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Abstract

5,.

€ his report is a preliminary version of work on an intrinsic

approximation process arising in the context of a non-isotropic perturbation

theory for certain classes of linear differential and pseudodifferential

operators P on a manifold M. A basic issue is that the structure of P

itself determines the minimal information that the initial approximation

must contain. This may vary from point to point, and requires corresponding

approximate state spaces or phase spaces.

This approximation process is most naturally viewed from a seemingly

abstract algebraic context, namely the approximation of certain infinite-

dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent

Lie algebras, g1, or S(xC)" where x e M, (x,.) a T M/O. It requires the

notion of *weak houomorphisa1. A distinguishing feature of this approach is

the intrinsic nature of the approximation process, in particular the

minimality of the approximating Lie algebras. The process is closely linked

to *localization', associated to an appropriate module structure on L.

The analysis of the approximating operators involves the unitary

representation theory of the corresponding Lie groups. These

representations are for the most part infinite-dimensional, and so involve a

kind of quantization'. Not all the representations enter. The filtered

Lie algebra L leads to an "approximate Familtonian action* of G(x,.) , the

group associated to g(x,4)' and thus induces (via an adaptation of a

construction of Helffer and Nourrigat) an intrinsically defined wasymptotic

.:i
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moment-map* with image in 5 (x,)" The relevant representations are those

associated to this image by the Kirillov correspondence.

The genesis of this work has been in the context of linear partial

differential operators, in particular the question of hypoellipticity. For

example, our framework leads to a natural hypoellipticity conjecture

enlarging on that of Helffer and Nourrigat. We believe, however, that the

approximation process is likely to have broader applicability, particularly

in those contexts where the process can be extended to filtrations with an

L0 term. This yields not simply a graded nilpotent algebra, but a semi-

direct sum with a graded nilpotent. As we show, one such context arises in

the approximation of non-linear control systems.
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10. Introduction

This report is a preliminary version of work to date on an

approximation process arising in the context of constructing an appropriate

- non-isotropic 'perturbation" theory for certain classes of naturally arising

* linear differential operators P. This requires the construction of

* approximate state spaces or phase spaces. These will depend on" the

structure of P itself, and may vary locally, i.e., from point to point of

the base manifold M, or microlocally, i.e. from point to point of the

cotangent space. A basic issue is that the structure of P itself determines

the minimal amount of information that the initial approximation must

* contain, and this may vary from point to point.

It is a remarkable fact that this approximation process is most

" naturally viewed from a seemingly abstract algebraic context, namely the

'approximation' of certain infinite-dimensional filtered Lie algebras L (of

. vector fields or of pseudo-differential operators) by finite-dimensional

g graded Lie algebras Sx° A or g(xo , o) where xoaM, (Xoo)sTSM/O. The

algebras g. (or g(x , ) are not determined purely by the abstract

structure of L as a Lie algebra over R. but also depend on the module

" structure of L over an R-algebra F on which L acts as a Lie algebra of

derivations. In the local case we take F to be C (M), and in the microlocal

.. case essentially the algebra of zero-order pseudo-differential operators

with real principal symbol. The algebra F is essential in obtaining the

- correct *localization'. Here 'approximation' is closely linked to

'localization', this being either at the level of the base manifold or at

the level of the cotangent space. Roughly speaking, one treats P as an
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element of the *enveloping algebra" of the filtered Lie algebra, and

approximates it by an element in the enveloping algebra of the finite-

dimensional graded Lie algebra g. A distinguishing feature of this approach

is the intrinsic nature of the approximation process (i.e., coordinate-

independence and functoriality), in particular the minimality of the

approximating Lie algebras.

The analysis of the approximating operator leads naturally into the

unitary representation theory (i.e., 'Fourier analysis') of the simply-

connected Lie group G corresponding to the finite-dimensional graded Lie

algebra g. These representations are, for the most part, infinite-

dimensional, and so involve a kind of 'quantization". The decomposition

into irreducible representations may be viewed as a finer subdivision of the

approximating state space or phase space.

Not all the irreducible representations enter into the approximation.

Which ones do appears to be determined by the original filtered Lie algebra.

This is discussed most naturally at the level of the cotangent or phase

space, with its associated Poisson bracket structure. According to the

theory of Kirillov [26], Kostant [27] and others, the irreducible unitary

representations of G are intimately related to the orbits in g ,the dual

space of g, under the coadjoint action of G. If one has a Hamiltonian

action of G on the syMplekic manifold N one gets an intrinsically defined

moment-map t:N -*g which is equivariant with respect to the G-actions. As

a heuristic principle one expects the irreducible representations which

enter into the *quantization' (if it exists) of the G-action on to be those

associated to the coadjoint orbits lying in the image of I. (In case G and

.J..
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i* N are compact this is given precise realization in recent work of Guillemin

and Sternberg (14]). In our context the original infinite-dimensional

filtered Lie algebra L leads to an Oapproximatel Hamiltonian action of

G(xo Q*) . This allows us, adapting a construction of Helffer and Nourrigat

(19], [21], [32], (33]), to intrinsically define an *asymptotic' moment-

mapping, with image in g(x, This image determines the relevant

representations.

As indicated above, the genesis of this work has been in the context of

linear partial differential operators, particularly the question of

hypoellipticity, and, to a lesser extent, local solvability and construction

of parametrices, i.e., approximate inverses. In this context (aside from

the metaplectic group, which enters in the study of second order operators)

the Lie algebras which arise are graded nilpotent. We believe, however,-

that the approximation process is likely to have rather broader

-applicability than to questions of hypoellipticity, or, for that matter, the

study of linear P.D.E.'s. For example, under appropriate conditions the

approximation process can be extended to the case where the filtration

contains an L0 term. Now the procedure now longer yields only a graded

nilpotent Lie algebra, but a semi-direct sum go0g, where g is 'arbitrary"

and g is graded nilpotent as before. In a series of papers (see for example

[4]) Crouch has shown that in the context of approximation of non-linear

control systems by means of Volterra series certain solvable Lie algebras,

of the form R @g, with g graded nilpotent, naturally arise. Starting with

a filtered Lie algebra L suggested by (4], one finds that the resulting Lie

algebra coming from the approximation process is of the correct type. It

................................................
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appears quite likely that this process can be brought to bear on the

questions treated by Crouch.

The organization of this report is as follows: In §1 we construct the

local approximation process and examine its properties. In §2 we show how

to carry out a version of the group-level lifting process of Rothschild-

Stein [37] and the corresponding homogeneous-space approximation process of

Helffer and Nourrigat [20] in the more general context of 11. We in

addition illustrate the connection of these results with questions of

hypoelliptic ity.

In 13 we shall treat the microlocal version of the approximation

process, including a discussion of the asymptotic moment-map. In this

context we can frame a natural hypoellipticity conjecture enlarging on that

of Helffer and Nourrigat ([19], [21], [32], [33]).

In 14 we shall extend the approximation process (both local and

microlocal) to the case when the filtration has an L0 term. We shall also

briefly examine the connection with the work of Crouch.

We shall conclude in 15 with a summary of the main directions for

further work.

In the remainder of this Introduction we shall go into more detail on

the motivation and background of this work.

The initial idea of using graded nilpotent Lie algebras for local

(i.e., on the base manifold) approximation (akin to normal coordinates)

seems to be due to Stein [38]. The aim was to develop a generalized

Calderon-Zygmund theory of singular integral operators in a non-abelian,

non-isotropic context, i.e. with certain directions weighted differently

• .. •-
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from others. (This is how the nilpotent groups arose. The only Lie groups

with dilations are nilpotent, though not all nilpotent groups have

dilations). The analysis of the resulting non-Euclidean balls is fundamental

to the theory.

The approximation process appears as follows. One begins with a

hypoelliptic operator P on M, constructed as a polynomial with Cc*

coefficients in the vector fields X11.,Xk satisfying the Hormander

spanning conditions ([23]), i.e., the iterated commutators span the tangent

space at each point of M. Corresponding to these vector fields one

introduces the free nilpotent Lie algebra g on k generators of step r, r

being the order of iterated commutators of the Xi's needed to span (in the

nbhd of a point xoeM). Let G be the corresponding group. Notice that in

general dim G > dim M. Because the spanning condition is satisfied it is

possible to *lift' the vector fields X1 ... OXk in a nbhd of x0 , to vector

fields 1 , ... k on a manifold M of dimension equal to dim G, and so that

tle Xare free up to step r at each point in a nbhd of TO a M, i.e., the

commutators up to step r satisfy no inessential linear relations at 7 01 At

each point 7 in a nbhd of 7 M can be locally identified with a nbhd of the

identity in G, and the ii can be approximated by i, the generators of g,

viewed as left-invariant vector fields. This is an approximation in the

following sense: The dilations on g (and hence on G) introduce a natural

notion of *local order* at a point for functions or vector fields via, for

example, Taylor series with non-isotropically weighted variables. Then X

differs from I by a term of lower order in this sense. (This is a more

stringent requirement than lower order in the classical sense. A vector

, - . . .



field may be of lower order classically, but of comparable, or higher, order

in this sense, and hence not negligible). One then approximates P, the lift

of P, at 7 by P1 a (homogeneous) left-invariant differential operator on G.

In the particular context considered by Rothschild and Stein it is seen that

the ;T are also hypoelliptic, and hence have fundamental solutions ET of

special type (i.e., homogeneous distributions). One glues together the EX

to construct a parametrix E for P. and pushes this down to get a parametrix

A
E for P. An important point here is that the EX vary smoothly with T.

Later Metivier [30] showed that, under an appropriate constancy of rank

condition for the X1 ... Xk one could use groups Gx of the same dimension as

M; however, these groups would in general vary with the point xeM.

The main concern in this work was not with deriving hypoellipticity

criteria, but rather in constructing parametrices and obtaining sharp

a priori estimates for operators known to be hypoelliptic, primarily the

fundamental sum-of-squares of vector fields operators of Hormander [23].

The primary emphasis was on the structure theory rather than the

representation theory of the nilpotent Lie groups involved.

When considering primarily such sum-of-squares operators the

representation theory of the groups Gx can be disregarded, since the

representation theoretic criteria for hypoellipticity are automatically

satisfied. However, hypoellipticity is not restricted to second-order

operators, and does not inhere specifically in the spanning condition.

Rather, the spanning condition (more precisely, the rank needed for

spanning) determines which group to use as a local model, and then the

hypoellipticity of the given operator is studied via the unitary

................
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representation theory of that particular group. The importance of

representation theoretic conditions, as distinct from spanning conditions,

for hypoellipticity was first emphasized, I believe, in my own work [35].

Here a general representation theoretic criterion was formulated for

homogeneous left-invariant operators on nilpotent Lie groups, and shown to

hold for the Heisenberg group, the prototype (and simplest) non-abelian

nilpotent Lie group. Interestingly, all the unitary irreducible

representations, including the *degenerate" ones not appearing in the

Plancherel decomposition, play a role. The criterion was later shown to be

valid for arbitrary graded nilpotent Lie groups by Helffer and Nourrigat

([171, [181). The issue motivating the work in [351 was not, however, local

approximation by nilpotent Lie groups, but a seemingly unrelated question,

namely, to better understand a mysterious quantization process arising in

the microlocal analysis of certain degenerate-eiliptic operators.

From the mid 1960's onward the emphasis in the study of linear P.D.E.'s

was on the use of phase space (i.e., cotangent rather than base space)

methods. This included both sophisticated phase space decompositions (going

back at least as far as Hormander's partition of unity in his analysis of

subelliptic estimates (22]) and the use of symplectic geometry. One studied

Hamiltonian mechanical systems on phase space, the Hamiltonians coming

essentially from the principal symbols of the operators being considered.

The connection between these classical systems and the original operators

was basically made via a kind of geometrical optics or W.K.B. type of

relationship.

* In the context of degenerate-elliptic operators, again going back at

%. . .. . . . . . . . . . . .

-_- . ... . . . . . . . . . . . . .. . . . . . .
oO . ..
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least to Hormander's test-operators in [22], and to the work of Gru'in [12],

certain "intermediate* P.D.O.'s (partial differential operators) arose, with

polynomial coefficients constructed out of the 'total' symbol of the

original operator. The analysis of the original operator required the study

of these intermediate P.D.O.'s, acting on certain intermediate Hilbert

spaces. If the original phase space methods are viewed as a 1st

quantization, then the above context is reminiscent of a 2nd quantization

process.

In the particular context of my notes [34] a 'test-operator" (i.e.

unitary equivalence class of intermediate P.D.O.'s) is introduced for each

point (x,t) a , the characteristic variety (i.e., zero-set of the principal

symbol), assumed to be symplectic. of the original degenerate-elliptic

operator P. The intermediate Hilbert space at (x,C) is L2(Rk), where 2k =

codim I in T M/0. In fact L2 (Rk) is the Hilbert space associated to a

polarization of the (necessarily symplectic) normal space N(j)(x,4) to I at

(x, ). The striking similarity was noted in [34] between (1) this 2nd

quantization process on the one hand, and (2) the 'coadjoint-orbit* method

of Kzrillov [26] for obtaining the unitary irreducible representations of a

nilpotent Lie group G by polarizing all the coadjoint orbits of G in g

The work in [351 was undertaken with the hope of elucidating this analogy

with the [irillov theory. One explicit link was the following. Returning

to the context of [34], it was shown that N(D(x, ) x R could be naturally

identified with hk, the Lie algebra of the Heisenberg group TUk . For this

group the generic representations (equivalently, coadjoint orbits) are

parameterized by one parameter. Planck's 'constant*. It was shown that the

.. . . . . .. . .. . . . .
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test-operators associated with the ray through x,C) correspond to the

images, under the representations with positive Planck's constant, of a

homogeneous left-invariant operator P on Hk .  This observation reinforsed

the expectation expressed in [35] that one could eventually use nilpotent

groups for microlocal approximation. In particular, in conjunction with the

conjectured representation theoretic hypoellipticity criteria for these

groups, this could lead to hypoellipticity results for more general

operators P, and, in fact, could lead to the formulation of natural

hypoellipticity criteria which might have no simple explicit expression in

terms of the classical (total) symbol of P. and hence be totally overlooked.

The preceding analogy, arising as it does in the specific context of a

symplectic characteristic variety 1, needs certain important refinements in

order to give the correct intuitions more generally: (1) In the symplectic

case the group, Rk, which arises does not vary with the point (x,C) of .

(2) There are only two classes of representations, the generic ones

associated with -non-zero Planck's constant, and the 1-dimensional ones

associated with zero Planck's constant. The former are, essentially, in

one-to-one correspondence with the characteristic variety 1, and the latter

are controlled via a kind of transverse (to 1) ellipticity condition. In

particular, I is singled out as special in various ways.

In more general contexts, even in essentially 'rank 20 contexts as

treated in Boutet-Grigis-Helffer (3], and as applied by lelffer to the group

theoretic context in [16], there are more than two classes of

representations: in particular, to each point (x,) s there may correspond

a whole family of representations.

-d

..................... 4 . - . . . . . . o • o ... . . • . *.. .• o •.•.• .• .
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In our context of microlocal nilpotent approximation to a filtered Lie

algebra (L1 the above points are easy to discuss. Given P, there may be

one, several, or no (L 1 pertinent to its analysis. The characteristic

variety I of P will influence this determination of (L'), but does not play

a really decisive role. We then obtain a graded nilpotent Lie algebra

at every point of T1M/0,. not just at points of I ;i.e., we deal

with the total phase space. However the algebras, and their ranks, will

vary from point to point, and, generally, at points not on , 
5 (x,) is

trivial, i.e., of rank 1. To each (x0 , 0 ) there is associated a family of

unitary irreducible representations of G(x,o), namely those associated to

the coadjoint orbits in 1 (x, ) which are in the image of the asymptotic

moment-map at (x0 , 0 ). This may be viewed as a refined "phase space

decomposition' determined by the filtered Lie algebra (Li): To each point

of the phase space T*N/0 we associate a subset of the 'irreducible

phase spaces* in T (G(x,)), namely those in the image of the asymptotic

moment-map. This setting is itself suggestive of an infinite-dimensional

Kirillov theory, or, better, the approximation of an infinite dimensional

Kirillov theory by finite-dimensional Kirillov theory.

Both to aid the reader in understanding the viewpoint and results

presented here, and to give proper acknowledgement, we would like to make

clearer the relation to other work in this general area, in particular the

microlocal work of Helffer and Nourrigat (21], [32], [331). The idea of

introducing filtered Lie algebras in the context of hypoellipticity and of

thereby obtaining intrinsically defined nilpotent approximations seems to be

new. The local construction of nilpotent Lie algebras by Stein, Folland,
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Rothschild, Goodman, Nalffer, Nourrigat, and others (including Crouch, in

the context of control) is not intrinsic, in that a Lie algebra is introduced

* -externally, for example a free nilpotent on an appropriate number of

g generators, and of appropriate rank). The same is true of the microlocal

construction of Ielffer and Nourrigat to be discussed below. The local

construction of Metivier [30], under the correct constancy of rank

conditions, does not introduce the nilpotent Lie algebras externally, but is

also not intrinsic; it involves an explicit choice of vector fields

What are the advantages of an intrinsic construction of the nilpotent

gx 0 (or g(,)), and the introduction of filtered Lie algebras (L)? For

one thing, of course, an intrinsic construction leads to functoriality

- properties. Moreover, by insuring that the Sx's (or S(x,C)'s) are intrinsic

* we can view them as a family (as x varies in a nbhd of x0 , or (x,) in a

. nbhd of (x0 ,tO)) of local invariants of the initial data (i.e., the filtered

Lie algebra) somewhat reminiscent of the local ring of a singularity [13].

Under appropriate *stability* conditions on these invariants, one can hope

to obtain local (or microlocal) canonical form results for the initial data

-" (e.g., akin to the canonical form results in Treves [39], Chapter 9). Also,

the significance of the Ospanning' condition is more sharply brought out; in

*- the intrinsic construction, unlike the external construction, something like

.. a spanning condition is needed to even construct the Lie algebra gx

*. (Without such a condition the construction yields an infinite graded Lie

algebra).

The introduction of the filtered algebra is extremely natural. It

ale' aetrml
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defines the class of operators we are examining, namely the *enveloping'

algebra IUL) of (L') (not to be confused with the usual enveloping

algebra; in the local case this consists of the differential operators on M

constructed out of (non-commutative) polynomials in the vector fields in L,

with coefficients in CO(N), and in the microlocal case polynomials in the

S DO's (pseudo-differential operators) in L, with coefficients O-order yDO's

on M). At the same time it defines sharp form of hypoellipticity, L-

hypoellipticity, which, for P e UL)M , depends only on the leading part of

P with respect to the filtration. The same operator P could be viewed as

lying in 'U(L) for various filtered Lie algebras L,L , and satisfy the

criteria for L-hypoellipticity, but not L -hypoellipticity (or satisfy them

for no filtration, as for example if P is not hypoelliptic). The filtration

also suggests a notion of L-wave-front set associated with the phase space

decomposition discussed earlier, coinciding with the standard notion of WF-

set in the case of the natural rank 1 filtered algebra L.

The intrinsic construction does not require that the generators of L

all be of degree 1, but works equally well in general. For example, the

analogue of Metivier's approximation result holds in this more general

setting, and hence, apparently, so do the corresponding hypoellipticity

results of Rothschild [36J. The fact that L need not be generated by LI is

of interest particularly in the microlocal context. In this context the

setting is often Ogeometricals, the operator P (and associated symbol

calculi) under investigation being characterized, for example, in terms of

the symplectic geometry of various varieties associated to the total symbol,

and not in terms of an explicitly associated set of first order pseudo-

*. . . . . . . . . . ..,* ~
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differential operators (the analogue of vector fields). This is the case,

for example, for the operator class Lm Dk studied, for example, in Boutet

de Monvel 2], Helffer [15], Boutet-Grigis-Helffer [3], Grigis ([9], [10),

[11]), both in connection with hypoellipticity and propagation of

singularities. One can, as shown in (15], choose associated lst-order VDO's

but the choice is not unique. It turns out, however, that there is an

intrinsically associated filtered Lie algebra (Li) of rank 2, not

necessarily generated by LI , so that Lm 'k is, essentially, *Uk(L)" , and so

that the notion of hypoellipticity studied in the above papers is,

essentially, L-hypoellipticity. Of course, for most purposes, one %an

undoubtedly use an ad hoc extension of the 'external* method in order to

handle the case where the generators are not all of degree 1; however, the

free nilpotent algebras thus introduced are much larger than necessary, and

one thereby loses a good deal of naturality.

In a noted dated Nov. 22, 1981, and privately circulated, we sketched

out a program of microlocal nilpoient approximation in the context of a

filtered Lie algebra L of 1st order VDO's. We formulated a microlocal

"spanning condition at (x, ) a T K/0, and determined a process for

intrinsically associating to (L,(x,C)), where (x,C) is of finite rank r, a

pair (g(x,),1), where S(x,4) is a graded nilpotent Lie algebra of rank r,

and q s S xv/' 0  The aim was to associate to each P s hU(L)O, in an

intrinsic way, P a's Som(xC ) ) so that L-hypoellipticity of P at (x, )

would be equivalent to hypoellipticity of P at 'i, with respect to the

natural filtration. The latter was to have a representation-theoretic

criterion, but involving only a subset of the representations of G(x , )
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(equivalently, only a subset l'FCx,) of coadjoint obits) depending on L

but not on P. A provisional suggestion for 1P. was made, inspired by the

results in [3], [16] which, as indicated above, we viewed as corresponding

to L of rank 2.

The construction of 5(x.)' while intrinsic, seemed hard to work with,

and not amenable to computation. In particular, it was not clear how to

relate 1(x,C) analytically to L as a genuine approximation. More recently

we discovered a more explicit variant of our construction which circumvents

this difficulty. In contrast with the externally introduced free

nilpotents, the S(x,4) do not come equipped with partial homomorphisms into

L. However, one can prove that any Ocross-section" P from g(,.,) to L

provides a 'weak-homoorphismw, which can be used to prove (in the local

context) variants of *lifting"-theorems, and, in general, seem to provide

adequate substitutes for partial homomorphisms.

The provisional ideas about L-hypoellipticity also need to be modified

in two essential and related points, both involving PlxC) (the image in

slv) of the wasymptoticM moment-map, to be discussed below). To begin

with, although there is no difficulty in making an intrinsic association to

P a UL) (the ordinary enveloping algebra) of P a Uom((x,)), this is not

necessarily possible for P a "Um(L)" . However, it can be shown (modulo

details we have not carried outj see Note 3.24.3) that P -+i(P) is well-

defined for those n associated to orbits in r(x, )" Also, in general, ! is

very likely larger than necessary for L-hypoellipticity of P. only r(x,,)

being required.

Independently of our own work Helffer and Nourrigat were investigating

'1p

"z

".. "''. '''''. . .. . . . . . ... ..."'' .i- - ' " " ''" -" " ,""" . . .""" .",1"" . '-" , ,,,. -" ," , -" , ". ."." . ,","-' , -" , ," ,"," , - .- . ,,-
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related questions, as part of their study of "maximal hypoellipticity*,

growing out of their earlier work on the representation theoretic

hypoellipticity criterion for nilpotent Lie groups. This was primarily in

the context of differential (or, later, pseudo-differential) operators

constructed out of explicitly given vector fields or 1st-order 1DO's

satisfying the spanning condition, corresponding, in my framework, to L

being generated by Ll. They externally introduced a nilpotent Lie algebra

(a free nilpotent), and wished to characterize the maximal hypoellipticity

at (x,g) in terms of a subset, ](xt)' of representations. They succeeded

in obtaining a precise determination of r(x,)' and in formulating a precise

conjecture. They have made substantial analytic progress, proving

sufficiency of the representation theoretic condition in a variety of cases,

and recently (32], (33]) necessity in general. As they point out, this

conjecture, if true, would, in particular, subsume many of the known

regularity results for linear P.D.E.'s under a single broad rubric. Among

the tools used are the microlocal techniques of Hormander ([24], [25]) and

Egorov [5] for the study of subelliptic estimates. In particular Nourrigat

([32], [33]), generalizing techniques of Hormander, derives a kind of

substitute for the lifting theorems, by showing how, in a precise sense, the

generating 1DO' are approximated at (x, ) by the representations in r(x,4).

One no longer approximates by the regular representation, as in the lifting

theorem, but by a subset of irreducibles. We first learned of the set

1',) and the microlocal approximation result from Nourrigat at the Boulder

conference on P.D.E.'s of July 1983.

The construction of r(x,,) is made in terms of an explicitly chosen

~. ..
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partial homomorphism from the free nilpotent to the generating !DO's. An

analogous set 1' (x,v) g (x , ) can be introduced in our context, and shown to

be an invariant of L. This is done by choosing an arbitrary cross-section

from S(xt) to L, defining '(x, 1, and proving it independent of the choice

of A. Using this set ]!(x,) we can formulate a sharp form of our earlier

conjecture for L-hypoellipticity naturally incorporating that of Helffer and

Nourrigat for maximal hypoellipticity. If we regard 1'(xC) as the image of

an asymptotic moment-map, which we shall see is quite reasonable, then in

view of the result of Guillemin-Sternberg [14] mentioned earlier, the

conjecture seems extremely natural.

Although we present some analytic applications, our main contribution

here is the formulation and construction of the approximation process.

Various of the techniques (and results) of Helffer and Nourrigat can, with

modification, doubtless be carried over to our more general context. For

example, as we shall indicate, a modified version of Nourrigat's proof of

the approximation result appears to carry over, and this, basically, is what

is needed to prove the necessity portion of his maximal hypoellipticity

criterion. We do not pursue this line, however, since we feel that a more

natural and fruitful approach would be based more squarely on the invariants

of L, in particular on the 'phase space* decomposition determined by L.

This remains a program for the future.
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1. Local Nilpotent Approximation

The initial context for this work is a family Il,....Xk of C* vector

fields defined in a neighborhood of x0 8 M. and satisfying the Hormander

spanning condition of rank r. That is, the Xit s, along with their. iterated

commutators of length _ r span T. M, the tangent space at xO .

We have already indicated in the Introduction how this setting leads to

the introduction of nilpotent Lie groups for the purpose of approximating

differential operators P expressible as polynomials in the vector fields

sl# ..... k -

In the initial context P was 'the* b-Laplacian on the boundary M of a

strongly pseudoconvex domain D. If one used a generalized upper half-plane

D to geometrically approximate D at x0 , then it was natural to use the

boundary of D to approximate M. But this boundary turns out to be the

Heisenberg group Hn, 'the most elementary (and also most fundamental) non-

abelian nilpotent Lie group.

The later work of Stein and collaborators relied less on this type of

geometric "normal coordinates' approximation, and more on the algebraic

structure of 11'.. k.

Let gk,s denote the free nilpotent Lie algebra on k generators
A A

IV X,..., k , and of step s. Then there is a unique partial homomorphism

X:gk~s --)vector fields on M in a neighborhood of x0 such that X(Xi) = Xi for

""i-i, .. . ,k.

Write k,s = g1  '... gs" To say that X is a partial homomorphism

means that

. . .... ....... .
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(1.1) ) is linear in R

(1.2) X([Yi,Yj]) =[(Yi), X(Yj)) for every Yi a gj with i+jls

The pertinent Sk,s is the one with s=r, where r comes from the spanning

condition. This leads to a Olifting" process, since dim gk,r may be greater

than dim M. When the rank of the Xi's is not constant near x0 this extra

dimensionality may be unavoidable. Under a constancy of rank condition

Metivier, in a paper (30] applying nilpotent approximation in the context of

spectral theory, was able to construct approximating nilpotent Lie algebras

gx with dim gx = dim M, but with gx necessarily varying (smoothly) with x

near x0 .

The construction of g as given by Stein, Rothschild and others is not

intrinsic, in that g is introduced externally and, at least a priori,

depends on the explicit choice of vector fields X1 .... ,Xk .  (What happens,

for example, if we take instead Yl ..... Yk' some *invertible* linear

combination of the X1 ... Xk?) The construction of Metivier, under the

constant rank assumption, does not introduce g externally, but it is also

not intrinsic.

In what follows we show how to make an intrinsic construction of a

graded nilpotent Lie algebra SX as an invariant attached to a filtered Lie

algebra L at xO . In a sense made precise by our version of the lifting

theorem, g is an approximation to L at xO . The algebra gx depends not

just on (Li) as an abstract Lie algebra over M, but also on its C=(M) module

structure.

.. * f ... . . . .

I - - .
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This intrinsic construction has a number of advantages.

(1) It leads to natural functoriality results.

(2) It handles at the same time the case where the generators of L are

not all of rank 1.

(3) It recovers the Metivier approximation in an intrinsic fashion,

and extends it to the more general context (2).

(4) It generalizes to other contexts, such as the microlocal and non-

nilpotent local contexts, which we shall treat in §3 and 4.

One basic distinction between the intrinsic and the external

constructions is that the former does not come equipped with a partial

homomorphism. In fact, since the Lie algebras will vary with the point x0 ,

one cannot expect to have available a partial homomorphism. However, a less

stringent substitute notion is available, namely that of weak homomorphism.

-" In the context of the intrinsic construction this notion is extremely

natural. Much of the technical difficulty of carrying over to the intrinsic

* context results like the lifting theorem comes from having only weak

homomorphisms to work with.

A further distinction between the intrinsic construction and the

* external construction is worth noting. In the external construction, as we

. saw, no spanning condition is needed in order to construct the nilpotent Lie

algebra or the partial homomorphism (though such a condition is needed to

" construct the lifting). In the intrinsic construction something like the

". spanning condition is needed to even construct the nilpotent Lie algebra

. 7.
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gxO (Without such a condition the construction yields an infinite graded

Lie algebra, with finite-dimensional terms of each degree.) The precise

conditions, as we shall see, is that Lr -- - r+i for all iO,
x x

i.e., the sequence stablizes. This is automatically the case if *spanning'

holds. In light of Frobenius' theorem (or better, Nagano's theorem in the

real-analytic case) the above condition (modulo a constancy of rank

assumption in the Cc case) is like a spanning condition on an integral

submanifold.

We begin with some preliminaries. We shall work primarily in the CW

category, and deal with modules L of Cc vector fields on M, a smooth,

paracompact, manifold. That is, modules over the ring C (M) of real-valued

C0 functions. At times we shall only want to take M an open neighborhood of

zo, and generally we shall work with germs. In the C category partitions

of unity are available.

We will have occasion to work with the formal power series or real-

analytic categories. In the real-analytic context we do not have partitions

of unity, so we should, strictly speaking, probably work at the level of

sheaves of modules rather than modules, but we shall forego this degree of

precision.

Notation:

S(1.3) Cb x, denote germs at x of real-valued Cc, respectively real-

*analytic functions; ' x denotes the ring of formal power

series at x.

. ........ . .. .
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(1.4) If L is a Cm (Ml-module of vector fields, L denotes the

module of germs at x of vector fields in L. Similarly in the

real-analytic case. If we pass to formal power series

instead of germs we obtain an x-module.

Remarks 1.1: 1) Each of the three rings in (1.3) is a local ring with

identity. The unique maximal ideal ix consists of the germs

(resp., formal power series) vanishing at x. Moreover, the

composition

x
.- R - -+C - -

A x

is bijective. Similarly in the remaining two cases. (See,

for example, Malgrange (29]).

2) & x and Tx are Noetherian. (Malgrange [29]).

3) If L is the module of all vector fields in the C or

real-analytic context, then Lx is finitely generated over

(C land 3 I, if we pass to formal power series). In fact,

choose local coordinates, and take ,, 35 (more

precisely, their germs) as generators.

4. 4) As a corollary of 2) and 3) we get: Let B be any
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submodule over 0' of germs of real-analytic vector fields at
I

x (resp., any submodule over 1x of formal vector fields).

Then B is finitely generated.

gbI

Def. 1.2: Let N be a Coo manifold, F = C(M), and x e M.

A filtered Lie algebra L at z of CO vector fields (with increasing

filtration), is a, generally infinite dimensional, Lie algebra over R of

vector fields on M, together with a sequence of subspaces Li i=1,2....,

such that

( '1) L C2 CL3 C...

(2) [Li,Lj] C. Li+J V ij

(3) L U Li

(4) Each Li is an F-module, i.e., FL C Li, where FLi refers to

multiplication of vector fields by C* functions.

(5) As an Fx (i.e., C) module L; is finitely generated for each i.

Remarks 1.3:

1) In view of remark 3) above, if we assume the spanning condition

(see below) at z, then is automatically finitely generated.
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2) In practice one often uses a stronger condition than (5), namely

(5 local): There exists an open neighborhood U of x such that for every i

Li(U) is finitely generated as a C(U)-nodule.

Then (5 local) of course implies (5) for every x8U. In fact it implies

a slightly stronger, and useful consequence:

Suppose (5 local) holds for the neighborhood U. Let 1I,... be

elements of Li(u) such that the germs lx...,jx generate . (Such

generators exist since (5) holds at x). Then there exists a nbhd V of x

such that X1V, ... Xj[V generate Li(v) as a CD(V)-module.

We omit the simple proof. A somewhat more carefully worded variant of

these remarks holds in the real-analytic case.

. Examples 1.4:

.1) Take 1 0 .... Pk vector fields in a nbhd of x, and take

. L1 = all Cw linear combinations of 1 .....'kl L2 = L1 + L

LJ+ 1 = Li + [L1 LJ.

That each Li is a Cc-module follows from the identity [fXY] = f(I,Y] +

[f,Y]X. Finite generation is obvious.

2) Take Xl,...,Xk. YI,...JY vector fields. Set LI = all C* linear

combinations of ll,..., 1 k; L2 = (all Cc linear combinations of YI,...,Y ) +

L1 + [L1,L1 1; and set

*o. .. .

. .. . . . . . . . . *
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Lj  1...[L J , L 3]...L ].

Jl ... Jk e(152 )

jl+...+jk-*j

Ilk

3) If LI C L2 C ... is a filtered Lie algebra at x which is not of

finite rank (see below), we can "embedU it in a filtered Lie algebra of

arbitrary rank r, as follows. Define the filtered Lie algebra

L if i<r
I-i

The module of all C vector fields

if ir.

(By remark 1.13 we maintain the finite generation condition.)

Notation:

(1.5) For vector fields in a nbhd of x, let ax:vector fields --)TxM be

the IR-linear map which is evaluation at x. Clearly a. depends only on the

germ of vector field at x.

Def. 1.5: The filtered Lie algebra L is of finite rank at x if there exists

r such that a.:Lr --)TM is surjective. The smallest such r is called thex x

rank of L at x.

Notes 1.6:

. . , .. .. ,. . . . ,, .., .. . " , : . . .,
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1). In the case of the first example above the finite rank condition is

just the standard spanning condition.

2) If -:L - T- M is surjective, so is ay.Ly -) TMN for all y

sufficiently close to x. Thus, if x is of finite rank r, then y is of

finite rank _ r for all y sufficiently close to x. Moreover, Lr = set of
y

* germs of all CO vector fields at y for y sufficiently close to x. In

particular L = L; Ys2r.

Pf. Let el,...,en be a basis for TxM.. Choose germs Xlx,... I sI

such that Xi(x) = ei . Then these germs, in a nbhd of x, form frames for the

* tangent bundle.

Prop. 1.7: Let (L), x be a filtered Lie algebra of finite rank, r, at x.

Let

Li

Sx .. (where L =0).
x•.i-1 i x

x x x

Then

(1) For i>r, gi=0.

(2) For ir, Si is a finite-dimensional vector space over R.

(3) Let ni:L i 
-- i be the canonical R-linear projection. Define

" . gx g  "' .. x" Then via the ni's gz inherits canonically the

structure of graded (nilpotent) Lie algebra over R.

(4) ni(fl) = f(x)ni(X) for XeL i and f e C.
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'Remark 1.8: gx is graded of rank r, but it may be of *step' ( r. That is,

fewer than r comutators may yield 0. For example, an with non-standard

dilations can be graded of rank > 1, though it is of step 1.

Pf:

(1) By Note 1.6.2 ]'r = *8 Vs2r.z L;xi . iinherts.th

(2),(4) Li s a module over C, and by definition inherits thex

structure of module over (Gi/, = R. By hypothesis L' is

finitely generated over C, and so g. is finite-dimensional

over I.

(3) Define a bracket [ ]:gi Ix --)gj as follows:

For Xi, x a , gx , respectively, choose yi Yj a Li, Li

S.t.

ffni(Yi) i, Xj(Yj) = Xi

Lot EXi XJ ] = i+j[yi, yJ].

To prove that this bracket is well-defined it suffice to

show:

[Li-, .+ aLI Lj]c Li+J-1 + a i'jz xx x x x

But [L'- 1. ,.JIC4j-1 by (2) of Def. 1.2

an jhL. LJii ii Lij + [k.,LJILI'

Again by (2), the first term is in A Li+ j .

Of the second term all one can say is that it is in

Now we use the fact that our filtration begins with an L

term. Thus, i+j- = i+(j-l) i. So, since the filtration

%
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is increasing, C L +j-.

This proves that our bracket is well-defined; and from the

definition it is clear that it satisfies the conditions for a

Lie bracket.

*- Note 1.9: Even if (Li) is not of finite rank at x, each gx is finite

- dimensional; only now x= 4 @ g2 ... is an infinite direct sum. It is

still a Lie algebra over R with respect to the above-defined bracket.

The graded Lie algebra gx = 4. G @ gx is clearly intrinsically

associated to (L), x. We begin our examination of gx by asking how much

. collapsingw has taken place in its construction. We shall need an

elementary but basic tool which we shall also use later for other purposes,

and which arises because we are dealing with local rings.

* Prop. 1.10: Nakayama's Lemma (see [13]). Let A be a commutative local ring

with unit, and M a finitely generated A-module such that M = aM, where m is

the unique maximal ideal in A. Then X = (0).

Cor. 1.11: Let N' be a submodule of N such that M = N' + M. Then M=M

Pf: Let N = M/K. Then N is still a finitely generated A-module. But

N/EN = M/mM + K' (0) by hypothesis, so N E aN, and N = (01 by Nakayama.

Cor. 1.12: M/aM is a finite-dimensional vector space over the field A/m.

*-*-.*. .*%**-*. .,
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Let O:M -M/m be the natural projection map and vl .... vn a basis for this

vector space. Choose 81,.... en in N such that O(ei) = vi . Then el,...,en

form a set of generators for M over A.

Pf: Since M is finitely generated as an A-module, M/mM is finitely

generated as an A/m module. But m being a maximal ideal, A/m is a field,

and so X/mi is a finite-dimensional vector space.

The converse is harder, and uses Nakayama. Choose a basis v1 ... vn

for M/M, and preimages el,...Pen under 0. Let M be the submodule of M

spanned by el,..., en. It follows immediately that M = M + mM. So, by Cor.

I_ 1.11., M -- N

In our context we take A = Cx and m = ix. The first consequence is

Lemma 1.13: gx =04L x  =L. (The non-trivial direction is = ). In

particular, if r is the rank of (Li), x then g# 0. That is, g1 cannot be

*small' unless (Li), x is *small.

Pf: Cor. 1.11.

Remark 1.14: Note here in passing that

Li 0/0.-1 64
I x x x

S a_ as modules (i.e., as vector

a iL 001 spaces over 1
x xxI x x x

This follows immediately from the fact that
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.j .i-1
S/L-

L x x

o,.

is onto, with kernel +

We next examine the functoriality properties of g1 .

Def. 1.15: Let (Lex be a filtered Lie algebra, and h = hl G ... ah w

graded (nilpotent) Lie algebra. A weak homomorphism y (at x) from h into L

consists of an B-linear map y such that

(1) Y:h i -L i

(2) For any Yi. Yj a hi, hj, respectively,

y(s(Yi, I]) = T(Y T(Y a + (after passing toi ji j x x x
germs at x)

Remark 1.16: Suppose (01), x is of rank r at x. and h = hl~ . ®h,. with

six. Then if ).:h - L is a partial homomorphism then k is also a weak

homomorphism. By a partial homomorpism we mean an JR-linear map such that

(1) k: hi -4Li

(2) For any Yi Yj a hi, hj, respectively, with i+j~s.

).([YR Y]) -CX i)

Generally, we also wish to assume

(3) The image k(hi) ,  i.e., this finite-dimensional vector space,

-s~..... .,. .-.................. o ... ,.,. ...-.. ., -o . . . ob.

. . . . . ..o . . . . .. . .. .. . . . . . .
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generates Li as a module over C, modulo Li -l  for ir. (This condition

certainly holds if we take L as in Example 1.4.1 and use the original

definition of partial homomorphism).

Pf: (of remark). It suffices to show that X satisfies (2) of Def. 1.15

for i+j>s. But i+j>s =#i+j>r, so i+j-1 r. Hence Li+j consists of all

CO' vector fields at x, so done.

Notice that although the notioni of weak homomorphism is referred to a

point x, via the appearance of i, that of partial homomorphism is not; that

is, the latter assumes the Li are all defined in some fixed (though

arbitrarily small) nbhd of x, and the homomorphism is viewed as holding in

this nbhd. In.particular, the preceding proof shows that if X, is a partial

homomorphism near x then it is a weak homomorphism at y for all y in a nbhd

of x. This is one reason why the notion of partial homomorphism is too

stringent in general.

Def. 1.17: Let (Li),x be a filtered Lie algebra, with gx canonically

associated to it. Let i:L' -4gi be the canonical projection. A cross-

section of n is an R-linear map P such that

(1) 1 :gi -. Li

(2) xiop = Id for every i.

Clearly, since vi is surjective, such cross-sections exist; one takes a

basis for g and maps to preimages under ni"basisfor x
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Prop. 1.18: Let P:gx -*L be a cross-section. Then

(1) p((Y., Y 1) - ((y.) p(y) L'+- + ifi L' (after passing to
1 J 1I XX germs at x)

for every Yi, Yj a 41, gj, respectively. T~at 'I s a weaK

()Frevery i a L, Xi - P on.i(x.) a L; + m 1.'

(3) For any cross-sections A, PI, ft(Y. -IYi i
Vii

Pf:

(1) Suffices to show Ri+j(P[Yi.Yj] - O(Yi), P(Yi)]) =0. But this

equals nj(AIY,Yj]) - u1.j[V(Y1 ). O(Y3 )]. The first term equals

(Yi, Y ], by definition of cross-section. But the second term

equals [Y Y.Y by the definition of Lie bracket for gx.

(2) Suffices to show IT 1(11-00 Ii(Xi)) = 0. But this equals iriIi

(3Ti a )riX) = 0, by (2) of definition of cross section.

(3) Follows from (2), together with (2) of definition of cross-

section, by taking Xi = (Y1 ) and replacing by ~'in (2).

We next prove the 'universal' property of gx.

Prop. 1.19: Let (Li),x be of rank r at x, and let hl j . Gh, b e a
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* graded Lie algebra, with -y: h -4 L a weak homomorphism. Then the map 71*

(i.e., xio yf:hi -*g)S ) is a homorphisM Of graded Lie algebras.

Moreover, if, in particular, -f(h1 ) generates Li over Cw modulo L for

*every i~r, the no y is surjeotive.

Pf: Clearly no I is R-linear. Need to show

oy i ~ 0 ~j[i Y] = I IT [7i0Y (Y.) ,r. (Y

By definition of [ , I in gx the right-hand side equals

I +j[yi(Y) Yi(Yi)]. But, by definition of weak homomorphism,

ffi+j~yi+j y''yal - E-iy) r1j(Yj)]) = 0.

Surjectivity, under the hypotheses of the Proposition follows

immediately from the definition of g.

Cor. 1.20: If h = hi @ .. ~ h5 where s~rrank at x of (Li), and if

X:h --) L is a partial homomorphism (in a nbhd of x), then there are

corresponding homomorphisms Ity OX x *5gy for all y in a (smaller) nbhd of x.

Moreover, if I Satisfies (3) of Remark 1.16, then for all y in a possibly

smaller nbhd of x, a y a XL:h -)g y is surjective. That is, for all y in a nbhd

of X, 1y is a quotient of h.

Pf:

Follows from above Prop, and from Remark 1.16, if we recall that rank

[Li) Sr at all y in a nbhd of x.
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It is not clear what is the most natural notion of weak morphism

between two filtered Lie algebras (Li),x, xsM and (['i,y, yeN. We give one

variant at the germ level.

Def. 1.21: A weak morphism between (L1I,x and ([Kiy consists of a sequence

of R-linear maps Wi=:L -i , together with an R-linear map 0:6(M) --)0(N)
x y y

such that

,.i(1) 0:kx(M) -->iy(N)

(2) Wi(fX) = 0(f)Wj(X) V f C (M), X a L

(ii1

I x y

(4) (W-(X), W M) - (X -1 + i+j

for IXj a *, L" respectively.

"- Notes 1.22:

1) Of course an interesting special case occurs when (4) is replaced

by the stronger assumption (4): [Wi(Xi), Wj(iM)] = Wi+j[Vi,x1].

2) We do not assume that the Wi piece together to form a single R-

linear map W:L, --iy such that Wi = W1Li. We instead assume the

weaker consistency condition (3), which is all that can be

expected in various examples (such as 3) below).

o.

.. . . . .. . . . .. . . .
S S

. . . . . . . . . . . . . . . ... S * . . . . .

". . . . . . .

'%"o°" " -t oo o* °'o - ° °,..°. ,' •."o
•
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Examples 1.23:
", 0,(Li )

1) Let O:M --)N be a diffeomorphism, and suppose that K' =

' where 0, denotes push-forward of vector fields. Then for every

xsM 0 defines a weak morphism between (Li),x and (K'), W(x),

where O:C(M) -*C'(N) is given by f -4f@0- 1 . Of course here (4)x y

is satisfied, as well as the strong consistency condition in Note

1.22.2.

2) M=N, O=identity, Li C Ki, and Wi:Li --Ki the inclusion map. Note

that the induced morphism of graded Lie algebras (see Prop. 1.24)

is not necessarily injective. In fact rank Lx may certainly be

greater than rank Kx.  As an illustration take Ki as in Example

1.26.1 below, and Li arbitrary.

3) Let (L),x and [K1),y both be of finite rank, with associated

graded nilpotents gx, hy ,respectively. Suppose there is a

morphism X:gx -) hy of graded Lie algebras, and let be an

arbitrary cross-section for hy. Define O:Cx(M) --) C (N) by

":f 1-4 the constant function f(x) ; define Wi: "i -. Ki by

Wi -ii-eui . Then Wi is a weak morphism.

Prop. 1.24:

(a) The composition of weak morphisms is again a weak morphism.

m4s
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(b) A weak morphism J:(L 1 ),x --)(KI,y induces canonically a morphism

of graded (nilpotent, if x,y are of finite rank) Lie algebras

f:gx -hby.

(c) (9oV)A !.V.

Pf:

(a) This is obvious except for (4) which involves a small calculation

requiring application of (1), (2). (3).

(b) Define f :g --)hl as follows. Choose an arbitrary cross-section
l x y

for gx. Let i= Clearly ii is R-linear.

Claim:

A A

(1) [f.(Y1 ), q(Y.)] = tij([YiYj]) for Y.,Yj e g',

respectively.

(2) ti is well-defined independently of the choice of cross

section Pi.

In fact (1) follows from the definition of [ , in gx, hy° from

Prop. 1.18. (1), and an argument analogous to that in (a) above.

Statement (2) follows from Prop. 1.18.(3).

"i(c) By Prop. 1.18.(2), fL ouL = Id mod terms in Li -1 + ALx. and by
L + ,

(1)-(3) of the definition of weak morphism. 1i sends the Oerror"

terms into the kind of kernel of

Cor. 1.15: (see Example 1.23.1). The isomorphism class of the graded Lie
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algebra g attached to [L'),i is invariant under diffeomorphisms applied to

(L i } ,x.

We next illustrate the computation of gx in a number of cases (in each

of which the rank is finite). We retain the notation a. for evaluation of

vector fields (see (1.5)).

Examples 1.26:

1) Let Li i=1,2• consist of all C vector fields in a nbhd of x0.

As in Remark 1.1.3 we see that Li is locally finitely generated by taking as

generators Z/- I..., , where xV ... xn are local coordinates. Clearly X0 is

Sof rank r~l, and so £10 £i* , abelian, with standard isotropic dilations.of r nkr. a d s g .. = ,

Claim: g1 is canonically isomorphic to T M viewed as a vector space with

standard dilations. In fact, the map a -- T M is surjective and
X, V

factors through Ix to give amap

.- X.1

p:go -* T M -*0

0 0. x 0

Using the generators V1,. V/An as local frames we see that p is also

injective, and hence bijective. Notice that this example is the general

case of r-l.

2) If Li) is generated by L1 , as in Example 1.4.1, then gx is

generated by g i.e.,

m10o

i . . . . . . ........ ...... ............-. , ... . .. .. , ..... . . ,... . . . . ,.-,,- .. . . - . ... *,, .,....
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= 1g ' I ..- 0 X 0 0 0 0

i factors

This follows from the definition of Lie bracket in gx and the fact that

* wi:Li -+'4 is surjective.

3) Let g = ... Cgr be a graded nilpotent Lie algebra, and G

a corresponding Lie group (uniquely determined in a nbhd of e). View the

elements of g as left-invariant vector fields on G, and let

L L i
.L" = C'(G) ®e gj

J-1

i.e., take C=(G) linear combinations of the left-invariant vector fields.

Claim At any xeG, (Li] has rank r, and g - g canonically.

Pf: Basis elements of g, * "' form frames for Li (i.e., are

everywhere linearly independent and spanning). This shows in particular

that rank = r. Let vx:L i "*si be defined by applying ux , identifying TxG

canonically with I. and projecting onto the i-th component. Passing to the

. germ level we see just as in Example 1) that v. factors through

.i_ -+ M 1i4 to give a bijection between gS and gi. The definition of Lie

bracket in g. shows that this is a Lie algebra isomorphism.

,' .
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4) Let H be a Lie group with Lie algebra h. Choose an increasing

filtration by finite-dimensional subspaces hI C h2  C ... Ch n = h such that

[hip hj] C hi+ j . View the elements of h as left-invariant vector fields on

H, and define Li to be C (H) @, h i . Then, just as in example 3). one sees

that for any xaH, gx is of rank r and

h2  h

1 h h ... r-1

the graded Lie algebra associated to the filtered Lie algebra h. (Notice

that h defines a filtration on the vector space TxH, and gx defines the

corresponding grading.)

5) Let M = V, a finite-dimensional graded vector space, i.e.,

V = V1  @ .. ® Vr , on which we define stardard dilations 6 t (t>0) by

6tV i = t'. Using the dilations 8 t one can intrinsically define (without

explicit choice of coordinates) the notion of homogeneity (in a nbhd of 0)

for a Co function and a C vector field. (The vector field is homogeneous

of degree k if, applied to functions, it lowers homogeneity by degree

exactly k; since the function is CD this implies that the derivative R 0 if

the degree of homogeneity of the function is less than k.)

Choose a basis for V consisting of bases for the V i . If ujk is one of

the standard coordinate functions for Vk , then ujk is homogeneous of degree

k, and so is a/aujk. Say that a vector field is of local order S i at 0 if

S .* . . . . . . . . ... . "" " . .. .. .... . . . . . . ........ ..
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the coefficient fjk(U) of a/aujk has its Taylor series at 0 begin with terms

of order 2 k-i. where order is determined as above. (This can be formulated

more intrisically in terms of 6d.

Since the highest grading occurring in V is r, it follows that

(1) Every homogeneous vector field is of degree S r.

(2) Every vector field is of local order _ r.

For X of local order _ i there is an intrinsically defined *leading* term X,
A

namely the unique vector field homogeneous of degree i such that X-1 is of

local order S i-l. In local coordinates X is the sum of the terms

f"k(u)B/BUjk where fjk(u) is the sun of the terms of order k-i in the Taylor

expansion of fjk(u). (Of course we can then continue and define the

component homogeneous of degree i-1, etc.)

Let gj i=i,.••,r be the space of vector fields homogeneous of degree

i. Then [Si, gi] C gi+J• Hence S - S • C .r is a clearly finite-

dimensional and, hence, nilpotent subalgebra of the vector fields on V.

Let Li = all vector fields on V of local order _ i at 0. It is easy to

check that

1) Li is a C V) - module.

2) [Li. LJ] C Li+J

3) L' C L2 C ...CLr = Lr+l . all Co vector fields on V near 0.

4) co(L r) T0 V) (and a0 (Lr-1) A TOV) unless Vr - (0)).

(Statement 4), and thus 3), follows from (2) above. Statement 2) implies

that the leading term of the commutator is the commutator of the leading

terms.) To show that Li, ii, is finitely generated it suffices, since

Li - L0 5 l * . Li to show that L9 is finitely generated. But
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one (non-minimal) set of generators is given by all vector fields in L0 with

coefficients polynomials of degree - r in the classical, isotropic, sense.

To see this recall that any Cc function vanishing at 0 of order _ r in the

classical sense is a Co linear combination of monomials of degree r; and any

vector field with coefficients monomials of degree r in the classical sense

is in LO .

Let gO go @ ... 0 be the graded nilpotent associated to
Ai -  • 1

(Li),O. Let gO g except for i=l. Define go as

.1 .
1 L L^1 0 1 0

= (in contrast tog 0 = o -- )

LO+ 0 0  O0"0

The proof of Prop. 1.7 goes through unchanged to show that go inherits the

structure of graded nilpotent Lie algebra.- Since [LO , L] C Li it follows
. that gO 0 m "' .Gi is (canonically) the quotient of go by the ideal

tht*0 *019

L 0+& L1
0 00

.o. 00

(lying in go), which is in the center of go. (With a bit more work this

ideal could be naturally identified with an explicit subspace of LO

* consisting of polynomial-coefficient vector fields).

Claim: There is a natural isomorphism 90 L g.

.
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Pf: Define the R-linear map T:4 -*gi by X -1, the leading term,

of degree i. Clearly, y is surjective and factors through * i- i. In

" fact, hJL6 C L- and kernel y = , determines a vector space

.* isomorphism between go and gS. It is easily seen that the Lie algebra

structure is preserved.

6) Let N and g be as in Example 5). Let h hl + .. @) hr be a

graded subalgebra of g such that a0 (h) = ToV.

Let L' consist of all C**(V) linear combinations of vector fields in h.,

j-i. Then (Li),O is a filtered Lie algebra of rank r. Let go be the

associated graded nilpotent. Let y be the restriction to Li of the

i_ corresponding map in Example 5). Choosing some representation

X- 2 f jk(U)y jk

k-(i

where Yjk is a basis for hk over R, we see that

YX f fjiOMY jkE-" ¥(I) = .

An easy argument then shows that y induces a natural Lie algebra isomorphism

'"0 h.

Let H be the simply connected nilpotent Lie group with Lie algebra h.

Then by the same argument as in Folland [7], using the existence of the

dilations, one can show that the infinitesimal action of h on V can be

.~~ . ... 
... .. 

..
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exponentiated to give a transitive right action of H on V. In other words,

letting Go denote the simply connected group associated to go. V is a right

homogeneous space of Go (and T0 V is g0 /k, where k is the graded subalgebra

of all vector fields in g0 vanishing at 0.) This is interesting to compare

with the homogeneous space lifting theorem of §2.

7) Special case of Example 6). Let Xl ... Xk be homogeneous (of

degree 1) vector fields on V, hI the vector space over R spanned by the

Xi's, and h the Lie algebra generated by hl.

8) Same setting as Example 7). Let Y1 ... 'Yk be vector fields of

local order _11 at 0 whose iterated commutators of order _ r span T0 V. Let

.l k...,k homogeneous of degree 1, be the corresponding leading terms, hI

the vector space they span, and h the graded Lie algebra generated by hI .

Let L1 be the space of all C* linear combinations of Yl'**5 5 yk- and L the

filtered Lie algebra generated by LI. Let go be the graded nilpotent

associated to L,0.

We wish to examine the relationship of go to h. We begin with a

special case. Take V = V1 +V 2 = u 0+ , yI a/ax, y 2 = al/ax + x2 a/at.
X t

Then 1 = = /ax, so h = hI = 1 - dim space spanned by a/Ox. (In

particular, a0 (h) A ToV.) However# go = g1  0 g2  D g3  the rank 3

nilpotent Lie algebra generated by the Y1 ' Y2 themselves. Probably the

easiest way to see this is to put a different grading on Vj namely, make the

t component of order 3. Then Y1 ' Y2 are both homogeneous (of degree 1) and

we can apply the result of Example 6. (This is legitimate since no dilation

A..
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structure on M is involved in the definition of

The above illustrates that So need not equal h in general. However,

Claim: There is a canonical surjective morphism of graded Lie algebras

SO --)h -0. (Thus h is the quotient of go by a graded ideal.)

Pf. Define r as in Example 6. Noting, as in Example 5, that the

leading term of a commutator is the commutator of the corresponding leading

terms we see that y maps Li into and onto hi. Clearly, y factors through to

induce a map S -4hi --)0. The above remark about the leading term of a

commutator shows that this map is a Lie algebra homomorphism.

We give two cases in which the above map go -h is an isomorphism (as

shown by dimension arguments).

Case 1. As a Lie algebra overR, h is the free nilpotent on k generators of

. rank r. (This does not imply that as a Lie algebra of vector fields on

V h is free of rank r at 0.

E"_-xample: h h 2 V V
_____ -, *- =-

.ax mt at 2

Pf: $0 is generated by g0 which has dim _ k since L1 has k

generators. Also, go has rank = r. Hence dim go - dim h, and so So -h is

an isomorphism.

Case 2. YI .... k satisfy the Metivier condition (to be discussed below)
Y• .... y

and, in addition, the vector fields in h span ToV. (I don't know whether

S

F2o
-.- . . .. .** *
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this latter assumption in fact follows from the Metivier condition.)

Pf: Metivier condition =0 dim go = dim V; spanning condition on

h =0 dim h - dim V.

Def. 1.27: The filtered Lie algebra (Li),x0. of finite rank r at x0,

satisfies the Metivier condition if there is a nbhd U of z0 such that for

every i=1,...,r dim ax(Li) is independent of xeU. This is a transposition

to the general context of Metivier's [30] condition in the context where L1

generates L.

The following proposition, in conjunction with the lifting theorem,

leads to hypoellipticity results. It shows, in particular, that the

nilpotent Lie algebras arising in Metivier E30] can be given an intrinsic

formulation and generalize to the context where LI need not generate L.

Prop. 1.28: Suppose that [Li),x0 satisfies the Metivier condition.

Then

(1) 1
(1) For all x in a nbhd of x0, dim sx = dim M. Furthermore g. = g1_+

2"3 ... e @g where nx m dim g' is independent of x.

(2) The g. vary *smoothly' for x in a nbhd of xO , and the smoothness

is compatible with the projection operators iylx g More

precisely, choosing bases we can identify each g., as a graded

nr
vector space, with Rn .. R in such a way that the Lie

algebra operations are Cc with respect to x. That is, we can

.:



45

regard x -g, as defining a smoothly varying family of Lie algebra
pI

structures on Rn ® .. n  . Moreover, for any I e Li the map

" a g is CW.

The proof will be given following some preliminaries needed as well for the

lifting theorem.

Note 1.29: Although, under the Metivier hypothesis, the g. vary smoothly

with x, the gx need not be isomorphic as Lie algebras. In this case Cor.

1.20 shows there is no partial homomorphism from g. to (Li) in a nbhd of

10. For, by that corollary, such a homomorphism would induce Lie algebra

homomorphisms, and hence isomorphisms, by equality of dimension, from gx

onto gx for all x in a nbhd of 10.

Let (Li),x0 be of rank r. Then a (L) 0ax(L2 )C ... C x(Lr) = TxM

forms a filtration of TxM. Let

.S
i =L L

S=)- (1.6)! - ac (L - )

r
30 = Q Si defines the associated graded vector space.

i=

Let Li S O--- 0 be the natural quotient of the evaluation map ax.
i i-1

i

to give a map ax filling in the diagram below:

'...........................................
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x

/

i ^

A I

0

j q"'"r a'i ... h .Def. 1.30: Let hx  ker ax, and hx  hx

Lemma 1.31:

(a) dim gI/hx f dim Sx , so dim gx/hx= dim M.

(b) hx is a graded subalgebra of gx, i.e., Ch., hi) C hxj.

() If the Metivier condition holds at Xo, then hx = 0; in fact h. = 0

for all x in a nbbd of xo. That is, ax is an isomorphisM for all

x in a nbhd of xo.

This result in effect is an extension to the general context of a result of

- Helffer-Nourrigat [20]. Because of the intrinsic, minimal, nature of g.,

part (c) is sharper than their corresponding result. (They can only show h.

*" is an ideal).

Pf:

(a) obvious.

(b) The basic point is that if two vector fields both vanish at xO , so

- ..°

,. . , .. . . ... . . , . . . . . . .,. . . . ... . ... * . . .. . , . .... .
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does their commutator. Let Y' e h- YJ a hJ , with preimages

(under ) Ii• XJ. By definition of hx, 1 i- Xj - 1 in L'-',

Li-1 , respectively, such that Q(l-I
i-
1 ) 0 and a (XJ-Xi-i) =

0. Hence a ([Xi-x i - 1 - = 0. But the Lie bracket = [1',

Xi] + element in L'+ j-'. Hence [yi• yj] = n'i+j([X', Xj]) e hxj.
XO

(c) For 1._i r let ki = dim Si Choose vectors e1 a Tx (M), 1Sj-k i

such that P isa basis f) e . l 2

is a basis for a. L2 ), etc. Choose X' a L' such that a (Xl') =

e'. For x sufficiently close to xO , the vectors a,(X') e TM are

linearly independent, since the axCXi) are. This, together with

the Metivier hypothesis, implies that the CX') with i_<i 0 form a

basis for ax(L' ) for all i0 _ r (for x sufficiently close to xO ) ,

which varies smoothly with x. In particular, in a nbhd U of

10, Li is the space of sections of a vector bundle with fiber

a L'). Thus, in this nbhd, any X&Li can be written as
x

I fX. , with uniquely determined f. a C (1.8)

By definition of Xl, a X) e a(Li - l) <-f'(x o )  0 Yj. This

says simply that f 8 m, i.e., that X a Li - + m L'. That is,

hxO =0. The same argument shows hx  0 for any x s U.

We can now prove Prop. 1.28.

Pf:

(1) Clear from (a) and (c) of preceding lemma, and fact that, by
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Metivier hypothesis, dim S' is constant for x e U.
x

(2) Maintain the notation in (c) of preceding proof. For xeU let

Y1(x) = Ix(XI). By definition of the X and preceding argument,
tx

the a'411) form a basis for S', for each xeU and each i. Hence,

since ai is an isomorphism, the Y (x) form a basis for g. We

shall show that the Lie bracket of the Y'(x) is smooth in x. Fix

i1, i
:
2
" J, J2 . By definition of the bracket, [YI, (x), Ya(x)] =

i J",+([X , Xii]). By (1.8)

2 i i
IX.1, X.2 ] = f.X.,"11 J2 iil i J

1 2

where the f0 are smooth.i
Fix x. Then f= the constant function f!(x) + element in m1. So

i1+i 2  1 2 2 il+i 2  i +i 2([ X 1, X"1.2) = f.1 (WY. Z(x )

So. since f! is smooth, the bracket is smooth.a
Similarly, using (1.8) we see that for any XeLi, M(X) - f (Z) Y(z).

So, x .-1(X) is smooth with respect to the given bases.

Lemma 1.32: Let A be an arbitrary cross-section of [Li), 1 . Then for every

i~o, a(L) = a 08 + ... t'gX) (LO= (0)).

This follows immediately from the stronger Lemma 1.35 proved below. A

'..'...............-.......'-.... --.. & .--...- .,, ....-..-....- , ... ' . . -. - .. ,-... .. .. ,"
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simple direct argument also follows from diagram (1.7).

Our definition of h. has been completely intrinsic. It is useful to

have the following characterization, more in line with the analogous

construction of Belffer-Nourrigat.

Cor. 1.33: Let be an arbitrary cross-section of (L'IJ,x. Then

hI = 1C 1 *. (hl = (a a )hI (x x pi-~xpgx . x . .

Pf. Follows immediately from preceding lemma and diagram (1.7).

Cor. 1.34:

(a) Qz(p(g x)) = TxM.

(b) The mapping u ---eP(u)x is locally a submersion from a nbhd of 0 in

g. to a nbhd of x in M.

Pf:

(a) Follows immediately from Lemma 1.32 and the spanning condition.

(b) Follows from (a) and the fact that the differential:T0 (gx ) --TxM

of the above map is given by v1--4a,(A(v)); here we identify gx

with its tangent space at 0.

The foilowing consequence (Cor. 1.36) of Nakayama's Lemma will be a

basic tool in our proof of the lifting theorem in §2 (and, in its microlocal

variant, in our discussion of the asymptotic moment-map in 13). It is our

5-2

JQ
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substitute for an explicit a priori relation between gx and a set of

generators for [L'J,x. The result holds at the germ level, and this is

sufficient in practice for handling the local level, especially in view of

Remark 1.3.2.

Lemma 1.35: Let (Li),x be a filtered Lie algebra of finite rank, r. Let d

= dim gx. Let (Ya), l a.-d be an arbitrary graded basis for gx i.e., a basis

such that each a gi for some i, which we denote by jal. Let be an

arbitrary cross-section. Then for each ilr the germs of vector fields

( ja1ispan L' as a 6 module.

Pf: By induction on i. Suppose true for i-l. Let (Ya), [aj = i, be a

basis for

i9"" "L.

o 1

"" Li-iI 1~

..'- Given the cross-section i let [Pi(Y,)] denote the image in Li/Li of

*P (Y). Now, by Cor. 1.12 together with Remark 1.14, it follows that

S([i(Ya)]) generates Li/Li I  as a 6, -module. So, Li = (span of

(i) + Li-I (this not being a direct sum). But by the induction

hypothesis, Li-I = span of ( (Y)) Ia<i. It remains only to treat the

case of i=1. But for i=l, Li- = 0, and

-i-

=-
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il L -+ixL. ixL

and the result follows from Cor. 1.12.

Of course, when i=r the statement follows directly from the spanning

hypothesis.

Cot. 1.36: Let X a La - Then

I= c.P(Y.) + ~ ~ya) + S gP(Y.) (1.8)

Ju IlIi I@I=i
where the ca a R are uniquely determined by the equation

i) 0 caYu (1.9)

III.

where the fa are in Cx' and the ga in ix. (The fu and su are not

necessarily uniquely determined).

Pf. By the Lemma,

'~" . -. - ~ p * *' * * * ~ . . .* * .* . .. * . . . . -

>-i .. . , .t ~ ~ . .. ,. *.*.% .. * . .**** . ;
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I f f(Y.) + h.0(Y.)

GIi IQI~i

*with fuSh 0 in C.. For Jul i, let cQ h0 (z) and S. h-c.. This gives

a representation (1.8). Applying ni to both sides of (1.8) yields (1.9).

Remarks 1.37:

1) Most of the work in this section has been based on elementary local

* algebra considerations, and so (see Remark 1.1.1) carries over to the real-

analytic and formal power series contexts. In particular, we can define

* 8 g fra and the corresponding hxs. If Lfra is the

'formalization' of the C Wfiltered algebra L, or if L is the *Co versionw of

the real-analytic filtered algebra Lanltc then variants of Prop. 1.19

* and 1.24 show that there are, respectively, canonically defined surjective

* Lie algebra morphisms

s~formal __O(1.10)

analytic -) +

*mapping h. onto hioal haalt onto h1, and, hence, canonical

*isomorphisms of homogeneous spaces
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analytic formal

ha.-alytic L h formal all of dimension = dim M. (1.11)

x x

I do not know in general when the maps in (1.10) are isomorphismsi however,

this is easily seen to hold if L satisfies the Metivier condition.

2) Suppose that the strong finite generation condition (5 local) of

Remark 1.3.2 is satisfied at x0. Then Remark 1.3.2, together with Lemma

1.35, shows that any cross-section A at x0 determines, for each x

sufficiently close to 10, a graded IR-linear surjective map g. -, gx via

Ya gi ".3w(f(y)). This map is in general not a morphism of Lie algebras

(since Y -+D(Y)1 is not necessarily a weak homomorphism except when x=x0).

However, as x approaches 10 the "deviationm from a Lie algebra morphism

approaches 0. (Compare with the proof of Prop. 1.28).

* .
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§2. The Local Lifting Theorem

In this section we prove a version of the Rothschild-Stein lifting

theorem, based on the treatment of Goodman [81, and follow this by a proof

.. of the corresponding homogeneous space (rather than group) version of

Helffer-Nourrigat (20].

Goodman has observed that, simply for purposes of lifting, it is not

necessary to insist on a free nilpotent group. We carry this idea further

in showing that such a lifting can be carried out in the general context of

filtered Lie algebras via the intrinsically associated nilpotent Lie

"* algebras. The lifting results give a precise sense in which these nilpotent

Lie algebras lapproximateM the original filtered Lie algebras. This is of

interest since, in view of Prop. 1.19, these algebras are in some sense

' minimal' approximants.

Direct applications are to hypoellipticity, as we shall show in this

section, and, possibly, to approximation of control systems, as we shall

.. indicate in 4.

One significant fact is that weak (vs. partial) homomorphisms, which

are all that we have available, are sufficient. One consequence is that we

.. can do a direct lifting in the Metivier case.

Although the main line of the argument is very close to that of

Goodman, there are differences due to dealing with weak homomorphisms, among

them an increased complexity of 'bookkeeping*. To save space we shall not

give full details.

Let g = g, gr be a graded nilpotent Lie algebra. Then the

natural dilations 6t  (t0) given by 6t gi t are Lie algebra

• ., ,'. . ... . . -.. , . . , .. . • '.'. . , . ". , ., .. . . . . -.. .. " , •' . , . *, ,.
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automorphisms, and determine associated Lie group automorphisms. The

discussion of homogeneity with respect to dilations and of local order _ i

in Example 1.26.5 carries over fully to the present context.

For Yeg, let Y denote the pull-back via the exponential map exp:g -*G

(the associated simply-connected nilpotent Lie group) of the left-invariant

vector field on G associated to Y. (More loosely, Y is the left-invariant

vector field associated to Y, written in exponential coordinates).

Y(fe exp)(u) = A f(exp u exp tY), f e C'(G) (2.1)
". dt t-0

If Y a gi then Y0 viewed as a vector field on g, is homogeneous of degree i.

That is, liomogeneity as an element of the Lie algebra g, or, more generally,

as an element of U(g), the enveloping algebra, is consistent with the notion

of homogeneity as a differential operator on a graded vector space.

Notation 2.1: Cm (U) is the set of Cc functions vanishing of order m at

0 e , in the sense of Example 1.26.5. (U is a nbhd of 0 in g). Cm(U) -

C"(U) if al0.

Note that

C, C C C (2.2)
a m m+n

- . * . - . ***o
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If f C and X is a vector field of local order Sjat 0, then fi is

of local order Sj-m. (2.3)

(Of course this statement is useful only when m 0.)

* o N Ca

(We often use the inclusion mo(c Cr.)

Let (Li),xo be a filtered Lie algebra of rank r on the manifold M. Let

Sbe an arbitrary cross-section. In analogy with Goodman, define a map

W:CC (M) --) ~g (really from a nbhd of z0 in M to a nbhd of 0 in gx via

(Wf)(u) f (u) (2.5)

Notice that for any vector field X on M and f a C- (M)

W(fX) W (f)*WX ;if f a m k then W(f) e mk~ (2.6)
10

The theorem below states that W is a 'weak intertwiningo between the

elements of 0Li and the elements of gx,S viewed as left-invariant vector

fields.
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Theorem 2.2: (Lifting Theorem). Let Y a ga and let I = (Y). Then

WX = (Y+R)W, where R is a Cc' vector field in a nbhd of 0 in gXo which is of

local order _ i-1 at 0.

Remarks 2.3:

1) Since in general the map u --) e(u)xo is not a diffeomorphism, but

only a submersion (see Cor. 1.34),the vector fields R are not uniquely

determined.

2) Each R can be expressed as a CD linear combination of the frames Y.

It then follows directly from the homogeneity degrees of the R's that the

span at 0 of the vector fields Y+R is the same as that of the Y, i.e., all

ofTng 1 .

3) Although gx is in some sense the minimal algebra to which one can

lift, the same proof holds if we replace gx* by any graded nilpotent g with

a weak homomorphism y from g to L at xesuch that the associated Lie algebra

homomorphism n y:g --gx (see Prop. 1.19) is surjective; (alternately, for

any graded nilpotent g together with a surjective homomorphism to g. ) "

This follows from the fact that Lemma 1.35 and its corollary, which are

basic ingredients in the proof of the lifting theorem, hold with A replaced

by y. This is seen from a trivial argument with the diagram in Prop. 1.19.

The lifting theorem has the following corollary.
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Cor'. 2.4: Let X c L. Then W = (ni(X) + S)W where S is of local order

_ i-I at 0.

Notice that although W depends on P the element mi(X) a gi is

intrinsic.

Pf: Apply the lifting theorem, and then use Cor. 1.36, together with

(2.6).

We pass next to the proof of the lifting theorem, following Goodman.

One begins with the following identities between formal series in an

associative algebra (XY,Z being elements of the algebra, and D= ad 1: Y -*

IT-Yx)

di= eXE(x)Y 
(2.7)

dtt
• .. t=O

- d- A X+tB(X)Y (2.8)
dt It=0

de ~YtZ d aXt + d aX+tZ (2.9),,..d t .-od t tot o

"+- where

o. . . . . . . . . . . . . . . . . . . . . . .

o. .. .. -. * - . . .
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1-D (-1 k
E(X W D______ (2.10)

D1  k>O(kl)

BMX bD k D bkX (b k k-th Bernoulli number). (2.11)

X~ k o 1 kI

The identities (2.7)-(2.9) are to be interpreted in finite terms. as graded

identities, via the symmetrization operator a, given by

ar(IXy) =..L (X~y + X,1 y ly-** 1 f)
n+1

For example, (2.7) is equivalent to

O = -1) X"'Dk(Y), n=0.1,2,... (2.7g)

knmI (k+l)!m!

We will be applying these in the context of two associative algebras,

that determined by the Lie algebra of vector fields on M in a abhd of ,

and that determined by the Lie algebra of vector fields on gx in a nbhd of

0.

From (2.8) it follows that, for Yeg1  the curves in *

t -*Cxp u exptY and t -*exp(u+tB~u)Y have the same tangent vector at t-0,
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so

Yf(u) dl f(u+tB(u)Y). (2.12)
dt It=

That is, at u Y is the directional derivative in the direction B(u)Y.

(Since g. is nilpotent the series for B(u) terminates after finitely many

terms, so that B(u)Y is polynomial in u.)

Next one works at the level of formal power series at u=O. That is,

one constructs R such that Thm. 2.2 (1) holds as an equality of Taylor

series at u-0.

Notation: For a Cg 1 ) defined in a nbhd of 0, and 0n a Cc

0 On means that 0 - a for every a. (2.13)

n k-m

Since P is IR-linear it follows that

Wf(u) -
" (P(u)nf)(x ), for any f 8 C, (M) o (2.14)

n>0 n! 
0

We may express this by saying that, formally, W e(u). (As in Lemma 1.35

let [Y), lcz(d be a graded basis for gx with (u I the corresponding dual
,a 

6

basis. Then, by the R-linearity of P, (2.14) gives the Taylor coefficients

at 0 of Wf, with respect to the coordinates u., in terms of the Taylor

coefficients of f at X0 .)

.. .y , *..*. . .

oN N. ~ . .
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Then, by (2.8), for every la~ d

. " Y (Ya) = d I ~ (u) +tB( (a) )P (YG)(2.)

WO(Y)=- * (2.15)
dt1 it-

Examine the right-hand side of (2.15). If were a homomorphism of Lie

algebras over R and. hence, of associative algebras, then as formal series

A(u) + tB(P(u))P(Y u) would equal 0(u+tB(u)Ya). But replacing f by Wf in

(2.12) and using (2.14) we get

(YWf)(u) - (e (u+tB(u)Y)f) j , where - denotes equality (2.16)
dtlt

d o of Taylor series at u=O.

Thus, if A were a Lie algebra homomorphism, we would have WO(Y a) = Y aw

, formally.

The crux of our work then consists of showing that with A *close

enough' to a homomorphism we can get good control of the difference between

*(B(u)Ya) and BlP(u))AlY.).

We start with the basic weak homomorphism equation from Def. 1.15 which

we write in the more convenient form

4.

4,

- . ...
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[(Y), )] = PuY a I + LII+l a1l1 + Ai L'T + I l  (2.17)
0

for Y ,Y e gly0  SM0 , respectively.
a a 0 x 0

where jaj (as in Lemma 1.35) denotes the weight of Y."

Write

u u Y.

Following Goodman, let K = k17) ) Iy Ir denote a multi-exponent,

IKI = k(y), the usual length of K, and w(K) = k(y)ITj the weight of K.

Let

D =ad Y u = k(T)

°% y

D =ad (Y) DK =TTDk( b b
"" Y K K ! I I

Y" yy

and let a, as before, be the symmetrization operator. Note that

:ZJ
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U e (2.18)

By definition of B, and (-linearity of we have

b K K

B(u)= U( D)

IKI20

K A
BA(u)) 2 bu U(DK) (2.19)

IKI 0

An induction on IKI, starting from the equation (2.17), proves

Lemma 2.5:

D: (P(yu) )  (DK(y )) + Llal+w()-1 + A ,lIl+-<x)
a x 0

(Of course, for [=0 we don't need the two error terms on the right-hand

side).

Cor. 2.6: B(A(u))P(Ya) p (B(u)YQ) + TG(u) + Sa(u) where

. . ,
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T (u) b L a buII+w M -1

SK) j b+(K)

(Notice, IK121 for all the above terms.)

Substituting this into (2.15). and using (2.9) we get

d (u)+t(B(u)Y ) P(u)+tT (u)
ddt t-O dt t= O

(2.20)

dl I (u)+tS (u)
dt t=O

We saw in (2.16) that the first term is YCLW. Using (2.7) we see that

the remaining two terms are given by

0(u)+tT (u)
dle a - WE(P(u))T (u)
_ t=0

(2.21)

di eP(U)+tS lu) = WE(P(u))Sa(u)

dtO

As in (2.19) we can express E((u)) in terms of the dual basis (uy}
t"V
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E(P(u)) = (-1) u KO(D ) (2.22)
"K1" (K+1)1!

But (Yy) e LI1, and each (Yy) has a coefficient of uT to accompany

it in (2.22). Thus a simple computation shows that

lE(P(,u,,Ton a (u c Ku Kl~a +weK)- 1

(2.23)

E(P(u))S() - aKu'L +w(K)-1 + du 1 (,, LIln+w(K))•
IK11 IKl0

where the cK• aK, dK are (universal) constants.

Now use Lemma 1.35, together with the fact that, since x0 is of rank r,

L = Lr+1 = .... We express this as follows:
1 0 XG

Let x e ai

If i<r 2 f=(Y f 6C (M)

Ial<i 0

(2.24)

If i-r X= X f a (M)

In the summations in (2.23) it will be more convenient to use w()

instead of IKI as the index of summation. (Note that w(K) 2 1 *- iK 1 1 ).

Now use (2.24) in conjunction with (2.23). The first summation gives

use cnjuntiongive



66

E(P(u))T (u) u f M ~Y
a ayK T

w(K)-1 1 IS juI+w(K) -1 (.5

+ aK~ 9 g[TK(Y))

u(K) r- ju 1+1 ly jSr

where f ~Ig lie inCayK gayK

Next apply W. Lotting

u KW(f ) if liSlL r- ua I
ayIK

0(n) =w(K)n (.6

2 lI'([ if n>r-IoLI
w(K)=u

we get

WE(A(u))T (u) 0 (n 0~WP(Y )(2.27)

ly 1St
n 1

Since ua cc,) it follows that

............................
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G sn )  CI for every n 1. (2.28)

Also, a close examination of the indices appearing in the preceding

derivation gives

f1<-<r-I-I and IyIIaI+n-1
0 (n) = 0 unless (2.29)

or n>r-iaI

Since IyI r, in either alternative in (2.29) n iI-II+i. We conclude

*from (2.28) and (2.29) that

* aC C n ll_ll+1 for all a. y, and all n1. (2.30)

A similar analysis is done with the second sum in the second identity

in (2.23). Using the fact, noted in (2.6), that if f a A10 then

W(f) a &0 C6;, we find that

W( d K K (A LkaI+w([)) = (n) WP(Y)a (2.31)

w(K) 1 0 ITl-r

where

. - -o.

*o- -S* - S
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*I (n) • C C" 2.2

a + IC I-1-+l for all a, y, and all n l. (2.32)

Let

(n) (n) (n)
0 =0 +1
"y (1T  9G

Adding the results of (2.27) and (2.31) we obtain from (2.20) and (2.21)

that

S (n) (n)W Y ( + 0- VWP(Y)l here0 a cC C (2.33)
a y n ITI- I1+1

n 1

The identity (2.33) is of the basic form introduced by Goodman, but the

condition on OuT  is more delicate than that arising in his treatment. Let

• denote the matrix ((W)), and let Y, W(i), Vp(Y) denote the respective

column vectors ( ((ya)), (W(Y u)).

Since On has its entries in Cn . i.e. , of successively higher degree,

the formal series S = 0 n converges asymptotically. Since nl, S vanishes

to order 2 1 at u0, so the geometric series T = Sn converges

asymptotically (and vanishes to order 2 1 at u=O). Next use the more

delicate condition on 4 ). This implies that S. is in Cll_lu1+1. and

hence that S . the ay entry of Sn, lies in Cjyl.ll+ n.

Thus

)......................... ..,. . . .
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T SC (2.34)

and, since I+T is the formal inverse of (I-S), we obtain from (2.33) that

WO(Y) - (I+T)YW, is formal cies (2.35)

Notice that (2.34) and (2.35) prove the formal series version of the lifting

theorem.

Remarks 2.7:

1) Thus far we have not really needed the spanning condition a, (Lr) =

T M, but only the stability condition Lr _r+l =... . It is only when

we pass to the C rather than the formal level that we need the stronger

condition, so that we can apply the implicit function theorem.

2) This work at the formal level should not be confused with working

with formal (see Remark 1.37), which can be a strictly smaller-dimensional
x0

Lie algebra than gx,. For example, two elements in Li formally equivalent

at 10 may nevertheless have distinct projections in gi and hence, by Cor.
a

2.4, distinct lifts. For some purposes we may wish to lift to gformal (see

for example Remark 4.3.3). However, for most purposes of analysis we must

retain information at the germ rather than formal series level. For

example, we may need to lift at all points x in a nbhd of 10 while

maintaining smoothness in x. As another example, r(xC), to be discussed in

13 (and its local analogue P.) do not appear definable at the purely formal
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series level.

The passage from the formal series level to the CD level is now exactly

the same as in Goodman: First use Borel's theorem to find a matrix, also

denoted T, of genuine C functions in a nbhd of u-0 having the original

matrix T as its formal power series expansion. Thus (2.35) is replaced by

the corresponding C equality, but with an error term in C" =" f c.
(Notice that C: is invariant under arbitrary diffeomorphisms, as needed for

the remainder of the argument.). By the spanning condition (see Cor. 1.34)

it follows that the map u -*eO(u)x is a submersion in a nbhd of u=0, so one

can apply the CW implicit function theorem to find local coordinates

tl,...,td in a nbhd of u=O such that tlI....tm are local coordinates in a

nbhd of x0 , and such that the above map takes the form of projection

(tl,...,td) - (tI , ....tm). Thus (Wf)(tl,...,td) = f(til,.. Itm). (This,

coincidentally, gives additional sense to the term *lifting".). From this

one easily sees that the error term can be written as QW, where Q is a

column of vector fields of local order - m. Taking R = TY+Q proves the

theorem.

Remark 2.8: A corresponding lifting theorem holds in the real-analytic

context. Start from the equation VX - (Y+R)W which holds in the C sense.

But now W and X are real-analytic; and Y, being a left-invariant vector

field on gx is real-analytic (in fact, polynomial, as we saw in (2.12),

since g,. is nilpotent). Thus RW is real-analytic, even though R is only

C. Using the real-analytic version of the implicit function theorem to

..-..;..,,-.,.-.....-..-.. ..[ .... * -. .... ,............,..., -.- ,.....,, ......... ,....:... :........... ,.... .. -.....-.... .-...-.....-..... !
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express W as a projection, and using Taylor series truncation, it is easy to

find R real analytic such that R W = RW, and with the correct local order

at u-O.

We next introduce the "enveloping" algebra U(L).

Def. 2.9: Let m be a non-negative integer. Then "Ur(L)" is the vector

space of all differential operators of the form

P a (x)X ...X.

where a L a a(x) a C;(M) (the complex-valued C' functions), and

Notes 2.10:

1) IU(L) is not the same as the enveloping algebra Uc(L) in the

algebraic sense; it is, rather, the image of C;(M) R U(L) under the

natural map into the differential operators on M.

2) The representation of P in the above form is not unique.

For g graded nilpotent let Umg) denote the elements in UC(g)

homogeneous of degree m. Given P a 'Um (L)* and x0 a M we would like to be
g^.

. able to intrinsically assign to P the element Px0 e Um(gx ) given by

"i

'- :~~~... . .. . . .. . . .. . . .. " ....-.. , ,.,', ...... .......
-~~~~ . * . c. -I-- %**.* . . .
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P = a (x0) U ...X , where X =r 1 (I ) a £x0 (2.36)1 0 j aa. x 0  a.i x

In general, in view of the non-uniqueness of representation, P., is not

well-defined as the example below shows. (This is quite natural, since in

general dim N ( dim ax ). However, as we shall discuss in §3, xn(Px) is

well-defined, where n is any unitary irreducible representation of G,

associated to a coadjoint orbit in rX.

Example 2.11: Let

1 2

12a a a a a'"M E+1 ,X=-, X 2 =t__ I3 =t__ --,** * 5=.

t x,1 x  at ax ax 2 ax1 ax2

Let hI be the span of l, 12. 13, and h2 the span of 14, 15. Then the

graded Lie algebra h = hI + h2 determines a filtered Lie algebra as in

Example 1.26.6. Note that 12X5 - 1314 = 0 as an element of "U3 (L)*, though

" 0 as an element of U 3(h).

If the Metivier condition of Def. 1.27 holds then since dim gx = dim M,

the map u --*exp 0(u)x from gx to M is a local diffeomorphism, and not just

a submersion; so the associated map V is just pull-back with respect to this

diffeomorphism. In particular it follows from Cor. 2.4 that

WPW• P + S, where S is a differential operator of local order <( M-1.
0

Thus P is well-defined.

Maintain the Metivier condition. We want to complete part (2) of Prop.

f ..
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1.28 by showing that this local diffeomorphism can be arranged to vary

smoothly with x.

Lemma 2.12: Suppose the filtered Lie algebra (L'I,x 0 satisfies the Metivier

condition. Then for x in a nbhd of z 0 it is possible to choose the cross-

section Px:g, --*L in such a way that the map (x,u) --*exp 0x(u)x is smooth

simultaneously in x and u.

Pf. We keep the notation from the proof of Prop. 1.28.(2). Since the

VUI() form a basis for gx, we can define a cross-section by Ax(Y (x)) = X'.

Thus the map (xu) -4 exp Ax(u)z becomes simply the map (x,u)

exp(uijlx(x))x. But the vector fields Xl are C', so we are done.

Cor. 2.13: Choose P as above, and W correspondingly. Then the *remainderM

terms R and S in Thn. 2.2 and Cor. 2.3 vary smoothly with x in a nbhd of x0

. (simultaneously with smoothness in u).

Pf: (In the case of Thm. 2.2 we are, of course, assuming Y is chosen

to vary smoothly with x). W1DlYx)Wx Y + R, and WxXWx = 1 i(i) + S.

Since everything else is smooth, so are R and S.

The type of smoothness in x occurring in Prop. 1.28 and in the above

results seems essential for applying the techniques of Rothschild-Stein

-" [37]. It is possible that in our context, by elaborating on the observation

in Remark 1.37.2 one may avoid lifting to a free nilpotent, but lift instead
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to a Metivier context. (In any case, one expects all hypoellipticity

information to involve only the P in particular, only the gx.)

In the context of a filtered Lie algebra L one can define a natural

notion of hypoellipticity (which we shall also wish to use in §3):

" Def. 2.14: Let P be as element of 'Um(L)*. Then P is L-hypoelliptic at x0

if there is an open nbhd U of x0 such that for every Q e "Um(L)" there

exists a constant CQ > 0 such that

IIQfII 2  < (lpf 2  + 11fl 2 Yf Co(U). (2.37)
L2(U) L2(U) L2(U) 0

This is, of course, just the analogue of the maximal hypoellipticity notion

of Helffer-Nourrigat ([191, (211); in fact, from one vantage point it is

simply maximal hypoellipticity in the context where there can be generators

of degree not equal to 1. We feel, however, that this notion is viewed most

. naturally in the context of the filtration L.

" Remarks 2.15:

1) In the preceding definition we assume to be on the safe side, that

the strong finite generation condition (5 local) of Remark 1.3.2 is

* satisfied at x0.

2) We are assuming also that x0 is of finite rank r. Also, if L1 does

not generate L, we assume that m is an integer multiple of the least common

multiple of 1,2,...,r. Then there seems to be no obstacle to extending thed e

..............................................................- . - **.*.* ..



75

arguments in [17], [191 (based on Thu. 17 and Lemma 18.2 of [37]1) to show

that L-hypoellipticity at x0 -- hypoellipticity in a nbhd of x0. (The

condition on m, while necessary in general, is quite harmless.)

Rothschild (E36]), using the nilpotent algebras constructed by Metivier

in [30], derives a sufficiency criterion for the hypoellipticity of

differential operators constructed from vector fields. (The necessity of

her condition, for maximal hypoellipticity, follows from Helffer-Nourrigat

[20]). Using our Prop. 1.28 and Cor. 2.13 in place of the Metivier

construction, the proof seems to carry over, essentially unmodified, to the

context where L1 need not generate. We state this as

Prop. 2.16: Let (L'I,x 0 satisfy the Metivier condition (and the conditions

in Remarks 2.15). Then

P e *Um(L)" is L-hypoelliptic at xO <--n(Px ) is left-invertible
0

for every non-trivial unitary irreducible representation

71 of Gx

-elffer and Nourrigat (201, motivated in part by Folland [27] (see also

Example 1.26.6) prove that in Goodman's original lifting context (L1

generating, and with a partial homomorphism) one can obtain an actual local

diffeomorphism rather than simply a lifting, by passing to a suitable right

homogeneous space of the group and the corresponding induced (by the

ident-ity) representation instead of the right regular representation (as in

the lifting theorem).

.1 *
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The corresponding result holds in our context, starting from our

version of the lifting theorem. The homogeneous space in question is that

associated to the intrinsically constructed graded subalgebra

hxO= h' G "" h o 
, hi being ker ax , of Def. 1.30. Aside from

technical modifications of the type needed in our proof of the lifting

theorem, the argument is essentially that of Helffer and Nourrigat. We

shall therefore limit ourselves to a statement of the result, and omit the

proof.

Let G /H denote the right cosets of H... Then right translation by

G determines a representation of G on L2 (G /H ) which, at the Lie
10O X, X0 10

algebra level, maps Y a g to its push-forward vector field (well-defined)

under the canonical projection n:G --)G /H (equivalently, to the vector
S1.-

field on Gx/Hx associated to the right action of G.. on Gxo/H x ). This
.
1
0 0

turns out to be r(0 ,hx), the unitary representation of G. induced by the I-

dimensional identity representation of H . (In terms of our earlier

notation, Y = n(0,0)(Y).)

Following Helffer-Nourrigat, we introduce a concrete realization of

n(0,h ) . Choose a supplement V1 to h ix in gx ,and let
" X0 0e

r i

V = )0 i=1 0

By Lemma 1.31 dim V = dim M. For u e VxQ let u i, 1lIr, denote its

projection in V1. Then there exists a map y:V defined by
0-

.o-. . . . . . . . .
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Ur Ur-1 U1 (u)
a a ... • e" u V (2.38)

€I

Define h(u,a):Vxox gx -h and a(uxa):Va Sx 0 o Vx. by

aT(U) a = ah(ua)e y( °(ua)) (2.39)

Since Vx is a graded subspace of gx , the natural dilations on g.

induce dilations on V. The map y clearly commutes with dilations, and

hence so do h and a. The induced representation 1 (Oh ) is realized on

L2 (V ) via

n(Oh )(e a)fu) = f(a(u.a)) , 8 a go. (2.40)
x 0 x 0

Thus

d I
n(O,ho )(a)f(u) = f(a(u,ta)) (2.41)

0 dt t=O

In particular, since a commutes with dilations,

n(O,h )(Y) is a vector field on V homogeneous of degree i (2.42)
10- i

if Y g

S.(This is consistent with the intrinsic realization of n(O,hx )(Y) as the

push-forward of Y under n.)

~~~~~~~~~. . . . . . . ..... .o .... ..-.... ....... ... .o...,. .,..%,..
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Let A x --)L be a cross-section, and define 0. from a (sufficiently

small) nbhd of 0 in VQ to a nbhd of 10 in M via

(u = eYu) 0  (2.43)

One sees easily from Cor. 1.34 that 0 is a local diffeomorphism. Let
X,

0:denote the pull-back of vector fields with respect to X'

We can now state the theorem.

Theorem 2.17: Let Y a g". Then 0()+R weeRi
___________O * P') ' T(,h)()+RheeRi a

C vector field in a nbhd of 0 in Vx of local order S i-1 at 0.

Of course, since 8 is a d if feomorphism, the vector fields
XG

A'(0 % M) + R .span at 0.

Cot. 2.18: Let X e L. Then 0:.X = 
7 (Oh )(7ro(I + S ,where S is of

00

local order Si-1 at 0.
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§3. Microlocal Nilpotent Approximation

The correct formulation in the microlocal context is suggested by the

motivating problem, that of microlocal hypoellipticity. Since microlocal

hypoellipticity should be invariant under Fourier integral conjugation, one

takes the local context and conjugates by FIO's (Fourier integral

operators). Vector fields become 1st-order IDO's (with pure imaginary

- principal symbols)j C functions become 0-order #pDOs. The microlocal

analogue of the spanning condition (alternately viewed, a microlocal

controllability condition) is at the outset more problematical. Once one

realizes that we are allowing the cotangent vector (x,g) at x to vary, and

that the approximation should depend on t as well as x, one sees that

* spanning is too strong a criterion. We shall discuss the correct condition

below.

It suffices (and is probably most natural) to carry out the

approximation process at the principal symbol level. We shall assume our

ffDO's are Oclassicalf, i.e., that their total symbols have positive-

homogeneous asymptotic expansions, in particular, positive-homogeneous

principal symbols. With some minor modification, as we shall indicate, our

work can probably be carried out in the context of the larger symbol

classes, SJ 0 of Hcrmander. (Since the principal symbol of itj. we

shall, in order to deal with real principal symbols, find it more convenient

to work with principal symbol.)

Various of the constructions (and results) are quite analogous to those

in 31, so we can give here a somewhat terser exposition. (For a specific

result of 11, the corresponding microlocal correlate will be denoted by the

.7-
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suffix *m; e.g., Prop. 1.7 m.)

Let M be a paracompact C manifold, and let Siom be the vector space

over IR of functions p:T$M/O --)I such that

p(x,'X) I Jp(x,4) for X>0 (3.1)

As is well-known

(a) Soi (3.2)ho horn C horn

(b) (Sio SJho]C 1+'+-, where • denotes multiplication, and

(,] denotes Poisson bracket.

(c) (f,gh] = g'(f,h) + (f,g]'h, for any f,g,h e CO(T M/0)

Specializing to the case where j=O or 1. we get

(a) SO is an -algebra under multiplication. (3.3)

(b) Sh is a Lie algebra over IR with respect to Poisson bracket.

1 0(c) Sho is an Shom-module under multiplication.

W(d) So acts, via Poisson bracket, as a Lie algebra of derivations of

som ;moreover, the actions are consistent, i.e., (3.2)(c) holds

for f,h s Sm and g e Son.

As in £1, let * denote germs, but now in a conic nbhd. For example,

hom(x 0,t,) denotes germs in a conic nbhd of (xO , go
) .

The following result is simply the conic version of Remark 1.1.1, with

M replaced by S*M/0, the unit-sphere bundle in T*M/0.

.." " .- , .. " *-.".- a .- .. .. . • .."•- .*...,.....".......................•-..-......-..-..-.-..-.,".. " . ... " -. , - % , -. '. . " , .,
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hor (xo, *) is a local ring with identity, with maximal ideal

-(x ) consisting of all germs equal to 0 on (the ray through) (3.4)

(x0 ,0). Moreover, the map

S0°m(x0"p0

go is bijective.

Def. 3.1: A filtered Lie algebra L at (x0,40) of homogeneous symbols is a

Lie subalgebra over R, generally infinite dimensional, of S1om, together

with a sequence of subspaces L i  i=1,2,.... such that

(1) L C L2 CL 3  ...

(2) [Li , LI] CLi+j V'ij
00

(3) L= . iL
jz)

(4) Each Li is an S~om-module under multiplication

S(5) As an hor (., -module L, 1 0) is finitely generated for each

1.

(For our purposes all points (x0 ,X%0 ), )0, i.e., the ray through (x0,40),

are essentially equivalent.)

In the local case the spanning condition, of rank r, is equivalent by

Note 1.6.2 to the condition that Lr = all germs of C* vector fields at X0.

We make the analogous definition here.

Def. 3.2: The filtered Lie algebra L is of finite-rank at (10, 40) if there

exists r such that L hom(x 0  ) The smallest such r is called

-80 hom •O A* .

o '- .:.,: .5 ". . . . .."-.--... ... ...... .... ..-. ...- .. . ...;- , . ; ,- ,;:?, -i-'?" . , -," . -? "-:-'-i , ,- : ,'
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the rank of L at (x0,t0).

Notes 3.3:

1) This is, in fact, an ellipticity condition. More precisely, L is

of rank r at (Xo,to) +--4 s (x ' s.t. f(xo,t o ) A 0, and r is the

smallest such integer.

Pf:

( ) obvious.

( 4= Since f(x 0 , to ) 1 0, 1/f 8 ahom(x ) and so for any g a

"0 r'hom(xo•.,) 1/f • a Shom(x., ). Since f a Lc10 , o) and / o san

Som(x, module it follows that g a

2) We shall see below that, just as in the local case, to construct

.. 5(Xo, 0) we do not need the full strength of the finite-rank condition, but

merely the stabilization condition x,)= Lr+ =

3) The closest analogue to the map ax and the diagram (1.7) seems to

be the following. Let a be the canonical 1-form on T*M/0 s.t. da = w, the

symplectic form. (In local coordinates a = C idxi.) By Euler's theorem it

follows immediately that a(x 0C )(Hf) fi f(x 0 , 0 ) if f is positive-

homogeneous of degree 1, and a(xo,,o)(Hg) f 0 if g is positive-homogeneous

of degree 0. In particular, since Hgf f gHf + fHg, a(xz, o)(Hf) f 0 if

faA 'o) (x,o), for any i.
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4) If f 1, the symbol of a vector field I on M, then, of course,

flxo-o) = i(x0 ,40 ) = (Xxo > <Qxl) 40> .

Let (L) be a filtered Lie algebra of vector fields. Since X '-41 is a

Lie algebra isomorphism we obtain a filtered Lie algebra of symbols (i) by

letting LV be all So linear combinations of symbols in Li. The abovehor

shows that (L) is of rank r at x0 <-- VC a T: 0/0, (Lx is of

rank S r. (This rank can vary with 4.)

5) Recall that S6 is defined to be the set of all CO* functions p on

T U/0 (real-valued for our purposes) such that for each compact set K C M

Ia~ap,(x. )I _S c1(1.,-IlJ-I. In this context two functions and, hence,

germs, are identified if they agree for JIJ sufficiently large. The

statements (3.2) and (3.3) hold with Si, 0 replacing Siom, j = 0,1. An

element f 6 $1 is *elliptic* in a conic nbhd of (xO,4o) provided lim inf

If (xo, 140) 1 > 0. Thus, Def. 3.1 could naturally be extended to this

context provided one can find an appropriate localization for So 0 as a

substitute for (3.4). At the moment it is not clear how best to do this.

6) It follows from 1) that if (U0, 40) is of finite rank, r, then

(x,C) is of finite rank _ r for all (x,C) in a conic nbhd of (x0 ,40 ).

Prop. 3.4: Let (Li), (x0,t0) be a filtered Lie algebra of finite rank. r.

Then there is a canonically associated pair i(x0, o)' , where g(x0 ,C) =

I x 0 ... 9 grx0,) is a graded nilpotent Lie algebra over R, and
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q 8 S(xO o)/O. (In fact, q a 4U, ). )

Pf: Define i by

(X P LC + o ) , (3.5)

+ L

Then exactly the same proof as for Prop, 1.7 shows that the corresponding

statements 11)-(4) hold.

Next define q as follows:

For I a where X (3.6)
glo )  <I,i > = Xlxo, o), weels L(X, )13)

0' 0'

is any element such that n.(X) = X.o 1

Since r is the smallest integer i s.t. Lx ,4 contains an elliptic

element, it follows immediately that q is well-defined and satisfies the

asserted properties.

Notes 3.5:

1) The proof of Note 3.3.1 shows that Lr . can be generated as an

so e module by a single generator, namely any elliptic element. It follows

that , is a 1-dimensional vector space.

2) The analogues of Lema 1.13 and Remark 1.14 hold, with the same

. ... ,- . .
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proofs as in the local case.

The notions of weak homorphism, partial homomorphism, and cross-section

carry over to the microlocal context, as do Prop. 1.18, 1.19, and Cot. 1.20.

In particular, g(Xo,,o) enjoys the *universal* property analogous to that of

sx" * This shows that t(x0 , 0 ) is in some sense the minimal nilpotent

approximation to L at (x0,40). We shall later in this section give a more

precise sense to this notion of approximation.

The definition of weak morphism carries over, as does the functoriality

result, Prop. 1.24. (To obtain functoriality also at the level of the

canonically determined 71 e g(x,) appears to require additional structure,

which is present in the following basic example.)

Example 3.6:

1) Let *:TM/O -- TN/0 be a homogeneous canonical transformation

mapping (x 0 , 40 ) to (x;, ) . (It suffices that. 0 be defined in a conic

nbhd of (Xo,to).) Given [Li), (x O , to ) define K' = (f 0-jf a Li). Then

" determines a weak morphism from (L') to M1, (xo vi( t( ) via

f -- fo -1 and hence an associated morphism 0 of graded nilpotents. As in

Cor. 1.25, rank is preserved and 0 is an isomorphism. Also, the associated

dual map 0 takes T1 s(x,{) to the corresponding i1 s 1 (x o Of

"" course, at the operator level, this example corresponds to invariance of

S ( under FIO conjugation.

2) Special case of the preceding: M=N and 0 leaves Li invariant, i.e.,

4e

*b . .... * . ...- * . - .. *. * - . . . . . . . . . . . . * . .*
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=u ~ afo L,,C) for every Ux,4) in a conic nbhd of Ux0 ,40).

3) The *identity* map st:**** -L(xtC) (0)O, fixed) induces the

isomorphism st:g(x,4) +gx). An immediate computation shows s~t(1t)

tij, where Itis the corresponding dual element.

We next determine g(x ,4) for a few examples.

Example 3.7: Let g S, gr be a graded nilpotent Lie algebra,

and G the corresponding (simply-connected) Lie group. Let Ij e g' /0, and

view 'I as an element (e,ii) of T0G/O. For Yeg the associated left-invariant

vector field Y determines a symbol, also denoted Y, in S'O via Ux,4) e

T GbI-~~x,). he ijecion~ -S~o, given by Y $4Y is a Lie algebra

0homomorphism. Let L' consist of all 5 hom linear combinations of symbols

such that Y s g, + . + gi Clearly (0i) is a filtered Lie algebra.

Let k be the smallest integer such that 09tk #4 0. Since g is graded, Vk 0G

gk+l C+ .. r is an ideal for any subspace Vk Of gk' in particular for

Vk ker(tlgk). Thus, g, 00 ... + V.is a graded Lie

algebra.

Claim: (L)is of rank k at (e,iq), and '(e,,,) is canonically isomorphic to

91 8k-1 + the associated element of g(,~ is the

element of ( ) determined by 11.
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The statement regarding rank is obvious. Next, since the homomorphism

g --S'om is, in particular, a weak homomorphism g --)L, it induces, by Prop.

1.19m, a graded homomorphism from g onto g(e,)" It remains only to

determine the kernel of this map gi -g e.) for each i=1....r. This is

kclearly all of gi for iOk. We know g(e,,) is one dimensional. Hence, using

the map a(x.,) of Note 3.3.3 and the associated diagram (1.7m), we see

that for i=k the kernel is ker(11gk). (This also proves the last statement

of the claim.) The following lemma completes the argument by showing that

for i<k the kernel is 0.

Lemma 3.8. Let Y1, .... Yj g "'. gk-1 be linearly independent.

Then for any aI ...,a. j So such that a (x )Yi (x) - 0 in a conichom

nbhd of (e,ii), ai(e. n ) = 0 Yi.4,....j.

Pf:

Fix i, and choose e a (gl + "'" + gk-i) such that <(,Yi> 1 1 and

P,Yl> = 0 for 2 i. For 0>0 sufficiently small (e, eqs)+-) lies in the given

conic nbhd. Since q annihilates S" + Y1  (e, eq+-) =

<C'3'-"' > , = 6<10,Y1 > e6i . Thus, ai(e, eqi+n) = 0. Let e --0.

Our computation shows, in particular, that even when L comes from g the

associated approximation e depends on -q itself and not just on its

coadjoint orbit in g . This is as it should be. For example, the

characteristic varietyff is in general not invariant under the coadjoint

action.

fS ..
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Example 3.9: Let (L'),x0 be a filtered Lie algebra of vector fields; and

for any (x0,40) a T: M/0 let Li,(x0 ,40 ) be the associated filtered Lie
a

algebra of symbols, as in Note 3.3.4. Then there is a canonical surjective

homomorphism of graded Lie algebras gx -'g(x --- )0. (As observed in

Note 3.3.4 rank (x 0 ,4 0 ) S rank x0 ). In fact, let P be a cross section of

(Li},x 0 . Then 0 is a weak homomorphism and so, since X -) is a Lie algebra

isomorphism, determines a weak homorphism gxo--),(x 0 ,tO). By Prop. 1.19m

this determines a surjective homomorphism of graded Lie algebras

gx 0 ---)g(x., 0 ) --0. Finally, Prop. 1.18 (3) shows that this homomorphis. is

independent of the choice of . Heuristically, if we focus attention at

(x0 ,40 ) only a part of the information (i.e., representation theory) in g,., gX0

is needed, namely representations lifted from g(x.,to); of these, only the

(ones in Fux0, ) are needed.

Example 3.10: Suppose (L1i, (x0 ,tO) is of rank 1. Then we know g

R. In fact, (Li, (z is the filtered Lie algebra of symbols associated0 ( 0)

to the rank one filtered Lie algebra of vector fields of Example 1.26.1,

with gx V Tx M. So, by Example 3.9, g(x.,4) is naturally identified with

a xx. ) is thus naturally identified with the line through

(x0 ,40 ) in T*M. Under this identification I corresponds to (x0,t0).

Example 3.11: The next example defines filtered Lie algebras related to the

operator classes Lmk of Boutet de Monvel [2]. as mentioned in the

Introduction. Let I be a smooth conic submanifold of T*M/0. Let L1 =

[uesomlU=0 on D1 and let L2 = L3 =... = Shom. Then (Li) is of rank 1 at
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* any point (x,4) a , and of rank 2 at any (x0 , 0) e [. In fact, since [ is

1- smooth, we can find local defining functions u ..... uk e om (where k

- codim 1) that that dul,...,duk are linearly independent at (xo,40), (and

hence at all nearby points). The u, .... uk are generators for ,) for

* all (x, ) a I near (xo,40). Let N(j)(x',) denote the conormal space to ,

and define a graded Lie algebra structure on N(X)(x,4) ® IR via [(dfl,rl),

(df2 ,r2 )] = (0, w(dfl,df2)(x,)) (0, [flf21(,4). Note that these Lie

algebras are not isomorphic unless the rank of w[l is constant in a nbhd of

-*. (x0,40 ) in [.

Claim: For (x,4) e near (x0 ,40 ), N(j)(x,4)  R g ,,I). This follows

. from the next lemma and the definition of Lie bracket in g(x,4'.

Lemma 3.12: Suppose dul,...,duk are linearly independent at the point (x,C)

... a 1. For any a, ..... ak a S0or such that 2 ai(x ,4)ui(x , ) - 0 in a conic

*~m nbhd of (x.) al(x,4) = "'. ak(x')= 0.

Pf:

d(a.u.) (x,4) ai(x.g)duil(x,) + u'(xC)da i(x,'V But u.(x.) - 0.

Remark: Any homogeneous canonical transformation mapping [ into [ induces

an isomorphism between g(x,4) and g(,, ). (See Example 3.6.2).

We next show how to construct in our context the analogue of the set
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r of Helffer-Nourrigat ([191, [21], [32], [33]). Because of the

minimality of g(x ) the construction is particularly natural in our

, general context. When L is generated by L', so that the Helffer-Nourrigat

construction is defined, the relation to the construction below can be

stated precisely. (see Cor. 3.19).

As in our proof of the. lifting theorem, the main tools will be Lemna

1.35 and Cor. 1.36m.

Let Lil, (xvw) be a filtered Lie algebra, of rank r, with

the associated graded nilpotent and dual vector. Let (6t0 denote the

standard dilations on g(x defined as multiplication by ti on gi

Def. 3.13:

1) A sequence is a sequence (tn• (xn,tn)) with t. e IR+, (xn,gn) F

T*M/0, such that xn -x 0o Itnl --4-, and -" -4 L

2) Let P be a cross-section. The sequence (tnp (xntn)) is -

" admissible if there exists s g ,) such that lim A(8t Y)(xn,,n) exists

and equals <I,Y) VY e g(x , )"

Notes 3.14:

1) Of course, if the limit exists W it is linear in Y, and so

determines e , )"

2) In view of 3) below, the definition depends only on the "germ of "

at (x0 ,40 ), i.e., the image in L .

3) Since L C Slo 3 and is R-linear

: ', ''.. ...'''''.. ... .' ..: .' '''... ''. .. .' ''''.i .. .. " , ." - -. -" ... .-.: . ." i .-.h- o'." i -'. - "



RD-AI58 265 INTRINSIC NILPOTENT APPROXIMATION(U) MASSACHUSETTS INST 2/2
OF TECH CAMBRIDGE LAB FOR INFORMATION AND DECISION
SYSTEMS C ROCKLAND JUN 85 ARO-20980.29-MA

UNCLASSIFIED DAAG29-84-K-695 F/O 12/1 N



11111 1 *~ 2-5
mflhI~~2 -

ummuu02i2

NATIONA BUEA OF STANDARD
M0000V NUOUMOTIECW 113 WTi

w



L 91

Dut

Since

P(Y) -) = 0 if i~r (and A 0 if i-r and YAO)

it follows that for any A-admissible sequence:

for i~r, ) I~(~ = 0 unless tnl '4. (3.8)

t rI14. converges: in particular t'14.1 is bounded. (3.9)

(move particularly, t a40.)

Prop. 3.15: Let A,, 2  both be cross-sections. Then the sequence

(tnj(n~) is 01-admissible 4-it is 02-adaissible. Moreover, the limit

e S ~ determined by this sequence is independent of the choice of ~
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Pf:

Lot (tn, (zn,4n)) be p1-admissible, with associated limit S

ii
Lot Y g € gx bc). We must show lim P2(6t rl(Znt n ) - <fly>'

Since A2 (Y) a Li, and since , )(p2 (Y)) - Y, by definition of

cross-section, it follows from Cor. 1.36m that, at the germ level,

p2 (Y) =0p1 (Y) + f f )l(Y + Sapl(Y)

IaI<i Io1=i

where the fa are in Shor and the ga are in m(x

Applying (3.7) we see it suffices to prove that

i.in
n Itlira ti k~ni( fa(xn, - )pz(Y )(xn. -n)

- IaI<i Ini InI

+ g a( U, _n ) y )(XY ) - )1 exists, and =0.

jaI=i I ~l

But fu(1na -- ) converges as n -- , to fG(x0, )z hence

ti-GIlfG(n, . - 0, since I<i. Al, . ) -> 0. But
n an 11"1

since is the A1-limit of the sequence, it follows from (3.7) that

t 0I)nIPi(Yc)(x converges, to < , Y >. Writing tn tni

ntn Q(tnau ) concludes the proof.

We can thus speak of admissible sequences, without reference to a

-- . 4.

oo. .. . . . . . *
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particular cross-section.

Def. 3.15: Let.1x.t) denote the set of admissible sequences at (z0 5to).

The asyMtotic moment-map is the map t(x " 4 : It (Z. .. ) ->* . eie

*by (tno (znetn)) §-+I. Lot r( vte) denote the image of x

* Prop. 3.16:

1) There are two natural R+ actions on 1(,4*namely (tna(xn-tn)) I4

* ~(ste n'jlx and Itni nen) I tn( xnos)). The first passes under

t~ 0.4 )to the dilation #4 :8 The second passes to scalar

multiplication 4 npriulr ' is invariant under both

* operations.

2)F~ is closed in

Pf:

1) is immediate.

2) follows, exactly as in Helffer-Nourrigat [21], by taking a

subsequence of a double sequence.

3) Choose tn -*)0. and take ('n' 4n) (= o ( Tr to). The result then

follows since (xz040) is of rank r.

The weak homomorphism P:(x ) -L can be exponentiated to give a

'weak action' of G(x , the corresponding simply-connected Lie group,

on ~B~'which goes over, via (x )'to the genuine coadjoint action
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of G(x.,C.) on $(x ,04). This is one justification for the term asymptotic

moment mapO.

Prop. 3.17: Let {tno(Xntn)) be admissible, with associated 1s 6 *(x#o ) .

Let z = exp Z. Then (t., exp RP(6t Z)(Xn,4n)) is also admissible, and is

mapped to Ad z(d) under l , In particular, rlx ,  ) is invariant

under the coadjoint action of Gxopt').

Pf:

The proof is analogous to the corresponding argument of Nourrigat (33]

. but with additional work needed since P is only a weak rather than partial

- homomorphism. We shall only give a sketch.

Here exp p(b Z)(xnn) denotes the endpoint at time-l of the flow of

the indicated Hamiltonian vector field starting at (xntn) at time=0.

Since t n --)0 and ( n, -) (x 0 , this is well-defined for n

sufficiently large if we replace Cn by-t" Bt p1&t Z) n Siom, s

(n" ) ep ( Bt Z) 1n( n) n l Iezp HA( 6 t Z) (up ) "  (3.10)

n

Since

r

P(6 Z) = S tnp(Zi), where Z = Z + ... + Zr 3.11)
t = n 1n

is the graded decomposition of Z

~~~~~~. . m. .. . ...................... "....".. " - " " ". . ". .. ". . - -.. . ". ' .. '" ' -- , """.,,.,... ... : .. :.-*. *.,,'.,' " .,.. .. .. -. ', .-..'.., .' . . . ..,.,... ..-. ,. -. .. .... ,. .. ... . ..'.., . '. .,.'..-..., ., ... * .* ' . .*,* .'
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IP

-po 4* it follows in particular from (3.10) that 14n and (x .

Le i s . It follows from (3.10), (3.11), and Taylor's

* theorem that

n= ji -t a(~ n

(3.12)

for some constant C.

Since trjtnI is bounded, tr+l 1 I 0 It follows from (3.12) that to
n ~~a 1n

prove the proposition we need only show that the finite sum occurring in

(3.12) converges to (Ad*,(2), yi>.

Using (3.11) together with the weak homomorphism property, Prop.

1.18.1m, and the fact the H f(g) - (f,g), we find that the finite sum in

*(3.12) is equal to ftl (ad b j6ni)xnk + terms of the form

(tk mx Lk + k+l~k)
n x, 00 )L n tL( nln) Exactly as in Prop. 3.15 we see that these

*error terms 4-)0. Since g(, at is of rank r, the main term is just

pb6 tr(Ad z(Y1 ))(xn*~n)I which converges to <J2, Ad z(Yi)>.

Lot g be a graded Lie algebra, of rank s, with y:g 4L a weak

homomorphism at Ux0 ,4 0 ). Let y = it a y':& --)be the corresponding

*homomorphism of graded Lie algebras (see Prop. 1.19m). Then, just as in

Def. 3.13, we can define the notion of y-admissible sequence, and a

*corresponding set r Cg Of course, this set depends on y, in

* general. (We should also assume that *tkltnI is bounded for some k so that

- the proof of Prop. 3.17 is valid in this context.)
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Prop. 3.18:

(a) FTz,4 Z(T * (r(x °  where ^:g(XJRo) -)*S is the dual of y.

(b) If y is surjective then

Note that if y is surjective, T is injective. Statement (b) implies that

the unitary representations associated to rlx o , 4o ) by Kirillov theory are

precisely the lifts of the representations associated to r(.1.4. ) .

Pf:

(a) Lot p be a cross-section for g(x,,C.)" By Prop. 1.18.3m for Xi a

(- (YxC) + il(o )LU. , Hence, since y is

graded, the same argument as in Prop. 3.15 shows that if (tn , (Xun)) is P-

admissible, with associated 2. then y(btZ)lznu) --z Y(X)>.

(b) If y is surjective then it follows from Lemma 1.35m that y(g 1

s( gnraesa an S(x"'t) module. The same identity as

in (a) can then be used to prove the reverse inclusion.

The set (' of Helffer and Nourrisat, defined in the setting

equivalent to L being generated by L1 , is the subset rx, of g*, where g

is a free nilpotent with a partial homomorphism X:g --L. Then Cor. 1.20m

and Prop. 3.18b show:

Cor. 3.19: The Helffer-Nourrigat set (x,{) is the image of our set

(xe) under the injection X

Remarks 3.20:

* ' . * - -- - - .-.
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1) It follows in particular from the above corollary that the

computations ([211) of Helffer-Nourrigat of (x " in a variety of
A

examples furnish the corresponding information for our l(x,), once I is

, computed.

2) A trivial but interesting observation: in Example 3.10, under the

given identification of (x,) with the line through (xo,t0), ]!x is

* the half-line through (x0 , 0 ).

3) Let G be a nilpotent Lie group with graded Lie algebra g = g, G

• 0 Sr' Suppose there is a genuine conic Hamiltonian action of G on

T M/0, with j:g -4 Shom the corresponding Lie algebra homomorphism. Lot

U :TeM/0- e be the genuine moment-map, defined by (f(x,C),X> =yllxV)

Then 1(&t )(xn,4n) = <86t(xn,n),X>J hence admissiblity, modulo (3.9),

corresponds to the condition that liIxnn) exists, with the

masymptotic moment map* giving the limit.

4) In the case of Example 3.7 an easy argument which we omit (and

• requiring only admissible sequences with xn=e) shows that r(,, ) is as large

* .."as possible; i.e., 1!(ei) (s g (e,) I rg e) = ), for some X 0).

We can define Um(L) in analogy with Definition 2.9 (but using the *DO

.* principal symbol in preference to the geometric principal symbol).

Def. 3.21: OUm(L), for m a non-negative integer, is the vector space of

all VDO's of the form P = A Aa(xD)Xa .... *X, where X. is a first-order
I U 4

,dO defined in a conic nbhd of (x 0 ,4 0 ) with real principal symbol (in the

09O sense) I * Ls ', and where Aa (x,D) is a 0-order VDO (with principal

- symbol not necessarily real). Notice that choosing different Xa's with the

....................................

o . . . . . . S S -* . . S ~ 5
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- same principal symbol, i.e., replacing 1. by IQ + Ra . where R. is 0-order.

is tantamount to replacing P by P+Q. where Q a *Um-e(L)O .

As in the local case. we would like to be able to intrinsically assign

to P a mU(L)w the element Pax a Um(gl ) given by

A 1 -

= (x A(xo, )I ...I where XCL. =-- ( ) (3.13)
0 aI=m j T-1

(Here A. is the principal symbol of A. note also the extra factor of -

in contrast with (2.36).)

A

Just as in the local case, P(x • is not necessarily well-defined.

However it follows, in particular, from Nourrigat's approximation theorem

A

(to be discussed below) that i(P) is well-defined where n is any(x0  swl-eieweeni n

unitary irreducible representation of G(x " ) associated to a coadjoint

orbit in P("x  (This is definitely the case when L generates: the same

*'2" appears to work in general. St Note, 3.aq )

We can give a definition of L-hypoellipticity at (x0 ,40 ), the

microlocal variant of Def. 2.14 as follows. (We retain the caveats of

Remarks 2.15). We simply replace the estimate (2.37) by

I 2 _ CQ(t1PfI 2 + 2lfjj2  ) ( Co0U) (3.14)
L(U) L M L M

Here B is a O-order TDO elliptic at (x0 ,40 ), independent of Q.

An alternate version is given by
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1 a and Pp a H0 =4 QP CH (3.15)

(X0 04 (X0 040

Here N is the standard microlocalized Sobolev space. In [21] Helffer

and Nourrigat discuss various versions of maximal hypoellipticity

(equivalent to L-hypoellipticity in the context of L1 generating). Using a

microlocal result of Bolley-Camus-Nourrigat ([1]) as a substitute for the

local results of ([37), they show that if (x0 0 ) is of finite rank then

(3.14) and (3.15) are equivalent (to each other and) to a priori stronger

hypoellipticity conditions. In particular, (3.14) implies hypoellipticity.

It is likely, though I cannot say for a fact, that the corresponding

statement holds when L' does not generate. (I have not tried to extend the

B-C-N result to this setting.)

Te conjecture the following L-hypoellipticity variant of the Helffer-

Nourrigat maximal hypoellipticity conjecture. In view of Cor. 3.19, they

are equivalent when LI generates.

L-hypoe llipt ic ity conjecture: (3.16)

For (Li), (x0ZO 0 ) of finite rank, P e OU(L) is L-hypoelliptic at (x0,O) *-

n(P) is left-invertible for every unitary irreducible representation i of

G(x,,,) associated to an orbit in r(I,C) (other than (0)).

The local analogue is stated with r(x , ) replaced by
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A
IF r E( 1o where 1 is the image in g of

0 e T ,M/ 0
x0
0 o, ) under the injection

C C

(o, -4 (See Example 3.9)

Note 3.22. For simplicity, since we will not be pursuing the analytic

questions here, we do not elaborate on some important, but more technical

aspects: (1) the precise nature of the left-invertibility; (2) an

. additional conjectured equivalent condition relating estimates at the level

*of M with families of ettimates, with uniform constant, at the level-of the

* representation spaces; this is analogous to the method of "compactification

* of estimatesM used by Helffer-Nourrigat in their proof of the reprioentation

theoretic hypoellipticity criterion for nilpotent Lie groups.

As we stated in the Introduction, Helffer and Nourrigat have proved the

sufficiency of their conjectured maximal hypoellipticity criterion in a

number of cases, and recently Nourrigat (Q321, [331) has proved the

- necessity in general. His main tool is an approximation theorem, (based on

* a generalization of methods of Hormander [241, [25]) which serves as a type

of microlocal substitute for the lifting theorem. We present a version

, below. In our terminology the context is that of L generated by L', with

x400) a point of finite rank; g denotes a free nilpotent, with associated

group G; X is a partial homomorphism into Ll d=dim M.

Theorem 3.23: (Nourrigat) Let [tn,(xn,{n)) be a %-admissible sequence with

associated 8 l'(1  , ) ( g, with corresponding unitary irreducible

.. *
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*, representation n . Then there exist

1) An induced representation n of G, acting on L2(Rk) for some 0 _ k _

. d, and having n in its spectrum.

2) A sequence)n:Vu --)Wn of symplectic transformations, where the Vn

form an exhaustive system of nbhds of (0,0) in R2d, where Wn is a nbhd of

(n, n), and where Xn(0,0) = (xntn) such that, for some subsequence,

St 0 -X . _w(X) in C*(R2d) ,uniformly on compact subsets, for all| n

Iag.

Notes 3.24:

1) Nourrigat passes from this to a corresponding operator version on

L2(Rd), which is his basic tool.

2) I believe, but have not absolutely convinced myself, that the

nbhds Wn become *small', so that they converge to the ray through ( 0,40 ).

3) Although I have not fully carried out the details, it is clear

that by an argument closely akin to Nourrigat's necessity proof, using the

* operator version of the theorem and ([211, Prop. 2.2.1 of Chap. II), one can
A

prove that n R(P (xQ ) is well-defined, as claimed earlier. We probably need

- to use 2) above to handle the AQ(xD) terms. (We also use Cor. 1.36m.)

Granting that 2) holds, it appears that the corresponding theorem is

* valid in general, (i.e., without the restriction that LI generates L, and

- with g replaced by gx , and OX-admissible" by "admissible*). This

*basically involves verifying that Nourrigat's proof can be modified so as to

work with a weak homomorphism replacing the partial homomorphism. This

seems to follow from the same sort of argument as in Props. 3.15 and 3.17.

-~~~~~~~~~~~~~~~~~~~~~..-. ...-.-....o ,.... ..................... ..-......... .............-.... .....-.--...........-. . ..- .. .,...-.-.-.-.
L - k...-'- -- ,'..',, .- -. & ,-. k; " " .- - -. ... " .' ." ,' . . . . . _. ;.,. . _
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I

As stated in the Introduction, .we shall not carry out the details here.

The setting of filtered Lie algebra [Li),(x 0 ,40 ) suggests a notion of

L-wave-front set Cr(x )/O• We conclude this section with a provisional

version of this idea.
p

Def. 3.25: Let (Li),(x0 ,4O) be of finite rank, and let u so (M). Then

.WF ,4)(u) = where the intersection is over all P a OU(L)"

such that Pu e C= , and where y(P) ( (x, )/0I, is

not left-invert ible).

Remarks 3.26.

1) If we take (Li} the standard rank I algebra, i.e., L' = Slho, then

wL corresponds to the standard WF-set. That is,

* if (xO*to) WF(u)

L
WF (u)

-o $the ray through (x0 , 0) if (x0 040 ) e WF(u)

(see Example 3.10 and Remark 3.20.2).

2) If we take (Li) as in Example 3.11, with additional hypotheses

(e.g., on the rank of w), then WL seems closely related to the quasi-

homogeneous WF-set introduced by Lascar [28], and also used by Grigis (9],

(10]. (11,] for the study of propagation of singularities. For a related

construction within the group context itself see Miller ([31]). It would be

very interesting if one could find examples (other than those already

. . . ... . . .
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treated in (91, (101, [i11) of propagation of WL along

Wmicrobicharacteristicsm.

3) One expects, in view of 1) (especially the corresponding local

* version, Example 1.26.1) and the references cited in 2), that there should

be a close relationship between V1 1 , )(u) and the rate of decay, along
C

,t-homogeneous cones in U of the abelian Fourier transform (from
C

""g(x' 1  ) to S(U00)) of appropriate TMliftings" of u to g(xo, t). However,

at the moment, I am unable to make this any more precise, in general.

4) Since P(x, is homogeneous wrt St . WFx, ) is closed under

" dilations. Also, wL~x
d t s l) is clearly invariant under the coadjoint action

of G(x Ad. Moreover, it is easy to see that WFLX. is empty if (Z0,40)

WF(u). That is, under the natural projection of.r(x, ) onto T*M/O,

WL(u) projects into WF(u).

5) A much harder question, which I cannot answer at present, and

which accounts for the provisional nature of the definition, is whether

WFL(u) projects onto WF(u). To appreciate the difficulty, observe that if

the definition did not involve P varying with 2 a1(xe )/0, but only a

- fixed P. then the surjectivity of projection would be equivalent to the

sufficiency part of the L-hypoellipticity conjecture. Even granting the L-

hypoellipticity conjecture, additional work will be needed: in particular

one will need to show that VxFL ) is closed in g )/0 (and hence its

*. complement open), in order that, just as in the proof that the standard WF

set projects onto the singular support, one can reduce to the consideration

of a single operator P not varying with [ These questions certainly

involve the delicate considerations mentioned in Note 3.22.

.4

n...

-. o
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14. Filtrations with LO-Tern

The construction of the graded nilpotent g, in 1I was carried out in

the context of a filtered Lie algebra L') beginning with an Ll-term. Under

certain natural conditions it is possible to extend the construction to the

case where there is an LO-term. One now obtains a semidirect sum so ,

where gO is an "arbitrary' Lie algebra acting as graded derivations on the

graded nilpotent gx

There are a number of possible variants of the construction, it not

being clear as yet which is the most useful. Because of this provisional

nature of the construction we shall not attempt a systematic treatment, but

instead shall only make a brief series of remarks.

Let Li), i=1,2,... be a filtered Lie algebra of vector fields at xO ,

as in Def. 1.2. In addition, let L0 be a possibly infinite-dimensional

subspace (over I) of vector fields on N such that

0 0 00
;L-L]. LL , i.e., L is a Lie algebra over R. (4.1)

0 i i
"L LI C L' for i_ (4.2)

In addition, we assume either (4.3) or (4.4) below.

(a) [0 is an F-module, and at the germ level is finitely

generated, i.e., as an F -module L4 is finitely-

generated. (4.3)

(b) L0 . LI .

.

'p ' %, ..- . j , , . . 6 , . , . , , , - % • ", , , , . % % % " . ," ,% % . . "~,..-, .. " .,... . - ......... , -. ,- . - ..-. ,. - , - ,.-.,. . . :-,-..- -. * .. ,- - .- -. , .- ,. -
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LO. as a vector space over R, is finite-dimensional. (4.4)

7 Of course, (4.1)-(4.3) simply extends Def. 1.2 to include an L0-term.

-. The basic condition that we need (suggested by the corresponding

* hypothesis in Crouch [41) is

a L) (0). i.e., the vector fields in L all vanish at x0  (4.S)

We use this in the form

0 0! 0(z0

L 0(C,(M))C a in particular, L (0 ( .C a.

We assume that Li), i _ is of finite rank, r, at i,. We treat

* .separately the two cases (4.4) and (4.3):

If (4.4) holds we take as our graded nilpotent the Lie algebra 1

gr g1 constructed in 11, and take x. = L 0" " X 0 X 0 "

If (4.3) holds we take as our graded nilpotent defined below, and

0 as so we take-. . "0

^ft X Lxo.

Def. 4.1. Assuming (4.3) holds, we define i - . , ii...,r. Of
L XG 1

€ourse, ° = ^ except for i-i. The difference for i-1 is due to the fact

that since LO was taken as 0 in 1 4 The proof of Prop. 1.7

*I t o
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goes through unchanged to show that Sz inherits the structure of a graded

nilpotent Lie algebra. It follows from (4.2) that gx0is (canonically) the

quotient of gx by an ideal (lying in 4) contained in the center of g

Lemma 4.2:

(1) g is a finite-dimensional vector space, and, under the canonical

* aR-linear projection w0:L0 -*go . inherits the structure of Lie algebra over

IR.

(2) Via the canonical R-linear projection ,ri:Li -*g' (resp., j'). 0

A

acts as a Lie algebra of graded derivations on S. (resp. , gx ), under

hypothesis (4.4) (resp., (4.3)), (where, by graded, we mean preserving

gradation).

In particular, we have a naturally defined semi-direct sum Xx g x (rasp.,

Pf:

(1) Finite dimensionality is clear. We only need to show, in case

(4.3) that the induced Lie bracket is well-defined, just as in Prop. 1.7.

It suffices to show [i .0  LO Ax. *L Buht this follows from (4.1)

and (4.5').

(2) Just as in the proof of Prop. 1.7, it suffices to show, for j21

that [L0  j1 + a~ j I C Lj-1 + a LJ and, In case of (4.3), that

laz LO LJi C 0- + a LJ We must be careful here: if j-1 then

is taken as 0 in case of (4.4), and as LOin case of (4.3). In either case
XG
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the first inclusion holds, as follows from (4.2) and (4.5'). In case of

(4.3) the second inclusion holds, by (4.2) and (4.3b), (when j22). The case

of j-1 also follows since is L4 rather than 0. This explains why we
0 0

must work with S. rather than in case of (4.3).

Remarks 4.3:

(1) Let hxG be the subalgebra of ga given by Def. 1.30. It follows

i easily from (4.5') that go maps h into itself.

0 0

(2) The corresponding microlocal construction, of $gx 3) g(x0, 0)

or ,. S(oz ))0 carries through if we replace condition (4.5) by

the condition

Hf Iz, ) = 0 for every f s L (4.6)

*] This insures the condition corresponding to (4.5'1).

(3) In practice the condition (4.2) may make it difficult for the Li

to be finitely generated as C modules. However, if the vector fields are

*. real-analytic, or if we pass to their formal power series at x0 then we have

finite generation over 00, respectively, by Remark 1.1.4.

(4) In view of 3) lifting is still possible: we can lift to

Sanalytic, or lift to formal at the formal power series level and then pass

to the C level, as in the discussion following Remark 2.7.2. See also

Remark 2.7.2 and Remark 2.8. In this we assume that (4.4) holds, so that

our graded nilpotent is the same as in 11 and 12, and so that the results

there apply directly. Presumably, in the context of (4.3) analogous results

e .. ... .. ... .. ... .. ... .. ... ....... .. , ,. . . .............................. .. . ... ,
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can be derived for gx . However, we have not attempted to cary these out.J 0
(In particular, we would need to work with a variant of Lemma 1.35 involving

" the L0 term).

Example 4.4: (suggested by Crouch (41). Let 1 ' X 1  k be vector-

fields, with ax.(X O ) - 0. Let L0 be the 1-dim vector space spanned by 10 -

Let LI be the F-module generated by the vector-fields of the form adjX0 (i),

i_2o. lhik;

L2  L1 + [L1 L1] ... Ls~1 = Ls + [L11LS]. (Compare Example 1.4)

" We assume (Lr) - Tx M. Then, modulo the finite-generation question of
X0

Remark 4.3.3, we obtain, since go Lo rI, that go

which is clearly solvable, since X. is nilpotent. (A further example is

provided by Example 1.26.5, where we now retain the L0 term).

In view of the preceding we can apply the homogeneous space lifting

theorem, Thu. 2.17, and its corollary, though we may need to pass via

9 formal rather than g. . (However, see (1.11)). According to these results

the vector fields in Li, i l, have a convenient realization on the graded

vector space Vx via the local diffeomorphism Ox,. It turns out that the

vector fields in L0 also behave well under this diffeomorphism. Starting

from the given realization of the Li, i 1, and using the facts that

[Lo,Li] C Li and ex (L
0 )  (0) one can show, by a short argument which we

omit, that

.:.'......-:..........: ..-:.'.. .. ,.. ....,.. ..-....... .. ..:....... .;. *,,: ... ... ...... c .... .% .; . .. -, ,'..% . . . , . .. ,* . - : . ', . , '
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0 X is of local order _ 0 for every I e L. (4.7)
x0

*.: For r s gx. let a(Y) = (O )(Y) if i- l

the principal part (i.e., homogenous of degree 0)

of 0Y if i=0.

It follows from Cor. 2.18 that a is a Lie algebra homomorphism from go gx

onto the Lie algebra of principal parts of the vector fields 0* X, I Li

* i 0 .

The result is quite similar in character-to the solvable approximations

-4 to control systems derived by Crouch ((4]). Of course there are notable

- differences: He deals with input-output systems, and, moreover, derives an

approximation for the truncated Volterra series of each order (Q the minimal

- order needed for controllability). Nevertheless, it is reasonable to expect

that with further work the methods of this report may be brought to bear on

the types of question he considers.

'.°

.. .. S

.1 * ..
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5. Conclusion

The approximation process introduced here raises many questions. and

suggests a variety of directions for further investigation. We feel there

* are two main, related, lines of inquiry:

(1) To construct an appropriate Fourier analysis associated to the

aphaso-space decomposition' determined by the filtered Lie algebra (Li) on

- TM/O.

(2) To systematically investigate the properties of the asymptotic

moment map and its connections with quantization, as has been done by a

" number of workers in the context of the genuine moment mapping, where there

* is an exact rather than approximate symmetry group. In this regard we

" mention again the striking similarity between the L-hypoellipticity

S•.-conjecture and the result of Guillemin-Sternberg ([14]) on the irreducible

representations entering into the quantization of a compact Hamiltonian G-

-" action. The study of the asymptotic moment map should be extended to the

case where there is an I.0-term, so that the associated Lie algebra is not

purely nilpotent. but a semi-direct sum with a graded nilpotent.

A particularly intriguing question bearing on (1) is to elucidate the

relationship of the 'phase-space decomposition' determined by (Li) to the

phase-space decomposition associated to a single operator by Fefferman and

Phong ([6]).

.-".. -. . .. .. " .. ... " .." .. . . . . . .- - ... . . .
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