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FINAL REPORT ON

THEORETICAL STUDIES OF TWO-DIMENSIONAL

EFFECTS IN FREE ELECTRON LASERS

During the nine-month period extending from February 1,

1984 through October 31, 1984, the following tasks were

undertaken:

I. The development of a two-dimensional (2-D) numerical

simulation FEL code which includes pass-to-pass electromagnetic

(EN) pulse evolution, frequency discrimination, wave diffrac-

tion, and transverse betatron motion of the electrons. This

effort represents the beginning of an attempt to obtain more

accurate simulations of realistic FEL configurations than can

be achieved with one-dimensional I-D analyses. The 2-D FEL

code was used to simulate the TRW and LANL experiments, and the

jproposed MSNW experiment. A steady state version of the code,

suitable for studying amplifiers (e.g., ETA and ATA) has been

developed but not yet tested for convergence of the mode

expansion under the large expected gains of these experiments.

II. The study of the operation of FELs in conjunction

with storage rings, using phase area displacement wigglers and

conventionally tapered wigglers with adiabatic electron trap-

ping, deceleration, and detrapping.
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I. 2-D SIMULATIONS

The main focus of the investigation was the 2-D FEL

simulations. The I-D FEL model is lacking in several

respects. 1  It neglects the transverse spatial variations of

the EM pulse, magnetic wiggler and electron beam micropulse,

and hence does not include the effects of EM pulse diffraction

radial detrapping and the transverse electron betatron motion

produced by the focusing fields of the wiggler. These effects

can modify the l-D results. They can influence not only the

growth of sideband instabilities, but also the efficiency of

electron trapping. Electron detrapping can become significant

when there is resonance coupling of the "bounce' motion of the

trapped electrons (in the FEL ponderomotive potential well)

with the transverse betatron motion. 2 These additional effects

are linked to the transverse spatial variations of the fields

of the EM pulse and wiggler and are present to some degree in

any FEL configuration. They can be properly described only by

a 2-D FEL model.

In the simulations described in this report, resonance

detrapping of electrons does not appear to be significant.

However, the importance of this resonance will be enhanced if

different focusing schemes (e.g., quadrupole focusing) are

employed. These will be incorporated into the code shortly.

I2
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A. Simulation Code

In formulating the 2-D FEL equations, the EM pulse is

represented as a superposition of cylindrically symmetric

Gaussian resonator modes of an optical cavity formed by two

spherical mirrors.3 (The generalization to three dimensions

is, in principle, trivial.) Each Gaussian mode is approximated

by a wave packet propagating in the z-direction, with amplitude

and phase varying slowly with time t and the longitudinal

spatial variable z. The magnetic wiggler is approximated by a

superposition of two plane-polarized wigglers, and this config-

uration is adopted to provide for focusing of the electrons

inside the wiggler. (No quadrupole focusing magnetic fields

are considered although such fields will be incorporated into

the code in the future.) A variable parameter wiggler is

modeled by introducing a constant accelerating electric field.

The transverse spatial variations of the wiggler field induce

transverse betatron motion of the electrons passing through it.

This transverse betatron motion is approximated as a simple

harmonic motion. The longitudinal electron motion can then be

reduced to a pair of coupled equations for the electron energy

and relative phase in the EM pulse, analogous to the "pendulum"

equation in the I-D limit. The analogous ponderomotive poten-

tial well depends on the transverse as well as the longitudinal

electron position and involves a sum over the Gaussian modes.

The temporal and spatial evolution of each Gaussian mode,

determined from Maxwell's equations, is similar in form to the
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1-D limit. The derivation of these equations are discussed in

Appendix A, Section II.

The FEL oscillator equations, incorporating multiple

reflections of the E14 pulse by the spherical mirrors, energy

losses on reflection at the mirrors, and frequency discrimina-

tion by passing the pulse through a band-pass filter, are

formulated by following the same procedure previously described

in the 1-D limit. 1 The only additional complication is the

relative phase shifts between the Gaussian modes which occur on

reflection.

The difference equations which approximate the FEL

equations are discussed in Appendix A, Section III. They are

correct to first order in the steplengths, and are adequate to

simulate FEL oscillators with modest peak current densities and

weakly tapered, short wigglers; for example, the FEL oscillator

experiments of TRW and LANL. The detailed simulation results

of the TRW and LANL experiment are presented in Appendix A,

Section IV.

These difference equations are, however, not

sufficiently accurate for practical steplengths to simulate

the MSNW experiment and have recently been modified to be

correct to second order in the steplengths by making use of

the centered difference approximation. The MSNW FEL experiment

involves higher peak current densities, stronger wiggler taper,

and a longer wiggler. The details of this improved numerical

_4
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algorithm will be reported elsewhere. The detailed simulation

results of the MSNW experiment is presented in Appendix B.

Due to computer time constraints, the electron

micropulses used in the simulations were only two to three

slippage lengths and hence were shorter than the experi-

mental lengths. Longer micropulses are planned for future

investigations.

The principal results of these simulations may be

summarized as follows:

B. TRW FEL Simulation

In the TRW experiment, the peak current is 2.5 amp, the

electron energy 66 MeV, the wiggler taper 1%, and the wave-

length of the EM pulse 1.57 microns. A notable feature of this

experiment is the narrow single peaked spectrum of the Em pulse

at saturation, the full width Aw at half maximum being

AW/Ws 0.13%, where ws is the frequency of the EM pulse.

The FEL simulations are in qualitative agreement with

this experimental result. The EM pulse shape is smooth, there

is no evidence of any unstable sideband activity, and the fre-

quency spectrum at saturation consists of a single narrow peak.

The simulation spectral width AwSm is, however, smaller in

magnitude Awsim/Ws 0.05%.

The somewhat wider experimental width could be due to

time averaging over changing parameters. The essential feature

5
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of our results is that for these low currents and tapers no

sidebands are predicted or observed.

The effective fraction of trapped electrons i.- 33% and

the average output power is

Poutput - 0.47 megawatts.

While this output is in reasonable agreement with the

experiment, it should be noted that for 2% taper we predict a

near doubling of output, which was not observed perhaps due to

lack of time for optimizing the experiment.

C. LANL FEL Experiment

In the LANL experiment, the peak current is 25 or

80 amps for different runs, the electron energy 21 MeV,

the wiggler taper 6%, and the wavelength of the EM pulse

10 microns.

The linear gain per pass in the simulation is negligibly

small when the peak current is 25 amps, and -5% when the peak

current is 80 amps.

The EX pulse shape at saturation is not smooth. It is

characterized by several maxima and minima. At the same time,

the frequency spectrum of the pulse exhibits appreciable growth

of sideband frequencies. This pulse distortion is due to the

growth of unstable sideband modes, and has previously been

observed in 1-D FEL simulations. The growth of sideband modes

16
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can be suppressed by frequency discrimination. 1 However, such

frequency discriminated simulations with the LANL parameters

have not yet been done with the 2-D simulation code, although

they are planned for future investigations.

Despite the pulse distortion, the effective electron

trapping fraction is still appreciable, -40% at saturation.

The average output power is

Poutput> 21 megawatts.

The condition for resonance coupling of the electron

"bounce" motion to the betatron motion is satisfied at an

intermediate stage of the pulse evolution, but no significant

resonance detrapping has been observed. However, it should be

noted that the radial electron focusing method employed in the

code is not that used in the experiment.

D. MSNW FEL Simulation

In the proposed MSNW experiment, the peak current is

200 amps, the electron energy is 120 ReV, the wiggler taper is

12.5%, and the wavelength of the EM pulse is 0.5 microns.

The simulations were done both without and with

frequency discrimination. In the absence of frequency dis-

crimination, the EM pulse shape at saturation is highly

irregular and characterized by random peaks. The frequency

spectrum is broad and exhibits considerable activity at

7 ,



sideband frequencies. When frequency discrimination is present

to suppress unstable sideband modes, a smooth saturated pulse

shape and a narrow single peaked spectrum are obtained. In

addition, the effective electron trapping fraction and the

average output power are significantly higher.

With frequency discrimination, the linear gain for zero

mirror losses is -8.5% per pass. The effective electron

trapping fraction with power reflectivity of 0.9 is -22% and

the average output power is

P output > - 660 megawatts.

Significant effects associated with the 2-D structure of

the EM pulse are present in these simulations. For example,

two Gaussian modes were allowed to evolve, and the pulse energy

of the higher order Gaussian mode was about 2% of the energy in

the lowest order Gaussian mode at saturation.

Since electrons are trapped at EM pulse amplitudes above

the critical amplitude for resonance coupling to the betatron

motion, resonance detrapping effects do not appear to be

important in these simulations. Again, it will be interesting

to study the effects of proposed quadrupole focusing.

8
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III. STORAGE RING OPREATION

A. Phase Area Displacement Wiggler

In a previous investigation, it was concluded that high

FEL efficiency is theoretically possible for FEL oscillators

using a phase area displacement wiggler in conjunction with a

storage ring. The operation of such a device has yet to be

demonstrated experimentally. It has been suggested that it may

be possible to design a proof of principle experiment for the

Stanford storage ring under construction.

In the Stanford storage ring, the electron energy is

1 GeV and the peak current is 270 amps. The stored electron

I beams are 1 cm in length and -0.05 cm in radius. The synchro-

tron energy loss is less than 0.1% per round trip. The space

available to accommodate FEL wigglers is -20 meters long.

JWith the above constraints and assuming that the
wavelength of the EM pulse to be generated is 0.5 microns, it

has been concluded on the basis of the analysis discussed in

Appendix C that steady state operation is impractical because:

1. Very good "power reflectivities" > 0.999 per pass

are required since the electron beam and EM pulse can only be

allowed to interact infrequently to avoid excessive beam energy

* i f spread;
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2. Long electron beams of the order of 100 cm are

required in order to produce long smooth EM pulses so as to

minimize nonadiabatic electron trapping;

3. Steady state circulating peak power levels of

100 GeV are required, which imply the added complication of

having to grow the pulse from lower levels.

4. An extremely steady optical pulse would be required

to avoid electron trapping.

Thus, a practical device appears to be impossible unless

the wiggler performance can be considerably enhanced.

An interesting modification in this direction, suggested

by D. A. G. Deacon, is to "phase bunch" the electrons in a

"pre-buncher" prior to entry into the wiggler. With careful

"phase-bunching," the electron interaction can be optimized to

further reduce the energy spreading, in which case steady state

operation may be possible at lower pulse power levels and for

shorter electron beam lengths. However, this modification has

not yet been explored in any detail, and success will certainly

require long steady EM pulses.

B. Conventional Variable Parameter Wiggler

An alternative wiggler for use in a storage ring,

discussed in Appendix D, is a conventionally tapered wiggler

designed to adiabatically trap electrons at the front,

decelerate the trapped electrons inside the wiggler, and then

10
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detrap the electrons at the back. In this scheme, negligible

i increase in the energy spread is produced during adiabatic

deceleration. The critical task is then to minimize the

increase in the energy spread during trapping and detrapping.

This separation of energy extraction from energy spreading

introduces a degree of flexibility which can be exploited to

reduce the ratio of energy spreading to energy extraction to

desirable levels.

Preliminary estimates suggest that it should be possible

to design a conventionally tapered wiggler to be used with the

Stanford storage ring, with steady state circulating power

levels of the order of 1 GW, which are considerably lower than

that required for a phase area displacement wiggler.

Furthermore, growth from low noise levels would be

easier since conventionally tapered wigglers typically have

higher linear gain.

Thus, conventionally tapered wigglers appear to be more

favorable than phase area displacement wigglers, although many

jof the same problems arise; in particular, the need for a very

smooth EM pulse.

I 11
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APPENDIX A

SIMULATION OF TRW AND LANL EXPERIMENTS

I. INTRODUCTION

In this report, we describe the development of a

two-dimensional (2-D) numerical simulation free electron laser

(FEL) code which includes pass-to-pass electromagnetic (EM)

pulse evolution, frequency discrimination, wave diffraction,

and transverse betatron motion of the electrons. This effort

represents the beginning of an attempt to obtain more accurate

simulations of realistic FEL configurations than can be

achieved with one-dimensional (l-D) analysis.

In one-dimensional investigations of the FEL, transverse

spatial variations of the EM pulse, magnetic wiggler, and

electron beam micropulses are neglected. The EM pulse is

represented as a plane wave with amplitude and phase varying

slowing in the direction of propagation (z-direction); the

wiggler amplitude and wavelength varies slowly with z; and the

electron equations of motion are reduced to the Opendulum"

equation for the electron energy and relative phase in the EM

pulse.1 The wiggler couples the electrons to the EM pulse, and

13
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in the Compton regime may be viewed in terms of the interaction

of electrons with a one-dimensional ponderomotive potential

well produced by the combined wiggler and EM pulse fields.

Maxwell's equations, with the transverse electron currents as

sources, determine the temporal and spatial evolution of the EM

pulse.

This model has served as the basis for many theoretical

analyses and numerical simulations of FEL operation.1 These

investigations have discussed: The linear gain of small ampli-

tude EM pulses, the growth of the EM pulse into the nonlinear

regime when electrons become trapped in the ponderomotive

potential, the "breakup" of large amplitude EM pulses due to

the onset of "sideband" instabilities, the suppression of

"sideband" instabilities by frequency discrimination.

However, the one-dimensional FEL model is lacking in

several respects. It does not include the effects of the

diffraction of the EM pulse and the electron betatron motion

produced by the focusing fields of the wiggler. These effects

will modify somewhat the one-dimensional results. They can

influence not only the growth of sideband instabilities, but

also the efficiency of electron trapping. Electron detrapping

may become significant when the ponderomotive potential

amplitude reaches a value where resonance coupling of the

"bounce" and betatron motion can occur. 2 The strength of this

coupling depends on the geometry of the focusing magnetic

wiggler fields as well as the curvature of the wave front.

14 [1i
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Quadrupole focusing fields appear to induce unacceptably strong

coupling, while that due to wave front curvature may be

weakened by any flattening of the wave front produced by

interaction with electrons. 3 These additional effects are

linked to the transverse spatial variations of the fields of

the EM pulse and wiggler which are always present to some

degree in any FEL configuration, and they can be properly

described only by a two-dimensional FEL model.

In Section II, we derive the electron equations of

motion and the EM pulse evolution equations, and we formulate

the basic 2-D FEL oscillator equations which are incorporated

in the numerical simulation code. The EM pulse is considered

to be axisymmetric and is represented as a sum of the Gaussian

modes of a cavity formed by spherical mirrors symmetrically

positioned on either side of the wiggler. The wiggler is

modeled by the superposition of two plane polarized wigglers.

J No quadrupole focusing magnetic fields are included in this

investigation, although we intend to incorporate such fields

into the code in the near future.

In Section III, we describe the numerical algorithms

implemented in the code. The code is used to simulate the

experiment recently completed at TRW, and the experiment being

done at LANL. (A modified version of the code was used for

simulation of HSNW parameters [see Appendix B]). These results

are presented in Section IV, but have not yet been analyzed in

detail. A preliminary survey indicates the following:
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1. The 2-D simulation of the TRW experiments yielded

results which were consistent with the observation. The

spectrum of the EM pulse was singly peaked with no evidence of

sideband activity. The output power levels at saturation were

within a factor of two of the observed levels, the differences

probably due to uncertainty in the value of the detuning

parameter. The 2-D and the 1-D simulation results were

essentially the same.

2. In the 2-D simulation of the LANL experiment, the EM

pulse shape at saturation was not smooth, but exhibited several

maxima and minima due to the growth of unstable sideband modes.

Despite this distortion of the pulse shape, the effective

electron trapping efficiency is still appreciable -40%.

Detrapping due to resonance coupling between the "bounce"

motion and the betatron motion does not appear to be

appreciable.

16



II. BASIC EQUATIONS

A. Electron Equation of Motion

In the free electron laser (FEL) oscillator, a

relativistic electron beam is propagated through a transverse

periodic magnetic field wiggler where the electrons acquire

transverse oscillatory motion which enables them to couple to

the transverse electric field of an electromagnetic (EM) pulse.

The EM pulse is reflected many times through the wiggler by

spherical mirrors positioned on either side of the wiggler.

Electron micropulses are injected into the wiggler at periodic

intervals so that on each forward pass of the EM pulse through

the wiggler, there is overlap of the EM pulse and the electron

micropulse (Fig. Al). The EM pulse amplitude grows on each pass

and in this way can be grown to large amplitudes after a finite

number of passes.

We consider the limit of very energetic, low current

electron micropulses, where the electrostatic self-fields may

be neglected nd the electron current is a sum of the single

particle currents. The EM pulse is approximated by the vacuum

solutions of Maxwell's equations. It is represented as a sum

of the Gaussian modes of the cavity formed by spherical

mirrors:

A = 21 A (z't) xn (r,z) e s s z n ( A1
s 2 ns n(Al)

+ complex conjugate

17
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I
where

^ i(2n+l) tan- z

X (r,z) Xn (r,z) e + i 2R(z) Z R

I 2r2  e- r2/w 2 (z)
n ~n kw-T e(

n (I + ZFR 2 )

w2 2 Z2

2zr2 = R
p k

S

R(z) =

ZR =(2.) ( 2R-

L 2 Laguerre polynomial

= k cs s

k z >> 1
s1R
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Xn (r,z) is a solution of the equation:

i a a a
r ar n - 2ik Z = 0

Asy is the vector potential of the EM pulse. It is

considered to be cylindrically symmetric (r,8,z are the usual

cylindrical coordinates), plane polarized in the y-direction,

and propagating in the z-direction. The mirrors have radius of

curvature Ro  and the mirror separation is L. Each Gaussian

mode is approximated by a wave packet with amplitude Ans(z,t)

and phase Cn(zt) varying slowly in space and time,

1 3A mns  acnj I DA ns n 111 , << k , -, - 1 <<wsA a )A A
zns 9 3 k A ns at it «

The dependence of frequency ws and wave number ks  on mode

number n is ignored.

The wave front is plane at z = 0 where the minimum

"spot" size radius is r Away from z - 0, the uspot" size

increases and the wave front becomes spherical with radius of

curvature R(z - + L/2) = Ro.

The vector potential of the magnetic wiggler is

approximated by:

A - y A (i + W2  ) cosf k dz

- x A (1 + _22 Cosfkz(2

20



where {kwyx, kwxY} << 1.

This arrangement consists of a superposition of two

plane-polarized wigglers and is adopted to provide for

"focusing" of the electron micropulses inside the wiggler. The

amplitudes Awx, Awy and wave numbers kwx, kwy are slowly

varying in z. Their magnitudes are chosen so that the

electron micropulses can be in resonance with one (A wy, kwy )

but not the other (Awx, kwx), and that the betatron motion of

the electrons in the x- and y-directions have the same

frequency.

The electron equations of motion can be derived from the

Hamiltonian

H = H(x, P , y, P, (-), t, z)

e 0 ) m 2 c 2 _ P e A 2 _ _ e Ax y 
)

= (:4o2- m~ 2 - PX Ax) - (Py-~ Ay)]

e (A3)

C z

where the electron energy (- 8) plays the role of the momentum

conjugate to t, and z is the independent variable.

(D 0is the electrostatic potential of an accelerating

electric field - 0/az. Its presence is used to model the

effect of a variable parameter wiggler in a simple way.

A - A + A is the sum of the vector potentials of the

wiggler and EM pulse.

If we introduce as new variables the energy parameter

y 0 (-e~o)/mc 2 and the relative phase

21
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Zk r 2

= k dz + k z - w t + s
Wy s s 2R

the Hamiltonian takes the form

H (Px x, P , y, (-8), t; z)
y

- mcy

p2 +p 2 a 2 k 2 y 2

+mIIc 2 + x + wx wx
2y m2 c 2  2

a 2 k 2 x 2

+
2

a 2  Z a 2  Z

+wxxcos 2 k dz + cos 2 k dz

z z

2P a z 2P a f

+ COS k dz + c y Cos k dzmc J wx mc f WY

a a i (2ri+1) tan -1z+- awyans Xn I Cos(-2lta -  z R Jn

nSZR

k r
2

+ cos1 1 2k s z + 2w t s
s R

+ (2n+l) tan zR
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where

a e e2 A-w mc --w

a e TAS ' a

as mc

2 ff1 + Wy + wx2 2

1aWI >> a y2 >> U2

Let pl M PX' q, , x. P2 w Pyr q 2  = y f P3  " "e ' q3 =t "

Then consider the following canonical transformation

pirci PiQi produced by the generating function G:

G(Q,p,z) = - QiPi

mc 2  a wxa

P3 +  w snk dz+ wy si kw3+eO i- sin kx  dz + k 2 f k sr kd Z)

inm2c2  (2 a2

+ e~k inJ c dz + sinJ k dz
3 0 wx WY

The new variables Pi,Qi are related to the old

variables Pi'qi by

BG

-i - aG--

qi
23



and the new Hamiltonian is

3G

Thus:

P = p P =py' P3

z
a

x R + wx sin kdz
yk J w'awx

z
a

y + WY sinf k dz

t mc wx sin k dx + y sin kwdz
MyC2 kax wx kWY f

+ _8 .: _i a 2  z a 2  z

sin 2 k dz + wy sin 2 k dz+ k wc f wx k WYf WY
'ax wy

where

1 - '  - Q3  t

and in ihe limit of

k a P k a Ps wx x 8 WYy <<
k my 2 c ' k my 2cwx wy

k a 2  k a 2

s wx -8 WY <<1
}kwx8y 2  ' kwy 2y

'aX WY
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J&

may be approximated by:1

I( Py' - Z' t; zI

I mc2

2y

p 2 + P 2

+ + mas k- +a2 k 2
2ymc 4Y wx wx Wy WYj
2mc 1- -1

-m c  cn^ cosyi- (2n+1) tan-i Z f A5

where

f= dz+ k z- w +
fs s 2R(z)

r 2 =F2 + Y2 (A6)

is assumed to be slowly varying in z and the remaining

oscillatory terms have been neglected.

The electron equations of motion may therefore be

approximated as follows:
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k (ir 2  kc
=k +-k +- d~ +Sdz WY s dz 12R(z) J mc ay

kvi2 ~Ir 2s d i
=k - - -WY 2yi dz j ( 2R

2 (P2 +

dy = - e 0_ 1 aH

dz inc2  dz -jc T aE (A8)

dz E a a x~ sini- (2n+l) tan~1 - +C

dz yinc

dPx - icyk 2 3 +

dz8

dz yinc

dP
- -mcy k 2 V +.

dz8
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where a 2 k 2  a 2 k 2

2 WX WX k WYk 2y2  2y2

The approximate solutions for i and j when k is

constant and

k '> [dy
are

R = ax sin(ksz + qx) (A9-a)

= a sin(k z + qy) (A9-b)
y S y

IY

and they describe the betatron motion of the electron in the

transverse direction. The betatron frequency in the x- and

y-direction has been chosen equal. ax, q1 and ay, qy are

the amplitudes, phases of the betatron motion.

The relative phase p varies slowly for electrons with

values of Y close to YR (the resonant energy) defined by:

( k)
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These electrons interact strongly with the EM pulse and will

exchange net energy with it. Electrons with values of y far

from YR  have negligible effects.

It is therefore convenient to introduce the variable

=Y - YR . Then in the limit of << yR' the electron

equations of motion for j and j may finally be approximated

by:

di 2k wY d IkSr 2 ks k2 (a + a A2

dR+ dz R2 - y) (AlO)

di dyR e do
dz z mCd dz (All)

2- a a sin -(2n+l) tan -  z_ +
2y ~wy ns n' -lRzR  n

where the transverse motion is assumed to be adequately

described by Equation (A9).

Equations (A9), (AlO) and (All) constitute the electron

equations of motion which are implemented in the simulation

code to be described in subsequent sections.

In a variable parameter wiggler, yR is allowed to vary

spatially, dyR/dz # 0. However, the presence of an accelera-

ting electric field do/dZ affects the electron phase space

(7,T) trajectories in a manner similar to spatial variations of

28



YR ,and in some problems it is adequate to model a variable

parameter wiggler by dyR/dz - 0, d(o/dz # 0.

B. Electromagnetic Field Equations

The transverse electron beam current density J

determines the time and spatial evolution of the optical pulse

through Maxwell's equations:

21 a 2  4Tra2  A - J (A12)
y c sy c y

If the assumed form of Asy (Eq. (Al)] is substituted in

Equation (A12), we obtain

ik A + + iA a -
s c at ms z c

m
-iw t + ik z + i;

e s s m

+ complex conjugate

47r (A13)f = _--
c y

Multiplying both sides of the equation by

ik r 2i kr 2

exp i t ik z -
a 2R (z)
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I.I

and averaging in t over a time T>

A ms +laAMs 
a c

ik az c at msc- + at
m

-i(2m+l) tan - + i m

e zR M

T
0

t+ 2 ik r 2

__47 i t -ik Z

dt -J j e s s 2R (z)T f c y (A14)
To

2

Then multiplying by X n(r,z) and integrating in r,
Then

f 4 r dr
r 2

o P

a[(A 1 ) n 1

c at n aCz c at

4rdr A (An

0

t T O ik r2

1 2 ik z 8 + i(2n+l) tandt 4-/_ i •i wst zR
To kc
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where we have used the orthogonality relation:

( ^ 4r dr
Xn Xm r = 60 p n,m

0 p

Let the electron distribution function F on entry at

z z in into the wiggler be:

F = F (-o, U0, Pox, Xo, Poy, yo0

= H(t o ) F (j) exp -(ct + ay)/r 2

T2 m2 2c2kr m o c 20 k

The electron density is

N(x,y,t;z) = «F 6(x-X) 6(y-Y) 6(t-T)>

E d7 dt dP dx dP dY F

Jo 0 ox 0 oy

6(x-X) 6(y-Y) 6(t-T) (A16)

where X(l0 t0 , Po, , oz), Y(7 ,t ,P0 ox, o,P ,1 ),

T( ,E oPokPooy,yo;z) are the values of x,y,t at z for

an electron with initial phase space variables 7 0 o'Pox. Xo,

P oYo at z zn.
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At z - zi n

N(x,y,t;z. )in

-7r b d dE 0 da dq da y dq y a x a y H(t O) Fo (0

exp[- (a 2 + y2 ) /r2]

6 (x-a sinq x) 6(y-a ysinqy

6 (t - T)

- d d ° H(o) Fo(1) exp - 2

6 (t-T)

Let F(-o) be normalized so that0|

f oF ° (7o) -- (A18)

0

Then

N = H t- exp - (A19)

where T has been approximated by T 1 t + z/V with

c/ (A20)
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r b is the root mean square beam radius. H(t - z/V) is

related to the electron beam current

I- HeV 7rr2 (A21)

The transverse electron current density Jy is:

°y

J = (P - t-A ) F
y y c y

6(x-X) 6(y-Y) 6(t-T)>> (A22)

Substituting for J in Equation (A15):y

I +  a
Z C a ns

T0

00 2 t+ 2  8e 2 a z
.wy 2Cos kwd

To my k C 2 r dWYz
0 0 t --

2

^ [ ii k r 2 t n 1

Xn(r,z) exp w t - ik z + i(2n+l) tanns s 2R + RI2nl

F6(x-X) 6(y- Y) 6(t-T
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z To

2 v 2

-- wT Ido d2 dt 2 dq dql dEo/To
my R k C2 r 2 x Y xyRs J

z To
v 2

r2 H(t 0 ) F0 ( o) exp- r 2 )

x exp iT + i(2n+l) tan 1-

4e 2 a lr 2

,-. w r H t- z (A23)my m ksC2 r2H V

Ra P

x exp -i + i(2n+l) tan -

where

<( )>_ fdod 2 da 2 dq dq 1> fx Y x y rb 4 2

f ~ dio L
2 +.ca 2\

21- F 0 (0) ex x y

This equation determines the temporal and spatial

evolution of the amplitude Ans and phase Cn of each

Gaussian mode of the EM pulse.
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C. FEL Equations

The FEL equations are most conveniently formulated after

introducing the new independent variables u and v:

L
z W

u = t (A24-a)

L

c 2

V L= (A24-b)

to replace t and z.

It will be assumed that the wiggler amplitude and wave

number are constant. yR  and hence the longitudinal electron

resonant velocity V are independent of z. A variable

parameter wiggler is modeled by a finite value of the

accelerating field do/dz.

The wiggler, total length Lw, is positioned

symmetrically between the mirrors, the front being at

z = - Lw/2 and the back at z - Lw/2. The line z - - L w/2

in z - t space maps into the line u + v - 0 in u - v
space and z = Lw/2 into u + v - 1 (see Figure A2).

In u - v space, the electrons move on lines of

constant u, and the "photons" of the EM pulse propagating in

the direction of the electrons move on lines of constant v.

The EM pulse interacts with the electrons only inside the
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U

Electrons

v

-u
0

Photons of
E.M. Pulse

Figure A2. Electron and Photon Trajectories
in u -v plane
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I

region of the u - v plane bounded by the lines u + v = 0

and u + v 1.

The electron equations of motion, Equations (A9), (AlO)

and (All), now take the following forms:

k r 2

3v +v 2R

k L
2 kB r ^x + (A25)

=r

- an Xn sin(P- (2n+l) tan--_ + C

n R
(A26)

I

r 2  = 2 +Y2

si 2 c (y

+ a 2 si 2 e + )+q
(A27)
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=m

/2 r2  2L n( -W- ) exp -27

Xn 2

and the EM pulse evolution equation, Equation (A23), can be

written as follows:

a en
u n

inh(u) < n exp iT+ i(2n+l) tan-  z
zR  (A28)

where

2k L
= w YwY ~ Y R

k k L2a a
Swy w wy ns

an 2

R

2k L wDw = w e o

R mc av

2k L

Y R Ay R R

8(kWYLw) 2 aw2 e<Ib> Uo Lw

Y I 2 mc V k r 2
R p
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i&

0Ib> it ~fdz I bdz

h(u) =
z <Ib>

I b  is the beam current

Z is the nominal electron micropulse length

f h(u) du = I

<Ku>
d% d d& 2 da 2 dqdq FO(O

exp ( - a x (y

h(u) is a form factor determined by the current profile of

the electron micropulse.

For the Nth pass of the EM pulse through the wiggler,

the electron phase space trajectories are determined by the

solutions of Equations (A25) and (A26) with initial condition

YO "o' 4) ' x' &a, q at v - -u. The initial phases

I3
39
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TO' qx q y are uncorrelated with that of the EM pulse and thus

are distributed uniformly between 0 and 2n. The electrons

are assumed to occupy the area 0 > u >-uo.

The pulse amplitude after interaction with the electrons

is

a (vo) = a (v, -u ) + Aa N (v) (A29)
n n 0 n

where &n N(v) is determined by integrating Equation (A28)

from u - -v to u - 1 - v through the wiggler.

The EM pulse is reflected backwards and then forwards

for the (N+l)th pass through the wiggler.

Between passes, the EM pulse is filtered to attenuate

the unstable sideband frequencies which can grow when the pulse

amplitude is large enough to trap electrons. This filtering is

accomplished by a band-pass filter, modeled by the equation:

a (v'o) N N
+ Sa (v,o) =va (v,o)

av n n (A30)

where an is the filtered pulse amplitude, and the frequency

half-width Aw of the band-pass filter is related to the

parameter v by

vc
L (c/V-l) (A31)

w
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If R < 1 is the effective amplitude reflectivity,

accounting for the energy losses on reflection at the mirrors,

and a represents the tunable pass-to-pass shift in the

position of the pulse relative to the front of the electron

micropulse at the moment of entry into the wiggler, the pulse

amplitude at the beginning of the (N+l)th pass is:

N+1 N 0

a (v-80-u) =
n 0 n (A32)

Thus, the pass-to-pass change in pulse amplitude after

interaction with the electrons, filtering, and reflection at

the mirrors is given by:

1 a - N+l N+l
v av an (v-8, -uO ) + (v- a, -UO)

9=[a- n (v, -o) + aN (v)] (A33)

An additional complication not present in the

one-dimensional formulation of the FEL equations is the

relative phase shifts between the Gaussian modes introduced by

reflection at the mirrors. On each reflection, the phase shift

introduced between the nth Gaussian mode and the lowest (n-0)

mode is -4n tan "1 (L/2zR). Thus, the pass-to-pass phase

change of each Gausslian mode of the EM pulse is given by:
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N+l
n (v-s, -u 0 )

nN (v, -Uo) + A (v) -n tan-  L
n n 2z (A34)R

where CN (v) is the phase change due to the interaction of

the EM pulse with the electrons inside the wiggler.

Equations (A25), (A26), (A27), (A28), (A33) and (A34)

govern the operation of the FEL oscillator.
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III. CODE DESCRIPTION

The code PZD is a two-dimensional, time dependent, long

pulse FEL simulation code which includes the effects of radial

structure in the optical mode and betatron dynamics of the

electron beam. The modular structure and organization of PZD

are similar to that of the one-dimensional simulation code

LPULSE.1 The main driver program makes successive passes

through a set of specialized subroutines which process the

large blocks of field and particle data held in COMMON. The

subroutines include packages for data input (DATIN), code

initialization (INIT), integration of particle equations of

motion (PHSADV), integration of the optical mode equations

(FLDADV), and simulation of the pass-to-pass optical events;

e.g., desynchronization and frequency discrimination (NXTPLS).

There is a basic diagnostics package (DIAGNOS), but it

is anticipated that much more work will be done on it. At

present, pass-to-pass histories of pulse power, growth rate and

field and particle energy bookkeeping are provided. Provision

has been made for a restart of the code in order to handle

unusually long simulations, but a renormalizing version has not

been completed.

The following discussions will concern the most

important numerical implementations of the model equations

described in Section II. It should be noted that the wiggler
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model, while more detailed than that of the 1-D codes for it

includes betatron effects, is not as detailed in its emulation

of the ponderomotive forces as VWIG.
1

Data Input

The intention was to design PZD to be invoked by a

single command file which: (1) Completes a batch edit task to

make custom modifications to the reference code file, and

(2) compiles, links, and runs the modified code. Typically,

the modifications would include a complete set of data and any

special modifications to the basic algorithms or diagnostics.

The input parameters fall into the four groups indicated in

Table Al. r
The code models the focusing of the electron beam as

the combined betatron motion due to two crossed-plane polarized

wigglers. Only one of the wigglers produces a resonant ponder-

omotive force on the electrons, the other having a wiggler

wavelength not equal to the resonant wavelength. However, the

betatron wavelength for the two wigglers is identical because

the ratio of the wiggler wavelength to the peak B-field is

equal. This is a restriction of parameter space which

simplified the betatron dynamics and reduces the particle phase

space which must be sampled. The input radius and the betatron

wavelength imply a specific beam emittance.
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II

TABLE Al

PZD INPUT PARAMETERS

Optical Parameters

Wavelength
Mirror Separation
Mirror Curvature
Effective Reflectivity
Cutoff Frequency for Discrimination
Initial Amplitude

Wiggler Parameters

Wavelength (at entrance)
B-field (at entrance)
Total Length
Fractional Length of Constant Parameter Section
Taper
Wavelength of Focusing Wiggler

Beam Parameters

Current
Energy
Radius
Micropulse Length
Desynchronization Length

Numerical and Control Parameters

Integration Step
Number of Optical Modes
Bounds for Simulated Optical Mode
Number of Electrons
Length of Simulated Electron Beamlet
Current Profile
Restart Dump and Read Flags
Diagnostic Pass Flags
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Initialization

The particle arrays which represent the beam and the

amplitude arrays for the optical pulse are initialized in INIT,

along with miscellaneous numerical parameters and arrays. The

following description refers to Figure A2, which is a diagram

of the interaction region in u-v space. The variables u and

v are determined from z and t by the transformation

equations (A24-a) and (A24-b), whose inverses are

z - Lw (u + v-) (A35-a)

L
t -- (u + S v) (A35-b)

C V

The physical significance of this transformation is discussed

in the paragraphs on FEL equations in Section II. As noted

there, the electrons enter the interaction region on the line

segment u + v - 0, between u - 0 and u - uF < 0, and move

right on horizontal trajectories to exit on the segment

u + v - 1, again between u - 0 and u a uF. The first

electrons to enter the wiggler are those near u - 0 and the

last are those near u - uF. The photons enter the interaction

region along u + v - 0 between u - 0 and u - uF (and along

u 0 UF between v -uF  and v - 1 - UF). [The first photons

to enter are those near v - 0 and the last are those near

v - 1 - U F] The photons move on vertical trajectories and

exit the interaction region on u - 0 between v -0 and
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v - 1 and on u + v- 1 between v- 1 and v - 1 - uF.

Additionally, on a given pass there are some noninteracting

photons to the left of v - 0 and the right of v = 1 - UF,

and these must be handled correctly because the desynchroniza-

tion process (Eq. A32) will bring those on the right into play

on succeeding passes. Also, the frequency discrimination

filter (Eq. A30) will fold information from those photons to

the left into all of the amplitudes.

The fields are initialized as individual uniform pulses

with specified amplitudes and phases for each mode. These are

defined from Vmin to Vmax along the line u + v - 0, but INIT

must transform these into code quantities along the line seg-

ment u + v - 0, vmin 4 v uF, u - 0, - uF < v < 1 - uF , and

u + v - 0, 1 - uF < V < Vmax . This involves some manipulation

of the mode amplitudes as discussed in the following section on

NXTPLA. Also, see Equation (A34).

Particle-associated quantities which must be handled

in INIT include those associated with the betatron dynamics.

Since the betatron solution (Eq. A27) is numerically inte-

grated, as is the associated Gaussian exponential function,

a table of initial conditions for these O.D.E.s is set up for

each particle at each u in INIT. The motivation for these

numerical integrations is discussed in the following section

on PHSADV. Because Laguerre polynomials are required in

calculating ponderomotive forces and evaluating currents for
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each Gaussian mode, INIT sets up the starting values for

evaluation by a recurrence relation.

The initial conditions required to start the integration

of the axial (ponderomotive) equations (A26) are tabulated for

all particles at all u's in INIT. Random numbers are used to

insure that the particle phases at one u are uncorrelated

with those at another u. The particles are tabulated with

fixed energy and with Gaussian-distributed radial positions.

The particles are loaded in pairs with phases differing by

Tr to insure zero initial current.

Driver,

Upon completion of initialization, the process of

pass-to-pass integration of the 2-D FEL oscillator equations

begins as a nested DO loop in the main program. The subrou-

tines PHSADV (particle integration), FLDADV (field integration)

and NXT (array bookkeeping) are called successively for each

u, beginning with u - uF < 0 and ending with u - 0. After

the last u integration, the subroutine NXTPLS (pass-to-pass

optics) is called and the whole sequence is repeated for the

succeeding passes. Within PHSADV and FLDADV, the various

quantities are evaluated for v increasing from u + v - 0

to u + v - 1. The integration sequence is not identical to

the temporal sequence, but physical causality is not violated.

This is because photons overrun trailing electrons, are
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amplified by them, and in turn affect the dynamics of the

leading electrons.

Particle Dynamics (PHSADV)

The betatron and axial ponderomotive equations are

integrated in PHSADV. Although the analytic solutions

(Eq. A27) are available, the betatron equations are integrated

in order to reduce run time by eliminating multiple calls to

the trigonometric and exponential routines.

A leapfrog (semi-implicit) algorithm is used

r 2 n+ d r2  2 +  r2 n] Adv = dv (r) + 4k 2L2 [ 2Y T (

(r2) (;72) + dv2)] (A36)

The electron axial equations are advanced next. The

algorithm is a noncentered version of that used in the 1-D

code and is an approximation to Equations (A25) and (A26) in

Section II.

V .In+ I  V in-[ f dv = n6= - f rdv] (A37)

am xsiny -n (2m+l) tan - +
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The algorithm for advancing the sin and cost was

selected to conserve sin 2' + cos2i.

(cs)n+l 1 _l~a2)( n - i2) (s n

I (Co Tn2(i
(sin~) ~ + (2a 2 )cosTr + (+-Ct2(i T)n

(A38)

where

i s I+i Sv
AV 

] +j
a 2 16 f r dv' + fr dv'

+ [_ (ksr2 )] n+

D v 21/1

k L
s w k 2 r 2  2 + &2

(A39)

The integration of Y involves a sum over the optical modes,

and after the integration of sin and cos " , another

sum over modes is required to evaluate the R.H.S. of
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Equation (A23), the source term for each mode of the fields.

The loop is completed by returning to the betatron integration

and repeating until all of the particles have been advanced one

Av. The outer DO loop carries the integration from v - - u

to v - 1 - u, then returns to the driver for the field

advance.

Field Advance (FLDADV)

The information on particle currents necessary to carry

out the field advance from v - - u to v - 1 - u has been

stored in COMMON. As noted in Section II, it was found to be

convenient to integrate the field equations in a form which has

a z or v dependent phase term built in in order to facili-

tate the particle integration. As in the 1-D code LPULSE, the

{complex fields are calculated in the form of an amplitude times
a sin C' and cos c' factor, but because of accuracy problems,

a fully implicit, centered difference form of Equation (A23)

was implemented.

The equations for a cos 1' and a sin C' may be

expressed in condensed form:

dx Ax + By + SA+y(A40)

Cx + Dy + T
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with

x = a cosc

y = asinc

zL
wA =D z 2 (1 + z 2/Z 2

0 0

(2m+l) L 1
w 1/z

B = -0h = 1 + z/Zo0

S i nh (u) x m <sinT>

T =rih(u)X K <Cos Tp>

The difference equation used is

x n+l X n = AUA (xn+l +xn) + L B( yn+l+ yn) +AuS

n+l n Au (xnl +xn) + u (yn+l+yn)
Y~ ~ ~ L D + = Cx+ n +

The function of subroutine NXT, the last step in the

main u loop, is to shift the updated field arrays from the

scratch arrays i which they were placed in FLDADV. This is

done for all but the last Au step.

After (-uF/Au) steps in u integration, all the

electrons in the extended pulse have been pushed through the

wiggler and their interactions calculated, all of the photons

have been moved from the u + v - 0, u - -uF locus in the u,v

plane to u - 0, u + v - 1. In order to prepare for the next
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pass through the wiggler, the effects of pulse propagation in

the vacuum from the exit end of the wiggler to the exit mirror

of the optical cavity, reflection and energy extraction,

desynchronization with the succeeding electron pulse, and

frequency discrimination must be simulated. These are the

major tasks of subroutine NXTPLS.

The job is accomplished in three steps. A linear

transformation of the code field components achieves the pass-

to-pass phase shift and expresses the actual amplitudes along

the line u + v - 0. Here the desynchronization algorithm and

energy extraction are applied, and optical energy diagnostics

are calculated. Finally, the amplitudes are again transformed

into the code variables and propagate to the line u + v = 0,

0 > u > uF and u - u.

The remaining subroutine in the main loop is DIAGNOS

(entry DIAGE) which completes the particle and field energy

bookkeeping.

The diagnostics for the code are in a preliminary state

of development. Future improvements include modification of

the current diagnostics output to produce physical units or

more meaningful normalized quantities. It will be important to

produce better information about the radial structure of the

ponderomotive well.

Applications of the simulation code to several

experimental FEL oscillators will be presented in the following

section.
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IV. SIMULATION RESULTS

The numerical code described in Section III is a

powerful tool which can be used to investigate the effects

introduced by transverse spatial variations of the EM pulse and

wiggler. It includes the effects of diffraction of the EM

pulse and transverse betatron motion of the electrons. These

effects influence not only the growth of sideband instabili-

ties, but also the efficiency of electron trapping.

The 2-D simulation code has been compared with the 1-D

simulation code previously described in I-ARA-82-U-89, 'Annual

Technical Report for Theoretical Studies on Free Electron

Lasers," M. N. Rosenbluth, H. Vernon Wong and B. N. Moore. In

the limit where the lowest Gaussian mode (n - 0) is the only

mode allowed to evolve and the Rayleigh length zR -- , the 2-D

and 1-D simulation codes agree as they should. Intrinsic 2-D

effects manifest themselves when the higher order Gaussian

modes grow to an appreciable fraction of the lowest order mode

amplitude or when the amplitude of the electron betatron motion

is finite. The number of Gaussian modes which can be allowed

to grow in the simulations is limited by computer time

constraints. In practice, a series of simulations are carried

out with a successively larger number of allowed Gaussian

modes, and the series is terminated when the highest order
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Gaussian mode never exceeds a few percent of the lowest order

mode amplitude at saturation.

At the beginning of each pass, the electrons of each

micropulse are injected into the wiggler with the initial

phase To , symmetrically and uniformly distributed over the
0

range -n to 7r, and the betatron phases q1, qy, sampled

from a random uniform distribution. The distribution of

betatron amplitudes among the electrons is exponential in &2

and 2 , exp(- "x2 "2 The resulting radial density

profile is Gaussian, exp(-r 2/r2), with the parameter rb

determined by the emittance e of the electron micropulse:

r 2 (A41)b

The distribution of YO is determined by the electron energy

distribution. However, in all the simulation runs discussed in

this section, the distribution of ?o is taken to be a delta-

function, 6(70 - 0), where

a - 2ctf d& exp(-a2 -& 2
0 X x x y

0 0

2

= -k L k 2 r 2

(A42)
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With this value of 0, the initial magnitude of aW/av

averaged over the electron distribution function is zero; most

of the electrons are then close to being in resonance at the

beginning of the wiggler.

At the end of each pass of the EM pulse and electrons

through the wiggler, energy conservation is monitored to check

the accuracy of the integration routines. The equation for

energy conservation in the wiggler can be written in the

following form:
u=0

n U= -u
0

- nfdu h(u) <J dv -

-U

= 0

The first term is proportional to the increase in the EM pulse

energy and the second term to the energy extracted from the

electrons. The step-lengths in u and v are adjusted so

that energy is conserved to within a few percent.

If all of the electrons are trapped at the beginning of

the wiggler and remain trapped all the way through the wiggler

so that

- 0
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then the energy extraction is proportional to

1-unlf du h (u) f r du

Thus, the effective electron trapping fraction f may

conveniently be defined to be:

-u

du h(u)K rdv []1u

--U

f du h(u)Jf r du1-U

It should be noted that the pulse amplitude is

arbitrarily set to zero for u Vmin to reduce storage

requirements. In the event that the pulse is passed through a

band-pass filter of finite width to suppress the growth of

sideband instabilities, Vmin must be sufficiently far away

from the interaction region so that the pulse amplitude near

Vmin is negligibly small. However, in the absence of

frequency discrimination, it is sufficient that Vmin < 0,

since the pulse evolution due to interaction with electrons

inside the wiggler is not affected.

The numerical code has been used to simulate the FEL

oscillator experiments of TRW and LANL.

In these simulations, the growth of the EM pulse is

started from low Onoise levels. The pulse amplitude grows
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exponentially in the initial linear phase until it becomes

large enough to trap electrons in the ponderomotive potential

well. In the later nonlinear phase, energy is extracted

from the trapped electrons as the resonant energy of the

ponderomotive potential decreases down the wiggler and is

transferred to the EM pulse. Growth continues until a limit

cycle is reached when the energy extracted per pass is balanced

by the energy losses per pass. Ideally, a large fraction of

electrons should be trapped at the front of the wiggler and

remain trapped all the way through the wiggler, and a smooth

large amplitude EM pulse obtained at saturation. This

idealized picture of FEL operation is not always realized,

however, as will be seen from the results of the simulations.

There are two effects which can adversely affect the FEL

oscillator efficiency. They are (1) the unstable growth of

sideband modes; (2) the resonant coupling of the electron

bounce motion to the betatron motion.

The growth of unstable sideband modes to large

amplitudes can lead to a "break-up" of the EM pulse with conse-

quent detrapping of electrons. This "break-up" of the pulse

has previously been observed in I-D simulations, and is again

present in the 2-D simulations. However, this pulse "break-up"

can be avoided by passing the pulse after each pass through a

band-pass filter to suppress sideband growth and thus ensure

stable propagation of a large amplitude EM pulse. In the

case of 1-D FEL oscillators, the following inequality was
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established for the width of the band pass filter necessary for

stable large amplitude pulse propagation:

1 u -50
u L 0 (1 -r)

with a
V

A similar inequality has not yet been established for

2-D PEL oscillators and must await a more extensive survey of

parameter space than has been possible to date.

Resonance coupling of the electron bounce motion and

betatron motion occurs when the pulse amplitude is such that

the bounce frequency is twice the betatron frequency, and this

can also lead to electron detrapping. The magnitude of this

coupling is determined by the curvature of the wave front, as

well as by the geometry of the focusing magnetic wiggler

fields. In the present simulation code, the coupling is due

only to wave front curvature; the focusing fields of the

wiggler configuration modeled by Equation (2) introduces no

additional coupling. The conditions for resonant detrapping

were satisfied in the simulations of the LANL. However, the

simulation results have not yet been analyzed in sufficient

detail to assess the importance of this detrapping mechanism.

It should be mentioned that quadrupole focusing fields

produce a very strong resonant coupling between the bounce and

betatron motion. Such focusing fields are not included in the

F present simulation code, although their inclusion requires but
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a minor modification. The influence of such fields will be the

subject of later investigations.

Simulation of the TRW Experiment

The physical parameters of the TRW experiment and the

simulation parameters are listed in Table A2.

The wiggler configuration used in the simulation

consists of a constant parameter section of length 15 X w

followed by a variable parameter section with a uniform 1%

taper of length 90 Xw" This does not reproduce exactly the

experimental configuration since additional drift and constant

parameter sections present in the experiment are omitted.

These additional sections are assumed to influence primarily

the linear gain phase and only weakly the nonlinear saturated

phase.

The electron micropulse is - 7 slippage distances long,

which implies uo - 7. In the simulations, uo= 3 is used, and

the electron density is assumed to be constant throughout the

micropulse length. It will be noted from Figure A2 that the

only part of the pulse which interacts with electrons all the

way through the wiggler lies in the range u0 > v > 1. Thus,

the larger the magnitude of uo , the greater is the separation

of the effects due to the *head" and the "tail" of the electron

micropulse. Previous theoretical investigations and simula-

tions of 1-D FELs suggest that tht linear gain phase of long

electron micropulses is adequately simulated when r u >> 1
0
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TABLE A2

TRW FEL PARAMETERS

Physical Simulation

ELECTRON BEAM

Energy 66 MeV 66 AeV

Current (Peak) 2.5 amps 2.5 amps

Microbunch Length 4 psecs 1.7 psecs

Emittance 0.15 mm mrad 0.15 mm mrad

Energy Spread 0.03% 0.0%

WIGGLER

Wavelength x 3.56 cm 3.56 cmw

Length 3.74 m 3.74 m

B-field 2.9 KG 2.9 KG

Constant Parameters Section 0.534 m 0.534 m

Taper 1.0% 0.86%

OPTICAL

Optical Wavelength 1.57 w 1.57 v

Rayleigh Range 2.71 m 2.71 m

Cavity Length 12.68 m 12.68 m

Mirror Relfectivity 0.9984 0.9987

Radius of Curvature 7.5 m 7.5 a
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and that the nonlinear saturated state is not significantly

affected if u is doubled from 3 to 6. At the present time,
0

we have done no simulations with uo > 3 because of computer

time constraints. The simulation of longer electron micro-

pulses with u > 3 will be taken up at a later date.0

With a beam emittance of 0.15n mm mrad, and the betatron

"frequency" k 6a aw k w/(2) y r the root mean square beam radius

rb calculated from Equation (A41) is rb - 0.04 cm. The

parameter r b is a measure of the amplitude of the transverse

betatron motion. The effective energy spread Ay introduced

by the betatron motion is:

AYB k sk B r P2 0 0 0
- = 0.0008
YR  (2) kw

Aya/yR is larger than 0.0003, the real energy spread, and

hence the electron energy distribution function Fo(- o

can be approximated by a delta-function.

The EM pulse, initially smooth with amplitude and

phase constant, is grown from low noise levels. In

Figure A3, the average pulse power <P> is plotted as a

function of pass number, where

V
max

r 2y 4 f , 2

(p) 0.543 x 10 2 L 4 a 2 u a n dv watts
: w w w 0o

min
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Figure A3. Average Circulating Power vs. Pass Number

TRW Parameters, 1% taper.
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The average pulse power <P> increases exponentially

during the linear phase when the amplitude is small.

Eventually, the amplitude becomes large enough for electrons

to be trapped by the ponderomotive potential well. Growth

continues until the energy extracted from the electrons is

balanced by the energy losses.

The effective fraction of electrons trapped is f - 33%.

The average output power is

P output> - 0.511 fl(amps) AyR megawatts (MW)

0.47 MW

The pulse shape at saturation of the lowest Gaussian

mode (n=0) is shown in Figure A4, and it has a single maximum.

The amplitude Ian=01 is plotted as a function of

v at u = 0 (see Figure A2). The only part of the pulse which

interacts with the electrons inside the wiggler during a given

pass lies in the range 1 + u > v > 0. With positive B > 0,0

the pulse is shifted to the left on each successive pass. The

front part of the pulse (v < 0) does not "see" electrons inside

the wiggler and is damped by reflection energy losses at the

mirrors. The Fourier transform a of the pulse amplitude

u

aKdv K (u+v=l,v) exp iKV

1 [-1 L
- i (2n+l) tan W
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is plotted as a function of K in Figure A5. For a particular

value of K, the corresponding frequency w in the laboratory

frame is:

- k+ L (A43)
wkL
s w w

There is no evidence of sideband activity during the

pass-to-pass evolution of the pulse, even though there was no

frequency discrimination of the pulse. The spectral width at

half maximum &w is w/w s ; 0.005 at saturation.

The results of the simulation are in qualitative

agreement with the experimental observations. These results

were obtained for simulations in which the wiggler taper is

-1% and only the lowest order Gaussian mode is allowed to

grow. They remained essentially the same when the allowed

modes were n - 0 and n - 1; the n - 1 mode amplitude was

never larger than 1% of the n = 0 mode amplitude.

Further simulations were done with no wiggler taper and

with a 2% wiggler taper. The spectrum of the EM pulse ampli-

tude is again sharply peaked. The output power at saturation

for these simulations are tabulated in Table A3.

Energy conservation for these simulations was satisfied

to within 1.5%.

Simulation of the LANL Experiment

The physical and simulation parameters of the LANL

experiment are listed in Table A4.
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TABLE A3

TRW SIMULATION RESULTS

TRAPPING
FRACTION

RUN AT
NUMBER a r GAIN <P> SATURATION

TR2D060 0.005 26.4 0.0107 @ 100 250 MW 32.0%
0.0113 @ 200
0.0116 @ 350
0.0 @ 1793

TR2D062 0.01 13.2 0.0339 @ 100 81.3 MW 27.0%
0.0376 @ 200
0.0112 @ 300

1 Mode 0.0 @ 586

TR2D058 0.01 26.4 0.0105 @ 100 Was not
0.0103 @ 200 run to
0.0100 @ 300 saturation

TR2D064 0.01 13.2 0.0279 @ 100 84.6 MW 27.0%
0.0335 @ 200
0.010 @ 300

2 i4odes 0.0 @ 651
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TABLE A4

LANL FEL PARAMETERS

Physical Simulation
Parameter Parameter

ELECTRON BEAM

Energy 21 MeV 22.3 MeV

Current (Peak) 25 - 80 A 25 - 80 A

Microbunch Length 30 psecs 3.66 psecs

Emittance 2-4 mm-mrad 1.9 mm-mrad

Energy Spread 1-3% 0%

WIGGLER

Wavelength X w 2.73 - 2.42 cm 2.73 cm

Length 100 cm 100 cm

B-field 3 KG 3.1 KG

Constant Parameter Section 0 0

Taper-Energy 7.35% 6.0%

OPTICAL

Optical Wavelength 10.6 - 10.Bi 10 P

Rayleigh Range 63.2 cm 61.58 cm

Cavity Length 6.92 m 6.92 m

Mirror Reflectivity 0.9834 0.9834

f Mirror Curvature 3.56 m 3.57 m
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The wiggler is a simple variable parameter wiggler

100 cm long with a uniform taper of 6%. The electron

micropulse is -20 slippage distances; however, uo W 3 is

used in the simulations. The parameter rb for a beam

emittance of 2n mm mrad is [Equation (A41)] rb - 0.08 cm.

The effective energy spread Aya due to the betatron motion

is Aya/ r =z 0.0006. tYa is somewhat less than the real

energy spread of I to 2%. However, the electron energy

distribution function was taken to be a delta-function

[Equation (A42)] in order to reduce the number of particles in

the simulations and hence the run time.

More realistic electron energy distributions as well as

longer electron micropulse lengths (u > 3) and larger electron

beam emittances are planned for later investigations.

The EM pulse is grown from low noise levels and followed

all the way to saturation. The linear gain is negligibly small

when the electron current is 25 amps (n/uo - 5.23) and -5% when

the electron current is 80 amps (n/uo = 16.75).

In Figure A6, the average pulse power <P> is plotted

as a function of pass number for a representative run with the

detuning parameter a - 0.01.

Figures A7 through A16 display the EM pulse shape

and spectrum at the end of several pass numbers in the run.

The pulse amplitude Iani is plotted as a function of v at

u - 0. The pulse is initially smooth with amplitude and phase

constant in the range 5.5 > v > - 1.5. The pulse is shifted
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LANL Parameters, 80 amps.
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to the left by an amount Av = = 0.01 on each successive

pass. The only part of the pulse which interacts with

electrons inside the wiggler during a given pass lies in the

range 4 > v > 0. The pulse spectrum is plotted as a function

of K (see Equation (A43). Electron trapping begins at about

pass number 400 and reaches a maximum at pass number 800.

During this interval, along with the growth in pulse energy,

the pulse shape evolves from a relatively smooth profile to one

with several maxima and minima. At the same time, the pulse

spectrum exhibits significant growth of sideband frequencies.

This pulse distortion is due to the growth of unstable sideband

modes and has previously been investigated in 1-D FEL

simulations.

The growth of sideband modes can be suppressed by

passing the pulse through a band-pass filter at the end of

each pass. 2-D simulations with frequency discrimination have

not yet been done, although they are planned for future

investigations.

Despite the pulse distortion due to the presence of

sideband modes, the effective electron trapping fraction is

still appreciable f - 40% at saturation. The output power is

Poutput - 21.4 MW

The bounce frequency (in computer units) of an electron

in the ponderomotive potential is - a 8 and the betatron
0
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frequency is kaLw " 3.0. The condition for resonant coupling

of the bounce motion and the betatron motion, that is

a - 2k BLw, is satisfied at some stage of the evolution.

However, the simulations have not yet been analyzed in

sufficient detail to assess whether any significant detrapping

was produced by this resonance coupling.

Further simulations were done at different values of the

detuning parameter B. In all the runs, there is pulse distor-

tion and sideband activity, with the distortion becoming more

severe at smaller values of B. The results for the effective

electron trapping fraction and the output power are summarized

in Table A5.

The power ratio of the n I 1 Gaussian mode to the

lowest order Gaussian mode n = 0 never exceeded 0.1%. Energy

conservation was typically of the order of 5%.

I
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TABLE A5

LASL SIMULATIONS

PEAK
GNP> TRAPPING

GAIN FRACTION

0.01 0.051 @ 100 656 MW 39.5%
0.051 @ 200 @ 574
0.052 @ 300
0.0 @ 480

0.0025 0.056 @ 100 647 MW 38.9%
0.060 @ 200 @ 701
0.025 @ 300
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APPENDIX B

SIMULATION OF MSNW EXPERIMENT

The difference equations discussed in Appendix A were

not sufficiently accurate to be used to simulate the FEL

experiment proposed by MSNW. Energy conservation better than

10% was never achieved for the smallest practical steplengths

which could be chosen.

The difference equations were therefore modified to be

correct to second order in the steplengths by using the

centered difference approximation and to conserve energy

exactly through the wiggler. The details of this improved

numerical algorithm will be reported elsewhere.

Two additional versions of the 2-D FEL simulation code

were written:

1. A "renormalized" code in which the E4 pulse energy

at the beginning of each pass was fixed at a low "noise" level.

This enabled the linear eigenmode with the largest linear gain

to be determined by repeatedly passing the pulse through the

wiggler until the initial transients have decayed away and a

stationary state was reached. Once the linear eigenmode was

formed, it could then be allowed to evolve and grow into the

! L nonlinear regime.
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2. A "steady state" code in which the FEL variables

were constrained to be a function of one independent variable

(instead of two, u and v), namely u + v - f - z/Lw . This

was used to simulate the idealized limit of a long electron

micropulse interacting with a long EM pulse, the FEL variables

changing only with z through the wiggler.

The physical parameters of the proposed MSNW experiment

and the simulation parameters are listed in Table Bl.

The simulations were done both without and with

frequency discrimination. In the absence of frequency discrim-

ination, the EM pulse shape at saturation was highly irregular

and characterized by random peaks due to the onset of sideband

instabilities. When frequency discrimination was present to

suppress the growth of sideband modes, a smooth saturated pulse

shape and a significantly larger saturated pulse energy was

obtained.

A. No Frequency Discrimination

Two Gaussian modes, n - 0 and n - 1, are allowed to

evolve in the simulation. The micropulse length corresponds

to u0 - 2. the desynchronization parameter is taken to be

a - 0.01.

The EM pulse is grown from low noise levels and followed

into the nonlinear regime all the way to saturation when the if

energy extracted from the electrons is balanced by the energy

losses at the mirrors.
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TABLE Bl

MATH SCIENCES FEL PARAMETERS

ELECTRON BEAM EXPERIMENTAL SIMULATION

Energy 120 MeV 120 MeV

Current 0.2 kA 0.2 kA

Microbunch Length 25 ps 0.826 ps

Beam Radius 0.033 cm 0.033 cm

Energy Spread 1% 0

WIGGLER

Wavelength 2.018 cm 2.018 cm

j Length 5 m 5 m

B-field 9.96 kG 9.96 kG

Constant Parameter Section 50 cm 50 cm

Taper 12.5% 12.5%

OPTICAL CAVITY

Optical Wavelength 0.5 m 0.5 m

Rayleigh Range 2.4 m 2.4 m

Cavity Length 60 m 60 m

Mirror Reflectivity 0.95 0.95

Radius of Curvature 30.192 30.192
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In Figure BI, the average pulse power <P> is plotted

as a function of pass number, where

r 2 4

K0? .543 x10 k R adv watts
w w 0n

Figure B2 displays the pulse shape and spectrum in the

intermediate stage of the nonlinear evolution, and Figure B3

displays the saturated pulse shape and spectrum. The part of

the pulse which interacts with electrons throughout the wiggler

lies in the range 2 > v > 1 (see Figure A2, Appendix A). In

the intermediate stage, the front of the pulse is amplified to

a large amplitude, while the back of the pulse remains at a

low amplitude. This behavior is reminiscent of that seen in

the 1-D simulations described in Report No. I-ARA-82-U-89

(ARA-467). In that report, it was concluded that any tendency

of the EM pulse to broaden towards the back is hindered by the

growth of sideband modes destabilized by the "bounce" motion of

the electrons trapped in the ponderomotive potential well. The

growth of sidebands leads to a loss of coherence and the

electrons are not effectively trapped throughout the length of

the wiggler. By the time the final saturated state is reached,

the pulse shape "breaks up" into a succession of irregular

peaks, and the pulse energy fluctuates in a limit cycle.

The effective fraction of electrons trapped in the

saturated state fluctuates in the range

f 10% to 17% I

89



<P > (MW)

4
10

10

0I

io2

101

10 
_

0.0 200 400 600 800 1000
it N

pass

Figure BI. Power vs. Pass Number
MSNW Parameters, no frequency discrimination.

.1 90



1.6

1.2

0.8

0.4

0.0 I

-2.0 0.0 2.0 4.0. 6.Q
V

Figure B2(a). Amplitude vs. v at Pass 300
for Mode n = 0.

MSNW Parameters, no frequency discrimination.
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and the average output power fluctuates between

K Poutput> - 300 to 500 megawatts.

The pulse energy in the n - 1 mode was about 4% of the

energy in the n - 0 mode at saturation.

The same final state is obtained by starting the

simulation run with a square wave pulse of finite amplitude

large enough to trap electrons. Figures B4 and B5 exhibit the

deterioration of the pulse shape into highly irregular peaks as

unstable sideband frequencies of the order of the "bounce"

frequency laol i 50 grow in amplitude.

As will be seen in the next section, the suppression of

sideband modes by frequency discrimination results in a

considerable improvement in the pulse shape and the total pulse

energy at saturation.

B. Frequency Discrimination

Two Gaussian modes, n - 0 and n - 1, were allowed to

evolve in the simulation. The micropulse length corresponds to

u = 2. With frequency discrimination by a band pass filter,

it is appropriate to set 8 - i/v for reasons previously dis-

cussed in Reference 1: The pulse advance produced by a

positive value of 8 then compensates for the effective

pulse delay (proportional to 1/v) introduced by the frequency
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MSNW Parameters, large initial
amplitude, no frequency discrimination.
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I

discrimination. On the basis of Equation (A43) of Appendix A,

it is estimated to be necessary that

18 = - > 0.027 (BI)
V

in order to suppress the growth of sideband modes.

For these simulations, 8 = 0.1 so that Equation (BI) is

well satisfied.

The linear gain in the absence of mirror losses, as

determined by the "renormalization" code, is 8.5% per pass.

In Figure B6, the average pulse power < P > is plotted

as a function of pass number.

The pulse shape and spectrum of the linear eigenmode are

displayed in Figure B7.

Figures B8 and B9 exhibit the pulse shape and spectrum

at different stages of the growth of the pulse to saturation.

In contrast to the simulation without frequency

discrimination, the pulse shape remains smooth and the spectrum

consists of a single narrow peak. Sidebands have been

suppressed, and the large amplitude saturated pulse propagates

coherently. The effective electron trapping fraction is

f - 22%
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Figure B7(a). Amplitude vs. v for
Linear Eigenmode (n = 0).
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and the average output power is

660 megawatts.

The pulse energy in the n - 1 mode was about 2% of the

energy in the n - 0 mode at saturation.

Frequency discrimination is effective not only in

producing a smooth pulse shape, but also in enhancing the FEL

efficiency.

More recent simulations with frequency discrimination

indicate that larger effective electron trapping fractions

approaching f -40% are obtained with longer electron pulse

lengths, u 8.0

With the steady state version of the code where no

sideband instabilities are allowed to grow, a trapping fraction

of f -55% is obtained.

The general trends exhibited by these simulations are

similar to those of the MSNW 1-D simulations. In both, fre-

quency discrimination improves the trapping efficiency and

produces a smooth EM pulse.
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APPENDIX C

PHASE AREA DISPLACEMENT WIGGLER IN STORAGE RING

I
The phase area displacement wiggler has two features

which are attractive with respect to operating a variable

parameter Free Electron Laser (FEL) in conjunction with a

storage ring: (1) The energy extracted is insensitive to the

beam energy spread; (2) The ratio of the energy extracted to

the increase in the root mean square energy spread can be made

large.

In the deceleration of relativistic beam electrons

by phase area displacement, the beam electrons are injected

into a variable parameter wiggler in which the resonant energy

of the wiggler yr increases from the front to the back,

7r(L) > r (0). The initial beam energy is such as to produce a

resonant interaction of the beam electrons with the pondero-

motive potential well or "bucket" [produced by the combined

fields of the wiggler and electromagnetic (EM) pulse] near the

center of the wiggler Yi - Yr(z), z - L/2. The interactionr

may be viewed in terms of an acceleration of the bucket through

the phase area (y,f) of the beam electrons, where ip is the

relative phase of the electrons in the EM pulse. The result is
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where

r = 2k L 
(-C

w Yr (C5)

These formulas were derived in the limit:

a >> r

r > 4a 
(C6)

The first inequality is required for the formation of a bucket

and should be well satisfied for adiabaticity. The second

inequality ensures that the bucket moves in phase space a

distance greater than the total width of the bucket. These

inequalities imply that

a >> 4 (C7)

and for a given set of FEL parameters, Equation (C7) imposes a

lower limit on the EM pulse power.

In order to operate a phase area displacement wiggler in

steady state, the increase in the beam energy spread produced

on each passage through the wiggler must be balanced by a

corresponding decrease due to incoherent synchrotron radiation

(AYsyn ) in the storage ring, and the beam energy boosted to

compensate for the losses in the wiggler and storage ring.
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a downward displacement in energy of the phase area occupied by

the beam electrons by an amount:

I _ - 1 8 (a)
y 2k L IT (Cl)

f where

( kL) 3/2a 2
a 1.36 Lw * w* L

(C2)

k
Y 2 s(1a 2) (C3)
r 2k w

w

kw is the wiggler wave number, aw = eAw/mC2 the dimension!-.s;

f wiggler amplitude, L the wiggler length, ks  the wave number

of the EM pulse, wr 2 the pulse area, and P(GW) the pulse
pJ power in gigawatts. The wiggler and EM pulse are taken to be

circularly polarized.

If the bucket acceleration is adiabatic and no electrons

are trapped in the bucket during the interaction, the increase

in the root mean square energy spread is

mwiggler a 1 (C4)
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where

r
r = 2k L Ar

W Yr (CS)

These formulas were derived in the limit:

a >> r

r > 4a (C6)

The first inequality is required for the formation of a bucket

and should be well satisfied for adiabaticity. The second

inequality ensures that the bucket moves in phase space a

distance greater than the total width of the bucket. These

inequalities imply that

a >> 4 (C7)

and for a given set of FEL parameters, imposes a lower limit on

the EM pulse power.

In order to operate a phase area displacement wiggler in

steady state, the increase in the beam energy spread produced

on each passage through the wiggler must be balanced by a

corresponding decrease due to incoherent synchrotron radiation

(Aysyn) in the storage ring, and the beam energy boosted to

compensate for the losses in the wiggler and storage ring.
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An approximate theoretical criterion 2 for steady state

operation imposes the following lower limit on AYsyn

k L Ay rms2

17Y rr Y r

= 119/a (C8)

The Stanford storage ring under construction has been

designed for an electron energy of 1 GeV and peak currents of

270 amperes. The stored electron beams will each be 1.0 cm in

length and -0.05 cm in radius. The synchrotron energy loss is

less than 0.1% per round trip. The space available to accommo-

date FEL wigglers is -20 meters long.

A reasonable set of FEL parameters which would produce

an optical pulse with wavelength equal to 0.5 microns is

aw = 6.245

Xw M 2'T/kw M 10 cm

Yr  2000

L = 2000 cm

rp= 0.05 cm

Em pulse radius
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These parameters have been chosen for the purpose of

illustrating the discussion which follows. However, it should

be mentioned that somewhat more favorable operating conditions

are possible if A can be reduced, thereby increasing thew

number of periods inside the wiggler.

For these parameters, the dimensionless parameter 'a' is

a = 106.7 P (GW) (C9)

If an optimistic estimate of A syn/Tr - 0.001 per round trip

is assumed for this discussion, it is readily seen from

Equation (C8) that steady state operation requires very high EM

pulse power levels, exceeding by many orders of magnitude the

limit P >> 0.0225 GW set by Equation (C7).

These very high steady state power levels can be

reduced if the effective cooling by incoherent synchrotron

radiation can be increased. A simple way to accomplish this

would be to adjust the relative round trip times of the EM

pulse and the electron beams so that interaction (overlap)

occurs, for example, once every 100 electron round trips.

Then Aysyn/yr - 0.1 and steady state peak circulating power

levels would be P - 100 GW. Thus

a - 103
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and to satisfy Equation (C6), r can have the value r - 250.

It is unlikely that EM radiation sources with power

levels above 10 GW can be procured, in which case steady state

will have to be reached by growing the EM pulse, at least in

part, in the FEL. This growth to steady state must take place

before appreciable energy spreading occurs.

A major concern in growing the EM pulse from lower levels

and also in steady state is the avoidance of electron trapping.

The variations induced in the ponderomotive potential must be

adiabatic. Such variations can be minimized by a careful

wiggler design. However, an additional requirement will be a

smooth, long EM pulse with negligible amplitude fluctuations

occurring in an electron traversal time across a bucket. Thus

frequency discrimination will be necessary to have a smooth

pulse, and long electron beams to produce a long pulse. An

approximate qualitative criterion on the allowable pulse ampli-

j tude As variation is: 2

L dA T U2a)A w

A dz A 10
5 5

where t - 10-4  is the fractional number of trapped particles

permissible. Hence electron beam lengths of the order of

100 cm are required if trapping is to be kept very small.

Can steady state power levels of 100 GW be sustained by

the available beam currents?
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The power transferred &P from the electrons to the EM

pulse is:

mc 2
AP = ,y, --- I(amps)e

- 270 "IGW
Yr (Clil)

Let the power loss at the mirrors in the interval

between interactions of the beam electrons and the EM pulse be

(1 -6)P where P is the circulating power and R(4 1 is the

effective "power reflectivityu of the mirrors. In steady

state:

270 (C12)
(1 -6) 1r

Substituting Equations (Cl) and (C9) for I A- 1:
r

(i -69 2.83 (C13)
P 3/4

For P a 100,

c = 0.911
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If the effective fractional power loss of (1 - )

occurs in 100 round trips of the EM pulse, the fractional power

loss per pass is

(1 - r) = 0.00093

Hence *power reflectivitiesO of r - 0.999 are required to

maintain steady state operation.

The fractional beam energy change in one interaction

with the EM pulse is

".x- z 0.033

which is at the limit of the designed storage ring aperture of

3%, although, of course, this is just the energy loss at

wiggler exit and may thus be allowable.

The feasibility of operating an FEL oscillator with a

phase area displacement wiggler 20 meters long in conjunction

with the proposed Stanford storage ring appears to be impossi-

ble unless the wiggler performance can be appreciably enhanced.

An interesting modification in this direction suggested

by Deacon is to *phase bunch" the electrons in a "pre-buncherl

prior to entry into the wiggler. With careful "phase bunch-

ing," it may be possible to optimize the electron interaction

with the bucket inside the wiggler in order to reduce

considerably the accompanying energy spreading. A modest

amount of phase bunching may be adequate to reduce the energy

125
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spreading by an order of magnitude. This reduction is, of

course, advantageous only if it exceeds the increase produced

during phase bunching. If this procedure proves to be

practicable, steady state operation should be possible at lower

pulse power levels.

The success of this scheme would seem to depend

critically on maintaining through the wiggler the phase corre-

lation established between the beam electrons and the EM pulse

in the pre-buncher. The slippage S in the wiggler is

S L = 200 AXw  s

and thus fluctuations, for example, in the wavelength of the

pulse over this distance S must be small: < 0.1. The effect

of the beam dielectric on pulse propagation could become sig-

nificant and may have to be included in the analysis. And the

importance of frequency discrimination (with band width of

0.1%) to produce a smooth coherent pulse is again manifest. A

further consideration concerns the pulse length; this must be

long enough so that bucket changes are adiabatic. With phase

bunching, the probability of particle trapping is reduced so

that T - 1 in Equation (C1O), and 1.0 cm long electron beams

would not be a limitation.

The startup scenario in which the EM pulse evolves from

low noise levels to steady state is complex and remains to be

elucidated. For the above FEL parameters, the linear gain for

a cold beam is -10%, but oscillates strongly with the beam
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energy so that even for storage ring parameters this high gain

does not apply. The linear gain is significantly modified by a

g finite energy spread.

Even if linear gain is adequate, it is not known how the

fpulse behaves in the transition phase from the linear to the

nonlinear regime. This uncertainty may be bypassed by

initiating growth in the nonlinear regime, the minimum power

level necessary for bucket formation (a > r) being P > 5.5 GW

for our parameters.

In summary, without pre-bunching in the Stanford storage

ring, steady state operation appears to be impossible even if

an extremely smooth pulse can be obtained because:

1 1. Very good "power reflectivities" > 0.999 per pass are

f required since the electron beam and optical pulse

can only be allowed to interact infrequently to

avoid excessive spread,

2. Long electron beams of the order of 100 cm are

required to keep trapping below 10
-4,

3. At steady state power levels of 100 GW, there is the

added complication of having to grow the pulse from

lower levels.

4. An exceedingly smooth EM pulse with no sidebands

would be required to avoid trapping.
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Probably a 1-10 GW seed laser would be required. Phase

bunching could help considerably in relaxing the operating con-

ditions stated in (1) and (2) and could lead to an attractive

experiment. However, this scheme is yet to be analyzed in

detail, and success will certainly require long steady optical

pulses.

Finally, a less ambitious non-steady state experiment to

test the ideas of phase area displacement might be possible,

but this has not been explored.

We are also beginning to look at an alternative scheme

for storage rings, a tapered wiggler with adiabatic trapping

and detrapping. It appears somewhat more favorable than phase

area displacement, although many of the same problems arise, in

particular the need for a very smooth optical pulse (see

Appendix D).
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APPENDIX D

STORAGE RING FEL WITH CONVENTIONAL

j VARIABLE PARAMETER WIGGLER

In designing an FEL wiggler for use in a storage ring,

it is desirable to reduce as much as possible the ratio of the

increase in the root mean square energy spread to the energy

extracted. For phase area displacement wigglers, this ratio

decreases if the number of wiggler periods or the optical power

level is increased. Typically, the wigglers have to be very

long and very high power levels are required in order to reduce

this ratio to acceptable values (see Appendix C).

An alternative possibility which is discussed in this

appendix is to use a conventionally tapered wiggler with

adiabatic trapping of electrons at the front of the wiggler,

adiabatic decrease of the wiggler resonant energy to extract

energy from the trapped electrons, and adiabatic detrapping of

electrons at the back of the wiggler. In this scheme, negli-

gible increase in the electron energy spread is produced during

the adiabatic deceleration of the trapped electrons. Thus, no

significant increase in the energy spread occurs while energy

is being extracted. The critical task is then to minimize the

increase in the energy spread during trapping and detrapping.
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This separation of energy extraction from energy

spreading introduces a degree of flexibility which can be

exploited to reduce the ratio of energy spreading to energy

extraction to desirable levels.

Ratio of Increase in Energy
Spread To be Extracted

The electron equations of motion are derivable from the

Hamiltonian H7$

-T - + V(O,T) (Dl)

2

where the ponderomotive potential V(41,T) is

V(i,T) = - r (T)

- a(T) cos (4 + ) (D2)

The variable y is proportional to the derivation of the

electron y from the resonant energy yr of the wiggler:

2k LY - (Yw w y Y )

k
Y2 = S (l+a 2 )
R 2k ww

k - optical wave number
s
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k w wiggler wave number

eA
a ;7 dimensionless wiggler amplitudewI c

L w wiggler lengthw

y electron energy parameter.

I p is the electron phase relative to the optical pulse. The

depth "a" of the ponderomotive potential depends on the

magnitude of the wiggler and optical amplitudes:

(kw L w)32 1 2w
a 1.36 - +a 2 k r 2 P (GW)

YRw s p

is the optical phase. r determines the wiggler taper and

hence the change in the resonant energy AyR through the

wiggler:

I7R

r = 2k L AR

The independent variable is the dimensionless variable T which

measures distance along the wiggler:

z
L

w
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At the beginning of the wiggler, r is zero and a(T)

is adiabatically increased from zero until the electrons are

trapped in the ponderomotive potential well. Electrons become

trapped when the trapping parameter K 2 < 1 where

2  H+a

2a

When the electrons are deeply trapped, r is increased from

zero to a finite value. The electrons are decelerated and

energy transferred to the optical pulse. At the end of the

wiggler, the electrons are detrapped by adiabatic decrease of

the ponderomotive potential well depth.

In order to estimate the energy spread due to trapping

or detrapping, it is convenient to use the adiabatic invariant

J to characterize the electron motion. The goal is to calcu-

late the changes in J which occurs during trapping and

detrapping when the motion is not adiabatic. This has

previously been done by Timofeev1 and by Cary, et. al.
2

The adiabatic invariant can be written as a power series

in the smallness parameter

1 da 1:

J Jo + J + " . (D3)
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where1
lpo

J f ff2(H+acos)a dip (D4)

J 3a T [ (D5)ICo 1 <o
3 2(H+acos )] (

0j dip

= T f [2 (H + acosp]

<Co f ft cos
_0

o for untrapped trajectories and cos o -a for

trapped trajectories.

For electron motion along trajectories far from the

separatrix (the boundary in phase space separating untrapped

and trapped trajectories), the change in J is exponentially

small.
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For electron motion along trajectories close to the

separatrix, the adiabaticity condition is no longer satisfied,

and finite changes in J occur.

Let us consider the trapping cycle of the electron

motion during which the electron crosses the separatrix from an

untrapped to a trapped trajectory. Let a - a° + i-r where

S 3a0 /T, a 0 << a 0 During this cycle, the solutions for

the electron motion take the form:
1

-i
(T) a r- + 4 tan exp(u)

1 2 _ 1 + E ) exp(-u) (D6)

--(k

-4 0 0

+() iT - 4 tan exp(-u)

+ 1 (k° - 1 - e ) exp(u) (D7)
40

U = a T
0

and the Hamiltonian H and trapping parameter < 2 may be

approximated by

2i0 0Ho+ ao --Ttu
0a. (D8)
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I 2 =H+a
|2a

f k 2 - eothu D9)0 0 (9

where

H +a
k 2  - 0 0

0 2a
0

0

0 - /2
a

0

Ik2  11 < < 1

'_ is valid near it -I and + near 4+ -Tr The

i electron phase is ' - -r when

T = T

1 1 16
- log 2 -1+£

0 0 0)

and the electron is reflected - =0) when

I,
T +

1 16 (Dill)-log-- 00
2A E-k 2 +1
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The interval AT for the trapping cycle is:

+ - k + 1

16
+ log -+k 2 -1 (D12)0 0

In the neighborhood of the separatrix, the adiabatic

invariant may be approximated by:

i + (K2-11 log 16JO (T) a 8 0  4 2-i1

I(C2 -1)+ 4

1 A0
2 a ) (D13)

Thus, the change in the adiabatic invariant during the

trapping cycle (T+ > T > T) is:

Ai(0) 0+= 3o4+...

= J 0 (T+) - 0o(T_) +

0___ 0
4 [a ' ' log 0 0 C (D14)
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31 is periodic to lowest order and does not contribute to

ej(O) to first order in E.

More generally, if we denote the trapping cycle by

n - 0, the trapping parameter K 2 at the beginning of the nth

f cycle is:

K 
2  = 2 +

n n 0

= k 2 _ (2n- 1)
0 0

(D15)

and the interval ATn of the n th cycle is:

1 f 16
AT -log I- k2 + 11n 0a- n~

+ log 6 -

(D16)I
n < 0 labels untrapped trajectories and n > 0 trapped

trajectories. K 2 increases by 2co during each cycle of the

electron motion. We assume

an
a-J; = 0

n

to be independent of n.
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The change in the adiabatic invariant during the n th

cycle is:
j(n) k 2n1k2

4a 2 log k 2  o
n0

[ (a - ne log - 2n

0 0 log - 2ne - E 6] 6

1 0 0 01(D17)

where a n a1 and 2 0

If we sum over all cycles, we obtain:

n= +ac
j j(n)

2aO I 8 log - 2

I 1 4n 2 - (I- 8)2
+ 2a 0 ~ 0g 4n2_ (1l_6)2

+ 2n log (2n+ 1) 2 _ 8 2  j(2n - 1) 2 _ B2 -4

N
2(N + )2 -V

4a £ Lt log
0 N- e coB- r N+ - r

2 W 2) (+osa

" 8(D18)

- - 4a £ log 2cos 2-
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where

02-

C1~0

f The parameter a may be related to the electron phase

ps where the electron trajectory crosses the separatrix during

the trapping cycle:

Js
2ao - ko2 - 1 - Fo sin - (D19)

The electrons trapped during this cycle are characterized by

o0/2 > ao - e /2, and the change in J for these electrons

is determined by Equation (D18).

Let us assume that the electrons are uniformly

distributed in ao . The mean value of AJ is:

0

KAJ> da o A 0 0

2- 0 
f

~da o

0

2 (D20)
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I
and the mean square value of (AJ) 2  is:

0

2 2 2
4i

<(AJ)2> J df0o log 2 cos --
0

C0

2

2

4 7T 2 (0
3 a0

(D21)

If we further assume that a similar increase in the mean

square value of AJ occurs when the electrons are detrapped,

and we note that AJ z 27A9 outside the wiggler, we obtain the

following estimate for the increase in the root mean square

energy spread Ayrm s

A Yr 2 a0Arms 2k L 3 a-
w w 0 (D22)

Thus the ratio of the increase in the energy spread to

the energy extracted per pass through the wiggler is

AYrms o 1
Ay r (D23)
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For a given value of 0/a , Ay rms/Ay decreases with

increasing r. However, r < a is required to form a bucket.

If we set r - fa o , where f < 1,

Ayrms (2)' % 1
A3 a fa0 0

(D24)

and yrms/Ay decreases with increasing a 00

Comparison with Phase Area Displacement Wiggler

The ratio

(A PAD

for a phase area displacement wiggler [see Equation (C4),

Appendix C] is

PAD 0 (D25)

where a >> > 4a0. In order to minimize this ratio, it is

appropriate to scale r with a i r - gaki with aoi > g >4.

This implies that

lAy S
P(D26)
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and this ratio is inversely proportional to a 00

However, the ratio

A )CON

for a conventionally tapered wiggler with adiabatic trapping

and detrapping, as determined by Equation (D24), is inversely

proportional to a0. This suggests that it would be

advantageous to use a conventionally tapered wiggler when the

dimensionless parameter ao  is large, that is, in the limit

of very high circulating pulse power [see Equation (C4),

Appendix C].

In evaluating the use of a phase area displacement

wiggler in the Stanford storage ring (Appendix C), very high

steady state circulating power levels -100GW were found to be

necessary. The ratio

rms -_r( 7 p- ao/A 0

was estimated to be 1/4, with r - 250 and ao  1000.

Let ao/ao - L,/2 - 5, where x is the scale distance

over which ao  varies, and let f : 1/6. Then

( ~rms24.5
A ) CON ao
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and if

Ay CONI
is to be 1/4, the magnitude of 0 is

a 98
0

This would represent 100 times less circulating power than for

the phase area displacement case. For this value of a0 , the

parameter e 0 0.5, and the adiabaticity condition is only

marginally satisfied. A somewhat larger value of ao may be

necessary, but nevertheless, smaller than that (a - 1000)0

required with a phase area displacement wiggler. Thus, the use

of a conventionally tapered wiggler with adiabatic trapping

and detrapping could reduce considerably the required peak

j circulating power.

In addition, it should be noted that growth from low

Inoise levels would be easier for conventionally tapered

wigglers since they typically have higher linear gain than

phase area displacement wigglers.
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