin(sinyd sin0 ). (131

sum of the residuals squared is satisfactorily close to the The tangential plane therefore contains one of the axes
minimum. For a set of twenty points, the program of the ellipse.
takes -800-msec CPU time on the VAX 11/750 for four The lens was placed at 2f'0 ff 40 cm from the beam
iterations, which usually leads to convergence. 7  waist, with the two angles Yh ff = 300, which results

in the two focal lengths9: ftangentaal = 9.4 cm and
*Ill. Parameters of a Gaussilan Beam with Elliptical /'= f 16.8 cm. The beam, after traversing the lens,

Cross Section is expected to have a shape as given in Fig. 6, with the
*One scan at an angle a gives w(a) = a2. We need at circle of least confusion8'9 at z 15.5 cm; before and

least three scans to calculate Wa, Wb, and ao. In prac- after this point, the ellipse rotates by -90 ° (a0 
ff 136.50

tic:, scans at mote than three angles are made. A sep- to ao ff 46.5 ). Since the input to the lens is a circular
aaeleast-squares fit program then determines the Gaussian beam, there will be a tangential waist and a

three parameters above through Eq. (8) or through sagittal waist placed approximately symmetrical to zi.c.
There are no focal lines in this case.

w(a) = w. v'I - t2 sin2 (ao - a)J, (B) The propagation of the beam in the tangential plane
*with £ = numerical eccentricity ff v'(1 - w /w ), is independent of that in the sagittal plane. Both are

governed by Eq. (II), with two different sets of pa-
IV, Establishment of an astigmatic Gaussian beam rameters: Wot, z~t, Zo). and wo , z,,, zo3.

A He-Ne laser (Oriel model 6697) was used to pro-
duce a well-behaved circular Gaussian beam. Its cir- V.Experlmental Evaluation of the Astigmatic Beam
cularity was checked by scanning at several angles, see The beam was probed at distances 12-60 cm after the

*Fig. 4. A silicon detector (Optics Technology model lens. This range contains the interesting features (see
610) with a narrowband optical interference filter was Fig. 6): primary focus = waist in the tangential plane,

-- ' 6GM APPLIED OPTICS / Vol. 24. NO. 5 I 1March 1985
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Fig. 6. Evolution of beam along the z axis. The circular Gaussian
beam enters the lens at z - 0. The spots are shown as they appear
in the x.y plane enlarged by X100 relative to the z scale. Immediately
to the left and right of the circle of least confusion, the tangential and

sagittal waists are shown, respectively. Fig. 8. Polar plot of spot sizes w(a), taken atz - 35cm. The fit gives

w. = (801 * 3) p m, t = 0.920 + 0.003. ao = (46.4 * 0.4). The rms
deviation of the widths in this plot from the best-fitted solid curve
is 4.5 jum. The resulting elliptical spot size is drawn as a dashed

curve.

1.2 -

1500-

0.94 i _3so

0.3 0 .

- - -10 200 30 460 500 So

Z(nvn)0

W(45 0 ) "-. Fig. 9. Evolution of astigmatic beam vs z (see also Fig. 6). The waist
0.2 sizesare woe - (58.0 *0.2) pm and wo = (102.0* 1.2)m. Theycan
5.4 5.6 5.8 6.0 6.4 6.6 6.8 7.0 be located with an accuracy of about ±2 mm.

Xs(mm)

Fig. 7. Scan of astigmatic beam at z - 60 cm from the lens at a f 45.
The least-squares fitted parameters are: total power PO = (1.498 * Fig. 9) by least-square fitting Eq. (11) into the previ-
0.005) mW, center at , (6.309 * 0.002) mm, spot size w(45) (783 ously obtained results. The best-fitted parameters

*6) m. are

tangential waist wot = (58.0 0.2) Am at z = (118.5
circle of least confusion, and secondary focus = waist : 0.9) mm,
in the sagittal plane. sagittal waist w0, = (102.0 ± 1.2) Am at z, ,, = (201.3

Figure 7 shows a typical measurement of P(x) at a -2.5) mm.
distance z = 60 cm from the lens, at a scanning angle a The maximum deviation of any point was 8.5 urn for
= 45° with respect to the positive x axis. The least- the tangential spot sizes and 14.6 Am for the sagittal
squares fit of Eq. (6a) to the fourteen measured points spot sizes.
gives P0 = (1.498 + 0.005) mW, w(45*) = (783 ± 6) Am,
1, = (6.309 + 0.002) mm. None of the individual re- VI. Discussion of Results
siduals exceeded 8 uW; a translator with 10-urn reso- The methods used here to scan an elliptical Gaussian
lution (smallest division) was used. beam with a straightedge (razor blade) are based on the

After at least four widths are evaluated for each spot, result that the power spilling over the blade has the
Eq. (8a) is fitted into the data w(a). Figure 8 shows a same dependence on the position of the blade as is the
typical fit at z 35 cm with the result w. = (801 ± 3) case in a circular Gaussian beam, except that the eval-
um, r - 0.920 ± 0.003, a0 = (46.4 * 0.4), which estab- uated width is a simple function of position and size of
lishes the tilt and size of the ellipse at 35 cm together the ellipse. At least three scans need to be done on each
with the errors. The maximum deviation is 7.5 um; the spot, with different angles a. If the position of the
average deviation is 4 Am. tangential plane (cv,) is known, two measurements

Finally, the evolution of the tangential spot sizes would suffice, preferably taken at a = ao and a = a0 +
Wt (z) and the sagittal spot sizes w, (z) is obtained (see 90 .
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Two methods were mainly used to obtain a width, References
namely, the fractional power method and the least- 1. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville. B. de Ia Claviere,
squares method. The latter established that the beam E. A. Franke, and J. M. Franke, "Technique for Fast Measure-
is indeed Gaussian, within the errors. However, sub- ment of Gaussian Laser Beam Parameters," Appl. Opt. 10, 2775
sequent measurements were usually done with the (1971); Y. Suzaki and A. Tachibana. "Measurement of the pm

fractional power method, which is faster. Both meth- Sized Radius of Gaussian Laser Beam Using the Scanning

ods yield typical errors of the order of one small division Knife-Edge," Appl. Opt. 14, 2809 (1975); J. M. Khosroflan and
B. A. Garetz. "Measurement of a Gaussian Laser Beam Diameteron the scanner (= 10 Mm) or less. The data suggest Through the Direct Inversion of Knife-Edge Data," Appl. Opt.

indeed that translators with a resolution of 1 ym would 22,3406 (1983); M. Mauck, "Knife-Edge Profiling of Q-Switched
produce yet smaller random errors. Nd:YAG Laser Beam and Waist," Appl. Opt. 18, 599 (1979).

To test the sensitivity of the methods to detect de- 2. The required size of the detector and its distance from the edge
viations from Gaussian profiles, a Hermite-Gaussian may be estimated as follows: An aperture of a diameter 4 w
1-0 mode of the same spot size' ° was evaluated. The passes over 99.9% of a circular Gaussian beam of spot size w. As
calculated result of scanning along the x axis is far as diffraction effects due to the edge are concerned, the power

of the cylindrical waves in the shadow region diminishes as (kz)-i
1Ptx,)/PoTEm..o = (1/2) erfc(u) + (u/v/w) exp(-U 2 ), IM. Born and E. Wolf, Principles of Optics (Pergamon, New

u = (V/2)(x -Y,)/w (14) York, 1975), Chap. 111, which amounts to -10-5 for , = 633 nm
at r = I cm offthe edge: with a detector placed more than 1 cm

The major deviation from the error function occurs at behind the edge we can safely disregard diffraction effects.
uM = -I/v/2 with an amount of V(2re) - 24%. This 3. M. Abramowitz and 1. A. Stegun, Eds., Handbook of Mathe-
suggests that the detection of admixtures of such ei- matical Functions (Dover, New York, 1972), Chap. 7.

genmodes with a power of less than, say, 10% of the 4. Ref. 3, Chap. 26. The approximation 26.2.16 therein is over 2
fundamental Gaussian has to make use of other meth- orders of magnitude more accurate than that used by Khosrofian

ods, e.g., of Fabry-Perot scanning in the frequency do- and Garetz (see Ref. 1); however the following approximation,
which is similar to the latter in structure is also accurate to ±I Xm ain. 10-  for - - 4< x 4 + :It may be noted that by using the least-squares pro- Q(x)Il + expf(x)} t , f() = ax + a 2x 3 + ax 5 + a4 '7,

gram above, an iteration of the type given in Ref. 11 can a1 
f 1.595700, a2 = 0.072953, a3 

= -0.000324,
be avoided: The program finds directly one waist to a4 - -0.ooo350.
satisfy both the asymptotic slope 0Izo = A/rwg as well 5. Error function paper is available as graph paper no. 46800 from
as the minimum wo of the function w(z) = woVI[l + (z Keuffel & Esser, covering relative magnitudes from 0.01 to 99.99;
- )2/Z21 with the criterion of minimizing random er- a better-suited variant of it, covering 0.15-0.85, was devised by

D. Preonas, Dayton Research Institute, in 1980. This latter graphpaper makes use of the central portion of the Gaussian only, thus
avoiding errors due to deviations of the beam from Gaussian

shape in the tails.
6. W. C. Hamilton, Statistics in PhVsLcal Science (Ronald Press,

New York. 1964), Chaps. 4 and 5.
7. The program is available on request.
8. F. A. Jenkins and H. E. White, FundamentaLs of Optics

(McGraw-Hill, New York, 1976), Sec. 9.9.
9. Ref. 8, p. 169, Eq. (9q).

10. This situation prevails in eigenmodes of a ring laser.
11 T. D. Baxter, T. T. Saito, G. L. Shaw, R. T. Evans, and R. A.

This paper is an outcome of research done under Motes, "Mode Matching for a Passive Resonant Ring Laser Gy-
AFOSR grant 84-0058. roscope," Appl. Opt. 22, 2487 (1983).
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III. B. Vacuum in ring: Residual Fresnel drag

A passive ring can be evacuated. What is the required residual

pressure? We investigated two effects on the output, here we report on

Fresnel drag (section III. C. shows calculations on quality factor).

A portion of this section is published (ref.'s 20, 21).

1 -0
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Vacuum in ring: Residual Fresnel drag

Light drag is a surprisingly simple means to introduce an

anisotropy in the ring. Experimentally, some drag equations have been

verified to the level of 0.1%.22

For a homogeneous velocity field v of a gas parallel to the light

beam over a distance d, the beat frequency in a ringlaser is to a good

approximation given by

Af = (4/XL) (n-i) vd, (1)

where n - index in refraction. For helium this approximation is good to

1%. The quantity (n-i) is proportional to the gas pressure. For an

ideal gas

(n-i) (To/T) (P/Po)(n-1) (2)

T : absolute temperature of flowing gas, p = pressure of flowing gas,

To, po = standard conditions. For stationary mass flow, the flow rate

M = d(pV)/dt = q(vp) = kT dN/dt = constant (3)

(q = tube cross section, V = volume of gas, N = number of gas molecules,

k = Boltzmann constant). It follows for the beat frequency due to light

drag

Af =(4/XL) (d/q) (n-l)ToPo9X(T/To)M (4)

The beat frequency is therefore determined by the mass flow rate. The

velocity vs length is arbitrary and need not be known; the drag is

independent of pressure and pressure gradients along the path, as long

as M is constant and the flow is stationary.

Vacuum Requirement. Inadvertent drag due to moving residual gas has to

be avoided. From the foregoing we can estimate upper limits of mass

flow sources for negligible drag. To push drag effects below 10- 7 Hz

L- , T -
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generally we require the sources (inadvertent leaks, outgassing, etc.)

to have flow rates below 10- 9 Paom 3/s, which is equivalent to 10-8 torr

-- i/s •

However, typical information about vacuum is given through

pressure, which in turn is related to flow via the pump resistance of

the ring.

It turns out that with mass flow rates even as high as "100 micron

cubic foot per hour" (10- 4 Pam 3/s) we are already close to the high a

vacuum regime. In this regime, the pump resistance R (s/m3 ) of a

cylindrical tube of cross section q and length d, molecular weight m is

3 1/2 3/2
R(s/m ) = (37T/4) (m/2kT) d/q(5)

(m=mass of one molecule) and the pressure difference along such a tube

is
.-. ;

P2 P I MR . (6)

Assuming a worst case of "inadvertent" mass flow injection of M = 10- 9

Pam3 /s farthest away from the pump, d = 7.6 m, and a tube with 1 cm

diameter as above, we obtain .-

-4 -7
P2 P 1  P 2 = 0.62x10 Pa (=4.7x10 torr)

whereby the pressure P1 at the input of a 75 I/s pump would be 1.3x10 8

Pa (= Ix1 01  torr), i.e., negligible. From this we conclude that

reasonable high vacuum conditions have to prevail. They are achievable

in a laboratory with modest cleaning and pumping.

It should be noted, that an "active" ringlaser requires by

definition material in the light path, e.g. the HeNe gas for

S-
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amplification. Indeed much of the residual problems with small

commercial, active, ringlasers are directly related to light drag from

moving gas (Langmuir flow) 2 4 . The gas pressures needed to sustain the

necessary amplification are so far above those calculated in this

section, that it is considered impossible to render negligible any false

signals (noise) due to Fresnel drag. We consider this true even if

elaborate measures are used to balance mass flow etc, as it is done in

small ring laser gyros.

U' 7
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III. C. Vacuum in ring: Effect on quality factor

Power loss of a beam due to scattering by a gas was recognized very

early as a source of imperfection, but it was clearly considered

negligible. After more important error sources had been eliminated,

this effect got more into the forefront. In a large ringlaser, with

very high sensitivity and quality factors of the order of 1012 ,

scattering becomes a substantial effect. Fortunately, as this section

demonstrates, even modest pumping will render negligible its effect on

the quality factor of even a large resonator. Rayleigh scattering off

neutral atoms is treated as the only scattering mode. Born and Wolf 2 5

served as a basis of a classic (non-quantum) calculation in this

section.

Wp
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Vacuum in a ring: Effect on quality factor

The residual gas in an evacuated ring will cause scattering losses

of the traversing beam.

The total scattered power P5c is calculated, and the quality factor

Qsc is then obtained byP

(W =energy stored)(1
sc (P scattered power)

sc

The effect on the overall quality factor Q is then given by the

contribution of Qsc to

1 1 (2)

Eq. 2 follows from eq. 1 under simplifying conditions.

Relation of scattered power to Qsc:

We AX r~

Wewill1 assume that the scattered power per interval ax, APsc is

proportional to the incident power P:

- P~x .(3)

sc



2 7
A

We will also assume that the change of P due to scattering is negligible

throughout the length L, i.e.

P s c K P L .(4 ) "D -

sc

Here isc = extinction length due to scattering.

The power P in the cavity is simply related to the energy W stored in

the cavity through the following considerations:

Assume a monochromatic plane field with rms magnitudes ERMS and
+ + +)I2

HRMS in vacuum. With the Poynting vector S = E x H = (o/o) 2 , the

time-averaged power is

P < f . aA > (eo )1/2 E A . (L .XL ) (5)

RMS

On the other hand, the energy W is given by

W(f .a + q .)dVol e0E RMsVOl = eoE RMsLA (6) zt

(cylindrical mode volume; this assumption is however not critical).

We have therefore from eq.'s 5) and 6):

P = W/(LyiEpo) = (c/L)W = (free spectral range)x(energy stored) (7)

From eq's 1), 4), and 7), we get then
(L/c)P KSC T>i

Wsc = o W- o lc- 2 7 c (8)
sc sc

We have thus to increase the scattering length Ksc such that the

resulting Qsc >> Q. The fact that we see the sun indicates that this is

easy.
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In the following, the extinction length due to Rayleigh scattering

is calculated.

Rayleigh Scattering

We assume dipole scattering only, because it usually has the

largest scattering cross section.

We assume Rayleigh scattering off individual atoms, for two

reasons:

1) The atomic dimensions d are small compared to the wavelength X used

(no complications from charge distribution in atom): dAIR 3.03 x

10-10 m, A 5 x 10- 7 m

2) the mean free path length k is large compared to the wavelength used

(no scattering from density fluctions)

= kT/( /2" r d2p) >> X requires for air: p << 18 kPa (= 135 torr)

We have then for the total scattered power off one (induced) dipole

Psc,l = (470/3)(C/E )(W0/X) (9)

where the dipole moment Wo = aEo = Q'ERMS (9a) in an electric field Eo,

with the polarizeability I
2a (eo/N)(e- 1) = (o/N)(n - 1) (10)

n= E (macroscopic) relative dielectric constant of gas,

Nv = volume density of scatterers, in an ideal gas: p = Nv kT (lOa).

(p = pressure)

The (total) scattering cross section per molecule is

8 3 2 2 4

=1 Tr (e - 1) /N X, (11)

-. ,-
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and the relation for the total scattered power on traversing a length L

is, using equations 4, 5, 8, 9, 9a, 10, and cv-uT 1:

2 2P Z' -P N gAL 8 3 (n2-1) L p (12)
-sc sc,1 Nv = A IT P L (12

N x sc

from which the extinction length Ksc can be calculated, with eq. 10a:

"2 2 2
.1 8 3( - 32 3 ( ) kT

- .N 4
N V

using (n2-1)2  (n-1)2 (n+1) 2 v(n-1) 24.

Using the Lorentz-Lorenz formula and eq. lOa:

2

n-I const N const-T , or

n +1 V

(13)

" (n-l) pT9X (P/P°)(T°/T)(n-I) pao,ox

At standard conditions (po = 101 kPa = 1 atm, To = 273 K = O°C), and X

514.5 nm, nAIR - 1 2.79 x 10 4, nHe - 1 = 0.3500 x 10- 4 .

We have finally

- 323i - 2-_ (14)
sc 3 N o T Po" -)Po,ToX

where No  po/kTo = 2.687 x 1025 molecules/m3 (= Loschmidt number)

Quality factor versus scattering:

The final result is then, using eq.'s 14 and 8):

o 3N 3
Qsc 2 (sc 3 X T POsc (n -i 7 -(n " (15):r ( -l)PoTo,x

Given the type of gas (which determines n):
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Example: 1) Air-filling at standard conditions, x 0.5145 x 10-6 m

" 25 _6 3
Qc 3 2.6/8xi0 x (0.5145x10  ) = 8.0xlO .

(2.940x0

Compare this to a square ring with overall finesse F : 20,000.

The latter results in a

QMirror = FL/A = 1.2 x 101 2  (L = 31 m, x = 0.5145 x 10-6 .)

which is about equal to the quality factor due to scattering by air at 1

atmosphere.

With very modest forepumping down to 1 torr 133 Pa, Qsc 6 x i014

i.e. negligibly large compared to even the best hoped-for (achieveable?)

mirror quality factors.

Note also that the optimum pressure for HeNe-plasma for tubes of 1 cm

diameter is somewhat below I torr; this means that scattering losses are

negligible even in active ring lasers, if the assumptions above are

satisfied (however, scattering in an ionized gas, and at resonating

atoms would have to be considered separately).

Example 2: A cavity of length L=52 cm produced by Rockwell has an

evacuated finesse of F : 29800 t 400 at X = 633 nm. What is the
vac

finesse Fsc with air filling?

k.. ~(n-1)A' -.
r1 Air, To,Po,X : 633nm = 0.00029170, T=(273 + 25)K, p=P 0.

12 6
r we get Qsc = 1.661xi0 , or F = Qsc X/L 2.02xi0 . .-.

From eq. 2 follows i 1 1 1 1

Air vac sc 2.02xi0

or FAi r 29370

(measured at Rockwell with air filling: 2900 ± 400)
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The datd are compatible with our calculations, although they are not
a

conclusive. The same mirrors, put into a 30 m cavity, would have a

finesse in vacuum of 29800x30/0.52 1.719x106  and letting air in would

reduce the finesse from

6 6
F -1.72x10 to F = 0.929x10. , which would then mean a
vac Air

substantial reduction in over-all finesse, or quality factor.

.°

77--

. .. ,... -

- . a . .. . . . . . .

-. . . . - ~ - *. * * a *. a



III. D. Proposed calibration methods for large ring: Light drag

through gas flow from switchable calibrated leaks, tilting (rocking)

the ring base.

The dynamic range of a large stationary ring is, expressed in earth
rottio raes from about100

rotation rates QE' frE to I"E, or, expressed in optical

beat frequencies, from about 100 nHz to 1 kHz, i.e. over 10 orders of

magnitude. It turns out that low beat frequencies can easily be

generated via air flow through calibrated leaks: The needed mass flow

requires such low air pressures that the cavity quality factor (section

Ill. C.) is not affected.

This contribution is already published (ref.'s 20 and 21). Rocking

of the base is made possible at the base at the Seiler lab. It is

useful for generating large signals.

U
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:alioration of a large passive laser ring

i.R. Bilger

Department of Electrical and Comouter Engineering, Jklanoma State University
Stillwater, OK 74078

4.L. Shaw

Frank J. Seller Research I-abormtory
USAF Academy, :oloraco Springs, CO 8084U

B.2. Simmons

Frank J. Seiler Research Laboratory
jSAF Academy, :olorado Springs, CO 80840

Ats ract :

Two types of effects are inves:t;atec 3S :o tneir potential for zaliorating a large
ring and for introcucing test signals o" Anown magnitide: I) tilting tle nase 3 tlie
ring oy a Known ingie and aiti <,own :'-e et:l.jtion, and 2; ujtilizing ?resnel -rag "::m
a controlled flow of gas.

:-:roouucion

A large, 58 meter square, ring laser gyro RL2) is oeing assembled on the oneumatic

Isolation platform at tne ;:3K 3. Seiler Research .acoratory. Two :ecnniques for
calizration of the RL2 wil' oe considered n this presentation. :n the_ frst metnod,
tne R L would oe tiltecd a a o-recisely <nown angle to vary t.e effective taticnal
rate. The second metnod 3iscussed makes ise of the Fresnel drag from a controlled flow
of gas in the ring.

An adjustable effect to produce an RL:1 output is described for several reasons: 1)
to Check the linearity of the output, 2) to check properties in the frequency domain, 3)
to calibrate the sensitivity and/or the noise sources acting in the ring, and 4) to
introduce a probe signal during initial adjustments. The earth rotation naturally
provides a sizeable rotation rate aith a very good signal/noise ratio of the order of
108;l but it has tne disadvantages of not being adjustable and of oeing constant as
opposed to an effect leading to a frequency modulation of the output. One advantage of
basing the large RLG on a pneumatically supported platform is that the 0ase can be
tilted by small angles thus changing the effective rotational rate imposed on the ring.
The Isolation platform can oe maintained at a known tilt to local level to and accuracy
of the or er of 10-3 arc seconds by means of closed loop control of pneumatic
actuators . The platform can be offset from level oy as much as 6 arc minutes by
means of these pneumatic actuators. The base can also be excited in 6 degrees of
freedom at small amplitudes from OC to 10 Hz by means of electro-magnetic actuators.

The light path of the RLG is contained in tubing evacuated to about 10-8 torr. The
Fresnel drag calibration technique would be performed by allowing a small gas flow
parallel to the lignt beam, along a portion of the ring. A Known gas flow
rate establisnes a calculable effect on the difference in velocity for the clockwise and
counterclockwise light beams of the RLG, and an expected value for the non-rotating
output under this condition.

Ranae of calibration

Large ring lasers are attractive because of their high sensitivity for rotation and
low noise. In the following we will use a square ring laser of A = S8 m2 with
perimeter L = 4 /58'm, operating at a wavelength A = 514.5 nm as basis for discussion.
A two mode ring laser has a beat frequency output

af - 4 A./X L, )

where surface vector of ring, I angular velocity vector of absolute ring
rotation.

.-O SPIE Vo. 487 Physics of 0w.' .i.-g Gyros 0?984) -
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As Equation (i) is linear in I , thnere is no obvious upper limit of output. However,

for convenience we will limit the design considerations to bandwidths up to earth rate

for the recording of the phase t (t), [f = (1/210)(Cd /dt)], i.e.,.f = 679 Hz

(latitude a = 380 58'). As to the lower limit we will assume that quantum noise
limits the performance at high Fourier frequencies. The power spectral density is givenb y 3 0 .

3 .

S = 2 (hf 2 ) (2)
f,W 0

with an estimate of finesse F = 1000 or a quality factor Q = (L/X )F = 5.9 x 101 0 , and
a power level of 500 mw, the white power spectral density would be, at the oscillation -
frequency fo = c/X 583 THz,

S af,W = 1.51 x 10-10 (Hz 2 /Hz),

which allows an accuracy of

for the measurement of the beat frequency over an integration time r; e.g., with 1 =
o, an rms frequency fluctuation of the order of 42 nHz can be anticipated. However,

:ne open-ended limit set oy Equation (3) is not realizable over arbitrarily long times.
:n Dractice, I/f noise or even I/f2 noise of the laser oscillators set a lower
limit 4 to :me attainable accuracy. in today's commercial ring laser gyros, the white
:uantum noise turns over into 1/f noise at corner frequencies of the order of 10-10004
Hz. F.rtnermore, tne observed i/f noise is always larger than the Gagnepain-Uebersfeld
limit as onserved in quartz oscillators5 .

, A/f, A f2 /Q 4  (4)

;or lacx of oetter theory, we use Equation (4) to estimate the flicker floor. With fo
583 THZ and Q = 5.9 x 10 , S , = 2.8 x 10-1 4 /f. The equivalent Allan

standard deviation

=v21n2 K 2.xl0 "1  = 197 nHz.
The transition between white noise and 1/f noise appears at Fourier frequencies of about

200 AKz, requiring integration times of about I hour to arrive at this flicker floor; ,
lower limits of beat frequency errors of the order of 10-8 Hz are theoretically
feasible, and a dynamic range of over nine decades of beat frequency is possible, for
wnicn range calibration signals should be provided.

First calibration method: tilting the gyro base
A tilt modifies the output from earth rate. The surfac' in Equation (1) is made

time-dependent, A -A(t). This can be achieved by rotating an actively controlled pad
around the east-west symmetry axis. A variety of factors have to be investigated in

* such a feasibility study: Reproducibility, adjustibility, hysteresis, effect on
long-term stability. The change of beat frequency due to tilt in the meridional plane
by an angle 6a is

64(Hz) w (4 A.d/X L ) cot 8 6a= 4.1 x 10- 3 6a (arc second) (5)
in the example above. To change the beat frequency by 1 mHz, a lift of 9,1 Um of the

7.62 m - long pad is required. The "noise" of the tilt is 10-3 arc second which is

transduced by the ring into a beat frequency fluctuation of 6.58 pjHZ, well above the
limit given by the flicker floor.

There is also the possibility of rocking tne Pad, i.e., to introduce a Sinusoidal
tilt versus time. Provided that the excitation of eigenmodes of the pad can be
sufficiently suppressed, this manner of introduction of an ac-modulated frequency
becomes an excellent means of generating a calibration signal. An external measurement
of the height by using high-performance levelling instruments by electrical or optical
eans can certainly be done with an error of 10 m and possibly of 1 m.
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Second calibration ne:noo: resneI :ra ,i-n gas flow

Light drag is a surprisingly simple ieans to introduce an anisotropy in the ring.
Experimentally, some drag equations nave oeen verified to tne level of 0.1%.6

For a homogeneous velocity fteld v of a gas parallel to the light neam over a
distance d, the beat frequency is to a good approximation given by

7

Af = (AIX L) (n-1) vd, (6)

wnere n = index of refraction. For helium this ,pproximation is good to l. The
quantity (n-I) is proportional to the gas pressure. For an ideal gas

(n--)T,p,), (To/T) (p/Po)(n-l)To,PoX

T aosolute temperature of flowing gas, p = pressure of flowing gas, TO , po =
standard conditions. For stationary mass flow, the flow rate

M = d(pV)/dt = q(vp) = kT dN/dt = constant (8)

(q = tube cross section, V volume of gas, N = number of gas molecules, k = Boltzman
constant), if a mass flow source is used, for example a calibrated leak as is used in
vacuum work. It follows for the beat frequency due to light drag

Af (4/XL) (d/q) (n-1)To,P,,A(T/TPo)M 9

The beat frequency is therefore determined by the mass flow rate. The velocity vs
length is arbitrary and need not be known; the drag is independent of pressure and
pressure gradients along the path, as long as M is constant and the flow is stationary.

Estimate of required leak. Assume a helium-filled leak with (n-l)To.p,.A = 3.49
S10- . The leak is to be injected into one leg of the ring having 1 2m tube diameter
and d =. .J,1ength. At room temperature (T = 298 K), a flow rate of M = I.C x 10- 4

Pa.m3/s is then required to produce A f = I mHz. A calibrated He leak of 100 "micron
cubic foot/hour" has a mass flow rate of 1.05 x 10- 4 Pa.m 3 /s. If larger beat
frequencies are required, air can be used with about eightfold increased drag.

Several calibrated leaks can be mounted in opposing legs of the ring, to change
magnitude and sign of the drag. They can be switched off and on at any time.
Commercially, a large range of 10-1 Pa m3 /s to 10-4 Pasm 3 /s is available which
will cover the entire range of beat frequencies from about 10 mHz down into the noise.
It may also be mentioned that turbulent flow will remove the radial velocity profile and
will produce a more uniform output frequency.

8

Vacuum Reuirements. Conversely, inadvertent drag due to moving residual gas has to be
avide. From the foregoing we can estimate up er limits of mass flow sources for

negligible drag. To push drag effect below 10" Mz generally we require the sources
(inadvertent leaks, outgassing, etc.) to have flow rates below l0- y paom 3 /s.

However, typical information about vacuum is given through pressure, which In turn is
* related to flow via the pump resistance of the ring.

It turns out that with mass flow rites even as high as 100 micron cubic foot per hour
(10-4 Pa4 3/s) we are already in the high vacuum regime. In this regime, the pump
resistance R (s/m) of a cylindrical tube of cross section q and length d, molecularw eight m is9

R(a/a3 ) - (3r/4) (a/2kT) 1/ 2 d/q3/2  (10)

and the pressure difference along such a tube is

2 1:
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Assujming a worst case of "inacvertent" mass flow injection of M 10i-9 Pa m3 /s
farthest away from the pump, d 7,; m, and a tuoe with 1 cm diameter as above, we obtain.-

P2 P1 2 P (=4 7x10-7 torr)

wnereoy :ne pressure P1 at thie input of a 75 1/s pump would be l.3xi0-8 Pa
! xlO 10 torr), i.e., negligible.

From this we conclude that reasonable high vacuum conditions have to prevail, but
also that the loading of vacuum pumps by Fresnlel drag calibrations is not excessive.
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