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I. INTRODUCTION

This report disc&sses research carried out by Berke-
ley Research Associateg, Inc. under contract #N00014-83-C-
2157 with the Plasma 4hysics Division of the Naval Research
Laboratory. The report covers the performance period 1 May
1983 to 30 April 1984. During this period, an extensive
investigation of electron beam stability was carried out in
the context of an easily formulated 2-D cold electron layer
model. This work was carried on in close association with

NRL personnel in conjunction with the special focus program,

#Advanced Accelerators.*® f)
c =" B

The modified beﬁatron has been the subject of an in-

tense investigation by NRL staff as a potential high current
electron accelerator. Significant progress has been made in

the understanding of the operation of this device and a large

experimental effort designed to test this understanding is

now well underway. Much of the work to date has been direc-

ted toward a formulation of the in situ beam dynamics, in-

S —~4556> ¢

volving equilibrium '" and stability '~’ éénsiderations,

while other research has been directed toward solving the

g

difficult injection problem'’ ‘5

C oOnce an equilibrium is established, which in general

requires constraints on beam density and on the betatron

field index, stability questions of two general types arise.‘ff -

First is the question of the stability of the betatron
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oscillations in the presence of small field errors, i.e.
the problem of orbital resonances. These resonances are
basically single particle effects caused by a repeated in-
phase interaction of a particle with a field imperfection.
However, even though they are basically single particle
effects, resonances can set a limit to the beam current in
an accelerator since the betatron frequency of one particle
is affected by the collective fields of the other particles
in the beam. These resonant instabilities were studied
under an earlier contract with NRL, N00014-81-C-2371.

The second broad class of instabilities occurs in a
device with "perfect" (azimuthally symmetric) applied fields.
These generally come under the heading of collective effects
and include the various mechanisms by which the beam may
bunch, kink, or simply spiral toward the chamber wall.

They include the negative-mass~kink mode and the various
resistive wall instabilities, all of which place certain
constraints on beam current.

The various collective instabilities in the modified
betatron were first studied by Sprangle and Vomvoridiss, who
characterized the different modes and analyzed the dependence
of the growth rates on system parameters. Building on this
work, Sprangle and Chernin9 investigated, under somewhat
more general conditions, the behavior of the growth rates as

current was raised, keeping the beam energy spread fixed.
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A rather unusual and unexpected result was found, namely,

a double-valuedness in the current versus energy spread sta-
bility curve and the appearance of two disjoint stability
regions. This double-valuedness was attributed to the ef-
fects of self fields and was found to be the result of a
competition between the growth and stabilization mechanisms.
Under some conditions, the double valuedness could even be
present for a conventional betatron configuration.

Prompted by this novel finding and mindful that the
three~dimensional nature of the problem made inclusion of
self field effects necessarily approximate, a rigorous study
was begun of a two-dimensional model, including correctly
the crucial radial and azimuthal particle dynamics, but
neglecting the inessential dynamics in the axial direction.
This model has the advantage that all self field effects
could be included exactly in the formulation of the eigen-
value problem governing the small signal behavior. This
study quickly developed in several interesting directions,
having now produced potentially useful results for beam be-
havior in accelerators, storage rings, and microwave tubes.
It is the results of this study which are reported here.

The following section describes the model we have
used, discusses its essential features, and summarizes our
findings. Detailed analysis is given in papers attached as

Appendices. Also included as an Appendix is documentation




and a listing of a computer code developed under this con-
tract which locates the eigenvalues for the stability prob-
lem for the case of perfectly conducting chamber walls. A

final section suggests directions for future work.
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II. TWO-DIMENSIONAL LAMINAR ELECTRON LAYER MODEL

The negative mass instability, diocotron instability,
and electron cyclotron maser instability all depend in some
way on the existence of shear in the fluid velocity in the
underlying equilibrium state. Self fields in an intense
beam may affect the magnitude and even the sign of the shear
in a beam; hence it is important to include self field ef-
fects accurately in any analysis of these beam instabilities.

The cold fluid equilibria in a torus are quite diffi-

cult to calculateB. The stability analysis is even more in-
volved. To make progress, certain simplifying assumptions
about the functional form of the self fields are often mades.
These assumptions may affect the dependence of the shear on
the beam density. One is therefore motivated to consider a
"beam" model which retains the important effects of curvature
while allowing an exact treatment of self field effects.
Such a model--the E-layer or Astron model--is illustrated in
Figure 1. Here a laminar layer of electrons is supported by
a combination of radial electric and axial magnetic fields
between two coaxial cylinders. Here the cylinders will be
taken to be perfect conductors, though resistive wall and
other boundary effects may be included in a straightforward
way, as discussed in Appendix B.

The E-layer model has been the subject of numerous

studieslo-lz. Surprisingly, however, the exact linear
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stability analysis for a finite thickness, relativistic
layer does not seem to have been carried out previously.

"so, perhaps as a consequence, some very interesting, poten-
tially useful features of the model appear to have been mis-
sed and the unifying relationships13 among the various insta-
bilities seem not to be widely appreciated.

In the basic equilibrium state illustrated in Figure
1, only a radial electric field (Er) and an axial magnetic
field (Bz) exist. These fields are in general due to a com-
bination of self and applied fields. The equilibrium is

governed by the following set of three equations (MKS units):

Yové e

T = m Bg t VoB,] (1)
dBo
dr T UM%V ¢ (3)

These equations must be solved subject to a specified
potential difference between the inner and outer walls and
specified total magnetic flux. A method for doing this and
some features of the solution are discussed in Section II of
Appendix B. Here we note only that solutions may be gener-
ally grouped into three types, depending on which two of the
three terms in the equation of force balance, Eq. (1), are

most important. The three cases are: (I) magnetic force
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balances centrifugal force (e.g. Astron, gyrotron, particle
accelerators), (I1) electric force balances magnetic force
(e.g. crossed field microwave devices), and (III) electric
force balances centrifugal force (e.gq. orbitronl4, helio-

tronls). Our analysis, therefore, has wide applicability

and many standard results may be recovered in appropriate
limits, as discussed in Appendix B.

One of the most important equilibrium quantities is
the dependence of the rotation frequency we S vo/r on the

energy E = mc?’y - e¢. This guantity may be shown to be given

by
2 y
duw,, _ Y [Bo+2h+g/yo] “
QdtE Z Th2-
‘ dE mczyoeo 1+Yoh E/Yé
where £ = w;/wé, wy, is the plasma frequency, and
erE_
o'o

When We is a decreasing function of energy, one ex-
pects the usual negative mass instability mechanism to oper-
ate. However, we note the possibility of reversing the sign
of dwo/dE by judicious choice of applied electric field. 1In
fact, as detailed analysis shows, the negative mass insta-
bility may be completely stabilized by choosing Bé + 2h < 0.
A discussion of this result is given in Appendix A and a
detailed derivation in Appendix B. Another noteworthy fea-

ture of Eq. (4) is that it possesses a (negative) extremum




as a function of h, at h = y;z. Since hyé is the ratio of
electric to centrifugal forces we identify those devices of
Type 1I1 as the most unstable type of microwave generators.
This result suggests that the orbitron and heliotron might
possess some advantages over other microwave tubes. This
possibility is presently under investigation.

The linear stability of equilibria described by Egs.
(1-3) to perturbations in the r and 6 directions has been

studied in some detail. The eigenvalue problem for the TE

VN 0
e S N T

modes has the form
r S (rk%®) + ¢ = 0 (6)
dr dr

where ¢ = rEel and where A and C are complicated functions

or r, the azimuthal mode number £, and the eigenvalue w.

PLEEEEL S

The full equation is derived in Appendix B where the features
of the equation are also discussed. We emphasize that Eq. (§6)
is fully relativistic, fully electromagnetic, and contains
all effects of self fields.

- Eg. (6) describes two basic unstable modes, the longi-

tudinal mode, satisfying w - £w°=o and the transverse mode,
for which v - Lu_ = * w, (1 + Yéhz)%. The longitudinal mode
involves significant azimuthal bunching while the transverse
mode involves mostly radial motion of the layer. 1In the
planar limit, it may be shown that the transverse mode re-

N duces to the so-called Buneman instabilityle, first studied

in connection with the early magnetrons. In cylindrical

g
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geometry the transverse mode has been invoked to explain the
operation of the peniotronl7.

Our studies have been concentrated on the longitudinal
mode which includes the negative mass, cyclotron maser, and
diocotron instabilities. For a thin layer it is possible to

obtain an analytical approximation to the growth rate for the

longitudinal mode, as shown in Appendix B:

T .2 2
Zﬁu.p (Bo+2h)

2 _ 2
[Im(w)] = (b++b_) (1+Y70h2) + O(ZT/R) (7)

where 17 = layer thickness, R = layer radius, bi = wave admit-
tances. (See Appendix B, where the second order term is also
given explicitly.) This expression for the growth rate has
several important features: The growth rate (1) scales as
(current)%; (2) vanishes when Bé + 2h < 0; (3) has a maximum
as a function of h when hyé = 1; and (4) vanishes in the
planar limit. Features (2) - (4) are novel findings. They
are expected on physical grounds, yet they have not been pre-
viously discussed in the literature. Item (2) may have appli-
cation to low energy (~MeV) storage ringsla. Note that self
field effects were included in the derivation of Eqg. (7).
The stability condition, (2), therefore, is insensitive to
beam current, azimuthal mode number, or container geometry.
Extensive numerical tests of Eg. (7) have been carried

out, using a computer code developed to solve Eg. (6) through

using a "shooting method." 1In the tests all parameters but one
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were held fixed and the dependence of the growth rate on the
single variable parameter was determined and compared with ?
Eg. (7). The parameters tested were h, v/yo, 1/R, b/R, a/R,

Y and £. Good agreement was found in all cases; details

o’
are given in Appendix B. The computer code used to solve
the eigenvalue problem is documented in Appendix C.

In addition to these tests, a search was carried out
for evidence of the double valuedness in the current vs.
energy spread curve, the prediction of which was the origi-
nal motivation for this work. Despite much effort, no such

double valuedness was uncovered. The search is complicated,

however, because it is difficult to develop a set of param-

eters for layers with the same energy spread, but different
currents since, for large currents, the energy spread is a
function of the current. 1In fact, current, energy spread,
and beam thickness are connected in a way that is absent in
the equilibrium used in reference 9. The reason is that in
reference 9, betatron oscillations are assumed to "fill in"
the beam to the size and shape assumed when calculating the
self fields. 1Inclusion of betatron oscillations in the
E-layer model may help to carry out an effective comparison
more readily, but this is not easily done. A definitive
resolution of the question on the existence of double-valued-
ness must await further analysis, though numerical particle
simulations may also be helpful in shedding some light on

this question.

.....................................
.......................
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I1I. SUMMARY AND RECOMMENDATIONS

A detailed study of a two-dimensional electron layer
confined between coaxial cylinders has been carried out with
the intention of understanding the radial and azimuthal beam
dynamics in high current accelerators. Though no confirma-

tion could be found for the predicted9

double-valuedness in
the current versus energy spread curve, several interesting
and potentially useful features of electron beam behavior
in curved geometries were discovered. Specifically, it was
found that by appropriate choices of applied electric field,
the growth rate of the longitudinal mode could either be
maximized, as might be desirable in certain microwave devi-
ces, or eliminated altogether, as would be desirable in
electron accelerators and storage rings. In addition, a
long-standing puzzle concerning the survival of a finite
growth rate for the negative mass instability in the planar
limit was resolved.

There are several areas where further work would be
useful. First, additional research is needed to resolve the
guestion of double valuedness discussed above. The problen
is a difficult one, however, and computer simulations may
be needed to resolve this complex issue. Second, the
effects on beam behavior of other applied magnetic or elec-
tric fields is also an important area for further investiga-

tion. 1In particular, inclusion of a toroidal field in the
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E-layer model is straightforward and leads to a fourth order

N eigenvalue problem whose features are important to study.
N .
. Careful examination of this problem may lead to a more thor-
. ]
) ough understanding of the effect of the toroidal field on
[~
" beam stability in the modified betatron. And finally, we
mention that the effect of strong focusing fields on these
x instabilities is an important topic for future study, since
i it has been shown that use of such fields may have certain
. beneficial effects on the beam behavior. Even these fields
’ may be included in the E-layer model if 6-dependence is
;Z allowed in the equilibrium state.
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Stabilization of the Negative Mass Instability
in a Rotating Relativistic Electron Beam

Y. Y. Lau and D. Chernin‘*’
Plasma Theory Branch, Piasma Physics Division, Naval Research Laboratory. Washingion, D. C. 20375
(Received 9 December 1983)

1t is shown that the negative mass instability in a rotating relativistic eleciron layer may be
stabihized by a radial dc electric field of a suitable magnitude. The stabihization mechanism is
independent of the beam velocity spread, and is insensitive 1o the beam cursent. the con-
tainer geomeltry, or the azimuthal mode number. A simple stability criterion is given.

PACS numbers 5260 +h. 29.20 -c. 47.75 +1, §2.35 Py

The negative mass instability! poses a major ob-
stacle 10 the development of high-current cyclic ac-
celerators. Various methods of stabilization have
been proposed and analyzed. Notably. the effects
of a moderate beam angular velocity spread and be-
tatron oscillations have been considered.2~¢ For a
betatron. the addition of a toroidal magnetic field’
has been shown to reduce the instability growth rate
considerably® ® and for the Astron, the proximity of
the container walls 10 the relativistic electron layer
(E layer) stabilizes the lower azimuthal modes.?

In this Lenter, we show that by imposing a nega-
tively biased radial electric field of a suitable
strength, the negative mass instability may be
suppressed. This stabilization differs from all previ-
ously known mechanisms in that it is effective even
for a very cold beam. it does not require a toroidal
magnetic field, nor is it sensitive to the container
geometry, the beam current, or the toroidal mode
number. The simple stability criterion, given in Eq.
(10) below, does not seem to be very stringent for
eleciron beams in the megaelectronvolt range.

Our finding is based on an analytic treatment of
the stability of the E layer situated in a configura-
tion similar 10 the Astron, which has been shown®
1o include all essential features of the negative mass
instability. We limit our study to a highly ordered
beamn whose unperiurbed orbits are concentric cir-
cles. Such a beam should yield the most pessimistic
prediction as far as the beam stability is concerned;
hence our analysis is conservative. The simplicity
of the assumed equilibrium orbits allows the linear
stability theory to be formulated exactly, including
all ac and dc space-charge effects, all relativistic ef-
fects, and all electromagnetic effects, for general
equilibrium profiles. As we shall see, our dispet-
sion relation reproduces the standard results in the
sppropriate limits. For example, the diocotron in-
stability is recovered, and the negative mass insta-
bility removed, in the planar, nonrelativistic limit.

........

© 1984 The American Physical Society

Consider a cylindrical £ layer with radial density
profile no(r) which, in equilibrium, circulates con-
centrically with azimuthal velocity Vo(r) = @ug(r)
= @rwo(r) under the combined action of an axial
magnetic field By~ 2B,(r) and radial electric field
Eo=7Eo(r). These fields include both the self-
fields and the externally imposed fields. We as-
sume that the E layer is located between two
cylindrical conductors of inner and outer radii @ and
b, respectively, and that there is no axial motion
nor axial variation in either the unperturbed or the
perturbed states.

The governing equations for the equilibrium read

70”&/"‘ -(G/MO)(Eo"’UoBo). (1)
dBo/df - "’#o’o' = poenpvy, (2)
r=Yd(rEy)/dr = nge/eo. 3)

Here, e and m are respectively the electron charge
and rest mass, uq and ¢g are the free-space permea-
bility and permittivity, and yo= (1 —v}/c?) =12 js
the relativistic mass factor with ¢ being the speed of
light. Once the electron density ng(r), the total
electrostatic potential difference between r = 2 and
v = b, and the magnetic flux are specified, the un-

riurbed fields vo(r), Eo(r), and By(r) are to be
solved from (1) 10 (3) to yield a self-consistent
equilibrium solution.

We next consider a small-signal perturbation on
such an equilibrium. All perturbations are assumed
10 vary as f(r) exp(iwr — il6), where I is the azimu-
thal mode number and w is the (complex) eigenfre-
quency to be determined. In the absence of axial
variation and of axial motion, the TM modes and
the \TE modes are decoupled. The nontrivial com-
ponents of the rf electromagnetic fields are E,, E,.
and B, for the TE modes. The Maxwell equations,
the Lorentz force law, and the continuity equation
may then be linearized and combined to yield the
following second-order ordinary differential equa-

.....
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tion for¢=rE,
2fab-ele)-

In this equation
New—lwglr), NpmwlwlD, p=1-1c}w’r?+NpQ¥/?,

,’- elng/yomoee. D=PQ -0l Pmyl(1+h), O=h+vywy,

np®™ Nplw/w)Ply]. A= —mp(/pr)(1 +NpBiN/lw,),

Bomvy/c, B=(w¥cir)(1-nd/p+Np/vd).

In the definition of Q, a prime denotes a derivative with respect to r, and h is proportional to the equilibrium
electric field and is defined by

@0 w? d7p
Q ¢! a

+24 ,pl-o.

ar 4)

h = — erEg/moydvi, ($)

Note that A is positive (negative) if the equilibrium electric field points radially outward (inward). The
eigenvalue w is determined by solving (4) subject to the boundary conditions ¢ =0 at r =g and at r = b.
Equation (4) is completely general and of wide applicability. It governs the small-signal stability properties
of various devices including the Astron,>*%% gyrotron,!® orbitron.!! and cross-field microwave devices,'?
depending on the parameters of the electron beam as long as the equilibrium states are modeled by Egs.
(1)-(3). A detailed comparative stability study of various types of equilibrium will be given elsewhere. For
the present purpose, we restrict ourselves to an E layer with uniform density ng extending from r=r, to
r =r, The E-layer thickness 7= r,—r, is assumed to be much less than the mean radius R. We shall use

7/R as an expansion par‘an;eter. Furthermore, we assume that |2 ] << wg, a condition readily satisfied by
-1

the negative mass mode.

The instability growth rate w, may be analytically derived from Eq. (4) for a thin E layer by expanding
about the singularity Q =0 in the complex r plane. To two orders in 7/R, it is given by

P N T 174 R LD <0 (
Ol YT i ) TR TH I T 6)
where &, (b_) is the normalized wave admittance at the outer (inner) edge of the £ layer.'’ and
A=t ]
4 y8(1+h)2(1 +y3n?)
wz 2 Uz
x{l—’? Bl+2n + (1 +h)]+2 ——%'ya(ﬁsnh)’—yg(l+ygh’)(as+zn)2
@ [ 7]
1 Q+neifed|b,~b_ ||’ )
2 730+ 70D |ba+b_ || ™

The first-order term (in 7/R) of (6) describes
the negative mass effect’ and dc field effects, while
the second-order term includes the diocotron ef-
fect' and finite-thickness stabilization.’ The
derivation of (6) will be given elsewhere. Its validi-
ty may be tested as follows:

(a) If the beam is infinitesimally thin, and if we
ignore the dc electric field by setting 4 = 0, we then
tecover from (6) the well-known dispersion rela-
tionship w? = (/7/R Jw}BY (b, +b_) for the neg-
stive mass instability for the Astron geome-

(b) A more stringent test on the validity of (6) is
1o consider the planar geometry limit. In this limit.
we let R = oo, / — oo, wp— 0, but require that v,
k,=i{/R, E; and 7 remain finite. Then A — o
from (5) and the first term of the right-hand side of
(6) tends to zero, consistent with the notion that
there is no negative mass instability in a planar

geometry. Using only the last term of (6), we then
obtain

try.83.4.10 wl= (k,272/478h2)w:/w%- (k,’rz/478)w:/w}
;o 15-2
______________ e N Lt 1 BN e e e e e it e e o e e s . . w m
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which agrees with the well-known growth rate for
the diocotron instability for a sheet beam '* In writ-
ing the last expression, we have used the self-
consistent equilibrium condition Eg+ vox Bo=0
(for a planar sheet beam) in (5) and defined
w, = le|By/moyo This agreement with previously
known results adds to our confidence in the disper-
sion relationship (6), especially with regard 1o the
effects of dc self-fields. Recent work on the
diocotron insiability is reported by Tsang and
Davidson **

For a thin F layer with sufficiently high energy
( > 1 MeV), the last term of (6) may be ignored.
The dispersion relationship may then be approxi-
mated by

1 I | (Bi+2h)
lg |l —— o} = | ——. (8)
“ =L +b- ‘"’lR (1 +ygn?)
Thus, the sufficient condition for stability is
h< -p32 )

for the usual case'’ b, +b_ > 0. This stability
condition (9), together with the definition of 4 in
(5). implies that a sufficiently strong. radially in-
ward electric field may render the relativistic elec-
tron beam stable against the negative mass instabili-
ty. This stabilization is independent of the beam
velocity spread or betatron motion, and since its
derivation has already taken into consideration the
dc self-field effects, the criterion (9) is not restrict-
ed 10 a low-current beam.'® In the event that the
externally imposed electric field exceeds the self-
fields. the stability condition (9) may be rewritten
as

legd! > 3By In(b/a), (10)

where |e¢| is the externally imposed potential
difference (in kiloelecironvolts) between r =a (the
cathode) and r = b (the anode).

As an example, take R=100 cm, b~a=4 cm.
Then, according 10 (10), a 1-MeV electron beam
would be stable against the negative mass instability
if the inner conductor is negatively biased at a voli-
age greater than 200 keV with respect 10 the outer
conductor.

A partial explanation of the stability condition (9)
may be given in terms of the single particle motion
in an externally imposed field £, and B, Let ¢ be
the total energy (kinetic and potential) of an elec-
tron. One may easily deduce from (1) that
dwo/de=dwy/dr)dr/dex (B;+2h)/(1 +y3h?) if
the self-fields of the electron layer are neglected.
Thus. the effective azimuthal inertia"? of a rotating

relativistic electron may be converted from negative
to positive if h is less than —B82'2. 1t should be
stressed, however, that the siability condition (9) is
derived from coliective-mode considerations which
include dorh the ac and the dc self-fields.!’

In summary, this Letter presents a novel, robust
method 10 suppress a major instability in circular ac-
celerators. Technical aspects such as fabrication,
beam injection, and beam retrieval remain to be
studied. A more refined analysis may be needed to
examine the possible occurrence (if any) of residual
instabilities. The stabihity criterion (9) may be test-
ed on several currently operating devices.
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the geometrical g factor for the toroidai configurauon
treated in Ref. 1. For the toroidal configuration, g is al-
ways positive.

140, Buneman, }. Electron. Control 3, 507 (1957).
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16jf the container wall is lossy. the wave admittance
(b, +b.) would be complex. The electron beam may
then be subject to resistive wall instabilities even if the
swability criterion (9) is satisfied. The resistive growth
rate and the negative mass growth rate scale differently.
however. We wish to thank A. M. Sessler (private com-
munication) for reminding us of the importance of resis-
tive wall instabilities, and for furnishing an argument
supporling our conclusion on the siabilization mecha-
nism.

"1 1s of some inletest 10 note that the negalive mass
faclor dwo/de is maximized with respect 10 A when
h=1/y} Thus, according to Eqs (1) and (5). the £
layer is most unstable, and is therefore most likely 10
yield radiation. if its equilibrium rotation is solely sup-
poried by a radially outward electric field. Reference 11
reporied a potent radiation source of this type More-
over, since the dispersion relationship (8) is applicable
for arbitrary combinations of Egand B. and for arbitrary
energy of the electron beam. it provides a ready compar-
ison of the *‘potency’’ among various microwave devices
such as the gyrotron, orbitron. heliotron. and cross-field
devices (f the small-signal growth rate 1s used as a cni-
terion). Further discussions, as well as the confirmaton
of the stability criterion (9) by a numerical integration of
(4). will be reported elsewhere.
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I. 1Iatroduction

There exists by now a truly enormous literature on the subjects of the

equilibrium and stability of layers of charged particles in various

q geometries. The earliest studies!™7 were conducted 1n order to understand the
"slipping stream™ or diocotron effect in the operation of the first
magnetrons. Somevhat later the importance of curvature effects was realized
when beams became relativistic, as in particle accelerators; the resulting
"negative mass” 1natab111ty8’9 completely dominates the planar beam diocotron
effect at sufficiently high energies (only a few tens of keV in many practical
devices of interest). The negative mass effect was also investigated in
connection with some controlled fusion research dgvicealo-lz and other

nachines.13

In recent times there has been remewed interest in high power, high
efficiency microwave devices as well as in accelerators capable of high
current operation. Spurred by the discovery of the electron cyclotron maser
14-16

(or gyrotron) effect, research in the field of short wavelength, high

pover microwave devices requiring no slow wave structure has been vigorously
pursued.17 Operation of these new devices depends fundamentally on the
negative mass effect as enhanced by a synchronism of the particles” angular
motion with the temporal and angular variation of a "cold” waveguide mode.
This enhancement, though not called the maser effect, was first noted in the
classic work of Briggs and Neillo and has been further elaborated in ref. 18.
The acceleration of large currents of electrons is a formidable problem
which has also received considerable attention recently. In cyclic devices it
is possible to construct high current equilibria in many caseslg"21 but
various instabilities, the negative mass instability prominent among them, may

limit achievable currents to smaller values than equilibrium considerations

lé6-1
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alone would suggest. In these devices the effects of self fields on the
negative mass instability and on the stabilization mechanism become important
to consider; in one device these effects have been predicted to lead to a
peculiar double-valued feature in the current vs. energy spread stability
curve.2? It was this particular result which initially prompted the study of
self field effects reported here for a simpler (2D) model.

The model we consider consists of a layer of charged particles (we will

think of them as electrons but ions may be trivially substituted) moving in

circles about a common axis, as shown in Fi{g. 1. This restriction to laminar

or "cold” electron flow will tend to overestimate actual growth rates of the
modes we study since the effects of betatron oscillations and of nonaxis-
encircling particles are stabilizing. An analysis including these effects is
properly done in phase space using the correct equilibrium distribution
function; such an analysis is significantly more complex than that given here

and may be carried out only in an approximate way. The laminar flow case

includes all essential physics and has great simplicity, allowing an exact
treatment of the linearized problem, to recommend ft. The equilibriunm,
discussed in the following section, is supported by a combination of self and
externally applied radfal electric and axial magnetic fields. We fmpose no
a priori restriction on the relative magnitudes of the three terms—
centrifugal force, electric force, v x B force—-in the equilibrium force
balance. This configuration is thus a reasonable model for the Astron,23
magnetron, gyrotron, orbitton,za peniotron25 and heliotron?® and includes
correctly the crucial radial and azimuthal particle dynamics found in particle
accelerators. This "E-layer” model has the virtue that the linear stability

problem may be formulated exactly, for arbitrary particle energies, including

all effects of self fields and all effects of relativity and

.....
-----------------

............
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electromagnetism. It is perhaps a bit surprising that, despite the
venerability of the topic, this exact formulation has not been carried out
earliet.27 The eigenvalue problem governing the stability of the E-layer is
derived and analyzed in Section 111, below.

The desirability of a completely general treatment encompassing many
devices and a large parameter space is related to the ease with which various
familiar results for special cases may be recovered in appropriate limits. A
dispersion relation for the so-called longitudinal mode obtained analytically
in the thin beam limit from the ordinary differential equation governing the
RF field reproduces all standard special case dispersion relations (negative
mass, electron cyclotron maser, diocotron) in a straightforward way; in doing
so, a puzzle is resolved concerning the survival of a finite negative mass
growth rate in the planar limit and a method suggests itself on how either to
maximize or eliminate altogether the negative mass instability growth.z8
Extensive testing of the dispersion relationship against a numerical solution
of the eigenvalue problem shows excellent agreement, as reported in Section
111. The classical diocotron dispersion relation is discussed and recovered
from our formalism in Section IV.

Qur treatment of the transverse mode, which has been invoked in the
theory of the peniotron device25 is somewhat less comprehensive. This mode is
unstable only when electron motion 1s synchronous with a cavity mode and so is
of a more specialized nature than the negative mass or diocotron instabilities
which arise from intrinsic properties of geometry and shear flow, not from
interaction with external structures. Still, the utility of the traansverse
mode for microwave generation may not yet have been fully exploited. We

comment on some features of this mode in Section V.
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II. Cold E-Layer Equilibrium

We consider an idealized model of an electron layer in which all
electrons circle a common axis as shown in Fig. 1. We will neglect the
effects of betatron oscillations and of axial motion {n both perturbed and
unperturbed states. Inclusion of betatron oscillations or axial perturbatione
is expected to have a stabilizing influence on the collective modes we will
study. We further assume that in general the layer is enclosed in a coaxial
waveguide with smooth, perfectly conducting walls at r=a and r=b, as shown in
the figure. Absence of either or both walls results only in a change of
;ertain boundary conditions.

Though this model is simple to descridbe it is surprisingly rich in
content. Depending on beam and geometric parameters and types of applied

fields, it may be taken as a good description of the Astron,23 gytotton,17

24

orbitron, peniotron,25 heliotron26

and cross field microwave devices and may
also be of some interest in accelerator8'9 and space physics stability
problems as well as in the theory of magnetic insulation.

The equations governing the equilibrfum quantities vo(r)a, Eo(t);,

Bo(r)z for a specified density profile no(r) are

Yo'%0 e
T "o Et VoBo! 1)
d
%'3} (rE)) = -en /e, (2)
dBo
ar " Yo%V’ (3)

vhere -e and m are the electron charge and mass,
- 1/2

factor, (1-(v°/c)2) s ¢ 18 the speed of light in vacuum, and € and u, are

Yo 1s the usual relativistic
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the permittivity and permeability of free space. 1In addition to the density

profile, we take as given the total electrostatic potential difference and the
totsl magnetic flux contained between r=a and r=b.

Using these conditions the solution to Eq. (2) is immediate and Eqs. (1)
and (3) may be combined to yleld a single differential equation for

u = BoYo = voyo/c:

0

S a— (%)

where E = mzlmz wz = e n /my € 1is the plasma frequenc f the layer
p/ %’ Yp o/ ®Y0€0o q yo e yer,

wo - vo/r, and a prime denotes d/dr. In Eq. (4) we introduce the important

quantity h, defined by,

erEo
he ——

ncle? 3 (3)
[} [+]

which is (l/yz) times the ratio of the electric force to the centrifugal force
. experfenced by an electron in equilibrium at radius r.

E Equation (4) must be solved subject to an initial condition u(ry)

FZ satisfying Eq. (1) which we rewrite in the dimensionless form

; “2 = (:E(uz-i'l)l/2 + apu (6)

..

2
g where ag = erEolmc and a = erBolmc. ag is known at r, but ey is not. The

entire equilibrium problem then reduces to choosing aB(rl) such that the

s e, 0"

resulting total flux

q
Tetatn

¢, = 2nf dr rB (7)




1s a specified number. A numerical method for doing this {s described in
Appendix A. Here we briefly consider the character of some of the
solutions. The equilibrium thus constructed will be used in the numerical

solution of the eigenvalue problem in Section III.

Given °E(rl) and an(rl), Eq. (6) may have 0, 1, or 2 real valued

solutions for u(rl), depending on the values of ap and ags without loss of

generality we take cB(rl) 2 0. The situation in the ap= ap plane is then

depicted in Fig. 2. By a positive root, denoted by (+) in the figure, we mean
a right-handed rotation about B {clockwise, looking in the direction of ﬁ).

The equation for the boundary curve C in Fig. 2 is the condition for Eq. (6)

to have a double root:

x %
u (u -an)
= (8)
°g (“*2+ 1172

where u* = (8/3)1Zs1nn[} s1an (3(3/2)¥ %01}, onc, 14h 0.

There are three basic types of equilibria found in devices of practical

interest: Type I, in which a magnetic field is used to balance centrifugal

. force (aE is small, e.g. Astron, gyrotron, particle accelerators); Type II, in

which electric and magnetic forces balance (inertia is small, e.g. crossed

field microwave devices); and Type III, in which an electric field is used to

balance centrifugal force (aB is small, e.g. orbitron, heliotron). Type I may

have only "+" roots while Types II and III may have either "+" or "-" roots.

In the following analysis, however, we make no assumption regarding the
relative magnitudes of the electric fleld, magnetic field, and inertia terms.
It 1is reasonable to ask whether stability considerations favor one type

of equilibrium over another for a layer of given kinetic energy. To our

knowledge there has been no definitive answer to this fundamental question.




For radiation source applications one arguably might want the most unstable
configuration while for other applications, like accelerators, one would want
the most stable one. We proceed to examine the stability of a general
equilibriun describable by Eqs. (1) - (3) in order to address this question,

our goal being a complete parametric study of the small signal behavior.

I1I. Stability of the Layer

We consider perturbations on the equilibrium described in the previous

section. The equations governing the layer are, simply

(g—t + 30w = - S + W) (9)
Pt = -'%% V.t = -en/e° (10a,b)
b =L 2 o 38
xB = —5 =% = ugenv *B=0 (11a,db)
c

where n is the number density.

Our discussion will be limited to consideration of perturbations in

the r and 6 directions, for reasons described below. Writing all

quantities Y as

¥(r,0,t) = ¥ (r) + rjdu .;“wt-!-('-))‘,l(sr.)(r

: o ) (12)

where ?o(r) is the equilibrium value, and retaining only terms linear

in Yl(l) one finds that the linearized versions of Eqs. (9) - (11) decouple

into two sets governing {vlr’vle’ﬁlr’Ele’Blz’nI} and {vlz’Elz'Blr’Ble which

we identify as TE modes and TM modes respectively.

(Here and bdelow we
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vrite Y, ;w) simply as Y for all first order quantities.) The TM modes
may easily be shown to be neutrally stable for perfect conductor boundary
conditions (damped, for resistive wall boundary conditions). They represent
simple oscillations of the electrons along the z direction in response to the
cavity mode fields; the equilibrium model does not provide any free energy to
excite the ™ modes. The TE modes, on the other hand, are potentially
unstable. If we had allowed a finite axial wavelength for the perturbed
quantities the TM and TE modes would be coupled, but it has been foundlo that
the effects of finite axial wavelength are stabilizing for the coupled case.
Consequently we focus attention exclusively on the TE waves.

The Euler equation (9), upon linearization, gives the fluid response in

terms of the RF fields of the TE wave:

e
mvlr monle - ;§;[81r+ voBIz] (13a)
e
wOQvlr mv19 - ;;3 Ele (13b)
o

where we have defined Q = o TR P= y:(l+h), Q= v;'/m°+ h, and

v; 3% Vo' Using the solution of Eqs. (132,b) in the definitions of the RF

currents Jlr and J19 and combining the linearized Maxwell’s equations (10) -

(11) allows one to write a single differential equation for ¢ErEle:

r%;(rﬂ-:—f) +C =0 (14)

where

16-8
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A=+ g/(Dyz)l (15)
© 2 -
€= [(_ - ""«.T'a-r( =y g(1+h)) +288° Ip” g(1+h)]
O
W22
+71p” (e/ ) (— -2 ~£e 2y 41 (16)
c
2.2
8= 25?4 0l cd (17)
C
D = PQ - 0°/u) = 1-6/v2 + yn2- o2/ (18)

and other symbols have been defined previously. [Equation (14) is identical
to Eq. (4) of Ref. 28, except for a few differences in notation.}

The other RF fields are given in terms of ¢ by

- b m -
E, = 1ira 1[(% + gD lnvolcz)f - —c% ED 1(1*'*\)4’] (19)
B, = - 15 87 [(w + e e - £ b gpH(1eng) (20)
C

and the perturbed velocities may be easily recovered using Egs. (19) and (20)
in Eqs. (13a,b); the perturbed density is obtained from “1'-(Eo’e)$'t1‘
Equation (14) must be solved subject to é(a) = ¢(b) = 0 (1f the walls are
perfect conductors) in order to obtain the eigenvalue, w. Hereafter we shall
assume that the electron layer is restricted to the annular region r1<r<ry
[Fig. 1]. 1In this case it is convenient to formulate the problem using the
explicit vacuum solutions at r=r, and r=r, and to match the appropriate
logarithmic derivatives, as is often done in microwave tube theory, in order

to isolate the effect of wall boundary conditions. Defining, then, the
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normalized admittances evaluated just outside of the layer, we have

iE Lr
1r 2 .
b+ = = E - _TT_ % (218)
18 + wr +
r=r 2 2 r=r
2 3 -1 2
c
b = :I.Elt . 22 e
SRRl - TET 8 @)
r-r1 21 _£2 r-rl
c

We stress that the normallzed wave admittances b, and b_ depend only on the

waveguide geometry exterior to the electron beam. They are independent of the

beam or its dynamics. b, and b_ are evaluated explicitly in Appendix B for

some practical cases of interest.

Let us exawmine Eq. (14) more closely. In the complex r plane Eq. (14)

has singularities at points where

0= e = 0 (22)
D+ Elvi =0 (23)
A=0. (2%)

The first of these clearly represents a match between the mode frequency and a

harmonic of the particle “"cyclotron” frequency. Such a match is present in

the negative mass instability, cyclotron maser instability, and diocotron
instability all of which are described by Eq. (14). Indeed, these may all be
considered to be the same instability in this sense,18 though the individual
names are still useful. The negative mass instability is fundamentally a
rotational effect. The classical explanation attributes ft to the decrease of

circulation frequency with particle energy leading to growth of azimuthal

bunches. The negative mass instability operates without regard for the cavity
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modes of the vacuum chamber; the fields are nhot well approximated by the
cavity mode. The instability 1s strongly enhanced however if Re(w) happens to
be & cavity mode, as first pointed out by Briggs and Neil-lo In receant years
this synchronous case has been given its own name, the cyclotron maser
instability, mainly in the literature of gyrotron research.”'18

The diocotron instability, originally studied in connection with the
development of the first cross field microwave devices, 1s a "residual”
instability in this context. It is what survives in the non-relativistic
and/or planar limits. The perturbed electric fields are basically
electrostatic in nature and are strongly localized at the position of the
layer. The equation governing the diocotron 1nstability1’4’6'7’29 may be
recovered formally from Eq. (14) by taking csw. It is discussed further in
Section 1V, below.

A mode satisfying Eq. (22) is sometimes called the longitudinal mode
since the major effect on the beam is aziwmuthal bunching. Equation (23), on
the other hand, describes what has been called the transverse mode which
involves little bunching, but significant transverse (radial) motion of the

beam. If h is small, Eq. (23) becomes
w - lwo = % w,* (25)

This transverse mode has been invoked to explain the operation of the '
peniotron25 when w corresponds to a cavity mode. 1In the nonsynchronous case
the transverse mode is stable in the absence of resistive walls, as pointed

out in ref. 10.

Finally we note that Eq. (24) may be loosely associated with an

electromagnetic mode. In vacuum only (24) survives as a singularity but in




-fact it may be shown to be only an “apparent” siugularity;30 the vacuum
eigenfunctions are analytic in r, except possibly at r=0.

We proceed to analyze Eq. (14) to uncover the parametric dependences of
the growth rates of the unstable modes. In order to make progress

analytically we consider the case of a beam of uniform density and of

thickness t

r,-r, vhich is much less than {ts average radius

R = %-(rz + rl). If the beam is sufficiently thin it {s possible to consider
a Taylor series solution about r=R of Eq. (14), taking care to check at the
end that the singularities are sufficiently far away in the complex r plane,
so as not to disturb the series gonvergence;31 carrying out this program we

find the dispersion relation

% 1 Ao
G, -G +t[5—+5 (6 C )G+ g *6,6.]
R A [
[+
3,1.2 co
- R 6, - G_)(-—Ao) =0 (26)

correct to order (1/R)2. In Eq. (26) G_, G+ are the radial logarithmic
derivatives of ¢ evaluated just inside the layer at r=r;, r=r, respectively,
obtained by integrating Eq. (14) across the beam edges:

-1

1
G, = ————— [7 3b, + q(r, )] (27)
+ 'z,1x('2,1) L+ 2,1

where

“m (28)

and




K(r)

Ao + (r-R)Al + oo (29)

(r)

C + LR
o
near r=R.

Expanding G, to order t/R, Eq. (26) then reduces to

1 T(ows 1 1 _ o1 .
2(b, + b)) + ¢ [-Ra” 7\:(1"’+ Q) (gb_+ q) + C_|=0 (30)

vhere now q and q/ are understood to be evaluated at r=R and where in Eq. (30)
ve have (temporarily) kept terms only to O(t/R). No assumption has been made
about the E-layer density or current; we have assumed only that the beam is
“thin".

Let us first consider the longitudinal mode, that is, we look for a root
of Eq. (30) with |92|<<m:- Of the terms within the brackets in Eq. (30) only

the q' and q2 terms behave as 9-2 for small Q. Keeping only such terms, some

algedbra gives nisln(n):

T 2 2

£ mw (R° + 2n)
2 _ Rp o 2
U ™, + 50 (1 " Yzhz) + 0(21/R) (31)
(o]

vhich, for h = 0, is the classical negative mass dispersion relation for the
Astron configuration.lo (The 0(!,1/R)2 term is displayed fully in Eq. (36),
below.) We remark that Eq. (31), including the second order terms, can be

obtained from the much simplified form of Eq. (26),
G-G_+1GG_=0 (267)

vhere terms behaving as 9-1 have been dropped from Eq. (26).
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Ighoring the O(ztlx)z term in Eq. (31) for a moment, we may interpret the
dispersion relationship (31) as follows. As we have seen, the factor
(b, + b_) represents the effects of the container structure, and the

factor (T/R)w: is proportional to the beam current. These two terms always

appear in any dispersion relation involving an electron beam. All dynamical

effects, including those due to self fields, are contained in the factor

(82 + 2n)
M=z - — 53 (32)
(1 +yh)

for a sufficlently thin beam. Some insight into the meaning of this factor

may be had 1f we note that for small equilibrium densities, £, it is

proportional to dwolde where ¢ = mczyo - e, is the total energy of a particle

in the equilibrium:

do, -, 52+2h+g/y

de mczle"l + y 2]. 33

At least when £ is small then we find agreement with the classical explanation
of the negative mass effect: A rotating beam is unstable (stable) if its
equilibrium rotation frequency is a decreasing (increasing) function of its
(total) energy, that is, M is proportional to the effective azimuthal inertia
(mass). We stress that for finite E this interpretation begins to break down;
Eq. (31) was derived assuming £ was finite yet £ does not appear in the factor
M but clearly does appear in Eq. (33).

M, though simple in form, has many interesting features.

Let us consider

its dependence on h, illustrated in Fig. 3. Perhaps the most interesting

The
possibility for using this property of equilibria supported by a radially

property of M is that it experiences a change in sign at h = - 35/2.




..........

..................................

inward electric field in addition to a magnetic field in order to suppress the
negative mass instability has been discussed elsewhere.28 We note that since
the factor M is independent of the beam current or of the waveguide dimensions
and represents a purely dynamical quantity, this stabilfzation of the negative
. mass instability by a radial electric field is expected to be valid even in
toroidal geometry, even for high current, very cold beams. (The method is
limited to use for moderately low energy beams, in the MeV range in practice,
since the applied electric field required to change the sign of M from
negative to positive is proportional to 72, as follows from the definition of
h, Eq. (5).) Note that there is a "most stable” configuration at h=-1, at
which point certain singular parts of ¢ in Eq. (14) vanish identically.
Perhaps equally interesting for microwave generation applications, is the
occurrence of a "most unstable” point in Fig. 3 at h = lly:- If we recall
that yih is the ratio of the radial electric force to the centrifugal force we
oSserve that the choice yzh = 1 describes a configuration fn which the
equilibrium is supported solely by an electric field (a Type.III equilibrium,
in the language of Section II). This result suggests that for a given beanm
energy, a microwave source such as the orbitron?4 in which an annular beam
circles a positively charged wire with no applied magnetic field, might have
some advantage over more conventional devices like magnetrons (h<0), inverted
magnetrons (h>>1/y§), or gyrotrons(h=0). This finding i{s novel. We remark
that this negative peak in M is sharpest at low energies (small s:).
In the non-relativistic limitc, 8:+ 0, Yz» 1, the sign of M is determined
directly by the sign of h, which remains finite in this limit. Usually we
are accustomed to thinking that the negative mass instability should vanish in

the non-relativistic limit when there is no gradient in the magnetic field.

Here we see however that an equilibrium electric field can affect the sign of
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fhe azimuthal inertia just as a gradient in B can. If we define an equivalent

g field index, ngq. by
z 1 )
i sy S (34)
eq Y,
"
then
y _ (r2-D)h
n. = b > (35)
9 (1 + h)

which vanishes when h does.

One final comment about h must be made. The electric field appearing in
the definition of h, Eq. (5), is due both to the electric charge of the layer
and to any externally applied bias potential. When the contribution of the
electric charge dominates there is some question as to what value of h to use
in Eq. (31) when calculating growth rates since Eo and therefore h will change
sign somewhere within the layer. For this reason, in all numerical examples
considered below we will assume that h, when it is non-negligible, is
dominated by the contribution of an externally maintained bias potential.

The analytical results presented up to this point are subject to test by
pumerical integration of Eq. (14) subject to suitable boundary conditioas. We

have written a program to carry out this task. Given a density profile, the

electrostatic potential difference and the total magnetic flux contained
between r=a and b, the program calculates all equilibrium quantities then,
given the mode number £, locates an eigenvalue w. In all examples below the
density profile is parabolic; we expect good agreement with Eq. (31), derived
using a flat profile, if we identify (t/R) wi with 2(v/y°)(c2/R2) vhere v 1s

Budker’s parameter, the number of particles per unit length times the
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classical electron radius. All examples use a perfectly conducting wall;
effects of a small wall resistivity, which may be very important under some
conditions, are discussed briefly toward the end of Appendix B.

Though we shall eventually test Eq. (31) for all parameter dependences,
let us first check the interesting dependence on h, discussed above, against a
numerical solution of Eq. (14). Figure 4 presents some typical results. Here
ve have i1llustrated, for two different values of v/yo a comparison of
the £ = 1 mode growth rates for a thin (1/R =.02) beam as predicted by Eq.
(31) (dashed line) and by a solution of Eq. (14) (solid 1line). (To be
precise, what is plotted on the numerical solution curve is Im(m)/mo(rl).)
The transition from stable to unstable behavior occurs at h = ~ 83/2
(= - 0.278 for this case) independent of . This 1is an important feature of
Eqs. (31) and (32) which has been used to atgue28 that the stabiliza?ion
condition, h<-8§/2. for the negative mass instability {s independent of the
beam current. Note that this statement cannot be made on the basis of single
particle orbit theory alone [cf. Eq. (33)]; the stabilization condition is
obtained from collective mode considerations including self field effects.
Actually a small amount of residual growth remains for h less than but very
close to - 83/2, a feature discussed in more detail in the following
section. Agreement between Eq. (31) and the numerical solution is best at
small growth rates which is reasonable if we recall that terms behaving
as n-l were neglected in favor of terms behaving as 9-2 when Eq. (31) was
derived. Equation (31) consistently gives slightly too high a growth rate
(1.e. it is pessimistic), a feature which will be shown to persist when

variations of other parameters are considered. Notice that the numerical

solution confirms the existence of a peak in the growth rate for h = 1/73, as

predicted by Eq. (31), again independent of E.
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The significant parameters upon which the small signal behavior of the
layer depends include, beside the externally applied bias fields, the geonetry

factors a, b, Tys Tos the current (v), the beam energy Yor and the mode

T T YN e e

number £. We proceed to consider the effect of each of these separately on

. the growth rate of the longitudinal mode, w » zwo, for the specific case of an

Astron-like configuration, h ~ 0.

Unless otherwise stated all parameters in the cases considered below will

take the following nominal “"base case” values: a = 0.5m, b = 2.2m, r, =

0.9%m, ry = 1.0lm, total electrostatic potential difference between inner and

outer walls = 0., total flux between inner and outer walls = w(b2 - 32) Boo

4

where B, = 48.2x10 'T 1s the field required to hold a single particle at

R = Im with y = 3. The radial density profile is always taken to be parabolic

; and symmetric about r=R=lm with epecified peak value; the base case value is

5x107/cc wvhich gives vlyo = 3.94x10-3. The base case azimuthal mode number

2 is 1, for which b_+b_= 2.50 for v = w,- From Eq. (31) the normalized
growth rate for the base case is 5.6%; the numerical solution of the

eigenvalue problem gives 5.35%.

Figure 5 illustrates the comparison of growth rates as calculated by Eq.
(31) and by a numerical solution of the eigenvalue problem for a range of
currents. Over the wide range considered, the v1/2 scaling predicted by Eq.
(31) 1is shown to hold up extremely well up to values of v/Yo of a few

percent. Similar excellent agreement is generally found for variations in

layer thickness (Fig. 6), outer wall position (Fig. 7), inner wall position

(Fig. 8), particle energy (Fig. 9), and azimuthal mode number (Fig. 10). Some

remarks on each case follow.

In the case of varying layer thickness with the maximum density fixed

. (Fig. 6) two effects are competing; these are the basic v1/2

dependence of the




. growth rate versus the stabilizing effect of finite thickness30 (effectively,
finite frequency spread). The finite thickness effect is clearly second order

- in (1/R) end is not shown explicitly in Eq. (31) but it is included in all
plotted data of Figs. 5 - 10; the second order term is given explicitly in the

. following section. 1In the examples we have studied, finite thickness effects
. have been small and have not been effective in stabilizing the instability.

In Fig. 7 the effect of outer wall position is illustrated. As the wall
is moved in from its base case location at 2.2m the growth rate is observed to
increase dramatically for a while, then to fall off. The reason for the
increase is the approach to synchronism of particle motion with a cavity
vacuum mwode, that is, w = lwo »w, where w, is a solution to by + b_ = 0;
under this synchronous condition the cavity mode fields act to enhance those
i established by the dynamical charge bunching due to the negative mass effect.
: This synchronous case has been given its own name, the cyclotron maser

instability, and is put to enormous practical use in the gyrotron family of

microwave devices.l7 while in Figs. 5 - 10 we have consistently evaluated

b, and b_ at v = lmo, near a zero of b, + b_ this is clearly inadequate and
- Eq. (31) should be solved as a cubic polynomial. Empirically we find that
evaluating by + b_ at v = lmo is adequate when b+ +b_>12.

As the outer wall 1s moved further inward, past the synchronous point the
- growth rate in Fig. 7 drops as b, + b_ changes sign. This drop is
3 attributable to a “shorting out” of the azimuthal field Ele as the wall
approaches the edge of the layer. An identical phenonenon is seen as the
inner wall is moved outward, Fig. 8. Use of an inductive impedance (by + b_
<0) to stabilize the negative mass instability has been proposed by Briggs and

- ) Ne11.32 We remark that in Fig. 8 no synchronous case is encountered for the

parameters considered, as the laner wall is moved.
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The decrease of growth rate with increasing kinetic energy 1s documented
in Fig. 9. The basic reason for this decrease is just the relativistic mass
increase: the azimuthal response of a particle to the perturbed field Elﬂ is
reduced by a factor Y;I, for large Yo" No synchronous cases are encountered
over the range of Y, considered.

In Fig. 10 we have plotted growth rate versus azimuthal mode number £.
Agreement is good between the dispersion relation, Eq. (31), and the numerical
solution; near synchronous cases occur for £ = 5 and 9. Though predicted
growth rates are rather large, for the high ¢ modes, these should in practice

be subject to stabilization by the effects of finite betatron oscillations

which we have neglected in this treatment. In any event we expect the

dispersion relation, Eq. (31), to begin to break down for short wavelengths,
i.e. 21/R 2 0(1), or azimuthal wavelengths on the order of the layer
thickness. A WKB treatment of Eq. (14) carried out for this case yields an
eigenvalue condition, the numerical sélution to which would appear to require
more effort than a direct numerical solution of Eq. (14) itself.

Finally, we report that in the initial phase of our investigation, we
attempted to derive the dispersion relationship by constructing a quadratic
form for the differential equation (14), under the assumption that ¢ = rE

19
approximately constant across the E-layer. The latter assumption has been

is

widely used and has been considered valig?-11,17,18 for a thin relativistic
electron beam. However, this line of investigation led to an incorrect
dispersion relationship if w:/mg 2 0(1), even to the lowest order in t/R. 1In
other words, to account correctly for the DC self fields in the present
Eulerian description, the tangentifal AC electric field should not be assumed

constant across the E-layer, regardless of the thickness. On the other hand,

our dispersion relationship Eq. (31) correctly accounts for the self fields,




and is valid for arbitrary beam energy, and arbitrary combination of Eo and

B,» as already stressed.

IV. Residual Growth: The Diocotron Instability

Sufficiently close to the “"zero mass” points h » - B:/z, he 2 »,

Eq. (31) begins to be dominated by the neglected terms of order (r/R)z. Ve
have already observed this phenomenon near the point h = - 5:/2 in Fig 4. 1In
h this section we discuss the point h + %+ », which extreme is reached in the
planar limit: r + =, £ + », 2/r = ky finite. We remark that the vanishing of
? the negative mass growth rate in the planar limit, a feature of Eq. (31) and
E clearly expected on physical grounds, has not previously been demonstrated
analytically, to the authors” knowledge.

The second order term in Eq. (31) is given, in complete generality,
by (lt/R)zsz where

A= 1 77 [g (5 + 2h + (1+h) )

4Y (1+h) (1+Y )

26y (82 + )% - ySawdn?ys? + my? )

(1+h) P40

=112
( ) (36)
Yo+ 2ty Pt b

ey
Nl

As it stands A includes both the diocotron instability (52 terms) and the

finite thickness stabilization effect3° (Eo term) referred to above. The last

term of Eq. (36) contains wall boundary effects; specifically we may recover

PR

i the stabilization at the diocotron mode due to contact of the layer with

S ’ perfectly conducting Walls,6 as well as the destabilizing effects of finite

N

i wall conductlvity.34°37 If we assume that the walls are many wavelengths away

-

’
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and that the fields are electrostatic then, in the planar limit, by = 1.

Taking, then, the planar limit, hmo* - eBol(myg) - mc/y:, only the first
Ez tera in Eq. (36) survives and we recover the classical result‘ for the

growth rate of the diocotron mode
In(w) ~ Ikyw;/2I (37)

where the velocity shear v; = ”:/(“CY:)' Of course Eq. (37) may be obtained
by much simpler methods than those employed here; our point is only that it is

recoverable from the present formalism. Note that the dependence on the line

density, v, of the diocotron growth rate is just vl; for the (non-synchronous)

negative mass instability the dependence is “1/2; for the synchronous case it
is v1/3-

The relationship between the diocotron and negative mass instabilities
has been discussed by Neil and Heckrotte38 and by Lau.18 Mostrom and Jones39
have recently examined the electrostatic case, including the effects of shear

in v,. Davidson and Tsan329 have reported analytical and numerical results in

cylindrical geometry.

V. The Transverse Mode

An electron moving in a field satisfying Eq. (25) where Re(w) 18 a vacuun
guide mode may be shown to be acted upon by a nearly constant electric field,
when the motion is averaged over its gyro-orbit. The particle therefore
experiences an £ x B arife transversely, toward the wall, which motion brings
the particle to experience yet a stronger electric field. A net transfer of

energy from (to) the particles may be shown to result for the - (+) sign

resonance of Eq. (25). This mechanism of wave growth has been used to explain




the opétation of the peniotron oscillator.25

In the planar limit of the previous section, the resonance condition for
the transverse mode, Eq. (23), becomes y,(w- kyvo) = % w., which is the well-
studied mode of planar magnetron tube theory.1'7'33'34 The factor h, [Eq.

. (5)}, thus again appears, as it did in Eq. (31), as a measure of the

“planarity” of the configuration.

—
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A dispersion relation for the transverse mode may also be obtained from

‘I Eq. (30). Keeping the wmost important terms we have, approximately
3
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where, near the zeroes of Ao

2 2 2
(R°- a mo)

A = (39)
o 22, 2w .2
L wp(l Bo-!,_—
-0
(1) (1 + h)
q = (40)
20 Qa - 82 w

o
lmo

where °2 =1 4 Y: hz. Equation (38), using Eqs. (39) and (40), agrees with

Eq. (39) of Briggs and Ne11l0 for h = 0, to leading order in ¢.
Clearly there are no unstable roots of Eq. (38) near the (simple) zeroes
-of A, unless either one of these nearly coincides with a zero of by, + b_
(a guide mode cutoff frequency) or b, or b_ contains an imaginary part, due to
finite wall resistivity for example (see Appendix B). Thus the transverse
mode (for small h) depends crucially on the interaction of the electrons with
their external surroundings, unlike the negative mass and diocotron

instabilities, the mechanisms of which operate in a manner that is insensitive

to boundary conditions on the fields at distant walls.

In the synchronous

fepm R - @t A TR R e T et
BT R S S Ayt R A A

N By




case, with perfectly conducting walls the predicted scaling of the growth rate
of the transverse mode with v is vllz- The dependence of the real part of the
frequency of the mode on an externally applied radial DC electric field may

prove useful in some circumstances.

The peniotron interaction 1s essentially non-relativistic. It relies

heavily on the spatial inhomogeneity of the perturbed wave fields. In
contrast, for longitudinal modes, the spatial inhomogeneity of the unperturbed
motion (i.e. shear) is far more important. Both the transverse and
longitudinal modes can be used to convert the rotational energy of the

electrons to rf waves efficiently, however.

In the planar limit Eq. (38) continues to predict stability in the

absence of a resistive wall yet it is well—knownl™> that inclusion of a

resonant layer satisfying Yo(w - kyvo) = % Ve in the beam leads to wave
growth. The resolution of this contradiction lies in the failure of the
Taylor series solution to Eq. (14), from which Eq. (38) was obtained; the

resulting growth rate is non-analytic in £ and one must resort to numerical

or other methods7 to solve the eigenvalue problem.

....................................
.............
..
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Vi. Summary

In this paper we have attempted a general treatment of the linear
stability problem for laminar electron flow in cylindrical geometry. The

basic equilibrium state has been taken to be maintained by radial electric

and/or axial magnetic fields (Eq. (1)). No azimuthal magnetic field nor any

axial electron motion have been included in the equilibrium state. The linear
stability problem for azimuthal and radial perturbations has been formulated

exactly, fully relativistically and fully electromagnetically, including all

effects of self fields. The stability problem reduces to an eigenvalue

problem for the frequency w, given the azimuthal mode number, g (Eq. (14),
with associated boundary conditions).

Our efforts have been focused on the longitudinal mode (Eq. (22)), for
thin beams, which is of considerable importance in accelerator and microwave
device research. We have obtained, and favorably compared to a numerical
solution of the eigenvalue problem, a dispersion relation in the thin beanm
limit (Eq. (31)) which applies in complete generality to the longitudinal mode
and which reproduces all classical results in appropriate limits. Some

interesting differences among equilibria regarding the negative mass

instability have been pointed out; namely we have found a simple way either to.

stabilize or to maximize the growth of this mode. This finding might have

practical consequences in accelerator or microwave tube design.
The longitudinal mode, w - lwouo. enconpasses the negative mass, electron

cyclotron maser, and diocotron instabllities. The negative mass and electron
cyclotron maser effects are unique to cylindrical geometry; they are
fundamentally relativistic in nature when the motion is supported solely by a

magnetic field. They are even more pronounced, especially for low energy

beams, 1f the equilidrium rotation is supported solely by a radial electric

...............
......
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field. In planar geometry both of these instabilities are absent asd only the
residual diocotron instability remains which itself may be stabilized by

placing the layer in contact with a conducting wall.6

The transverse mode, u-zwo =4 o, (a is defined following Eq. (40)) has
been used to explain the operation of the peniotron device. When the geometry
is cylindrical (|Y°h|<<1) this mode is stable unless the electron motion is
synchronous with a cavity mode and/or resistive walls are present. In the
planar limit uw°+wclyo and we identify this mode as the Doppler shifted
cyclotron resonance considered by Buneman‘"S and others!»6,7,33 in studies of
magnetron operation. This mode is the dominant unstable mode for planar, high

density laminar flow.

Finally we remark that the singularities defined by Eq. (24), which we

have not examined here, may be worth some additional study; however we note

that in both the vacuum case,30 £ = 0, and in the case of planar Brillouin

.- . flow,1'2’5'33 wﬁ = m:, the singularity, Eq. (24), is removable.
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Appendix A

Technique for Numerical Solution of
Equilibrium Problem

In this Appendix we describe a simple technique based on Newton”s method
which we have used to solve a certain eigenvalue problem associated with the
calculation of laminar E-layer equilibria. Given the electric field which is
trivially solved for, having specified the density profile and potential on
one wall, we must find the momentum profile, u(r) and the field Bo(r) subject
to the constraint of specified total flux Eq. (7). The total flux might be
specified 1n an experiment in which a beam is injected and contained in a
chamber for less than a magnetic diffusion time.

Let us cast the problem in terms of the dimensionless fields, op and ap
g defined in the text following Eq. (6). The problem then is to find u(r) and

aB(t) subject to

- [ dr ag = F = specified constant (A-1)
a

. 2 2
- 1- -y h
ur= [ o ~ Yo ] (A-2)
- T 1+h
w2
1 PR -
= uB) —5u (A-3)
c
: wl - a.E(02+1)1,2+ agu (A-4)
. for ¥, <rer,. Equation (A-2) guarantees that if u(tl) satisfies Eq. (A-4) then

u(r) will do so for all r. The algorithm proceeds as follows: An initial

guess is made for °B(r1) using the value of the externally applied B field,

LI
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: say. Using the known value of aE(rl) the roots (two, in general) of Eq. (A-4)

. are found and the one corresponding to the equilibrium of interest is chosen.
P Equations (A-2) and (A-3) are then integrated and the difference
p.*
» b *
. Jdr ap- F =D (A-5)
§ A
.
a2
K; is calculated. aB(rl) is then adjusted according to
*
a -a, -2 (A-6)
B,n+1 B,n b aaB’n(r)

fdv—2B__
a auB,n(rl)
where the subscript n denotes an iteration number. The loop is stopped once

D* is less than some specified tolerauce.

It remains only to describe the evaluation of the denominator in Eq.
(A-6): The dependence of aB(r) on its initial condition at X is found during
the integration of Eqs. (A-2) and (A-3) by simultaneously integrating the

equations for aaB(r)/auB(rl) and au(r)/aan(rl) which are simply obtained by

explicitly differentiating Eqs. (A-2) and (A-3) with respect to °B(r1)' The

initial condition au(rl)/aaB(rl) is obtained from Eq. (A-4).
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Appendix B
Evaluation of the TE Wave Admittances
In this Appendix the normalized admittances bi referred to in the text in
Eqs. (2la,b) are given for the geometry of Fig. 1; the toroidal and planar
cases are also discussed.

In the vacuum regious adr<{r; and r2<t<b the wave equation Eq. (14) is

d r d
T T+ =0 (3-1)
wr _z2
2
[

the general solution to which is
¢ = x [c3x) + C,Y; (x)] (B-2)

where x = wr/c, Jz and Y are the standard Bessel functions, C, and C, are

L

constants, and in this Appendix a prime will denote 3%. Note that the

(1] " 2 2
singularities™ at x~ = & in Eq. (B-1) are only apparent, not real, i.e. ¢ is

analytic at these points. The other vacuum fields are

_ 1% dg
Er "7 73 (B-3)
X -2
x
Biz = "1 B (B-4)

Using the definitions in the text Egs. (2la,b), it follows that bt may be

generally written

+ +
) C1 Jl(XZ) + C2 Yz(XZ)
+

(B-5a)

x +.. +,.
2 Cl JQ(XZ) + C2 YL(XZ)




Cl Jl(xl) + C2 Yl(xl)

-1
b_ x[

- - (B-5b)
1 Cl Ji(xl) + C2 Y;(xl)

vhere xl’zz mrl’zlc-

The ratlos cl+/c2+ and Cl-/Cz- are determined by the boundary conditions

at r=b and r=a respectively. Some special cases of interest are:

1. Perfectly conducting wall at r=r: (r_=a or b)

c1/c2 = -Y; (xw)/"i (x,) (B-6)
;.
F 2. Wall with (complex) dielectric e(w):
d d
- Yo(x ) - (g/g )Y, (x )= InZ(y)
g c1/c2 - - [ LW o’ 8 "widy (B-7)

) d
35 = (/5 )3, (x ygr2nz(y)

vhere ¢ is the surface impedance, (u/e)llz, g, = 376.79,
1/2
)/

y= KI ., k=0 (ey » Z(y) = Jz(y) for inner wall,

Hl(l)(y) for outer wall where Hz(l) is the Hankel

function. e and py refer to the wall material.

3. No inner wall:

(B-8)

4. No outer wall:

C1 /C2 = -1 (B-9)




...........

Electrostatic limit; perfectly conducting walls at r=a,b:

g
. 5.
e
N
i

B, +1 B_+1
| b, =5— b33 (B-10)
r': + -
o h B, = (b/r )2" and B_ = (r /a)z" Note that by > 0
£ vhere B, = (b/ry -5 Thf82 e Tote EhaR By 2 T

6. Planar limit ( r+e, 2+=; z/rsky, b-a, b-r;, b-r,, ry-ry, all

remain finite); perfectly conducting walls:

b+ = - (ky/a) cot [a(rl-a)] (B-11)

b_ = - (ky/a) cot [c(b-rz)] (38-12)

where a = (mzlcz- k:)llz. The planar limit of (B-10) {s
just the electrostatic limit of (B-11) and (B-12), as

expected, in which case

b+ = coth [ky(b-rz)] (B-13)

b_ = coth [k (r,-a)]. (B-14)

When a wall is resistive the resulting dissipation is represented by an

fmaginary part in the corresponding admittance bt' (In Eq. (B~7) e(w)~ic/w
for a good conductor of conductivity ¢.) That such dissipation can lead to
disruptive beam instabilities, even for a "positive mass™ beam, has been known
since the pioneering work of Neil and Sessler35 and Laslett, Neil, and
Sessler.36 It is in fact these resistive modes, rather than the

(fundamentally dynamical) negative mass instability which are thought

16-32

Ne a e atm R YL T RV N if-...
PP IAL NI I I SO AT LRI




Ll sl Tod sadh
- - ST Y P it Y~ A AT e S Mt S i~ ALY i S i S A "X, = TN
- il Nl M sl el N A Sl A DL Sl S iR R e A L. v A . R - - ata®e®t e L

ultimately to limit the beam current in cyclic electron accelerators.

If a wall 1s not smooth but éontaina some structures (cavities, fins,
etc.) a common practice is to calculate an approximate value for the
admittance and to use it as a boundary condition for some approximation to Eq.
(14) in the text. In this case however the prodblem is not being treated fully
self consistently since the equilibrium of Section II would not be strictly
correct, 1.e., the correct equilibrium would no longer have azimuthal symmetry
(and would be much harder to calculate).

For the case of a perfectly conducting wall we have plotted in Figs.
B-1,2,3,4 the quantity b+ + b_ evaluated for X, - x, - zBo for various values
of El = mcz(yo-l), assuming a thin layer. It is this quantity, b++ b_, which

enters the dispersion relation for the longitudinal mode discussed in the

text.

For a toroidal (accelerator) geometry, the dispersion relation Eq. (31)

is expected to be replaced by

nf - - eoglz (2v/Yo)(¢2/R2)(mczlwo)(awolac)ext (B-15)

where (3m°/3|»:)ext denotes the derivative of the circulation frequency with
respect to total particle energy evaluated as if the particle were acted upon
only by the external electric and magnetic fields. In Eq. (B-15), we have
identified the geometric factor g of refs. [8,11) with ll(zeo(b+ +b))), as
pointed out in ref. 10. Note that the dispersion relatfonship (B-15) includes

self fleld effects and that g is always positive for toroidal geometry (with

smooth, perfectly conducting walls).

..........................................
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Figure Captions

Fig. 1. Model of an E-layer. The layer, of infinite extent in z (in and
out of the page), occupies the region r; < r < rj between the walls
. of a coaxial guide at r=a and r=b. The electrons, supported by an
electric field Eo(r); and a magnetic fleld Bo(r);, move in concentric
circles in the equilibrium state, either clockwise or

counterclockwise depending on the equilibrium type.

Fig. 2. The ap= ag plane. The number and type of solutions to the
equation of radial force balance (6) are shown in each region and on
the boundaries between regions. A root is labeled + or - if it

- corresponds to clockwise or counterclockwise rotation respectively as

one looks in the direction of io'

Fig. 3. Plot of the dimensionless "azimuthal mass™ M versus the
dimensionless equilibrium electric field, h. The actual plot shown

is for the case Y, ~ 1.5 but all axis labels are expressed generally

in terus of Y, °F Bo'

Fig. 4&. Normalized growth rate for the negative mass instability versus h
for the case a = 0.6m, b = 2.6m, R = 1.0m, t/R = 0.02,
Yo = 1.5, £ = 1. A solid curve indicates data obtained from a
numerical solution of Eq. (14); the dashed line is a plot of Eq.

,

(31). The upper pair of curves is for v/y° = 7.88 x 1073

£ = 1.42; the lower pair is for v/yo = 1.57 x 10-3, £ = 0.28.
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Fig. 5. Normalized growth rate for the negative mass instability
versus v/y° for the "base case” parameters: a = 0.5m, b = 2.?m.
- 0.9%m, ry = 1.0lo, Y, ™ 3, £ = 1. A solid curve denotes data
obtained from a numerical solution of the eigenvalue problem; a

dashed curve denotes data from the dispersion relation, Eq. (31).

Fig. 6. Normalized growth rate for the negative mass instability versus
layer thickness. All parameters take their base case values, (see

text) except that the peak density in the parabolic profile

is 107 /cc.

Fig. 7. Normalized growth rate for the negative mass instability versus
outer wall position. All parameters take their base case values.
(See text.) Near synchronous conditions, l”o'mv where w, is a
waveguide mode satisfying b, + b_ = 0, the negative mass instability
is strongly enhanced and Eq. (31) should be solved as a cubic

polynomial. The synchronous or enhanced negative mass instability is

¢ 8

often called the cyclotron maser instability.

Fig. 8. Normalized growth rate for the negative mass instability versus

inner wall position. All parameters take their base case values.

(See text.)

Fig. 9. Normalized growth rate for the negative mass {nstability

versus y . All parameters take their base case values, (see text)

. except that the peak density in the parabolic profile is loalcc.

N
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Fig. 10. Normalized growth rate for the negative mass instability versus
azimuthal mode number £. All parameters take their base case
values. (See text.) A + denotes a result from Eq. (31) and

an x denotes a result from a numerical solution of the elgenvalue

problem.

Fig. B-1. Normalized admittances vs. outer wall position for various imner

wall positions for £ = 1 and mcz(yo-l) = 1 keV.
Fig. B-2. As in Fig. B-1 but for mcz(yo-l) = 5 keV.
Fig. B-3. As in Fig. B-1 but for mcz(yo-l) = 40 keV.

Fig. B-4. As in Fig. B-1 but for mcz(yo-l) = 300 keV. The zeroes of b, + b_

correspond to wavegulde cutoff frequencies.
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Program ASTRON
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Program ASTRON

Input data file: FOR@15.DAT (free format)

All quantities in MKS units

100 coe Label

200 a,b : Inner, outer cylinder radii

300 ry, I, Inner, outer beam radii

400 N, o’ PWE

500 ¢, (b), B,

Peak number density, power (Note 1)

Bias potential at r = b; Applied B field

600  KBR : (+1,-1) = (greater, lesser) of two roots
of eqn. of motion

700 €1r €y : Error allowed in calculating U(rl); Ho(rl)

800 Il : If = 1, write equilibrium quantities
to file FOR@2f.DAT

900 IEV : (0,1) = (stop, continue) after calculation
of equilibrium

: 1000 ... : Label

1100 ZW,L

Initial guess for w/w(rl), azimuthal
mode number

. 1200 KT1l, KT2, KT3 Number of calls to integration package
[, in (a+r1), (rl+r2), (r2+b) respectively

1300 TOL, € Integration error control; error control

for eigenvalue convergence test

3

. 1400 12, 13 I2 = 1 =Write eigenfunction to file

FOR@22.DAT

13 = 1 =Write (w-kwo(r))/wo(rl) and 4 to
file FOR@24.DAT.

Note 1: Functional form of density is taken as

4(r2-r)(r—rl) pwr

2
(rz-rl)




Output data files:

(All binary)

Equilibrium quantities:

FOR@g2@.DAT:
Eigenfunction:

FORP22.DAT:

r, E,o Ho, u, & h, mczwo'/(woe') for r = r

o) 1l

r, Re(rEel), Im(rEel) for r = a to b.

Singularity locations:

FOR@24.DAT:

r, Re ((w-ﬂwo(r))/wo(‘rl)). Re(d), Im(d)

to r,.
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tvre astroncon.for
COMMON COLE FOR FROGRAM ASTRON
IMFLICIT REALSE (A-K,.D-K,T-Y)

IMFLICIT COMPLEX®16 2
PARAMETER (N1=200)

C Nl MUST BE EVEN
COMMON/GEDM/A, bR, R, R2R1
COMMON/CNTRL /N, DR, DR2, VBK. EFS1,EPS2, IEV
COMMON/DEN/DENO, FWR, T22, GO0
COMMON/E1AS/FHIOE, KOO
COMMON/CONST /QE . EM, EFS0, XMUO.C,QEMCD
COMMON/FIELDS/EQO(O:N)Y . HO(D:NY)
COMMON/FPARTS 7U (O:NT)
COMMON/DVDHM/DM(O:NY)

COMMON /NORM/EBO1 . D12, IRHO1 , [IRHOZ . IRHOZ . DIIRHD
COMMON/CNTRL2/F T3, ¢ T2, T2, TOLLEPSE
COMMON/EV/IW-EL.ELT
COMMON/ATMI 1S, ZEELUL . ZHMINUS
COMMON/COEF /ZMAT (4, 4)
COMMON/EQUIL/XI(OIN1) JHG (O:N1), WOR(O:N1)
COMMON/QUTS/11.12,12
DATA DE,EM,EFSD, XMUD,.C

1 /1.6022301-19.%.10950-21,. €. 8543D-12, 12, 56640-7, 2. 99 790E/
DATA QEMC2/1.9571D-46/
DATA ZMAT /163 (0. 10,0, 110y /

-y . [
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Avee astr -, forgstron,for
F- JGRAM ASTRON
162LUDE P ASTRONCOM, FOR
KEWIND 20
N=N1
cacl INFUT)
CALL ECAL
CALL HVCAL
FPRINTIO
10 FORMAT (/, ' EQUILIBRIUM CALCULATION COMFLETED', /)
BFO1=U(0) /DSORT (U(D) 82+, 0O)
HO12=EBO18827
GOO=DSART (U(N/2) §82+1,.D0O)
- WORI=EBO1SC/R1
DD100 NN=0O.N
=R1+LFLOART (NN) SDR
- 2=U(NN) 532
; GMA=DISORT (U2+1, ['O)
Y1 (NN)=QEMCISEDERN (F) SREGMA/UD
HG(NN)=QEMC23EQ (NN) sR/7UD
WOBR (NI =C2U (NN) 7/ (GMARFIWORL)
IF(11.EQ. 1) THEN
H=HG (NN) /GMA
GMA2=GMASS2
GMAA=GMATS$2
EETAZ2=1.D0-1.00/GMAZ
DWOE=~ (BETAT+Z.D08H+ X T (NN) /GMA4) /
1 (GMASEHETAZS (1.00-X]1 (NN) /GMAZ+HG (NN) 3392))
WRITE (20)SNGL (R) , SNGL (EQ (NN) ) , SHNGL (KD {NN) ), SNGL (U (M) ),
by 1 SNGL (X1 (NN)Y) » SNGL (H) » SNGL (DWIDE)
ENDIF
100 CONTINUE
XIAV=DOSIMF (4) / (R2-R1)
ENS=DSIMP (5) 7 (R2-R1)
FNORM=DISIMF (&)
UAV=DISIMF (7) /FNORM
UZAV=DSIMF (8) /FNORM
v WAV=DS IMF (9) /FNORM
WIAV=DSIMF (10) /FNORM
XNUG=0.SDORROI2EDSIMF (12) /7 (R1232)
DELU=DSORT (12. DO (U2AV-UAVEE2) ) /UAV
DELW=DSORT (12, DO (W2AV-WAVES2) ) /WAV
GAV=DSORT (1. [0+UAVESD)
FRINT20, XNUG, XIAV, ENS, UAV, GAV, DELU. DEL K. WOR 1
. 20 FORMAT (' NU/GAMMA=", 1FDI10.3, /.

[ i ")

\ 1 AVERAGE VALUE OF (FLASMA FREQ/CIRC FREG)®$2=',0FF10.4./.
< ' AVERAGE VALUE OF SELF FIELD INDEY (NZ'=',F10.4,/,
3 DENSITY WEIGHTED AVERAGE OF BETARGAM™MA=',F10.4, /.
1 4 * (CORRESFONDING GAMMA='.F10.4.°)"'./,
; S ' FRACTIONAL LINEAR MOMENTUM SFREAL='.F10.4,./,
¢ ' FRACTIONAL ANGULAF: FREQUENCY SFRERI='.F10.4.,/,
- 7 * CIRCULATION FREQ AT R=R1=’,1F[10.2,' RAL/SEC’)
N CURRL=HO (0} -HO (M)
o PRINT21, CURRL
- 21 FORMAT (* CURRENT FER UNIT LENGTH=',1FI10.3,' A/M', /)
IF(IEV.NE. 1)G0TO200
v CALL INFUT2
- CALL SHOOTER
= ZEPM=ZBFLUS+ZEMINUSE
i PRINTZ30, ZBFLUS, ZEMINUS, ZEFM
: 30 FORMRT (/7' B+ =',1F2012.4,/," F~- =, 2[12.4,/,
. 1’ SuUM=',2012.4./)
% IF(12.EQ. 1) THEN
[
* -
.
*
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DO110 NN=O.N
GMA=DSORT (U(NN) 88241, DO)
BET=U (NN) /GMA
Z0M=ZW-ELSWOB (NI
Z0MW=Z0M/7WOE (NN)
KHO= 1, [D+DFLOAT (NN) a IDIRKHD
K=RHOS$K1
Z2T1=1.DO+HO (NN) 882~2DMUs s 2
2T2=ZW3 ZWIRHOSRHOSBO12~-ELD
ZT2=HKET¥ERO1$ ZWSRHO~EL
IU=ZTIRZTZ4 XTI (NN XZ2T2H 92
€1=RK
. S2=DREAL (20M)
' S2=DREAL (ZD)

S4=DIMAG(ZIN

WRITE(24)S1.52,52,84
110 CONT INUE

ENDIF
200 CONTINUE

STOF

ERD

SUEROUTINE INTUT

INCLUDE *ASTRONCOM,FODR’
. READI(1S, %)
. READ(1S, ) AL E
- READ (18, 0YFR1. RS
T22= ((R2-R1) /2. 00 882
IR= (R2-R1) /DFLOAT (N)
DR2=DR/2.D0
REALD (15, 8) DENO, FWK
READ (1S, 8)FHIOK, BOO
REALI(15, ) BR
READ(1S, $)EFS1.EFS2
REALI(1S.8)11
REATIC(1S,.8) IEY
RETURN
END
SUBROUTINE ECAL
INCLUDE *ASTRONCOM, FOR’
ELBA=DLOG (E/A)
Cl=(FHIOB+LSIMF (1)) /ELEA
EO(=~C1/R!}
F=0.100
f=R1
L0100 NN=31.R
) F=F + (EDEN (F) +EDER(R+DR) +4 . DOXEDEN (R+DR) Y $DRZ /3. DL
~ R=k+DR
10 EO(NN)=-(C1+F) /F

RETURN

END
. SUEBROUT INE HVCAL
, INCLUDE ’ASTRONCOM,FOR’
ARE=0E*EQ (D) 8R1/ (EM3CAL)
LA2=BII2-AXRD
AAH1=0E3E0030, STO8 (R1+RD) /7 (EMRD)
BETA1=AAH1/DSORT (1, D0+AAH1832)
HOOM=EDO/ XMUD
HOM=HOOM+CSEKETAI*DEIMF () /PTAD
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1 CONTINUE
FRINT2, HOM
= FORMAT (7 HOM= ', 1FD10.2)

. AAH=0E » XMUOFHOMAR1 / (EM2()
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CaLL URDODTES (UM, AARL , AAM)
U0y =uM
INTEGKRATION OF U EQUATION
D020 NN=0O,N-1
Y=U (NN)
R=R1+DFLDAT (NN) sDR
E=EO (NN)
Fi1=UFRM(R, Y. E)
E=(EO(NN)+EO(NN+1)) /2.D0
2=UPRM(K+DR2. Y+LRDSF 1, E)
F2=UFRM(K+DRZ,. Y+DRZ$FZ,E)
E=EQ(NN+1)
FA=UFRM(R+DR, Y+DRAF 3, E)
UINN+ 1) =Y+ (FI+Z. D08 (F2+F3) «FR) sIR/6. 10
CALCULATION OF U ARRAY COMFLETED
CALCULATE X1 ANID* HG ARRAYS
DU 22 NN=0O.N
F=F31+LFLOAT (NN) $ LR
U2=U (NN) 882
GMA=LISRRT (U2+1.1:0)
X1 (NN)=0EMC2SELEN(R) SRE¥GMA/UT
HO (NI =QEMCZSEO (MO SR /UT
CALCULATE SOLUTION FOR [WO/DHO-
GMA=DSQRI (U«O) 282+ 1. 10)
UM (0 =HOMARE S XMUOSR 1/ (EMICS (GMASIZ) 3 (GMA+HE (0)))
QOR1=IM(0)
LDZ& NN=0.N-1
00RO=00R1
GOR1=00RK (NN+1)
DM (NN+ 1) =DM (NN) SDEXF (0. SIO® (QARO+Q0R 1) sTIR)
FS=HOM/HOOM-DSIMF (2) / (HOOMSB2A2) -1.D0
HOFS=HOM/HOOM+CBDSIMF (12) 7/ (HOOMSEDAD)
ALJUST VALUL FOR HO-
HOMNE W=HOM# (1. DO-FS/HLFS)
IF (DABS ( (HOMNEW-HOM) /HOM) . LE,EFS2)GOT0Z0
LH=LH+1
IF (LH.GT.20)STOF 'HOM LOOF CONYV FARILURE'
HOM=HOMNEW
GOTO1
CONT INUE
FRINT1ISO.LH
FORMAT (* HVCAL...FINAL CONV Ik ,1Z.' ITERATIONZ',./)
HO (0) =HOMNEW
R=R1
D040 NhN=1,N
VO=COU(NN-1) /USTRT (UINK=-1) $82+41,D%)
VO1=CRU(NN) /OSORT (U{(NN) $32+1,00)
VO2=(VO+V01) /2. 00
HO (NI) =HO (NN-1) +EFS0%
(ELEN(R)3VO/R+EDEN (R+DR) #VO1/ (R+DR) +4 . DOSEDEN (R+DR2) 8
VOZ/ (R+DR2))3DR2/2. L0
R=R+ DR
CONT INUE
RETURN
END
FUNCTION LSIMF (D)
INCLULE *ASTRONCOM. FOR’
onns=0, 00
EVEN5=0.10
DO 101 NN=1.N-1,2
R=R1+DFLOAT (NN) S DR
oDLS=0DDS+F (J. R)
00102 NN=Z,N-2,2
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R=R14DFLOAT (NN) 8DR
102 EVENS=EVENS+F (J.R)
DS IMF= (F (J.R1) +F (JU.R2) 4, pDOs0ODDS+ 2. BOSEVENS) 8DR/Z, 10
RETURN
END
FUNCTION F (J-R)
INCLUDE ‘ASTRONCOM.FOK®
NN=JIDNNT { (R~K1) /DIR)
IF (J.GE. 6)60T0599
GOTD (100, 200.300.400.,500),J
100 CONTINUE
F=EDEN(F)$DLOG(R/E,
GOTO1L
CONTINUE
VO=CRU (NN) 7DSORT (U(NN) 882+ 1, 10)
F=EDEN(R) % (RSR-ESE) XVOSEFSQ/R
. G0101
- 200 CONT INUE
- F=EDEN(F) % (R¥R-EAE) SEFSO/R
° GOTO!l
400 CONT INUE
F=X1(NN)
GDOTO1
500 CONT INUE
F=X1 (NN) /7 (1, DO+U(NN) x32)
GOTO1
599 CONT INUE
1F(J.EO.11)6G0T01100
IF (J.EQ.12)60T01200
F=0.D0
IF((R.LE.R1).OR. (R.GE.R2))G0TO1
FF=R% ({Rz~R) 38 (R-R1)) s3FWR
GOTO (600, 700,800,900, 10001, J-5
600 CONTINUE
F=FF
GOTO1
700 CONTINUE
F=FF XU (NN}
GOTO1
800 CONT INUE
F=FF8 (U(NN)$$2)
GOTO3
0¢ CONT INUE
F=FF $WOb (NN)
GOTOL
1000 CONT INUE
F=FF % (WOE(NN)*3$2)
GOoT01
1100 CONT INUE
F=RaXI (NN)$ (WOE(NN)s82)
GOTO1
1200 CONT INUE
F= (R$K-EH3E) 8 (-EFSOSEDEN(R) /K) 3TIM (Nt
1 RETURN
END
FUNCTION EDEN(R)
INCLULE 'ASTRONCOM.FOR’
Cc CALCULATES -R&RH3JD/EFSO
EDEN=0. DO
1F ((R.LE.R}).OR, (FR.GE.RZ))G0TOL
FR= (R2-R) 3 (R-K1) /122
DENS=DENOS (FR3$FWF)
EDEN=QERRIDENS/EF5D
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RE TURN

ENTRY XIDLOGN (R, GAM, WOE])

CALCULATES X18DLOG(DEN) /DLOG (R)
X1DLOGN=0. DO

IF ((R,LE.R}1).0R. (R.GE.R2))GOTOZ
FR=(R2-R) 3 (R-R1) /722

Fil=FRss (PWR-1.00)

F2=R8 (K1+R2-2.DO%R) /T22

F3=(WOE(N/Z) /WOE]) 882

F4=G00/GAM
XIDLOGN=XI (N/2) sFUWRSF 1SF 28F33F 4

RETURN

END

SUBRDUTINE URDOTS (UM, AAE . AAH)
CALCULATES ROOTS OF RAI'IAL FORCE EALANCE EQN
IMFLICIT REALSE (A-H.D-Y)

IMFLICIT COMFLEXM1G 2

DIMENSION A(S).R(4),2Z(4)

COMMON/CNTRL /N, DR, DR2. L BR, EFS1,.EFSZ, 1EV
FRINT1.,RAE, AAH

FORMAT (¢ ARE= ', 1FD10.3,/,' AAH= ', 1FD10.3.7)
A(1)=1.D0

A(2)=~2. D0%AAH

A(Z)=AAHIIZ2-AAEIIZ

A(4)=0,.110

A(S)=-ARESRD

caLL ZRFDOLY(A.4.2,1ER)

FRINT10.2

FORMAT (A (6X,1FD10.3,3X, 1FD10,53. /7))

TEST ROOTS

NACCEFT=0

00100 ¥=1.4

1IF (DABS(DIMAG(Z ().))) .GE.EFS1)GOT0100
U=DREAL (Z (}.))

E=DAES (USU-AAREILSORT (UsU+1.00) ~AAHRU)
IF(E.GE.EFS1)G0 TO100

NACCEFT=NARCLEFT+}

FRINT20,U

FORMAT (X, 1FD10. D)

R (NACCEFT)=U

CONTINUE
GOTO(200,201,202,203,202) . (NACCEFT+1)
FRINT20

FORMAT(//, ' NO EGUILIEBRIUM STATE EX16TS',//)
STOF

FRINTZ1

FORMST (/7 WARNING,..DHNLY ONE EQUILIERIUM STATE EXISTS v /7))
umM=k(1)

GOTDZ00

IF(KBR.EQ. 1YUM=IMAY 1 (R(1) R (2))

IF (BR.ED. -1)UM=DMIN1(R(1),R(2))
GOT0300

FRINT33.NACCEFT

FORMAT(//,' ERROK.,.’,11,’ APPARENT EQUILIERIUM STATES . /7)
STOF

CONTINUE

GAM=DSORT (UM $2+1.10)
€r.IN=5. 11058 (GAM~-1.[0)
FRINTAO, UM, GAM,E). IN

FORMAT (* AT R=R1:‘',/,’ U= *,IFD10. 3. 3X, 'GAMMA= *,
OFFB8.2,3X, 'ErIN= ', 1FD10.3,*' VOLTE ,/)
RETURN
END
17-8
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FUNCTION UFRM(R.UU,.E)

INCLULE *ASTRONCOM.FOR'

GMA=DSORT (UUSUU+ 1, DO)

GMA2=GMAr2
WFP2=0ESEDEN (R) / (EMSGMARR)

WO=CsUU/ (GMASK)

WO2=WON 82

HH=QEMCZSE SR/ (UUSUUSGMA)

UFPRM= (UU/K) 8 (1. 10~ (WFZ/7 (GMAYEWOD) ) ~GMAZEHH) /7 (1, DO+HH)
RETURN

END

REALEE FUNCTION GQR (NN)

INCLUDE ‘ASTRONCOM,.FDRK’
GMA=LSORT (U(NI) ¥82+41, DO
GMAZ=CMAE 8T

GMAL=0CMA288 T

BETA2=1.D00-1.00/06MAZ

H=HG (NN) /GMA

H1i=H+1,00

X=XT1 (NN)

R=R1+DFLOAT (NN) DR
QOR=(1.DO-Z.DOSRETAZ) 8 (1. 10~ X/GMAT-GMAM28H) /H1
+ (X3 (2.D0/GMA2-1.00-4,. LOSBRETAZSH)
+H8 (GMR4+4,. DOSGMAT~1,10-2,. OSBETAZIGMAGSH) )
/7 (GMA2S (H1%%2))

00R=Q0R/F

RETURN

END

SUBRROUTINE INFUT2

INCLUDE ’*ASTRONCOM.FOK'®

REAQD (15, 1)

READ (15, 3)2ZuW,L

EL=DFLOAT (L)

EL2=EL¥82

REALI{IS,. ¥ TL1,.KT2,) T3
DRHO1=(K1-A) 7/ (DFLOAT (LT1) 8KR1)
DRHO2= (R2-R1) / (DFLOAT (» T2) 8R1)
DRHD2= (E-R2) / (DFLDAT (F T2) K1)
DDRHO=DF./R1

R2R1=RZ/R1

REAL:(15,8)TOL,EFS2

REAL'(15,8)12,12

RETURN

END

SUBROUT INE SHOODTER

IMPLICIT REALSB(A-H,0-K,T-Y)
IMFLICIT COMFLEX®1L 2
COMMON/GEOM/A. B RY . R2.R2R1
COMMON/NORM/EO1 - BO1 2, IRHO 1, DRHOZ . DRHOS, DURHO
COMMON/ENTRLZ /0T, M. T2, LTS TOLLEFS2
COMMON/EV/ZW,EL.ELD
COMMON/AIMITS/ZEBFLUS, ZBMINUS
DIMENSIDN VI(E) . WW(B.9)

EXTERNAL VFRM, ETORE

FRINTS, JIDNNT (EL)

FORMAT (/7' EV CALCULATION: L=',13,/)

LL=0

LZuW=0

FRINT10C. ZW.L2ZW

FORMAT (' ZW= ', 31F2L3i2.4,° ITERATION ' 1I2)

IF (LL.EG.1)GDTO200
IF(L2W.CT.15:STOF 'EV LODF CONVERGENCE FARILURE'
0010 ¢ =1.6€
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Vr)=0.00

Vi3)=1.D0

KHD=A/R1

REWIND 22

CALL STORE (V,RHD)

CALL STEFPER(8,V.RHD,DRHO1.¥ T3, TOL. W, VPRM, ETOKE . 100)
ZEMINUS=-ELSDCMPLX (V(2) .V (48)) /DCMPLX (V(1),.,V(2))
KkHO=1.110

CalLL STEFPPEFR(8.V,RHO,DRHOZ. LT, TOL s WK VPRM, STORE » £0)
ZBEPLUS=ELSDCMPLX (V(2),V(48)) /DCMFLX (V(1),V(2))
KHO=RK2K|

CALL STEFFER(B8,V.RHO,[IRHOZ.VFTZ. TOL - Ww. VFRM, STORE » 100)
ZWNEW=ZW-DCMFLX (V (1) . V(2)) /DCMFLX (VIS .V (&))
EREAL=DFEAL (ZWNEW-Z4) /DREAL (ZW)

EIMAG-0. 00

IF (DRES(DIMAG(ZW) ) .GE. 1. [-L)EIMAG=D'IMAG (ZWNEW-2W) /DIMAG (ZW)
1F (IMAX1 (DARS (EREAL) . DABS (EIMAG) ) LLE.EFS2)LL=1
LIW=LZKW41

ZW=ZUNEW

60701

CONT INUE

RETURNR

ENL

SUBPRDUTINE VPRM(JX,RHO.V,DV)

IMPLICIT REALXB(A~H,O0-K,T-Y)

IMPLICIT COMFPLEX¥1& 2

COMMON/COEF /ZMAT (4, 4)

DIMENSION V(B).DV(B)

DIMENSION ZVv(4) .20V (4)

0010 J=1.4

V(N =DCMPLX (V(28J-1) . V(2% 1))

CALL MATCAL (RHD)

D020 J=1,4

v N =0.00

D030 Kk=1,4

IV (D =ZIV(D) +ZMAT (U, V) 82V (b))

CONY INUE

[1040 J=1.4

Ji=23J~1

J2=20J

DV (J1)=DREAL (ZIWV (D))

OV (J2)=DIMAG(ZIDV (U))

RETUFN

ENL

SUBROUTINE MATCAL (RHO) *

INCLUDE ‘ASTRONCOM.FOR’

YY1.Y2, X1, DX X)) =Y 4 (Y2-Y1) R (X~-X1) /I

IF ( (RHO.LE.1.D0).0K. (KHD.GE.R2R1))GOTO100
NN1=JIDINT ( (RHO-1,.D0) /DDRHD)

NN2=NN1+1

RHO1=NN]1sDDRHO+1. 00O
XII=Y(X](NNI),XI(NN2),RHOI,DDRHD,RHO)

WOBI=Y (WOE(NNT) . WOE (NN2) , RHO 1, DDRHO . RHD)

UI=Y (U(NN1) .U (NN2) , RHO1 . DDRHOD, RHOD)
GAMZ=1,D0O+Ul 82

GAM=[SART (GAMD)

BET=U1/06AM

HOT=Y (HG (NN1) . HG (NN2) , RHO 1 DDFRKS, RHD)

H=HG1 7/GAM

FGZ=1.D0+4+H

Z0OM=ZW~EL SWOK]

20Mw=20M/WOE]

2T1=1,.D0+HGI®#2~-20MWS A2
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ZWRC=IWSEO | SRHO
ZWRC2=IWRC 832
. 172=7IWRC2-ELZ
’ 2T3=BETBZWRC-EL
2DD=2T18272+X1182T2842
ZA=2T1/200D
> T=(1.00-X11/GAM2-HRGAMD) 7 (1.[W0+H)
VOF=T/GAM2
WOF=VOF~-1.00
GAMF=TaRETS%2
HF=-X11/GAM2-H3 (2. D0OsGAMT -1, [10) sVOF
X10=X1DLOGN (RHOSR1 , GAM, WOE])
XIF=X1D-X118% (GAMF+2, DOSWOF)
2L0F=2, [I0% (GAMD A HE (GAMPIH+HF ) +WOF3 ZW3 201/ WOBI ) 82T
+2. N0%ZTISZWRCO«XIPSZTIRND
+2, DOSXIIBZT3IS2WRCIRETS (1. DO+VOF)
ZDER=YI1[+ X118 (~WOF-GAMF +HF /FG2~-ZDDF /201
ZC1=(20M/2W~1. DO/GAMZ ) 8 ZTER+Z . DOSX I IBEET RS2
ZC=2WIF0G232C1 /7 (Z20M 2N
+X118(2T2-X11%RET#22) /7 (ZDDNGAMD)
+1.10
2LOOW=-Z0MWEZ T2 /WOBI+ZT18ZWRCZ/ZIW
1  +XIISBETsEO13RHOS2T2
ZODDW=2,.00%2DDDW/ 2DL
IDAW=-2.DOXZ0MW/ (WOB18Z2D0) -ZARZDDDW
- ZDDFW=2,. DOXWOF¥ZT28 (ZW+Z0M) / (WOETIS$2)
+4_ DO (CGAM2¥HY (CAMFRH+HF) +WOPIZWI ZOMW/WOEBI) R ZWRC2/77W
+4 . DOSZWRC2%2T1/ZW-4. D0 ZWRC2$ZOMW/WOFR ]
+2.DO3YIF¥ZTI¥RETAEO ]I XRHD
+2, 008X 113BRETSEO1XRHOS (VOF+1.D0) 8 (2. DOSEFETSRO18 ZWYRHO-EL)
ZOF DW= (ZDDPW-200DWE Z2D0F) /Z2DD
ZLCW=-ELYWORISFG242ZC1/(Z0MZ0OMs 20T
~ZWSFGRZODDWEZCL 7 (ZOMB 2T}
+(ZW/720M) 2 (FG2/ZDI) ¢ (ELSWOBISZDER/ (ZWs32)
-X11%(20M/2W-1.007GAM2) 2ZDFDW)
=X118Z0D0DMY (ZTO2-X1ISKHET*22) 7 (ZDDBGAMD)
+X11%2. DO ZUWRC2/ (ZDDEGAM2EZIW)
GOTD200
100 CONTINUE
c VACUUY. COEFS
2DEL=RHOSRHOIBO1 28 ZWE ZW-EL 2
Z6=1.10/20DEL
IDAW=-2AZA3 . DOSRHOARHOSED1 28 24
2C=1.D0
Z0CW=0.10
200 CONTINUE
IMAT (1,2)=1,110/ (ZATRHD)
IMAT (2, 1)==-2C/RHD
IMAT(Z,2)=~2DAW/ (ZAYZARRHD)
ZMAT (3, 8)=2MAT (1,2}
IMAT (4, 1) =-Z20LICW/RHD
IMAT (4, 31=IMAT (2. 1)
RETURN
END
SUBRDUTINE STORE (V, RHO)
IMPLICIT REALSB(A-H,D-K.T-Y)
CoOMMON/GEOM/A-E.R1,R2.R2R1
COMMON/OUTS/11,12,12
DIMENZION V(&)
IF(12.NZ, 1Y RETURN
SO CIU RS
E2=v (2
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WRITE (22)SK,SV1,5V2

RE TURN

END/
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