

CMU-CS-85-104

Ada as a Hardware
Description Language:

An Initial Report

Mario R. Barbacci',

Steve Grout 2

Gary Lindstrom3 ,

Mike Maloney3 ,

Elliott Organick3 ,

Don Rudisill
2

8 December 1984 Accession For

NTIS C(1 A&I

DTIC TAB

Unannounced

cat to

Distribution/

Avalebil-t? Codes

Avail and/or

/ ~Dist Special

1. Carnegie-Mellon University, 2. Martin Mirietta Corporation, 3. University of Utah.

The work reported in this report was sponsored ;n part by Martin Marietta Corporution ind in part by

the Defense Advanced Research Projects Agency (DOD). DARPA Order iu. 3597, iu:4io,ed by the
Air Force Avionics Laboratory under Contract F3361531 .1(1539, and DARIPA Order -1 on, nontored
by the Office of Naval Research, under Contract ;.MDA 903-81 -C0411 .

The views anJ ccaclusions contained in th Jfocucrict ire thole of the author azind ,huldr not be
ijterpreted as reprcsenting the official potici,:, ,fther exprosted or implied, of thrir cpo,.ors.

Table of Contents

1 Introduction 1
1.1 Description of the Approach 2
1.2 Elements of Style 2
1.3 Overcoming Language Limitations 4

2 Elements of the Description Language 4
2.1 Representing Connections 4
2.2 Representing Buses 8
2.3 Representing Hardware Objects 8
2.4 Operations on Objects 9

3 Shift Register Example 10
4 Timing Models: An Example 13
5 Conclusions 16
6 Acknowledgements 17
7 References 17

I. Package Listings 18

. .".

* Abstract

This paper reports on our initial results in using Ada as a Hardware Description Language. Ada

provides abstraction mechanisms to support the development of large software systems. Separate

compilation as well as nesting of packages, tasks, and subprograms allow the construction of

modular systems communicating through well defined interfaces. The complexity of modern chips

(e.g. those proposed in the VHSIC program) will require the use of those features that make Ada a

. good language for proqramming- in-the-large.

The key to our approach is establishing a writing style appropriate to the objective of describing

both the behavior and the structure of hardware components. We model a hardware system as an

ensemble of typed objects, where each object is an instance of an abstract data type, The type

definition and the associated operations are encapsulated by a corresponding package. In this paper

we illustrate our approach through a series of examples, building up a hypothetical hierarchy of

hardware components. We conclude by discussing ways to describe arbitrarily complex simulation

models and synthesis styles.

1 Introduction

The work that P-ad to this report started in response to a DoD request for proposals to d-ign a

Hardware Description Language for the Very High Speed Integrated Circuit (VHSIC) program. After

analyzing the requirements we found that Ada 1 [ANSI, 1983] could be a powerful, cost-effective

hardw.ire description language since it provides abstraction mechanisms to support the development

of large software systems. Separate compilation as well as nesting of packages, tasks, and

subprograms allow the construction of a modular system communicating through well defined

interfaces.

A desire for a hardware description language should not obscure the strong commonality of

approaches and techniques between designers of complex hardware and software systems. While

the full power of Ada may not seem appropriate for the design and specification of small components,

the design of moder chips (e.g. those proposed in the VHSIC program) will require the use of

*". advanced complexity management techniques. We argue that these techniques are diructlyS
supported by those features of Ada which make it a good language for programming-in-the-large.

We hasten to add that what we are proposing is Ada, not an Ada-like language. We are not

1AdL is i tradomark Pf the US Goverment Ada Joint Projert cffice0i!
:,:~~~~~~~~~~~~~..; .:-. i~ : ~ l':::"": :]i i" " -" -" i i'

2

contemplating the writing of a special compiler; any off-the-shelf Ada compiler will do. We are not

even proposing adapting or modifying some existing Ada support system; any validated Ada

implementation will do2.

1.1 Description of the Approach

We model a hardware system as an ensemble of typed objects, where each object is an instance of

-an abstract data type. The type definition ano the associated operations are encapsulated by a

corresponding package. Thus, each package manages a particular kind of hardare component (e.g.,

wire, nand gate, multiplexor). The public operations of each package include object creation, object

construction (from its component parts, interconnection of those parts, and association of these parts

with the outer object's interface pins), and simulation. The semantics of these operations are

explained in later sections.

Central to our representation of hardware objects are the dual concepts of behavioral and structural

views of a hardware description. For example, a multiplexor may be described behaviorally as an

object that selects among a list of inputs. Alternatively, it can be described as a collection of

" interconnected nand gates (in a multiplexor configuration, of course). A behavioral description is

gonerally a more abstract view; it hides structural details which introduce implementation decisions.

The structural description includes only the information about an object's components and their

interconnections. The behavior implied by a structural description is determined by the behavior of

.- its components and by the way they are interconnected. Behavior is not intrinsically "higher" than

structure since, at the lowest level, some components are taken as primitives; their structure is

hidden, and their description is purely behavioral. In fact, as we shall see in some of our examples,

mixing structural and behavioral descriptions at the same "level" can be used to enhance the

descriptive power of the notation, making the intentions of the designers more apparent.

1.2 Elements of Style

Discussions about programming styles often degenerate into theological arguments (witness the

long standing arguments about indentation and capitalization of keywords and identifiers). We do not

pretend to say that the style we have used in our examples is the best or that it should adopted by all

users. As a matter of fact, the examples are contrived to display the features of the language, at the

expense of having perhaps too many levels in the hierarchy of components. In a production

environment we would expect say, latches and flip-flops, to be implemented as primitive components
6

2 Actua ly, we do not need the full lanrjuage: a reasonable subset, containing the right features is sufficient. Talk about Ada
subsets is, however, considered heresy in some circles and we will not rai;, this point again.

:-~.....

3

whose descriptions are carefully handcrafted for simulation efficiency, rather than to be implemented

by building them up from inverters and nand gates. In addition, to save space, in this paper we have

limited ourselves to illustrate our approach via simple examples, although we have explored other,

more complex descriptions in [Maloney et al., 1985].

In constructing the examples we have followed a few guidelines to emphasize readability and

modularity and to define appropriate layers of abtractions.

Readability.- The complexity of many hardware systems and their equivalent software

representations requires that the code be easily understood. We do rely on comments and the

flexibility Ada provides for writing extended and legible identifiers. Appropriate selection of names for

variables, types, and operations are also important.

Ada permits the overloading of enumeration literals and subprogram names. We take advantage of

this to reduce the names of distinct identifiers that must be learned by the user. The basic operations

needed to create, construct, and simulate hardware components have the same identifier,

independent of the component type. The language provides mechanisms to resolve the ambiguities.

Modularity.- We define this as the ability to connect objects that are of different types through

compatible interfaces. The strong typing in Ada prevents the kind of error in which a component of

the wrong type is used by mistake (e.g. passing a nand gate to a D Latch simulation procedure). To

permit the connection and transfer of signals between components, we use universal interface types

(e.g. pins and buses). All components define their interface in terms of these types.

Layers of abstraction.- We define this as the ability to have multiple levels of representation for the

structure and behavior of hardware objects. In our approach we use packages to define libraries of

abstract types, one per package. Each package is built upon types and operations defined in other

packages, in a hierachical fashion. In addition, the separation of specifications and bodies for these

packages, permits the use of multiple versions of bodies supporting the same specification. This has

important advantages in that we can quickly "plug-in" more efficient simulation models or synthesis

algorithms or design rule checkers, etc. without ever having to alter a client package, or even

recompile it. The switch happens at link time.

6

6 - °- ° .. ' % .o o . - ' " . *- ° * % . 4 =o .
°

, - . . ° . ° " -' . ° , • • • . ". o ° , , o . o . . ' - '% o o"

4

1.3 Overcoming Language Limitations

Ada was not designed with hardware descriptions in mind, thus we have adopted some conventions

to overcome two shortcomings in the language.

Lack of Timing Primitives.. Ada has no primitives for expressing time and time-based relationships.

Mapping a hardware description written in Ada to actual hardware requires either that the hardware

be implemented using fully asynchronous circuitry, a practice not widely advocated, or that timing

specifications be introduced in the process of mapping to hardware. The direct-mapping approach is

the object of current research at the University of Utah [Organick et al., 1984.]

We overcome this deficiency by building into the packages operations that perform the synthesis of

the abstract data type into hardware, incorporating the appropriate synchronization and timing

information. Thus, rather than counting on a "smart" compiler to decipher the designer's intentions,

we use "smart" programs and libraries, where these intentions are explicitly stated.

Ada does not treat-packages as first class objects. Ada packages may not directly model hardware

- components unless such packages are elaborated at compile time; they cannot be created

dynamically as values that can be assigned to variables or passed as parameters. Ada tasks do have

some of these desirable feature3, however they suffer from other limitations (e.g. a task specification

cannot define and "export" data types, constants, or objects, only entries.)

This is an unfortunate but not unsurmountable difficulty. In our approach, we use packages to

manage instances of (first class) record types which in turn model hardware components.

2 Elements of the Description Language

2.1 Representing Connections

Before we present the details of how hardware objects are represented, it is necessary to address

*the problem of intermodule connections.

The relationship that exists between hardware objects3 and interconnections is many-to-one; that
0

is, many objects can be connected through one connection. A first representation of ihis relation

- could have each object reference the "wire" to which it is connected. For example, if components A,

B and C are all connected, we have the arrangement depicted in Figure 1. This repre)sentation is

03
3Actually, here we are referring to an input or output of an object. For exin. ple, the output of a hand gate.

..-.

". • , , -

.., . . . , . .., ,.. , . . ., ,. ... , .. , .,. .. ,',- : .. ; ,..

5.

-. A Wi reB

C

Figure 1: Three components connected by a simple wire

adequate for most situations. Here we treat the wire itself as an object. For simulation purposes, the

wire object can have a value attribute that could be set and read by the components that it "joins".

Information about how many components the wire is connecting can also be maintained in the wire

object.

The deficiency in this representation becomes apparent when we allow components to be

connected in an arbitrary order. In that situation, we must be able to connect objects that are already

connected by wires. Figure 2 illustrates this point. In connecting components A and C, we would like

the resulting configuration to have one wire that is referenced by components A, B, C and D. To

accomplish this requires that we change C and D to reference wire_1 or A and B to reference wire_2.

Note that either of these operations assumes the capability to find all references to a wire.

The desire for freedom in the order that connections are made motivates a slightly more complex

representation of wire interconnections. The deficien:,,,i te previous simple strategy is that there is

no way to reference all of the objects connected hy a wire. An int,. mediate "pin" data structure

solves this problem in the following way. If a wirc -rwally establishes connections between pins of

0!

6

Wi re4-1 Wi re<-2

B D

Figure 2: Two components already connected by simple wires

objects, it can reference, through a linked list of "pins", all of the "pins" that are connected to it. This

is illustrated by the three pins connected as shown in Figure 3. The task of connecting pins that are

already connected thus involves trivial linked-list operations to reconfigure the interconnection and

merge the pin connections to one wire.

To support the abstractions or wires and pins, we have written a package, PinMgr that declares

wires and pins as data types and defines appropriate operations for manipulating objects of theseI
types. The package is written so that most details about intermodule connections are placed in the

body of the package and are therefore hidden from the users (the complete package listings appear

in the Appendix). The public operations of this package are:

e * The procedure CONNECT, which connects two pins (i.e. links them in a 'wire' list.)

* The procedure DISCONNECT, which breaks a connection (i.e. removes a pin from a 'wire'
list.)

* The proceduro EQUATE, which associates an internal pin of an object with an external pin
(i.e. brings cut an internal component pin.)

.- ; -,; , '; : - ,-=~i ." . ..|i~ - I -. " . .

7

Wi re

A ., B

I I
L------------in

I i Pin
L - - - - - - -: J

C

Key:

............ reference from pin to connecting wire

- ------ linked list of pins

Figure 3: Three components connected by a simple wire using pins.

e The procedure UNEQUATE, which undoes an equate.

* The procedure SET VALUE, which sets the value on a wire. This procedure and the

following function can be used for simulation.

* The function VALUEOF, returns the value of (i.e. level on) a wire.

The function FANOUT, returns the number of pins connected to a wire.

I

The strategy, then, in building and connecting components is to provide each external input or

output of an object (representing a component) with a "pin" that can be used in connecting the

object with other objects. Pins and wires are not limited to modeling the idealized connections in our

*I sample package: physical attributes such as capacitance, delays, loads, distances, locations, etc. can

be easily described as "att ibutes" of (i.e. fields of the record types modeling) pins and wires.

IJ
.;,. .- . .

8

2.2 Representing Buses

A bus can be described as an array of pins, using conventions similar to those of a pin. A package

supporting this abstraction is listed in the Appendix. The visible operations of the BusMgr package

are:

* The procedure CONNECT, which connects two internal buses (provided the buses have
the same width.)

* The procedure UNCONNECT. which breaks a connection.

* The procedure EQUATE, which associates an internal bus of an object with an external
bus of the same width.

e The procedure UNEQUATE, which undoes an Equate.

* The procedure SETVALUE, which sets the value on a set of wires, again as long as the
width is the same.

* The function VALUE_OF, which returns the value of a set of wires.

The strategy, then, in building and connecting components is to provide each external input or

output of an object with buses or pins that can be used in connecting the object with other objects.

2.3 Representing Hardware Objects

We can identify three possible approaches to the problem of representating hardware objects as

typed data objects.

The first approach is to declare hardware objects as totally "private" (in the Ada sense). All

operations on objects are defined by a set of procedures and functions that involve such objects, but

nothing about the objects' structure is visible outside these procedures. Here problems arise when

attempting to interconnect such objects, since we have no knowledge about an object's interface.

The other extreme is to declare hardware cbjects as totally "public" (again, in the Ada sense).

However, this method exposes information about an object's structure that is irrelevant for

connecting the object with another object.

The third approach is a combination of the previous two: we represent hardware structures using

data types that contain both public and private parts. The public part of an object contains its

, interface information only, while the private part contains implementation details. The example in

*Figure 4, shows the (public) specifications for D flip flops.

0-:

. ..

10

An object can either be simulated directly, by executing a SIMULATE procedure that implements its

behavior or indirectly, by executing a SIMULATE procedure that invokes the procedures that simulate

the subcomponents. Details of the algorithms used to simulate or construct objects are hidden. The

subprogram specifications only describe the types of the parameters and the results.

Using this approach, mixed-level simulation is easily implemented (A similar approach to mixed level

simulation using Simula 67 is described in [Lindstrom, 1983]). The order of simulation of components

should begin with the input pins and follow the flow of new data throughout the network of

components. Once all of the components have been simulated the appropriate output values will be

placed on the output pins.

3 Shift Register Example

This section presents a complete example of the specification of a composite hardware object (i.e.

an object that has subcomponents.)

Our specification of a shift register (National Semiconductor MM 74C168 [National, 1981]) is built

bottom-up. We begin by creating certain low-level components, namely 2- and 3-input nand gates and

inverters, described by packages named Two_Input NandGateMgr,

Three .nputNandGate_Mgr, and lnverterMgr, respectively. These packages define primitive

objects. Primitives have inputs and outputs and only a behavioral description; they are not

represented by inter-connected subcomponents.

The package supporting the abstraction of an inverter declares two data types and two operations.

The data types describe an inverter as a record with two fields, the input and output pins respectively.

Since inverters (as well as other gates) are easier to handle as Ada access (i.e. pointer) types, the

operations defined on inverters do not take an inverter record directly but rather they manipulate

0pointers to inverter records.

The CREATE operation is used to instantiate an inverter. Since this is a primitive component, there is

no need to create and connect internal components, as we shall see in later examples. The SIMULATE

*I operation computes the value at the output pin, depending on the value at the input pin. Notice that

we are ignoring internal delays; these are idealized inverters.

The package supporting the abstraction of a nand gate is described as a generic package. This

permits the definition of nand gates of arbitrary number of inputs by simply instantiating the generic

package, with the right parameter (the number of input pins), without having to rewrite the type and

.. , -, -, , . -. . . --- '-: -"- -' .. . -- , .- ''"i ,'.-hi' " " " " - ' ' i

I

- 11

operation declarations. The input pins are modeled by a dynamic array of pins, whose dimension is

specified when the generic package is instantiated.

Using these component definitions, we can establish a structural description for a D Latch. (See

Figure 5.) The package D LatchMgr package establishes the structural description of D latches by

creating and interconnecting an inverter and four nand gates whenever the CONSTRUCT procedure (in

the D Latch package) is invoked.

63

Clock - __ __ __-_QBa,

Clear

Figure 5: Inside view of the D Latch.

In the definition of the D Latch record type, we are hiding from the users of the abstraction the

nature of the implementation of the latch. That is, only the input and output pins are directly available.

The fact that there are components is revealed by the definition of the COMPONENTS field; however,

since this field is declared to be of a private type (DLATCH_COMPONENTS), no user of the package can

make assumptions about its structure.

In addition to 'he CREATE and SIMULATE operations, the D Latch package also provides a CONSTRUCT

operation. This operation must be invoked after a D Latch has been created and before it can be0
simulated. It builds the latch by instantiating the internal components. connecting them in the right

configuration, and equating some internal component pins to the input and output pins of the latch.

0- : ""- -,"""""" --.- "" :"""=. . -'"" ";"" : : ; "> -- '"' ' -; : ;' '

4
12

The construction of components continues for the D flip-flop, the next level up in this component

hierarchy. The package D Flip Flop Mgr defines data objects that are composed of D latches (See

Figure 6.)

ClockBar Clock

DBar D*Latch ID-Latch 0 QBar

CD

Figure 6: Inside view of the D Flip-Flop.

Notice the parsimonious nature of our approach. Every new component type is supported by a

package which exports a record type and an associated access type; this permits the manipulation of

the object by the support subprograms. In addition, the package exports procedures to create,

construct, and simulate the component. By hiding the internal structure of a component and the

implementation of the operations, the designer is free to correct or enhance the abstraction, without

having to worry about amending packages that import the abstraction (provided of course, that the

changes do not affect the visible part of the abstraction.) Any hardware system built out of

components described in this fashion can in turn be used as a primitive component in later designs,

provided these simple rules of style are observed.

As with the D latch and the D flip-flop, the serial shift register (Figure 7) is constructed by

connecting components such as the inverter, nand2, and D flip-flop together ;n the correct (graph)

structure. Once constructed, th~e shift register can be simulated by invoking the procedures that

* simulate its components.

D..

S.
.

II
13

2 3

Clock

Seria IA

SerialB

Clear

Out

Figure 7: Inside View of the MM 74C168 Shift Register.

This hierarchical design is represented in the compilation dependency graph for the corresponding

Ada packages, as shown in Figure 8.

4 Timing Models: An Example

In the preceding examples we have exhibited the power of the language to describe the structure

and interconnections of hardware components. In this section we describe how it is possible to

implement, within the same framework, arbitrarily complex timing and synchronization models, as well

1 as synthesis algorithms.

* By way of example, we have chosen to describe how the element of delay can be added to our
library. We will represent time after the CONLAN model of computation [Piloty et al. 1983]. CONLAN

uses the notion of a history of values to model digital hardware. Computation step signals correspond
to transient values, due to the propagation of state changes in the system. The duration of a step is

negligible and possible intermediate values in the carriers are invisible to the hardware designer

only the final value of a step signal has significance. Time signals are sequences of step signals

along time: one step signal per unit of time. Time signals can be inspected for past values (the last

value of the step signal associated with a given point in the past) as well as current values (the last

•alue of the current step signal).

6

.'= ... '.- , . -, , .- o" °o' • -o'..= Q" - -. .-. °..
.

.. ,. , . .,
.. , ,,=, / k I I !

4
14

Pin

Generic NAND

NAND 2 NAND 3 Ivr te r

*~ DLatch

I_ _"
D Flip Flop

Shift Register

Figure 8: Compilation Dependency Graph for the Shift Register

Using this two-layered model of time, we modify our simple pin package as shown in the Appendix

(under "Extended Pin Specification" and "Extended Pin Body".) Notice that in addition to the

additional history carried by a wire, we have added an extra parameter (DELAYVALUE) to the

VALUE_OF function. The function now returns a previous value of a signal. We can now use this

-•* function to model a more realistic inverter gate, by rewritng the SIMULATE function, as shown in

* Figure 9.

Notice that the VALUEOF function in the new pin package specifies a default for the DELAYVALUE

-o

15

procedure Simulate(v : in inverter-gate)

-- Function:
-- This function simulates the logic of an Inverter by inverting
-- the value of the Input pin and placing the value on the output pin.
-- The function assumes a 10-unit gate delay.
Is
begin
case Value_of(v.lnput,10) is

when low => -- If input is low the output is high.
Set_value(v.output,high);
return;

when high -> -- If input is high the output is low.
Set_value(v.output,low);
return;

when others -> -- If input is undefined, no change
null;

end case;
end Simulate;

Figure 9: Inverter with Internal Delay

parameter. If no delay is provided by the caller, the last value assigned to the pin is returned (i.e. no

delay is assumed.)

In this example, we have made a radical change in the package supporting the abstraction of a pin,

. yet the only externally visible change is the addition of one extra parameter to the VALUEOF function.

*} In addition, by providing a default value corresponding to the previous, no-delay version, all we have

to do is recompile, without changes, any existing library packages. That is, older, idealized (i.e.

no-delay) components still work; new, more realistic components can now be described, and both

kinds of components can be mixed in a design.

To conclude this section, we point out that in our approach we are not limited to using pins and

internal components as the fields of a record modeling some hardware component. We can just as

easily declare fields whose values correspond to physical dimensions, power requirements, locations,

etc. Since the process of constructing components is done by calls to operations defined in the

library packages (CREATE and CONSTRUCT), it is rather easy to keep track of all instances of these

components and to check that no design rules are being violated. The data structures needed for the

bookkeeping provide an internal representation of the design: translating it into masks, wire-lists, or
other manufacturing informatinn gives us the path towards powerful and flexible design automation

4systems .

4As powerful and flexible as the code we are willing to write, and we have all thn plcwer nf Ada to do this.... Don't be
surprised, the enpetor in the fairy tnle was nakedl

I

;. -

16

5 Conclusions

In a conventional CAD environment, the separation between the user and the toolmaker is very

sharp. Tools (translators, simulators, synthesis programs etc.) are written in different languages, by

separate groups of individuals, who may in turn be distinct from those in charge of maintaining the

ensemble. Users are bound by the implementers' decisions (and mistakes) and are not usually in a

position to do anything about them, short of waiting for upgrades or fixing the problems themselves.

One of the most serious deficiencies with this conventional approach is that often an implementation

will bind knowledge about a particular technology, synthesis style, or simulation models into the

implementation in such a way that it is often not possible to change it to reflect new technologies or

better design methods.

The technique we are describing is certainly no panacea; errors can still be made. However, we are

eliminating the middle men and exposing to the users (i.e. designers) the full implementation,

* technology dependent decisions, timing models, and synthesis styles. Since the implementation

language is the same language that is used in the day-to-day activities of the designers, they can

understand the source of the problem, can propose solutions, and finally, can implement the solution

themselves, without further ado. Good system management practices will probably impose some

mechanisms to prevent chaos from arising; in particular, it is likely that only expert designers will be

allowed to implement such changes. Ada provides powerful features to support the development,

maintenance, and graceful evolution of large software systems; these same features will be invaluable

in CAD systems of the 80's and beyond.

The advantages of using the same language for both the design of hardware and software are

evident. The flexibility in delaying the binding of (hardware) implementation decisions discussed in

this paper is easily extensible to a more basic decision, namely, whether a portion of a system is to be

built in hardware or in software. The use of a single language together with a convention on style,

permits a designer to write an abstract interface to a computing engine while retaining the freedom to

implement this engine in either hardware or software. The flexibility continues throughout the life-

cycle of the engine; the decision can be reversed at a later time, if the trade-offs change, without

affecting in any way the users of the abstraction.

In addition to the obvious superiority of Ada as a programming language over existing special

purpose hardware description languages, there are other reasons why Ada is an attractive hardware

design tool.

_ -. .=. =.a li hldl i* .~lll .i l -lmnmlml I . . .,l.1.

17

Ada is a standard language that enjoys the support of the largest software user in the world, the U.S.

Department of Defense. Thus. it is inevitable that rich programming environments will be built around

Ada and that the community of users will be several orders of magnitude larger than that of any

existing or proposed HDL. Not only are modern software development technologies easier to apply by

* the use of Ada but large user communities provide a continuous supply of tools, methods, training

* materials, etc. All of these contribute to a reduction of the life cycle costs of a project.

6 Acknowledgements

We would like to acknowledge the helpful input from David Barton, Peter Tinker, and Jay

Woodward, graduate students in the Department of Computer Science, University of Utah.

7 References

[ANSI, 19831 Re.ference Manual for the Ada Programming Language, American National
* Standards Institute, Inc., New York, ANSI/MIL-STD- 1815A- 1983.

[Lindstrom, 1983] G. Lindstrom and P. Tinker, "VHDL Simulator Design", Technical report,
Department of Computer Science, University of Utah, 1983.

[National, 1981] CMOS Databonk, National Semiconductor Corp.. 1981, p 1-68.

[drganick et al., 1984]
E. Organick, T. Carter, M. Maloney, A. Davis, A. Hayes, D. Klass, G. Lindstrom,
B. Nelson, and K. Smith, "Transforming an Ada Program Unit to Silicon and
Verifying its Behavior in an Ada Environment: A First Experiment", IEEE Software,
Vol. 1, No. 1, January 1984, pp. 31-49.

[Piloty et al., 1983] R.Piloty, M. Barbacci, D. Borrione, D. Dietmeyer, F. Hill, and P. Skelly, CONLAN
R ._ort. Lecture Notes in Computer Sciences No. 151, Springer.Verlag, 1983.

[Maloney et al., 1985)
M. Maloney, M. Barbacci, E. Organick, J. Woodward, and D. Barton, "Examples of
Ada as a Hardware Description Language". Technical Report, Dt-partmerit of
Computer Science, University of Utah, 1985. Also Technical Report, Department
of Computer Science, Carnegie-Mellon University, 1985.

0i

0

18

1. Package Listings

I

I

4

I

pwong
Pencil

C.. 7

41)

C C

CL m . CL. - 0 a. 4

r 'm

.Ca
C6

4) - ..
-. ~ - CI

~t
.4) 4) ~ ... 5 C -

to c

CC ~ C C
4) ~~I. S' C

C-

* 4)~4)- a -

CC

03
r

tj It Ic0-l

2 - ! .. 1

- I +Izi

c: =a C- 00..ci

C3C

i - ! -,, g 5 ,

i; -C - ZI ~. ~j 0 I -

* .i "i q r- 0" C
JC '- 'a

0 u a 'C

u .I- I -
.4

-.. 8 . 0 Z

10.10.0

0~~~C0 C

t3 a , ZI I. .. e4C Q

8 0,-,I

3! 9 2. 0 c

A~ Q. 0

CC C3 t:31

;E -a t3.0~a ri 0, '1 .000

*~~~~. Us --41
9 I.0c

a.4

Z -Q r- r.

C4Q

0. I.

0. 0

C3 c cL

c
0iZ- *. a.-

0 -La

00

0. 2. 4; O E; 6
CL .J) 0 C! m 0 .4 .0

00

'5
20 t

t: .0-3Rj

~ 'A

a oc
.00

86 8. 86
-CL 0

cc J

4)..
8 0 .

6, 4).4 0" v c 2 0

CL0 CL90.00*

.0 .M .

4).4)1 a~. 01 A

.0 4 0

*~~~I !!..) .4

S) U)).

2ft04

-0

- u c444 4) - c - 4,

;~ ;~ za~.: 10 . CG oo.

it-
0.

'30

al. "N~

00 Q.

.: U

ea
a a I -1

aa

0. U

'C-

Cca 0) a00 3

=Z 0 C 0 43 ta I II

.. 2 a6

,a It

-I-j

79 ~ '! ' . .

CZ z

F) 2 .2'a
ca 0.0

a0 CL ~ .~a 4. 4J a

ckU -

.~ z A

4) ~ ~ I 7 ~C .~ ad

~0~ 0

*a

h.

.- X
0. Q

CL

e.0

CL

* 10
ol

.!N

0s

ar

.2.b
.5.4

oV

go
* a

- V

t00

CL Cl

00 C

-o-4

Fu.J a O .

CL A

000~A .00

-~~ 5.- 5.0.0

V
9- 5'

c Cli 1= j8

r- E C

Cl

c 06 ---
C:--

Z 05in:0
c s tp C

a~ Jul W-
az CL

on0 .O.

c. . ; cx

00

3 a
c 0

-

.- C.

.. . .0.

I ~ . ~ e N -0 I

-,10

ci 0 0

*q. CL CL C

Z! V

* 000

zU z

ta SO,

0 0

**'* Cd

0. n 2- .
-.L.

C. C) C0 r
.0 1. -

- CL 06 C.

E 30

0 T.
-,~~ ..4-2 A-'A

0- c 0

0~ 80 o 0 c'. o~

00~4 C) a)~ 2 ~ 3

a tn

SO *51

000

It

-c
IVCIO
9

Z!~~~~ 0.31 50i1c: -1 0

0 c ta tg

.0 20 0 2 0.2

a CL

I2

. 7

0,
U .r

2, .2

ej);)

Z3)

CC

C4)

E 4

if 2 ~ 'to

3t 0- -2 Q)

4)0-Q) 4

C3 0. t3 -

Qz
4).. 4

4)~~ 4)4))

10 c-)-. 4

rm . 0

49 4)

CLA! 4)

ICO.

.)

