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A pro-stack inversion algorithm is developed for acoustic Kirchhoff,

high-frequency, comon offset date. Given the velocity above a reflector,

the interface is located and an angularly-dependent reflection coefficient

is computed at each reflection point. A quick post-processinS stop then

calculates the velocity of the lower modium. Lateral velocity variations in

the second layer are naturally recovered since each reflection point

provides an independent measure of the reflection coefficient. The

inversion is performed as a mapping where the response to subsurface test

points is examined by an integration over the data. If a test point is on

the reflector, the reflection coefficient is returned.

Inversion and migration operators both utilize an integral over the

data, with each trace in the sumation weighted by an amplitude and a phase

term. Here, knowledge of an appropriate inversion phase term is gained from

a Kirchhoff, high-frequency, forward model. To determine the correct

inversion amplitude term, Kirchhoff data for a general surface, in integral

form, are entered into the inversion operator. The resulting integral is

evaluated via the asymptotic method of 4-dimensional stationary phase. An

amplitude term is then chosen so that the inversion operator produces a

singular function of support on the reflector, weighted by the reflection

coefficient.

The Kirchhoff offset inversion is first formulated for data acquired

over a plane, producing a 3-D reflectivity map. Since data are comonly

collected along a single line, a 2.5-D specialization is also developed. A

method for determining the velocity of the lower modium from an angularly-

dependent reflection coefficient is then detailed for the 2.5-0 case.

i



GLOBBARU

A partial derivative matrix of phase function (22)

D(rn.r~r Dc) inversion amplitude function (14)

*c compressional velocity (1)

d offset variable (B-10)

*g(arr-) free space Green's function (3)

* h ()slope of 2.5-D inversion output interface (58)

a source-receiver midpoint location (13)

- I unit normal vector to reflecting surface (7)

=(X~y.z) cartesians (2)

to U' y IZ v) test point location (14)

T + source location (2)

r receiver location (3)

* angularly-dependent reflection coefficient (6)

R+ source-reflector distance (16)

g- reflector-receiver distance (16)

ot+ source-test point distance (13)

ev test point-receiver distance (13)

il~' 12 tangent vectors to reflecting surface (18)

UOITm) Kirchhoff observed field ,midpoint coodinates (1S)

* U5(u') observed scattered field D midpoint coordinates(13)

U5 (w,t) backscattered field (44)

U,*,r~r +) scattered field due to source at r+ (2)

U (w~r-,r+) observed scattered field (5)

* Q(,q,.0) cartesians for backscatter observation point (44)

B Dirsk delta function (3)



plx) phase function (24)

y Y abbreviation, see (12)

0 coordinates paraseterizing reflecting surface (16)

w circular frequency (1)

iii

aei • . • -D " . " , . • " . ° " •"•" ". •..., , ° °.• a . a • - o - •. -a"

- - a-a.'..l ldllldli~dll Illil - ..la.l.ailliia..-.-



_-_ V, -. 1- C.7 C_

An inversion method for acoustic pre-stack data provides a means for

determining subsurface reflectivity from common shot, common receiver, or

common offset time sections. In exploration for hydrocarbons, the areas of

greatest interest are those where the geology is the most complicated. As

the complexity of the subsurface increases, the validity of the stacked

section as an interpretable depth picture decreases. By inverting pre-stack

data, a depth reflectivity profile is obtained from each time record.

In all pre-stack methods the reflection coefficient produced is for

non-normal incidence. In common shot or common receiver gathers, as the

shot-receiver separation increases, so does the angle of the reflected

energy. Inversion therefore yields the reflection coefficients as a

function of angle, and, with further processing, in a constant density

environment, determines velocities below the reflector. Analogously,

processing angularly-dependent reflection coefficient data, where velocities

are known, recovers densities. Common offset data dictate less angular

variation of the reflection coefficient since the separation between source

and receiver is fixed at the same constant distance for each experiment.

An important consideration in the selection of an inversion data set is

the surface acquisition area. The larger the data collection zone, the

greater the delineated portion of the subsurface reflector. In this paper,

the development presented is for the inversion of common offset data, for

the purpose of recovering sub-reflector velocities. This data set often

contains the greatest number of traces, with the largest areal coverage.

Inherent in the definition of any inverse process is an assumption of a

specific forward modeling process. Kirchhoff, high-frequency. non-zero

'---



*. offset modeling for a single arbitrary surface provides the basis of the

inversion developed here. Given the compressional wave speed of the first

medium, the wave field effects produced by this Kirchhoff data are inverted

exactly to yield the interface location snd an angularly-dependent

reflection coefficient. Each point on the interface has a unique reflection

coefficient as a function of angle. Since the offset between the source and

receiver is constant for each trace, the incident angle of the energy to

each reflection point is determined, and the velocity of the next layer is

then computed. With each reflection point independently providing the

velocity in the second layer, lateral velocity variations beneath the

releotor are naturally recovered.

As with migration, inversion is performed by a summation of traces,

each weighted by a phase and an amplitude term. The inversion phase term is

of opposite sign to the phase used in the Kirchhoff forward model. The

amplitude term is an unknown, and is determined by inverting Kirchhoff data,

in integral form, from an arbitrary surface. By employing the asymptotic

method of 4-dimensional stationary phase, the inversion operator, acting on

high-frequency Kirchhoff date, is evaluated. The unknown amplitude function

is then selected so that the inversion yields a singular function with

support on the reflector, weighted by the reflection coefficient.

The Kirchhoff offset inversion process is intuitively similar to

migration, as described by Schneider (1978). The location of a test point

is input, and if this test point is on the reflector, the value of the

reflection coefficient is returned. For each test point an integral is

performed over the common offset traces, with each trace weighted

geometrically. The weighted traces add constructively when the position of

the test point coincides with the reflecting surface. Since data are not

-2-
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available at all frequencies, and at all points on the acquisition plane, a

band-limited and aperture-limited singular function delineation of the

reflector is produced, as demonstrated by Bleistein, Cohen, and Hagin

(198S).

The Inversion is exact for Kirchhoff, high-frequency data from a single

interface. Approximate solutions may be obtained in multi-layer problems by

a single pass method or by a layer stripping technique. The accuracy of

single pass multi-layer inversion is dependent on the input velocity

information, while the error in layer stripping inversion is a function of

the ability to downward continue the wave field, preserving amplitudes.

Neither method is developed here, however, for completeness, both are

described in the context of the derived inversion algorithm.

The inversion algorithm is first formulated for 3-dimensional data sets

in which acquisition is over a plane. For this date base, the position of an

arbitrary 3-D interface is recovered, along with an angularly-dependent

reflection coefficient at each reflection point.

The algorithm is then developed for the 2.5-D case. where data are

acquired only along a line. This 2.5-D approximation assumes invariance of

geologic structure in the off-line direction, thereby introducing a

cylindrical symetry to the problem. For the 2.5- specialization, a

technique is presented for recovering the velocity of the second layer.

given a reflection coefficient from the Inversion.

Since the forward model is of such fundamental importance to the

inversion development, a complete Kirchhoff, high-frequency modeling

derivation preceeds the inversion formulation.

-3-
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For the purposes of inversion and simulation of pre-stack data, a

forward modeling procedure is required. The Kirchhoff integral method is

chosen since it is embedded in wave theory and, as such, produces wave field

effects. The development presented here is suited to the modeling of common

source, comon receiver, or common offset gathers. Of particular interest

to the inversion of the next section are data acquired with a constant

offset between the source and receiver. The inversion is exact with respect

to this Kirchhoff forward model representation.

A high-frequency assumption underlies the forward modeling and

* inversion theory. The choice of a suitably high frequency is a function of

both a distance parameter of the problem, and the velocity of the medium.

By assuming that all frequencies of the data are greater than this minimum

high frequency, asymptotic evaluations are justified. The distance

parameter, r. may be the minimum depth to the reflectors of interest or a

*typical' radius of curvature of a reflecting feature. To provide a

* reasonable approximation, the following relationship must be satisfied:

2wr/c 1 , (1)

where the 2, appearing in equation (1), corresponds to the 2-way travel time

of the forward or inverse problem.

For example, if the depth to the reflector is 500 feet in a medium with

a compressional wave speed of 10,000 ft/sec, any frequency above 5 Hz is

considered suitable since the amplitude error at the low end (5 Hz) of the

-4-
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frequency spectrum is only a few percent.

The subsequent derivation yields the high-frequency Kirchhoff

representation )f the wave field reflected from an arbitrary surface.In each

experiment the source is offset from the receiver. For modeling purposes,

this experiment is repeated along the surface to generate a time section of

common offset traces.

The scattered field has its sources on the reflector and is thus

governed by the homogeneous wave equation with inhomogeneous boundary

condi tions:

V lU(w,r,r) =0 (2)

The two spatial variables of the argument of Us in equation (2) indicate

that the recorded value of the scattered field, Us, at any point r is a

function of the source position r + . Since the scattered field is recorded

at only one receiver location, r-, per experiment, a sifting operation is

perfoumed on the variable r of equation (2).

For the purpose of sifting under a volume integral, a second wave

equation is introduced:

2 a 2
V Sgw,r,r - 1 + wc g(w,rr) : -r(r - ) (3)

The solutionglw r, -l, is a free space Green's function which describes the

propagation of a point source from the location r-, toward any point r.

Reciprocity permits r and r- to switch places, providing another

........ . . . . . . . . . . . . ..i4l llk-*.l li*...........II.I.....



representation of equation (3):

a - -

V g(w.r ,r) + w 9/c2 g(w,r,r) - (r - ) (4)

5%"

The physical situation is now that of a wave traveling from any point source

location, r, toward a receiver location, r. In a volume integral context,

equation (4) describes a sifting function at the receiver location, and

propagates energy from a reflector to the receiver.

The wave field due to a source at r and a receiver at r-, U (wor-,r+),

is obtained in the following manner: multiply equation (2) by g(w,r-,r) and

equation (4) by Us(wr,r+), subtract one result from the other, integrate

over a volume of space bounded by the reflector which contains the source

and receiver points, and apply Green's second theorem. This yields

Uswr,r+) = dS [U(wr,r+) g (w,rr) sU -- (S)- - B n 8 n

where the normal vector is pointing inward, and the closed surface is

composed of two parts: the reflector truncated at its intersection by a

large hemisphere having its base on the reflector.

The scattered field is given exactly by equation (5) as a function of

frequency, and source and receiver location. To compute U(w,r-,r+), the

scattered field and its normal derivative on the reflector are needed.

An approximate solution for the scattered field near the reflector, due

to an incident point source, has the following form:

-6-i
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+ exp[liw/clIr - !+I] (6)

-IE -
16"

where 3 is the geometrical optics, angularly-dependent reflection

coefficient. A derivation of this high-frequency reflection coefficient is

presented in Appendix A. The derivation follows that of Bleistein (1984)

and is included for the reader's convenience.

The high-frequency approximation of the normal derivative of the

scattered field is given by

aUs(N. r, +  exp[(itw/c) - E+]1- (i,+ic) (VII: - E+-9 R'(7
4ul- E+I

he free space Green's function solution to equation (4) is

exp[(iw/c)I - EI (8)

and for high frequencies its normal derivative is approximated by

ag(w, r- exp[(i/C)_- -V l ]
8n(io/c)V- - 9)) (9)

Employing the Sommerfeld radiation condition, the integration over the

-7-q



hemisphere is neglected. A high frequency approximation for the scattered

field is nov obtained from equation (3):

U (, r r

":IJd [ exp[(iw/cIr - !+J](sc(~t-~~ exp[(ie./c)I£- - rl]--d [- (to/c)(Vir-- J)

4w' r_+ - 4wlr- --

O0P](i/ E exp[(iw/c) Ir  r +]
4+ -- (i/c)(V - xl) - j (+

After evaluating the gradient terms, the scattered field due to an offset

source-receiver experiment is written as

- + i +E - xEi/)(l - + jr-- El f
U s ,r r+)' -..(W lidS +y+I V _I ( 116w" I-E - [1-+ II--.()

where
+

+ + ( r -
. -+ (VII- _+ ) - + .- . (12)

Equation (11) provides a high-frequency Kirchhoff wave field response

for non-zero offset modeling. For each source-receiver geometry, a surface

integration produces a single trace. Time sections are then constructed by

moving the source and/or receiver in the desired fashion.

-8-
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An inversion operator is developed for application on pre-stack common

offset data, producing a subsurface map of the reflector, along with its

reflection coefficients. In general, a reflector is delineated by examining

the operator response of many different subsurface test points. For each

test point an integral is performed over the data acquisition surface, with

each differential contribution of the integral corresponding to a

geometrically weighted trace. When a test point is on the reflector, an

angularly-dependent reflection coefficient is output. The velocity below

each reflection point is then determined by a quick post-inversion

processing step. Spatial and temporal sampling combined with finite

acquisition area and recording time dictate a band-limited and aperture-

limited singular function representation of the interface. The peak

amplitude occurs on the reflector end is proportional to the reflection

strength.

The inversion operator that is derived has the following form:

rr2  .+ ,
1[O(0 (ul] mAl U '+g)ezp[(-iw/c)lg '++ -)]Us, m) - (s) t (13)

a N 0)1 if jJ a..'R Op(5(,) &a

The frequency domain version of the input data is represeated by U5 (W.L),

with the vector a parameterizing the midpoint associated with each

experiment. 1+ is the distance b, twoen the source and the test point. and
I-I

I'- is the distance from the test point to the receiver. Tho singular

function, 8(s), acts when the difference between the test point position and

-9-



the true reflection position equals zero. Figure 1 illustrates the

parmeters of the problem, with variable definitions provided in Table 1.

The derivation of the forward modeling equation provides insight as to

the form of the inversion operator. In the forward problem, each trace is

viewed as a weighted sum of image sources on a reflector. Thus, inversion

of forward data to determine the interface location must involve a weighted

sum of the recorded surface traces. Also, the idea of propagating back to

sources, in migration or inversion, necessitates an inverse phase term.

With this in mind, an educated guess of the inversion operator is made:

WfUa Cu.L)) - jdm2 Jda (-i*)D(s~r,r '.c)oxp[(-io/c)(l' + + U -)]U (.a) .(14)

where B(_,r,r ,c) is an unknown function containing whatever terms were left

out of the guess. This unknown function is determined by substituting in

known analytic Kirchhoff data, Uk(uu), for a single interface in integralO -a-

form, and then requiring that the following inversion goal be realized

asymptotically:

W[Ukl(.a)] 8 (s) R . (13)

Upon inserting the Kirchhoff data of equation (11) into the inversion

operator defined in equation (14), the following relationship is obtained:

1.

- 10 -
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I[Uk(w_)] = 2(5) 3

*Ip[(i%/c)[R+ + Rjj

Note that the differential surface element of equation (11) is

functionally represented as

dS J S do 1 do 2  , (17)

whore al, 02 are the curvilinear coordinates that parameterize the

reflecting surface. With t1  defined as the tangent vector to curves of

constant 02, and t2 defined as the tangent vector to constant a, curves,

4i 11 t2l • (18)

rhe integral in equation (16) is evaluated via the asymptotic method of

stationary phase. Since the forward model is a high-frequency Kirchhoff

representation, there is no further assumption necessary at this point. In

particular, the integrals over a and a are performed by 4-dimensional

stationary phase, with the integral over w providing the singular function

of srclength along a curve normal to the reflector. The unknown function,

B(u,r,r ,o) is then chosen such that the relationship in equation (16) is

- 11 -
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obtained:

W[Uklwm)J - 1s1 3 . 1)

Given an integral of the form

•lls) =J f(l) ezp[ias(z)l dz , x - (Xis 125 139*3 ( x19)

containing a point at which the phase p(x) is stationary, the asymptotic

representation for large a is given by:

I, [s) ] exp[itP(xo) + i(sln A)/41(I r1 "- fixO  0 (20)

The point of stationarity, _ro, is determined by the condition:

VplI=ol at 0 . (21)

The matrix A, at the stationary point, is defined as

2

Ask a x k  J,k 1,2,3,...,m (22)

and

sn A 2r - a (23)

I.

where r is the number of positive eigenvalues of A, a is the order of the

- 12 -
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matrix, and m-r is the number of negative eigenv'lues. The difference in

the number of positive and negative eigenvalues is therefore equal to sgn A.

It is shown in Appendix C that no eigenvalues are equal to zero on the

reflector for the Kirchhoff inversion problem. Since dot A equals the

product of the eigenvalues, an eigenvalue of zero would nullify the validity

of the simple stationary point asymptotic integral representation of

equation (20).

For the stationary phase evaluation of equation (16), the phase is

taken as

CI, [R + R-+J (24)

and the formal large parameter is w/c. The stationary point of the phase is

located where the following four stationary conditions are satisfied:

Do 0 , i1,2 (25)
Ba.

and

T 0 i=1.2 ( (26)iJ

Details concerning the derivation of each partial derivative in the

stationary conditions and in the matrix A are provided in Appendix B.

The conditions of stationarity of the phase are as follows:

- 13 -



-0 implies 3'. ti-U- ti  , i-1.2 , (27)

!-. 0 implies (xi - (mi -di)] - [(ai + di) - xj]
gui . +  I-

S - i ],~ + d 1 1 - (28)LR

Equation (27) Is a form of Snell's law which reaffirms that important

contributions from the integral come from specular points.

The matrix A is expressed as

2 2

2 02 0

ai ei anJ
(29)

, where each partial derivative is a 2-by-2 matrix.

In the asymptotic evaluation of the integral, the determinant of A must

be calculated. As is subsequently demonstrated, the delta function of

equation (16) acts as R - approaches R+, thereby simplifying the

calculations. This is analogous to the test point approaching the

reflection spot. From Appendix B. it is seen that when +  1+0

4'
E - 14 - i

~~~~~~~~~. . .. . . . . . ....... .. . .. -"*"=''-U ~ a ~ l i l l I I 1 II.. . . . * "



- 0 1l,2, j-1.2 (30)

Therefore, in calculating the determinant only those terms which do not

vanish are included, yielding

I 2 1i

det Al - det an i1.2. J-1 . (31)

It can be demonstrated from equation (B-29) that

j'det Al - N ,. -  + *)(R+ + 1 - (32)+(33
(R~ *)R 3

With sgn A shown to be equal to zero in Appendix C, the asymptotic

evaluation of equation (16) is written as

W(OUk(.M)l = B(s) -.

2 B(rr ,c) a [t + -) (B+ 1 ) 2 i 1+

4 z, ( + + R-) (l + 2 + 2-2) (1- + + )

Jdw expfliw/c)[(R + a-) - (E'+ + *-)]) (33)

A few comments are now required to describe the nature of the function

8(s). In a 1-dimensional example, 5[(t)] is given as

- 15 -
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5[0(t] &[.] (34., .(t)J - 6(tj - 6(~t)l" 61t1 (34)

IatI

Equation (34) specifies that as t approaches zero, 6[p(t)] approaches a

spike, weighted by 1/jal. An unweighted delta function is therefore

represented as

j(0 1 5((t (t) t)] (35)

" In the 3-dimensional inversion problem, the unknown function.

I t

B(urt ,c), is obtained such that the inversion operator produces a

singular function scaled only by the reflection coefficient. The weighting

due to the argument of

6(0) - 6(R+ + a) - (R'+ + R)J (36)

* must therefore be accounted for. The singular function of equation (36)

acts as the test point approaches the reflector along a curve normal to the

" reflecting surface. The weighting factor is DO/On. and an unweighted

- singular function. B(s), is thus determined:

16

1. . . .

--b- . *.. .. . .



+w

81 J) = 81a1(371):

with the variable a denoting arc length.

It most now be shown that there is only one point at which the delta

function acts, where R = R-. The stationary phase conditions from the

integration over the data acquisition surface are rewritten as

+ - 1+ I-

sin i + sin 0i = sin 0 t  + sin 0 (38)

and

sin B + sin 0 sin 0 + sin 0 (39)

with the equations associated with constant y and constant x planes,

respectively. Figure 2 illustrates the constant y case, with the angles

measured counterclockwise from the vertical, and the vectors, R and R-- i ,

defined as projections onto the plane. Note that if the test point is to

the left of the reflection point, sin 8 1 sin 0+1 and sin I< sin 0- I .

thereby violating the stationary condition representation of equation (38).

Similarly, the test point cannot be to the right of the reflection point.

It must therefore be inside or on the border of the triangle bounded by 8i

and _- i . An analogous argument in the constant z plane projection indicates

that the test point lies inside or on the border of a rectangular cone with

an apex at (z,y,z), and vertices of (ml-dl,m 2 +d2 ,O)' (ml-dl,m 2 -d 2 , O),

(m1 +dlm 2 -d 2 ,0), and (ml+dlm 2 +d2 ,0). Finally, equality of distances within

- 17 -
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the srgment of the delta function requires that the test point coincide

with the reflection point for the delta function to act.

In order to solve for the unknown function# D(apror ,c), the integral

over frequency is rewritten in the following form:

Ida aezp[(im/ )((E+ + 1-) -(R1' + R')I 21tcb[(R+ + R-) -(11+ +a

X0( 11+ 1 (40)

Noting that

1 Y+ + T 2(1- 1'-1 (41)

the value of the unknown function is now obtained as

Psr~~ 'c 2z(1 + + I3 )(R +2 + R- 2 M( + 1-(42
ja~m. o r ,e) RC2 (R + -) 2 11 (42)-

Inserting this function into equation (14), the general 3-D Kirchhoff

pre-stack inversion formula is produced:



WlC (U on)] - B(s) ( ~

it, 2 Id. (R '+ + '-)IB'+2 + --2 ) J 02  (e +  - '

* ezp[(-iw/c)(R + R')]U, (wn) (43)

Since the singular function acts when the test point is on the
+ 9+

reflector, R is replaced by R -. The angularly-dependent reflection

coefficient and the location of the interface are therefore determined by

employing equation (43) on common offset data. Within a depth zone of

interest, the response of each test point is determined. If the input point

is on the interface, the reflection coefficient is returned. Each

differential contribution of the surface integral is a geometrically

weighted common offset trace in the frequency domain. The spatial range of

integration is reduced by estimating the maximum dip of the reflector.

The 3-D backscatter inversion result is obtained as a special case when+ ,+)-

the offset, d, equals zero (R = 1 1:

"(€ i d- w (s exp(-21wR /c U (6() = B(s) U . (44)

This checks with the backscatter result of Bleistein, Cohen, and Bagin

(1985). In particular, after an integration by parts is performed on

equation (42) of Bleistein, et al (1985). equation (44), above, is obtained.

eTh necessary integration by parts is described in 31eistein et al (1985)

in transforming equation (26) to equation (27).
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Extensions of the method to the more realistic case of a multi-layered

earth are possible. One approach is that of layer stripping in which one

*major' reflector is inverted for with each pass through the algorithm.

Given the velocity of the uppermost layer, the initial inversion produces

the location of the shallowest reflector and the velocity of the next layer.

The wave field is then downward continued from the acquisition surface to

the initial reflector with a procedure such as that demonstrated by

Berryhill (1984). This initial reflector then acts as the acquisition

surface and another inversion is completed. Problems still to be addressed

in this procedure include that of amplitude preservation during the downward

continuation, and the recognition of 'suitable* layers. An alternate

approach calls for a single pass through the algorithm. For this technique,

the velocity employed at each differential integration contribution varies,

"- corresponding to velocities along raypaths connecting each test point to

source and receiver positions. A velocity profile is therefore required as

input to a single pass multi-layer Kirchhoff inversion.

20
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2.5-D nVIIN OI'3IATO SPBCIAE ATION

In those cases where data collection is along a single line, a oriv-

solution to the inverse problem is not possible unless off-line reflector

information is known. An assumption commonly made is that the direction of

data acquisition represents the direction of subsurface geologic variation.

This introduces a cylindrical symetry to the problem, indicating that all

parallel data lines would produce an identical time section. Under this

2.S-D assumption, the inversion double integral can be specialized to a

single spatial integration along the data collection line. The integral in

the off-line, invariant direction is performed by the asymptotic method of

1-dimensional stationary phase.

For the 2.5-D simplification, the data are taken along a line in which

the m1 coordinate varies, and the m2 coordinate is fixed. The reflector is

thus assumed to be a function of x only. Snell's law for this cylindrical

surface dictates that the y-value of all specular reflection points is

identical. Analogously, in the inversion operator, the important part of

the *2 integration (the stationary point) is the part directly over the

specular reflection line.

With data collected along a line of constant 020 an integral of the

following form is considered:

IW) = Jdm2 f(m2) exp[ia(m 2) . (45)

The asymptotic representation for large a is

- 21 -
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M)- f(y) t~7 TI exp(isO(y' + i[sgn *w(y)J m/4 (sts ai)) .(46)

wher. y' is the stationary point.

In the particular case of equation (43). the phase is

Pm2a.R +1R (47)

and the stationary point satisfies

+ 0. 1 (48)a
2 2

ie. A2 ye* The second derivative of the phase and its sign at the

stationary point are also required for the evaluation of the m2 integral:

*y 8~(2 y FT~ + j ~ + J (49)

and

sgn 017 y +1 .(SO)

With the above information, the 2.5-D Kirchhoff inversion operator is

-22-
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written as

V[U (W.u1 ] i . dw (R,4- +* R-)(RI42 + a,-2) 420 3. fI

1/2

ezp[(-iw/)(E' + + I') + (tS/4)ssnl-i/c)

%+

Since

w (sgn w)1w1 Ilexp[(ix/2) -(in/2)(ssn WI)]

=ijwJexp[-(iw/2)(sgn )] , (52)

the 2.5-D Kirchhoff comon offset inversion operator is given by

" D (w, I) -

-" 11

1/2
"_- 2 z. Id d  11 ( + '-) (R1+2 + ,-2) R.6 Rft /2 03/2 f". fd+ R~i2 (9 312

exp[l(-iw/c)( + + 1'-) - (i3i/4)(sSn )] U (W 1 1  (53)

where R'+ and - are evaluated at the stationary point:

1 2 21/2
R ' +  [ - - di)l2 + z (54)

"1/

-- = [[(M + d 1 - 0']2 + z21 (55)

For each test point, an integration is performed over the data acquisition

- 3 -
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line. If the test point is on the reflector, the angularly-dependent

reflection coefficient is output.
I I

The inversion produces a reflectivity-depth section, where each x ,z

interface coordinate has a unique reflection coefficient associated with its

unique incident energy angle. Computation of the lower layer velocity at

any reflection point necessitates the measurement of the interface slope,

h (z), from the inversion section.

With the upper layer velocity, c, known, and densities assumed

constant, Appendix A provides a relationship for the lower layer velocity,
i €l :

21-1/2°, [y-,y2+*-J I 56

where

S= (A-26)

and

' Yt (I - U)
= (1 + ) i(57)

The normal, I, is given by

= : h'(x)t -
k.+~ 1/2 "(8

[I + h 2 (x)(

, leading to

-24
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S i - - ~ . ~ .. . .. . -. ( - - -

[ '(x) [z (a, d ,1)] z

- 2~ 1/2 + 12! (a, -* d,)]J z 2 J [ o 92 (z)

The midpoint, a ,, associated with the reflection experiment must be

determined. From equation (B-8), the stationary condition is

I+ -'(x) I- C'(x) , (60)

providing

Ix - (an1 - d I ) + k + .h'(z)

[ z - (, - d, ,]2  + z2  1 2 + h '2 z )., , 12

[z - (I + d1)JT - zk
-/ ,X^ t (61)

[x (a, + T] + Z112 + h2(z)(61)

The midpoint coordinate is solved for, yielding:

[1 h,2(x)J J2[1  h,2(+)1 2  2 2

_F (1)+h' + 4h'2 (z) (2in1 "- x - . (62)
2h (x)

The velocity is therefore determined in the following manner: select an

interface point where the lower layer velocity is to be determined, measure

h (x) from the inversion depth section, calculate =I from equation (62),

calculate Vi from equation (59). calculate Vt from equation (57), and

finally, obtain cl from equation (56). Lateral velocity variations are

- 25 -



sapped by determining the lower sodiu velocity from a range of reflection

points along the interface.

To determine velocities from a 3-D inversion output, slopes are

measured in two orthogonal directions. Two relationships similar to

*equation (61) are produced, in two unknowns, ml and E2- Once a, and m2 are

determined, cl Is obtained, employing a 3-component normal vector.

-26-



A pro-stack inversion operator has boon developed for common

offset data. Given the velocity above the reflector, the interface

location and its reflection coefficients are determined. A date set

acquired over a plane yields a 3-D refloctivity map of the interface.

When data are available along a line, it is assumed that the data

collection is in the direction of geologic variation. A 2.5-D

cylindrically symmetric refloctivity mapping is then obtained. Given

reflection coefficients, a quick post-processing stop determines sub-

reflector velocities after measuring interface slopes off of the

inversion output depth sections.

The inversion is exact for Kirchhoff, high frequency, common

offset date from experiments over a single reflector. If the reflector

is 500 feet deep in a medium with a compressional wave speed of 10,000

ft/sec, any frequency information greater than 5 Iz is suitable as

input.

There are several extensions to the single interface inversion

method that could address the multi-layer problem. The following

suggested ideas, however, neglect multiples. One approach is to assume

that each layer is independent of all other layers. In this case the

inversion errors are sensitive to the choice of a single above

reflector* velocity. Another method is to provide multi-layer velocity

information, and then employ Snell's law. Travel times along raypaths

- 27 -
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connecting each test point with all source and receiver positions are

then computed. This, however, requires knowledge of subsurface

velocities. A final idea is that of layer stripping. The initial

inversion yields the location of the first reflector. A wave equation

downward continuation of the data is then performed to this reflector.

The subsequent inversion velocity is determined from the reflection

coefficient and an inversion to the next reflector is completed. The

layer stripping method, however, assumes that the data are of such

quality that layers are discernible across the section. Also, a

downward continuation procedure is required for pre-stack data which

preserves mplitudes.
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APMDIx A: ULAILI-DrImI 8EPLECTion CORl CIIT

The angularly-dependent reflection coefficient. 3, is determined under

the assumption that the surface appears locally planar to incoming and

outgoing energy. This is a high-frequency approximation which permits the

calculation of R via plane wave analysis, under the conditions of continuity

of the field and its normal derivative across the interface.

The frequency domain representation of the incident, reflected, and

transmitted field is given by:

Ut - Aept i ) , (A-i)
U, A Iexp(iWC

U r A exp(iWr ) , (A-2)r r r

Ut ~ Atexp(iWC t )  (A-3)

Each amplitude term, A. is a function of space and frequency, and v is the

eikonal function, equalling travel time along the raypath.

The total field above the reflector is given as

Ua i exp(iWri) + Arexp(iC ) (A-4)

and the total field below as

Ub = Atexp(iwct)  . (A-5)

Demanding continuity of the field on the reflecting surface requires that

Aiexp(iW i ) + A rexp(ir ) = At exp(iwr) (A-6)

which is possible only if the phases match on the surface. Therefore the

first continuity condition yields

.3
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A + A = A t(A-7)

Continuity of the normal derivative of the field across the surface

* states that

(VA i + iuwA iVv 1)-8 + (VA r+ iwA rVr r)-I = (VA t+ iwA tVT t)f (A-8)

The high frequency assumption coupled with the relatively small variations

* of amplitude yields:

A iTi + AY =y A tYt (A-9)

* where

Tr =V~rSf (A-11)

Employing equations (A-7) and (A-9). Ar and At are solved for in terms of Ai

and the eikonal gradients:

A - + Y- (A-13)

r t

It is now necessary to solve for Tr and yt in terms of yi. As stated

above, the phases must match on the boundary,
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t=~ -r .t (A-IS)
rt

Taking the tangential derivative of equation (A-15) produces

V i' t - Vvr't j = Vt't ,J = 1,2 , (A-16)

where t, and t2 represent two unit vectors which parameterize the surface.

Since the tangential components of the eikonal function gradients match on

the interface, the total gradients on the interface are:

V' =T + Til , (A-17)

Vr - T + YrI (A-18)

VTt -T + Yt (A-19)

where

- -
T M i.(Vri . tj) t . (A-20)

Substituting equation (A-I). (A-2), or (A-3) into the homogeneous wave

equation yields the eikonal equation

IVI[ 1/c . (A-21)
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Therefore, dotting equations (A-17) and (A-I8) with Vri  and Vtr,

respectively, gives

= = c-2  (A-22)

I =1 1112 + Y2 " - (A-23)

Since the incident and reflected energy are of opposite sense with respect

to the surface normal direction, the following relationship is obtained:

Y= -r (A-24)

Analogous operations to equations (A-18) and (A-19) provide

22
Yt sn(t)J c -

2  + Ti (A-25)

where the velocity in the upper medium is c, and the lower medium velocity

is c. For the current consideration of a two layer, piecewise constant

velocity medium

i (flt  /c , (A-26)

where is the unit vector along the raypath from the source point to the

reflector.

9'.
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Ar and At are therefore given as

'Vi - 'Vt
A w A (A-27)
r Ti+y

2y
A- Ai (-28)

t 'i + t A  (A

Taking the ratio of the reflected to the incident amplitudes produces the

reflection coefficient:

A ___1 - Yt(A-29)
-i- = i yt ( -9

Similarly, the transmission coefficient is

A t  2y i
T -- Y (A-30)

Ai Ti + Vt
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APPENDIX B: STATIONARY MARE CALCILATIOS

Computation of 0 a1

The derivative of the phase function with respect to the parameters

defining the reflector is given by

T. a_ ( [V + RJ + RJ i=1.2 .(B-1)'+t

Since 3 + and + are functions of an independent test point and therefore

unrelated to the true reflector, the partial derivative reduces to

fr ca 11,2 . (B-2)

Expanding the first term results in

+ + + +
OR OR Ox +OR Oy + OR18:

To y O T .1-1.2 ,(B-3)

which is equivalent to

OR +S + ti  ti  ,i=1,2 . (B-4)

i-i

Analogously,
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VI.l. t i  1 -t -1,s 2 (B-5)
o i i

Therefore, the partial derivative of the phase with respect to the

variables which parameterize the reflector is

ou -i -i

Maa

The first condition of stationarity of the phase is expressed as

M - 0 , 1-l,2 , (B-7)
11a

or

. + • t i  = - • t 1 11.2 .(-8)

This relationship states that when evaluating the integral of equation (17),

the important contributions come from the specular points associated with

Snell's law.

Computation of.' ami

The derivative of the phase function with respect to the midpoint

variables of the data acquisition surface is given by
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7..7

[R( + 1-1 -[ + I J1-1.i 2 ( B3-9)

Examination of the first two terms provides insight to the entire

derivative:

aOR - ( - d1)l On+  [ - n2  d d2

1 + '2 -

-( + d)- x] OR- ((a2 + d 2 y )

---- =- , . (3-10)
1- 2 R-

In a sucint notation, the entire partial derivative in written as

a. i + i -PU R + R-

+ 1i R[xt - (ai - di)l [(s + dtl)- xJ

+ - -. i l 2 o ( B -1 1 )

where x, x, and x2 - y- The second condition of stationarity of the phase

is
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- 0 i-1,2 , (B-12)

olr

- - •( -14)

Computation of

The second partial derivative of the phase with respeot to reflector

parameters is

out ac, 8s i ,i 1-1.2 , J-1.2 (B-15)

Since ti varies as a function of oi

ati  Ott
-. a (B-16)
be aDo i i

where

8 - 1 i-j
iJ 0 iJ .(-17)

Therefore.
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'

j']a . L.(I"_ -) • .ti  + (3 -) (3-j1
'oi -(-

Separating the remaining derivatives into two tors yields

S..

+' t •at: • _ t  L (k~ t l - (1 • til t 1  (B-19 )
+ - _ +-

and

I a- +--1 I- * -"-i j i . I

Combining all terms, the second partial derivative is obtained:

+ [(t .t) -t

+ - 1 " - .j)

02
Computation of i .2

*i~m

The next second partial derivative is taken with respect to both the

acquisition surface midpoint variables, and the reflector parameters,

- 40 -

i -: -:.- .:-.:.- .-. -:.. , -'..:.'-- - .-.-..---.. :,... . -,:--,:,-, . .... .:-:- -. .:- ... ,-....--:-:.. :-:.:- ,......,.,..,:, .-



m' , [(I, -I ) . _, 1
pi 8- " 1.2, J-.2 . (B-22)

Since the two surfaces are independent of one another the partial derivative

is reduced to

1oi - 1-i-1.2 , J-1.2 (3-23)

This first term is evaluated as follows:

++

8. "i ;  -" +~ TI I •~ _ J, .2 (B-24,

'[ j J '']'] ;,.J".2 (3-25)

where 1 is the unit vector in the a-direction and f is the unit vector in

the y-direction. The second term of the partial derivative is similarly

obtained:

- - [(nj + dj -ji J-1,2 , (3-26)

Combining these two terms and noting that
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7--,~~ ....j. . .. . . . .

(z - (a - d ) (- 2)

a3+

and

i + A) - •(B-28)

the final form of the second partial derivative is

+ 1 1+ 1)1+ _L41-i ?)i-2

( : T ++ "(1 7)1 + (- ) -I i -1.2, j-1,2 . (B-29)

32

Computation of

The final second partial derivative is

aa [i- (mi - di)] + [(*i + di) - Xi]
am an -a+ 3

d' . pa) [I- + d I z
+-d - (- 1i,2. J-1,2. (3-30)

Each term is obtained in the same manner, the first is illustrated:
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a Ixi (a i d d,.J., ,

' [ -- (z i ! J - d j A ( d( -3

3 + 3+3 (-

Upon combining all terms, the second partial derivative is given as "

a2  [!+ -R + - R, + .-1

[j -(n- - dj)][i -(-- di)] - -j)][xi (-, -di
a +3  + 2 ,+3

((10 + d) - IjJ[(., + d,) - x,] + [(j + dj) - X; ](-, + d) - z j
R-3 -3- +

1-1.2, J-1.2 • (B-32)
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APM DIX C: SN A CILORLATION

V

The value of dot A and agn A are required at the point of action of the

singular function. At this point it is seen , from equations (29) and (30).

that dot A is non-negative, regardless of the shape of the reflector.

Furthermore, since P and V- are of opposite sense, as depicted in Figure 1,

equation (32) states that dot A Is never equal to zero on the reflector.

Since dot A equals the product of the eigenvalues, this product, %1 )- 2 ) 3 )-4,

is always positive on the reflector. The sign of the eigenvalue product

remains unchanged if the sign of any two, or of all four, eigenvalues

changes. However, to change sign. an eigenvalue must pass through zero at

which point dot A equals zero. Therefore, since dot A, on the reflector, is

never equal to zero, the sign of each sgonvalue is constant on the

reflector, and is not a function of its shape. With the shape of the

reflector not influencing the eigenvalue signs, the simplest interface, a

flat plane, is employed in calculating sgn A.

For a flat plane, let tj 12  01 -=• and 02 = y. Without

loss of gonerality, date acquisition is in the •-direction, with d2 = 0

and di = d. The stationary conditions specify m = and "2 = y. yielding

1/2
a+ -.- i- - [d2 + z 21 (C-i)

P9

p
|+ dt - z

. (C-3)

p

The matrix A is now written as

-44-

.. nin 7!:. ...



p p p p

0 2 -2
A- 0P p

-2[_ L0 0 0

p . (C-4)

0 -2Bp

To simplify the algebra involved in solving the characteristic equation of

matrix A, let the following definitions apply:

a~i 2 41 - (C-5)p p

'LoL

dot (A -~ XD 0 (C-8)

or when expanded:

).4 _ (a + )x3 + (ac - a2 - b2 )). 2 + (sc 2+ cb 2); + (cb) 2  - 0 . (C-9)

Sin A is determined from equation (C-9) without explicitly finding the

eigenvalues. The product of the eigenvalues is (cb) 2. Since this product
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is always positive, no eigenvalues ere equal to zero. Furthermore, this

restricts the signs of the eigenvalues to three cases: all are positive, or

all are negative, or there are two of each sign. The sum of the eigenvalues

is (a+c), which is also positive. Therefore, not all of the eigenvalues are

negative. Finally,

-({c2 + cb2) 1 XiX X j k (C-10)

with (ac 2 + cb 2 ) always positive, indicates that some of the eigenvalues are

negative. Thus, two are positive, two are negative, and sgn A equals zero.

It is possible for sgn A to be nonzero far from the reflector. In the

2-dimensional stationary phase calculations performed in Kirchhoff forward

modeling, Cohen and Bleistein (1984) demonstrate that passing through buried

foci changes sgn A. The resulting distributions have support on the

reflector, with negligible amplitudes far from the reflector. Analogously,

foci associated with the 2 surfaces of the inversion problem may produce a

nonzero sgn A. However, the large parameter of the asymptotic analysis

requires large radii of curvature, placing foci far from the reflector.

Therefore contributions of these nonzero sgn A distributions are negligible.
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TABLE I

Integration Parameter Definitions

source location : r+ = (+,o) = (4+,q+,o) = +t +

receiver location: r = (-,O) (Q,i-.0) - + '-i

source-receiver midpoint: a = (elm2,0)

offset variable: d - (dl,d 2 ,0)

source location in midpoint variables: r + = (8 1 -dl.n 2 -d 2 .0)

receiver location in midpoint variables: _-s (ml+dlm 2+d2 O)

reflection point location: r = (x,yz)

source-reflector vector: R+ = r - r+  (x-+.y-n+,z)

reflector-receiver vector: _- = r- - (C--,n-y,-z)

test point: r yy z

= (x ,y ,

source-test point vector: R '+ = r - r= (x y .i , Z,)

test point-receiver vector: R' = r - r= (- - x ,n--y
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