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ABSTRACT

A pre-stack inversion algorithm is developed for acoustic Kirchhoff,
high-frequency, common offset data. Given the velocity above a reflector,

the interface is located and an angularly-dependent reflectiom coefficient

is computed at each reflection point. A quick post-processing step thenm
calculates the velocity of the lower medium. Latersl velocity variations in
the second layer are naturally recovered since each reflectiom point
provides an independent measure of the reflection coefficient. The
inversion is performed as a mapping where the response to subsurface test
points is examined by an integration over the data. If a test point is on
the reflector, the reflection coefficient is returned.

Inversion and migratiom operstors both utilize an integral over the
data, with each trace in the summation weighted by an amplitude and a phase
term. Here, knowledge of an appropriate inversion phase term is gained from
a8 Kirchhoff, high-frequency, forward model. To determine the correct
inversion amplitude term, Kirchhoff data for & general surface, in integral
form, are entered into the inversion operator. The resulting integral is
evaloated vie the asymptotic method of 4-dimensional stationary phase. An
amplitude term is then chosen so that the inversion operator produces a
singular function of support on the reflector, weighted by the reflection
coefficient.

The Kirchhoff offset inversion is first formulated for data acquired
over s plane, producing a 3-D reflectivity map. Since data are commonly
collected along a single line, a 2.5-D specialization is also developed. A
method for determining the velocity of the lower medium from am angularly-

dependent reflection coefficient is then detailed for the 2.5-D case.
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E GLOSS ARY
) A partial derivative matrix of phase function (22)
; B(m.t,r »¢) inversion amplitude function (14)
E ¢ n compressional velocity (1)
y d offset variable (B-10)
gle,r, ") free space Green’s fonction (3)
; g'(x) slope of 2.5-D inversion output interface (58)
n . source-receiver midpoint location (13)
[ unit normal vector to reflecting surface (7)
r=(xy,z) cartesians (2)
5' = (x'.y'.z') test point location (14)
rt source location (2)
I3 receiver location (3)
] angularly~-dependent reflection coefficient (6)
: et sonrce-reflector distance (16)
; L reflector-receiver distance (16)
R’ source-test point distance (13)
g R’ test point-receiver distamce (13)
Py t1r &y tangent vectors to reflecting surface (18)
: Uylw,m) Kirchhoff observed field , midpoint coodimates (15)
U'(u.g) observed scattered field , midpoint coordinates(13)
U, (w,t) backscattered field (44)
: U,(w.g.g*) scattered field due to source at ' (2)
U (w7, ") observed scattered field (5)
t = (%n0) cartesiasns for backscatter observation point (44)
5 Dirak delta function (3)
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phase function (24)

sbbreviation, see (12)

coordinates parsmeterizing reflecting surface (16)

circular frequency (1)
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INTRODUCTION

An inversion method for acoastic pre-stack data provides a means for
determining subsaurface reflectivity from common shot, common receiver, or
common offset time sections. In exploratiom for hydrocarbons, the areas of
greatest interest are those where the geology is the most complicated. As
the complexity of the subsurface increases, the validity of the stacked
section as an interpretable depth picture decreases. By imverting pre-stack
data, a depth reflectivity profile is obtained from esch time record.

In all pre-stack methods the reflection coefficient produced is for
non-normal incidence. In common shot or common receiver gathers, as the
shot-receiver sepacation increases, 30 does the angle of the reflected
energy. Inversion therefore yields the reflection coefficients as a
fanction of angle, and, with further processing, in a constant density
environment, determines velocities below the reflector. Analogously,
processing angolarly-dependent reflection coefficient data, where velocities
are known, recovers densities. Common offset dats dictate less angular
o variation of the reflection coefficient since the separation between source
and receiver is fixed at the same constant distance for each experiment.

An important consideration in the selection of an imversion data set is
the surface acquisition area. The larger the data collection zonme, the
greater the delineated portion of the subsurface reflector. In this paper,

the development presented is for the inversion of common offset data, for

4 the purpose of recovering sub-reflector velocities. This data set often
- contains the grestest number of traces, with the largest areal coverage.
2 Inherent in the definition of amy inverse process is an assumption of a

specific forward modeling process. Kirchhoff, high-frequency, non-zero
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offset modeling for a single arbitrary surface provides the basis of the
inversion developed here. Given the compressional wave speed of the first
mediom, the wave field effects produced by this Kirchhoff data are inverted
exactly to yield the interface 1location and an angularly-dependent
reflection coefficient. Each point on the interface has a anique reflection
coefficient as a function of angle. Since the offset between the source and
receiver is constant for each trace, the incident angle of the energy to
each reflection point is determined, and the velocity of the next layer is
then computed. With each reflection point independently providing the
velocity in the second layer, 1lateral velocity varistions beneath the
relector are maturally recovered.

As with migration, inversion is performed by a summation of traces,
each weighted by a phase and an amplitode term. The inversion phase term is
of opposite sign to the phase used in the Kirchhoff forward model. The
amplitude term is an onknown, and is determined by inverting Kirchhoff dats,
in integral form, from an arbitrary surface. By employing the asymptotic
method of 4-dimensional stationary phase, the inversion operator, acting on
high-frequency Kirchhoff data, is evaluated. The unknown amplitude function
is then selected so that the inversion yields a singular function with
support on the reflector, weighted by the reflection coefficient.

The Kirchhoff offset inversion process is intuitively similar to
migration, as described by Schneider (1978). The location of a test point
is input, and if this test point is on the reflector, the valone of the
reflection coefficient is returned. For each test point an integral is
performed over the common offset traces, with each trace weighted
geometrically. The weighted traces add constructively when the position of

the test point coincides with the reflecting sorface. Since dats are not

IR
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available st all frequencies, and at all points on the acquisition plane, a
band-limited and aperture-limited singular function delineation of the
refloctor is prodaced, =s demonstrated by Bleistein, Cohen, and Hagin
(198S).

The inversion is exact for Kirchhoff, high-frequency data from a single
interface. Approximate solutions may be obtained in multi-layer problems by
a single pass method or by a layer stripping technique. The accoracy of
single pass molti-layer inversion is dependent on the input velocity
information, while the error in layer stripping inversion is a faonction of
the ability to downward continue the wave field, preserving amplituodes.
Neither method is developed here, however, for completeness, both are
described in the context of the derived inversion algorithm.

The ianversion algorithm is first formulated for 3-dimensional data sets
in which scquisition is over a planme. For this data base, the position of an
arbitrary 3-D intecface is recovered, along with an angularly-dependent
reflection coefficient at each reflection point.

The algorithm is then developed for the 2.5-D case, where data are
scquired only slong a line. This 2.5-D approximation assumes invariance of
geologic structure in the off-line direction, thereby introducing =
cylindrical symmetry to the problem. For the 2.5-D specializstion, a
technique is presented for recovering the velocity of the second layer,
given a reflection coefficient from the inversion.

Since the forward model is of such fundamental importance to the

inversion development, & <complete Kirchhoff, bigh-frequency modeling

derivation preceeds the inversion formulation.




KIRQENOFF, NIGH-FRBQUENCY, NON-ZERO OFFSET MODELING

For the purposes of inversion and simulstion of pre-stack data, &
forward modeling procedure is required. The Kirchhoff integral method is
chosen since it is embedded in wave theory and, as such, produces wave field
effects. The development presented here is suited to the modeling of common
source, common receiver, or common offset gathers. Of particolar interest

to the inversion of the next section are data acquired with a constant

offset between the source and receiver. The inversion is exact with respect

to this Kirchhoff forward model representstion.

A high-frequency assumption underlies the forward modeling and
inversion theory. The choice of a suitably high frequency is a function of
both a distance parameter of the problem, and the velocity of the mediom.
By assuming that all frequencies of the data are greater than this minimum
high frequency, asymptotic evaluations are justified. The distance
parameter, r, may be the minimum depth to the reflectors of interest or a
"typical® radios of curvature of a reflecting feature. To provide a

reasonsble approximation, the following relationship must be satisfied:

20c/c >> 1

where the 2, appearing in equation (1), corresponds to the 2-way travel time
of the forward or inverse problem.

For example, if the depth to the reflector is 500 feet in a medium with
a compressional wave speed of 10,000 ft/sec, any frequency above S Hz is

considered suitable since the amplitude error at the low end (5 Hz) of the

RS A
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frequency spectrum is only a few percent.

The subsequent derivation yields the high-frequency Kirchhoff
representstion »f the wave field reflected from an arbitrary surface.In each
experiment the source is offset from the receiver. For modeling purposes,

this experiment is repeated slong the surface to generate a time section of

common offset traces.

The scattered field has its somrces on the reflector and is thus

governed by the homogeneous wave equation with iphomogeneous boundary

conditions:

V’Us(m.5,5+) =0 . (2)

The two spatial variasbles of the srgument of Ug in equation (2) indicate

that the recorded value of the scattered field, U, at snmy point ¢ is o
function of the souwrce position £+. Since the scattered field is recorded
at only ome receiver location, £, per experiment, a sifting operation is
performed on the variable r of equation (2).

For the purpose of sifting under a volume integral, a second wave

equation is introduced:

Vslwr,e) + o'/ glonr) = -8r-g) . (3)

The solution, glw,r,£7), is a free space Green’'s function which describes the
propsagation of a point soorce from the location r , toward any point f£.

Reciprocity permits r and £ to switch places, providing another
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representation of equation (3):

Velo, e, 0) +otc’ glac ) =-8le -1) . (4)

The physical situation is now that of s wave traveling from any point source
location, r, toward a receiver location, g—. In a volume integral context,
equation (4) describes a sifting function at the receiver location, and
propagates energy from a reflector to the receiver.

*)

The wave field due to a source at 5+ and a receiver at r, Us(m.g—.g

»

is obtained in the following manner: multiply equation (2) by g(w,r",r) and
equation (4) by U‘(w,g.;+). subtract one result from the other, integrate
over 8 volume of space bounded by the reflector which contains the source

and receiver points, and apply Green's second theorem. This yields

- + + 33(@. Eq., E) _ GU'(O). Es £+)
U'(w.g g = s U (o, £,z ) T -slor, ) —ae— . (5)

where the normal vector is pointing inward, and the closed surface is
composed of two parts: the reflector truncated at its intersection by a
large hemisphere having its base on the reflector.

The scattered field is given exactly by equation (5) as a function of
frequency, and source and receiver location. To compute Us(m,g'.g+). the
scattered field and its normal derivative on the reflector are needed.

An approximate solution for the scattered field near the reflector, due

to an incident point source, has the following form:

.................
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expl(iw/ec) |r - g+|]

U.(u.g._t_' ) ~R ’ (6)

anle - £

where R is the geometrical  optics, angularly-dependent tefléction
coefficient. A derivation of this high-frequency reflection coefficient is
presented in Appendix A. The derivation follows that of Bleistein (1984)
and is included for the reader’s convenience.

The high-frequency approximation of the normal derivative of the

scattered field is given by

30 (o, £, 5+) expl(io/c) |r - 5+|l

+
' ~ - (iw/e) (V|r - ¢ |'B) R - .
anfc - £ |
The free space Green's function solution to equation (4) is
- expliu/c) £ - £l
glo,r ,r) = - ’ (8)
anle” - |
and for high frequencies its normal derivative is approximated by
aglw, tr , 1) - expl(io/e) fe - £f]

— " (io/c) (V] - £|'D) . (9)

anjr - £l

Employing the Sommerfeld radiation condition, the integration over the

CR G SVl 2 G a i A e g el A
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hemisphere is neglected. A high frequency spproximation for the scattered

field is now obtained from equation (5):

“s(ﬂot » L ) ~
expl(in/c) |t - g+|l _ expl(io/c) g - g
das (R < (1a/c)(V]|z - cl®) -
anle - | anle - |
expl(ia/c) e - e} + expl(iw/c) |r - 5+|]
+ R — (10/c) (V| - £ |-B) T .(10)
anlr” - £ dnfz - |

After evaluating the gradient terms, the scattered field due to am offset

source-receiver experiment is written as

+ -
_ _explie/e)l e~ |+ jc -] N

LUNCH 4 .5+) ~ 1o < l];s BRIy + v o » (1)
16 le-elle-¢

where

t
+ 1 + (E-E).a
Yy =+ ;-(V'g - | =+ —_— . (12)
elr - £

Equation (11) provides a high-frequency Kirchhoff wave field response
for non-zero offset modeling. For each source-receiver geometry, a surface
integration prodaces & single trace. Time sections are then constructed by

moving the source and/or receiver in the desired fashion.




3-D INVERSION OPERATOR DEVELOPMENT

An inversion operator is developed for application on pre-stack common
offset data, producing a suobsurfsce map of the reflector, along with its
reflection coefficients. In general, a reflector is delineated by examining
the operstor respoanse of many different subsurface test points. For each
test point an integral is performed over the data acquisition sarface, with
each differential contribution of the integral corresponding to a
goometrically weighted trace. When a test point is on the reflector, an
sngularly-dependent reflection coefficient is ountput. The velocity below
eack reflection point is then determined by & quick post-inversion
processing step. Spatial and temporal sampling combined with finite
acquisition area and recording time dictate a band-limited and apertunre-
limited singular function representation of the interface. The peak
smplitude occurs on the reflector and is proportional to the reflection
strength.

The inversion operator that is derived has the following form:

V(O (am)] = ”d-’m.-.n'*.a").xpu-wem'*+ R'7)I0, (em) = 8(s) B .(13)

The frequenocy domain version of the input date is represeated by U'(u.!).
with the vector m parameterizing the midpoint associated with each
experiment. Rt is the distance b.tween the source and the test point, and
R'™ is the distance from the test point to the receiver. The singular

funotion, B(s), acts when the differemce between the test point position end
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the true reflection position equals zero. Figure 1 illustrates the
parameters of the problem, with variable definitions provided in Table 1.
The derivation of the forward modeling equation provides insight as to
the form of the inversion operator. In the forward problem, each trace is
viewed as a weighted sum of image sources on a reflector. Thus, inversion
of forward dats to determine the interface location must involve a weighted
sum of the recorded surface traces. Also, the ides of propsagating back to
sources, in migration or inversion, necessitates an inverse phase term.

Witk this in mind, an educated guess of the inversion operator is made:

VIO, (e,m)] = “a-’ jau (-10)B(m £, £, ) oxpl(-10/e) (R'" + B'7)ID_(w,m) . (14)

vhere B(m, !.5'.0) is an unknown function containing whatever terms were left
oat of the guess. This ankrown function is determined by substituting in
known amalytic Kirchhoff data, Uk(u.!). for s single interface in integral
form, and then requiring that the following inversion goal be realized

asymptotically:

VIO (e,m)] = 8(s) R . (1%)

Upon inserting the Kirchhoff dats of equation (11) imto the inversion

operator definéd in equation (14), the following relationship is obtained:




WO, (wm)] = B(s) & =

+ -
1 [[dﬂz lldoz l‘dﬁ) [ﬁ)z ‘; B(!} £, E'! c) BLY_T:_Z-—]-

16x2 g R

. GXP[(iwlc)[(R+ +R) - (@' n")1]] . (16)

Note that the differential surface element of equation (11) is

functionally represented as

s = 5 do 4o, (17

where 6y, ©5 sre the corvilinear coordinates that parameterize the
reflecting surface., With ty defined as the tangent vector to curves of

constant o,, and t, dofined as the tangent vector to constsnt oy curves,

\: - I, =g . (18)

The integral in equation (16) is evaluated via the asymptotic method of
stationary phase. Since the forward model is a high-frequency Kirchhoff
representation, there is no further sssumption necessary at this point. In
particalar, the integrals over ¢ and m are performed by 4-dimensional
stationary phase, with the integral over © providing the singular functiom
of arclength along a curve normal to the reflector. The unknowan function,

B(g.g.g'.c) is then chosen such that the relationship in equation (16) is
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obtsined:

VIO, (0,m)] = 8(s) R . (18)

Given an integral of the form

I{(a) = [f(_x_) expliap(x)] dx » 2= (x, X5 X3, °*% x) ’ (19)

containing a point at which the phase p(x) is stationary, the asymptotic

ropresontation for large @ is given by:

n
- expliap(x ) + i(sgn A)n/4]
1 ~ B gy g . (20)

lldot Al

The point of statiomarity, x,, is determimed by the condition:

Velzy) =0 . (21)

The matrix A, at the stationary point, is defined as

2
2 p(xy)
Ajx = ox; 9z, bE=123 0. (22)
and
sgn A =2r - m . (23)

where r is the number of positive eigenvalues of A, m is the order of the

-12 -
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matrix, and m-r is the number of negative eigenvrlues. The differemce in
the number of positive and negative eigenvalues is therefore equal to sgn A.
It is shown in Appendix C that no eigenvalues are equal to zero on the
reflector for the Kirchhoff inversion problem. Since det A eoquals the
product of the eigenvalues, an eigenvalue of zero would nullify the validity
of the simple stationmary point asymptotic integral representation of
equation (20).

For the statioanary phase evaluation of equation (16), the phase is

taken as

$(x) = [ [n* + a‘] - [a"' +8' ] ] , (24)

and the formal large parameter is w/c. The stationary point of the phase is

located where the following four statiomary conditions are satisfied:

% _0 ., i-1,2 (25)
do,
i
and
)
F%” 0 N i=1.2 . (26)

Details concerning the derivation of each partial derivative in the
stationary conditions and in the matrix A are provided in Appendix B.

The conditions of stationmarity of the phase are as follows:
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[ + -
' 3{_1- 0 impties  B* . <8 . a2, (27)
'- - g -ap] - oy v ap -]

% .0  implies [ S W W S W S WS P

a-i R+ 'S

Yy — e mad . (28)

Equation (27) is s form of Snell's law which reaffirms that important

contributions from the integral come from specular points.

The matrix A is expressed as >
az} 32!
aoi Bcj aci a-j :
A =
) 2%y
a-i aaj 3li a-j J
’ (29)

¢ o o w o o

where each partial derivative is a 2-by-2 matrix.
In the asymptotic ovaluation of the integral, the determinmant of A must ;
be calculated. As is subsequently demonstrated, the delta function of d
2 equation (16) acts as R"t approaches It. thereby simplifying the
calculations. This 1is anslogoas to the test point approaching the
’ reflection spot. From Appendix B, it is seen that when k': - It.
3




........

Therefore, in caloolating the determinant only those terms which do mnot 3

vanish are included, yielding

2
lldot Al = ldet 3;2-5;- I i=1,2, j=1,2 . (31)
i)

It can be demonstrated from equation (B-29) that

+2 -2 _Bt. B
J‘;::‘;‘ - (" + 8" )(n +ehHa -8 . B ] (32)
*e? |8 - 1)

With sgn A shown to be ogual to zero in Appendix C, the sasymptotic

evaluation of equation (16) is written as "]
YO (s,m)] = &(s) R =

°2 B(g.g.g'.c) R [7+ + v1 (n* I_)2 |§* - §-| :

sz sy s -8

. l;- explis/e)[(RT + 27) - (' + ']} . (33)

A fow comments are now required to describe the nature of the function

8(s). In a 1-dimensional example, 8[p(t)] is given as

e 2t . .
......
o' -

- -
AR
IR N A ) ‘F



s[m)] - s[.t] - 3-7-_2_’!_,-[ 8(t) = 'I%T O (34)
3t

Equation (34) specifies that as t approaches zero, 8[p(t)] approaches s

spike, weighted by 1/|u|. An unveighted delta fumction is therefore

represented as
Ii%‘—’-| sfpe] =8 (35)

In the 3-dimensional inversion problem, the unknown function,
B(!.g.g'.c). is obtained such that the inversion operator produces a
singular function scaled only by the reflection coefficient. The weighting

due to the argument of

+ - '+ ‘-
sto) = st + &) - @'t v ') (36)

must therefore be accounted for. The singular function of equation (36)
scts ss the test point approaches the reflector aslong a curve normal to the

reflecting surface. The weighting factor is 9¢/9n, and an unweighted

singnlar function, 8(s), is thns determined:
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(37)

with the variable s denoting arc length.
It must now be shown that there is only one point at which the delta
+ +
function acts, where R™ = g'-. The stationary phase conditions from the

integration over the data acquisition surface are rewritten as

+ -
sin 91 + sgin Oi

sin o;" + sin 0" (38)

and

sin 9+ + sin O, sin 0'+ + sin 0'+

3 J J 3 !

(39)

with the equations associated with constant y and constant x planes,

~
z respoctively. Figure 2 illustrates the constant y case, with the angles
N measured connterclockwise from the vertical, and the vectors, gti and giti.
o defined as projections onto the plane. Note that if the test point is to
N the left of the reflection poinmt, sin °'+i < sin 0*1 and sin 0'—1 ¢ sin 07,
- thereby violating the stationary condition represemtation of equation (38).
Similarly, the test point cannot be to the right of the reflection point.
It most therefore be inside or on the border of the triangle bouonded by !+i
and !—i‘ An analogous argoment in the constant x plane projection indicates
that the test point lies inside or on the border of a rectangular cone with
i an apex at (x,y,2), and vertices of (my~d;,my+d,,0), (my~dy,my~d,y,0),
" (my+dy,my~dy, 0), snd (my+dy,my+dy, 0). Finally, equality of distances within h
o 'y
4 :
= - 11 - 3
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the srgument of the delta function requires that the test poinmt coincide

with the reflection point for the delta fumction to act.

In order to solve for the unknmown function, B(!.g.s'.c). the integral

over frequency is rewritten in the following form:

l;u exp[uu/c)[(n+ +8) -+ n")]] = ancslr* +27) - 8+’ D)]

= nc&(s)!g+ -‘ﬁ-l ) (40)
(1 -R *R)

Noting that

- ad
PO 11 NN M VR (41)
c|R - R |

the values of the unknown function is now obtained as

2+ s -8B

d(!.g.g'. c) = - - — .
ne? (0% 07)? |8 - £

(42)

Inserting this function into equation (14), the general 3-D Kirchhoff

pre-stack inversion formula is produced:
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YU (wm)] ~ 8(s) B ~

’ '+ [ 142 ' 22 _ 804 . a8
_gz_”d-z [dum(n + R )(R + R ){2(1 R R )

el @ el

expl(-io/c) (&' + &' IV (wm) . (43)

Since the singular function acts when the test point is on the
reflector, Ri is replaced by R'i. The angolarly-dependent reflection
coefficient and the location of the interface are therefore determined by
employing equation (43) on common offset data. Within a depth zonme of
interest, the response of each test point is determined. If the input point
is on the interface, the reflection coefficient is returned. Each
differential contribution of the surface integral is a geometrically
weighted common offset trace in the frequency domain. The spatial range of
integration is reduced by estimating the maximom dip of the reflector.

The 3-D backscatter inversion result is obtained as & special case when

+ (54
the offset, d, equals zero (R™ =R ~):

' 2
l[U’(m.g)] = gié-llééI ];» @ exp(—21m3'+/c),0 (0, ) = 8(s) B . (44)
ne R

This checks with the backscatter result of Bleistein, Cohen, and Hagin
(1985). In particular, after an integration by parts is performed on

equation (42) of Bleistein, et al (1985), equation (44), above, is obtained.

The necessary integration by parts is described in 3leistein, et al (1985)

in transforming equation (26) to equation (27). %




Extensions of the method to the more realistic case of a multi-layered
earth are possible. One approach is that of layer stripping in which one
*major” reflector is inverted for with each pass through the algorithm.
Given the velocity of the uppermost layer, the initiasl inversion produces
the location of the shallowest reflector and the velocity of the next layer.
The wave field is then downward continoed from the acquisition sorface to
the initial reflector with & procedore such as that demonstrated by
Berryhill (1984). This initial reflector then acts as the acquisition
surface and another inversion is completed. Problems still to be addressed
in this procedure include that of amplitude preservation during the downward
continuation, and the recognition of "suitable” leyers. An alternate
approach calls for a single pass through the algorithm. For this technique,
the velocity employed at each differential integration comtribution varies,
corresponding to velocities along raypaths connecting each test point to
source and receiver positions. A velocity profile is therefore required as

input to a single pass multi-layer Kirchhoff inversion.

Chi S o




2.5-D INVERSION OPERATOR SPECIALIZATION -

In those cases where data collection is slong a single lime, a oric: -
solution to the inverse problem is not possible unless off-line reflector

information is known. An assumption commonly made is that the direction of

FRC R AT

data acquisition represents the direction of subsurface geologic variation.

This introdaces a cylindrical symmetry to the problem, indicating that all

B

parallel data lines would prodace an identical time section., Under this

2.5-D assumption, the inversion double integral cam be specislized to =&

single spatial integration along the data collection line. The integral in

the off-line, invariant direction is performed by the asymptotic method of R
- 1-dimensional stationary phase.
For the 2.5-D simplification, the data are taken along a line in which "

the my coordinate varies, and the m, coordinate is fixed. The reflector is .

thus assumed to be a function of x only. Snell's law for this cylindrical

. sarface dictates that the y-value of all specular reflection points is

identical. Analogously, in the inversion operator, the important part of

P AT R A R

the ®, integration (the stationsry point) is the part directly over the
specular reflection linme,
With dsts collected slong s lime of constant m), sn integral of the

following form is considered:

I(a) = Idnz f(nz) exp[iaﬁ(-z)] . (45)

- The asymptotic representation for large a is




’ 1,2 ’ ] ’
I(a) ~ £(y") [—’—"-] expliaply’) + ilsgn p"(y')] /4 (sgn @)}, (46)
|c¢ (y )l

where y' is the stationary point.

In the particular case of equation (43), the phase is

py) ="+’ (41
and the stationary point satisfies
[ ' 1 1
= (- -y ) —-;-— + —:] = 0 » (‘8)
3% 2 [n * o

ie. my, = y‘. The second derivative of the phase and its sign at the

stationary point are also required for the evaluation of the m, integral:

" 0 ’ 1 1 1 1
9 Iy -3-—2[‘-2 i 4 )[F + —-;-:]] '- [—: +-—'—:] ) (49)

and

sgn ¢'|yl = +1 . (50)

With the above information, the 2.5-D Kirchhoff inversion operator is

e e T e T i D D o e e T
g "\-."' G v S S T e e N T e e e
- - oam . - . -
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written as

L iz @*+ 'yt 0’
'[U'(U.ll)] ;:i [;.1 l;w © P

(R R )

1/2
« oxplt-1wie) (' + 8"T) + (inl4)szn(-u/c)][ o 1’“ T . (51)
I

o = (sgn o) |o| = |ojexpl(in/2) -(in/2)(sgn w))

=i |w]expl-(in/2) (sgn w)) , (52)

the 2.5-D Kirchhoff common offset inversion operator is given by

'[U (‘Ih. )] ~
s 1

1/2
s - 142 122
- 2 2! 1/2 (R + R ) (R + R ) 824 s
1/2 3712 l;'x l;“ | T =372 a-2*t @
n c (R R )
o oxpll-twra) @' + 2"7) - (1300 Gsgn @] U (wm)) (53) Z

where R+ and l" are evaluated at the stationary point:

1/2
'Y = [[x' - (n1 - dl)]2 + 2'2] . (54)

1/2
R'™ = [[(n1 + dl) - x']2 + 2'2] . (55)

For each test point, an integration is performed over the data acquisition
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line, If the test point is on the reflector, the sngularly-dependent

reflection coefficient is output.

The inversion produces a reflectivity-depth section, where each x'.:'
intecface coordinate bhas a mnique reflection coefficient associated with its
unigue incident energy angle. Computation of the lower layer velocity at
any reflection point necessitates the measurement of the interface slope,
2'(x), from the inversion section.

With the upper layer velocity, ¢, known, and densities assumed

constant, Appendix A provides a relationship for the lower lsyer velocity,

c1:
o [2 . +c_2]-1/z
1 Te ™ Y ’ (56)
where
ot
7 = a : a (A—26)
i
and
(1 - R)
T T UID N (51)
The normal, 8, is given by
s - 1B ()t - & , (58)

[1 + n'%:)]lr2

leading to

- 24 -




%Ii(x) t-(-l-d;_)l_- zL -
[ [ - (o - ‘1’]2 + 2t ]I, 1+ n"(:)]ll

The midpoint, »y, associated with the reflection experiment must be

determined. From eqaostion {B-8), the stationary condition is

B* .8 = & -8

providing

[ - - ap]t ek . _ten'wf
1/2 1/2
(- o - ap)? + o2 ] [1 " n"(x)]
[z - (= +ap]t- - . t +n' (0t .
173 17
[ [x - (l\l + dl)]z + 12 ] [l + h’z(x)]

The midpoint coordinate is solved for, yielding:

2 [1 - h"(x] - 112[1 + h'z(x)ir‘* w8

20’ (x)

The velocity is therefore determined im the following manner: select an
interface point where the lower layer velocity is to be determined, measure
h'(x) from the imversion depth section, celculate my from equation (62),
calculate 7; from equation (59), calculate y, from equation (57), and

finally, obtein ¢y from equation (36). Lateral velocity variations are




mapped by determining the lower medium velocity from a range of reflection

points slong the interface.

To determine velocities from a 3~D iunversion output, slopes are
measured in two orthogonmal directions. Two relationships similar to
equation (61) are produced, in two unknowns, m; and m;. Once my snd m, sre

determined, ¢y is obtained, employing s 3-component normal vector.
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CONCLUSIONS

A pre-stack inversion operator has been developed for common

offset data. Given the velocity sbove the reflector, the interface
location and its reflection coefficients are determined. A data set
acquired over s plane yields a 3-D reflectivity map of the interface.
When data are available along a line, it is assumed that the data
collection 1is in the direction of geologic variation. A 2.5-D
cylindrically symmetric reflectivity mapping is then obtained. Given
reflection coefficients, a quick post-processing step determines sub-
reflector velocities after measuring interface slopes off of the
inversion ontpot depth sections.

The inversion is eoxact for Kirchhoff, high frequency, common
offset data from experiments over a single reflector. If the reflector
is S00 feet deep in a mediuvm with & compressional wave speed of 10,000
ft/sec, any frequency information greater than 5 Hz is saitable ss
input.

There are several extensions to the single interface inversion
method that counld address the munlti-layer problem. The following
suggested ideas, however, neglect multiples. One approach is to assume
that each layer is independent of all other layers. In this case the
inversion errors are sensitive to the choice of & single " above

reflector” velocity. Another method is to provide multi-layer velocity

information, and then employ Snell's law., Travel times along raypaths
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connecting each test point with all source and receiver positions are
then computed. This, however, requires knowledge of subsurface
velocities. A final idea is that of layer stripping. The initial
inversion yields the location of the first reflector. A wave equation
downward continoation of the data is then performed to this reflector.
The sobsequent inversion velocity is determined from the reflection
coefficient and an inversion to the next reflector is completed. The
layer stripping method, however, assumes that the data are of such
quality that layers are discernible across the soction, Also, a
downward continuation procedure is required for pre~stack data which

preserves amplitudes.
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APPENDIX A: ANGULARLY-DEPENDENY REFLECTION COEFFICIENT

The angularly-dependent reflection coefficient, R, is determined under
the assumption that the surface appears locally plansr to inmcoming and
ootgoing energy. This is a high-frequency approximetion which permits the
calculation of R via plane wave amalysis, under the conditions of continuity
of the field and its normal derivative across the interface.

The frequency domain representation of the incident, reflected., and
transmitted field is given by:

Ui ~ A

ioxp(im‘i) (A-1)

U ~ A exp(iwt ) (A-2)
r r r

Ut ~ Atexp(iwrt) (A-3)

Each smplitude term, A, is a function of space and frequemcy, and t is the
eikonel function, equalling travel time along the raypath.

The total field above the reflector is given as

U. = Aiexp(iwri) + Atexp(iwrr)

and the total field below as

Ub = Atexp(iuct) (A-5)

Demanding continuity of the field on the reflecting surface requires that

Aiexp(iwti) + Atexp(iwtr) = Atexp(iutt) (A-6)

which is possible only if the phases meatch on the surface. Therefore the

first continuity condition yields
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(A-7)

Continuity of the normal derivative of the field across the surface

states that

(VA + iuAini)-ﬁ + (VAt + imAtVtt)-ﬂ = (VAt + iwAtVtt)-ﬂ . (A-8)

The high frequency assumption coupled with the relatively small variations

of amplitude yields:

Aiyi + Atyt = Atyt , (A-9)
where
Yi = Vti-s » (6-10)
vy. =V -4 » (A-11)
r r
T, = v:t-l . (A-12)

Employing equations (A-7) and (A-9), A_ and Ay sre solved for in terms of A,

o

and the eikonal gradients:

A = ———— A » (A-13)

(A-14)

It is now necessary to solve for Te and Ye in terms of Yi- As stated

sbove, the phases must match on the boundary,




T, =T =<¢ . (A-158)
r

Taking the tangentisl derivative of equation (A-15) produces

t t t =1,2 (A-16)
Ve,°t 'Tttj'ft »J": ’ -

i 3

o L]
where t; and t, represent two unit vectors which parameterize the surface.
Since the tangential components of the eikonal function gradients match on

the interface, the total gradients on the interface are:

Ve =T+yl (A-17)
Ve =T+ v B , (A-18)
Vtt =T+ 7t3 ’ (A-19)
where
. a a
) = Ve,o t, ) ¢t . (A-20)
: I 121‘ Y

Substituting eqaation (A-1), (A-2), or (A-3) into the homogeneouns wave

- equation yields the eikonal equstion

[ve] = 1/¢ . (A-21)

- 33 -
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Therefore, dotting equations (A-17) and (A-18) with Ve, and Vt,,

respectively, gives

|Vfi|2 R A C (A-22)

A4 1 L. T 2, Y 2 . c—2 . (A-23)
r r

Since the incident and reflected energy are of opposite sense with respect

to the surface normal direction, the following relationship is obtained:

Anslogous operations to equations (A-18) and (A-19) provide

-2 -7 )
T, = sgn(yt)l & ~ ¢ . s (A-25)

where the velocity in the upper medium is ¢, and the lower medium velocity
is ¢y. For the current consideration of a two layer, piecewise constant

velocity mediom

v, = -8 (A-26)

where a+ is the unit vector along the raypath from the source point to the

reflector.




A, and A, are therefore given as

LA
A = A R (A-27)
oyt i

2‘1i

A & 0 A . (A-28)
t T + ¢ i

Taking the ratio of the reflected to the incident smplitudes produces the

refloction coefficient:

A Y, -7
R = I.E = _——i T t - (A‘29)
i YT

Similarly, the transmission coefficient is

A 271
T = T = —+-—" . (A'SO)
i T

- 38 -
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APPENDIX B: STATIONARY PHASE CALCULATIONS

Computation of %L
%

The derivative of the phase function with respect to the parameters

defining the reflector is given by

el bl- bl L

Since R+ and 't sre functions of an independent test point and therefore

unrelated to the true reflector, the partial derivative reduces to

%§I - 3%: [n* + n’]

i=1,2 . (B-2)
Expsnding the first term results in
g’ 98" ax . am'ay . a8’ a:
E 3z Boi 9y Eoi oz 501 i=1,2 , (B-3)
which is equivalent to
an* + n+
ro-; = vn . !i = hd Ei 'i=1,2 . (3-4)

Anmalogously,
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t, Jd=1,2 . (B-5)

i

Therefore, the partial derivative of the phase with respect to the

variables which parameterize the reflector is

i=1,2 . (B-6)

The first condition of stationarity of the phase is expressed as

%% .o

aci s i=1,2 s (B-7)

or

i* LI = ﬁ— ° s 1-1.2 . (B-s)

This relationship states that when evaluating the integral of equatiom (17),
the important contribotions come from the specular points associated with

Snell‘s law.

Computation of %-L
™

The derivative of the phase fanction with respect to the midpoint

variables of the data acquisition surface is given by
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(B-9)

Examination of the first two terms provides insight to the entire

derivative:
ar’ o [x ~ (-1 - dl)] ant o [y - (-2 - dz)l
LN 2" Lo R
" } [(-l + dl) ~ x] aR™ N [(l2 + dz) - vyl (B-10)
a-l R a-z R

In a succint notation, the entire partial derivative is written as

%2_ o (z, - (m, - a1 . ((m, +d) -x]1
! ' R
(x, - (m, -d)] [(m +4d) -1x )
st 4 4 1 1 . i=1,2  , (B-11)
B 3

where x; = x, and zy = y. The second condition of stationmsrity of the phase

is

‘-

YT
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Computation of ao‘aoj

The second partial derivative of the phase with respect to reflector

parameters is

X)) ? +_ e
= 5?;' [(3 ) -'-1] , i=1,2 , j=1,2 . (B-15)

Since t, varies as a2 function of o

agi agi
7% - -a?-&ij » (B-16)
J J
where
s . 11i=j
ij 0 i#) . (B-17)
Therefore,
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2 at
BTiLW = —;j—(‘ ’ )] 't‘i + (i ' ) Wbij . (B-18)

Separating the remaining derivatives into two terms yields

+
of* GE:] 1 1 + +
" Y .T—cj Ty o=t st - (el - t,) (B-19)

LEN AT 3
and
2R ’E:] 1 1 8- a-

Combining all terms, the second partial derivative is obtained:

2
) 1 oy 8y ]
= — L - . * R *
3;1—5-;; x [(;J g) - ¢ £ t,)
1 - [ ] = L]
+ L feg, - g - - gpd - ep]
at
+ - -1
+ (8 -8 . 37;611 . (B-21)
2
Computation of Jo in
i)

The next second partial derivative is taken with respect to both the

scquisition surface midpoint variables, and the reflector parameters,
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% ‘:j [(g+ - . 51]

5’1 a-j 1-1.2 » j-lpz . (B-zz)

Since the two surfaces are independent of one another the partial derivative

is reduced to

% L Lt -ta] . _ i

This first term is evaluated as follows:

+
ot 1 %% 5 ot g
a-j El = E s-.? - F—.; . . 't'i j=1,2 (B-24)

where ‘l' is the unit vector in the x-direction and 5 is the mit vector in
the y-direction. The second term of the partial derivative is similearly

obtained:

[(I +4) -
i y=1,2 . (B-26)

Combining these two terms and moting that
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x,]

+€,_L)-_1 A

the final form of the second partial derivative is

1 1 1 + + .1 - -
[l;.,,;:](_g) +.R_+(! - ik +;-;(' - i ] "% ie1,2, j=1,2 . (B-29)

2

Computation of 3-:—%;—

iy

The final second partial derivative is

a2 s [_ [xi - (lli - dl_)l N [(lli + di) - xil
a-i a-j nj .+ R

[x; - (m, - di)l ) J;(li +4d) - x; ]
+

+
R RI— ] i.l, 2. j‘l.z. (3-30)

Each term is obtained in the same manner, the first is illustrated:
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J IR

[-a—:—-[xi-(-i-di)] }_+_- [xi—(-i-di)]a-E_E—-J =
i

Sy _ [y my - "j’%[fi e S U | : (B-31)

+
R

Upon combining all terms, the second partial derivative is given as :

ﬁgﬁ‘ = 8y {n::nf- - RM.: n::]

[xL— (llj -d )",[xi - (lli ~ di)l . [xj' - (lj - dj)l[x; ~ (-i -di)l
') g’ *?

tmy e - xju(;i +dp) -x] [+ 4y - x L[‘;i +4) -z
R "

1.1. 2. j=l.2 - (B-sz)
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APPENDIX C: 86N A CALCULATION

The value of det A and sgn A are required at the point of action of the
singular function. At this point it is seen , from equations (29) and (30),
that det A is non-negative, regardless of the shape of the reflector.
Furthormore, since g+ and g- sre of opposite sense, as depicted in Figure 1,
equstion (32) states that det A is never equal to zero om the reflector.
Since det A equals the product of the eigenvalues, this prodoct, 11121314,
is always positive on the reflector. The sign of the eigenvalue product
remains unchanged if the sign of any two, or of all four, eigenvalues
changes. However, to change sign, an eigenvalue must pass through zero, at
which point det A equals zero. Therefore, since det A, on the reflector, is
never equal to zero, the sign of each eigenvalue is constant on the
reflector, and is mnot a function of its shape. VWith the shape of the
reflector not influencing the eigenvalue signs, the simplest interface, a
flat plane, is employed in calculating sgn A,

For a flat plane, let t; = t. t, = 1, 6y = x, and 65 = y. Without
loss of generality, data acquisition is in the =x-direction, with dz = 0

and dy = d. The stationary conditions specify m;j = x and mp; = ¥, yielding

1/2

gt =0 - R, = a2 +22] . (Cc-1)

- - E!.;.Ei (C-2)
L ’ x

- - i’_§_’_ . (C-3)

P

The matrix A is now written as




: :
a_[l-s_]’ o -2 & 0
T R e
P
0 %— 0 %3
A = P p
2
%3[1 - 95] 0 0 0
R
P P . (C-4)
-2
0 -R_ 0 0
P

To simplify the algebra involved in solving the characteristic equation of

matrix A, let the following definitions apply:

2
2 d
cif-o (s
P P
2
2 d
P = r[l - —'2'] » (c—6)
] R
P
2
cC = r . (C"")
P

The eigenvalues are obtained by solving the algebraic equation of degree 4,

det (A-AI) = 0 , (C-8)

or when expanded:

2o v od ¢ (ae - o - bH)A% + (acd+ b2 + (ob)2 = 0 . (C-9)

Sgn A is determined from equation (C-9) without explicitly finding the

eigenvaloes. The product of the eigenvalues is (eb)2, Since this product

-
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is always positive, no eigenvalues ere equal to zero. Fuorthemmore, this

restricts the signs of the eigenvalues to three cases: all are positive, or
all are negative, or there are two of each sign., The som of the eigenvalues
is (a+c), which is also positive. Therefore, not all of the eigenvalues are

negative. Finally,

-(lcz + cbz) = 121

k55 +1

with (ac? + cbz) always positive, indicates that some of the eigenvalues are
negative. Thus, two are positive, two are negative, and sgn A equals zero.
It is possible for sgn A to be nonzero fer from the reflector. In the
2-dimensional stationary phase calculations performed in Kirchhoff forwerd
modeling, Cohen and Bleistein (1984) demonstrate that passing through buried
foci changes sgn A. The resulting distribotions have support on the
reflector, with negligible amplitudes far from the reflector. Amalogously,
foci associated with the 2 surfaces of the inversion problem may produce a
nonzero sgn A. However, the large parameter of the asymptotic analysis
requires large radii of curvature, placing foci far from the reflector.

Therefore contributions of these nonzero sgn A distributions sre negligible.




TABLE 1
Integration Parameter Definitions
source location : r¥ = (g%, 0) = (¢*,q%,0) = ¢t + n'}
receiver location: £ = (£7,0) = (¢7,q7,0) = ¢t + 7%
source-receiver midpoint: m = (.1,.2,0)

offset variable: d = (4,,d,,0)

source location in midpoint variables: r* = (my-dy,my-dy, 0)

receiver location in midpoint variables: r = (m;+d;,my+dy,0)

reflection point location: r = (x,y,2)

source-reflector vector: B = = (x-tt, y-n*, 2)

L]
|
L]

reflector-receiver vector: B™ = ¢~ - ¢ = (& -x,0 -y, -2)
14 (4 ’ ’
test point: r = (x ,y ,z )
source-test point vector: g'* = 5' -t . (-t 3y -n*t 2"

- - ¢ - [4 ’
test point-receiver vector: 5' = - 5' =(¢ -x,n-y,-z)

I
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ABSTRACT

A pre-stack inversion algorithm is developed for acoustic Kirchhoff,
high-frequency, common offset data. Given the velocity above s reflector,
the interface is located and an anmgularly-dependent reflection coefficient
is computed at each reflection point. A quick post-processing step then
calculates the velocity of the lower medium. Lsteral velocity variastions in
B the second layer are naturally recovered since each reflection point
- provides an independent measure of the reflection <coefficient. The
: inversion is performed as a mapping where the response to subsurface test
points is examined by an integration over the data. If a test point is on
the reflector, the reflection coefficient is returned.

] Inversion and migration operators both ntilize an integral over the
- dats, with each trace in the summation weighted by an smplitude and a phase
; term, Here, knowledge of an appropriste inversion phase term is gained from
a Kirchhoff, high-frequency, forward model. To determine the correct
inversion amplitude term, Kirchhoff data for a general surface, in integral
form, are entered into the inversior operator. The resulting integral is
evaluated via the asymptotic method of 4-dimensional stationmary phase. An
amplitode term is then chosen so that the inversion operator produces a
singular fonction of support on the reflector, weighted by the reflection
coefficient.

The Kirchhoff offset imversiom is first formulated for data acquired
. over a plane, producing a 3-D reflectivity map. Since data are commonly
N collected along a single line, a 2.5-D specislization is also developed. A
: method for determining the velocity of the lower medium from an angularly-
dependent reflection coefficient is then detailed for the 2.5-D case.
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