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I. INTRODUCTION )
/

This report discusses research carried out by Berke-

ley Research Associates, Inc. under contract #N00014-83-C-I

2157 with the Plasma lhysics Division of the Naval Research

Laboratory. The repor covers the performance period I May

1983 to 30 April 1984. During this period, an extensive

investigation of electron beam stability was carried out in

the context of an easily formulated 2-D cold electron layer

model. This work was carried on in close association with

NRL personnel in conjunction with the special focus program,

*Advanced Accelerators.*

QThe modified betatron has been the subject of an in-

-, tense investigation by NRL staff as a potential high current

electron accelerator. Significant progress has been made in

the understanding of the operation of this device and a large

experimental effort designed to test this understanding is

now well underway. Much of the work to date has been direc-

ted toward a formulation of the in situ beam dynamics, in-

volving equilibrium and stability considerations,

while other research has been directed toward solving the

difficult injection problem -

once an equilibrium is established, which in general

requires constraints on beam density and on the betatron

field index, stability questions of two general types arise.

First is the question of the stability of the betatron
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oscillations in the presence of small field errors, i.e.

the problem of orbital resonances. These resonances are

basically single particle effects caused by a repeated in-

phase interaction of a particle with a field imperfection.

However, even though they are basically single particle

effects, resonances can set a limit to the beam current in

an accelerator since the betatron frequency of one particle

is affected by the collective fields of the other particles

in the beam. These resonant instabilities were studied

under an earlier contract with NRL, N00014-81-C-2371.

The second broad class of instabilities occurs in a

device with "perfect" (azimuthally symmetric) applied fields.

These generally come under the heading of collective effects

and include the various mechanisms by which the beam may

bunch, kink, or simply spiral toward the chamber wall.

They include the negative-mass-kink mode and the various

resistive wall instabilities, all of which place certain

constraints on beam current.

The various collective instabilities in the modified

betatron were first studied by Sprangle and Vomvoridis5 , who

characterized the different modes and analyzed the dependence

of the growth rates on system parameters. Building on this

work, Sprangle and Chernin 9 investigated, under somewhat

more general conditions, the behavior of the growth rates as

current was raised, keeping the beam energy spread fixed.
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A rather unusual and unexpected result was found, namely,

a double-valuedness in the current versus energy spread sta-

bility curve and the appearance of two disjoint stability

regions. This double-valuedness was attributed to the ef-

fects of self fields and was found to be the result of a

competition between the growth and stabilization mechanisms.

Under some conditions, the double valuedness could even be

present for a conventional betatron configuration.

Prompted by this novel finding and mindful that the

three-dimensional nature of the problem made inclusion of

self field effects necessarily approximate, a rigorous study

was begun of a two-dimensional model, including correctly

the crucial radial and azimuthal particle dynamics, but

neglecting the inessential dynamics in the axial direction.

This model has the advantage that all self field effects

could be included exactly in the formulation of the eigen-

value problem governing the small signal behavior. This

study quickly developed in several interesting directions,

having now produced potentially useful results for beam be-

havior in accelerators, storage rings, and microwave tubes.

It is the results of this study which are reported here.

The following section describes the model we have

used, discusses its essential features, and summarizes our

findings. Detailed analysis is given in papers attached as

Appendices. Also included as an Appendix is documentation

3
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and a listing of a computer code developed under this con-

tract which locates the eigenvalues for the stability prob-

lem for the case of perfectly conducting chamber walls. A

final section suggests directions for future work.
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II. TWO-DIMENSIONAL LAMINAR ELECTRON LAYER MODEL

The negative mass instability, diocotron instability,

and electron cyclotron maser instability all depend in some

way on the existence of shear in the fluid velocity in the

underlying equilibrium state. Self fields in an intense

beam may affect the magnitude and even the sign of the shear

in a beam; hence it is important to include self field ef-

fects accurately in any analysis of these beam instabilities.

The cold fluid equilibria in a torus are quite diffi-

cult to calculate 3 . The stability analysis is even more in-

volved. To make progress, certain simplifying assumptions

about the functional form of the self fields are often made
5

These assumptions may affect the dependence of the shear on

the beam density. One is therefore motivated to consider a

"beam" model which retains the important effects of curvature

while allowing an exact treatment of self field effects.

Such a model--the E-layer or Astron model--is illustrated in

Figure 1. Here a laminar layer of electrons is supported by

a combination of radial electric and axial magnetic fields

between two coaxial cylinders. Here the cylinders will be

taken to be perfect conductors, though resistive wall and

other boundary effects may be included in a straightforward

way, as discussed in Appendix B.

The E-layer model has been the subject of numerous

10-12
studiesI  . Surprisingly, however, the exact linear
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stability analysis for a finite thickness, relativistic

layer does not seem to have been carried out previously.

"so, perhaps as a consequence, some very interesting, poten-

tially useful features of the model appear to have been mis-
13

sed and the unifying relationships among the various insta-

bilities seem not to be widely appreciated.

In the basic equilibrium state illustrated in Figure

1, only a radial electric field (Er) and an axial magnetic

field (Bz) exist. These fields are in general due to a com-

bination of self and applied fields. The equilibrium is

governed by the following set of three equations (MKS units):

2 S [E +vB] (1)
r in 0 0 0

1 _dr(rE) =-en/ (2)

dB0
m 1 -a = iOe novO  (3 )

These equations must be solved subject to a specified

potential difference between the inner and outer walls and

specified total magnetic flux. A method for doing this and

some features of the solution are discussed in Section II of

Appendix B. Here we note only that solutions may be gener-

ally grouped into three types, depending on which two of the

three terms in the equation of force balance, Eq. (1), are

most important. The three cases are: (I) magnetic force

6



balances centrifugal force (e.g. Astron, gyrotron, particle

accelerators), (II) electric force balances magnetic force

(e.g. crossed field microwave devices), and (III) electric

force balances centrifugal force (e.g. orbitron14 , helio-

15
tronS). Our analysis, therefore, has wide applicability

and many standard results may be recovered in appropriate

limits, as discussed in Appendix B.

One of the most important equilibrium quantities is

the dependence of the rotation frequency wo E v0/r on the

energy E 2 mc 2y - eo. This quantity may be shown to be given

by

dw ~ _ a2__ [+2h+ /Y4 1
2- 2 l yoh /(4)

where = wp is the plasma frequency, and

erE
h0 (5

mc ° 1y(5)
00

When w is a decreasing function of energy, one ex-

pects the usual negative mass instability mechanism to oper-

ate. However, we note the possibility of reversing the sign

of dw 0/dE by judicious choice of applied electric field. In

fact, as detailed analysis shows, the negative mass insta-

bility may be completely stabilized by choosing S0 + 2h < 0.

A discussion of this result is given in Appendix A and a

detailed derivation in Appendix B. Another noteworthy fea-
F: ture of Eq. (4) is that it possesses a (negative) extremum
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as a function of h, at h = yo2 . Since hy2 is the ratio of

0 0

electric to centrifugal forces we identify those devices of

Type III as the most unstable type of microwave generators.

This result suggests that the orbitron and heliotron might

possess some advantages over other microwave tubes. This

possibility is presently under investigation.

The linear stability of equilibria described by Eqs.

(1-3) to perturbations in the r and e directions has been

studied in some detail. The eigenvalue problem for the TE

modes has the form

d -d
rd(rAr) + C = 0 (6)

where 4 = rE0 1 and where A and C are complicated functions

or r, the azimuthal mode number L, and the eigenvalue w.

The full equation is derived in Appendix B where the features

of the equation are also discussed. We emphasize that Eq. (6)

is fully relativistic, fully electromagnetic, and contains

all effects of self fields.

Eq. (6) describes two basic unstable modes, the longi-

tudinal mode, satisfying w - two=0 and the transverse mode,

for which w - two (1 + Y2h2) . The longitudinal mode0 0

involves significant azimuthal bunching while the transverse

mode involves mostly radial motion of the layer. In the

planar limit, it may be shown that the transverse mode re-

duces to the so-called Buneman instability 1 6 , first studied

in connection with the early magnetrons. In cylindrical

- 8
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geometry the transverse mode has been invoked to explain the
" 17

operation of the peniotron 
.

Our studies have been concentrated on the longitudinal

mode which includes the negative mass, cyclotron maser, and

diocotron instabilities. For a thin layer it is possible to

obtain an analytical approximation to the growth rate for the

longitudinal mode, as shown in Appendix B:

) 2 2 (+2h)
[IM W) 2 R p 0o ,TR 7

(b++b_) (l+yh 2 ) + (C/R)

where T = layer thickness, R = layer radius, b+ = wave admit-

tances. (See Appendix B, where the second order term is also

given explicitly.) This expression for the growth rate has

several important features: The growth rate (1) scales as

(current) 2; (2) vanishes when $2 + 2h < 0; (3) has a maximum

as a function of h when hy2 = 1; and (4) vanishes in the
0

planar limit. Features (2) - (4) are novel findings. They

are expected on physical grounds, yet they have not been pre-

viously discussed in the literature. Item (2) may have appli-

18
cation to low energy (-MeV) storage rings . Note that self

field effects were included in the derivation of Eq. (7).

The stability condition, (2), therefore, is insengitive to

beam current, azimuthal mode number, or container geometry.

Extensive numerical tests of Eq. (7) have been carried

out, using a computer code developed to solve Eq. (6) through

using a "shooting method." In the tests all parameters but one

9



were held fixed and the dependence of the growth rate on the

single variable parameter was determined and compared with

Eq. (7). The parameters tested were h, v/y , /R, b/R, a/R,

Y , and t. Good agreement was found in all cases; details

are given in Appendix B. The computer code used to solve

the eigenvalue problem is documented in Appendix C.

In addition to these tests, a search was carried out

for evidence of the double valuedness in the current vs.

energy spread curve, the prediction of which was the origi-

nal motivation for this work. Despite much effort, no such

double valuedness was uncovered. The search is complicated,

however, because it is difficult to develop a set of param-

eters for layers with the same energy spread, but different

currents since, for large currents, the energy spread is a

function of the current. In fact, current, energy spread,

and beam thickness are connected in a way that is absent in

the equilibrium used in reference 9. The reason is that in

reference 9, betatron oscillations are assumed to "fill in"

the beam to the size and shape assumed when calculating the

self fields. Inclusion of betatron oscillations in the

E-layer model may help to carry out an effective comparison

more readily, but this is not easily done. A definitive

resolution of the question on the existence of double-valued-

ness must await further analysis, though numerical particle

* simulations may also be helpful in shedding some light on

this question.

10



III. SUMMARY AND RECOMMENDATIONS

A detailed study of a two-dimensional electron layer

confined between coaxial cylinders has been carried out with

the intention of understanding the radial and azimuthal beam

dynamics in high current accelerators. Though no confirma-

tion could be found for the predicted 9 double-valuedness in

the current versus energy spread curve, several interesting

and potentially useful features of electron beam behavior

in curved geometries were discovered. Specifically, it was

found that by appropriate choices of applied electric field,

the growth rate of the longitudinal mode could either be

maximized, as might be desirable in certain microwave devi-

ces, or eliminated altogether, as would be desirable in

electron accelerators and storage rings. In addition, a

long-standing puzzle concerning the survival of a finite

growth rate for the negative mass instability in the planar

limit was resolved.

There are several areas where further work would be

useful. First, additional research is needed to resolve the

question of double valuedness discussed above. The problem

is a difficult one, however, and computer simulations may

be needed to resolve this complex issue. Second, the

effects on beam behavior of other applied magnetic or elec-

tric fields is also an important area for further investiga-

tion. In particular, inclusion of a toroidal field in the

. 11
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E-layer model is straightforward and leads to a fourth order

eigenvalue problem whose features are important to study.

Careful examination of this problem may lead to a more thor-

ough understanding of the effect of the toroidal field on

beam stability in the modified betatron. And finally, we

mention that the effect of strong focusing fields on these

instabilities is an important topic for future study, since

it has been shown that use of such fields may have certain

beneficial effects on the beam behavior. Even these fields

may be included in the E-layer model if e-dependence is

allowed in the equilibrium state.
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Stabilization of the Negative Mass Instability
in a Rotating Relativistic Electron Beam

Y. Y. Lau and D. Chernin t '
Plasma Theory Branch. Plasma Physics Division, Naval Research Laboratorq. H9ashingion, D. C. 20iJ5

(Received 9 December 1983)

It is shown that the negative mass instability in a rotating relativistic electron layer may be
stabilized by a radial dc electric field of a suitable magnitude. The stabilization mechanism is
independent of the beam velocity spread, and is insensitive to the beam current, the con-
tainer geometr), or the azimuthal mode number. A simple stability criterion is given.

PACS numbers 52 60 + h. 2920 -c. 47.75 + f. 52.35.P)

The negative mass instability' poses a major ob- Consider a cylindrical E layer with radial density

stacle to the development of high-current cyclic ac- profile no(r) which, in equilibrium, circulates con-
celerators. Various methods of stabilization have centrically with azimuthal velocity V 0o(r)-Gvo(r)
been proposed and analyzed. Notably, the effects inrw0(r) under the combined action of an axial
of a moderate beam angular velocity spread and be- magnetic field B0i Bo(r) and radial electric field
tatron oscillations have been considered. 2- 6 For a E0 "FEO(r). These fields include both the self-
betatron, the addition of a toroidal magnetic field& fields and the externally imposed fields. We as-
has been shown to reduce the instability growth rate sume that the E layer is located between two
considerably 5

,
. and for the Astron, the proximity of cylindrical conductors of inner and outer radii a and

. the container walls to the relativistic electron layer b, respectively, and that there is no axial motion
S(E layer) stabilizes the lower azimuthal modes.3  nor axial variation in either the unperturbed or the

In this Letter, we show that by imposing a nega- perturbed states.
. tively biased radial electric field of a suitable The governing equations for the equilibrium read
- strength, the negative mass instability may be *,or,= --(elmo)(Eo+ VoBo). (1)
*" suppressed. This stabilization differs from all previ-
- ously known mechanisms in that it is effective even dBoldr - - I0Jom - .oVeno0 . (2)
" for a very cold beam it does not require a toroidal

magnetic field, nor is it sensitive to the container r d(ro)/dr-foe/co. (3)
geometry, the beam current, or the toroidal mode Here, e and m0 are respectively the electron charge
number. The simple stability criterion, given in Eq. and rest mass, #0 and e0 are the free-space permea-
(10) below, does not seem to be very stringent for bility and permittivity, and yo- ( - vi/c2) -

1t2 is
electron beams in the megaelectronvolt range. the relativistic mass factor with c being the speed of

Our finding is based on an analytic treatment of light. Once the electron density no(r), the total
the stability of the £ layer situated in a configura- electrostatic potential difference between r - a and

*;. tion similar to the Astron, which has been shown$ -b, and the magnetic flux are specified, the un-
to include all essential features of the negative mass perturbed fields v0 (r), Eo(r), and BO() are to be
instability. We limit our study to a highly ordered solved from (!) to (3) to yield a self-consistent
beam whose unperturbed orbits are concentric cir- equilibrium solution.
cles. Such a beam should yield the most pessimistic We next consider a small-signal perturbation on
prediction as far as the beam stability is concerned; such an equilibrium. All perturbations are assumed

' hence our analysis is conservative. The simplicity to'vary asf(r) exp(iOwt - i16), where I is the azimu-
of the assumed equilibrium orbits allows the linear thai mode number and w is the (complex) eigenfre-

- stability theory to be formulated exacily, including quency to be determined. In the absence of axial
all ac and dc space-charge effects, al relativistic ef- variation and of axial motion, the TM modes and
fects, and all electromagnetic effects, for general the ITE modes are decoupled. The nontrivial com-

. equilibrium profiles. As we shall see, our disper- ponents of the rf electromagnetic fields are E,. E,.
sion relation reproduces the standard results in the and B, for the TE modes. The Maxwell equations,

- appropriate limits. For example, the diocotron in- the Lorentz force law, and the continuity equation
stability is recovered, and the negative mass insta- may then be linearized and combined to yield the
bility removed, in the planar, nonrelativistic limit, following second-order ordinary differential equa-

0 1984 The American Physical Society
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tion for qs- rE:
41~ I- I 4) aI 7D + --- 0. (4)7 p dr dr * (4)

In this equation

fl " - Iwo(r), ND ,W wraID , p" I - 12c2 /or2+ ND ) 2/w 2,

,.4-e 2no/omoeo. D-PQ-f 2 ,. Pm-- (1+h). Q-h +v/w 0 ,

7lID-mNDf(,D0,w)Pl . A -- ID(/Ipr')(l +No#2I/f,,o).
p0= vo/c, B - (21c2r)( l-qD21>P +/v)/y02)-

In the definition of Q, a prime denotes a derivative with respect to r. and h is proportional to the equilibrium

electric field and is defined by
h - erEomoyvo" (5)

Note that h is positive (negative) if the equilibrium electric field points radially outward (inward). The
eigenvalue w is determined by solving (4) subject to the boundary conditions 0 - 0 at r - a and at r - b.

Equation (4) is completely general and of wide applicability. It governs the small-signal stability properties
of various devices including the Astron, '4. 9 gyrotron,' 0 orbitron,"1 and cross-field microwave devices,' 2

depending on the parameters of the electron beam as long as the equilibrium states are modeled by Eqs.
(1)-(3). A detailed comparative stability study of various types of equilibrium will be given elsewhere. For
the present purpose, we restrict ourselves to an £ layer with uniform density no extending from r - rI to
r-r2. The E-layer thickness 7-r 2-rl is assumed to be much less than the mean radius R. We shall use
-r/R as an expansion parameter. Furthermore, we assume that Ifl I << "o, a condition readily satisfied by
the negative mass mode.1-10

The instability growth rate w, may be analytically derived from Eq. (4) for a thin E layer by expanding
about the singularity fl - 0 in the complex r plane. To two orders in t/R, it is given by

2 ! 2 (rIC+ 2 h )  1272 -

b +b- 1 R I (+Jh 2) R2  0

where b+ (b_) is the normalized wave admittance at the outer (inner) edge of the E layer,1a and

1 IA--
4 8(I + h )(1 +,yh 2 )

x P 2h + (1I+ h) II+ 2 4(plo+ 2h I y(l +.l )(2+h2

_ 1 (1 + h ) w ,5 /.4 + _ b 2 . (7)
The first-order term (in r/R) of (6) describes

the negative mass effect' and dc field effects, while (b) A more stringent test on the validity of (6) is
the second-order term includes the diocotron ef- to consider the planar geometry limit. In this limit,
fect 14 and finite-thickness stabilization.' The we let R - o, I- cc. w0- 0, but require that vo.

derivation of (6) will be given elsewhere. Its validi- kj, - 11R, Eo, and r remain finite. Then h - o
ty may be tested as follows: from (5) and the first term of the right-hand side of

(a) If the beam is infinitesimally thin, and if we (6) tends to zero, consistent with the notion that
ignore the dc electric field by setting h - 0. we then there is no negative mass instability in a planar
recover from (6) the well-known dispersion rela- geometry. Using only the last term of (6). we then
tionship ,' a (I/R )W 2/(b, + b...) for the neg- obtain
alive mass instability for the Astron geome-
try.,4 1 (k /), h1)w /wl (k/.r/4"y )w;/.
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- which alrees with the well-known growth rate for relativistic electron may be converted from negative
the diocotron instability for a sheet beam 14 In writ- to positive if h is less than - 02'2. It should be
ing the last expression, we have used the self- stressed, however, that the stability condition (9) is
consistent equilibrium condition E0 + v0 X B0-0 derived from collective-mode considerations which
(for a planar sheet beam) in (5) and defined include both the ac and the dc self-fields. I1

W - le IBo/moyo. This agreement with previously In summary, this Letter presents a novel, robust
known results adds to our confidence in the disper- method to suppress a major instability in circular ac-
sion relationship (6). especially with regard to the celerators. Technical aspects such as fabrication,
effects of dc self-fields. Recent work on the beam injection, and beam retrieval remain to be
diocotron instability is reported by Tsang and studied. A more refined analysis may be needed to
Davidson. -  examine the possible occurrence (if any) of residual

For a thin E layer with sufficiently high energy instabilities. The stability criterion (9) may be test-
Z I MeV), the last term of (6) may be ignored. ed on several currently operating devices.

The dispersion relationship may then be approxi- We would like to thank P. Sprangle, I. B Bern-
mated by stein, and L. R. Barnett for discussion, and B. H.

______ tllHui and J. M. Mangano for encouragement. This
C b - (] + -2h) (8) work is supported by the U. S. Office of Naval

Thus, the sufficient condition for stability is

h < - /2 (9) 1iAlso at Berkele) Research Associates. Springfield.
Va. 22150.
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condition (9), together with the definition of h in Proceedings of ihe Internal Conference on Accelerators
(5), implies that a sufficiently strong, radially in- (CERN, Geneva, 1959). p. 239; also A A. Kolomenski,
ward electric field may render the relativistic elec- and A. N. Lebede, ibid. p. 115.
tron beam stable against the negative mass instabili- 2R. W. Landau and V. K. Neil. Phys. Fluids 9. 2412
ty. This stabilization is independent of the beam (1966); also R. W Landau. Phys. Fluids 11, 208 (1968).
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le s. > -L-'04 In(bla), (10) lished).
2 0y 0T ,7P. Sprangle and C A Kapetanakos. J. Appl Phys 49.

where i1 (1978), also N. Rostoker. Comments Plasma Phys. 6,
h e I is the externally imposed potential 91 (1980).

difference (in kiloelectronvolts) between r -a (the OR J. Briggs and V. K. Neil. Plasma Phys. 9. 209
cathode) and r - b (the anode). (1967). and J. Nucl Phys., Pt. C 8. 255 (1966).

As an example, take R - 100 cm, b -a =4 cm. 9v. K Neil and %%. Heckrotte, J Appl. Phys. 36, 2761
Then, according to (10), a I-MeV electron beam (1965).
would be stable against the negative mass instability 10See, e.g. Y. I Lau. J. M. Baird, L R. Barnett. K R
if the inner conductor is negatively biased at a volt- Chu, and V. L Granatstein. Int J. Electron SI. 331
age greater than 200 keV with respect to the outer (1981). also Y. Y Lau, IEEE Trans Electron Devices
conductor. 29, 320 (1982). and references therein

A partial explanation of the stability condition (9) il Alexeff and F Dyer, Phs Re. Lett 43. 351
may be given in terms of the single particle motion (1980). See also L R Barnett. doctoral dissertation.

Universit) of Tennessee. Knoxville. 1978 (unpublished).in an externallt imposed field E0 and B0. Let i be for a related device
the total energy (kinetic and potential) of an elec- 12See, e.g.. 0. Buneman. R H Lev). and I. M. Linson.
tron. One may easily deduce from (I) that J Appl. Phys. 37. 3203 (1966). and references therein.
dwo/de-(dwo/dr)drldec (P,+2h)/(l+1yh') if 13The expressions for b. and b- for the present
the self-fields of the electron layer are neglected. geometry are given by Eqs (49) and (50) of Ref. s,
Thus, the effective azimuthal inertia1 of a rotating where it is shown that I/lf/ (b. b(b )I is equivalent to
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the geometrical g factor for the toroidal configuration "it is of some interest to note that the negative mass

treated in Ref. I. For the toroidal configuration. g is al- factor dwo/de is maximized with respect to h when

ways positive. h - 1/vs Thus. according to Eqs (1) and (5). the £

140. Buneman. J. Electron. Control 3. 507 (1957). layer is most unstable, and is therefore most likely to

" ISK. Tsang and R. C. Davidson. Bull. Am. Phys. Soc. yield radiation, if its equilibrium rotation is solely sup-

* 2C. 1211 (1983). ported by a radially outward electric field. Reference I I

161f the container wall is lossy. the wave admittance reported a potent radiation source of this type More.

(b. + b-) would be complex. The electron beam may over, since the dispersion relationship (8) is applicable

- then be subject to resistive wall instabilities even if the for arbitrary combinations of E0 and B0 . and for arbitrar,

stability criterion (9) is satisfied. The resistive growth energy of the electron beam. it provides a ready compar-

rate and the negative mass growth rate scale differently. ison of the -potency" among various microwave devices

however. We wish to thank A. M. Sessler (private com- such as the gyrotron. orbitron. heliotron. and cross-field

munication) for reminding us of the importance of rests- devices (if the small-signal grouth rate is used as a cri-

tive wall instabilities, and for furnishing an argument terion). Further discussions, as well as the confirmation

supporting our conclusion on the stabilization mecha- of the stability criterion (9) by a numerical integration of

nism. (4). will be reported elsewhere.
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I. Introduction

There exists by now a truly enormous literature on the subjects of the

equilibrium and stability of layers of charged particles in various

geometries. The earliest studies1 - 7 were conducted in order to understand the

"slipping stream" or diocotron effect in the operation of the first

magnetrons. Somewhat later the importance of curvature effects was realized

when beams became relativistic, as in particle accelerators; the resulting

"negative mass" instability 8'9 completely dominates the planar beam diocotron

effect at sufficiently high energies (only a few tens of keV in many practical

devices of interest). The negative mass effect was also investigated in

connection with some controlled fusion research devices10 - 12 and other

machines. 13

In recent times there has been renewed interest in high power, high

efficiency microwave devices as well as in accelerators capable of high

current operation. Spurred by the discovery of the electron cyclotron maser

(or gyrotron) effect, 14 - 1 6 research in the field of short wavelength, high

power microwave devices requiring no slow wave structure has been vigorously

pursued.1 7 Operation of these new devices depends fundamentally on the

negative mass effect as enhanced by a synchronism of the particles' angular

motion with the temporal and angular variation of a "cold" waveguide mode.

This enhancement, though not called the maser effect, was first noted in the

classic work of Briggs and Neil10 and has been further elaborated in ref. 18.

The acceleration of large currents of electrons is a formidable problem

which has also received considerable attention recently. In cyclic devices it

is possible to construct high current equilibria in many cases1 9-21 but

various instabilities, the negative mass instability prominent among them, may

.limit achievable currents to smaller values than equilibrium considerations

16- 1
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alone would suggest. In these devices the effects of self fields on the

negative mass instability and on the stabilization mechanism become Important

to consider; in one device these effects have been predicted to lead to a

peculiar double-valued feature In the current vs. energy spread stability

curve. 2 2 It was this particular result which initially prompted the study of

self field effects reported here for a simpler (2D) model.

The model we consider consists of a layer of charged particles (we will

think of them as electrons but ions may be trivially substituted) moving in

circles about a common axis, as shown in Fig. 1. This restriction to laminar

or "cold- electron flow will tend to overestimate actual growth rates of the

modes we study since the effects of betatron oscillations and of nonaxis-

encircling particles are stabilizing. An analysis including these effects is

properly done in phase space using the correct equilibrium distribution

function; such an analysis is significantly more complex than that given here

and may be carried out only in an approximate way. The laminar flow case

includes all essential physics and has great simplicity, allowing an exact

treatment of the linearized problem, to recommend it. The equilibrium,

discussed in the following section, is supported by a combination of self and

externally applied radial electric and axial magnetic fields. We impose no

a priori restriction on the relative magnitudes of the three terms-

centrifugal force, electric force, V x force--in the equilibrium force
b"3

balance. This configuration is thus a reasonable model for the Astron,2 3

magnetron, gyrotron, orbitron, 2 4 peniotron 2 5 and heliotron2 6 and includes

correctly the crucial radial and azimuthal particle dynamics found in particle

accelerators. This "E-layer" model has the virtue that the linear stability

problem may be formulated exactly, for arbitrary particle energies, including

all effects of self fields and all effects of relativity and

16- 2



electromagnetism. It is perhaps a bit surprising that, despite the

venerability of the topic, this exact formulation has not been carried out

earlier.2 7 The eigenvalue problem governing the stability of the E-layer is

derived and analyzed in Section I1, below.

The desirability of a completely general treatment encompassing many

devices and a large parameter space is related to the ease with which various

familiar results for special cases may be recovered in appropriate limits. A

dispersion relation for the so-called longitudinal mode obtained analytically

in the thin beam limit from the ordinary differential equation governing the

* RF field reproduces all standard special case dispersion relations (negative

mass, electron cyclotron maser, diocotron) in a straightforward way; in doing

so, a puzzle is resolved concerning the survival of a finite negative mass

growth rate in the planar limit and a method suggests itself on how either to
28

maximize or eliminate altogether the negative mass 
instability growth.

Extensive testing of the dispersion relationship against a numerical solution

of the eigenvalue problem shows excellent agreement, as reported in Section

III. The classical diocotron dispersion relation is discussed and recovered

from our formalism in Section IV.

Our treatment of the transverse mode, which has been invoked in the

theory of the peniotron device 2 5 is somewhat less comprehensive. This mode is

unstable only when electron motion is synchronous with a cavity mode and so is

of a more specialized nature than the negative mass or diocotron instabilities

which arise from intrinsic properties of geometry and shear flow, not from

interaction with external structures. Still, the utility of the transverse

mode for microwave generation may not yet have been fully exploited. We

comment on some features of this mode in Section V.
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II. Cold E-Layer Equilibrium

We consider an idealized model of an electron layer in which all

electrons circle a common axis as shown in Fig. 1. We will neglect the

effects of betatron oscillations and of axial motion In both perturbed and

- unperturbed states. Inclusion of betatron oscillations or axial perturbations

.. is expected to have a stabilizing Influence on the collective modes we will

. study. We further assume that in general the layer is enclosed In a coaxial

waveguide with smooth, perfectly conducting walls at r-a and r-b, as shown in

the figure. Absence of either or both walls results only in a change of

certain boundary conditions.

Though this model is simple to describe It Is surprisingly rich in

content. Depending on beam and geometric parameters and types of applied

,--"fields, it may be taken as a good description of the Astron,2 3 gyrotron,17

orbitron,2 4 penlotron,2 5 heliotron2 6 and cross field microwave devices and may

also be of some interest in accelerator 8 " and space physics stability

problems as well as in the theory of magnetic insulation.

The equations governing the equilibrium quantities v (r)9, E0 (r)r,

B 0o(r)z for a specified density profile n (r) are

2
Y 0 ( E + vi 

(1r m 0 0 0
"i oro 0 0%

~ld
ii''r (ree) " -en/cm (2)

*- dB0
- oenoVo, (3)

, where -e and m are the electron charge and mass, is the usual relativistic

factor, (1-(v/c) 2
- 1/2 is the speed of light in vacuum, and c° and V are
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*1

the permittivity and permeability of free space. In addition to the density

profile, we take as given the total electrostatic potential difference and the

total magnetic flux contained between r-a and r-b.

Using these conditions the solution to Eq. (2) is Immediate and Eqs. (1)

and (3) may be combined to yield a single differential equation for

u -- yot 0 Svo0 0/C:

U~~ Wy wyc

r I+h (4)

where - /W .2 = e2n /my 0 is the plasma frequency of the layer,p o p o 0 0

= v /r, and a prime denotes d/dr. In Eq. (4) we introduce the important

quantity h, defined by,

erE0
, 22 3 (5)

mc *° To

-20

which is (l/y ) times the ratio of the electric force to the centrifugal force

experienced by an electron in equilibrium at radius r.

Equation (4) must be solved subject to an initial condition u(rl)

satisfying Eq. (1) which we rewrite in the dimensionless form

u2 M aE(u 2+l)1/2 + aBu (6)

where cLE - erEo/mc2 and aB - erBo/mc. dE is known at rI but aB Is not. The

entire equilibrium problem then reduces to choosing aB(rl) such that the

resulting total flux

b
#0 24 dr r30  (7)

a
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*" is a specified number. A numerical method for doing this is described in

Appendix A. Bere we briefly consider the character of some of the

solutions. The equilibrium thus constructed will be used in the numerical

solution of the eigenvalue problem in Section III.

Civen aE(rl) and czB(rl), Eq. (6) may have 0, 1, or 2 real valued

solutions for u(rl), depending on the values of a and aB; without loss of

generality we take N(rl) 0 0. The situation in the QE - GB plane is then

depicted in Fig. 2. By a positive root, denoted by (+) in the figure, we mean

a right-handed rotation about I (clockwise, looking in the direction of

The equation for the boundary curve C in Fig. 2 is the condition for Eq. (6)

to have a double root:

u (u*-B)

a - (u*2+  1)1/2 (8)

where u (8/3)l1 2sinh[1 sinhU].(32)3 2 a On C, I + h - 0.

There are three basic types of equilibria found in devices of practical

interest: Type I, in which a magnetic field is used to balance centrifugal

force (GE is small, e.g. Astron, gyrotron, particle accelerators); Type II, in

which electric and magnetic forces balance (inertia is small, e.g. crossed

field microwave devices); and Type III, in which an electric field is used to

balance centrifugal force (aB is small, e.g. orbitron, heliotron). Type I may

have only "+" roots while Types II and III may have either "+" or "-" roots.

In the following analysis, however, we make no assumption regarding the

relative magnitudes of the electric field, magnetic field, and inertia terms.

* It is reasonable to ask whether stability considerations favor one type

of equilibrium over another for a layer of given kinetic energy. To our

knowledge there has been no definitive answer to this fundamental question.
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For radiation source applications one arguably might want the most unstable

configuration while for other applications, like accelerators, one would want

the most stable one. We proceed to examine the stability of a general

equilibrium describable by Eqs. (1) - (3) in order to address this question,

our goal being a complete parametric study of the small signal behavior.

III. Stability of the Layer

We consider perturbations on the equilibrium described in the previous

section. The equations governing the layer are, simply

a+ e - + *,)(9

:x:.- -en/c (10ab)

]: L it- jiienv = 0 (,la,b)

where n is the number density.
o

Our discussion will be limited to consideration of perturbations in

the r and e directions, for reasons described below. Writing all

quantities T as

T(r,e,t) - To(r) + Ei-i (12)

where I (r) is the equilibrium value, and retaining only terms linear

in 71(1) one finds that the linearized versions of Eqs. (9) - (11) decouple

into two sets governing vIr,Vl0,Er,E1e,B,,nl and {vlz,E zB rB1f which

we identify as TE modes and TH modes respectively. (Here and below we
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write 1  (r;w) simply as T, for all first order quantities.) The TH modes

may easily be shown to be neutrally stable for perfect conductor boundary

conditions (damped, for resistive wall boundary conditions). They represent

simple oscillations of the electrons along the z direction in response to the

cavity mode fields; the equilibrium model does not provide any free energy to

excite the TM modes. The TE modes, on the other hand, are potentially

unstable. If we had allowed a finite axial wavelength for the perturbed

quantities the TM and TE modes would be coupled, but it has been found I0 that

the effects of finite axial wavelength are stabilizing for the coupled case.

Consequently we focus attention exclusively on the TE waves.

The Euler equation (9), upon linearization, gives the fluid response in

terms of the RF fields of the TE wave:

-ig0v- toPVle S - E+ VBl] (13a)

W oQvlr-Il 9 E 1( (13b)

my0

where we have defined n w-tw , P y 2 (l+h), Q = v'1w + h, and
00 0

v 0 Trv o . Using the solution of Eqs. (13a,b) in the definitions of the RF

currents J1r and J and combining the linearized Maxwell's equations (10) -

(11) allows one to write a single differential equation for *rEle

!d
r dr (4

where
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A - O-l + EI(Dy 2 (15)

jj(; -- '~D-'E(l+h)) + 202A- D -1E(1+h)]
21 w 2r 2 2

+AD -1(E/ 2r ( -t 2_E0 2) + (16)o 2AI-~/ 2 r 2 2

' 2 12 2
+- + D-(2rc) (17)

2
C

D = PQ - 21 . I-EI2 + 2h2 _ n212 (18)
00 0 0

and other symbols have been defined previously. [Equation (14) is identical

to Eq. (4) of Ref. 28, except for a few differences in notation.]

The other RF fields are given in terms of 0 by

E1  mirA1 (! + FD v /c2  - - E- D-(1+h)*] (19)

,. ~ z =--t -l[( + ED-I0)f" w EtWD-l1(14h)#] (20)

C

' and the perturbed velocities may be easily recovered using Eqs. (19) and (20)

in Eqs. (13ab); the perturbed density is obtained from nI=-(Co/e)M. I

Equation (14) must be solved subject to 0(a) - #(b) - 0 (if the valls are

*~ perfect conductors) in order to obtain the eigenvalue, w. Hereafter ye shall

assume that the electron layer is restricted to the annular region rl<r<r 2

[Fig. 1]. In this case it is convenient to formulate the problem using the

explicit vacuum solutions at r-r1 and r-r2 and to match the appropriate

logarithmic derivatives, as is often done in microwave tube theory, in order
J

to isolate the effect of wall boundary conditions. Defining, then, the

16-9
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normalized admittances evaluated just outside of the layer, we have

b IEr tr2  (21a)

b+ E=- - r - (2a

rwr 2  2 2 r-r 22" 2 -2

2

c

We stress that the normalized wave admittances b+ and b_ depend only on the

waveguide geometry exterior to the electron beam. They are independent of the

beam or Its dynamics. b+ and b- are evaluated explicitly in Appendix B for

some practical cases of interest.

Let us examine Eq. (14) more closely. In the complex r plane Eq. (14)

has singularities at points where

6) - two  0 (22)

D + EIy2 UsO (23)
0

Aa 0. (24)

The first of these clearly represents a match between the mode frequency and a

harmonic of the particle "cyclotron" frequency. Such a match is present in

the negative mass instability, cyclotron maser instability, and diocotron

instability all of which are described by Eq. (14). Indeed, these may all be

considered to be the same instability in this sense,1 8 though the individual

names are still useful. The negative mass instability Is fundamentally a

rotational effect. The classical explanation attributes it to the decrease of

circulation frequency with particle energy leading to growth of azimuthal

bunches. The negative mass instability operates without regard for the cavity
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modes of the vacuum chamber; the fields are not well approximated by the

cavity mode. The Instability is strongly enhanced however if Re(w) happens to

be a cavity mode, as first pointed out by Briggs and Neil.1 0  In recent years

this synchronous case has been given its own name, the cyclotron maser

instability, mainly in the literature of gyrotron research.
1 7 ,1 8

The diocotron instability, originally studied in connection with the

development of the first cross field microwave devices, is a "residual"

instability in this context. It is what survives in the non-relativistic

* and/or planar limits. The perturbed electric fields are basically

- electrostatic in nature and are strongly localized at the position of the

layer. The equation governing the diocotron instabilityl,4,6,7,2 9 may be

recovered formally from Eq. (14) by taking c*-. It is discussed further in

Section IV, below.

A mode satisfying Eq. (22) is sometimes called the longitudinal mode

since the major effect on the beam is azimuthal bunching. Equation (23), on

- the other hand, describes what has been called the transverse mode which

involves little bunching, but significant transverse (radial) motion of the

" beam. If h is small, Eq. (23) becomes

w two w 0 (25)

* This transverse mode has been invoked to explain the operation of the

peniotron2 5 when w corresponds to a cavity mode. In the nonsynchronous case

• .the transverse mode is stable in the absence of resistive walls, as pointed

*t out in ref. 10.

Finally we note that Eq. (24) may be loosely associated with an

electromagnetic mode. In vacuum only (24) survives as a singularity but in

16-11
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-|. - . . ,,

fact it may be shown to be only an "apparent" singularity; 3 0 the vacuum

eigenfunctions are analytic in r, except possibly at r-O.

We proceed to analyze Eq. (14) to uncover the parametric dependences of

the growth rates of the unstable modes. In order to make progress

analytically we consider the case of a beam of uniform density and of

thickness T = r2 - r1 which is much less than its average radius

R - (r2 + rl). If the beam is sufficiently thin it is possible to consider

a Taylor series solution about r-R of Eq. (14), taking care to check at the

end that the singularities are sufficiently far away in the complex r plane,
231

- so as not to disturb the series convergence;3 1 carrying out this program we

find the dispersion relation

C A
G- + (++ C-)(- + +  c_1

RA 0

3 - 2 0o
-8R) (G + - G_)(-= 0 (26)

0

2

correct to order ( •/R) In Eq. (26) G_, C+ are the radial logarithmic

." derivatives of # evaluated just inside the layer at r-rl, r-r2 respectively,

obtained by integrating Eq. (14) across the beam edges:

-1 " = + q(r2 1) ]  (27):211 22,,1)11

where

i°, n :1 + h)
q(r) 510 - ())(28),, ( AD

*. and

16-12

'.. ... .........-.... .....* . ,._.....\--...., -.- , , , ,



r) 0 + (r-R)A 1 + " (29)

-:, r) -- C0  •-.

near r-R.

Expanding Gi to order r/R, Eq. (26) then reduces to

--(b j q=+ b_) + j [-Rq' - --(Ib+- q)(-_+ q) + Co1-0 (30)

- where now q and q- are understood to be evaluated at r=R and where in Eq. (30)

we have (temporarily) kept terms only to O(T/R). No assumption has been made

about the E-layer density or current; we have assumed only that the beam is

f"thin".

Let us first consider the longitudinal mode, that is, we look for a root

- of Eq. (30) with 10 1<<w2. Of the terms within the brackets in Eq. (30) only-- 2

the q' and terms behave as 1-2 for small 0. Keeping only such terms, some

:*. algebra gives fliIMM(O):

. r2 2

2 t r (02 + 2h). 11-fl2 + O(PT/R)2 (31)
. (b+ +b_) (I + Y2h2 )(

0

which, for h = 0, is the classical negative mass dispersion relation for the

Astron configuration.I0 (The 0(LT/R)2 term is displayed fully in Eq. (36),

below.) We remark that Eq. (31), including the second order terms, can be

obtained from the much simplified form of Eq. (26),

G+ G-_ + TG- o (26)

~-l
where terms behaving as f have been dropped from Eq. (26).
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2
Ignoring the O(Ir/R) term in Eq. (31) for a moment, we may interpret the

dispersion relationship (31) as follows. As we have seen, the factor

(b+ + b_) represents the effects of the container structure, and the

factor (T/R)w is proportional to the beam current. These two terms always

appear in any dispersion relation involving an electron beam. All dynamical

effects, including those due to self fields, are contained in the factor

28 2 + 2h)

M 0- 2 2 (32)
(1 + Yh )

* for a sufficiently thin beam. Some insight into the meaning of this factor

may be had if we note that for small equilibrium densities, &, it is

proportional to dw=0 Md where c = mc2y0 - e, 0 is the total energy of a particle

in the equilibrium:

dw0  W~ B2 + 2h+ E/ 4

22 Or 0. (33)
MC + yh-/

At least when E is small then we find agreement with the classical explanation

*- of the negative mass effect: A rotating beam is unstable (stable) if its

equilibrium rotation frequency is a decreasing (increasing) function of its

(total) energy, that is, M is proportional to the effective azimuthal inertia

(mass). We stress that for finite C this interpretation begins to break down;

Eq. (31) was derived assuming E was finite yet E does not appear in the factor

M but clearly does appear in Eq. (33).

H, though simple in form, has many interesting features. Let us consider

its dependence on h, illustrated in Fig. 3. Perhaps the most interesting

property of M is that it experiences a change in sign at h = - B0 /2. The

possibility for using this property of equilibria supported by a radially

,'." 16-14
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inward electric field in addition to a magnetic field in order to suppress the

negative mass instability has been discussed elsewhere. 2 8 We note that since

the factor H is independent of the beam current or of the waveguide dimensions

and represents a purely dynamical quantity, this stabilization of the negative

mass instability by a radial electric field is expected to be valid even in

toroidal geometry, even for high current, very cold beams. (The method is

limited to use for moderately low energy beams, in the HeV range in practice,

since the applied electric field required to change the sign of M from

3negative to positive is proportional to y0 , as follows from the definition of

h, Eq. (5).) Note that there is a "most stable" configuration at h--l, at

which point certain singular parts of Z in Eq. (14) vanish identically.

Perhaps equally interesting for microwave generation applications, is the

occurrence of a "most unstable" point in Fig. 3 at h =11y If we recall
0

that y 2h is the ratio of the radial electric force to the centrifugal force we
0

-2observe that the choice y2h - 1 describes a configuration in which the

equilibrium is supported solely by an electric field (a Type III equilibrium,

in the language of Section II). This result suggests that for a given beam

" energy, a microwave source such as the orbitron24 in which an annular beam

circles a positively charged wire with no applied magnetic field, might have

some advantage over more conventional devices like magnetrons (h<O), inverted

2
• magnetrons (h>>/y), or gyrotrons(hnO). This finding is novel. We remark

that this negative peak in M is sharpest at low energies (small S )2
0

In the non-relativistic limit, 2+ O, Y2+ 1, the sign of M is determined
0 0

"' directly by the sign of h, which remains finite in this limit. Usually we

S are accustomed to thinking that the negative mass instability should vanish in

the non-relativistic limit when there is no gradient in the magnetic field.

Here we see however that an equilibrium electric field can affect the sign of
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the azimuthal Inertia just as a gradient in B can. If we define an equivalent

field index, neq, by

I

" n M (34)

eq Y

then

2 -)

neq h[ ( +h) 2  (35)

which vanishes when h does.

One final comment about h must be made. The electric field appearing in

the definition of h, Eq. (5), is due both to the electric charge of the layer

and to any externally applied bias potential. When the contribution of the

electric charge dominates there is some question as to what value of h to use

7 in Eq. (31) when calculating growth rates since E and therefore h will change

* sign somewhere within the layer. For this reason, in all numerical examples

considered below we will assume that h, when it is non-negligible, is

dominated by the contribution of an externally maintained bias potential.

The analytical results presented up to this point are subject to test by

numerical integration of Eq. (14) subject to suitable boundary conditions. We

have written a program to carry out this task. Given a density profile, the

electrostatic potential difference and the total magnetic flux contained

between r=a and b, the program calculates all equilibrium quantities then,

given the mode number L, locates an eigenvalue w. In all examples below the

density profile is parabolic; we expect good agreement with Eq. (31), derived
~~~2 wt2(/o(22 ) weevs

using a flat profile, if we identify (T/R) w with 2(v/y)(C /R ) where v is

B Budker's parameter, the number of particles per unit length times the
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classical electron radius. All examples use a perfectly conducting wall;

effects of a small wall resistivity, which may be very important under some

conditions, are discussed briefly toward the end of Appendix B.

Though we shall eventually test Eq. (31) for all parameter dependences,

let us first check the interesting dependence on h, discussed above, against a

numerical solution of Eq. (14). Figure 4 presents some typical results. Here

we have illustrated, for two different values of v/y0 a comparison of

the I = 1 mode growth rates for a thin (T/R -.02) beam as predicted by Eq.

*(31) (dashed line) and by a solution of Eq. (14) (solid line). (To be

precise, what is plotted on the numerical solution curve is Im(w)/W (r ).)

The transition from stable to unstable behavior occurs at h = - /2

(= - 0.278 for this case) independent of E. This is an important feature of

*Eqs. (31) and (32) which has been used to argue28 that the stabilization

condition, h-0 /2, for the negative mass instability is independent of the
0

beam current. Note that this statement cannot be made on the basis of single

particle orbit theory alone [cf. Eq. (33)]; the stabilization condition is

obtained from collective mode considerations including self field effects.

Actually a small amount of residual growth remains for h less than but very

close to - / 2, a feature discussed in more detail in the following
0

section. Agreement between Eq. (31) and the numerical solution is best at

small growth rates which is reasonable if we recall that terns behaving

as 0-1 were neglected in favor of terms behaving as n-2 when Eq. (31) was

derived. Equation (31) consistently gives slightly too high a growth rate

*(i.e. it is pessimistic), a feature which will be shown to persist when

variations of other parameters are considered. Notice that the numerical

solution confirms the existence of a peak in the growth rate for h - 1/y , as

predicted by Eq. (31), again independent of F.
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-. , . . . . . . . . . ..**"



The significant parameters upon which the small signal behavior of the

layer depends Include, beside the externally applied bias fields, the geometry

factors a, b, ri , r2, the current (v), the beam energy y0 , and the mode

number I. We proceed to consider the effect of each of these separately on

the growth rate of the longitudinal mode, w - 0o, for the specific case of an

Astron-like configuration, h - 0.

Unless otherwise stated all parameters in the cases considered below will

take the following nominal "base case" values: a - 0.5m, b - 2.2m, rl -

0.99m, r2 - 1.01m, total electrostatic potential difference between inner and

outer walls - 0., total flux between inner and outer walls - w(b2 - a2 ) Bo0

where Boo M 48.2xl0-4T is the field required to hold a single particle at

R - lm with y = 3. The radial density profile is always taken to be parabolic

and symmetric about r-R-lm with specified peak value; the base case value is

7 -35xi0 /cc which gives v/yo 3.94x10 . The base case azimuthal mode number

I is 1, for which b+ + b- 2.50 for w =o" From Eq. (31) the normalized

growth rate for the base case is 5.6%; the numerical solution of the

eigenvalue problem gives 5.35%.

Figure 5 illustrates the comparison of growth rates as calculated by Eq.

(31) and by a numerical solution of the eigenvalue problem for a range of

currents. Over the wide range considered, the v1 / 2 scaling predicted by Eq.

(31) is shown to hold up extremely well up to values of v/y of a few
0

*percent. Similar excellent agreement is generally found for variations in

layer thickness (Fig. 6), outer wall position (Fig. 7), inner wall position

(Fig. 8), particle energy (Fig. 9), and azimuthal mode number (Fig. 10). Some

remarks on each case follow.

In the case of varying layer thickness with the maximum density fixed

(Fig. 6) two effects are competing; these are the basic v dependence of the
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, growth rate versus the stabilizing effect of finite thickness 3 0 (effectively,

i
•  finite frequency spread). The finite thickness effect is clearly second order

in (r/R) and is not shown explicitly in Eq. (31) but it is included in all

plotted data of Figs. 5 - 10; the second order term is given explicitly in the

following section. In the examples we have studied, finite thickness effects

have been small and have not been effective in stabilizing the instability.

In Fig. 7 the effect of outer wall position is illustrated. As the wall

is moved in from its base case location at 2.2m the growth rate is observed to

increase dramatically for a while, then to fall off. The reason for the

increase is the approach to synchronism of particle motion with a cavity

vacuum mode, that is, w - two - wv where v is a solution to b+ + b_ - 0;

under this synchronous condition the cavity mode fields act to enhance those

established by the dynamical charge bunching due to the negative mass effect.

This synchronous case has been given its own name, the cyclotron maser

- instability, and is put to enormous practical use in the gyrotron family of

* microwave devices.1 7 While in Figs. 5 - 10 we have consistently evaluated

b+ and b- at w - 1w°, near a zero of b+ + b- this is clearly inadequate and

- Eq. (31) should be solved as a cubic polynomial. Empirically we find that

evaluating b+ + b- at w - w0 is adequate when b+ + b- > i.

As the outer wall is moved further inward, past the synchronous point the

- growth rate in Fig. 7 drops as b+ + b_ changes sign. This drop is

- attributable to a "shorting out" of the azimuthal field Ele as the wall

approaches the edge of the layer. An identical phenomenon is seen as the

inner wall is moved outward, Fig. 8. Use of an inductive impedance (b+ + b

.. <0) to stabilize the negative mass instability has been proposed by Briggs and

Neil.3 2 We remark that in Fig. 8 no synchronous case is encountered for the

parameters considered, as the inner wall is moved.
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The decrease of growth rate with increasing kinetic energy is documented

*" in Fig. 9. The basic reason for this decrease is just the relativistic mass

* increase: the azimuthal response of a particle to the perturbed field E 1 is
%-l

reduced by a factor yo , for large yo. No synchronous cases are encountered
%0

over the range of y considered.

In Fig. 10 we have plotted growth rate versus azimuthal mode number 1.

Agreement is good between the dispersion relation, Eq. (31), and the numerical

solution; near synchronous cases occur for I - 5 and 9. Though predicted

growth rates are rather large, for the high f modes, these should in practice

be subject to stabilization by the effects of finite betatron oscillations

which we have neglected in this treatment. In any event we expect the

dispersion relation, Eq. (31), to begin to break down for short wavelengths,

i.e. LX/R 0(1), or azimuthal wavelengths on the order of the layer

thickness. A WKB treatment of Eq. (14) carried out for this case yields an

eigenvalue condition, the numerical solution to which would appear to require

more effort than a direct numerical solution of Eq. (14) itself.

Finally, we report that in the initial phase of our investigation, we

attempted to derive the dispersion relationship by constructing a quadratic

form for the differential equation (14), under the assumption that * = rE1 is

approximately constant across the E-layer. The latter assumption has been

widely used and has been considered valid 9 - II , 8 for a thin relativistic

electron beam. However, this line of investigation led to an incorrect
2 2

dispersion relationship if w 2AI 0(1), even to the lowest order in r/R. In
p 0

other words, to account correctly for the DC self fields in the present

Eulerian description, the tangential AC electric field should not be assumed

constant across the E-layer, regardless of the thickness. On the other hand,

our dispersion relationship Eq. (31) correctly accounts for the self fields,
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and is valid for arbitrary beam energy, and arbitrary combination of Eo and

Bo, as already stressed.

IV. Residual Growth: The Diocotron Instability

Sufficiently close to the "zero mass" points h - - /2, h. .,

Eq. (31) begins to be dominated by the neglected terms of order (T/R) . We

have already observed this phenomenon near the point h = - B0/2 in Fig 4. In

this section we discuss the point h * , which extreme is reached in the

planar limit: r + -, I + -, 1/r s k finite. We remark that the vanishing of

the negative mass growth rate in the planar limit, a feature of Eq. (31) and

clearly expected on physical grounds, has not previously been demonstrated

analytically, to the authors' knowledge.

The second order term in Eq. (31) is given, in complete generality,

by (XT/R)2 w2A where
B0

6 21 2 2(2 (+h)2)

4y (+h) (+y h 2 2
0 0

+2&'4 ( 2 + 2h) 2 -Y(1+yoh 2)(82 + 2h) 2 }

(I ) b+ b-)1 2  
(36)2 2(1 + yo 2) +b

0O 0

As it stands A includes both the diocotron instability (Q2 terms) and the

finite thickness stabilization effect3 0 (E0 term) referred to above. The last

term of Eq. (36) contains wall boundary effects; specifically we may recover

the stabilization at the diocotron mode due to contact of the layer with

perfectly conducting walls,6 as well as the destabilizing effects of finite

vall conductivity.3 4 "3 7 If we assume that the walls are many wavelengths away
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and that the fields are electrostatic then, in the planar limit, b* - 1

Taking, then, the planar limit, hw o - eio/(my3 ) - /Yo, only the first

2 term in Eq. (36) survives and we recover the classical result 4 for the

growth rate of the diocotron mode

.m(w) - Ik yTV/21 (37)
!y%

where the velocity shear v" - w2 /(W y 2C Of course Eq. (37) may be obtained
0 p c0

by much simpler methods than those employed here; our point is only that it is

," recoverable from the present formalism. Note that the dependence on the line

density, v, of the diocotron growth rate is just v ; for the (non-synchronous)

negative mass Instability the dependence is v1/2 " for the synchronous case it

is V

The relationship between the diocotron and negative mass instabilities

has been discussed by Neil and Heckrotte
3 8 and by Lau.1 8 Mostrom and Jones 39

have recently examined the electrostatic case, including the effects of shear

in vz  Davidson and Tsang2 9 have reported analytical and numerical results in

cylindrical geometry.

V. The Transverse Mode

An electron moving in a field satisfying Eq. (25) where Re(w) is a vacuum

guide mode may be shown to be acted upon by a nearly constant electric field,

when the motion is averaged over its gyro-orbit. The particle therefore
*1

experiences an t x I drift transversely, toward the wall, which motion brings
-I,

the particle to experience yet a stronger electric field. A net transfer of

energy from (to) the particles may be shown to result for the - (+) sign

resonance of Eq. (25). This mechanism of wave growth has been used to explain
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*. the operation of the peniotron oscillator.2 5

In the planar limit of the previous section, the resonance condition for

the transverse mode, Eq. (23), becomes yo(w- kyvo) = * wc, which is the vell-

studied mode of planar magnetron tube theory.1-7,3 3 ,34 The factor h, [Eq.

(5)], thus again appears, as it did in Eq. (31), as a measure of the

planarity" of the configuration.

A dispersion relation for the transverse mode may also be obtained from

Eq. (30). Keeping the most important terms we have, approximately

(b T 1 1 1.b+ + b) -7-b q) ( + q) O (38)
0 

+

where, near the zeroes of A

2_ 2 2 2

o 2.2l_ 02  -2 (39)

p oto%

to 0 (1l+h) (0
-
2 W
0 o

22 1+ 39

' where a2  1 + y2 h . Equation (38), using Eqs. (39) and (40), agrees with
0

• .Eq. (39) of Briggs and Neill0 for h - 0, to leading order in E.

Clearly there are no unstable roots of Eq. (38) near the (simple) zeroes

S.of A unless either one of these nearly coincides with a zero of b+ + b

* (a guide mode cutoff frequency) or b+ or b- contains an imaginary part, due to

finite wall resistivity for example (see Appendix B). Thus the transverse

mode (for small h) depends crucially on the interaction of the electrons with

their external surroundings, unlike the negative mass and diocotron

instabilities, the mechanisms of which operate in a manner that Is insensitive

*" to boundary conditions on the fields at distant walls. In the synchronous
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7- 7 - 7-

case, with perfectly conducting walls the predicted scaling of the growth rate
1/2

of the transverse mode with v is v 1 The dependence of the real part of the

freqLency of the mode on an externally applied radial DC electric field may

prove useful in some circumstances.

The peniotron interaction is essentially non-relativistic. It relies

heavily on the spatial inhomogeneity of the perturbed wave fields. In

contrast, for longitudinal modes, the spatial inhomogeneity of the unperturbed

motion (i.e. shear) is far more important. Both the transverse and

longitudinal modes can be used to convert the rotational energy of the

electrons to rf waves efficiently, however.

In the planar limit Eq. (38) continues to predict stability in the

absence of a resistive wall yet it is well-known1-5 that inclusion of a

resonant layer satisfying y0(w - ky v ) - * w in the beam leads to wave

growth. The resolution of this contradiction lies in the failure of the

Taylor series solution to Eq. (14), from which Eq. (38) was obtained; the

resulting growth rate is non-analytic in and one must resort to numerical

or other methods7 to solve the eigenvalue problem.

F,
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VI. Summary

In this paper we have attempted a general treatment of the linear

stability problem for laminar electron flow in cylindrical geometry. The

basic equilibrium state has been taken to be maintained by radial electric

and/or axial magnetic fields (Eq. (1)). No azimuthal magnetic field nor any

axial electron motion have been included in the equilibrium state. The linear

stability problem for azimuthal and radial perturbations has been formulated

exactly, fully relativistically and fully electromagnetically, including all

effects of self fields. The stability problem reduces to an eigenvalue

problem for the frequency w, given the azimuthal mode number, I (Eq. (14),

with associated boundary conditions).

Our efforts have been focused on the longitudinal mode (Eq. (22)), for

thin beams, which is of considerable importance in accelerator and microwave

device research. We have obtained, and favorably compared to a numerical

solution of the eigenvalue problem, a dispersion relation in the thin beam

limit (Eq. (31)) which applies in complete generality to the longitudinal mode

and which reproduces all classical results in appropriate limits. Some

interesting differences among equilibria regarding the negative mass

instability have been pointed out; namely we have found a simple way either to.

stabilize or to maximize the growth of this mode. This finding might have

practical consequences In accelerator or microwave tube design.

The longitudinal mode, w - wO, encompasses the negative mass, electron

cyclotron maser, and diocotron instabilities. The negative mass and electron

cyclotron maser effects are unique to cylindrical geometry; they are

fundamentally relativistic in nature when the motion is supported solely by a

magnetic field. They are even more pronounced, especially for low energy

beams, if the equilibrium rotation is supported solely by a radial electric

16-25
* . . .............................. ..............-.. °-'.----------."" ""'''"%" / '' " "" : .. . .. - . . .... .... _ - * . *- "* -* " -" *2 ."' ' '' ' '" '\"/ " . * " *: * N .. " ....



field. In planar geometry both of these instabilities are absent sad only the

residual diocotron instability remains which itself may be stabilized by

placing the layer in contact with a conducting wall.
6

The transverse mode, w-Ltw o - a (a is defined following Eq. (40)) has

been used to explain the operation of the peniotron device. When the geometry

is cylindrical (lyohi<<l) this mode is stable unless the electron motion is

synchronous with a cavity mode and/or resistive walls are present. In the

planar limit ao+0 c/yo and we identify this mode as the Doppler shifted

cyclotron resonance considered by Bunemant"5 and others1 ,6 ,7'3 3 in studies of

magnetron operation. This mode is the dominant unstable mode for planar, high

density laminar flow.

Finally we remark that the singularities defined by Eq. (24), which we

have not examined here, may be worth some additional study; however we note

that in both the vacuum case, 3 0  0 0, and in the case of planar BrIllouin

flow,1 2, 5, 3 3 W p , the singularity, Eq. (24), is removable.
p
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Appendix A

Technique for Numerical Solution of

Equilibrium Problem

In this Appendix we describe a simple technique based on Newton's method

which we have used to solve a certain eigenvalue problem associated with the

calculation of laminar E-layer equilibria. Given the electric field which is

trivially solved for, having specified the density profile and potential on

* one wall, we must find the momentum profile, u(r) and the field B (r) subject

to the constraint of specified total flux Eq. (7). The total flux might be

specified in an experiment in which a beam is injected and contained in a

*chamber for less than a magnetic diffusion time.

Let us cast the problem in terms of the dimensionless fields, aE and a

defined in the text following Eq. (6). The problem then is to find u(r) and

So B(r) subject to

b
f dr c a F specified constant (A-1)

a

where u and aB satisfy

lEY2 -Y2

u.+h ] (A-2)

2
1 UlWp

ri aB) -2 u (A-3)

c

: u2 (2 1)/2+

u2 - +1) + aBU (A-4)

for rlCrr 2. Equation (A-2) guarantees that if u(rl) satisfies Eq. (A-4) then

* u(r) will do so for all r. The algorithm proceeds as follows: An initial

guess Is made for a (r1) using the value of the externally applied B field,
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say. Using the known value of oE(r,) the roots (two, in general) of Eq. (A-4)

are found and the one corresponding to the equilibrium of interest Is chosen.

Equations (A-2) and (A-3) are then integrated and the difference

b ,

J dr a F D (A-5)
a

is calculated. aB(rl) is then adjusted according to2B:1

D
a B,n+l aB,n - b 3c- (r) (A-6)

Jdr-a "(r)
a B,n 1

where the subscript n denotes an iteration number. The loop is stopped once

D* is less than some specified tolerance.

It remains only to describe the evaluation of the denominator in Eq.

(A-6): The dependence of aB(r) on its initial condition at r1 is found during

the integration of Eqs. (A-2) and (A-3) by simultaneously integrating the

" equations for aaB(r)/fB(rl) and au(r)/3aB(rl) which are simply obtained by

explicitly differentiating Eqs. (A-2) and (A-3) with respect to aB(r1). The

initial condition au(r1)/a B(rI) is obtained from Eq. (A-4).
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Appendix B

Evaluation of the TE Wave Admittances

In this Appendix the normalized admittances b referred to in the text in

Eqs. (21a,b) are given for the geometry of Fig. 1; the toroidal and planar

cases are also discussed.

In the vacuum regions a<r<r I and r2<r<b the wave equation Eq. (14) is

d r______

dr d + 0  (B-l)

2
.. C

the general solution to which is

. " x [CiJ(x) + C2¥Y(x)] (B-2)

where x = wr/c, J and Y I are the standard Bessel functions, C1 and C2 are

constants, and in this Appendix a prime will denote d-. Note that the
dx

"singularities" at x2 . 1 2 in Eq. (B-I) are only apparent, not real, i.e. * is
analytic at these points. The other vacuum fields are

" it d4>
E Ir x2_ 2 d- , (B-3)

"" Bz - Elf (B-4)

Using the definitions in the text Eqs. (21a,b), It follows that b may be

generally written

' C1+JI(x2) +
b [ +] (B-5a)

2 C+
1 Jj(x2) +C 2+Y(x2 )
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b - 1 2  (B-Sb)

X C J-(x 1) + C2 Yx(x1 )

where x, 2 -  /r2Ic.

The ratios CI+/C2
+ and C1-/C2- are determined by the boundary conditions

at r-b and r-a respectively. Some special cases of interest are:

1. Perfectly conducting wall at r=rw: (rw= a or b)

CI/C-2 -Yi (xw)/J; (xw ) (B-6)

2. Wall with (complex) dielectric c(w):

Tx w ) - (C/Co)YI(xw) d lnZ(y)
/C I (B-7)

1/ xw) _ (C/Co)JI(xw )dlnZ(y)
o dy

where C is the surface impedance, (u/c) I/ 2, o - 376.7l,

1/2
y r= r , fiW (C)1/ , Z(y) = J t(y) for inner wall,

H (1)(y) for outer wall where H (1) is the Hankel
I I

function. c and V refer to the wall material.

3. No inner wall:

C 2 0 (B-8)

4. No outer wall:

C- i (B-9)
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.

.

5. Electrostatic limit; perfectly conducting walls at r-a,b:

B++I B +1

b+ b_ - (B-b1)

where B+ = (b/r2 )2 and B (rl/a) 2. Note that b* > 0.

6. Planar limit ( r-, 1+-; tI/rky* b-a, b-rl, b-r2 , r2-rl, all

remain finite); perfectly conducting walls:

b+ - (ky /c) cot [Q(r -a)]  (3-II)

b =- (k /a) cot [i(b-r 2)) (B-12)
y2)

where a - ( 2 /c2- kY)112 , The planar limit of (B-10) is

just the electrostatic limit of (B-11) and (B-12), as

expected, in which case

b+ M coth [k y(b-r2)] (B-13)

b- - coth [k (rI-a)). (B-14)

When a wall is resistive the resulting dissipation is represented by an

imaginary part in the corresponding admittance bi . (In Eq. (B-7) c(W)-i/w

for a good conductor of conductivity a.) That such dissipation can lead to

disruptive beam instabilities, even for a "positive mass" beam, has been known

since the pioneering work of Neil and Sessler 35 and Laslett, Neil, and

Sessler.3 6 It is in fact these resistive modes, rather than the

(fundamentally dynamical) negative mass instability which are thought
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ultimately to limit the beam current in cyclic electron accelerators.

If a wall is not smooth but contains some structures (cavities, fins,

etc.) a common practice Is to calculate an approximate value for the

admittance and to use it as a boundary condition for some approximation to Eq.

(14) in the text. In this case however the problem is not being treated fully

self consistently since the equilibrium of Section II would not be strictly

correct, i.e., the correct equilibrium would no longer have azimuthal symmetry

(and would be much harder to calculate).

For the case of a perfectly conducting wall we have plotted in Figs.

B-1,2,3,4 the quantity b+ + b evaluated for x1  x2  to 0ofor various values

of E = mc2(yo-l), assuming a thin layer. It is this quantity, b++ b_, which

enters the dispersion relation for the longitudinal mode discussed in the

text.

For a toroidal (accelerator) geometry, the dispersion relation Eq. (31)

is expected to be replaced by

A 2 - gL2 (2v/yo)(c 2/R 2)(mc 2/W )(OW /c)ext (B-15)

where (3wo/30)ext denotes the derivative of the circulation frequency with

respect to total particle energy evaluated as if the particle were acted upon

only by the external electric and magnetic fields. In Eq. (B-15), we have

identified the geometric factor g of refs. [8,11] with 1/(IC (b+ + b-)), as

pointed out in ref. 10. Note that the dispersion relationship (B-15) Includes

self field effects and that g is always positive for toroidal geometry (with

smooth, perfectly conducting walls).
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Figure Captions

Fig. 1. Model of an E-layer. The layer, of infinite extent in z (in and

out of the page), occupies the region rI c r < r2 between the walls

of a coaxial guide at r-a and r-b. The electrons, supported by an

electric field E (r)r and a magnetic field B (r)z, move in concentric

circles in the equilibrium state, either clockwise or

counterclockwise depending on the equilibrium type.

* Fig. 2. The 0 E - 
0B plane. The number and type of solutions to the

equation of radial force balance (6) are shown in each region and on

the boundaries between regions. A root is labeled + or - if it

corresponds to clockwise or counterclockwise rotation respectively as

one looks in the direction of 1 00

Fig. 3. Plot of the dimensionless "azimuthal mass" M versus the

dimensionless equilibrium electric field, h. The actual plot shown

is for the case yo 1.5 but all axis labels are expressed generally

in terms of y or 00.

* Fig. 4. Normalized growth rate for the negative mass instability versus h

for the case a = 0.6m, b - 2.6m, R - 1.0m, T/R - 0.02,

YO W 1.5, £ - 1. A solid curve indicates data obtained from a

numerical solution of Eq. (14); the dashed line is a plot of Eq.

(31). The upper pair of curves is for v/y - 7.88 x 10

1.42; the lower pair is for v/yo 1.57 x 10 , 0.28.
10
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Fig. 5. Normalized growth rate for the negative mass instability

versus v/y for the "base case" parameters: a - 0.5m, b - 2.2m,

r - 0.99m, r2 - 1.IOlm, yo 3, 1 - 1. A solid curve denotes data

obtained from a numerical solution of the eigenvalue problem; a

dashed curve denotes data from the dispersion relation, Eq. (31).

Fig. 6. Normalized growth rate for the negative mass instability versus

layer thickness. All parameters take their base case values, (see

text) except that the peak density in the parabolic profile

is 107 /cc.

- Fig. 7. Normalized growth rate for the negative mass instability versus

outer wall position. All parameters take their base case values.

(See text.) Near synchronous conditions, £twom v where wv is a

waveguide mode satisfying b+ + b- - 0, the negative mass instability

is strongly enhanced and Eq. (31) should be solved as a cubic

polynomial. The synchronous or enhanced negative mass instability is

often called the cyclotron maser Instability.

Fig. 8. Normalized growth rate for the negative mass instability versus

inner wall position. All parameters take their base case values.

(See text.)

Fig. 9. Normalized growth rate for the negative mass instability

versus yo. All parameters take their base case values, (see text)

except that the peak density in the parabolic profile is 108/cc.
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Fig. 10. Normalized growth rate for the negative mass instability versus

azimuthal mode number I. All parameters take their base case

values. (See text.) A + denotes a result from Eq. (31) and

an x denotes a result from a numerical solution of the eigenvaiue

problem.

Fig. B-i. Normalized admittances vs. outer wall position for various inner

2
Fiall po. sit ions for bu foan mc (Y -1) 5 ke.

2
Fig. B-2. As in Fig. B-i but for mc (y -1) 405 keV.

Fig. B-4. As in Fig. B-1 but for mc. (y -1) 300 keV. The zeroes of b+ + b-.

correspond to waveguide cutoff frequencies.
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APPENDIX C

Program ASTRON
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-,F. VV Z. . ..77. . . . . . . .-

Program ASTRON

Input data file: FOR015.DAT (free format)

All quantities in MKS units

100 ... : Label

200 a,b : Inner, outer cylinder radii

300 rI , r2  : Inner, outer beam radii

400 n00, pwr : Peak number density, power (Note 1)

500 00 (b), B : Bias potential at r = b; Applied B field

600 KBR : (+l,-l) = (greater, lesser) of two roots
of eqn. of motion

700 E1 , E 2  : Error allowed in calculating U(r1 ); H0 (r1 )

800 Il : If = 1, write equilibrium quantities
to file FOR02O.DAT

900 IEV : (0,1) = (stop, continue) after calculation
of equilibrium

1000 .: Label

1100 ZW,L : Initial guess for w/w(r1 ), azimuthal
mode number

1200 KTI, KT2, KT3 : Number of calls to integration package
in (a-*r1) , (rI-+r2) , (r2 -b) respectively

1300 TOL, C3  : Integration error control; error control
for eigenvalue convergence test

1400 12, 13 : 12 = 1 =>Write eigenfunction to file
FOR022.DAT

13 = 1 =>Write (w-kw0 (r))/w 0 (rI) and d to

file FOR024.DAT.

Note 1: Functional form of density is taken as

[4 (r2-r) (r-rI) 1 pwr
00n = noo (r2-r1 )2 J
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Output data files: (All binary)

Equilibrium quantities:

FOR02O.DAT: r, Eo , H, u, E, h, mc2w /(wo ') for r =r to r2.0 0 0 0 1 2

Eigenfunction:

FOR022.DAT: r, Re(rEe1), Ir(rE61 ) for r = a to b.

Singularity locations:

FOR024.DAT: r, Re ((w-kw 0(r))/w (r )), Re(d), Ira(d)
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*C COMMON CODE FOR~ F-ROGRAM ASTRON

IMPLICIT COMPLEX*16 Z
PAkAMETER (NI =200)

C NI MUST PE EVEN
COMMON/OEM/A, Pc2,R, .R2.RI

* -COMMN/CNTRL/N.DR.0R, 0D REPSI .EF'2, 1EV
COMNON/DEN/r'ENO. FWR. 722,00
COMMON/E'1AS/F'rIOE', oo
COMMON/CONS7/OE.EM.EP*SO.XMUO.C.OEMZZ
COMMON/FIELDS/EO(O:NU .H0(0tNl)
COMMON /PART IU~L (0: N4 1)
COMMON/DVmIM/DM(0:NI)
COMMON INORM/BO I, BO 1o: 'RHO1 IRHO:. LiRHOS. DRHID
COMMON /CNTRL2/ 11 VT2.IT73,TOL,EPS'-
COMMON/EV/7W'EL .EL2
COMMON/ADIMI 15"' ZLUS. ZE4MINUS
COMMON/COEF iziiw! (4,4)
COMMON/EGUIL /X1(0: NI),HG (0:Ni) ,WOE (0: Ni)
COMMON/OUTS/U. 12,13
DATA OE,EM.EFS0.XMUO.C

1 /l.60231'-I9.9.- 109511-2l.e. E543[i-l 1:.56641'-7,:-.9r91'e8/
DATA DEMCZ/ 1.95711i-b/
DIATA ZMAI/Io*(0t'0,O0t'Cn/

iss
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- . -5 .; -~7'v . -7.7 .7 - .- '-' 7, '.. 1)..07W

J, Fi tr *.fo , alt or.for
F* JGRAM ASTRON
IK:LU~l' 'A5VRONCO~l..FOFR
REWIND 20

Ck-L INPUTI
CALL ECAL
CALL HVCAL
F'RINTIO

t0 FDRIATC/,* ECIUILIiRIUM CALCULAlION COMF-LETEl'./)
P'OIUCO) /DS0RTCU(0*.$2+I.DO0
PI02=E'O1 s:
G00=DSORT (UCN/2)s2#..DO)
WORi=EOI SC/Rl
DDIOO NN=O,N
R=RI+rDFLOAT (NN) *DA
U2=U CNN) *42
GMA=t'SORT (U2+ 1. E10)
)()(NN)=0EMZ2E'E(F)$R$GMA/U2
H5(NN)=0EMC2SEO CNN) SR/U2
WOE'CNt)=C$U(NN) /(Gti4F:3WOR1)
IF CIl.EG. )THEN
H=HG CNN) /GMA
G1MA2=GMA* *2
GrIA4=GMAZSS12
EFETA2=1 .El0-I.Er'0MA2
rDWDE=- (EcETA:*-:.rO*)I NN4) /O'1.#4/

I GMA*EETA2*1(.DO-XINN)/GM+HNN4)322
WFITE(20)SNGL CR) .SNjL (EOCNN)) ,SrJGOL CM~J) ) .SNGL (UNNJI))

ISNGL(X I (NNJ))SNGL (H) ,SNGL(DWIE)
ENIF

100 CONTINUE
X IAV=L'SI MP (4) 1 CRZ-RI1)
ENS=DSIMP(5) / R2-Ri)
FNORM=E'SIMP (6)
UAV=L'S I MF, C7) /FNORM
UZAV='S I MF (8) / FNORM'
WAV=DSIM'(9) /FNORM
WZAV=iS IMF, (10) /FNORM
XNUG=o. 5V0oeE012#oSZMF* ( I I/RZ212)
DELU=DSBORT (12.002 CU2AV-UAV** ) ) /UAV
DELW=DSDRT C12. DOS CW2AV-WAVS*2))I/WAV
GAV=DSORT (0. t'0+UAV* $2)
PRINTZ O, XNUG, XIAV.ENS.UAV,GAV.DELU,IE..WORI

-0 FORMAT(* NU/GAMMA=',IFE'10.3,/.
IAVERAGE VALUE OF (PLASMA FREO/CIRC FRED) S$2=' OPFO. 4, /
:'AVERAGE VALUE OF SELF FIELD INDSE) E' F.4/
3 DENSITY WEIGHTED AVERAGE OF STS ~ FO4/

4 CCORRESPONt'INC GAMA= Fo. 4, ) 1,
5 FRACTIO1NAL LINEAR MOMENTUM SPREAr' FlO.4,/.
6 FRACTIZONAL ANGULA: FREDUENCY SFREAl-,*F 10.4,,.
7 CIRCULATION FRED AT R=R1=',IFra0.3,' RAD/SEC')

CURRL=HOCD) -HO CN)
PRINT21.*CURRL

21 FORMAT ( CURRENT PER UNIT LENGTH=',* lFriO,1. ,' AIM', I)
IF(IEV.NE. 1)GOT0200
CALL INFUT2
CALL SHOOTER
ZBPM=ZBFLUS+Z4MI NUE
PRINT3O. ZBiFLUS. zEcmNNLS. ZE'PM

30 FORMAT(//,' F4=.I2':... F- =.t24
, SUM='.2t'12.4./)
1FC13.E0. 1)THEN
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* D0110 NN=O.N
GMA=DSOF-.T (U (NtN) 6 24 1.DO)
EEYU CNN) /GMA
ZDM=ZW-EL*W3~ (NW!
ZOMW=ZOPI/WOE CNN)
RHO= I1. E'O+EFLOAT CNN) &DEIRHE)
FRRHO*R I
ZT 1= I. DO+HG(NN) S S22DMWS S2
ZT2=ZW* ZW*RHO*RHO*EC012-EL2
ZT3=EEISEO1 SZW*RHO-EL
ZE,=ZT1*ZT2+XI CNW) 22T3**2

S2=DREAL CZDM)
S3=rCREAL (ZD)

WRITE (24)51 .S2.SZ., 4

110 CONTINUE
EN: IF

200 COT IU
STOP'
ENE,
SUB~ROUITINE INF UT I
INCLUE 'ASTRONCOM. FOF'
READ ('- I )~ ~
READi C -* )AP
R'EAL, 1M, *)R P* RZ
T22= C R2-R I ) /-. LDO) 9 *2
D'R= CR2-RI) /E'FLOAT (N)
DR2= DRf/2. DO
REAr(is. *)VENOPWR
READ(C15. *)PHIOE4,DO0
READC05, K)BR
READ (25, )EPSl. .EP2
R'EADt (15 S) 11
REAL, CI1..*) I E'.
RETURN
END
SUBROUTINE ECAL
INCLUDE 'ASTRONCOM. FOR'
ELBA=E'LOG CE'/A)
Cl=(HI0EB+DSIM'(l) )/ELE'A

P-0. DtO

LiOlO NN=I.N

10 EOCNN)=-(Cl+F't/P
RETURN
END'
SUB'ROUTINE HVCAL
INCLUDE 'ASTRONCOM. FOR'
AAE=OE*EO(0 *RI/ CEM*C*C)

i'2A2=b**2-A12
AAH1=OEE'OOaO.5'O* (RI+R!)/I EM*C)
EETAl=AAH1/'ScRTCl .DO+AAM1S*2)
HOOPI=E0O/XIUD
HOM=HOOM+CSE'T.111'SIMF (C) /EK2AZ
LH=O

I CONTINUE
FR INT2. HO!M

2 FORMATC' HOM.= ',I1IO.3)
AAH-=)E*XMJOVH0i*Rl/' EM*C)
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C~ALL UROOTSCUf,AAL.AAHW
U C0 UM

C INTEGkATiON OF U E0tUgtION
0020 NN=O.N-1
=U CNN)

R=R1+DFLOAT CNN) SDR
E=EO (NN)
F I=UFRM CR. V E)
E=CEO(NN).EOCNN.I) )/2.t'0
F~l=UF*tRMk-ttR2, Y+liR:*F 1 .E)
F3>URM(A+L'R2 Y+DR2Fj. E)
E=EOi NN. 1)
F4=UPRM CR*DR. V+DR*F3. E)

20 U (NtJ41I) =VY4(F1I +:.rDI(F2+F 3) +F4) 6 ERf6. r0
C CALCULATION OF U ARRAY COMPLETEDJ
C CALCULATE XI ANFD I-5 ARRAY6

DOU 22 NN=O.N
R-.=FcI+[iPLDA1 (NN) *0lk
U2=LJ(NN) 2*2
OMA=EISORI (U2+ 1.1D0)
XI CNN) =OEMCZ*EL'EN CR) R*GMA,/UZ

2: HGCINJ) =OEMCZ*EOHWJ) SR/U:-
C CALCULATE SOLUTION FOR OVO/DHO-

GtlA=LVSOR1 (U (0)8S*2-+1.EDO)
L'N(O)=HOM*EXMU0R/EM*C*CMA*12O(mA+Nocon)

(1024 NN=0.N-1
OORO= OR 1
OORI=OOR CNN+1)

24 LM (NN.1I) =DM (NN) 'E XPF(0. 51O* (OORo00RI) S 1R)
FS=HOri/HOOM-DSIMPC2)/ CHO0MSDZ-A2)-1.D0
H0FS=H-OM/MOOM.C* S IMP (12)/ (NOONS BtC)

C ADJUST VALUE FOR HO-
HOMPJEW=HOM* (1. tIO-FS/HDFS)
IFCL'ABSCHOMNEW-HOt-D/HOrfl.LE.EPS2)00T030
LH=LHt1
IFCLH.GT.2O)STOF' 'HOM LOP CONY FAILURE'
HOM=HOMNEI4
GOT 01

30 CONTINUE
PRINTl5O.LH

1C FORMTC NVCAL... FINAL CONY NiZ ITERATIONS',/)
H0lD)=tH0MNEW
R=R1
('040 NN=1,N
YO=C*UCNtN-1)/ISO)RICU(NJ4-fl**2.1.D0)
VO1=CRIUC(NN) /ISORTCU(N4)*12+1.00)
V02= (VOtY0l) /Z. DO
HO(N-=H0CNN-1 )+EPSO*

2 VO2/(R.0R2) I 2LR2/3. ('0
R=R. DR

40 CON4TINUE
RETURN
END
FUNCTION. ('SIMP (J)
I NCLUDIE AS TRONCOM *FOR'

EVENS=0.D(0
LDO 101 NN=1.N-i.2
R=R1+DFLOAT CNN) StiR

101 Ot't'S=Ot'L'S1+F CJ.R)
('002 NN2Z,N-2.2
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RRIF.1DLOAT (NN)*DtR
102 EVENS=EVENS+F (J.R)

DS IMF-(F (J,dI) +F (.R)+4. DOODrS*.t' OS EVENS)SD/.1
RETURN
ENI'
F UNCT ION F(WJ.R)
INCLUDIE 'ASTRONCO.. FOR'
NN=JIDNNI (C(R-Ri) /DeR)
IF (J.GE.6100T0599
00700I00. 200. 300,400,500) ,J

100 CONTINUE
F=EL'EN (F,) $L'LOG (k/ki
GOTOI

-200 CONTINUE
V0.=C*UCNN) /DSORT (U(NN) $42+ 1.EO)
F=EOEN CR) * CRR-ESHSVO*EF'SO/R

300 CONTINUE
F=EDEN CR) *(RSR-bB) sEF'S0/R
GOTOl

400 CONTINUE
F=XI CNN)
GOT 0)

500 CONTINUE
F=XI (NN) / 1.10+4UC(NN) *$)
GOTOI

599 CONTINUE
IF(J.EO. 11)GOTOlIOO
IF(J.EO. 12)GOTO1200
F=O. rio
IF(C R. LE. Ri) .OR. CF.. GE. R2))G 0010
FF=R* C R2-R * CR-Ri) I *FWR
GOTO (600.700.gOO~qO0, 1001 J-5

600 CONTINUE
F=FF
00101

700 CONTINUE
F=FFIU CNN)

BO0 CONTINUE
F=FF* CU(N'N)N*Z)
G00101

900 CONTINUE
F=FF*W0E. NN)
GOTOl

1000 CONTINUE
F=FF* CWO9 CNN)**2)
00101

1100 CONTINUE
F=R*XI CNN)t( W0EP(NN) 8*21
00101

1200 CONTINUE
F= (R*R-E*E4) (-EF'SOS EDENC(R)/k) SIM (NN)

1 RETURN
END
FUNCTION4 EDEI4(R)
INCLUDE ASTRONO.FOR'

C CALCULATES -R1FRH0D/EF50
EL'EN=O. DO

IF ( k.LER) .R. (R [E.T ) :: [

* DrENS=L'Et40* (FRS SPF-wf)
EViEN=OE *F'*ENS/EF SZ)
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*~ I REURN
* ENTFY XIDLOGN(R,OAS,W011)

C CALCULATES XISDJLOGCDEN)/D)LOGCH)
X IDLOON=O. DO
IF ((M.LE.Rl ) .OR. (R.GE. R2) )00T02
FR= CR2-H) 8CR-Hi) /T22
FI-FRIS CPWR-I .LIO)
F'2=RS Hl+R2-2.DOSR /T22
F3= (WOI N/2)/buI ) 8*2
F4=000/GAi
X IDLOGN= XI (N /2)*F WR &I S F24F 3S*F 4

2 RETURN
END
SUBROUTINE UROOTSCUtI.AAE.AAN)

C CALCULATES ROOTS OF RADIAL FORCE BALANCE Eari
IMPLICIT FEAL*E(A-I-.D-Y)
IMPLICIT COMFLEX4)6 2
DlIMENSION Ad5),R(4).2(4)
COMM'ON4/CNTRL/N.DR.IDR2 .kBER,EPSl.EPS2', EV
F-R I N7 1,AAE, AAH

I FORMAT(' AAE= '.iP~lO.3./,' AAN= '.1F'DIO.3,/)

A (3)=AAHS*2-AAE**2
A (4)=0. LID
A(S) -AAES*2
CALL ZHFOLV(A.4,Z.IER)
PRINT 10.2

10 FORMAT(46XlFL'.11-3. 3X,IPDlO.s./)
C TEST ROOTS

NACCEPT=O
00100 K=1.4
IF (DADS (DIMAG (2 Cl.) ) . GE. E'SI) GOTDOO
U=EIREALCQ(0,))
E=DALS (U*U-AAE*SDRT (U*U41. .D0) -AAH*U)
IFCE.GE.EP'S1)GO TOIO
NACCEF'T=NACCEPT + 1
FPR1INTZO. U

20 FORMATC6X.iF'D1O.3)
H (NACCEPT) =U

2 00 CONTINUE
00T0(200,201.202,203,:Os). CNACCEFT.1)

* 00 PRINT3O
30 FOR'MAtTI' ND EU I L IBR IUM STATE E XI STS' ,1/

STOP
201 F'FdNTZl
:31 FORMAT C// WARN4ING...O0NLY ONE EQUILIBRIUM S'TATE EkISTS'.//)

4 UM=R (1)
G0T0300

202 IF CKBR. ED.I) UM=LIMAX1I(R 0),R'(2)
IF0.&R. E.-1) UM=DMIN R () R (2)
GOT 0300

203 PR1NT33.NACCEPT
33 FOR'MATC/, ERROR. .. 11 D APPARENT EQUILIBRIUM STATES'/I

STOP
300 CONTINUE

OAM=DSORT CUM*82+I .00)
E'IN=S. 1105* (GAM-l.D0)
P'RINT 40, UM, DAM, E). IN

40 FORMATC' AT R=l'/' U= '.1FD10.3.3X.'GAMMA=
O PFB.3.3X. 'E' IN= '.XPDIO.3. * VOL-TS', I)

RETURN
ENrD
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FUNCTION UPRM(R.UU,E)
INCLUDE 'ASTRONCOM. FOR'
GMA=DSRT(UUSUU4 1* EO)
OMA2=OMAS 82
WP2=OESEIEN(R)/ CEMIGMASM)
WO=CSUU, (OMAIR)
W02=WOS 82
HHOEMCZSESR/ CUUSLUS*GMA)
UPRM=(UU/R81(.'O-(WF2/GMA2WO2)n--MA 'IHo/d1.lo+i)
RETURN
ENE'
REALSS FUNCTION OOR CNN)
INCLUDE 'ASTRONCOM. FOR'
GMA=L'SDR1(U(Nlj) *22.1.D0)
0M42=UmA$ I:
GMA4=OMA22
BETA2= I.D0-1.DE'/OMA2
H=HD(N4) /GMA

X=XI (NN)
R=R1I+DFLOAT (Nri) $DR
OOR= (I. EO-.tOI A2) 6 0.r11O-)XGM2-M2-H) H I

I+ (X S(3.DrO/Oti.A2- 1. 0O-4.LioSBETAZ*H)
2 4HR (MA4+4.DO*GMAZ-I.DiO-2.DOBETA.IbOM4SHl

3 / (OMA2S (HI1S*2))
OOR=OOR/:
RETURN
ENE,
SUBROUTINE INF'UT2
INCLUDE 'ASTRONCOM. FOR'
READi (15,.*)
RESOCIS. SiZW.L
EL=EiFLOAT (L)
EL2=ELS *2
READ'15,*)kTI, 'T2,) T3
DRHOI= (Ri-A) / aFLOAT dI13RI)
DRHO2= CR2-RI)/I(DFLOAT cT2 SRi)
DRNO3= (B-R2) / (OFLOAT fl TZ) SRI)
r'DRIO=r'R/RX
RZR1=RZ /Rl
RE AP(15, S) TDL .EFS
REAL('-.S 12. 72
RETURN
END
SUBROUTrINE SHOOTER
IMPLICIT REAS-B(A-H,O-R.T-Y)
IMPLICIT COMPtEXSIL Z
COMMON/OEOM/A.I.R1 .R2.R2Rl
COMMON/NPS-/BOI,~B012.'RHD1 .DRHOZ. ERHOS. EIERHO
CDIINON/CNTRL2/0, Tl1 .TZ..,T3. TOL, EFSS
COMMON /EV/ZW, EL. EL:
COMMON/ADMITS/ZBPLUS. ZEBINUS
DIMENSION V(B).UW(B,9)
EXTERNAL VPRM, STORE
FPkI NTS. JI [1141T (EL)

S FORMAT(//' LV CALCULATION4: L=' 13./)
LLO0
LZW'=O
PRINTIOC.ZWLZLJ

100 FORMAT(' ZW= '.Fr:..' ITERATION4 12
IF (LL.EO. 110070200
lF(LZW.CT7.I5,STOF 'LV LOOF, CONVEF:DENZE FAILUF-.E'
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10 VY0f =0. [O
V(3)= .EI0
RNO=A/RI
REWIND 22
CALL STORE (Y.RHO)
CALL STEPPER (8,V. RHOtVRHO1.Vl1. TOLbWW, vFRM, STORE-.100)
ZBMINUS=-ELSDCMFLX(V(3),Y(4))/DCMFLX(VCU).V(2))
RHO= 1. ['0
CALL STEPPER (8, VRHO, t'RHO2.IT.TOL,WWV'RM.SIORE,50)
ZBPLUS=EL*DCMPLX(V(3).Y(4))/DCMF*LX(V(1),v(2))
RHO =l2R I
CALL STEPPERC(E,YVRHO, VRHOZ,-I TSTOL,Ww vpRr,rTOF o

ZWNEW=ZW-ICMFL X (V (I) V (2) ) /EICMF'LX (.' (, 5) -V (6)
EREAL=DF:EAL (ZWNEW-Z') /EiREAiL (2w)
EIMAG-O. DO
IF (DAPS ('IMA (ZW)).GE. 1. 11-6) EIMAG=t]MAG (ZWNEW--ZW) DIAG ziv
IF ( LMAXI( tAE'S EREAL ) .DADSCE IMAG ) * LE. EPSZ LL=1
LZW=LZW4 1

ZW= Z14JEW

200 CONTINUE
RET URN
ENI'
SUB'ROUTINE t'IPRP(JX.RHO,V.1'V)
IMPLICIT REALSG(A-H.O-RT-V)
IMPLICIT COMF'LEX*16 2
COMMONICOEF/zMAT (4,4)
DIMENSION v(B),DY(9)
DIMENSION ZV(4).ZEIY(4)
['010 J=1.4

10 ZV(J)=DCMPLX(V(2*J-l).V(2*J))
CALL MATCAL (RHO)
D020 J=1,4
ZL'V d) =0.DO
D030 K=1,4

30 ZIV(J)CtIV(J)+ZMAT(J.V')$ZV(t
20 CON4TI NUE

['040 J=1.4
.JI=22J-1
J2=2*J
Elv (Ji)tIREAL (Z~lV CJ)

40 DtV(J2)=DIMAG(ZDVCJ))
RETURN
ENE,
SUBROUTINE MATCAL(RHO)
INCLUDE * ASTRONCOM. FOR'
Y(Y1.Y2.X1,DXX)=Y14(Y2-ICXI))
IF( (RHO.LE.1.00) .OR. (RHO. GE.R2RI) )60T0100
NN1-JIDINT ( (RHO- 1.1DO) /Dt'RHO)
NN2=NN 1.1
RHOI= NN I S DRHOt I .D0
XII-Y CX UNNI),.XICNN2).*RHO1. DDRHO. RHO)
W0E'I=Y (W0E (NN1 I.WOEN(NN2) ,RHO1.D, DRHO, RHO)
U I= Y(UC(NIJ1.UC(NN2) .RHOIDD'RHO. RHO)
6AM>! .t'0+uIS*:
GAM=DlSORT (GAM2)
PETAUI lOAM
HG I~ = (HE' NN) HG (NN.-) , RHO!I EDDRHZ. RHO)
H=HGI /OAM
F*02= 1. DO+H
ZOM=2W-EL RWOEI

* ZOmw.=ZOm/WOE'I
27 1=1. ['OHGIS *2-ZOMW$12
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ZbJRC=ZWSE'0l RNO
ZWRC2= ZURCI *2
2T2=ZUHC2-ELZ2
2T3=DETSZWRC-EL
ZI'D=ZT1SZTZ.XI I*Z73882
ZA=2T/Z'l
T=(1.DO-XI1/GAM2-N*GAM2)/(.'O4H)
VOF=T /OAM2
WOF'=VOP-1 .11
OArIP=T*E4ETS*2
HP=-XII/GAM2-48(3.Li0*GtMC-1.t'0)3V0F'
XIV=Xl&LOON(RHOFRi.DAYI.WOPI)
X IF=XY1I'-XI IS (0AMF.2. DO$*WF)
Zt'DF=2. 10* (OAM*SH* OGAMP*H.Hfl +WOP*IZW*2DMW/WO1 I) SZ T

1 +2.1O*ZTI*ZWRC2+X!P*ZT3S2
2 +2.DOSXII*ZT3*ZWRC*'ETS (I.D0.VOF)

ZI'ER=X IP V+ I It C-WOF-OAMF.HF/PG2- ZDiF/ 211t)
ZC1=(ZOrM/ZbJ-1.EI/GAM2)*ZLIER4".1I0*k!I*EET*2
ZC=ZW*F'02*ZC I/ (ZOV1*ZI'1

1 'X1I8(ZT2 -XIISE'ET*82)/(Zti*GAMC)
2 4 1.E'O

21i01W=-OMWZT2/WOBI4ZT1*ZWRC2/ZW
1 +XIISBET*E'01*RHO*ZT3

Z'1' W=21. 1'0* ZDi~ik-/ Z D1'
ZDAW=-2.DO*ZOMW/(WOBISZDtIO-ZA*ZDD'W
ZliDPW=2.t,*WOF* ZT2S (ZI.JZOM) /CWOt.I S S2)

1 +4.D0O*(OAM24* $(GAMP*I+HFI+I~WOPZWSZOMW/WOEI)*ZWRC2/ZW
2 +4.t'O*ZWRCZ*2'T1/ZW-4.t'OSZWRC2SZOMW/W1-I
3 *2.DOXXIZT3fSET*B0ISRNO
4 +2.t10 X II1* BET*6PO I1*RHOS (Y0F ..t' 0(2.10SBET S EbOI*ZW* RH0-EL)

ZDF*DWf (Zrir'P--ZEIIWZDI'F ,ZDI'
21'Ck.= -ELPWOE I 8PG2* ZC I / QZOM* ZOtQ 2 [0)

I -Zw*FPG2sZDC'DW*ZCI/ (ZQN* Zvl)
2+(ZbJ/ZDtl)* CFG2/ZEt')*(EL*WOBI*ZDER/(2W3*2)

2 -XIZ*(ZOI/ZW-.E'0/OAM)SZD'DW)
4 - XIISZ1ID1W* (772- X II*SBET * 02) /Q '1'80tAMZ
5 +XII*2.DOSZWRC2/(ZDO*GAM2sZW)

OOT0200
100 CONTINUE
C VACUUM'S COEFS

Z1'EL=RNO*RH0SO*B02*ZW*ZW-EL2
ZA=i.tDoC/ zDEL

ZE$.W= -ZA*2ZA$*2. 1'O*kHO*RNO*EBO0I1I' Z&.
ZC=1 .D0
Z1'lCbfrO. 1:O

200 CONTINUE
2MAT (I1,2) =1. tOf/ (ZA*RHO)
ZMAT (2,1) =-ZC/RHD
ZPIAT (3 2)=-ZIAW/ (ZA*ZA*RNO)
ZMAT(3.4)=ZMAT(1 .2)
ZP AT(4.1 )-ZIICW/RHO
ZMAT(4,31=ZM4T(2. I)
RETURN
END
SUBROUTINE STORE (V,RHO)
IMPLICIT REAL*6(A-HO-R.T-Y)
COMMON/GEOM/AP.Rl .R.,RR1
COMMONOUTS/Il, 12.12
D:IMENSIONJ %(8)
IF (IXN-.1IRETUR.N
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WRITE (22)SR.SYI ,9V2
RET7URN
ENE,
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FILMED

9-85

DTIC
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