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Abstract

&his report is a preliminary version of work on an intrissic
approximation process arising in the context of a non—;sotropic perturbation
theory for certain classes of linear differential and pseudodifferential
operators P on a manifold M. A basic issuve is that the struocture of P
itself determines the wminimal information that the initial approximation
must contain, This may vary from poiant to point, and requires corresponding
approximate state spaces or phase spaces,

This approximation process is most naturally viewed from a seemingly
abstract algebraic context, namely the approximation of certain infinite-
dimensional filtered Lie algebras L by (finite—din;nsional) graded nilpotent
Lie algebtns‘gx, OF B(x,)* where x ¢ M, (x,%) e TM/0. It requires the
notion of 'we;k homomorphism®. A distingunishing feature of this approach is
the intrinsic nature of the approximation process, in particular the
minimality of the spproximating Lie algebras. The process is closely linked
to "localization”, associated to an appropriate module structure on L.

The analysis of the approximating operators involves the unitary
representation theory of the correspond ing Lie groups. These
reprosentations are for the most part infinite-dimensional, and so involve a
kind of "quantization®”, Not all the representations enter, The filtered
Lie algebra L leads to an "approximate Bamiltomian action” of G(x,&)' the
group associated to 8(x,2)’ and thus induces (via an adaptation of a

construction of Helffer and Nourrigat) an intrinsically defined "asymptotic
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moment-map”® with image in s:x.g). The relevant representations are those
associated to this image by the Kirillov correspondence.

The genesis of this work has been in the context of linesar pertial
differential operators, in particular the question of hypoellipticity. For
example, our framework leads to a natural bhypoellipticity conjecture
enlarging on that of Helffer amnd anrrigat.' We believe, however, that the
approximation process is likely to have broader applicability, particularly
in those contexts where the process can be extended to filtrations with an
Lo term, This yields not simply a graded nilpotent algebra, but a semi-
direct sum with a graded nilpotent, As we show, one such context arises in

the approximation of non—-linear comtrol systems.
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$0. Introduction

This report is a preliminary version of work to date on an
approximation process arising in the context of constructing an appropriate
non—-isotropic “"perturbation” theory for certein classes of naturally arising
linear differentisl operators P, This requires the construction of
approximate state spaces or phase spaces, These will depend on the
structure of P itself, and may vary locally, i.e., from point to point of
the base manifold M, or microlocally, i.e. from poiant to point of the
cotangent spaco., A basic issue is that the structure of P itself determines
the minimal amount of information that the initial approximation must
contain, and this may vary from point to poiat,

It is a remarkable fact that this approxins%ion process is most
naturally viewed from a seemingly abstract salgebraic context, namely the
*approximation” of certain infinite-dimensional filtered Lie algebras L (of
vector fields or of pseudo-differential operators) by finite-dimensional
graded Lie algebras Br, » OF g(‘o JE)? where x,eM, (xo,go)er‘ulo. The
slgebras gxo (or g(xﬂ W&, )) are not determined purely by the sabstract
structure of L as a Lie algebra over R, but also depend on the module
structure of L over an R-algebra F on which L acts as a Lie algebra of
derivations. In the local case we take F to be C”(M), and in the microlocal
case essentially the algebra of zero~order pseudo—differential operators
with real principal symbol, The algebra F is esseantial in obtaining the
correct “"localization”., Here “"approximation® is <closely 1linked to
"locslization”, this being either at the level of the base manifold or at

the level of the cotangent space. Roughly speaking, one treats P as an
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element of the "enveloping algebra” of the filtered Lie algebra, and
approximates it by an element in the enveloping algebra of the finite-
dimensional graded Lie algebra g. A distinguishing feature of this approach
is the intrinsic nature of the approximation process (i.e., coordinate-
independence and functoriality), in particular the minimality of the
apprdximating Lie algebras.

The analysis of the approximating operator leads naturally into the
unitary representation theory (i.e., "Fourier analysis”) of the simply-
connected Lie group G corresponding to the finite—dimensional graded Lie
algebra g. These representations are, for the most part, infinite-
dimensional, and so involve a kind of "quantization”. The decomposition
into irreducible representations may be viewgd as a finer subdivision of the
approximating state space or phase space,

Not all the irreducible representations enter into the approximation,
Which ones do appears to be determined by the original filtered Lie algebra.
This is discussed most naturally at the level of the cotangent or phase
space, with its associated Poisson bracket structure. According to the
theory of Kirillov [26], Kostant [27] and others, the irreducible unitary
representations of G are intimately related to the orbits in g‘. the dual
space of g, under the coadjoint action of G. If onme has a Hamiltonian
action of G on the sympletic manifold N one gets an intrinsically defined
moment-map $:N —)g. which is equivariant with respect to the G-actions, As
a heuristic principle one expects the irreducible representations which

enter into the "quantization®” (if it exists) of the G-action on N to be those

associated to the coadjoint orbits lying in the image of §. (In case G and
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N are compact this is given precise realization in recent work of Guillemin
and Sternberg (14]). In our context the original infinite-dimensional
filtered Lie algebra L 1leads to an “approximate” ﬂumilfonisn action of
G(‘o'go)° This ailow; us, adapting a construction of Helffer and Nourrigat
(191, f21], (32], (33]), to intrinsically define an "asymptotic” moment-
mapping, with image in a‘(xo JEo )" This image determines the relevant
representations.

As indicated above, the genesis of this work has been in the context of
linear partial differential operators, particularly the question of
hypoellipticity, and, to a lesser extent, local solvability and construction
of parametrices, i.e., approximate inverses. In this context (aside from
the metaplectic group, which enters in the study of second order operators)
the Lie algebras which arise are graded nilpotent. We believe, however,"
that the approximation process is 1likely to have rather broader
applicability than to questions of hypoellipticity, or, for that matter, the
study of linear P.D.E,’'s., For example, under appropriate conditions the
approximation process can be exteanded to the case where the filtration
contains an L0 term, Now the procedure now longer yields only a graded

nilpotent Lie algebra, but a semi-direct sum goég)g, where go

is "arbitrary”
and g is graded nilpotent as before, In a series of papers (see for example
[4]) Crouch has shown that in the context of approximation of non-linear
control systems by means of Volterra series certain solvable Lie algebras,
of the form R Mg, with g graded nilpotent, naturally arise, Starting with

a filtered Lie algebra L suggested by [4], one finds that the resulting Lie

algebra coming from the approximation process is of the correct type. It

-
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appears quite likely that this process can be brought to bear on the
questions treated by Crouch,

The organization of this report is as follows: In 81 we construct the
local approiimation process and examine its properties, In $2 we show how
to carry out a version of the group-level 1lifting process of Rothschild-
Stein [37] and the corresponding homogeneous—space approximation process of
Helffer and Nourrigat [20] in the more gemeral context of §1. VWe in

addition illustrate the connection of these results with questions of

" hypoellipticity.

In 83 we shall treat the microlocal version of the approximation
process, including a discussion of the asymptotic moment-map. In this
context we can frame a natural hypoellipticity conjecture emlarging on that
of Helffer and Nourrigat ([19], [21]1, [32], [33]).

*In §4 we shall extend the approximation process (botk local and
microlocal) to the case when the filtration has an LO term, Ve shall also
briefly examine the connection with the work of Crouch.

We shall conclude in 85 with a summary of the main directions for
further work.

In the remainder of this Introduction we shall go iato more detail on
the motivation and background of this work.

The initial idea of using graded nilpoteat Lie algebras for local
(i,e., on the base manifold) approximation (akin to normal coordinates)
seems to be due to Stein [38]. The aim was to develop a generalized

Calderon-Zygmund theory of singular integral operators in a non-abelian,

non~isotropic context, i.e, with certain directions weighted differently




from others., (This is how the nilpotent groups arose. The only Lie groups
with dilations are nilpotent, though not all nilpotent groups have

dilations), The analysis of the resulting non—-Euclidean balls is fundamental

AR

to the theory.
The approximation process appears as follows, One begins with a
- hypoelliptic operator P on M, constructed as a polynomial with c”
N coefficients in the vector fields xl.....xk satisfying the Hormander
spanning conditions ([23]), i.e., the iterated commutators span the tangent
space at each point of M. Corresponding to these vector fields one
introduces the free nilpotent Lie algebra g on k generators of step r, r
A being the order of iterated commutators of the X,’s needed to span (in the
nbhd of a poinf xoaM). Let G be the corresponding group. Notice that in
general dim G > dim M. Because the spanning condition is satisfied it is
possible to "1ift” the vector fields Xl....,Xk,'in a nbhd of xq», to vector
fields X;,...,X, on a manifold M of dimension equal to dim G, and so that
tas ii are free up to step r at each point in a nbhd of io e M, i.e., the
commutators up to step r satisfy no inessential linear relations at Zo. At
each point ¥ in a nbhd of 20 M can be locally identified with a nbhd of the
identity in G, and the ii can be approximated by ii' the gemerators of g,
viewed as left—invariant vector fields. This is an approximation in the
following sense: The dilations on g (and hence on G) introduce a natural
notion of "local order” at a point for functions or vector fields via, for

example, Taylor series with non-isotropically weighted variables. Then ii

a8
differs from X; by a term of lower order in this sense, (This is a more

s
C 'Y

stringent requirement than lower order in the classical sense., A vector
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field may be of lower order classically, but of comparable, or higher, order
in this sense, and hence not negligible). One then approximates 5. the 1lift
of P, at ¥ by 52 a (homogeneous) left—invariant differential operator on G,
In the particular context considered by Rothschild and Stein it is seen that
the 52 are also hypoelliptic, and hence have fundamental solutions ﬁi of
special type (i.e., homogeneons distributions). One glues together the,ﬁz
to construct a parametrix E for 5, and pushes this down to get a parametrix
E for P. An important point here is that the ﬁ; vary smoothly with X.

Later Metivier [30] showed that, under an appropriate constancy of rank

condition for the xl,...,xk one could use groups Gx of the same dimension as
M; however, these groups would in general vary with the point xeM,

The main concern in this work was not with deriving hypoellipticity
criteria, but rather in constructing parametrices and obtaining sharp
a priori estimates for operators kno%n to be hypoelliptic, primarily the
fundamental sum—of-squares of vector fields operators of Hormander [23],
The primary emphasis was on the structure theory rather than the
representation theory of the nilpotent Lie groups involved.

When considering primarily such sum—of-squares operators the

representation theory of the groups Gx can be disregarded, since the

representation theoretic criteria for hypoellipticity are automatically
satisfied. However, bhypoellipticity is not restricted to second-order
operators, and does not inhere specifically imn the spanning condition.
Rather, the spanning condition (more precisely, the rank needed for
spanning) determines which group to use as a local model, and then the

hypoellipticity of the given operator is studied via the ©unitary
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representation theory of that particular group. The importance of

representation theoretic comnditions, as distinct from spanning conditioms,

for hypoellipticity was first emphasized, I believe, in my own work [35].
Here a general representation theoretic criterion was formulated for
homogeneous left—invariant operators on nilpotent Lie groups, and shown to
El hold for the Heisenberg group, the prototype (and simplest) non-abelian
nilpotent Lie group. Interestingly, all the  unitary irreducible
representations, including the "degenerate® ones not appearing in the
Plancherel decomposition, play a role. The criterion was later shown to be
valid for arbitrary graded nilpotent Lie groups by Helffer and Nourrigat
([17), [18]). The issue motivating the work in [35] was not, however, local
approximation by nilpotent Lie groups, but a seemingly unrelated question,
namely, to better understand a mysterious quantization process arising in
the microlocal analysis of certain degenernte-eiliptic operators.

From the mid 1960's onward the emphasis in the ;tndy of linear P.,D.E.'s
was on the use of phase space (i.e., cotangent rather than base sﬁace)
methods, This included both sophisticated phase space decompositions (going
back at least as far as Hormander's partition of unity in his analysis of
subelliptic estimates [22]) and the use of symplectic geometry. One studied
Hamiltonian mechanical systems on phase space, the Hamiltonians coming
essentially from the principal symbols of the operators being considered,
The connection between these classical systems and the original operators
was basically made via a kind of geometrical optics or W.,K.B. type of
relationship.

In the context of degenerate-elliptic operators, again going back at

."-'-4 RIS IR T T T c . *
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o least to Hormander'’s test-operators -in [22], and to the work of Grusin [12],
certain "intermediate® P.D.0.'s (partial differential operators) arose, with
polynomial coefficients constructed out of the “total” symbol of the
:k original operator, The analysis of the original operator required the study
of these intermediate P.D.0.'s, acting on certain intermediate Hilbert
spaces. If the original phase space methods are viewed as a 1st
quantization, then the above context is reminiscent of a 2nd quantization
o process,

In the particular context of my notes [34] a "test—operator” (i.e,
unitary equivalence class of intermediate P.D.0.’s) is introduced for each
point (x,&) 8 2, the characteristic variety (i.e., zero-set of the principal
symbol), assumed to be symplectic, of the original degenerate-elliptic
operator P, The intermediate Hilbert space at (x,%) is Lg(nk), where 2k =
;: codim ) in T°M/0. 1In fact L2(BK) is the Hilbert space associated to a
polarization of the (necessarily symplectic) normal space N(z)(x.é) to 3 at
L (x,8). The striking similarity was noted in [34] between (1) this 2ad
. quantization process on the ome hand, and (2) the "coadjoint-orbit” method
of Kirillov [26] for obtaining the unitary irreducible representations of a
nilpotent Lie group G by polarizing all the coadjoint orbits of G in g..
The work in [35] was undertsken with the hope of elucidating this amalogy
with the Kirillov theory., One explicit link was the following. Returning
to the context of [34], it was shown that N(Z)(x.g) x R could be naturally
identified with hk' the Lie algebra of the Heisenberg group Hk' For this
o group the generic representations (equivalently, coadjoint orbits) are

- parameterized by one parameter, Planck’s "constant”, It was shown that the

-
-
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test—operators associated with the ray through (x,¢() correspond to the
images, under the representations with positive Planck’s constant, of a
homogeneous left-invariant operator 5 on Hy., This observation reinforeed
the expectation expressed in [35] that ome could eventually use nilpotent
groups for microlocal approximation. In particular, in conjunction with the
conjectured representation theoretic hypoellipticity criteria for these
groups, this could 1lead to hypoellipticity results for more gemeral '
operators P, and, in fact, could 1lead to the formulation of natural
hypoellipticity criteria which might have no simple explicit expression in
terms of the classical (total) symbol of P, and hence be totally overlooked.

The preceding analogy, arising as it does in the specific context of a
symplectic characteristic variety ), needs certain important refinements in
order to give the correct intuvitions more gemerally: (1) Ian the symplectic
case the group, H,, which arises does not vary with the point (x,3) of 2.
(2) There are only two classes of representations, the genmeric ones
associated with non-zero Planck's constant, and the 1-dimensional ones
associated with zero Planck’s constant, The former are, essontially, in
one-to-one correspondence with the characteristic variety 2, and the latter
are controlled via a kind of transverse (to }) ellipticity comdition, In
particular, } is singled out as special in various ways.

In more general contexts, even in essentially “rank 2" contexts as
treated in Boutet-Grigis—-Helffer (3], and as applied by Helffer to the group
theoretic context in [16], there are more than two classes of

representsations: in particular, to each point (x,f) & 2 there may correspond

a whole family of representations,
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In our context of microlocal nilpotent approximation to a filtered Lie
algebra (L) the above points are easy to discuss. Given P, there may be
one, several, or no (L1} pertinent to its analysis. The characteristic
variety } of P will influence this determination of (L1}, but does not play
a really decisive role. We then obtain a graded nilpotent Lie algebra
g(xa.go) at every point of T‘M/o,_not just at points of Y j;i.e., we deal
with the total phase space. However the algebras, and their ranks, will
vary from point to point, and, gemerally, at points not on J, g(xa'go) is
trivial, i.e., of rank 1, To each (xo,éo) there is associated a family of
unitary irreducible representations of G(xo’go). namely those associated to
the coadjoint orbits in g:‘u‘go) which are in the image of the asymptotic
moment-map at (xy,{y). This may be viewed as a refined “phase space
decomposition” determined by the filtered Lie algebra [Li}: To each point
(g,{) of the phase space T‘HIO we associate a subset of the "irreducible
phase spaces” in T'(G(xo.to)), namely those in the imaie of the asymptotic
moment-map. This setting is itself suggestive of an infinite-dimensional
Kirillov theory, or, better, the approximation of an infinite dimemsional
Kirillov theory by finite—dimensional Kirillov theory.

Both to aid the reader in understanding the viewpoint and results
preseanted here, and to give proper acknowledgement, we would like to make
clearer the relationm to other work in this gemeral area, in particular the

microlocal work of Helffer and Nourrigat ([21], (321, {33]). The idea of

introducing filtered Lie algebras in the context of hypoellipticity and of

thereby obtaining intrinsically defined nilpotent approximations seems to be

[l Ayl [

P

new, The local construction of nilpoteat Lie algebras by Stein, Follaad,
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Rothschild, Goodman, Helffer, Nourrigat, and others (including Crouch, in
the context of control) is not intrinsic, in that a Lie algebra is introduced
externally, for example a free nilpotent on an appropriate number of
generators, and of appropriate rank), The same is true of the microlocal
construction of Helffer and Nourrigat to be discussed below. The local
construction of Metivier [30], under the correct constancy of rank
conditions, does not introduce the nilpotent Lie algebras externally, but is
also pot intrinsic; it involves an explicit choice of vector fields
b PRRRYS ST

What ire the advantages of an intrinsic comstruction of the nilpotent
Sxo(Ot g(xo’go)), and the introduction of filtered Lie algebras {L})}? For
one thing, of course, am intrinsic comstroction leads to functoriality
properties. Moreover, by insuring that the g 's (or ‘(x,g)") are intrimsic
we can view them as a family (as x varies in a nbhd of xg, or (x,§) in a
nbhd of (x4,§q)) of local invariants of the initial data (i.e., the filtered
Lie algebra) somewhat reniniscoﬂt of the local ring of a singularity [13].
Under appropriate "stability” conditions on these invariants, ome can hope
to obtain local (or microlocal) camomical form results for the initial data
(e.g., akin to the camonical form results in Treves [39], Chapter 9). Also,
the significance of the “spanning” condition is more sharply brought out; in
the intrinsic construction, unlike the external construction, something like
& spanning condition is needed to even construct the Lie algebra 8z, *
(Without such a condition the construction yields an infinite graded Lie
algebra),

The introduction of the filtered algebra (L} is extremely natural. It

.......
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defines the class of operators we are examining, namely the "enveloping”
algebra "U(L)" of {L1} (not to be confused with the usual enveloping
algebra; in the local case this consists of the differential operators on M
constructed out of (non-commutative) polynomials in the vector fields im L,
with coefficients in C;(H). and in the microlocal case polynomials in the

¢DO’'s (pseudo-differential operators) in L, with coefficients O-order @DO’s

on M). At the same time it defines sharp form of hypoellipticity, L-
hypoellipticity, which, for P ¢ "U(L)", depends only on the leading part of
P with respect to the filtration., The same operator P could be viewed as
lying in "U(L)” for various filtered Lie algebras L,L', and satisfy the
criteria for L-hypoellipticity, but not L'—hypoellipticity (or satisfy them
for no filtration, as for example if P is not hypoelliptic). The filtration
also suggests a notion of L-wave-front set associated with the phase space
decomposition discussed earlier, coinciding with the standard notiom of WF-
set in the case of the natural rank 1 filtered algebra L.

The intrinsic comstruction does not require that the gemerators of L
all be of degree 1, but works equally well in general. For example, the
analogue of Metivier’s approximation result holds in this more general
setting, and hence, apparently, so do the corresponding hypoellipticity
results of Rothschild [36]. The fact that L need not be gemerated by Ll is
of interest particularly in the microlocal context., In this context the
setting is often “geometrical®”, the operator P (and associated symbol
calculi) under investigation being characterized, for example, in terms of
the symplectic geometry of various varieties associated to the total symbol,

and not in terms of an explicitly associated set of first order pseudo-

T T T,
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differential operators (the analogue of vector fields). This is the case,
for example, for the operator class Lok studied, for example, in Boutet
& de Monvel [2], Helffer [15], Boutet—Grigis-Helffer [3], Grigis ([9], I[10),
. {11]1), both in connection with hypoellipticity and propagation of
singularities. One can, as shown in [15], choose associated lst-order ¢DO'’s
but the choice is not unique. It turns out, however, that there is an
_ intrinsically associated filtered Lie algebra (LY} of ramk 2, not
necessarily generated by Ll, so that LE-K is, essentially, "Uk(L)". and so
.;'.' that the notion of hypoellipticity studied in the above papers is,
essentially, L-hypoellipticity. Of course, for most purposes, one can
undoubtedly use an ad hoc extension of the "external” method in order to
handle the case where the gemerators are not all of degree 1; however, the
.:j free nilpotent algebras thus introduced are much larger than necessary, and
: one thereby loses a good deal of naturality.
In a noted dated Nov. 22, 1981, and privately circulated, wé sketched

out a program of wmicrolocal nilpofent approximation in the context of a

Y,
B A

filtered Lie algebra L of 1st order ¢DO’s., We formulated a microlocal
"spanning” condition at (x,E) e T*M/0, and determined a process for
intrinsically associating to (L,(x,f)), where (x,f) is of finmite rank r, a
pair (‘(x.t)"‘)' where 3(:,{) is a graded nilpotent Lie algebra of rank r,
and n & ;(x,g)/o. The aim was to associate to each P s "UR(L)”", in an

- intrinsic way, P e LUy

on(s(x,g)) so that L-hypoellipticity of P at (x,§)

would be equivalent to hypoellipticity of l‘; at n, with respect to the
._‘- natoral filtration, The latter was to have a representation—theoretic

criterion, but involving only a subset of the represenmtations of G(x E)
. »
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(equivalently, only a subset rnc:g:x‘e) of coadjoint obits) depending on L
but not on P, A provisional suggestioam for rh was made, inspired by the
results in (3], [16] which, as indicated above, we viewed as corresponding
to L of rank 2,

The construction of ;(x.t). while intrimsic, seemed hard to work with,
and not amenable to computation., In particular, it was not clear how to
relate 8(x,8) analytically to L as a genuine approximation., More recently
we discovered a more explicit variant of our comstruction which circumvents
this difficulty. In contrast with the externally introduced free
nilpotents, the 8(x,8) do not come equipped with partial homomorphisms into
L. However, one can prove that any “cross-section” B from B(x,E) to L
provides a “weak-homomorphism®”, which can be used to prove (in the 1local
context) variants of ®lifting"-theorems, and, in general, seem to provide
adequate substitutes for partial homomorphisms.

The provisional ideas about L-hypoellipticity also ieed to be modified
in two essential and related points, both involving r(x,t) (the image in
3::,&) of the "asymptotic” moment-map, to be discussed below), To begin
with, although there is no difficulty in making an intrinsic association to

Pe U:(L) (the ordinary enveloping algebra) of Pe Uﬁ

om(g(x.é))‘ this is not

necesssrily possible for P & "U®(L)"., However, it can be shown (modulo
details we have not carried out; see Note 3.24.3) that P —)n(ﬁ) is well-
defined for those n associated to orbits in r(x‘g). Also, in general, rh is
very likely larger than necessary for L-hypoellipticity of P, only r(x‘g)
being required.

Independently of our own work Helffer and Nourrigat were investigating

P ——




related questions, as part of their study of “"maximal hypoellipticity”,
growing out of their earlier work on the representation theoretic
hypoellipticity criterion for nilpotent Lie groups. This was primarily in
the context of differential (or, latec, pseudo-differential) operators
constructed out of explicitly given vector fields or 1lst-order oDO’'s
satisfying the spanning comdition, corresponding, in my framework, to L
L? being generated by L1. They externally introduced a nilpotent Lie algebra
!ﬂ (a free nilpotent), and wished to characterize the maximal hypoellipticity

at (x,&) in terms of a subset, r(x’c). of representations, They succeeded

in obtaining a precise determination of r(x.&)' and in formulating a precise
conjecture. They have made substantial analytic progress, proving
sufficiency of the representation theoretic condition in a variety of cases,
and recently ([32], [33]) necessity in general, As they poimt out, this
'conjectnre, if true, would, in particular, subsume many of the known
regularity results for linear P.D.E.’'s under a single broad tuﬁtic. Among
the tools used are the microlocal techniques of Hormander ([24], [25]) and
Egorov [5] for the study of subelliptic estimates, In particular Nourrigat
([32), [33]), generalizing techniques of Hormander, derives a kind of
substitute for the lifting theorems, by showing how, in a precise sense, the
generating ¢DO's are approximated at (x,{) by the representations in r(x’g).
One no longer approximates by the regular representation, as in the lifting
theorem, but by a subset of irreducibles, We first learned of the set
r("g) and the microlocal approximation result from Nourrigat at the Boulder
conference on P,.D.E.'s of July 1983,

The construction of r(x,g) is made in terms of an explicitly chosen
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- partial homomorphism from the free nilpotent to the generating ¢DO’'s. An

analogous set r(xng)c:g:x'g) can be introduced in our context, and shown to

~ be an invariant of L. This is done by choosing an arbitrary cross-section §

et
tefatefe

from 8(x,&) to L, defining r{;’g,, and proving it independent of the choice
of B. Using this set r(x,t) we can formulate a sharp form of our earlier
conjecture for L~hypoellipticity naturally incorporating that of Helffer and
Nourrigat for maximal hypoellipticity. If we regard r(x'c, as the image of
an asymptotic moment-map, which we shall see is quite reasonable, then in

view of the result of Guillemin-Sternberg [14] mentioned earlier, the

el N el e b
. -

conjecture seems extremely natural,

Although we present some analytic applications, our main contribution
- here is the formulation and construction of the approximation process,
Various of the techmiques (and results) of Helffer and Nourrigat cam, with
modification, doubtless be carried over to our more gemeral context. For
example, as we shall indicate, a modified version of'Nourriglt's proof of
the approximation result appears to carry over, and this, basically, is what
is mneeded to prove the necessity portion of his maximal hypoellipticity
criterion, We do not pursue this line, however, since we feel that a more
natural and fruitful approach would be based more squarely on the invariants
of L, in particular on the "phase space” decomposition determined by L.

o This remains & program for the future.

ROy
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$1. Local Nilpétent Approximation

The initial context for this work is a family xl,...,xk of C” vector
fields defined im a neighborhood of x; & M, and satisfying the Hormander
spanning condition of rank r. That is, the xi's. along with their iterated
commutators of length e span Tx.u, the tangent space at x4,

We have already indicated in the Introduction how this setting leads to

" the introduction of nilpotent Lie groups for the purpose of approximating
differential operators P expressible as polynomials in the vector fields
X eeeXye

In the initial context P was "the” []b-Laplacian on the boundary M of a
strongly pseudoconvex domain D, If one used a gemeralized upper half-plane
6 to geometrically approximate D at Xge then it was natural to use the
boundary of 8 to approximate M, But this boundary turns out to be the
Heisenberg group Hn.'the most elementary (and also mosi fundamental) non-
abelian nilpotent Lie gronp;

The later work of Stein and collaborators relied less on this type of
geometric "normal coordinates” approximation, and more on the algebraic
structure of X;,...,X;.

Let 8x,s denote the free nilpotent Lie algebra onm k gemerators
§1""';k' and of step s. Then there is a unique partial homomorphism
l:;k" —»vector fields on M in a neighborhood of x4y such that l(ii) = X; for
i=1,...,k.

Write By,s = 83 Ga... ()gs. To say that A is a partial homomorphism

means that

NSy
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(1.1)' A is linear in R

(1.2) A([Yi,Yj]) = [L(Yi), A(Yj)] for every Y; ¢ 3;, Yj e g

j with i+jss

The pertinent 8k,s is the one with s=r, where r comes from the spanning
condition., This leads to a "lifting™ process, since dim 8y,r may be greater
than dim M. When the rank of the X,'s is not constant near x; this extra
dimensionality may be unavoidable, Under a constancy of rank condition
Metivier, in a paper [30] applying nilpotent approximation in the context of
spectral theory, was able to construct approximating nilpotent Lie algebras
8y vwith dim g, = dim M, but with g, necessarily varying (smoothly) with x
near xg.

The construction of g as given by Stein, Rothschild and others is not
intrinsic, in that g is introduced externally and, at least a priori,
depends on the e;plicit choice of vector fields xl.....xk. (What happeﬁs,
for example, if we take instead Yl"°"Yk' some T"invertible” linear
combination of the xl,....xk7) The construction of Metivier, under the
constant rank assumption, does not introduce g externally, but it is also
not intrimsic,

In what follows we show how to make an intrinsic comstruction of a
graded nilpotent Lie algebra s‘o as an invariant attached to a filtered Lie
algebra L at Xy. In a sense made precise by our version of the lifting
theoren, ‘!o is an approximation to L at X9 The algebra gxo depends not
just on (L1} as an abstract Lie algebra over R, but also on its C”(M) module

structure.
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This intrinsic construction has a number of advantages.

(1) It leads to natural functoriality results.
(2) It bandles at the same time the case where the generators of L are
not all of ramk 1,

(3) It recovers the Metivier approximation in an intrinsic fashionm,

and extends it to the more general context (2).
(4) It generalizes to other contexts, such as the microlocal and non-

nilpotent local contexts, which we shall treat in §3 and &4,

One basic distinction between the intrinsic and the external
constructions is that the former does not come equipped with a partial
homomorphism, In fact, since the Lie algebras will vary with the point xg,
one cannot expect to have available a partial homomorphism, However, a less
stringent substitute notién is available, namely that of !315 homomorphism,
In the context of the intrimsic comstruction this mnotion is extremely
natural, Muach of the technical difficulty of carrying over to the intrinsic
context results like the 1lifting theorem comes from having only weak
homomorphisms to work with,

A further distinction between the intrinsic construction and the
external construction is worth noting, In the external construction, as we
saw, no spanning condition is needed in order to comstruct the nilpotemt Lie
algebra or the partial homomorphism (though such a condition is needed to
construct the lifting), In the intrimsic construction something like the

spanning condition is needed to even construct the nilpotent Lie algebra
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E‘o' (Without such a condition the construction yields an infinite graded
Lie algebra, with finite-dimensional terms of each degree.) The precise
conditions, as we shall see, is that ﬂ: = ﬂ;+1 = ... = Lr;i for all iZO,
i.e., the sequence stablizes., This is automatically the case if "spanning”
holds. In light of Frobenius'’ theorem (or better, Nagano’s theorem in the
real-analytic case) the above condition (modulo a conséancy of rank
assumption in the C* case) is like a spanning condition on am integral
submanifold.

We begin with some preliminaries, We shall work primarily in the C*
category, and deal with modules L of C® vector fields on M, a smooth,
paracompact, manifold., That is, modules over the ring C”(M) of real-valued
C® functions. At times we shall only want to take M an open neighborhood of
xy., and generally we shall work with germs. In the C” category partitions
of unity are available,

We will have occasion to wo?k with the formal power series or real-
analytic categories, In the real-amalytic context we do not have partitions
of unity, so we should, strictly speaking, probably work at the level of
sheaves of modules rather than modules, but we shall forego this degree of

precision,

Notation:
(1.3) é:,C&denote germs at x of real-valued C”, respectively real-
analytic functions; ‘}x denotes the ring of formal power

series at x.

ro—— T W LT —




If L is a C°(M)-module of vector fields, ﬂx denotes the é:—
Similarly in the

series

(1.4)
module of germs at x of vector fields im L.
If we pass to formal power

real-analytic case,
instead of germs we obtain an }_-module.

Remarks 1.1: 1) Each of the three rimgs in (1.3) is a local ring with
identity. The unique maximal ideal h  consists of the germs
formal power series) vanishing at x. Moreover, the

(resp.,

composition

(X2 é”
R-E - =
s

x
(See,

Similarly in the remaining two cases.

isrbijective.
for example, Malgrange [29]).

2) bx and '}x are Noetherian, (Malgrange [29]).

If L is the module of all vector fields in the C~ or

3)
real-analytic context, then ix is finitely gemerated over

é:. 0; (and ?x, if we pass to formal power series). In fact,
and take @ﬁxl,..” aﬁx"(mOte

coordinates,

choose local
precisely, their germs) as genmerators,

Let B be any

and 3) we get:

As a corollary of 2)

4)
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submodule over O; of germs of real-analytic vector fields at
x (resp., sny submodule over ?x of formal vector fields).

Then B is finitely gemerated.

Def. 1.2: Let M be a C* manifold, F = C*(M), and x ¢ M,

A filtered Lie algebra L at x of C® vector fields (with increasing

filtration), is a, generally infinite dimensional, Lie algebra over R of
vector fields on M, together with a sequence of subspaces Li i=1,2,...,
such that

(1) Ltczcidc,,,

(2) [Li,Li) cLiti Vi,j

3 L= U Li
d:

(4) Each Li is an F-module, i.e,, FLi C Li. where FLi refers to

multiplication of vector fields by C” functionms.
(5) As an éx (i.0., é:) module ﬂ: is finitely generated for each i,

Remarks 1.3:
1) In view of remark 3) above, if we assume the spanning condition

(see below) at x, then ﬁ: is sutomatically finitely generated.

.............
..............
..........
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2) In practice one often uses a stronger condition than (5), namely
(5 local): There exists an open neighborhood U of x such that for every i
L;(U) is finitely generated as a C¢”(U)-module.

Then (5 local) of course implies (5) for every xeU., In fact it implies

AR Sesu il . 4

a slightly stronger, and useful consequence:
'% Suppose (5 1local) holds for the neighborhood U, Let xl,...,xj be
: elements of L1(U) such that the germs xlx.....xjx generate ii. (Such
generators exist since (5) holds at x). Then there exists a nbhd V of x
such that XIIV,...,Xj[V generate Li(V) as a C®(V)-module.

We omit the simple proof. A somewhat more carefully worded variant of

these remarks holds in the real-analytic case.

Examples 1.4:

.1) Take X,.00,X vector ficlds. in a nbhd of x, and take
L! = all C® linear combinations of XyseeesXys L2 - [ § R3S 220 PR
Li*l = L+ 1l,ud],
That each LI is a C™module follows from the identity [fX,Y] = f[X,Y] +
[£,Y]1X. Finite generation is obvious,

2) Take X,,....%, Y;,...,Yy vector fields. Set Ll = all C” linear

N

combinations of xl.....xk; L2 = (all C® linear combinations of Yl""'Yl) +

1. [Ll,Lllg and set




. 3 J Jj i
D YR { SO ¢ A0 s T A DO Ay
jl.....jketl.zl
j1+...+jkﬁj
1%

3) If Llcr2c.., is a filtered Lie algebra at x which is not .of
finite rank (see below), we can "embed® it in a filtered Lie algebra of

arbitrary rank r, as follows, Definme the filtered Lie algebra

L' if i<
The module of all Co vector fields

if i2r.

(By remark 1.13 we maintain the finite generation condition.)

Notation:
(1.5) For vector fields in a nbhd of x, let a;:vector fields =T M be
the [R-linear map which is evaluation at x, Clearly e, depends only on the

germ of vector field at x.

Def. 1.5: The filtered Lie algebra L is of finite rank at x if there exists
r such that ax:ii -9I;M is surjective, The smallest such r is called the

rank of L at x,

Notes 1.6:

. e e .. P < . . B v el e me el el el el e s - - - o e ve vl ea m - - .
T P TP P e . . R L I IOSDIPR LI e e e e e T e e T LT e e e T L
. . - . . . . -t " . . ft et . . . LR . . . . -
2ol . s o - N > 2 PRSP YAS AT TR IR WA A W T WL L WA S W




............

1) In the case of the first example above the finite rank condition is

just the standard spanning conditionm,

1T : : : s L
2) If “x’Lx - Txl is surjective, so is ay.Ly - TyH for all y

sufficiently close to x. Thus, if x is of finite rank r, thea y is of
finite rank £ r for all y sufficiently close to xz, Moreover, i; = set of

germs of all C® vector fields at y for y sufficiently close to x. In

Vs2e.

*T _ 1S
particular Ly = Lx
Pf: Let ey,...,e, be a basis for T M.. Choose germs Xy, ,..., X ¢ L:

such that xi(x) = e Then these germs, in a nbhd of x, form frames for the

ic

tangent bundle.

Prop. 1.7: Let (L}, z be a filtered Lie algebra of finite rank, r, at x,

Let )
: i:
gle———— (where L0 = 0) .
ooeim1 e *
L7 i L
X XX
Then

(1) For i’r, g:=0.

(2) For iﬁr. g: is a finite-dimensional vector space over R.

(3) Let ni:Li - g: be the canonical R-linear projection. Define
g‘=gi C) e C)z:. Then via the n;'s 8§; inherits canomically the
structure of graded (nilpotent) Lie algebra over R,

(4) 7 (£X) = £(x)n;(X) for XeL' and f & C,

AT e N
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Remark 1.8: 8y is graded of rank r, but it may be of "step” < r. That is,
fewer than r commutators may yield 0. For example, BR® with non-standard

dilations can be graded of ramk > 1, though it is of step 1.

(1) By Note 1.6.2 LI = L¥ Vsir,

(2),(4) i: is & module over é:, and by definition g, inmberits the
structure of module over é:/ix = R, By hypothesis ii is
finitely generated over é:, and so gi is finite-dimensional
over R,

(3) Define a bracket [ l:g: x gi -)gi+j as follows:

For Xi, xJ ¢ g:, gi. respectively, choose Yi. Y . Li, Li
s.t, . -

JOSIED CHENC TS OF

Let (X', XJ] = n; . (¥,79],

To prove that this bracket is well-defined it suffice to
show:

(G v aid, if1C LT . a0,

But (L3~1, Li1eLi*i~1 by (2) of Def. 1.2

and (& L, L3 ¢ (i3, L) + 1a,,Ld101,

Again by (2), the first term is in ixi:*j.

Of the second term all one can say is that it is in

énid . i,

Now we use the fact that our filtratiom begins with an Ll-

term. Thus, i+j-1 = i+(j-1) 2 i, So, since the filtration

P SN
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.is increasing, iiti Li+j-1.
This proves that our bracket is well-defined; and from the
- definition it is clear that it satisfies the conditions for a

* Lie bracket,

Note 1.9: Even if [Li} is not of finmite rank at x, each g: is finite
dimensional; only now 8y = gi C)gi GD... is an infinite direct sum. It is

still a Lie algebra over R with respect to the above-defined bracket.

. The graded Lie algebra gy = gi. @ ves @g: is clearly intrinsically
. associated to [Li}. x, We begin our examination of 8y by asking how much
®collapsing” has taken place in its construction, We shall need anm
" elementary but basicAtool which we shall also use later for other purposes,

nnd'which arises because we are dealing with local rings.

Prop. 1.10: Nakayama's Lemma (see [13]1). Let A be a commutative local ring

with unit, and M a finitely generated A-module such that M = mM, where m is

X the unique maximal ideal in A. Thea M = {0},

Cor. 1.11: Let M’ be a submodule of M such that M = M’ + mM. Then M=M .

Pf: Let N = I/M'. Then N is still a finitely generated A-modunle. Bat

N/mN = M/aM + ¥’ = {0) by hypothesis, so N = mN, and N = {0} by Nakayama.

f Cor., 1.12: M/mM is s finite-dimensional vector space over the field A/m.




:: Let ¢:M - M/mM be the natural projection map and vy,...,v, & basis for this
vector space. Choose e4,...,6, in M such that p(ei) = v;. Then e;,...,6,

form a set of generators for M over A,

Pf: Since M is finitely generated as an A;nodule. M/mM is finitely
generated as an A/m module, But m being a maximal ideal, A/m is a field,
o and so M/mM is a finite-dimensional vector space.

The converse is harder, and uses Nakayama. Choose a basis v;,...,v,
for M/mM, and preimages €1seeesp under ¢, Let M' be the submodule of M
spanned by e;,...,e;,. It follows immediately that M = X + aM. So, by Cor.
1.11., M =M,

In our context we take A = é: and m = ix. The first consequence is
Lemma 1.13: gi = 0 & ﬂi‘l =.ﬂi. (The non-trivial direction is = )., In
particular, if r is the rank of (L}, x then gL # 0. That is, §; cannot be

"small® unless {Li}, x is 'snill'.
Pf: Cor. 1.11.

Remark 1.14: Note here in passing that

. ii l:l/f.i 1 &
. i x ~ x X x .
. s, * = as == modules (i.e., as vector
Lilig i b (illﬁl-l) ¥ spaces over R)
x x x ' x x

This follows immediately from the fact that

2 et e " M "a" e " m " " et e " 2" a® o' @ e
.




i‘i“"i-l
ii - b S ¢
x .
a_(Li/i1)
x XX

*i-1 ° i
is onto, with kernel Lx + ﬁxLx.

We next examine the functoriality properties of 8-

Def. 1.15: Let (Li].x be a filtered Lie algebra, and h = h1 C) ...(:)hs 'y
graded (nilpotent) Lie algebra., A weak homomorphism y (at x) from h into L
consists of an R-linear map y such that

(1) y:b; 3L

(2) For any Y, Yj e hy, hj, respectively,

-

_ . i+j-1
1) [y(Yi). v(Ij)] e L

. .oi+j .
1([11. Yj + ﬁxLx (after passing to

germs at x)

Remark 1.16: Suppose {Li}. x is of rank r at x, and h = hl@ @hs' with

s2r. Then if Ath =L is a partial homomorphism them A is also a weak

homomorphism. By a partial homomorpism we mean an R-linear map such that
(1) a:py ->Li

(2) For any Yi. Yj ¢ hy, hj. respectively, with i+j$s,

AITLY D = AT, MY .

J i

Generally, we also wish to assume

(3) The image x(hi), i,e,, this finite~dimensional vector space,

. .
e e -

P . Ctety et et . - .

L - .

.....
----------
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generates Ll as a module over ¢, modulo Li'l. for i{r. (This condition
certainly holds if we take L as in Example 1.4.1 and vuse the original

- definition of partial homomorphism).

- Pf: (of remark). It suffices to show that A satisfies (2) of Def. 1.15
for i+j>s, But i+j)s = i+jir, so i+j-1 2 r. Hence ﬂ:*j-l consists of all

e C® vector fields at x, so dome.

Notice that although the notionh of weak homomorphism is referrec to a
- point x, via the appearance of ﬁx, that of partial homomorphism is not; that
is, the 1latter assumes the Ll are all defined in some fixed (though
arbitrarily small) nbhd of x, and the homomorphism is viewed as holdimg in
this nbhd. In.particular, the preceding proof shows that if A is a partial
honomo;phisn near x then it is a weak homomorphism at y for all y in a nbhd
- of x. This is one reason why the notion of partial homomorphism is too

- stringent in general,

<. Def. 1.17: Let {Li},x be a filtered Lie algebra, with g, canomically

associated to it, Let ui:Li —)gi be the canonical projection, A cross-
soction of n is an R-linear map B such that

(1) B:g: -t

(2) ngop = Id for every i.

Clearly, since ny is surjective, such cross—-sections exist; one takes a

basis for ;i and maps to preimages under n;.

L IR S .. - -
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Prop. 1.18: Let B:gy L be a cross-section. Then

)1 e i:+j—1 + g [

<Lz (after passing to

germs at x)

(1) BT, Y1) - [B(Y,), B(T,

for every Y., Yj'e g:, gi, respectively. That s, 8 is 3 weak
homomorphism

(2) For every X ¢ Li, x.

i - B oﬂl(xi) g I:i—l + ﬂ'!

sl
xx
(3) For any cross—sections B, B’, B(Yi) - B'(Y;) e ii_l .

V Yi g g;.

(1) Suffices to show ni+j(B[Yi,Yj] - [B(Y;), B(Yj)]) = 0. But this

equals = (B[Yi.Yj]) - “i+j[B(Yi)' B(Yj)]‘ The first term equals

i+j

[Yi' Yj], by definition of cross-section. But the second term

equals [Yi, Yj] by the definition of Lie bracket for g,.

(2) Suffices to show n;(X;-fo n,(X;)) = 0, But this equals n(X;) -

(n;oB)(m;(X;)) = 0, by (2) of definition of cross sectionm.

(3) Follows from (2), together with (2) of definition of cross-

section, by taking X, = B(Y;) and replacing B by B’ in (2),
Ve next prove the "universal” property of 8y

Prop., 1.19: Let {Li},x be of rank r at x, and let by C) cee C) he be a

LN I RSP




graded Lie algebra, with y:h 5 L a weak homomorphism. Then the map n oy
(i.e., m; o yi:hi —)3i ) is a homorphism of graded Lie algebras.
y:h—L
\\\ lTr
\»3
Moreover, if, in particular, y(h;) generates Ll over C€® modulo L™l for
every i{r, the n oY is surjective,
Pf: Clearly moy is R—-linear. Need to show
ni+j °Yi+j[Yi’ Yj] = [ﬂio ‘{i(Yi). nj o‘(j(Yj)] .
By definition of [ , ] im g, the right-hand side egquals
"i+j[7i(yj)' Yj(Yj)]. But, by definition of weak homomorphism,
Surjectivity, under the hypotheses of the Proposition follows

immediately from the definition of Bx-

Cor. 1.20: If h = hy ® ... ® h, where s2r=rank at x of (L'}, and if
A:th - L is a partial homomorphism (in a nbhd of x), then there are

corresponding homomorphisms n_ o A —)gy for all y in a (smaller) nbhd of x.

y
Moreover, if A satisfies (3) of Remark 1.16, then for all y in a possibly

smaller nbhd of x, n_o A:h -9gy is surjective. That is, for all y in a nbhd

y

of x, 8y is a quotient of h,

Follows from above Prop. and from Remark 1.16, if we recall that rank

(L) £ r at all y in a nbhd of x.
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It is not clear what is the most natural notion of weak morphism
between two filtered Lie algebras {Li},x, xeM and {Ki}.y, yeN, VWe give one

variant at the germ level.

Def. 1.21: A weak morphism between (Li},x and {Ki}.y consists of a sequence

of R-linear maps Wi:ﬂi -)i; , together with an R-linear map ¢:é:(M) '96;(N)
such that

(1) g (M) =i (N)
(2) W,(fX) = g(IW,(X) ¥ fe CoON, X e Li

(3) Wil o1t
(4) IV (X, WX - W (0X,X0) ¢ KpHT 4 g4

for xi. xj g Li, ijx, respectively,

Notes 1.22:
1) Of course an interesting special case occurs when (4) is replaced

by the stronger assumption (4'): [wi(xi), wj(xj)] = wi+j[xi,xj].

2) We do not assume that the W, piece together to form a single R-
linear map W:ix -9iy such that Wi = w[Li. We instead assume the
weaker conmsistency condition (3), which is all that can be

expected in various examples (such as 3) below).

......
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Examples 1.23:

1)

2)

3)

(a)

Let ¢:M 5 N be a diffeomorphism, and suppose that Kt = ¢.(Li).
where ¢, denotes push—forward of vector fields., Then for every
xeM ¢ defines a weak morphism between {Li],x and {Ki}, ¢(x),
where ¢:C:(M) -9C;(N) is given by f -9f'¢-1. Of course here (4')
is satisfied, as well as the stronmg consistency condition in Note

1.22.2.

M=N, ¢=identity, L! ¢ ki, and wi:Li 5kl the inclusion map. Note
that the induced morphism of graded Lie algebras (see Prop. 1.24)
is not necessarily imjective. In fact rank L  may certainly be
greater than rank K . As an illustration take ki as in Example

1.26.1 below, and Li arbitrary.

Let (Li},x and (Kl},y both be of fimite ramk, with associated

graded nilpotents g, hy ,respectively. Suppose there is a

morphism A.:gx - hy of graded Lie algebras, and let f be an

arbitrary cross—section for h Define ¢:é:(M) - é;(N) by

y.
¢:f > the constant function f(x) ; define wi:li o i by

wi = ﬂinxioni. Then Wi is a weak morphism,

Prop. 1.24:

The composition of weak morphisms is again a weak morphism,
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(b) A weak morphism !:{Li},x —9[Ki},y induces canonically a morphism
of graded (nilpotent, if x,y are of finite rank) Lie algebras

$:5, -)h.y.
(c) (3:¥) = i°$.

(a) This is obvious except for (4) which involves 2 small calculation

requiring application of (1), (2), (3).

(b) Define !i:gi —9h; 8s follows. Choose an arbitrary cross-—section

L 3. = K.3 0L S o .
By for gg. Let ¥, = n;o§.0f7. Clearly §, is R-linear.

Claim:
A : » ~ . s
i - i
1) [3;3D, §HEPH1 = §,, (07,7, for Y,¥; & g, 83,
respectively.
A .
(2) &; is well-defined independently of the choice of cross

section Bi.

In fact (1) follows from the definition of [ , ] in 8y, b from

y'

Prop. 1.18. (1), and an argument analogous to that in (a) above,

Statement (2) follows from Prop. 1.18.(3).

(¢) By Prop. 1.18.(2), B% on% = Id mod terms in L1 1., ﬁxL;. and by

(1)-(3) of the definition of weak morphism, 9
terms into the kind of kernel of RE.

sends the "error”

Cor. 1.15: (see Example 1,23.1), The isomorphism class of the graded Lie

----- . - - -~ B
----- . -, e, et

. - ~ el s, e L e - .
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algebra g, attached to [Li}.x is invariant under diffeomorphisms spplied to

(Li},x.

We next illustrate the computation of g, in a number of cases (in each
[}

of which the rank is finite). We retain the notation a_ for evaluation of

X,

vector fields (see (1.5)).

Examples 1.26:

1) Let Li. i=1,2,... consist of ail C” vector fields in a nbhd of Xg-
As in Remark 1.1,3 we see that L1 is locally finitely generated by taking as
generators'W5XF.“,y&“where X1s.00sX; are local coordinates., Clearly ) is
of rank r=1, and so Bg, = gi.. abelian, with standard isotropic dilationms.

i is canonically isomorphic to Tx M viewed as a vector space with
9 .

Claim: g
standard dilations., In fact, the map ay, :ﬂi = T; M is surjective and
[ o

factors through o ﬂi to give a map
o (]

L
pigr =—2 S5 T M-0.
x . 1 x
0 w L 0
00

Using the gemerators 3/2y,...,‘%ﬁxn as local frames we see that p is also
injective, and hence bijective, Notice that this example is the general

case of r=l,

2) If (L'} is generated by L1, as in Example 1.4.1, them g, is
0

1

generated by gy ,
[ ]

i.e.,




b M st gl v Xaule Sgh Mg 3
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o N . |
-

N i 1 1 1
" sxo = ,[sxo[...lgxo, gxo] eeel

i factors

This follows from the definition of Lie bracket in g8y and the fact that
o

R i C s
n;:L ')32, is surjective,.

3) Let g = 8 C) ces Qagr be a graded nilpotent Lie algebra, and G
- a corresponding Lie group (uniquely determined in a nbhd of e). View the

iﬁ elements of g as left—invariant vector fields on'G. and let

i
. Li = } CO(G) ®R Sj ’

i.e., take C”(G) linear combinations of the left-invariant vector fields.

Claim At any xeG, {L1) has rank r, and gy ¥ g canonically.

Pf: Basis elements of 81 C) cee C)gi form frames for L1 (i,e., are
everywhere lineﬁrly independent and spanning). This shows in particular

that rank = r., Let tx:Li —>g; be defined by applying a,, identifying T,G

canonically with g, and projecting onto the i-th component, Passing to the

»
‘l s e
V0

.
Te '. .l

germ level we see just as in Example 1) that Tty factors through

ii'l + mxﬂi to give a bijection between gi and g;. The definition of Lie

bracket in g, shows that this is a Lie algebra isomorphism,

ol A e
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4) Let H be a Lie group with Lie algebra h, Choose an increasing
filtration by finite-dimensional subspaces h1 & hy g .o c;:: b, = h such that
(h;, hj] (! hi+j° View the elements of h as left—invariant vector fields on

H, and define Li to be C*(H) @R hi. Then, just as in example 3), one sees

that for any xeH, g, is of rank r and

h2 l:lr
sx-'hl@q@ o.-@hr—l »

the graded Lie algebra associated to the filtered Lie algebra h., (Notice
that h defines 2 filtration on the vector space TxH, and - defines the

corresponding grading.)

5) Let M = V, a finite-dimensional graded vector space, i.e,,
V=v C) e C) V., ., on which we define stardard dilations 5, (t>0) by
sttvi = ti. Using the dilations 8, ome can intrinsically define (without
explicit choice of coordinates) the notion of homogenmeity (in a nbhd of Q)
for a C* function and a C” vector field. (The vector field is homogeneous
of degree k if, applied to functiomns, it lowers homogeneity by degree
exactly k; since the functionm is C” this implies that the derivative = 0 if
the degree of homogeneity of the function is less than k.)

Choose a basis for V comsisting of bases for the V. If vk is omne of
the standard coordinate functions for Vy, then Uik is homogeneous of degree

k, and so is a/anjk. Say that a vector field is of local order £ i at 0 if




the coefficient fjk(“) of a/anjk has its Taylor series at 0 begin with terms
of order 2 k-i, where order is determined as above., (This can be formulated
more intrisically in terms of Bt).

Since the highest grading occurring in V is r, it follows that

(1) Every homogeneous vector field is of degree £r,

(2) Every vector field is of local order £ r.
For X of local order { i there is an intrinsically defined "leading” term ;,
namely the uvnique vector field homogeneous of degree i such that x-'i is of
local order £ i-1, In local coordinates i is the sum of the terms
?jk(u)a/aujk where Ejk(“) is the sum of the terms of order k-i in the Taylor
expansion of fjk(“)‘ (Of course we can then continue and define the
component homogeneous of degree i-~1, etc.)

Let gi, i=1,...,r be the space of vector fields homogeneous of degree
i. Then [gi. gj] c 3i+j. Hence g = 31 ® ... @ "r is a clearly finite-
dimensional and, hehce. nilpotent snb:lgebn‘ of the vector fields on V.

Let Li = all .vector fields on V of local order { i at 0. It is easy to
check that

1) L' is a C®(V) - module.

2) i, Li1 c it

3) Llcrrc...cLf =L ||| = al1 C° vector fields on V near 0.

4)  ag(L®) = To(V) (and ag(L™™1) # To(V) unless V, = (0}).
(Statement 4), and thus 3), follows from (2) above, Statement 2) implies
that the leading term of the commutator is the commutator of the leading

terms.) To show that Li, i21, is finitely generated it suffices, since

Li =10 @ 51 @ ses @ gi to show that LO is f‘initely generated. But

e




.l .7

i)
P I )

one (non-minimal) set of generators is given by all vector fields in L0 with
coefficients polynomials of degree £ r in the classical, isotropic, semse,
To see this recall that any C” function vanishing at O of order 2 r in the
classical sense is & C* linear combination of monomials of degree r; and any
vector field with coefficients monomials of degree r in the classical sense

is in LO,

Let 8 = g% @ o @ 38 be the graded nilpotent associated to

(Li},0. Let 36 = gé except for i=1, Define g‘])' as

.1 +1

21 -0 (in contrast to gl =0 ).
0 '04_6 .1 0 & I:l
0 00 00

The proof of Prop. 1.7 goes through unchanged to show that ?0 inherits the
structure of graded mnilpotent Lie algebra,. Since (L%, L3l c LI it follows

that ;0 a 3(1) @ ... @35 is (canomically) the gquotieat of 8o by the ideal

(lying in 3(1)). which is in the center of 80- (With a bit more work this
idesl could be naturally identified with an explicit subspace of Lo

consisting of polynomial-coefficient vector fields).

Claim: There is a natural isomorphism ;0 zg.




Pf: Define the R—-linear map y:ig -égi by X X, the leading term,

of degree i. Clearly, y is surjective and factors through ﬁé_l + ioii. In
fact, ioié C ﬂé-l and kernel y = ié'l, so y determines a vector space
isomorphism betweon ;é and gi. It is easily seen that the Lie algebra

structure is preserved.

6) Let M and g be as in Example 5). Let h=h @ ... ® b, bea

graded subalgebra of g such that ao(h) = TyV.

Let Li consist of all C®(V) linear combinations of vector fields in b,
j%i. Then {L1},0 is a filtered Lie algebra of rank r, Let g, be the
associated graded nilpotent., Let y be the restriction to Li of the

corresponding map in Example 5). Choosing some represeantation

where ij is a basis for hk over R, we see that

7(X) = } £,00T, .
J

An easy argument then shows that y induces a natural Lie algebra isomorphism
8¢ = h.
Let H be the simply connected nilpotent Lie group with Lie algebra h,

Then by the same argument as in Folland [7], using the existence of the

dilations, ome can show that the infinitesimal action of h on V can be




exponentiated to give a transitive right action of H on V., In other words,
letting Go denote the simply connected group associated to g,;, V is a right
homogeneous space of G (and TOV is golk, where k is the graded subalgebra
of all vector fields in 8¢ vanishing at 0.) This is interesting to compare

with the homogeneous space lifting theorem of §2.

7) Special case of Example 6). Let X;,...,X; be homogeneous (of
degree 1) vector fields on V, b; the vector space over R spanned by the

X;'s, and h the Lie algebra generated by hy.

8) Same setting as Example 7). Let ¥y,...,Yy be vector fields of
local order {1 at O whose iterated commutators of order { r span TOV. Let
xl,...,xk. homogeneous of degree 1, be the corresponding leading terms, by
the vector space they span, and h the graded Lie algebra gemerated by k.
Let L1 be the space of all C® linear combinations of Yl.....Yk. and L the
filtered Lie algebr; generated by Ll. Let 89 be the graded nilpotent
associated to L,0,

We wish to examine the relationship of 8g to h., Ve begin with a
specisl case. Take V=V, ®V, = ROR, Y, = 2/0x, T, = 3/dx + 12 /8¢,
Then Xy = X, = 3/3x, so h = hy = 1 - dim space spanned by 3/3x. (In
particular, ag(h) # ToV.) However, g, = gl @ 52 @ 33. the rank 3
nilpotent Lie algebra generated by the Yl, Yz themselves, Probably the
easiest way to see this is to put a different grading on V; namely, make the
t component of order 3. Then Yl, Y, are both homogeneous (of degree 1) and

we can apply the result of Example 6., (This is legitimate since no dilation
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structure on M is involved in the definition of gx.)
The above illustrates that 8¢ need not equal h in general, However,
Claim: There is a canonical surjective morphism of graded Lie algebras

8g b 0. (Thus b is the quotient of g5 by a graded ideal,)

Pf, Define y as in Example 6. Noting, as in Example 5, that the
leading term of a commutator is the commutator of the corresponding leading
terms we see that y maps LY into and onto hi.l Clearly, y factors through to
induce a map 36 -)hi —> 0. The above remark about the leading term of a

commmtator shows that this map is a Lie algebra homomorphism,

We give two cases in which the above map go'-éh is an isomorphism (as

shown by dimension arguments).

Case 1. As a Lie slgebra over R, h is the free nilpotent on kX generators of
rank r. (This does nmot imply that as a Lie algebra of vector fields on

V h is free of rank r at 0.

3 3 3
Example: h =—, x— . h =—, V=V (& V )
oo’ a2 02 e 1 2 )

X t

Pf: 80 is generated by g%, which has dim £ k since L1 bas k
generators. Also, 8o has rank = r, Hence dim 80 £ dim b, and so 89 —h is

an isomorphism,

Case 2. Y;,...,Y; satisfy the Metivier conmdition (to be discussed below)

and, in addition, the vector fields in h span TOV. (I don't know whetber

et tr e e Tt et et e j
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this latter assumption in fact follows from the Metivier condition.)

Pf: Metivier condition = dim gg = dim V; spanning condition on

b = dim b 2 dim V.

Def. 1.,27: The filtered Lie algebra {Li},xo, of finite rank r at x,,

satisfies the Metivier condition if there is a nbhd U of X0 such that for

every i=1,.,.,,r dim ax(Li) is independent of xeU. This is a transposition
to the general context of Metivier'’s [30] condition in the context where L!
generates L,

The following proposition, in conjunction with the lifting theorem,
leads to hypoellipticity results. it shows, in particular, that the
nilpotent Lie algebras arising in Metivier [30] can be given an intrimnsic

formulation and gemeralize to the context where 1! need not generate L.

Prop. 1.28: Suppose that {Li}.xo satisfies the Metivier condition.

Then
(1) For all x in a nbhd of x4, dim g_ = dim M. Furthermore g, = gl (&

33@ @g;' where nxi ® dim gxi is independent of x.

(2) The 8y vary "smoothly” for x in a nbhd of xg, and the smoothness
is compatible with the projection operators ni:Li -)gi. More
precisely, choosing bases we can identify each g2y, 88 8 graded
vector space, with RY @ ... @Rnr in such a way that the Lie

algebra operations are C~ with respect to x. That is, we can

C e e e ’_..".,. RS '_.-‘ -t
N AT
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regard x ~>g, as defining a smoothly varying family of Lie algebra
' r .
structures on BR® @ ... ®B® , Moreover, for any X & L! the map
i i, L
x=n (X) ¢ g; is C .
The proof will be given following some preliminaries needed as well for the

lifting theorem,

Note 1.29: Altbough, under the Metivier hypothesis, the 8y vary smoothly
with x, the 8y need not be isomorphic as Lie algebras. In this case Cor.
1.20 shows there is no partial homomorphism from gxo to {Li} in a nbhd of
xg. For, by that corollary, such a homomorphism would induce Lie algebra
homomorphisms, and hence isomorphisms, by equality of dimension, from gxo
onto g, for all x in a nbhd of Xg-

Let {Li},xo be of rank r. Then ax(Ll) C_ax(Lz)C...Cax(Lr) = TM

X

forms & filtration of TxM. Let

; ax(Li)
Sx = —I (1.6)
cx(L )

r
so Sx =(:) S: defines the associated graded vector space,

V=1

.
~t

®Ux :
Let LI — s;-—ao be the natural quotient of the evaluation map ay.

Clearly ﬁi(Li'1 + mei) = 0, Passing to the germ level, ai factors through

b

A
to give a map ay

filling in the diagram below:
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Def. 1.30: Let b = ker af, and b, =1l ® ... @ nl.

Lemma 1.31:
(a) dim gi/hi = dim Si. so dim g /h = dim M,
. . i j i+j
(b) b, is a graded subalgebra of g,, i.e., [h], b1 C a7

(c) If the Metivier condition holds at xg., then hy = 0; in fact b = 0

for all x in a nbhd of X9 That is, 32 is an isomorphism for all

x in a nbhd of Xq -
This result in effect is an extension to the general context of a result of
Helffer—Nourrigat [20]. Because of the intrinsic, minimal, nature of By»

part (c) is sharper than their corresponding result. (They can only show h,

is an ideal),

pf:
(a) obvious.

(b) The basic point is that if two vector fields both vanish at x5, 8O

o8, W e e e T T T T S PN DR R .
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does their commutator. Let i hi: Y ¢ hi. , with preimages
(under m) Xi, XJ. By definition of b, , 3 xi71, xi71 4a i,
- Li-1, respectively, such that axo(xi—xi'l) = 0 and axo(xi-xi’l) =
0. Hence uxo([xi-xi‘l. x3-xi71y) = 0. But the Lie bracket = [X1,
XJ] + element in Li+j_1. Hence [Yi. i1 = ni:j([xi, Xj]) e hi:j.

(¢) For 1%ifr 1let k; = dim S: . Choose vectors e: ¢ T. (M), 1%;%k,
° J X, 1
sach that e%.....ei is a basis for “xc(Ll)’ e%,...,ei 3 e%,...,e%
is a basis for oy (LZ), etc. Choose xi ¢ Li such that a (X@) =
) J Xe )
i

ej.

For x sufficiently close to xj,, the vectors a‘(xﬁ) e T,M are
linearly independent, since the uxo(x}) are. This, together with
the Metivier hypothesis, implies that the ax(xi) with iﬁio form a
basis for ax(Li ) for all io £r (for x sufficiently close to xo).
which varies smoothly with x, In particular, in a nbhd U of

X0 Li is the space of sections of a vector bundle with fiber

ax(Li). Thus, in this nbhd, any XeLl can be written as

MMM

’ 3! '

X = 2 £ X; , with uniquely determined f; e C (1.8)

i'%i

By definition of x}, a

X

o(X) e ay

(L3 @ tixg) = 0 Vj. This
0 J

, i.e., that X ¢ Li™1 + m

. i
says simply that fj e mx° .

Li. That is,
[ 2

hx° = 0. The same argument shows h, = 0 for any x ¢ U,

We can now prove Prop. 1,28,

. e
'.l.l.lnnﬂ

Pe:

- (1) Clear from (a) and (c) of preceding lemma, and fact that, by

3
-
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Metivier hypothesis, dim Sl is constant for x e U.

(2) Maintain the notation imn {c¢) of preceding proof. For zxe0 let
Y%(x) = ni(xg). By definition of the xg and preceding argument,
the ai;x§) form a basis for Si. for each xeU and each i, Hence,
since Ei is an isomorphism, the Y}(x) form a basis for gi. Ve
shall show that the Lie bracket of the Y}(x) is smooth imn x, Fix
iy, iy, jy» jg. By definition of the bracket, [Y}'(x), Y}t(x)] =

i, +ia ryi  gia
ny ([XJ.' XJ‘]). By (1.8)

where the f} are smooth.

Fix x. Then f% = the constant function f%(x) + element in m So

x°

i +1

Po+i. i i i+i
1 2axt %) - E £l 2yl 2
3" Ty ; i j

So, since f} is smooth, the bracket is smooth,
Similarly, using (1.8) we see that for any XeLi, ﬂi(X) =2 f%(x)Y%(x).

So, x b)ni(X) is smooth with respect to the given bases.

Lemma 1.32: Let B be an arbitrary cross-section of [Li},x. Then for every

120, o, LY =0, (8el ® ... & g, 0= on.

This follows immediately from the stronger Lemma 1.35 proved below., A

. '.‘.-".."..". o e, _~.'_.. '_..‘_-.".."..>..-‘_- A ‘_..-_- -

P - » .t PR P
PP AP AT AP P Sl P 2P AP S e
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simple direct argument also follows from diagram (1.7).

Our definition of h, has been completely intrinsic, It is useful to
have the following characterization, more in 1lime with the analogous

construction of Helffer—Nourrigat.

Cor, 1.33: Let B be an arbitrary cross—-section of [Lil,x. Then

bi=(ap 0 B Na sl @ ... @ i, = (o0 7O
Pf. Follows immediately from preceding lemma and diagram (1.7).

Cor. 1.34:
(a) o (B(g,)) = T.M.
(b) The mapping u -9eﬂ(“)x is Iocally a submersion from a nbhd of 0 in

g; to a nbhd of x in M.

Pf:
(a) Follows immediately from Lemma 1.32 and the spanning condition,

(b) Follows from (a) and the fact that the differentinl:To(gx) > TM

of the above map is given by v+>a (B(v)); here we identify g,

with its tangent space at O,

The foilowing consequence (Cor., 1,36) of Nakayama's Lemma will be a
basic tool in our proof of the lifting theorem in §2 (amnd, in its microlocal

variant, in our discussion of the asymptotic moment-map in 8§3). It is our

'. J- .-. -.- '.. ..\.~~ '-. - o .- < R - .Q s - - ) ~ - T e . - - Ol T et et I PR P P
------- Y '- *. Y * " t- .
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substitute for am explicit a priori relation between gy and a set of

generators for {Li].x. The result bolds at the germ level, and this is
sufficient in practice for handling the local level, especially in view of

Remark 1.3.2.

Lemma 1.35: Let {Li},x be a filtered Lie algebra of finite.rank. r. Let d
= dim 8y, Let {Ya}, 1£afd be an arbitrary graded basis for 8y i.e., a basis
such that each Y, ¢ gi for some i, which we denote by lal. Let B be an
arbitrary cross-section. Then for each ifr the germs of vector fields

{ﬂ(Ya)llu'Si span ii as a é: module.

Pf: By induction on i. Suppose true for i-1. Let (Y}, |a| =i, be a

basis for
. L,
Sl - i .
x [ - .
L1~1+mx i

Given the cross—section B;, let [B,(Y )] denote the image in Lilii-l of

B(Y,). Now, by Cor. 1.12 together with Remark 1.14, it follows that

¢ -—module. So, Li = (span of

([B;(Y )]} sgenerates L;/L;_; as a C
{B(Ya)]lal=i) + L1 (this not being a direct sum). But by the induction
hypothesis, Li-1 - span of {ﬂ(Ya)]|a|$i-1' It remains only to treat the

case of i=1, But for i=1, ii-l = 0, and




T T N T N T T T N T T T [ T N ™~ = v~ = o . =y -
“
Y
.

and the result follows from Cor. 1.12.

Of course, when i=r the statement follows directly from the spanning

hypothesis.
Cor. 1.36: Let X ¢ ii. Then

X = 2 cug(ya) + } faﬂ(Ya) + } gaB(Ya) (1.8)
|a|=i |a|$i la|=i

where the ¢ ¢ R are uniquely determined by the equation

n (X) = 2 oY, - (1.9)

Jof-

s D
where the fa are in Cx’

and the 8q in

(The f, and g, are not

necessarily uniquely determined).

Pf. By the Lemma,

\".. '.--'7.~‘A.I.:;"‘..-':{ ¢ "..* AR AT AR
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X = } £B(T) + } nB(Y),
Jaj<i le|=i

with fa‘ h_ in é° For |a| = i, let ¢

a x° = h,(x) and g, = h —c,. This gives

a

a representation (1.8). Applying n; to both sides of (1.8) yields (1.9).

Remarks 1.37:
1) Most of the work in this section has been based on elementary local
algebra considerations, and so (see Remark 1.,1.1) carries over to the real-

analytic and formal power series contexts. In particular, we can define

anulytic‘ formal

8x » and the corresponding h 's, If Lformal ;g the

8x
*formalization” of the C* filtered algebra L, or if L is the #C®-version® of
the real-analytic filtered algebra L2D81¥ti¢  then variants of Prop. 1.19
and 1.24 show that there are, respectively, canonically defined surjective

Lie algebra morphisms

g —gfommsl , (1.10)

analytic

x -93‘ =0

formal analytic
by ,  h3nely

mapping hx onto onto h and, hence, camonical

x'

isomorphisms of homogeneous spaces




cat

analytic formal

4
x x x . .
_— L = R all of dimension = dim M, (1.11)
h:nllytic hx hf:tlll

I do not know in genmeral when the maps in (1.10) are isomorphisms; however,

this is easily seen to hold if L satisfies the Metivier condition,

2) Suppose that the strong finite gemeration condition (5 local) of
Remark 1.3.2 is satisfied at Xg. Then Remark 1.3.2, together with Lemma
1.35, shows that any cross-section f at x, determines, for each x
sufficiently close to Xg, a graded R-linear surjective map ng -> gy via
Ye 3ior—9n:(B(Y)). This map is in general not a morphism of Lie algebras
(since Y '--)B(Y)x is not necessarily a weak homomorphism except when xz=xg).
However, as x approaches ) the 'deviatiog' from a Lie algebra morphism

approaches 0, (Compare with the proof of Prop. 1.28).
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$§2. The Local Lifting Theorem

| In this section we prove a version of the Rothschild-Stein lifting
theorem, based on the treatment of Goodman [8], and follow this by a proof
of the corresponding homogeneous space (rather than group) version of
Helffer—Nourrigat [20].

Goodman has observed that, simply for purposes of lifting, it is not
necessary to insist on a free nilpotent group. We carry this idea further
in showing that such a lifting can be carried out in the general context of
filtered Lie algebras via the intrinsically associated nilpotent Lie
algebras. The lifting results give a precise sense in which these nilpotent
Lie algebras "approximate” the original filtered Lie algebras. This is of
interest since, in view of Prop. 1,19, these algebras are in some sense
"minimal” approximants.

Direct applications are to hypoellipticity, as we shall show in this
section, and, possibly, to approximation.of control systems, as we shall
indicate in 4,

One significant fact is that weak (vs. partial) homomorphisms, which
are all that we have available, are sufficient, One consequence is that we
can do a direct lifting in the Metivier case.

Although the main line of the argument is very close to that of
Goodman, there are differences due to dealing with weak homomorphisms, among
them an increased complexity of "bookkeeping®”. To save space we shall not
give full details,

Let g = 81 C) ese (} 8, be a graded nilpotent Lie algebra., Then the

natoral dilations &, (t>0) given by 5, f 8; = ti are Lie algebra




sutomorphisms, and determine associated Lie group automorphisms. The
discussion of homogeneity with respect to dilations and of local order i
in Example 1.26.5 carries over fully to the present context.

For Yeg, let Y denote the pull-back via the expomential map exp:g — G
(the associated simply-connected nilpotent Lie group) of the left—invariant
vector field on G associated to Y. (More loosely, Y is the left-invarianmt

vector field associated to Y, written in exponential coordinates).

F(fo exp)(u) =3 flexp u exp tY), £ e C (G) (2.1)
dt [t=0

If Y & g; then f. viewed as a vector field on g, is homogeneous of degree i,
That is, homogeneity as an element of the Lie algebra g, or, more gemerally,
as an element of U(g), the enveloping algebra, is consistent with the notion

of homogeneity as a differential operator on a graded vector space.

Notation 2.1: C;(U) is the set of C” functions vanishing of order 2 m at

0 e g, in the sense of Example 1.26.5. (U is a nbhd of 0 in g). C_(U)
c®(v) if mo,

Note that

® @ ® ©
cl C.CCm_n (2.2

el




.................

If f e C: and X is a vector field of local order S j at 0, then fX is

of local order £ j-m. (2.3)

(Of course this statement is useful only when m 2 0.)

L -]
m, =C

© N @
o 4} more gemerally, C C moCCN . . (2.4)

(We often use the inclusion myC C;.)
Let {Li),xo be a filtered Lie algebra of rank r on the manifold M. Let
B be an arbitrary cross—-section, In analogy with Goodman, define a map

W:C: (M) -9C3(gx ) (really from a nbhd of xg in M to a nbhd of 0 in g, ) via
] N ] o
o) (@) = 2P Px ) (2.5)
Notice that for any vector field X on M and f ¢ C: (M)
]

W(EX) = W(E)'WX ; if f ¢ m: then W(£) e m:
0

(-]
< Ck . (2.6)
The theorem below states that W is a "weak intertwining” between the

elements of {Li} and the elements of 8y » viewed as left—invariant vector
[}

fields.
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Theorem 2.2:  (Lifting Theorem). Let Y e gi and let X = B(Y). Then
o

X

X = (§+R)l. where R is a C® vector field in a nbhd of 0 in 8y which is of
[]

local order £ i-1 at 0.

ShNHN _.n O

Remarks 2.3:
1) Since in general the map u —9eB(“)xo is not a diffeomorphism, but
only a submersion (see Cor. 1.34),the vector fields R are not uniquely

determined,.

2) Each R can be expressed as a C* linear combination of the frames Y.
It then follows directly from the homogeneity degrees of the R's that the
- span at 0 of the vector fields Y+R is the same as that of the Y, i.e., all

Of Togxo .

7 3) Altﬁough gx° is in some sensg the minimal algebra to which one can
%) 1lift, the same proof holds if we replace gx. by any graded nilpotent g with
a weak homomorphism y from g to L at x_such that the associated Lie algebra
homomorphism n y:g -9gx' (see Prop. 1.19) is surjective; (alternately, for
any graded nilpotent g together with a surjective homomorphism to By, ).
This follows from the fact that Lemma 1.35 and its corollary, which are
basic ingredients in the proof of the lifting theorem, bhold with B replaced

by v. This is seen from a trivial argument with the diagram in Prop. 1.19,

The lifting theorem has the following corollary.

R G G S N A O 1 R T AT S R S U S R S




Cor. 2.4: Let X ¢ L. Then WX =

(ni(X) + S)VW where S is of local order
£ i-1 at o0,

Notice that slthough W depends on B the element n;(X) & gi is
9

intrinsic.

Pf: Apply the lifting theorem, and them use Cor. 1.36, together with

(2.6) L]

We pass next to the proof of the lifting theorem, following Goodman.

One begins with the following identities between formal series

in an
associative algebra (X,Y,Z being elements of the algebra, and DX = ad X: Y =

IY-YX)

(2.7)
dt :

Ky - 4|  XHBOOY

(2.8)
dt £=0

d X+tY+tZ d X+tY d X+tZ
_— e = — e + — e

(2.9)

where
AN SRS




x k
Bp =2 =) LUt (2.10)
Dy 5o (K*D)! :
D .
B = —2— =) —Lu 0l (b = k-th Bernoulli number). (2.11)
l-e X k20 k!

The identities (2.7)-(2.9) are to be interpreted in finite terms, as graded

identities, via the symmetrization operator o, given by

o(X®) = 2 (XY + ®Iyx +...+ XY
n+l

For example, (2.7) is equivalent to

k
2 s(x™y) - } S %y,  n=0.1.2,...

X
n! Kigeg (E*D1)Im!

(2.7%)

We will be applying these in the context of two associative algebras,
that determined by the Lie algebra of vector fields on M in a nbhd of Xg,

and that determined by the Lie algebra of vector fields on g8y in a nbhd of
]
0.

curves in G
xo

From (2.8) it follows that, for Yeg, , the
]

t = exp u exptY and t —exp(u+tB(u)Y) have the same tangent vector at t=0,

.. et ettt mae .
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- so

2
.l‘l

Fe(w) =<2  f(u+tB(w)Y). : (2.12)

dt t=0

£,
4 % e s

)
e 4

That is, at w Y is the directional derivative in the direction B(u)Y.

(Since 8y is nilpotent the series for B(u) terminates after finitely many
[ ]

terms, so that B(u)Y is polynomial in u.)

Next one works at the level of formal power series at u=0., That is,

one constructs R such that Thm, 2.2 (1) holds as an equality of Taylor

series at u=0.

Notation: For ¢ ¢ C“(gx ) defined in a nbhd of 0, and $, & Cp
- o

$ ~ } $, means that ¢ ~ 2 ’k e C:+1 for evéty m, (2.13)
.. n kim

Since B is R-linear it follows that

we(n) ~§ 1 (5(u)nf)(x0), for any f e c: M) . (2.14)
> n! 0
nz0

. Ve may express this by saying that, formally, W = eﬂ(n). (As in Lemma 1.35

let {Ya}, 1£afd be a graded basis for 8y . with (na} the corresponding dual
[]

basis, Then, by the R~linearity of B, (2.14) gives the Taylor coefficients

at 0 of Wf, with respect to the coordinates u,, in terms of the Taylor

coefficients of f at xo.)
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Then, by (2.8), for every 1%ald

W) = 4| PuIreB(RaNB,) (2.15)

dt)i-0

Examine the right-hand side of (2.15). If B were a homomorphism of Lie

algebras over R and, hence, of associative algebras, then as formal series

B(u) + tB(B(u))B(Y,) would equal B(u+tB(u)¥ ). But replacing f by Wf in

(2.12) and using (2.14) we get

(IWE) (u) ~ 4 (ep(n+tB(u)Y)f)|x , where ~ denotes equality (2.16)

dt t=0 0
of Taylor series at u=0,

Thus, if B were a Lie algebra homomorphism, we would have WB(Ya) = ?raw

formally.

The crux of our work then consists of showing that with B "close
enough” to a homomorphism we can get good control of the difference between
B(B(u)Y,) and B(g(u))B(Y,).

We start with the basic weak homomorphism equation from Def. 1.15 which

we write in the more convenieant form

........................
------

———— -
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[B(Yy). B(Y )] = ﬁ([Yy. Yo+ 1‘,|"|"|“|‘1 +d L|7|”|°| (2.17)
0

for Yy, Y e ng'. gl:|, respectively.

where Ial (as in Lemma 1.35) demotes the weight of Y.

Write

u = } vY .
T Y
v 4=

Following Goodman, let K = [k(y))lyl(r denote a multi-expoment,

|€] = 3 k(y), the usual length of K, and w(K) = T k(y) |y| the weight of K.

Let
D =ad ¥ uK =TT nk(Y)
Y Y Y
Y
-~ K k(y) 1
D = ad B(Y) D" =|ID , b, =—0b> R
Y BT, Tj? S

A ”~
pf =TT k(¥
Y L4

and let o, as before, be the symmetrization operator, Note that




K @
e CW(K) (2.18)

o

By definition of B, and R—1linearity of § we have

B(u) = } bxnxo(Dx)

|&|20
B(B(n)) = } bxu‘o(?)‘) (2.19)
|K|20

An induction on |K|. starting from the equation (2,17), proves
Lemma 2.5:

) = pfx ) + ilel+w(®)-1 i el
0

(Of course, for K=0 we don't need the two error terms on the right—hand

side) .

Cor, 2.6: B(p(u))p(Y,) ~ B(B(n)Y,) + T (u) + S,(u), where

AR I I TR T I I I
P R Bt
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s la|+w(K)-1
Ta(n) ~ 2 bxuxL| I
K21

s (u) ~ } bxu‘(axof,'“'*"‘")
) {pal

{Notice, |K|21 for all the above terms.)

Substituting this into (2.15), and using (2.9) we get

WB(YG) _ ;%_ eﬁ(u)+tB(B(n)Ya) . th °B(n)+tTG(u)
t=0 £=0
(2.20)
L4 °ﬂ(u)ﬂ:sm(u)
dt =0

_~

We saw in (2.16) that the first term is Y W. Using (2.7) we see that

the remaining two terms are givem by

B(u)+tT (w)

Y ¢ - WE(B())T (u)
dt a
t=0
(2.21)
g B8 L s (e
dt t=0

As in (2.19) we can express E(P(u)) in terms of the dual basis [uY}.

.........................................................................
.................................................................
..........................
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K
1) uxa(Dx) (2.22)

E(g(u)) =
IKI)O (K+1)1!

But B(YY) e Lh', and each B(YT) has a coefficient of u_ to accompany

R 4
it in (2.22). Thus a simple computation shows that

E(B(u))T () ~ 2 cxuxl:lalhr(l)—l
[Kj21
(2.23)
s, - § IO L 5 gk, il
ki1 [k |21 0

where the cg. ag, dg are (universal) constants.
Now use Lemma 1.35, together with the fact that, since xo is of rank r,

Lr

. = f‘:+1 = ,.,, . We express this as follows:

Let X ¢ L1

If i<s X = } £EB(Y) , £ &€

a X
|a lﬁi 0
(2.24)
If i2r X = 2 £8(Y) . f e é:o(u)
la|<z

In the summations in (2.23) it will be more convenient to use w(K)
instead of |K| as the index of summation. (Note that w(K) 21 = K| 2 1),

Now use (2.24) in conjunction with (2.23), The first summation gives




r-|a|
K
E(B(@))T (u) ~ Y e } £, gB(X))
w(K)=1 Jrja]twx)-1

(2.25)
K
£ ) ¢ ) 8aygP(T,)
u(K)2r- a1 v |£z
where fa-yx' 8ayK lie in é:o .
Next apply W. Letting
Y ofwe, ) if 1&aSe-|a|
ayk
o(n) - W(K)=n (2.26)
ay
E “KW(sayK) if n)r—|a|
w(K)=n
we get
(n)
¥E(B(2))T (u) ~ ) Ogr WB(T,) (2.27)
Jv )<=
n21

Since uk ¢ C:(K) it follows that

.........
............
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o(n)

e C_  for every n’1. (2.28)
ay n

Also, a close examination of the indices appearing in the preceding

derivation gives

1%afr-|a| and v} ]e]+n-1

O(n) = 0 unless (2.29)
ay

or n>r-|a|

Since |r| £ r, in either alternative in (2.29) =n 2 |v|-|af+1. V¥e conclude

from (2.28) and (2.29) that

(n)
ay

-] (-]
)
] e Cn c|7|'|“|+1 for all @, v, and all nfl. (2.30)

A similar analysis is dome with the second sum in the second idenmntity

in (2.23). TUsing the fact, noted in (2,6), that if f e & then

Xy

W(f) e By C CT, we find that

w( } dxnx(xix plelw@,, } Q‘:’Wp(ya) (2.31)
w(K)21 0 Jv |z
n21

where

A I T S A e
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..

n () = - IR

% ’GY ¢ C .4 C|1|_|u|+1 for all @, vy, and all n’l, (2.32)
"

= Let

(n) _ e(n) + Q(n)

,ﬁY ay ey

Adding the results of (2.27) and (2.31) we obtain from (2.20) and (2.21)

that
W) ~Tw+ ) ,s;‘;)w;s(r_{). where ¢$) el CT""'“""I (2.33)
- n21
- Jv|&=

The identity (2.33) is of the basic form introduced by Goodman, but the

condition on.ﬁgz) is more delicate than that arising in his treatment, Let

Ui C
o

s
¢

$, denote the matrix (¢£:)). and let Y, B(Y), WB(Y) denote the respective

column vectors (?a). (B(Y,)), (WB(Y,)).

Since ¢, has its entries in C:. i.e, , of successively higher degree,

»
L R

the formal series S = 3 $, converges asymptotically. Since n21, S vanishes

y to order 2 1 at u=0, so the geometric series T = 3 S® converges
ng

asymptotically (and vanishes to order 2 1 at u=0). Next use the more

ay
hence that S:Y , the ay entry of S®, lies in cTY"'“

i (n) : : : . @«
delicate condition on ¢ . This implies that sav is in C|y|—|a|+1' and

l+a*

" Thus




.......

69
cq (2.34)
: ay © "ly|-|a]+t
snd, since I+T is the formal inverse of (I-S), we obtain from (2.33) that
5 wB(Y) = (I+T)¥w, as formal series | . (2.35)

Notice that (2.34) and (2.35) prove the formal series version of the lifting

theorem.

Remarks 2.7:
1) Thus far we have not really needed the spanning condition a, (LY) =
o
. T, M, but only the stability condition Lf = LI*1 = ... . It is only when
[} ] [

we pass to the C® rather than the formal level that we need the stronger

condition, so that we can apply the implicit function theorem.

2) This work at the formal level should not be confused with working

with sﬁormal (see Remark 1.37), which can be a strictly smaller-dimensional
0

Lie algebra than | S For example, two elements in Li formally equivalent
(]

i
t

NREAENEN .‘.\.

at x; may nevertheless have distinct projections in g and hence, by Cor.

formal (see

2.4, distinct 1ifts. For some purposes we may wish to lift to gx

for example Remark 4.3.3). However, for most purposes of analysis we must

(N T T 4
T ¢

retain information at the germ rather than formal series level. For
3 example, we may need to 1lift at all points x in a nbhd of xo while
maintaining smoothmess in x, As another example, P(x'g). to be discussed in

$3 (and its local analogue rx) do not appear definable at the purely formal

o v a

AR S A e i Y
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series level.

The passage from the formal series level to the C® level is now exactly
the same as in Goodman: First use Borel’s theorem to find a matrix, also
denoted T, of gemuine C” functions in s nbhd of u=0 having the original
matrix T as its formal power series expamsion, Thus (2.35) is replaced by
the corresponding c® equality, but with an error term in C: = /“\ C:.
(Notice that C, is invariant under arbitrary diffeomorphisms, as nee;ff for
the remainder of the argument,). By the spanning condition (see Cor, 1.34)
it follows that the map u -)ep(n)xo is a submersion in a nbhd of u=0, so one

can apply the C° implicit function theorem to find local coordinates

tl.....td in a nbhd of u=0 such that tl....,t are local coordinates in a

m
nbhd of X3, and such that the above map takes the form of projection
(tg,vesty) = (tg,en,ty). Thus (WE)(tg,...,tg) = f£(ty,...,tp). (This,
coincidentally, gives additionai sense to the term "lifting”.). From this
one easily sees that the error term can be written as QW, where Q is a

column of vector fields of local order - «, Taking R = TY+Q proves the

theorem.

Remark 2.8: A corresponding lifting theorem holds in the real-analytic
context. Start from the equation WX = (Y+R)W which holds in the C” semse.
But now W and X are real-analytic; and f, being a left-invariant vector
field on 8y, is real-analytic (in fact, polynomial, as we saw in (2.12),
since 3:, is nilpotent), Thus RW is real-analytic, even though R is only

C®. Using the real-analytic version of the implicit function theorem to
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express W as a projection, and using Taylor series truncatiom, it is easy to
find R’ real analytic such that R’V = RV, and with the correct local order

at uv=0,

We next imtroduce the "enveloping” algebra "U(L)".

" Def., 2.9: Let m be a non-negative integer. Then "U®(L)" is the vector

space of all differential operators of the form

= ) a (0K e

|a|<a

where X & L%, a,(x) ¢ C:(M) (the complex-valued C” functions), and

le] = ag+.. . tay.

Notes 2.10:
1) "U(L)®" is not the same as the enveloping algebra UC(L) in the

algebraic sense; it is, rather, the image of C:(M) GD R U(L) under the

natural map into the differential operators on M,
2) The representation of P in the above form is not unigque.

For g graded nilpotent 1let U,p(g) demote the elements in Ug(g)

. homogeneous of degree m, Given P ¢ *"U®(L)* and xo ¢ M we would like to be
.A. ~
; able to intrinsically assign to P the element Pxo € Um(gxo) given by
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o~ A -~ A i i
P = } a ()X ...X , where X =a (X ) eg . (2.36)
b 4 a 0 a a. a, x a. x
0 1 i i 0 i 0
ja]=n
In general, in view of the non-uniqueness of representation, P, is not

well-defined as the example below shows. (This is quite natursal, since in

general dim M ( dim g, ). However, as we shall discuss in §3, n(Px ) is
] [

well-defined, where mn is any vunitary irreducible representation of Gx
0

associated to a coadjoint orbit in rx .
°

Example 2.11: Let

M= R1+ ‘Rz » X. = —?_' X =t L’ X =t L’ X . = _a—' X .= —a-. R
t X, ,X 1 at 2 ax 3 ax 4 ix 5 ax
1’ 1 2 1 2

Let bh; be the span of Xy, X,, X3, and h, the span of X4, Xg. Then the
graded Lie algebra h = hy + h, determines a filtered Lie algebra as in
Example 1.26.6. Note that X,X; - X3X4 = 0 as an element of 'US(L)'. though
# 0 as an element of Uj(h).

If the Metivier condition of Def. 1.27 holds then since dim g, = dim M,
the map u —exp B(u)x from 8y to M is a local diffeomorphism, and not just
a submersion; so the associated map W is just pull-back with respect to this
diffeomorphism. In particular it follows from Cor, 2.4 that

~J

A
vl = Px + S, where S is a differential operator of local order $ -1,
0

A
Thus Px is well-defined.
[

Maintain the Metivier condition, We want to complete part (2) of Prop.

-

R o R R R A S A A N A B ST I 200 R T R
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1.28 by showing that this local diffeomorphism can be arranged to vary

smoothly with x.

Lemma 2,12: Suppose the filtered Lie algebra {Li},xo satisfies the Metivier
condition. Then for x in a nbhd of xq it is possible to choose the cross-—
section B :g., —>L in such a way that the map (x,u) > exp B, (u)x is smooth

simultaneously in x and u,

Pf. Ve keep the notation from the proof of Prop. 1.28.(2). Since the
Y}(x) form a basis for gi. we can define a cross-section by Bx(Yg(x)) = X}.
Thas the map (x,u) > exp P (uv)x becomes simply the map (x,u) —

1 are C°. so0 we are done,

exp(Znijxg(x))x. But the vector fields XJ

Cor. 2.13: Choose f as above, and W correspondingly. Then the "remainder”
terﬁs R and S in Thm. 2.2 and Cor. 2.3 vary smoothly with x in a nbhd of X0

(simnltaneously with smoothness in u).

Pf: (In the case of Thm. 2.2 we are, of course, assuming Y is chosen
~7

to vary smoothly with x). W_p(Y wol = § 04 R, and W xwl = xi(x) + s,
xP i’y x 2 x x

Since everything else is smooth, so are R and S.

The type of smoothmess in x occurring in Prop. 1.28 and in the above
results seems essential for applying the techniques of Rothschild-Stein
[37]. It is possible that in our context, by elaborating on the observation

in Remark 1,37.2 one may avoid lifting to a free nilpotent, but lift instead

B A T B S . . . - o o B DI - L SRR
« « et ot . .. .
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to a Metivier context, (In any case, one expects all hypoellipticity

o information to involve only the Px; in particular, only the gx.)

- In the context of a filtered Lie algebra L one can define a natural

notion of hypoellipticity (which we shall also wish to use in §3):

Def. 2.14: Let P be as element of *"U™(L)*., Then P is L-hypoelliptic at X0
if there is an open nbhd U of x; such that for every Q e *U(L)" there

exists a constant CQ > 0 such that

2 2 2 m
|af Lc,(]|rt] + |1£]] ) Y e C (U) . (2.37)
| ”sz atleell L2 I Rt 0

Tﬁis is, of course, just the analogune of the maximal hypoellipticity notion
of'Helffer-Nourrigit ((19], (21]); in fact, from ome vantage point it is
O simply maximal hypoellipticity in the comntext where tﬁere can be generators
of degree mot equal to 1. Ve feel, however, that this notion is viewed most

naturally in the context of the filtrationm L.

s

Remarks 2.15:

1) In the preceding definition we assume to be on the safe side, that
the strong finite generation condition (5 local) of Remark 1.3.2 is
satisfied at X9

2) We are assuming also that x, is of finite rank r. Also, if L1 does

«

not generate L, we assume that m is an integer multiple of the least common

P

multiple of 1,2,...,r. Then there seems to be no obstacle to extending the

© o

Pttt

-

PTREON




arguments in [17], [19] (based on Thm, 17 and Lemma 18.2 of [37]) to show
that L-hypoellipticity at x; -> hypoellipticity in a nbhd of x;. (The

condition on m, while necessary in gemeral, is quite harmless.)

Rothschild ([36]), using the nilpotent algebras constructed by Metivier
in [30], derives a sufficiency criterion for the hypoellipticity of
differential operators comstructed from vector fields. (The necessity of
her condition, for maximal hypoellipticity, follows from Helffer-Nourrigat
[20]). Using our Prop. 1.28 and Cor. 2.13 in place of the Metivier
construction, the proof seems to carry over, essentially unmodified, to the

context where L1 need not generate, We state this as

Prop. 2.16: Let {Li},xo satisfy the Metivier condition (and the conditionms
in Remarks 2.15). Then ‘
P ¢ "U™(L)" is L-hypoelliptic at xq é—én(;xu) is left~invertible
for every non~trivial unitary irreducible representation

n of Gx .

Helffer and Nourrigat [20], motivated in part by Folland [27] (see also
Example 1.26.6) prove that in Goodman'’s original 1lifting context (Ll
generating, snd with a8 partial homomorphism) onme can obtain an actual local
diffeomorphism rather than simply a lifting, by passing to a suitable right
homogeneous space of the group and the corresponding inauced (by the
ideniity) representation instead of the right regular representation (as in

the lifting theorem).
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The corresponding result bholds in our context, starting from our
version of the lifting theorem. The homogeneous space in question is that

associated to the intrinsically constructed graded subalgebra

by = b @ .. @By , by being ker G; , of Def. 1.30. Aside from

technical modifications of the type needed in our proof of the lifting
theorem, the argument is essentially that of Helffer and Nourrigat, Ve
shall therefore limit ourselves to a statement of the result, and omit the
proof,

Let Gxolnxo denote the right cosets of H, . Then right translation by

o

G determines a representation of Gy

- on L2(Gx /H_ ) which, at the Lie
o 0 ]

° p 4

algebra level, maps Y & g to its push-forward vector field (well-defined)

under the canonical projection ":Gx, d /Hx (equivalently, to the vector
] .

field on G, /H, associated to the right action.of Gy on Gy /H_ ). This
] [y . o []

turns out to be (o h.)’ the unitary representation of G‘ induced by the 1-
, 0 [y

dimensional identity representation of H . (In terms of our earlier
o
notation, Y = fg,0) (D)
Following Helffer—Nourrigat, we introduce a concrete realization of

L]

"(O.hx,)‘ Choose a supplement Vi to hiain gi.,and let

Lo
vV = Vx .
o =1 Yo
By Lemma 1.31 dim V; = dim M. For u e V  let u,, 1£ifr, denote its
0 ?

defined by

projection in V; . Then there exists a map -(:Vx 23
o °

X,
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L' S u

e e cee © 1. ey(u). ueV (2.38)

X

Define h(u,a):V_x g. —>h_  and o(uw,a):V_x g —V_ by
x,” Sx x, x,* Bx, X,

°y(n)ea - °h(n.a)e‘r(c(u,a))

gy

(2.39)

Since Vx is a graded subspace of g the natural dilations on 8y
o [ ]

induce dilations on V; . The map y clearly commutes with dilatioms, and
]

hence so do h and o. The induced representation T(0,h. ) is realized on
» XO

2 .
L (on ).vxa

n(0,h )(e®)f(u) = £(o(u,a)) , aeg . (2.40)
%o )

Thus

n(O.hx Y(a)f(u) f(o(u,ta)) (2.41)

0 dt
In particular, since ¢ commutes with dilations,

ﬂ(O.hx )(Y) is a vector field om Vx homogeneous of degree i (2.42)
0 ; °
. 1
if Ye gx,'

(This is consistent with the intrinsic realization of n0,h )(Y) as the
Lk Y

push-forward of Y under n.)




Let B:gy —>L be a cross—section, and define Ox from a (sufficiently
o (4]

small) nbhd of 0 in Vx to a nbhd of xg in M via
[

9 (u) = oPl7(®)) (2.43)
b4 0

0

One sees easily from Cor., 1.34 that @, 1is a local diffeomorphism. Let

9; denote the pull-back of vector fields with respect to e, .

[} °

We can now state the theorem.

Theorem 2,17: Let Y ¢ gi°. Then 6: B(Y) = (o By y(¥) + R, where R is a
[ ’ °

C® vector field in a nbhd of 0 in Vx of local order £ i-1 at 0.

Of course, since 9; is a diffeomorphism, the vector fields
[}

ﬂ(o.h‘ J(Y) + R span at O,

] i | J _ i
Cor. 2.18: Lt X & LY. Then 07 X = n(op )(n}

(X)) + S , where S is of
]

local order £ i-1 at 0.




§3. Microlocal Nilpotent Approximation

The correct formulation in the microlocal context is suggested by the
motivating problem, that of microlocal hypoellipticity. Since microlocal
hypoellipticity should be invariant under Fourier intégral conjugation, one
takes the 1local context and conjugates by FIO’s (Fourier integral
operators). Vector fields become lst-order ¢DO’'s (with pure imaginary
principal symbols); C” functions become O-order ¢DO’s. The microlocal
analogue of the spanning condition (alternately viewed, a microlocal
controllability condition) is at the outset more problematical. Once one
realizes that we are allowing the cotangent vector (x,f) at x to vary, and
that the approximation should depend on & as well as x, one sees that

spanning is too strong a criterion., We shall discuss the correct condition

below. -

It suffices (and is probably most natural) to carry out the
approximation process at the principal symbol level. We shall assume our
¢DO’s are “classical”, i.e., that their total symbols bhave positive-
homogeneows asymptotic expamsions, in particular, positive—bomogeneous
principal symbols. With some minor modification, as we shall indicate, our
work can probably be carried out in the context of the larger symbol
classes, Si,o of Hormander. (Since the principal symbol of 3%7 = iﬁj, we
shall, in order to deal with real principal symbols, find it mor: convenient
to work with %-. principal symbol.)

Various of the construoctions (and results) are quite analogous to those

in 81, so we can give here a somewhat terser exposition, (For a specific

result of 81, the corresponding microlocal correlate will be denoted by the
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suffix "m"; e.g., Prop. 1.7 m.)

Let M be a paracompact C~ manifold, and let Sﬁom be the vector space

over R of functions p:T‘M/O —R such that

p(x,A8) = AIp(x,8) for A0 (3.1)

As is well-known

i. g i+j
(2) Siom ° Sfom < Shon - (3.2)

(b) {Slilom , thom}C: i;g—l, where ° denotes multiplication, and
{,} denotes Poisson bracket,
(¢c) (f,gh)} = g*{f,h} + (f,g}°h, for any £f,g,h & C(T*M/0)

-

Specializing to the case where j=0 or 1, we get

(a) sgom is an R-algebra under multiplication, (3.3)

(b) Siom is a Lie algebra over R with respect to Poisson bracket.

(c) si is an Sgom—modnle under multiplication,

(d) siom acts, via Poisson bracket, as a Lie algebra of derivations of
sgom’ moreover, the actions are consistent, i.e., (3.2)(¢c) holds

1 0
for f,h & shon and g ¢ shom'

As in 81, let ° denote germs, but now in a comnic nbhd. For example,
éiom(xo,to) denotes germs in a conic abhd of (x4, §g).

The following result is simply the comic version of Remark 1.1.1, with

M replaced by S‘M/O, the onit-sphere bundle in T‘M/O.




égon (x,,E.) is a local ring with identity, with maximal ideal

‘(x z.) consisting of all germs equal to 0 on (the ray through) (3.4)
2o

(x9,§g). Moreover, the map

20
. hom(x_,& )
R ﬂ-—)S:o- (x.,E.) - = 00 is bijective.
0’0 (xo.ﬁo)

Def. 3.1: A filtered Lie algebra L at (xo,éo) of homogeneous symbols is a

exists r such that L § ) = °iom(x°.§ )

Lie subalgebra over R, generally infinite dimensional, of Siom' together

with a sequence of subspaces Li i=1,2,..., soch that

(1) Ltcir2c3c .,

(2) (i, Li] cLiti Vi,j

)

3 L=\ i

3=
(4) Each L! is an Sgom—module under multiplication

(5) As an égom (xg'g.)—modnle i%xo'to) is finitely generated for each

io

(For our purposes all points (xo.lto), A)0, i.e., the ray through (xo.to),

are essentially equivalent,)

In the local case the spamning condition, of rank r, is equivaleat by

Note 1.6.2 to the condition that i; = all germs of C” vector fields at Xq.

We make the analogouns definition here,

Def. 3.2: The filtered Lie algebra L is of finite-rank at (x5, §g) if there

The smallest such r is called

.........
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the rank of L at (x4.§g).

Notes 3.3:
1) This is, in fact, an ellipticity condition. More precisely, L is
of rank r at (x4,%,) (—)a‘fe I'.’("xo JE,) s.t. f(x5,89) # 0, and r is the

smallest such integer.

Pf:

( =) obvious.

( &) Since f(xg, §g) # 0, 1/f & é;gm(x £,)’ and so for any g e
o ?

01 . oo . [ [J .
shom(xu.ﬁ‘) 1/f g e shom(x,.ﬁu)‘ Since f ¢ foo:fo) and Lf‘O'Eo) is an

S0 : L
shom(x LE ) module it follows that g e L(xo'a.)'

2) Ve shall see below that, just as in the local case, to comnstruct
B(x ) we do not need the full stremgth of the finite-rank conditiom, but
[ RAd]

merely the stabilization condition ifx..{,) = ﬁf;t‘to) = vee .

3) The closest analogue to the map a; and the diagram (1.7) seems to
be the following. Let a be the canonical 1-form on T*M/0 s.t, da = w, the
symplectic form, (In local coordinates a = } gidxi.) By Euler’s theorem it
follows immediately that a(xo .8, )(Hf) = f(xo.ﬁo) if f is positive-
homogeneons of degree 1, and %(x ,E )(Ha) = 0 if g is positive—homogeneous

0?9
of degree 0. In particular, since Hgf = gHe + fﬂg, a(‘o'go)(ﬂf) = 0 if

ni .
fe ﬁ(xo'go)L(xo'to)' for any 1.
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4) If £ = i. the symbol of a vector field X on M, them, of course,

£(xg,89) = X(xg,8p) = Ay &2 = <oy (D), god.

Let {L1} be a filtered Lie algebra of vector fields. Since X X is a
Lie algebra isomorphism we obtain a filtered Lie algebra of symbols [fi) by
letting £i be al1 sgom linear combinations of symbols in Li. The above

shows that {Li} is of rank r at xg Ve e ‘I‘: M/0, {Ei}(x £ ) is of
° ¢ ?

rank £ r. (This rank can vary with §.)

5) Recall that Sf’o is defined to be the set of all C* functions p on
T‘H/O (real-valued for our purposes) such that for each compact set K C M
|agagp(x.g)| £ Cx(1+|§|)j'|“|. In this context two functions and, hence,
germs, are identified if they agree for || sufficiently large. The
statements (3.,2) and (3.3) hold with Sf.o replacing sﬂ.om’ j = 0,1, An
element f ¢ Si"o is ®elliptic” in a comic nbhd of (x,,§,) provided lil\m_)igaf
|£(x5, A&g)| > 0. Thus, Def. 3.1 could naturally be extended to this

context provided ome can find an appropriate localization for Sg o as 8

substitute for (3.4). At the moment it is not clear how best to do this,

6) It follows from 1) that if (x5, §;) is of finite rank, r, then

(x,8) is of finite rank £ r for all (x,&) in a comic nbhd of (xo,go).

Prop. 3.4: Let iy, (x9,8g) be a filtered Lie algebra of fimite rank, r.

Then there is & canonically associated pair B(x, ,&, ) ™ where 8(x ,&,) =
0250 v’

d‘,"‘-o) @ 0o @ gfxo.go) is a graded nilpotent Lie algebres over R, and
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ne g:xo.go)lo. (In fact, n e gth. Eo) .)

Pf: Define g(, ) by
LR L)

.i

L
(x.,&.)
00 (3.5)

i
‘ =

(x9:30)  .i1 i

Lix ey * Bx e 0k ,2)
0°°0 0’0 0’0
Then exactly the same proof as for Prop. 1.7 shows that the corresponding
statements (1)-(4) bold.
Next define n as follows:

v . i
), where X ¢ L (3.6)

X,n> = i(x »&
0’70 (xo.to)

i
For X ¢ g(xo'go)’

v
is any element such that ﬂi(X) = X,

Since r is the smallest integer i s.t. i%x ') contains an elliptic
element, it follows immediately that n is well-defined and satisfies the

asserted properties,

Notes 3.5:
1) The proof of Note 3.3.1 shows that ﬂfx g,) can be generated as an
a’>e
sgon module by a single generator, namely any elliptic element, It follows

that gf is a 1-dimensional vector space.
(xolga)

2) The analogues of Lemma 1,13 and Remark 1.14 hold, with the same

o -
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proofs as in the local case.

The notions of weak homorphism, partial homomorphism, and cross—section
carry over to the microlocal comtext, as do Prop. 1.18, 1.19, and Cor. 1.20.
In particular, g(xuco) enjoys the "universal” property analogous to that of
This shows that k(xo,to) is in some sense the minimal nilpotent .
approximation to L at (xo,ﬁo). We shall later in this section give a more
precise sense to this notion of approximation,

The definition of weak morphism carries over, as does the functoriality
result, Prop. 1.24, (To obtain functoriality also at the level of the
canonically determined n ¢ szlanﬁo) appears to require additional structure,

which is present in the following basic example.)

Example 3.6:

1) Let ¢:T‘H/0 - T°N/O be a homogeneous canonical transformation
mapping (x4, §o) to (xé. 66). (It suffices that ¢ be defined in a conmic
mbhd of (xg,&p).) Given (L'}, (xg, &;) defime K* = {f ¢71|f & L}, Then

. s i i ’ [ 1
¢ determines a weak morphism from (L }'(‘o &) to (K%}, (xo'to) via
f >fe ,’1, and hence an associated morphism : of graded nilpotents, As in
Cor. 1,25, rank is preserved and ; is an isomorphism. Also, the associated
dual map 3‘ takes q' e T to the correspondin € M of

‘(1o'§.) P g M 8(x°,§‘)-
course, at the operator level, this example corresponds to invariance of

‘.(xonﬁo) under FIO conjugation.

2) Special case of the preceding: M=N and ¢ leaves Li invariant, i.e,,




L,(x.g) = {fo,'llf e L%x.ﬁ)} for every (x,f) in a comnic nbhd of (x9.8¢) .

3) The "identity® map 3t:£%x.§) _)izx.tt) (t>0, fixed) induces the
isomorphism ;tzg(x.t) -)3(x.t§)' An immediate computation shows s:(nt) =
tn, where N, is the corresponding dual element.

We next determine 8(x g,) for a few examples,
0 2%e

Example 3,7: Let g = 81 (3 cas GD g, be a graded nilpotent Lie algebra,
and G the corresponding (simply—connected) Lie group. Let n ¢ g‘/O, and
view n as an element (e,n) of T:G/O. For Yeg the associated left—invariant
vector field Y determines a symbol, also demoted Y, in siom via (x,&) e
T6/0 > Y(x,8). The injection g -)Siom given by Y =Y is a Lie algebra
homomorphism, Let Li consist of all Sgon linear combinations of symbols '4
such that Y ¢ g3 + ... + g;. Clearly (L1} is s filtered Lie algebra.
Let kX be the smallest integer such that q?gk # 0. Since g is graded, Vk GD
Bx+1 GD cee @)gr is an ideal for any subspace Vk of gy, in particular for
v

V. = ker(n ). Thus, () e (1) gy + ————. is a graded Lie
k Tex 3! ® 8 e (17 30

algebra.
Claim: [Li] is of rank k at (e,n), and 8(e,n) is canonically isomorphic to

8 @ e @ 8¢-1 + —%K———: the associated element of 3:e.n) is the

kev (vlt %0

i1 )* determined by n.

\(u(yl{ 30
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The statement regarding rank is obvious, Next, since the homomorphism
g -9Siom is, in particular, a weak homomorphism g — L, it induces, by Prop.
1.19m, a graded homomorphism from g onto g(e,n)' It remains only to
determine the kernel of this map 8; —)S%e.n) for each i=1,...,r. This is
clearly all of 8y for i>k. Ve know S%e,n) is one dimensional, Hence, using
the map a(xo.to) of Note 3.3.3 and the associated diagram (1.7m), we see
that for i=k the kernel is ker(n‘gk). (This also proves the last statement

of the claim.) The following lemma completes the argument by showing that

for i<k the kermel is O,

Lemma 3.8. Let Yl.....Yj 8 8y @ . <> 843 be linmearly independent.

Thea for any 81,...,85 8 Sgon such that ;?lai(x,t)ii(x,§) % 0 in a conic

nbhd of (e,n), a;(e,m) = 0 Yi=1,...,j.

Pf:
Fix i, and choose g & (g, + ... + gy ;)° such that <p,¥;> =1 and

{p,Y9> = 0 for 9# i. For >0 sefficiently small (e, ep+n) lies in the given

conic nbhd. Since n annihilates g, @ @ Bx—1- ?g(e. gptn) =

i + Thus, ai(e, eptn) = 0. Let ¢ —0.

<ep+n.Y&> = ep,Yg> = €8,

Our computation shows, in particular, that even when L comes from g the
associated approximation 8(e,n) depends on n itself and not just om its
coadjoint orbit in g.. This is as it should be. For example, the

®characteristic varjety" is in general not invariant under the coadjoint

action,

P e R T Y
B e e

~rY
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Example 3.9: Let {Li},xo be a filtered Lie algebra of vector fields; and
for any (xo,ﬁo) g T; M/0 1let [fi}.(xo,éo) be the associated filtered Lie
0
algebra of symbols, as in Note 3.3.4, Then there is a canonical surjective
homomorphism of graded Lie algebras g, -—)g(x LE ) —>0. (As observed in
Note 3.3.4 rank (x4,%q) £ rank z5). In fact, let B be a cross section of
(Li}.xo. Then B is a weak homomorphism and so, since X —-X is a Lie algebra
isomorphism, determines a weak homorphism gxo—éi.(xo,§o). By Prop. 1.19m
this determines a surjective homomorphism of graded Lie algebras
gxo-—)g(xo'go) 0. Finally, Prop. 1.18 (3) shows that this homomorphism is
independent of the choice of B. Heuristically, if we focus attention at
(x9,§g) only a part of the information (i.e., represeantation theory) in gxo
is needed, namely representations lifted from g(xo’go); of these, only the

ones in r(‘onﬁo) are needed.

Example 3.10: Suppose wiy, (x9,8g) is of ramk 1. Then we know g ¢ ) =
0?0
R. In fact, {Li}. (x ,E) is the filtered Lie algebra of symbols associated
0’20

to the rank ome filtered Lie algebra of vector fields of Example 1.26.1,

with 8, = TxOM‘ So, by Example 3.9, B(x &) is naturally identified with
a’M,

TN °

3

(xo,go) in T°M. Under this identification n corresponds to (xo,go).

, and g:x LE) is thus natuorally identified with the line through
o v

Example 3.11: The next example defines filtered Lie algebras related to the

operator classes L®X of Boutet de Monvel [2], as mentioned in the

Introduction, Let ? be a smooth conic submanifold of T‘M/O. Let LY =

{ueSiom|u=O on >} and let L12=13-=.., = siom‘ Then {Li} is of rank 1 at




any point (x,Z) e 2, and of rank 2 at any (x45,§y) ¢ Y. In fact, since 3 is
smooth, we can find local defining functions Bi,.00,0; € Siom (where k =
codim ) that that duy,...,duy are linearly independent at (xg,&p), (and
hence at all nearby points). The B1,...,80; are generators for i%x,&) for
all (x,%) e I near (xp,§y). Let N(z)(x,é) denote the conormal space to 2,
and define a graded Lie algebra structure on N(Z)(x,g) GD R via [(dfl,rl),
(dfy,15)] = (0, w(dfy,dfy) |(; £)) = (0, (£1,f5) (5, z)). Note that these Lie
algebras are not isomorphic unless the rank of w'Z is constant in a nbhd of

(XO,C()) in z.

Claim: For (x,§) e } mear (zg,%g), N(D (5 ) ® R = g5 ¢). This follows

from the next lemma and the definition of Lie bracket in 8(x,£)"
Lemma 3.12: Suppose duy,...,duy are linearly independent at the point (x,§)

e 7., For any 81,...,8; € sgom such that 3 ai(x'.t')ni(x',ﬁ') = 0 in a conic

nbhd of (x,%), a;(x,8) = ... = a;(x,§) = 0.

d('iui)l(x.g) = ai(x.t)dnil(x'g) + ni(x.t)dai|(x'§). But ni(x.ﬁ) = 0.

Remark: Any homogeneous canonical transformation ¢ mapping 2 into ) induces

an isomorphism between 8(x,E) and B¢(x,2)" (See Example 3.6.2).

VWe next show how to comstruct in our context the analogue of the set




r(x° JE) of Helffer-Nourrigat ([19], ([21], [32], [33]1). Because of the
minimality of 8“0'50 ) the construction is particularly natural in our
general context. When L is generated by Ll, so that the Helffer-Nourrigat
construction is defined, the relation to the comnstruction below can be
stated precisely. (see Cor, 3.19).

As in our proof of the lifting theorem, the main tools will be Lemma
1.35 and Cor. 1,36m.

Let (L1}, (x,,£,) be a filtered Lie algebra, of rank r, with 8(x,,£, )"
the associated graded nilpotent and dual vector. Let {St] dencte the

standard dilations on B(x & )° defined as multiplication by ti on g%x E ).
v, 0?0

Def. 3.13:

1) A seguence is a sequence {t,, (x;,§ )} with t e RY, (x,,8,) ¢

%

. n
T M/0, such that ~)xo. |§n| — =, and 7 — 3 .
10 184
2) Let B be a cross—-section, The sequence (tn, (xn,én)} is B-

admissible if there exists | & g:x LE ) such that lim B(8, Y)(x,,§;) exists

and equals <A,Y> WY e B(x ,& )°

Notes 3.14:

1) Of course, if the 1limit exists YY it is linear in Y, and so
determines ,Qe g:x LE ).

2) 1In view of 3) below, the definition depends only on the "germ of B"

at (x9,%p), i.e., the image in L .

3) Since L C Siom and B iz R-linear
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; 4
b § n
B(s, I(x ,E) =t [& [B(D(x, ) Tesg, « (3.7
a l&nl 0’~0

¢ 4
L) BN (xy, 9, .

B(Y) (xn.

Since

4
0 ) = 0 if i{r (and # 0 if i=r and Y#0)

B(Y)(xo.
%,

it follows that for any P-admissible sequence:

for i<z, { s, = 0 ualess tifg | S . (3.8)

0+%0)

t:l{nl converges; in particular t:|§n| is bounded. (3.9)

(more particularly, tn =0.)

Prop. 3.15: Let B, B, both be cross—sections. Then the sequence
{ty, (x5,85)) is By-admissible =it is By~admissible. MNoreover, the limit

2 e 3:: ,E) determined by this sequence is independent of the choice of B.
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Pe:
Let {t;, (x,,§,)} be Byj—admissible, with associated limit e 3110.5.).
let Y ¢ ‘(ix,. RE We must show lim B,(8, Y)(x,.§,) = 4.,
L g Y
Since B,(Y) ¢ Li. snd since "%x,,g,)‘ﬂz‘f” = Y, by definition of

cross—section, it follows from Cor. 1.36m that, at the germ level,

B,(1) = (D) + }

£8,(Y) + } 8,8,(T)

where the fa

|a|(i

are in Sgom and the g,

|o|=i

are in LT LE )

Applying (3.7) we see it suffices to prove that

i . n
Lin e, Jg,ll Y £ (x,, 1B, (Y,) (x,. » I)
|a|<i n n
} 8, ( )B (Y )(x , )) exists, and =0,
' I2,|
|a|=1 n n
. 5.
But fa(x (f | converges as n — o, to fa(‘o' -rgTJ; hence
]
i-ia . . _gn
t l If (x l?u D) - 0, since |a|<1. Also, ga(xn, TE:T) - 0. But
since is the f;-limit of the sequence, it follows from (3.7) that
tn“|§n|Bl(Y¢)(xn, ér \ converges, to < L. Y. Writing t:ltnl =
ti’“(tglﬁnl) concludes the proof.
We can thus speak of admissible sequences, without reference to a

............
-------------

..........
e
- - ~ - -o -. .- - -. .‘\ .............
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particular cross-section.

Def, 3.15: Lot,l(x &) denote the set of admissible sequences at (xo.ﬁo).
— [+ [

. The asymptotic moment-map is the map !(x : ):,& (x,,8,) -9;:1 £,) defined
0" o ? °0

by [tn, (xn,gn)} 1. Let r(xo.gg, denote the image of ’(x..t )e

Prop. 3.16:

tural R acti . Az,
1) There are two natura actions onui(xu.gv) namely {t .,(x,.§;)) >

(st ,(x,,8,)), and ({tg,(x,,8,)} > {t,;,(x;,58)}. The first passes under
!(‘o W&, ) to the dilation ﬂ\—) 6:1 . The second passes to scalar
multiplication At-é sQ. In particular, r(‘orto) is invariant under both
operations.

. .
2) r(xo.go) is closed in '(x,.{.)‘

3 me Py e

1) is immediate,

2) follows, exactly as in Helffer—-Nourrigat [21], by taking a

subsequence of a double sequence,

|
3) Choose t, -0, and take (x,, §,) = (xg, = %). The result then

n
follows since (x;,{y) is of rank r.

The weak homomorphism ﬂ:g(x ¢ ) => L can be exponentiated to give a
o’

*weak action” of G(x £’ the corresponding simply-comnected Lie group,
(A ]

on '2(1oo§o)' which goes over, via !(‘o’go), to the genuine coadjoint action
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of G(‘o'go) on g:xu‘to). This is one iustification for the term "asymptotic

moment map”.

Prop. 3.17: Let {t,.(x,,§;)] be admissible, with associated Le g:x gD
o %0

)} is also admissible, and is

Let z = exp Z. Then {t,, exp Hﬂ(at“z)(xn.tn

. . .
mapped to Ad z(1) under !(‘o 8D In particular, l'(x“,") is' invariant

under the coadjoint action of G(x &)
e’™o

5 PE:

» The proof is analogous to the corresponding argument of Nourrigat {33]
F but with additional work needed since f is only & weak rather tham partial
- homomorphism, We shall only give a sketch,

Here exp Hﬁ“t z)(xn.tn) denotes the endpoint at time=l of the flow of
n

the indicated Hamiltonian vector field starting at (x ) at time=0,

§ §

Since t;, =0 snd (x,, —5—) = (xq, ———) this is well-defined for n

1) 1£o1

n‘an

sufficiently large if we replace { 6 by %. But ﬂ(&ch) e siom' so
: n
(x', t') = exp H (x_,t) = IL: |exp H (x_, ). (3.10)
a’ °n B(Sth) n’’n n B(bt Z)'"n knl
Since
r
BS, 2) = ) tlp(z), where Z=2Z + ... +2Z_ (3.11)
n
i=1

is the graded decomposition of Z )
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3 b
it follows in particular from (3.,10) that |§;| —>= and (x;, -rng) '9(x0'§§3‘

Let Y' ¢ g} . ). It follows from (3.10), (3.11), and Taylor's
0’%e

theorem that

B Oh Caw irths

b 4
i . 'y _ J i ¢ r+l
|p<stny Mxz, &) - ) 2 " — W g @6, T Se e |
=0 n

(3.12)

for some comstant C,

Since t:l&nl is bounded, t:+1|§n| -0. It follows from (3.12) that to
prove the proposition we need only show that the finite sum occurring in
(3.12) converges to (Ad;(Q), viy,

Using (3.11) together with the weak homomorphism property, Prop.
1,18.1m, and the fact the He(g) = {f,g), we find that the finite sum in
(3.12) is equal to B(z-—- (ad 5, Z)j(8 Y‘))(xn.ﬁ ) + terms of the form.

dzo J !
(tn ‘(xo.E,)Lk + t§+1Lk)(xn,§n). Exactly as in Prop. 3.15 we see that these

error terms —> 0. Since 8(x ,& ) is of rank r, the main term is just
s "o

B(&t“(Ad z(Yi))(xn.én). which converges to <, Ad z(Yi)>.

Let g be a graded Lie algebra, of rank s, with y:g - L a weak
homomorphism at (xo,go). Let ? =N o Y —)g(x £ ) be the corresponding
o ’%0
homomorphism of graded Lie algebras (see Prop. 1.19m). Then, just as in
Def. 3.13, we can define the notion of y-admissible sequence, and a
. .
corresponding set r{x E ) C g . Of course, this set depends on Yy, in
0250
general. (We should also assume that’tilgnl is bounded for some k so that

the proof of Prop. 3.17 is valid in this context,)

o
K

2
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Prop. 3.18:
(a) l’I D;‘(l’ ))» where ?‘:g: —)g’ is the dual of ;
1°,€°) (x,,{o x,o&o)
~ . . AS
(b) If y is surjective then P(xo.go) =y (r(x_.to))‘
Note that if ? is surjective, ?. is injective. Statement (b) implies that
the unitary representations associated to r{x &) by Kirillov theory are
[ RAT)

precisely the lifts of the representations associated to r(x g )
0?%a

"
'- ,A S|
et

Pf:

(a) Let B be a cross-section for B(x_,E,)° By Prop. 1.18.3m for X, &

si, p(?(xi)) ~ v(X;) e L%;:'gn) + i(iotf.)i%‘a'fo)' Hence, since ? is

graded, the same argument as in Prop. 3.15 shows that if (tn. (x4,85) ) is B-
admissible, with associated §, then y(8, X)(x,,&,) —<{, (X)),

(b) If ; is surjective them it follows from Lemmg 1.35m that r(gl ®
ses (Z} gi) generates L%!,oﬁ,) as an §?x°‘¢‘) -ﬁdule. The same identity as
in (a) can then be used to prove the reverse inclusion,

The set r<x° W8,) of Helffer and Nourrigat, defined in the setting
equivalent to L being gemerated by Ll, is the subset r%xo,gn) of g‘. where g
is a free nilpotent with a partial homomorphism A:g — L. Then Cor. 1.20m

and Prop, 3.18b show:

Cor, 3.19: The Helffer-Nourrigat set I . £.) is the image of our set
- a?>o

~
r(xq,go) under the injection X..

-, Remarks 3,20:
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1) it follows in particular from the above corollary that the

computations ([21]) of Helffer-Nourrigat of Ty g ) in variety of
e ?¥¢
"N
examples furnish the corresponding information for our r(‘ E)e once ) is
o’%p
computed.

2) A trivial but interesting observation: in Example 3.10, under the

given identification of ‘:xo’go) vwith the line through (x4,%y), r(xo,ge) is
the half-line through (x4.§g).

3) Let G be a nilpotent Lie group with graded Lie algebra g = 81 GB

ces GD [ P Suppose there is a genvine conic Hamiltonian action of G on

T'H/O, with y:g = Siom the corresponding Lie algebra homomorphism. Let

!:T‘lh-)g. be the genuine moment-map, defined by <¥(x,%),X> = y(X)(x,%).

Then 1(6t“x)(xn.§n) ).X>; hence admissiblity, modulo (3.9),

L g

corresponds to the condition that lim 5: !(xn.ﬁn) exists, with the
n

n oo
"asymptotic moment map” giving the limit,

4) In the case of Example 3.7 an easy argument which we omit (and

requiring only admissible sequences with xn=e) shows that r(e n is as large
. . *

as possible; i.e., r(e.n) = {Je 8 (e’n)lﬂrg%e'“) = An, for some A 2 0},

We can define "UP(L)”" in analogy with Definition 2.9 (but using the ¢DO

principal symbol in preference to the geometric principal symbol),

Def. 3.21: *“U™(L)", for m a non-negative integer, is the vector space of

all ¢DO’s of the form P = 3 A (z,D)X

lalem

¢DO defined in a conic nbhd of (xy,§;) with real principal symbol (in the

X,., where X,. is a first-order
4

sace
a, H

¢DO sense) ia\ ¢ L% , and where Ag(x,D) is a O-order ¢DO (with principal

symbol not necessarily real), Notice that choosing different xa's with the

..........
.........

........................
....................
DY
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"same principal symbol, i.e., replacing Xa by xa + Ra, vhere R, is O-order,
is tantamount to replacing P by P+Q, where Q ¢ 'U"l(L)'.
As in the local case, we would like to be able to intrimsically assign

to P & “U%(L)" the element P ,g) ¢ Un(g(x ,z )) siven by
[ < 0 ]

A

- a
.- ol 1
- P(x

2 Aa(xopgo)xa ...X ’ where Xa. T cm— n(x

1 a

oago) Ia Isn j [} q_l

~ ’
p_ (Here A, is the principal symbol of A,; note also the extra factor of —
s e
in contrast with (2.36).)

Just &s in the local case, ;(xa'go) is not necessarily well-defined.
:i However it follows, in particular, from Nourrigat'’s approximation theorem
(to be discussed below) that n(s(xo'go)) is well-defined, where n is any
unita;y irreducible representation of G(‘,'Eo) associated to a coadjoint
orbit in r(ko.go). (This is definitely the case when 1! generates; -the same
sppears to work in genmeral. Sce Notes 3.3 D

We can give a definition of L-hypoellipticity at (xo.to), the
microlocal variant of Def. 2.14 as follows. (We retain the caveats of
Remarks 2.15). We simply replace the estimate (2.37) by

IIBQfllszw) $ CQ<IIPfII2L2 . Hetl?, > ¥ e cgm (3.14)

( L™(m)

Here B is a O-order DO elliptic at (xo,to). independent of Q.

An alternate version is given by
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S

i p el and Pp ¢ HS
(xo.to)

| (20.8p) ¥ ° H

(3.15)

Here fo £) is the standard microlocalized Sobolev space. In [21] Helffer
0’0

and Nourrigat discuss various versions of wmaximal bhypoellipticity

T

(equivalent to L-hypoellipticity in the context of ! generating). Using a

microlocal result of Bolley—Camus-Nourrigat ([1]) as a substitute for the

T

local results of ([37]), they show that if (x;,§{;) is of finite rank then

(3.14) and (3.15) are equivalent (to each other and) to a priori stronmger
hypoellipticity conditions. In particular, (3.14) implies hypoellipticity.
It is 1likely, though I cannot say for & fact, that the corresponding
statement holds when L! does not generate, (I have not tried to extend the
B-C-N result to this setting.)

We conjecture the following L-hypoellipticity variant of the Helffer-
Nourrigat maximal hypoellipticity comnjecture, In view of Cor. 3.19, they

are equivalent when 1! generates,
L-hypoellipticity conjecture: (3.16)

For {Lil. (xo,éo) of finite rank, P ¢ "U(L)" is L-hypoelliptic at (xo.go) <
n(P) is left-invertible for every unitary irreducible representation n of
G(x.,&,) associated to an orbit in r(to.go) (other than {0}),

The local analogue is stated with P(x E) replaced by
0’0

......
.....
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r = \J , where T

*
is the image in 8, of

x 0

r
0 te T: M/0 (xo,t) (xo.t)

0 r under the injection
(xo.t)

s:xo.ﬁ) -9;: . (See Example 3.9)

0
Note 3.22. For simplicity, since we will not be pursuing the analytic
questions here, we do not elaborate on some important, but more technical
aspects: (1) the precise nature of the left-invertibility; (2) an
additional conmjectured equivalent condition relating estimates at the level
of M with families of estimates, with uniform constant, at the level of the
representation spaces; this is analogous to the method of "compactification
of estimates” used by Helffer-Nourrigat in their proof of the reprisentation
theoretic hypoellipticity criterion {or nilpotent Lie groups.

As we stated in the Infroduction. Helffer and Nourrigat have proved tke
sufficiency of their conjectured maximal hypoellipticity criterion ir a
number of cases, and recently Nourrigat ({32], [33]) has proved the
necessity in gemeral, His main tool is an approximation theorem, (based on
a generalization of methods of Hormander [24], [25]) which serves as a type
of microlocal substitute for the 1lifting theorem, We present a version
below. In our terminology the context is that of L gemerated by Ll, with
(xo.to) a8 point of finite rank; g denotes a free nilpotent, with associated

group G; A is a partial homomorphism into Lj; d=dim M.

Theorem 3.23: (Nourrigat) Let [tn,(xn,én)} be a A-admissible sequence with

A
associated 2 3 r(x E ) ' g', with corresponding wuwnitary irreducible
9 *HSo
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representation n . Then there exist
1) An induced representation n of G, acting on L2(Rk) for some 0 £ k £
d, and having “l in its spectrum.

2) A seqpence](h:V£ ~» W, of symplectic transformations, where the V,

form an exhaustive system of nbhds of (0,0) in de. where W, is a nbhd of
(xn,én). and where }(n(0.0) = (xn,§n) such that, for some subsequence,

b X(St“1)°‘X n-—e-L a(X) in C°(R2d),nniform1y on compact subsets, for all

: =)
: Xeg.

,f' Notes 3.24:

1) Nourrigat passes from this to a corresponding operator versioan on
L2(rd), which is his basic tool.

2) I believe, but have not absolutely convinced myself, that the-
nbhds 'n become “small”, so that they converge to the ray through (xo,co).

3) Although I have not fully ;arried out the details, it is clear
that by an argument closely akin to Nourrigat’s necessity proof, using the
operator version of the theorem and ([21], Prop. 2.2.1 of Chap. II), one can
prove that nl(;(xwgz) is well-defined, as claimed earlier, We probably need
to use 2) above to handle the A (x,D) terms. (We also use Cor. 1.36m.)

Granting that 2) holds, it appears that the corresponding theorem is
;j valid in gemeral, (i.e., without the restriction that L1 generates L, and
with g replaced by 3(1,.60)' and "A-admissible” by "admissible®). This
basically involves verifying that Nourrigat’s proof can be modified so as to

work with & weak homomorphism replacing the partial homomorphism, This

- seems to follow from the same sort of argument as in Props. 3.15 and 3.17.
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As stated in the Introduction, .we shall not carry out the details here,
g The setting of filtered Lie algebra {Li},(xo,go) suggests a notion of

- L~wave—front set C-r(x & )/0. Ve conclude this section with a provisional
0?%,

T version of this idea.

Def. 3.25: Let {Li}.(xo.§o) be of finite rank, and let u e (M). Then
WF%XO'Ec)(n) = {N\Y(P)(xa,tc)’ where the intersection is over all P ¢ "U(L)”
A
such that Pu ¢ C®, and where Y(P) (4 £) < (le T, £ )/Oln,,(P(x g y) is
0’7 a’ g ' o’

not left—invertible}.

Remarks 3.26.

1) If we take [Li} the standard rank 1 algebra, i.e., ! - Siom' then
WFL corresponds to the standard WF-set. That is, ‘
p if (x

050 ¥ WF(w

L

WF (n) =
(xo.to)

the ray through (xo,éo) if (xo,éo) e WF(u)

(see Example 3,10 and Remark 3.20.2),

2) If we take (L1} as in Example 3.11, with additional hypotheses
(e.g., on the rank of w), then WFL seems closely related to the quasi-
homogeneous WF-set introduced by Lascar {28], and also used by Grigis (9],
{101, [11], for the study of propagation of singularities. For a related
construction within the group context itself see Miller ([31]). It would be

very interesting if one could find examples (other than those already

. o e e, e e BN Ce e e e e « . . e e - . ae e e
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treated in [9], [10], [11]) of propagation of VWFL along
'nicrobiéharactetistics'.

3) One expects, in view of 1) (especially the corresponding local
version, Example 1.26.1) and the references cited in 2), that there should
be a close relationship between IF%xo.ao)(u) and the rate of decay, along
Gt—honogeneons cones in g::,.to) of the abelian Fourier transform (from
g(x.'g.) to g:xo':.)) of appropriate "liftings” of u to s(x,.c.)‘ However,
at the moment, I am unable to make this any more precise, in gemeral,

4) Since ;(x°.§.) is homogemeous wrt §,, WF%XO.CU) is closed under
dilations. Also, 'F%x..co) is clearly invariant under the coadjoint action
of G(xo.gu). Moreover, it is easy to see that WF%*.tﬁo) is empty if (x(.%)
( WF(u). That is, under the natural projection °£Ur(x.§) onto T°M/0,
wrl(u) projects into WF(u).

5) A much barder question, vhich I cannot answer at presenmt, and
which accounts for the provisional nature of-the definition, is whether
IFL(n) projects onto WF(u). To appreciate the difficulty, observe that.if
the definition did not involve P varying with { er(xc_co)/o, but only a
fixed P, then the surjectivity of projection would be equivalent to the
sufficiency part of the L-hypoellipticity conjecture. Even granting the L-
hypoellipticity conjecture, additional work will be needed: in particular
one will need to show that 'F%&o;go) is closed in g:‘o.ga)/o (and hence its
complement open), in order that, just as in the proof that the standard WF
set projects onto the singular support, one can reduce to the comnsideration
of & single operator P not varying with ﬂ . These gquestions certainly

involve the delicate considerations mentioned in Note 3,22,
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84, Filtrations with LO-Term

The construction of the graded nilpotent gy in §1 was carried out in

o
the context of a filtered Lie algebra (L) beginning with an Ll-term. Under
certain natural conditions it is possible to extend the construction to the

case where there is an LO~term. One now obtains a semidirect sum 32 @ [ S
° [} L]

0
X,

where g  is an "arbitrary” Lie algebra acting as graded derivatioms on the
graded nilpotent gxo.

There are a number of possible variants of the comstruction, it not
being clear as yet which is the most useful. Because of this provisional
natore of the construction we shall not attempt a systematic treatment, but
instead shall only make a brief series of remarks.

Let (L}, i=1,2,... be a filtered Lie algebra of vector fields at xg,
as in Def. 1.2, In addition, let L0 be a possibly infinite—dimensional
subspace (over R) of vectox; fields on M such that

0

) A LO] - Lo , .0, Lo is a Lie algebra over R, (4.1)

i?, Ll c i for i21 (4.2)

In addition, we assume either (4.3) or (4.4) below,

(a) LO is an F-module, and at the germ level is finitely
generated, i.e., ss an 15'x -module Lg is finitely-
[] L]

generated, (4.3)

(v) L9cyi?,

A A R R S L G
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L0, as a vector space over R, is finite~dimensional. (4.4)

Of course, (4.1)~(4.3) simply extends Def. 1.2 to include an LO-ternm.
The basic condition that we need (suggested by the corresponding

hypothesis in Crouch [4]) is

0

e (Lo) = {0}, i.e., the vector fields in L all vanish at x, (4.5)
0
We use this in the form
0, .» 0
L( (M))C m_ ; in particular, L'(a_ )C =m_ . (4.5°)
*o o %o

We assume that [Li}. i21 is of finite rank, r, at x, . We treat

- separately the two cases (4.4) and (4.3):

If (4.4) holds we take as our graded nilpotent the Lie algebra 8y, = 31

® ... @) ;: constructed in §1, and take ‘0 = L9,

If (4.3) holds we take as our graded nilpotent ‘x , defined below, and

0 L;

as g; we take ——t—

)
"‘x,Lx. .-
1
Def. 4.1. Assuming (4.3) holds, we define g, = i=l,....,r. Of
———————— 0 .
&
Lx, Vh‘.\-x.

course, ': = ;: except for i=1, The difference for i=1 is due to the fact

L
that since LO was taken as 0 in $1, gi = —i’-;- The proof of Prop. 1.7
. v
m X, Lx.
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goes through unchanged to show that 2‘ inbherits the structure of a graded
[ ]
nilpotent Lie algebra. It follows from (4.2) that ?x is (canonically) the
[}

quotient of g, by an ideal (lying in ‘i.) contained in the ceater of g, .
o ]

Lemma 4.2:

(1) 32 is a finite-dimensional vector space, and, under the canomical
9
0

[R—-1linear projection nO:Lo —)gx , inherits the structure of Lie algebra over
°

lRo

0

(2) Via the canonical R-linear projection ni:Li —)gxi (resp., ?‘io). 8y
. o

A
acts as 8 Lie algebra of graded derivations on g, (resp., By, ), under
o
hypothesis (4.4) (resp., (4.3)), (where, by graded, we mean preserving
gradation).

-

In particular, we have s naturally defined semi-direct sum 32 @ 8y (resp:,
. ] ]

-:_ ’ 0 la)
: cxo® 8y, ).

,- (1) Finite dimensionality is clear, We only need to show, in case
(4.3) that the induced Lie bracket is well-defined, just as im Prop., 1.7.
It suffices to show [ixol'.g’. L} 1C &, L, . But this follows from (4.1)
and (4.5°).
(2) Just as in the proof of Prop. 1.7, it suffices to show, for j21
!. that [i.gg, i.g:l + ﬁxo i‘i,] C f.i:l + ixo I'.io and, in case of (4.3), that
" [ihl..g., I..iol C I:i'o'l + b, f‘i,' We must be careful here: if j=1 then f.i:l
: is taken as 0 in case of (4.4), and as f.g“in case of (4.3), In either case

-‘... -.’ -( ‘.‘. LI !\\ ". ~‘,.". * . -*.'.. -...\...-., .'\:'... o ~‘ -' ."_ .. ) s '-,. - '_'_‘(. '+ o

- .“A OIS ...-' L .- O""' ._.;;;._-,;.‘.".-’_'.. Can



PR AP it JAPCl T e S at S S e T St AR gt o - o M - R L N i et S-S S il T Jhad i e g -~
.

BEIA NI R LA e i hal g & |

.

A the first inclusion holds, as follows from (4.2) and (4.5'). In case of

(4.3) the second inclusion holds, by (4.2) and (4.3b), (when j22). The case

of j=1 also follows since ﬁi'l is ﬂg rather than O, This explains why we
[ []

mast work with ; rather than g in case of (4.3).
x, X,

Remarks 4.3:
(1) Let h, be the subalgebra of g, given by Def. 1.30. It follows
[} )

easily from (4.5’) that go

x, maps h, into itself.

[¢]
(2) The corresponding microlocal coanstruction, of g?‘-'go) ) g(xo,to)

A
(or ‘?x,.§,>(§5 g(xo':.)), carries through if we replace condition (4.5) by

the condition

0
nf"‘o"o’ =0 for every f & L (4.6)

This insures the condition corresponding to (4.5').

(3) In practice the condition (4.2) may make it difficult for the ﬁi

Xy

to be finitely generated as ¢® modules. However, if the vector fields are
real-analytic, or if we pass to their formal power series at xo then we have
finite generation over é;o,v}x'. respectively, by Remark 1.1.4,

(4) In view of 3) 1lifting is still possible: we can 1lift to
‘::alytic' or lift to gf?r“l at the formsl power series level and them pass
to the C” level, as in the discussion following Remark 2.7.2. See also
- Remark 2.7.2 and Remark 2.8. In this we assume that (4.4) holds, so that

e. our graded nilpotent is the same as in $1 and $2, and so that the results

there apply directly. Presumably, in the context of (4.3) analogous results

0
»
.
)

-

.

. .
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" can be derived for 'ix . However, we have not attempted to cary these out,
0
(In particular, we would need to work with a variant of Lemma 1.35 involving

the L0 term),

Example 4.4: (suggested by Crouch (4]). Let X;, X;,...,X; be vector—

fields, with a, (X4) = 0, Let L? be the 1-dim vector space spanned by X,.
- ]
Let L! be the F-module generated by the vector-fields of the form .dixo(xi),

j20, 1%ifk;
L2 =11 + (1,111, ... L5 = L% 4+ [L1,L%]. (Compare Example 1.4)

We assume “x,“‘r) = Txoll. Then, modulo the finite~gemeration question of
Romark 4.3.3, we obtlin.' since |2° = L0 2 R, that 'g.,@ 8y, =R @
which is clearly solvable, since "o is nilpotent, (A further example is
provided by Example 1.26.5, where we now retain the.Lo term) .,

In view of the preceding we can apply the homogeneous space lifting
theorem, Thm. 2.17, and its corollary, though we may need to pass via
‘:‘omu rather than g, . (However, see (1.11)). According to these results
the vector fields ia Li. i21, bhave a convenient realization omn the graded
vector space Vx° via the local diffeomorphism ox.' It turas out that the
vector fields inm L0 also behave well under this diffeomorphism. Starting

from the given realization of the Li', i21, and using the facts that

[Lo.Li] ci and a (L9 = (0) ome can show, by a short argument which we
]

omit, that




LT L L, e =y

.
Ox X is of local order £ 0 for every X ¢ Lo. (4.7)
0

For Y & ;; let o(Y) = (mg 4 (D) if i21
[ ] ’ X
[+]

the principal part (i.e., homogenous of degree 0)

of 0 ¥ i i=0.
%o

It follows from Cor. 2.18 that o is a Lie algebra homomorphism from ;2(2; -
/] a

onto the Lie algebra of principal parts of the vector fields 9; X, X e Li.
]

i2o0. -

The t;sult is quite similar in character-to the solvable approximations
to control systems derived by Crouch ([4]). Of course there are notable
differences: He deals with input-output systems, and, moreover, derives an
approximation for the truncated Volterra series of each order (2 the minimal
order needed for controllability). Nevertheless, it is reasonable to expect
that with further work the methods of this report may be brought to bear on

the types of question he considers,
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5. Conclusion

The approximation process introduced here raises many questions, and
suggests a variety of directions for further investigation, We feel there
are two main, related, lines of inquiry:

(1) To construct an appropriate Fourier analysis associated to the
*phase-space decomposition® determined by the filtered Lie slgebra {Li} on
T*N/0.

(2) To systematically investigate the properties of the asymptotic
moment map and its connections with quantization, as has been done by a
nﬁnber of workers in the context of the gennine moment mapping, where there
is an exact rather than approximate symmetry group. In this regard we
mention again the striking similarity between the L-hypoellipticity
conjecture and the result of Guillemin-Sternberg ([14]) om the irreducible
£epresentations entering into the quantization of a compact Hamiltomian G~
action., The study of the asymptotic moment map should be extended to the

case where there is an Lp-tern. so that the associated Lie algebra is not

purely nilpotent, but & semi-direct sum with a graded nilpotent,

A particularly intriguing question besring on (1) is to elucidate the
relationship of the “phase—space decomposition” determined by [Li} to the
phase-space decomposition associated to a single operator by Fefferman and

Phong ([6]).
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