
INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB
G E BARTON DEC 84 AI-M-812 N88914-80-C-0585 N

UNCLASSIFIED F/G 9/2 N

I IhEEh hI

I m flllllffffffff

1 -20 .,6

Ill..I - '- IE

NATIONAL BUREAU OF STANDARDS

UWMYRESMUT. TEST CWATt

%*1

| 11111 r__ 1
. + " r " " 'ml i O + .+ ." I + "I I+ "i IiIIII A +I PI IPI I~ lI "I"I" .111

11-11 111 j* 5
• '.,- *; .-.. "., ...-''..+' .'......" , ..,"," ...'' .'''..' ,'' , ," ; +5' ...,? .".

. .''.-l" , .. -".' '., ," .'--

,, ." .- , .'- , ... , .. 5 1,. 1.. 1*4 .' ,1 -,-.- .. ." , ',"-*-.6.. -. + ,.,.,. -.. +,-. -- +,-.. -

UNC LASS I FIED)
SE:,pf' CL&SSrICAVON Or Tw.S PAGE fW)en Data Enteed)

REPOR DOCMENTTIONPAGEREAD INSTRUCTIO NS
REPOT DCUMETATON PGEBEFORE COMPLETING FORM

I REPRT NMBER2. GOVT ACCESSION4 NO. I. RECIPIENT'S CATALOG NUMBER

4 TI L E(an Sw61110 11 TVoE OF REPORT a PERIOD COVERED

On the Com r1exity of ID/LP Parsing Al-Memo

6. PERFORMING OnG. REPORT NUNBER

7. AUTPNOR(gj 6. CONTRACT ON GRANT 04NMUERE)

G. Edward Barton,Jr. NOOO 14-80-C-0505

PERFORMING ORGANIZATION NAME AMC ADDRESS Is. PROGRAM ELEMENT. PROJECT. TASK

__ rtificial Intelligence Lab. ARA&WR UNIT NUMBERS

545 Technology Sq.
CM Zambridge, MA 02139

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

00 dvanced Research Projects Agency December, 1984
Lfl L400 Wilson Blvd. Is NUMBER OF PAGES

M41,ONIORiNO AGENC NME & AOORIESS(f diffen km Cohtroling Office) IS. SECURITY CLASS. to# Ohioe open)

)ffice of Naval Research UCASFE
Enformation Systems
k rlington,VA 22217 Ia lcS

DISTRIBUTION STATEMENT (of into Repeeij

)istribut ion is Unlimited DISTRIBUTION STATEMENA

Appwvod ka public us!j~
Diftributim Unlinit.4

17. DISTRIBUTION ST ATEMENT (of IN. abstract ente" toJl .aa.ae Alt th bern Slopere)

IS. SUPPLEMENTARY NOTES 1C-%

NoneAU2?2JM

IS. Key WORDS (CoMne . ff3 "Goo@ e OeW~ md entit Sp boo"Mmer)

d Parsing Natural Language
IDILP Grammars Earleys algoithm
Context-free Grammars GPSG

SNP-completeness UCFG parsing

I 20. ABSTRACT (Contue anvewe. aide It deace OW 50~8F by boo 51.65 uIM
Recent linguistic theories cast surface complexity as the result of interacting

* subsystems -of constraints. For instance, the ID/LP grammar formalism separates
constraints on immediate dominance from those on linear order. Shieber (1983)
has shown how to carry out direct parsing of ID/LP grammars. His algorithm uses
ID and LP constraints direc-tly in language processing, without expanding them
into a context-free "object grammar." This report examines the computational
difficulty of ID/LP parsing. Shieber's purported 0(10 2 n3) runtime bound under-
estimates the difficultity of ID/LP parsing; the worst-case runtime of his

DD 'iA*0? 1473 EorioNofI Nov6 s BSOSSLETE UNCLASSIFIED

8ECURITY CLASSIFICATION OF ?"IS PAGE (When Deve Release

% % ~.

20)
algorithm is the expotential in grammar size. A reduction of the vertex-cover
problem proves that ID/LP parsing is NP-complete. The growth of internal data
structures is the source of difficulity in Shiebers algorithm. The computational
and linguistic implications of these results are discussed. Despite the potential

for combinatorial explosion, Shieber's algorithm remains better than the alternative
of parsing an expanded object grammar.

Accession For

NTIS GRA&I
DTIC TAB El

Unannounced L
Justificatio

BY
Distribution/

Avalability Codes
AVail ando

Doc".4t Special

N

-

t

.... "

.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 812 December, 1984

ON THE COMPLEXITY OF ID/LP PARSING

G. Edward Barton, Jr.

ABSTRACT:

Recent linguistic theories cast surface complexity as the result of interacting subsys-
tems of constraints. For instance, the ID/LP grammar formalism separates constraints on
immediate dominance from those on linear order. Shieber (1983) has shown how to carry
out direct parsing of ID/LP grammars. His algorithm uses ID and LP constraints directly
in language processing, without expanding them into a context-freeo'bject grammar. -

This report examines the computational difficulty of]D/LP parsing. Shieber's purported
O(IGI! -n) runtime bound underestimates the difficulty of ID/LP parsing; the worst-case
runtime of his algorithm is exponential in grammar size. A reduction of the vertex-cover
problem proves that ID/LP parsing is NP-complete. The growth of internal data struc-
tures is the source of difficulty in Shieber's algorithm. The computational and linguistic
implications of these results are discussed. Despite the potential for combinatorial explo-
sion, Shieber's algorithim remains better than the alternative of parsing at expanded object
grammar.

This report dctcribes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the Laboratory's artificial intelligence research has been
provided in part by the Advanced fResearch Projects Agency of the Departmnent of Defense under

" Offcc of Naval Research contract N00014-80C-0505. Suapport for the author'. graduate studies
has beon provided by the Fannie and John Hertz Foundation. UsIeful guidance rnd conmtentary

*[.- during the writing of this paper have been provided by Bob Berwick, Michael Sipser, and Joyce
Fritdman.

eM©maitchusetts Institute of Technology, 1084

-0

".*"" . ," ..*"'" ** % % "5

77t~ .t . -7-7 ~ 7-7.c5

1. Introduction

Under most recent linguistic theories, linguistic constraints fall into several subsystems
each having its own character. Chomsky (1981:5), for instance, identifies the subtheories
of bounding, government, 0-nmarking. binding, Case, and control, while Shieber (1983:2ff)
describes a version of Gazdar and Pullum's GPSG formalism that involves immediate-
dominance rules, linear-order constraints, and suctarules. When several independent con-
straints are involved, a rule system that explicitly multiplies out their effects is large,
cumbersome, and uninformative.' For example, as Shieber (:4) points out, the expanded
context-free "object grnunar" derived by multiplying out the constraints in a typical GPSG
system would contain trillions of rules.

Given the disadva, .ages of multiplying out the effects of separate systems of con-
straints, Shicb,'r's (1983) work leads in a welcome direction. Shieber considers how one
might do parsing with ID/LP grammars, which involve two orthogonal kinds of rules. ID
rules constrain immediate dominance irrespective of constituent order ("a sentence can be
composed of V with NP and SBAR complements"), while LP rules constrain linear prce.
dence among the daughters of any node (-if V and SBAR are sisters, then V must precede
SBAR'). Shieber shows how Earley's (1970) algorithm for parsing context-free grammars
(CFG,) can be adapted to use the constraints of ID/LP grammars directly, without the
combinatorially explosive step of converting the ID/LP grammar into standard context-
free form. Instead of multiplying out all of the possible surface interactions among the

ID and LP rules. Shieber's algorithm applies them one step at a time as needed. Surely
Sthis should work better in a parsing application than applying Earley's algorithm to an

expanded grammar with trillions of rules, since the worst-case time complexity of Earley's
algorithm is proportional to the square of the grammar size!

Shieber's general approach is on the right track. On pain of having a large and cum-
bersome rule system, the parser designer should first look to linguistics to find the correct
set of constraints on syntactic structure, then discover how to apply some form of those
constraints in parsing without multiplying out all possible surface manifestations of their
effects.

Nonetheless, nagging doubts about computational complexity remain. Although
Shieber (1983:15) claims that his algorithm is identical to Earley's in time complexity,
it seenis almost too much to hope for that the size of an ID/LP grammar should enter into
the time complexity of ID/LP parsing in exactly the same way that the size of a CFG enters
into the time complexity of CFG parsing. An ID/LP grammar G can enjoy a huge size ad-
vwuitage over a context-free grammar G' for the samine language; for example, if G contains
only the rule S --tD abcde, the corresponding G' contains 5! = 120 rules. In effect, the
claim that Shieber's algorithm has the same time complexity as Earley's algorithm means
that this tremendously increased brevity of expression comes free (up to a constant). The
paucity of supporting argument in Shieber's article does little to allay these doubts:

We will not present a rigorous demonstration of time complexity, but it
should be clear fromi the close relation between the presented algorithm

and Earley's that the complexity is that of Earley's algorithm. In the
1See Barton (1084) for disvclsion.

++W,,

T T

worst case, where the LP rules always specify a unique ordering for the
right-hand size of every ID rule, the presented algorithm reduces to Ear-
ley's algorithm. Since, given the grammar, checking the LP rules takes
constant time, the time complexity of the presented algorithm is identi-
cal to Earley's That is, it is O(JG12 n3), where JGJ is the size of the
grammar (number of ID rules) and n is the length of the input. (:14f)

Many questions remain; for example, why should a situation of maximal constraint represent
the worst case, as Shieber claims? 2

The following sections will investigate the complexity of ID/LP parsing in more detail.
In brief, the outcome is that Shieber's direct-parsing algorithm usually does have a time
advantage over the use of Earley's algorithm on the expanded CFG, but that it blows up in
the worst case. The claim of O(IG12 n3) time complexity is mistaken; in fact, the worst-case
time complexity of ID/LP parsing cannot be bounded by any polynomial in the size of the
grammar and input, unless P = JIP. ID/LP parsing is NP-complete.

As it turns out, the complexity of ID/LP parsing has its source in the immediate-
domination rules rather than the linear precedence constraints. Consequently, the prece-
dence constraints will be neglected. Attention will be focused on unordered contezt-free
grammars (UCFGs), which are exactly like standard context-free grammars except that
when a rule is used in a derivation, the symbols on its right-hand side are considered to
be unordered and hence may be written in any order. UCFGs represent the special case of
ID/LP grammars in which there are no LP constraints. Shieber's ID/LP algorithm can be
used to parse UCFGs simply by ignoring all references to LP constraints.

2. Generalizing Earley's algorithm

Shieber generalizes Earley's algorithm by modifying the progress datum that tracks
progress through a rule. The Earley algorithm uses the position of a dot to track lin-
ear advancement through an ordered sequence of constituents. The major predicates and
operations on such dotted rules are these:

* A dotted rule is initialized with the dot at the left edge, as in X -- .ABC.

o A dotted rule is advanced across a terminal or nonterminal that was predicted and
has been located in the input by simply moving the dot to the right. For example,
X --+ A.BC is advanced across a B by moving the dot to obtain X --, AB.C.

e A dotted rule is complete if" the dot is at the right edge. For example, X -- ABC.

is complete.

* A dotted rule predicts a terminal or nonterminal iff the dot is immediately before
the terminal or nonteruinal. For example, X - A.BC predicts B.

UCFG rules differ from CFG rules only in that the right-hand sides repreent mnordered
multisets (that is. sets with repeatid elements allowved). It is thus appropriate to use suc-
ces.sive accumulat ion of set elmentts in place of linear advancement through a sequence. In
2

See DAction 5; it il in fact tJhe bejt cn.e.

2

S-o-

essence, Shieber's algorithm replaces the standard operations on dotted rules with corre-
sponding operations on what will be called dotted 1JCFG rules:3

e A dotted UCFG rile is initialized with the empty multiset before the dot and tht
entire multiset of right-hand elements after the dot, as in X -- {).{A, B, C).

* A dotted UCFG rule is advanced across a terminal or nonterminal that was pre-
dicted and has been located in the input by simply moving one element from the
multiset after the dot to the multiset before the dot. For example, X --+ {A).(B, C
is advanced across a B by moving the B to obtain X -- {A, B}.{C). Similarly,
X --+ {A).{B,C,C) may be advanced across a C to obtain X --* {A, C).{B, C}.

@ A dotted UCFG rule is complete iff the multiset after the dot is empty. For example,

X - {A, B, C}.{} is complete.

* A dotted UCFG rule predicts a terminal or nonterminal iff the terminal or nonter-
minal is a member of the nmltiset after the dot. For example, X - (A}.(B, C)
predicts B and C.

Given these replacements for operations on dotted rules, Shieber's algorithm operates in
the same way as Earley's algorithm. As usual, each state in the parser's state sets consists
of a dotted rule tracking progress through a constituent plus the interword position defining
the constituent's left edge (Earley, 1970:95, omitting lookahead). The left-edge position is
also referred to as the return pointer because of its role in the complete operation of the

Parser.

3. The advantages of Shieber's algorithm

The first question to ask is whether Shieber's algorithm saves anything. Is it faster to
use Shieber's algorithm on a UCFG than to use Earley's algorithm on the corresponding
expanded CFG? Consider the UCFG G, that has only the single rule S --- abcde. The
corresponding CFG G, has 120 rules spelling out all the permutations of abcde: S -# abcde,

S - abced, and so forth. If the string abcde is parsed using Shieber's algorithm directly on
G1 , the state sets of the parser remain small:4

So IS- {.{ab,c,d,e},O]
S,: IS--+ {a).{b,c,d,e),01
S2 : [S.-. {a,b).{c,d,e},01
S,: IS-. {a,b,c).(d,e},O]
S4 : IS {a,b,c,d)..{e},O]
55 IS abrdc.)O

In contrast, consider what happens if the same string is parsed using Ealey's algorithm on
the expanded CFG with its 120 rules. As Figure I illustrates, the state sets of the Earley
3
Shieber's repr-sentation differs in soie ways from the representation used here, which was developed
independeittly by the author. The dlifferences are generally ines:ential, but see note 5.

4
The .itates related to the anxiliary start .ymbol mnd cndinarker that are added by some versions of the
Farley parser have been onfitted for simplicity.

3

-................"" ° " ,° " ° . t '. , "• " " - " ° - " • " . . . ' " "" ° " " - •
°

" °
°

- " .°
°

, . " " - " " ". " - ". ". " - -. . ' ,-. .• • •

(a) IS a {).(b,c,d,e,

[S -- a.edcb,O] IS -. a.ecbd,O]
[S -4 a.decb, 0] [S - a.cebd, O
[S - a.cedb,O [S -I a.ebcd,O]
[S a.cedb, O IS a.becd, 0]
[S -. a.dceb,O] [S a.cbed, O]

(b) - a.cdeb, 0] [S -* a.bced,fl]
S -*a.edb, O IS -a.dbe, 0]

[S - a.debc, 0] [S - a.cdbe, 0]
IS -- a.ebdc, 0] [S -- a.dbee, 0]

[S - a.bedc, 01 [S - a.bdce, 01

[S -- a.dbec, 0] [S -- a.cbde, 01

[S - a.bdec,0] [S -* a.bcde, 0

Figure 1: The use of the Shieber parser on a UCFG can enjoy a large advantage over the

use of the Earley parser on the corresponding expanded CFG. After having processed the

terminal a while parsing the string abcde as discussed in the text, the Shieber parser uses

the single state shown in (a) to keep track of the same information for which the Earley

parser uSes the 24 states in (b).

parser are much larger. In state set S1, the Earley parser uses 4! = 24 states to spell out

all the possible orders in which the remaining symbols {b, c, d, e} could appear. Shieber's

modified parser does not spell them out, but uses the single state [S -* {a}.{b, c, d, e), 01 to

summarize them all. Shieber's algorithm should thus be faster, since both parsers work by
successively processing all of the states in the state sets.

Similar examples show that the Shieber parser can enjoy an arbitrarily large advantage

over the use of the Earley parser on the expanded CFG. Instead of multiplying out all surface

appearances ahead of time to produce an expanded CFG, Shieber's algorithm works out

the possibilities one step at a time, as needed. This can be an advantage because not all of
the possibilities may arise with a particular input.

4. Combinatorial explosion with Shieber's algorithm

The answer to the first question is yes, then: it can be more efficient to use Shieber's

parser than to use the Earley parser on an expanded "object grammar." The second question

to ask is whether Shieber's parser always enjoys a large advantage. Does the algorithm blow

tip in difficult cases?

In the presence of lexical anbiguity, Shieber's algorithm can suffer from combinatorial

4

explosion. Consider the following UCFG, G 2, in which z is live-ways ambiguous:

S - ABCDE
A A-a z

SB-b z
C- cz
D d z

What happens if Shieber's algorithm is used to parse the string zxza according to this
gramnmar? After the first three occurrences of z have been processed, the state set of
Shieber's parser will reflect the possibility that any three of the phrases A, B, C, D, and R?
might have been encountered in the input and any two of them might remain to be parsed.
There will be (') = 10 states reflecting progress through the rule expanding S, in addition to
5 states reflecting phrase completion and 10 states reflecting phrase prediction (not shown):

S3 : [S - {A,B,C}.{D,E},0] IS - {A,B,D).{C,E},O]
[S- {A,C,D}.{B,E},O] IS -+ (D,C,D}.{A,E},O]
IS - {A,B,E}.{C,D),0] IS {A,C,E).{B,D),O]
[S- {B,C,E}.{A,D},0] [S (A,D,E}.{B,C),01
[S- {B,D,E}.{A,C},0] IS - C,D,E}.{A,B}, 0

in cases like this, Shieber's algorithm entunerates all of the combinations of k elements taken
i at a time, where k is the rule length and i is the number of elements already processed.
Thus it can be combinatorially explosive.

It is important to note that even ini this case, Shieher's algorithm wins out over parsing
the expanded CFG with Earley's algorithm. After the same input symbols have been
processed, the state set of the Earley parser will reflect the same possibilities as the state
set of the Shieber parser: any three of the required phrases might have been located, while
any two of them might remain to be parsed. However, the Earley parser has a less concise
representation to work with. In place of the state involving S -* {A, D,C).(D,E), for
instance, there will be 3! 2! = 12 states involving S --+ ABC.DE, S - BCA.ED, and so
forth.5 Instead of a total of 25 states, the Earley state set will contain 135 = 12 . 10 + 15
states.

In the above case, although the parser could not be sure of the categorial identities of
the phrases parsed, at least there was no uncertainty about the number of phrases and their
extent. We can make matters even worse for the parser by introducing uncertainty in those
areas as well. Let G 3 be the result of replacing every x in G2 with the empty string e:

S -- ABCDE
A-ia ec

L', B-blc

% ~E -i -

sIn contrast to the representation illustrated here, Shieber's representation actually muffers to some extent

from the swe problem. Shicber (1083:10) uses an ordered acquence instead of a miwltiset before the dot;
consequiently. in place of the state involving S -4 {A, D,}.{D, E, Shieber would have the 3! 6 states

involving S - a.{D, El, where a ranges over the six permutations of ABC.

::: ..-. '.

-..

Then an A, for instance, can be either an a or nothing. Before any input has been read,
the first state set S0 in Shieber's parser must reflect the possibility that the correct parse
may include any of the 25 = 32 possible subsets of A, B, C, D, and E as empty initial
constituents. For example, So must include [S -- {A, B, C, D, E}.{}, 0] because the input
might turn out to be the null string. Similarly, it must include [S ---, {A, C, E}.{B, D}, 0]
because the input might turn out to be bd or db. Counting all possible subsets in addition to
other states having to do with predictions, completions, and the parser's start symbol, there
are 44 states in So. (There are 338 states in the corresponding state when the expanded
CFG G' is used.)

5. The source of the difficulty

Why is Shieher's algorithm potentially exponential in grammar size despite its "close
relation" to Earley's algorithm, which has time complexity polynomial in grammar size?
The answer lies in the size of the state space that each parser uses. Relative to grammar size,
Shieber's algorithm involves a much larger bound than Earley's algorithm on the number
of states in a state set. Since the main task of the Earley parser is to perform scan, predict,
and complete operations on the states in each state set (Earley, 1970:97), an explosion in
the size of the state sets will be fatal to any small runtime bound.

Given a CFG G, how many possible dotted rules are there? Resulting front each rule
X -, A, ... Ak, there are k + 1 possible dotted rules. Then the number of possible dotted
rules is bounded by 1G.1, if this notation is taken to mean the number of symbols that it
takes to write Ga down. An Earley state is a pair [r, i], where r is a dotted rule and i is
an interword position ranging from 0 to the length n of the input string. Because of these
limits, no state set in the Earley parser can contain more than O(1Ga. n) (distinct) states.

The limited size of a state set allows an O(G.12 . n 3) bound to be placed on the
runtime of the Earley parser. Informally, the argument (due to Earley) runs as follows.

The scan operation on a state can be done in constant time; the scan operations in a
state set thus contribute no more than O(IG1 . n) computationad steps. All of the predict

operations in a state set taken together can add no more states than the nuinber of rules
in the grammar, bounded by 1G.1, since a nonterminal needs to be expanded only once in
a state set regardless of how many times it is predicted; hence the predict operations need
not take more than O(G. n + IGl) = O(1G1 I. n) steps. Finally, there are the complete
operations to be considered. A given completion can do no worse than advancing every
state in the state set indicated by the return pointer. Therefore, k completions require at
most k 2 steps; the complete operations in a state set can take no more than O(1(,.l2 • n2)
steps. Overall, then, it takes no more than O(I.1 2 . n2) steps to process one state set and
no more than O(IG.12• n') steps for the Earley parser to process them all.

In Shieber's parser, though, the state sets can grow much larger relative to grammar
size. Given a UCFG Gb, how many possible dotted UCFG rules are there? Resulting from
a rule X --- A t ... Ak, there are not k + I possible dotted rules tracking linear advancement,
but 2' possible dotted IJCFG rules tracking accumulation of set elements. In the worst

case, the grammar contains only one rule and k is on the order of 1Gb[; hence the number

6

a b

4 2 e4

c3 d

Figure 2: This graph illustrates a trivial instance of the vertex cover problem. The set
{c, d} is a vertex cover of size 2.

of pos:sible dotted UCFG rules for the whole grammar is not bounded by 1Gbj, but by 2 1G6I.
(Recall the exponential blowup demonstrated for grammar G3 in section 4.)

Informally speaking, the reason why Shieber's parser sometimes suffers from colabi-
natorial explosion is that there are exponentially more possible ways to progress through
an unordered rule expansion than an ordered one. When disambiguating information is
scarce, the parser must keep track of all of them. in the more general task of parsing
ID/LP grammars, the most tractable case occurs when constraint from the LP relation is
strong enough to force a unique ordering for evrry rule expansion. Under such conditions,

0 Shieber's parser reduces to Earley's. However, the case of strong constraint represents the
6est case computationally, rather than the worst case as Shieber (198,:14) claims.

6. ID/LP parsing is inherently difficult

The worst-case time complexity of Shieber's algorithm is ePxponential in grammar size
rather than quadratic as Shieber (1983:15) believed. Did Shieber simply choose a poor
algorithm, or is ID/LP parsing inherently difficult in the general case? In fact, the simpler
problem of recognizing sentences according to a UCFG is NP-complete. 6 Consequently, un-
lessP = AP, no algorithm for ID/LP parsing can have a runtime bound that is polynomial
in the size of the grammar and input.

The proof of NP-completeness involves reducing the vertez cover problem (Garey
and Johnson, 1979:46) to the UCFG recognition problem. Through careful construction
of the grannmar and input string, it is possible to "trick" the parser into solving a known
hard problem. The vertex cover probheii involves finding a small set of vertices in a graph

with the property that every edge of the graph has at least one endpoint in the set. Figure 2
shows a trivial example.

To construct a granmnar that encodes the question of whether the graph in Figure 2
has a vertex cover of size 2. first take the vertex names a, b, c, and d s the alphabet. Take
6 Recognition is simiphr than parsing because a recognizer is not required to recovcr the sbr-udture of an input
string. hnt ouly to dec ide whether the string is in the language generated by the grinunar: that is, whether
or not there ert a parse.

7

.-. . .- --.

START -- HIH2 l 3H4 UUDDDD

H, -- ale
H2 - ble
H 3 - c cld
H 4 -* bid

U -* aaaa bbbb ccec dddd
D -. albIeld

Figure 3: For k = 2, the construction described in the text transforms the vertex-cover
problem of Figure 2 into this UCFG. A parse exists for the string aaaabbbbeccccdddd iff the
graph in the previous figure has a vertex cover of size < 2.

START as the start symbol. Take H, through 114 as special symbols, one per edge; also
take U and D as special dummy symbols.

Next, write the rules corresponding to the edges of the graph. Edge el runs from a
to c, so include the rules H, -- a and H, -- c. Encode the other edges similarly. Rules
expanding the dummy symbols are also needed. Dummy symbol D will be used to soak up
excess input symbols, so D -- a through D --+ d should be rules. Dummy symbol U will
also be used to soak up excess input symbols, but U will be allowed to match only when
there are four occurrences in a row of the same symbol (one occurrence for each edge). Take
U -- aaaa, U --+ bbbb, and U --+ cccc, and U --* dddd as the rules expanding U.

Now, what does it take for the graph to have a vertex cover of size k = 2? One way
to get a vertex cover is to go through the list of edges and underline one endpoint of each
edge. If the vertex cover is to be of size 2, the underlining must be done in such a way that
only two distinct vertices are ever touched in the process. Alternatively, since there are 4
vertices in all, the vertex cover will be of size 2 if there are 4 - 2 = 2 vertices left untouched
in the underlining process. This nethod of finding a vertex cover can be translated into a

UCFG rule as follows:
START --- HJH2 HsH 4UUDDDD

That is, each H-symbol is supposed to match the name of one of the endpoints of the
corresponding edge, in accordance with the rules expanding the H-symbols. Each U-symbol
is supposed to correspond to a vertex that was left untouched by the H-matching, and the
D-symbols are just there for bookkeeping. Figure 3 lists the complete grammar that encodes
the vertex-cover problem of Figure 2.

To make all of this work properly, take

a = aaaabbbbceccdddd

as the input string to be parsed. (In generd, for every vertex name x, include in a a
contiguous run of occurrences of . one occurrence for each edge in the graph.) The grammar

8

.

encodes the underlining procedure by requiring each H-symbol to match one of its endpoint?

in a. Since the right-hand side of the START rule is unordered, the grammar allows ar

H-symbol to match anywhere in the input, hence to match any vertex name (subject to

interference from other rules that have already matched). Furthermore. since there is one
occurrence of each vertex name for every edge, all of the edges could conceivably be matched

up with the same vertex: that is, it's impossible to run out of vertex-nalme occurrences.

Consequently. the grammar will allow either endpoint of an edge to be "underlined." The

parser will have to figure out which endpoints to choose -- in other words, which vertex covez
to selct. However. the grammar also requires two occurrences of U to match somewhere.

U can only match four contiguous identical input symbols that have not been matched in

any other way, and thus if the parser chooses a vertex cover that is too large, the U-symbol

will not match and the parse will fail. The proper number of D-symbols is given by the

length of the input string, minus the number of edges in the graph (to account for the
H,-matches), minus k times the number of edges (to account for the U-matches): in this

case, 16 - 4 - (2 . 4) = 4, as illustrated in the START nile.

The net result of this construction is that in order to decide whether a is in the language

generated by the UCFG, the parser must in effect search for a vertex cover of size 2 or less.7

If a parse exists, an appropriate vertex cover cal be read off from beneath the H-symbols bi
the parse tree; conversely, if an appropriate vertex cover exists, it indicates how to construct

a parse. Figure 4 shows the parse tree that encodes a solution to the vertex-cover problem

of Figure 2.

* eThe construction shows that vertex-cover problem is reducible to UCFG recognition.

Furthermore, the construct ion of the grammar and input string can be carrieg out in poly-

nomial time. Consequently, UCFG recognition and the more general task of ID/LP parsing

must be coinputationally difficult. For a more careful and detailed treatment of the reduc-
tion and its correctness, see the appendix.

7. Computational implications

The reduction of Vertex Cover shows that the ID/LP parsing problem is NP-complete.
Unless P = N P, the tiue complexity of ID/LP parsing cannot be bounded by any polyno-
nuial in the size of the grammar and input. s An immediate conclusion is that complexity

analysis must be done carefully: despite its similarity to Earley's algorithm, Shieber's algo-

rithm does not have complexity O(IG12 •a 3). For some choices of grammar and input, its

internal structures undergo exponential growth. Other consequences also follow.

7.1. Parsing the object grammar
Even in the face of its combinatorially explosive worst-case behavior, Shieber's algo-

7
1f the vertex cover is sma-ller thl expected, the D-symnbols will soak up the extra contiguous runs that
could have been niatchrd by lore U-symbols.

'Evcn ;. sInniifi P / NP, it does not follo tlat the time complexity nimst be erpmentiaI, though it seems
]ikrly to be. Thrvr ire fmictions such wt lI " that fall between lmlynuonials antl expoiintis. See
Hopci oft iod Ullman (1070:341).

-.

START

U U H, H2 H3 D H4 D D D

a a a a b b b b e c c c d d d d

Figure 4: The grammar of Figure 3, which encodes the vertex-cover problem of Figure 2,
generates the string a = aaaabbbbecccdddd according to this parse tree. The vertex cover
{c, d) can be read off from the parse tree as the set of elements dominated by H-symbols.

rithm should not be immediately cast aside. Despite the fact that it sometimes blows up,
it still has an advantage over the alternative of parsing the expanded "object grammar."
One interpretation of the NP-completeness result is that the general case of ID/LP parsing
is inherently difficult; hence it should not be surprising that Shieber's algorithm for solving
that problem can sometimes suffer from combinatorial explosion. More significant is the fact
that parsing with the expanded CFG blows up in cases that should not be difficult. There
is nothing inherently difficult about parsing the language that consists of all permutations
of the string abode, but while parsing that language the Earley parser can use 24 states or
more to encode what the Shieber parser encodes in only one (§3). To put the point another
way, the significant fact is not that the Shieber parser can blow up; it is that the use of an
expanded CFG blows up unnecessarily.

7.2. Is precompilation possible?

The present reduction of Vertex Cover to ID/LP Parsing involves constructing a gram-
mar and input string that both depend on the problem to be solved. Consequently, the
reduction does not rule out the possibility that through clever programming one might
concentrate most of the computational difficulty of ID/LP parsing into a separate precom-
pilation stage, dependent on the graminar but independent of the input. According to this
optimistic scenario, the entire procedure of preprocessing the grammar and parsing the in-
put string would be as difficult as any NP-complete problem, but after precompilation. the
time required for parsing a particular input would be bounded by a polynomial in grammar

10

size ad sentence length.

Regarding the case immediately at hand, Shieber's modified Earley algorithm has no
preconipilation step." The complexity result implied by the reduction thus applies with
full force; any possible precompilation phase has yet to be proposed. Moreover, it is by no
means clear that a clever prccompilation step is even possible; it depends on exactly how
IG and n enter into the complexity function for ID/LP parsing. If n enters as a factor
multiplying an exponential, precompilation cannot help enough to ensure that the parsing
phase will run in polynomial time.

For example, suppose some parsing problem is known to require 21G, • n$ steps for
solution.1 0 If one is willing to spend, say, 10 • 21G I steps in the precompilation phase, is it
possible to reduce parsing-phase complexity to something like [G15 • n3? The answer is no.
Since by hypothesis it takes at least 21G I n steps to solve the problem, there must be at
least 2:a l. n' - 10. 21- steps left to perform after the precompilation phase. The parameter
n is necessarily absent from the precompilation complexity, hence the term 21I1 . n' will
eventually dominate.

In a related vein, suppose the precompilation step is conversion from ID/LP to CFG
form wnd the runtime step is the use of the Earley parser on the expanded CFG. Although
the precompilation step does a potentially exponential amount of work in producing G'
from G, another exponential factor still shows up at runtime because IG'I in the complexity
bound IG'12 n3 is exponentially larger than the original IG.

7.3. Polynomial-time parsing of a fixed grammar

As noted above, both grammar and input in the current vertex-cover reduction de-
pend on the vertex-cover problem to be solved. The NP-completeness result would be
strengthened if there were a reduction that used the same fixed grammar for all vertex-
cover problems, for it would then be possible to prove that a precompilation phase would
be of little avail. However, unless P = .X P, it is impossible to design such a reduction. Since
grammar size is not considered to be a parameter of a fixed-grammar parsing problem, the
use of the Earley parser on the object grmnmar constitutes a polynomial-time algorithm for
solving the fixed-grammar ID/LP parsing problem.

Although ID/LP parsing for a fixed grammar can thus be done in cubic time, that fact
has little practical significance. The object gramnmar G' corresponding to a practical ID/LP
grammar would be huge, and if I(' 12 • n complexity is too slow, then it remains too slow
when IG'12 is regarded as a constant.

7.4. The power of the UCFG formalism

The Vertex Cover reduction also helps pin down the computational power of the UCFG
formalism. As GI and G, in section 3 illustrated, a UCFG (or an ID/LP grammar) can enjoy

OShicber (1083:15 n. 0) mentions a possible precompilation step, but it is concerned with the LP relation
rather than thee ID niles.

'01t is not known whether the worst-cave complexity of ID/LP parsing is exponential, since more generally
it is not known for sure thit P /)JP.

-11

' .' ...' ¢ ,. ...- ..-. _,-.o' ..- ',',..., ' .-'.,,..,'.-- '-.. ',_,.' ,-,' .-. ' '-.-.'. ' .. , , .. ,.,- -,,... ,-,. -. •,, .

' - " " " " - ,1 t - , I ,,
,' ' ', '

i
' : %

" " "-" " ". "
%

. .' "-' *"
"
"' '"' ' ".

considerable brevity of expression compared to the equivalent CFG. The NP-completeness

result illuminates this property in two ways. First, the result shows tlhat this brevity of
expression is sufficient to allow an instance of any problem in NIP to be stated in a UCFG

that is only polynoinially larger than the original problem instance. In contrast, if an

: atteimpt is made to replicate the current reduction with a CFG rather than UCFG, the

ncessity of spelling out all the orders in which the H-, U-, and D-synibols might appear

mnakes the CFG more than polynoniially larger than the problem instance. Consequently,

the reduction fails to establish NP-completeness, which indeed does not hold. Second,

the result shows that the increased expressive power does not come free; while the CFG

recognition problem can be solved in cubic time or less,11 unless P = NP the gencral UCFG

recognition problem cannot be solved in polynomial time.

The details of the reduction also help pin down how powerful a single UCFG rule can

be. If the UCFG formalism is extended to permit ordinary CFG rules in addition to rules

with unordered expansions, the graninar that expresses a vertex-cover problem needs only

one UCFG rule, although that rule may need to be arbitrarily long.

7.5. The role of constraint
Finally, the disciission of section 5 illustrates the way in which the weakening of con-

straints can often makec a problem computationally more difficult. It might erroneously be

thought that weak constraints represent the best case in comnputationmal terms, for "wea&"
constraints sound easy to verify. However, oftentimes the weakening of constraint multiplies
the number of possibilities that must be considered in the course of solving aproblem. In

the case at hand, the removal of constraints on thme order in which constituents can appear
causes the dependence of parsing complexity on grammar size to grow from IG12 to 2101.

8. Linguistic implications

Significantly, the key ingredients that can cause difficulties for the IDf LP parsing al-
gorithm are not exotically foreign to linguistic theory. Most current formalisms (e.g. GOl-

theory and GPSG) permit the existence of constituents that are empty on the surface; hence

in principle they permit the kind of pathological case illustrated by G3 in section 4, subject

to amielioration by additional constraints. Similarly, a key ingredient of the vertex-cover
reduction is lexical ambiguity -- acknowledged by every current theory.

Nonetheless, the implications of the NP-completeness result for grammatical theory

are fewver thman they might seem. The reduction contributes to the necessary goal of unuder-

standhing the computational power of various mechanisms and formal devices, but it does

not (for instance) rule out the use of fornmalisms that decouple constraints on order from
constraints on linear precedence.

Under the assumiption that natural languages are efficiently parsable, computational
difficulties in parsing a formtalitsm do indicate that the formalism itself does not tell the

I Since O(IGa 2 - n) < ' 0 -t n)
3), the complexity of Earky's algorithm is no worse than cubic iii the

conbj.el length of griunniar and input.

12

• t , . . ,. • P. ,, ' - , . ,- .- - . , . .f,. : ; . . -. .. ,, ..%

.. "

whole story. That is, they point out that the range of possible languages has been incor-
rectly characterized: the additional constraints that guarantee efficient parsability remain
unstated. Since the general case of parsing ID/LP grammars is computationally difficult, if
the linguistically relevant ID/LP granunars are to be efficiently parsable, there must be ad-
ditional factors that guarantee, say, a certain amount of constraint from the LP relation.1 2

(Constraints beyond the hare ID/LP formalism are required on linguistic grounds as well.)
Note that the subset principle of language acquisition (cI. Berwick and Weinberg, 1984:233)
would lead the languagc learner to initially hypothesize strong order constraints, to be weak-
ened only in response to positive evidence.

However, there are other potential ways to guarantee efficient parsability. It might turn
out that the principles and parameters of the best grammatical theory permit languages that
are not efficiently parsable in the worst case - just as grammatical theory permits sentences
that are deeply center-eibedded (Miller and Chomsky, 1963).13 In such a situation, difficult
languages or sentences would not be expected to turn up in general use, precisely bectaue
they would be difficult to process." The factors that guarantee efficient parsability would
not be part of grammatical theory because they would result from extragrammatical factors,
i.e. the resource limitations of the language-processing mechanisms. This "easy way out"
is not automatically available, depending as it does on a detailed account of processing
mechanisms. For example, in the Earley parser, the difficulty of parsing a construction
can vary widely with the amount of lookahead used (if any). Like any other theory, an
explanation based on resource limitations must make the right predictions about which
constructions will be difficult to parse.

In the ,a4e way, the language-acquisition procedure could potentially be the source of
some constraints relevant to efficient parsability. Perhaps not all of the languages permitted
by the principles and parameters of syntactic theory are accessible in the sense that they
can potentially be constructed by the language-acquisition component. It is to be expected
that language-acquisition mechanisms will be subject to various kinds of limitations just
as all other mental mechanisms are. Again, however, concrete conclusions must await a
detailed proposal.

"n the GD-framework of ChomAly (1081), for instance, the syntactic expression of unordered 0-grids at the
X level is constrained by the principles of Case theory. Endocentricity is another significant constraint. See
also Berwick's (1082) discussion of constraints that could be placed on another grammatical formalism -
lxical-functio,id grammar - to avoid a similar intractability result.

13
Indeed, one may not conclude a priori that the languages permitted hy linguistic theory are parsable at all
(Chonalky, 1080).

"It is cften anecdot.dly remarked that languages that allow relatively fret- word order tend to make heavy
,se of jnflectioins. A rich hiflectional system can slpply parsing constraints that make tip for the lack
of ordering cont. raints; thus the situation we do not find is the comnputationaIly difficult cse of weak
constsaint.

I l% %'.'/13

p..

'. - .- Oo % - -% , -. . -. . .- . -.- -. -. • °.

9. Appendix

This appendix contains the details of a careful reduction of the vertex-cover problem to
*the UCFG recognition problem. This version of the reduction establishes that the difficulty

of UCFG recognition is not due either to the possibility of empty constituents (c-rules) or
to the possibility of repeated symbols in rules (i.e. to the use of multisets rather than sets).
Consequently, it is somewhat different from and more complex than the one sketched in the
text.

9.1. Defining unordered context-free grammars

Definition: An unordered CFG (UCFG) is a quadruple (N. E, R, S), where:

(a) N is a finite set of nontermina6.

(b) E disjoint from N is a finite, nonempty set of terminal eymbol.

(c) R is a nonempty set of rules (A, a), where A E N and a E (N U E)*. The rule
(A, a) may be written as A -* a.

(d) S E N is the start symbol.

Convention: The grammar G and Its components N, E, R, S need not be explicitly men.
tioned when clear from context.

Convention: Unless otherwise noted,

(a) A, A', Ai,... denote elements of N;

(b) a,a',ai,... denote elements of E;

(c) X, Y, X', Y', X,, Y,... denote elements of N U E;

(d) o,u,u',ui,... denote elements of E;

(e) a,#, y, o, denote elements of (N U E).

Definition: G = (N, E, R, S) is t-free iff for every (A, a) E R, Jul 0 0.

Definition: G (N, E, R, S) is branching iff for some (A, a) E R, Jal > 1.

Definition: G (N, E, R, S) is duplicate-free iff for every (A, a) E R, a = ... Y. and
for all i,j E [1,n], Y, = Yj if i = j.
Definition: G = (N, E, R, S) is simple iff it is c-free, duplicate-free, and branching.

Note. The notion of a simple UCFG is introduced in order to help pin down the source of
any computational difficulties associated with UCFGs. For example, since simple UCFGs
are restricted to be duplicate-free, a difficulty that arises with simple UCFGs cannot result
from the possibility that a symbol may occur more than once on the right-hand side of a
rule.

Definition: oAOk : vpatk (by r) just in case (for some) r = (A', Y, ... Y.) c R and
G

for s(nne permutation p of [1,n], A = A' and a Y,(i) ... Yp(). If #o E E', also write

soAOb * I, oaOb.

Definition: L(G) = {E E" : S "

14

". . ".- . ,,.-'.". ..•, . -,,•-*-, *".,, . ,- ' .-..•., ' '. - . .,-,' ,.,..,,•,,," .,.. , .,,

e7

ee

V = ,1{ 0,1,lh}

E = {e 1,e2,es,e 4,e 5,ee,e,}
with the ej as indicated

k=3

Figure 5: The triple (V, E, k) is an instance of VERTEX COVER. The set V' v{, X, X) is
a vertex cover of size k = 3.

Definition: An n-step derivation of ib from W is a sequence (9o,...) such that oo = ip,
Won = 4, and for all i E (0,n - 1, i = p+1. If it is also true for all i that Vi :*im Pi+ ,
say that the derivation is leftmost.

9.2. Defining the computational problems

Definition: A possible instance of the problem VERTEX COVER is a triple (V,E,k),

where (V, E) is a finite graph with at least one edge and at least two vertices, k E N, and
Ik < IV .15 VERTEX COVER itself consists of all possible instances (V, E, k) such that for
some V' g V, IV'I < k and for all edges e E E, at least one endpoint of e is in V'. (Figure 5
gives an example of a VERTEX COVER instance.)

Fact: VERTEX COVER is NP-complete. (Garey and Johnson, 1979:46)

Definition: A possible instance of the problent SIMPLE UCFG RECOGNITION is a pair
(G, a), where G is a simple UCFG and a C- E'. SIMPLE UCFG RECOGNITION itself
consists of all possible instances (G, a) such that a E L(G).

Notation: Take 1'-1 to be any reasonable measure of the encoded input length for a com-
putational problem; continue to use H for set cardinality and string length. It is reasonable
to rcquire that if S is a set, k E N, and ISI > k, then 11S1 > IlkII; that is, the encoding of

'"This fonnolatio|, differs trivially from the one cited by Garey and Johnson.

"-'"* 15

* I ...- *'.*-

sit %' % o ' " '* .- **.• * a" ," " - -, °o - . •
" w' m~~a'-m,,t li~l~aJ . r~t.. -, -.- e- , ' .* " " . . . , . "- ," ' ".'". .

numbers is better than unary. It is also reasonable to require that I(... , z,...)I A 2:11.

9.3. The UCFG recognition problem is in NP

Lemma 9.1: Let (poo,..., ph) be a shortest leftmost derivation of pk from po in a branch-
ing c-free UCFG. If k > INI + I then IJoI > lpo I.

Proof. There exists some sequence of rules (A0,ao0),..., (Ak- 1,at-) such that for all
i E [0, k - 1], Vi = -m p i+1 by (Ai,a). Since G is c-free, Joi+d !l oil always.

Case 1. For some i, l > 1. Then oI,+1l > Ipl. Hence Jol > Ipol.

Case 2. For every i, jai, = 1. Thcn there exist u, - such that for every i E [0, k - 2], there
is A E N such that pi+1 = uA-,y. Suppose the A are all distinct. Then INI ?: k - 1,
hence INI + 1 ? k, hence INJ + I > INI + I, which is impossible. Hence for some i,j E
fo,k - 2], i < j, A = A,. Hence pi+I = pj+1, since [1,11 has only one permutation. Then
(po,... ,it ,j+, +t... , o,,) is a leftmost derivation of po from po and has length less than
k, which is also impossible.

Then JIpol > Io1. I]
Corollary 0.2: If G is a branching c-free UCFG and a E L(G) then a has a leftmost
derivation of length at most I -rn, where m = INI + 2.

Proof. Let (..0,....., to) be a shortest leftmost derivation of a from S. Suppose k > 10" M.
Consider the sub-derivations

(fom,...,t,,,M

i (VOlV, lM,..., I o,).

Each one except the last has mn steps and m > INI + . Then by lemma,

-oI-i-rn > Ipo-1-1).mI > "> m> Iol = l

Then I! 1 1 + Jul, which is impossible. Hence k < Il . -.

Lemma 9.3: 11 = SIMPLE UCFG RECOGNITION is in the computational clam NP.

Proof. Let G = (N, E, R,S) be a simple UCFG and a E E '. Consider the following
nondeterininistic algorithm with input (G, a):

Step 1. Write down po0 = S.

Step 2. Perform the following steps for i from 0 to j¢]. m - 1, where m = INI + 2.

(a) Expreess '. as ujAjyj by finding the leftmost nonterminal, or loop if impossible.

(b) Guess a rule (A ,Yj... Y.,)E Rand a permutation pi of [1,k,], or loop if there is

no such rule.

16

J..

(c) Write down i+1- uiYi,,,() ...
I!(d) If pi, I = a then halt.

Step 3. Loop.

It should be apparent that the algorithm runs in time at worst polynomial in II(G, a) 11; note
that the length of Vi increases by at most a constant amount on each iteration.

Assume (G, a) E fl. Then a has a leftmost derivation of length at most la. m by Corol.
lary 9.2; hence the nondeterministic algorithm will be able to gess it and will halt. Con-
versely, suppose the algorithm halts on input (G,a). On the iteration when the algorithm
halts, the sequence (90,..., Vi+) will constitute a leftmost derivation of a from S; hence
a E L(G) and (G,a) E H.

Then there is a nondeterministic algorithm that runs in polynomial time and accepts exactly
11. Hence i E N{P. []

9.4. The UCFG recognition problem is NP-complete

Lemma 9.4: Let (V, E. k) = (V, {ei), k) be a possible instance of VERTEX COVER. Then
it is possible to construct, in time polynomial in IIVII, iJEuJ, and k, a simple UCFG G(V, E, k)
and a string a(V, E, k) such that

S(G(V, E, k),a(,E,k)) E SIMPLE UCFG RECOGNITION
. - iff (V, E, k) E VERTEX COVER. "

Proof. Construct G(V, E, k) as follows. Let the vt N of nonterminals consist of the following
symbols not in V:

START, U, D,
H, for i E [1, I1],
U, for iE [1, JVl - kj,
Di for i E [1, I I"(k - 1)].

It1 will be at worst polynomial in h1ElI, IIVII, and k for a reasonable length measure. Define
the terminal vocabulary E to consist of subscripted symbols as follows:

E = (ai:a E V,i E 11, JE1}.

Designate START as the start symbol. Include the following as members of the rule set R:

(a) Include the rule

START -, H ... HISJUI .. . UjVI-kDj ... Djsj.(- .) .

(b) For each ei E E, include the rules

{H -- a,: a an endpoint of ei}.

17

So

START -. H1 2HsHHseHTUI U2D 1DDsD4DDD7DDDoD11 D1 2 D1 sDI4

H, -. vi w, H2 - v2 IV2 HI - W3 X

H4 - w.Iz4 Hr " * 5 Yl5s He *- Velz.
H7 - 571XT

U -U U2 - U Us U
U4 -- U

U - 1Vt 31V4 V5VGV 7 WIW 2 W3Wt4 V5W6W7 Z1Z2Zs8ZZ5ZGz2f

" YtY2Y3Y4YSY6Y? 7 Zrl2ZSZ4ZSXSgZ

./.D, D D2 - D D3 -- D

D4 - D D5 D Do D
D7 D Do, -. D D - D

- D1o D D11 - D D12-' D

D -. D D4- D

D -. V2 IVIs 14 I"5 Ive5 V II W , IW 1WW4 WS W, I
I 2 X131Z4 XO I 6 I XT Y1iY2 1Y31Y41Y5 1Y6117

Figure 6: The construction of Lemma 9.4 produces this grammar when applied to the
VERTEX COVER problem of Figure 5. The H-symbols ensure that the solution that is
found must hit each of the edges, while the U-symbols ensure that enough elements of V
remain untouched to satisfy the requirement IV'I _< k. The D-symbols are dummies that
absorb excess input symbols. A shorter grammar than this will suffice if the grammar is
not required to be duplicate-free.

(c) For each i E 1, IV I - k], include the rule U, - U. Also include the rules

{U- a ... ajlE: a E V).

(d) For each i E [1, IEI" (k - 1)], include the rule D, -- D. Also include the rules

(D -- .a: a E E).

Take G(V, E, k) to be (N, S,R, START). (Figure 6 shows the result of applying this con-
struction to the VERTEX COVER instance of Figure 5.)

%18

4 :"""<" " '; "" ' "'. ""..""", ;''""" "." " " :": " -"' .'

L

Let h [1, IV] -* V be some standard enumeration of the elements of V. Construct
a(V, E, k) as h(1), ... h(l)IE, ... h(IVI), ... h(IVI)EI; thus a(V, E, k) will have length IE"
IVI.
It is easy to see that II(G(VE,k),a(VE,k))ii will be at worst polynomial in iEu, [IVII,
and k for reasonable 11.11. It will also be possible to construct the grammar and string in
polynomial time. Finally, note that given the definition of a possible instance of VERTEX
COVER, the grammar will be branching, e-free, and duplicate-free, hence simple.

Now suppose (V, E, k) E VERTEX COVER. Then there exist V' C V and f : E - V' such
that IV'I < k wnd for every e E E, f(e) is an endpoint of e. E is nonempty by hypothesis
and V' must hit every edge, hence iV'i cannot be zero. Construct a parse tree for a(V, E,k)
according to G(V, E, k) as follows.

Step 1. Number the elements of V - V' as {z: i E [1,IV - V'i]). For each zi where
i < lVI - k, construct a node dominating the substring (z2)i ... (zx)lr 1 of a(VE,k) and
label it U. Then construct a node dominating only the U-node and label it U(. Note that
the available symbols U, are numbered from 1 to IVi - k, so it is impossible to run out of
U-symbols. Also, IV'I !5 k and V' C V, hence IV - V'I _< IVI - k, so all of the U-symbols
will be used. Finally, note that U -- a, ... ale i is a rule for any a E S and that U, --+ U is
a rule for any U,.

Step 2. For each ej E E, construct a node dominating the (unique) occurrence of 1(ei)i in
a (V, E, k) and label it Hi. Step 2 cannot conflict with step I because f(e,) E V', hence

- f f(e,) V V - V'. Different parts of step 2 cannot conflict with each other because each one
affects a symbol with a different subscript. Also note that f(ej) is an endpoint of ej and
that Hi -* ai is a rule for any ej E E and a an endpoint of ei.

Step 3. Number all occurrences of terminals in or(V, E, k) that were not attached in step I
or step 2. For the ith such occurrence, construct a node dominating the occurrence and
label it D. Then construct another node &niinating the D-node and label it Di. Note
that the stock of D-symbols runs from 1 to (k - 1) . iEi. Exactly (IVI - k). El symbols
of a(V, E, k) were accounted for in step 1. Also, exactly lEl symbols were accounted for in
step 2. The length of a (V, E, k) is IVI• I EI, hence exactly

IVI.iEI-(IVI-k).IEi)-IEi = iVi.IEi-iV . EI+k.iEI-i B I

= (k-1).JEI

symbols remain at the beginning of step 3. D --* a is a rule for any a E E; Di -- D is a
rule for any Di.

Step 4. Finally, construct a node labeled START that dominates all of the Hi, U1, and Di
nodes constructed in steps 1, 2, and 3. The rule

" START -- H, ... HjEjU ... Uiv 1-. Dl ... DIEI.(k-1)

is in the grammar. Note also that nodes labeled Ht,..., HIE were constructed in step 2,
nodes labeled U...., Uj'1 - were constructed in step 1. and nodes labeled D ,..., D E;.(h-)
were constructed in step 3. Hence the application of the rule is in accord with the grammar.

.. S..- .

START

:: '7 . /

HI H2 DID2D3 D4 Ds U, DeD7 H3DsHsDD 1 o U2 DjLDjsD1sH 4Dj4 HeH,

DDDDD U DD D D P U D D D D

VI V2 W3 V VG VI WIJjIUW3W4W 51gW7 Z ! Z3 Z 34 X5 ZG Z? Y37 P1 4 0Y6IIS SI L Z2 84 4 17

Figure 7: This parse tree shows how the grammar shown in Figure 6 can generate the string
(V. E, k) constructed in Lemma 9.4 for the VERTEX COVER problem of Figure 5. The

correspouding VERTEX COVER solution V' = {v, z, z) and its intersection with the edges
cat be read off by noticing which terminals the H-symbols dominate.

20

-. .* -* -- t ..-

Then a(V, E, k) E L(G). (Figure 7 illustrates the application of this parse-tree construction

procedure to the grammar and input string derived from the VERTEX COVER example
in Figure 5.)

Conversely, suppose a(V, E, k) E L(G). Then the derivation of o(V, E, k) from START

must begin with the application of the rule

START - HL... H EJUI ... Ujv1-kDt ... DIs1.(k-1)

and each Hi must later be expanded as some subscripted terminal g(Hi). Define f(ei) to

be g(Hi) without the subscript; then by construction of the grammar, f(ei) is an endpoint

of ei for all ei E E. Define V' = {f(e,): ei E E}; then it is apparent that V' C V and that

V' contains at least one endpoint of ei for all ei E E. Also, each Ui for i E (1, IVI - k]

must be expanded as U, then as some substring (ai), ... (ai)E of o(V, E,k). 1 Since the

sulbstrings dominated by the Hi and Ui must all he disjoint, and since there are only IE
subscripted occurrences of any single symbol from V in a(V, E, k), there must be IVi - k

distinct elements of V that are not dominated in any of their subscripted versions by any

Hi. Then IV - V' I Ivi - k. Since in addition V _ V', IV'l < k. Then (V,E,k) E
VERTEX COVER. [

Theorem 1: SIMPLE UCFG RECOGNITION is NP-complete.

Proof. SIMPLE UCFG RECOGNITION is in the class NP by Lemma 9.3, hence a poly-

*u@ nomial-time reduction of VERTEX COVER to SIMPLE UCFG RECOGNITION is suffi-

cient. Let (V, E, k) be a possible instance of VERTEX COVER. Let G be G(V, E, k) and a
be ar(V, E, k) as constructed in Lemma 9.4. Note that G is simple.

The construction of G and o, can, by lemma, be carried out at time at worst polyno-

mial in hEll, IVII, and k. Also by lemma, (G,a) E SIMPLE UCFG RECOGNITION
iff (V, E, k) E VERTEX COVER. k is not polynomial in lIkII under a reasonable encoding
shene. However, JEJ > k, hence IhEII -> Ilklk; also II(V, E, k)ll IEil, hence II(V, E, k)ll -k,
all by properties assumed to hold of I111. Then G and a can in fact be constructed in time

at worst polynomial in 11(V, E, k)11.

Ilence the VERTEX COVER problem is polynomial-time reduced to SIMPLE UCFG

RECOGNITION. fl

e'the grmnmar would allow the substrihg (as)b ... (a, to apipear In any pernmtation, but in o(VE, k)

it alpears only in the indicated order.

21

. %

7777
.

10. References

Barton, E. (1984). "Toward a Principle-Based Parser," A.I. Memo No. 788, M.I.T. Artificial
Intelligence Laboratory, Cambridge, Mass.

lBerwick, R. (1982). "Computational Complexity and Lexical-Functional Grammar," Amer.
ican Journal of Computational Linguistics 8.3-4:97-109.

Berwick, R., and A. Weinberg (1984). The Grammatical Basis of Linguistic Performance.
Cambridge, Mass.: M.I.T. Press.

Chomsky, N. (1980). Rules and Representation. New York: Columbia University Press.

Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht, Holland: Fori
Publications.

Earley, J. (1970). "An Efficient Context-Free Parsing Algorithm," Comm. ACM 13.2:94-
102.

Garey, M., and D. Johnson (1979). Computers and Intractability. San Francisco: W. H. Free-
man and Co.

Hopcroft, J., and J. Ullman (1979). Introduction to Automata Theory, Languages, and
Computation. Reading, Massachusetts: Addison-Wesley.

Miller, G., and N. Chomsky (1963). "Finitary Models of Language Users," in R. D. Luce, R.
R. Bush, and E. Galanter, eds., Handbook of Mathematical Psychology, vol. II, 419-492.
New York: John Wiley and Sons, Inc.

Shieber, S. (1983). "Direct Parsing of ID/LP Grammars." Technical Report 291R, SRI
International, Menlo Park, California. Also appears in Linguistics and Philosophy 7:2.

22

FILMED

9-85

DTIC

