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ABSTRACT

Sampling-Rate Effects on Radar-Derived

LELPLELIEL

Rainfall Estimates. (August 1985)
. Jeffrey Lynn Fornear, B.S., University of Utah

Chairman of Advisory Committee: Dr. George Huebner

LR

‘This study investigates the errors due solely to sampling intervals

that occur with radar-derived total rainfall estimates. The study was

limited to nine cold-frunt passages over eastern Texas, in the Fall of

re il L CL

1984. Digitized, 10.3 cm wavelength radar observations were recorded

o using a one minute sampling-rate. Total rainfall estimates, for 10 km

n ‘

ground truth"

> by 10 km areas, based on these data were considere

totals.

Sample-rates, ranging from 5 to 60 minutes, were applied to the re-

Ol W Y

corded data to calculate total rain estimates for each sample rate.

S

These derived rain totals were compared to the “ground truth"/totals,

;e .
with the differences referred to as'"é;roréf“' These errors were plotted

PPN

N against the sampling-rate. They ranged from over 100% for sample inter-

|

vals greater than 50 minutes, to less than 25% for intervals less than
15 minutes. The errors were also b]otted against the number of samples

taken. There was no significant increase in estimate accuracy when

NN A

greater than seven samples were taken per 80 minute period.
Other variables, the mean rain rate, total rain, sequential varia-

bility, storm width, and storm speed of movement, were found to have

i uE A b S B R

very low correlations with the errors., Analyses of variances done on

subdivisions of the storm width, storm Speed, and mean rain rate




variables proved inconclusive because of small, unbalanced sample sizes.
Regression analyses were used to develop the "best" models, using error
as the dependent variable. The resulting equations relate the errors to
the sampling-rate and the number of samples taken. These models were
then used as predictors of the expected errors in total rain estimates.
The predictions are applicable to individual, 10 km by 10 km area,

total rain measurements.
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ABSTRACT

Sampling-Rate Effects on Radar-Derived
Rainfall Estimates. (August 1985)
Jeffrey Lynn Fornear, B.S., University of Utah

Chairman of Advisory Committee: Dr. George Huebner

LALLM N

This study investigates the errors due solely to sampling intervals

y that occur with radar-derived total rainfall estimates. The study was

§ limited to nine cold-front passages over eastern Texas, in the Fall of

- 1984. Digitized, 10.3 cm wavelength radar observations were recorded
using a one minute sampling-rate. Total rainfall estimates, for 10 km

; by 10 km areas, based on these data were considered "ground truth"

- totals. _

- Sample-rates, ranging from 5 to 60 minutes, were applied to the re-

E corded data to calculate total rain estimates for each sample rate.

: These derived rain totals were compared to the "ground truth" totals,

- with the differences referred to as "errors." These errors weré plotted

5 against the sgmpling-rate. They ranged from over 100% for sample inter-

E vals greater than 50 minutes, to less than 25% for intervals less than

E 15 minutes. The errors were also plotted against the number of samples

E. taken. There was no significant increase in estimate accuracy when

- greater than seven samples were taken per 80 minute period.

- Other variables, the mean rain rate, total rain, sequential varia-

S bility, storm width, and storm speed of movement, were found to have

. very low correlations with the errors. Analyses of variances done on

i subdivisions of the storm width, storm speed, and mean rain rate
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variables proved inconclusive because of small, unbalanced sample sizes.
Regression analyses were used to develop the "best" models, using error
as the dependent variable. The resulting equations relate the errors to
the sampling-rate and the number of samples taken. These models were
then used as predictors of the expected errors in total rain estimates.
The predictions are applicable to individual, 10 km by 10 km area,

total rain measurements.
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CHAPTER 1

. INTRODUCTION

Overview

& Radar-derived values of total rainfall are, in addition to many
other factors, a function of the time interval between radar samples.
Most users of such information have little quantitativé\knowledge re-
N garding the errors in total rainfall estimates that can occur due to
variations in the rainfall rate during the intervals between samples.
Sampling intervals usually range from 5 to 30 minutes.

In addition to the desirability of determining these errors, there
is a specific need in the military for such information. A tactical
military weather radar must operate no longer than is absolutely neces-
sary because it presents itself as a target through electromagnetic
radiation. Such a radar used for military hydrological purposes needs
to accumulate precipitation data sufficient to derive the total rainfall
) over the area of interest.

A derivation of such errors due to the variations in the sampling

5 interval is of major importance to the military as well as the scienti-

fic community.

\ Objectives

. This study was undertaken to identify and quantify the differences

This study follows the style and format of the Journal of Climate
and Applied Meteorology.
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g between total rain estimates as functions of the radar sample-rates.

. The total rain estimate derived using radar data recorded at a one-
minute sample-rate was assumed to be the "ground truth" estimate. Total
rain estimates using other sampling-rates were compared to this “"ground
truth." The resulting differences are referred to loosely as "errors"

3 in this study. The specific objectives are as follows.

FRE AN W 4

(1) Complement and extend the applicability of previous, similar
studies that were based on only rain gage retwork data.

(2) Use descriptive statistical techniques to describe and place

AN I3 [ ".

N bounds on the expected error associated with specific radar sampling in-

tervals.

(3) Develop regression relationships that can be used to predict

r
[

the expected error when given a certain sampling interval and field

determinable parameters, such as storm depth and speed of movement.

\‘

\-

\|

} Previous Research

i Wilson (1964) showed that the sampling rate used to observe preci-
'} pitation events can contribute significant errors to the overall rain-
‘f fall estimates. This is patently clear to anyone but more importantly,
) just what factors have a bearing on these errors and just how much can
" be attributed to each such factor?

N The results of this study can be applied in several meteorological,

hydrological, and agricultural specialties. Models for weather modifi-

.

? cation verification and streamflow or flood control forecasting use in-
) tegrated precipitation over areas as important inputs (Larson, 1974;

| McGuiness, 1963). Outputs from these models can be no more accurate
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than the inputs. Therefore, any research that can describe and quantify

the expected errors in radar rainfall measurements would be of benefit
(Brandes, 1975; Jatila and Puhaka, 1973a,b).

In addition, a measurement of these errors is important to the
surviyabiIity of tactical weather radars now in use. When such a radar
is operating, or active in its hazardous battle environment, the radar
beam can act as a homing beacon for enemy rockets or missiles. Thus,
the less frequently the radar is active, the better its chances of sur-
vival. If the weather officer has knowledge of the relative accuracies

\ of different sampling rates, he can then use the minimum rate necessary.
To achieve this, a delineation of the expected statistical bounds of
fj error for certain sampling intervals is needed.
'; Previous studies, Huff and Neill (1957), and Linsley and Kohler
(1951), looked at sampling-rate caused errors with extensive raingage
; networks. Neill (1953) worked with raingage data from 8 storms. He re-
lated the standard error of the estimatevto the total storm rainfall and

the sampling interval used. His equation is

'y

X E = 4 x 1073131129 (1)
,ﬁ where ES is the standard error of the sampling interval estimate, Rt is
'’ the total integrated rainfall in inches, and T is the sampling interval
" in hours.

- Mueller (1957) worked with one-minute data from Neill's 8 storms
’0

- plus 12 more, of varied synoptic types. He investigated a measure of

j the rate of change of rain intensity with time, which he called sequen-
N tial variability, written as '
2

A

2
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|Ry=Ry| + [Ry=Ra| +... + |R.-R .|
D=-12 2 : — n_n+l (2) r

where D is the sequential variability in mm/h, R is the mean rainfall

rate in mm/h for the minute indicated by the subscript n, and N is the
total number of minutes sampied. This quantity will be used in this
study.

However, in considering the best multiple correlation coefficient,
he concluded that a simple relationship between the standard error of
the total rainfall estimate, the total mean storm rainfall, and the
sampling interval was the best estimate of sampling error. Thus

Mueller's equation is , -~
Eg = 1.05 x 1073 R, %7 71-54 (3)

This equation showed the standard error to be less dependent on
total storm mean rainfall than Neill's. Mueller attributed this to the
difference in storm types.

Huff (1970) was not concerned with sampling rates but related the
mean rainfall rate and the gage density to the sampling error in the

equation

52

E=-1.522 Rm‘87 6 (4)

where E is the sampling error in inches, Rm is the areal mean rainfall
rate in inches per hour, and G is the gage density in square miles per
gage. This was done for 29 storm samples over a gage network of 100 mi

square. He determined that the mean rainfall rate, or intensity, was an

- l"‘ I.‘ .‘ . ‘. - -‘“ ’ g - \‘" I‘.\
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important variable when assessing errors.

Wilson (1970) also used rain gages to infer expected errors in
radar rainfall estimates as functions of sampling interval and size of
the integration area. While showing the expected increasing error due
to increasing sampling interval length, it became apparent that there

was a large effect caused by the size of the total integrated area.
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CHAPTER IT

PROCEDURE

Data Collection

The WSR/TAM-1, 10.3 cm wavelength radar was used to collect the
rainfall data. Digitized radar data were recorded for later playback
and analyses.

The physical range of this study, seen in Fig. 1, consisted of a
300 km by 300 km area divided into four quadrants, with the radar in the
center. This range of 150 km radius about the radar limited volume
filling or beam height errors. This large area was subdivided into a
10 km by 10 km grid, which is the military's basic hydrologic unit.

With the aid of a data processing program a determination was made
of the average radar reflectivity factor for each 10 km by 10 km grid
area. This average reflectivity value is then converted to an instan-

taneous average rainfall rate for the grid area with the often used

relation

7 .-625
R = (xfp) (5)

where Z is the average grid area reflectivity factor in mmG/m3 and R is
the rainfall rate in mm/h.

The study was limited to cold front type precipitation events for
two reasons:

(1) This type of system occurred most frequently in this area
during the data collection period from September to November of 1984.

-----------
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& Fig. 1. Illustration of the data grid of 10 km by 10 km areas.

The actual recorded data was from nine different storms.
(2) A somewhat homogeneous type of line shape of radar echo was

needed to measure directly several of the physical characteristics of

the storms.
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The storms were observed by the radar and recorded at an antenna
rotation rate of 1 rpm. This allowed information on every grid area
every 60 seconds. This rate was then somewhat comparable, time-wise
only, to the previously mentioned studies because they used one-minute
recording rain gages. The recorded one-minute radar data was then con-
sidered "ground truth" or the best possible estimate of rainfall. Total
rain estimates based on this one-minute data were also considered the
"ground truth" for comparisons with other sample-rate estimates.

The 1 rpm recording rate forced an extrapolation of the rainfall
rate data at several of the sample intervals. This extrapolation became
necessary because the digitized radar tapes recorded for 85-90 minutes
at this antenna rotation rate. With this time span in mind it was de-
cided to process all tapes for a uniform 80 minute time span. The
probiem then was how to choose the sample intervals to use on the data.
Only the intervals of 5, 10, 20, and 40 minutes fit evenly into the 80
minute tape time. While the errors beyond the 40 minute interval were
of interest it was desirable to have more data points at the shorter
sample intervals. If the 80 minute observation was included as the last
data point for all extrapolated intervals then the stated sample inter-
vals would not accurately reflect the actual time intervals with which
the data was observed. In that case the stated 50 minute sample inter-
val would actually consist of an end observation interval of 30 minutes.
Therefore it was decided to extrapolate the last rain rate measured by a
full sample interval to the 80 minute end time. For example, the 50

minute sample was based on a first observation at starting time, a

second at the 50 minute point, and then this 50 minute rate was used as
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< the rain rate at the 80 minute end point. This was thought to be the
" best way to handle the dilemna because without actually taking a radar
. observation at the tape end point it would not be known if the rain rate
§ had increased or decreased, both being equally possible. Over a large

sample the mean of the data errors due to these extrapolations should be
5 very small because of the equal possibility of under-estimating or over-
- estimating any given rain rate. The sample intervals of 5, 10, 15, 20,

25, 30, 40, 50, and 60 minutes were used in this study. They are shown
. with their amounts of extrapolated data in Fig. 2.
. Sample .
. Interval (min)
- 60
. o1 -
-
- 40
o

30
. 25
¢ 20
3 15
N 10
- S
20 30 40
=z Time (min)
: X Actual sample measurement
e Extrapolated value
\E
Fi?. 2. IMlustration of sample interval points of measurement and

: extrapolation within an 80 m!n time span.
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N
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The selected sample intervals consisted of a set number of samg ¢
because of the fixed 80 minute data tape time in this study. These
numbers of samples provide a different measure of how the storm we:
sampled. The 50 and 60 minute sample intervals are different bece.:s
their measurements are taken at different time points. Althougr -
these two intervals are compared by the number of samples, they are °ne
same, they both allow two actual samples in the fixed time span. “hre
sampling error of a total rain estimate ultimately depends on how we''
the sampling technique can define the temporal rain profile. In this
way the number of samples is important because they obviously have a
direct effect on how well that profile is defined. For this reason re-
lating numbers of samples to errors of rain estimates could develop use-
ful predictive type relations. Using the selected sample intervals of
5, 10, 15, 20, 25, 30, 40, 50, and 60 minutes allow 17, 9, 6, 5, 4, 3,
3, 2, and 2 samples respectively for each total rain estimate made in

the 80 minute time span.

Variable Selection

There are several variables that could possibly help to explain the
observed errors when increasing the sampling interval. The grid instan-
taneous rainfall rate R in mm/h is the basic unit used to compute these
variables. The first three variables were calculated by a program that
processed the radar data and gave the variables of interest for each
grid area within one quadrant. These variables are as follows:

(1) The total integrated rainfall, R, (mm), is

) N-1 T(Rn+Rn+1)
Re= & —2 — (6)
n=1
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. "~ 3r°¢ total rain for the entire sampled time.

‘e mger rainfall rate, Ra (mm/h), is

N

S ®
o
“ ‘ - T- » (7)
- ‘~ medr grid rain rate over the entire sampled time.

5 “ne sequential variability D in mm/h is the rate of change of
‘4 ¢+ "ntems 'ty with time. It is shown in Eq. (2).

“ne ‘ollowing three quantities were determined from tracings of the
echoe s first and last position:

.1)  The horizontal depth of the precipitation area, in km, is
measured along the direction of movement. This depth is the arithmetic
mean of the distances from the area's leading edge to its training edge,
measured at the first and last sample times.

(2) The horizontal depth of the sampled portion of the precipita-
tion area, in km, is the portion of the precipitation area that has
passed over the sampling point during the sampling time. This depth is
measured as the distance the area's leading edge has moved during the
samplied time.

(3) The precipitation area speed, in km/h, is the average rate of
movement during the sampling time. The speed is calculated as the
arithmetic mean of the distinaces that the leading and training‘edges

moved during the sampled time, divided by the sampled time.

Raw Data Analysis and Products

In analyses of the digitized radar data tapes the previously




Mol el N i Aedo e i Nl Mol St A S ST SN AN I SN RGNt = i o RS A e A i A D S D T ol S gl g

12

mentioned calculations were done for the variables of interest. The
calculated values were then plotted for each grid area over the 150 km
N by 150 km quadrant of interest.

A portion of such a plot for a sample interval of one minute is
shown in Fig. 3. Such derived results were plotted for each grid area.
The upper number is the grid rain rate in mm/h at the last sample time
while the second number is the mean grid rain rate in mm/h for the total
sampled time. The third number in each grid area is the grid's total
integrated rainfall in mm for the entire samb]ed time and the lower
number in each box is the sequential variability in mm/h. These values,
derived using the one-minute sample data, were then considered "ground
truth" estimates for each grid area.

A somewhat similar plot was used for each of the sample intervals
ranging from 5 to 60 minutes. The upper number is the rain rate in mm/h

at the last sample time while the sample interval's total integrated

: ' : i
-- 120
1.653 1.222 1.103
1.972 1.476 2.101
2.121 1.903 2.833
0.677 0.596 0.712
ERT 1.432 mm g |10
1.453 1.116 MEAN RAIN RATE
2.103 1.742 TOTAL RAIN
0.633 0.542 IARTASTLITY
Im 30 20 10 RADAR

Fig. 3. ITlustration of plotted variables within grid areas for
the 1 min sample interval.
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rain in mm is the lower number. This plot is shown in Fig. 4. Such a

I plot was generated for each sample interval.
72 The total integrated rainfall estimate for each sample interval was
‘
A then compared to the "“ground truth" one-min interval total rainfall on a
” grid by grid basis. From this comparison the error was calculated and
»
N expressed as the absolute percent error of the total rain estimate for a
;3 given sample interval. This quantity was calculated as
) 100 |R Re g1y
4 APE = L{o) t! (8)
) t(1)
& where APE is the absolute percent error, Rt is the total integrated rain
i; calculated for the subscripts n and 1 which refer to the number of
N minutes in the sample interval used.
’ The recorded radar data tapes were played back to make tracings of
2 the storm echoes. Fig. 5 shows a typical tracing of the echo positiouns W
“ i | t .
’ L I .12061
”,
1 3.763 2,645 3.646
Id
- 6.120 4.678 5.723
" -- 10
N 2.334 1.977 TAST SapLET
: TIME
2.974 3.686 TOTAL RAIN
¥
N o 30 20 1 RADAR
5
~
3
. Fig. 4. Illustration of plotted variables within grid areas for
= the 5 to 60 min sample intervals.
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grid areas selected as data points.
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at the first data processing time (dashed 1ine) and the last processing
time (solid line). The tracings were constrained to enclose areas of

n precipitation rates greater than 2.4 nn/h. These tracings grid areas
were selected along the storm's leading edge. Two different sample
sets of data were selected from each storm. One sample set, ADATA, was

selected with the condition that the grid areas were within the precipi-

Tl Caa

tation area for the entire sampled time. This set was comprised of
values from 103 grid areas. The other set, BDATA, had grid areas under
the traced echo at the beginning sample time but not always under the
echo at the last sampled time. This data set had 89 grid areas.

Since the mean rain rates were calculated by averaging over the
total sampled time, rain rates in BDATA are not valid measurements. The

only other difference between the sets was that BDATA grid areas were

L Y i

generally 10 to 20 km further into the storm, away from the leading

edge. The two data sets were assumed to be independent samples. Two

a2

[

a"n"e o A K.

large data sets were useful for comparisons of mean errors.
Huff (1970) stated that rainfall measurement variables are not

N normally distributed. This makes statistical analyses difficult because

analyses of variance and multiple comparison tests require assumptions

of normality and equal variances (Ostle and Mensing, 1982). Huff (1970)

. found that using log transofrmations of the rainfall variables was the

) best method of approaching normalization of the data. Natural log
transformations of the rainfall errors and rainfall variables were used
for all statistical analyses of the data in this study. A1l statistical

:2 testing in this study was done at the 95% significance level.

The total sample in numbers of grid areas was very large by
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statistical standards. The data were from 192 grid areas. The errors

were determined for nine different sample intervals for each area, or a
total of 1728 calculated errors. For a sample this large the results

can be generalized fairly accurately with descriptive statistics (Ostle
y and Mensing, 1982).
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CHAPTER III
b STATISTICAL ANALYSES

Descriptive Statistics

The absolute percent error described in Eq. (8) was decidedly the
most practical measure of the difference between a certain sample inter-
val's total rain estimate and the 1 minute sampled "ground truth" total
N rain. The percentage part of this type of measurement scaled the errors
in an important way that made the errors of a light rainfall comparable
to that of a heavy rain. Taking the absolute value of the percentage
X error was necessary because there is no possible way of knowing if a

radar is under-estimating or over-estimating the rainfall at any speci-

. fied point and time. Thus, in interpreting the results presented here

f 9y

it must be kept in mind that the true errors could be positive or nega-

LY I

tive.

O«
v 2

The arithmetic mean, over all grid areas, of the absolute percent
s errors for each sampling interval and their associated standard devia-
tions were calculated for each data set. A summary of each individual
data set's statistical measures of the errors are shown in Table 1.

This table shows that the BDATA set of observations had larger mean

errors than the ADATA set, at all sample intervals except 10 min. The

I s R |

BDATA set also had larger standard deviations at all sample intervals
except 10 and 20 min.

Are the two data set's mean errors of total rain estimates statis-
tically different? The sets came from different grid areas within nine
storms. If it can be shown that they are not significantly different

NG ) A
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Table 1. Summary of statistical values of absolute percent error
by sample interval (min) for the individual data sets.

Sample Minimum Mean Maximum

i Standard
interval error error error ..
(min) (%) (%) (%) deviation
Data set = ADATA

5 0.00 1.23 5.76 1.16

10 0.00 4.56 26.16 5.38
15 0.00 7.52 38.56 7.17
20 0.07 11.77 131.44 14.53
25 0.31 14.53 71.29 12.72
30 0.53 23.43 138.60 22.05
40 0.66 29.49 104.97 24.78
50 0.24 41.09 128.85 28.77
60 1.00 42.55 106.36 27.1

Data set = BDATA

5 0.00 1.70 32.31 3.43

10 0.00 4.31 26.22 4.65
15 0.00 8.61 51.33 9.58
20 0.23 12.87 52.56 11.38
25 0.00 18.15 82.60 18.30
30 0.10 26.66 177.43 28.68
40 0.90 34.06 149.18 30.50
50 0.26 43.03 181.40 39.25
60 0.30 38.80 254.88 40.58

then one plot of combined mean data would be more representative of the
recorded data because the sample size would be effectively doubled. An
analysis of variance was used to compare the mean errors of the data
sets. This statistical test assumes equal variances and a normal dis-
tribution, thus it required the log transformation of the errors. The
log transformed errors were then tested in two different ways.

First a t-test was done by sample intervals to compare the mean

errors of the sets. The ADATA set had 103 observations averaged for
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each sample interval, while for the BDATA set each mean was of 89 obser-
vations. The results of the tests are shown in Table 2. The overall
results of this test show the highest t-statistic to have a level of
significance of p = .1676. From this it was concluded that there were
no significant differences between the mean errors of the two data sets
when they were compared by sampling intervals.

The second t-test was a comparison of each data set's mean error
averaged over all samplie intervals, shown as the lower line in Table 2.
The results were a t = 0.8369 with a level of significance of p =
0.4028. The conclusion was that there was no significant difference in

the overall mean errors of the data sets.

Table 2. ADATA and BDATA t-test comparisons of mean absolute per-
cent errors by sample interval and by overall data set means.

Sample Conclude
interval t-statistic p-value means
(min) are:
5 -1.3852 .1676 EQUAL
10 .2598 .7953 EQUAL
15 - .3597 .7195 EQUAL
20 - .7735 .4402 EQUAL
25 - .5207 .6032 EQUAL
30 - .4955 .6208 EQUAL
40 -1.3630 .1745 EQUAL
50 .9749 .3310 EQUAL
60 - .4762 .6345 EQUAL

From the above t-tests it is seen that the mean errors of total
rainfall estimates of the two data sets were not statistically dif-

ferent. This then allows the sets to be combined and a mean error of

-
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? the rain estimates calculated for each sample interval. These overall
mean errors were plotted in Fig. 6. The actual statistical values for
! the combined data set are listed in Table 3. For such a large sample
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Table 3. Summary of the statistical values of absolute percent

error by sample interval (min) for the combined data set.

Sample Minimum Mean Maximum
interval error error error gzsggzggn
(min) (%) (%) (%)

Data set = combined data

5 0.00 1.45 32.31 2.49
10 0.00 4.45 26.22 5.04
15 0.00 8.02 51.33 8.37
20 0.07 12.28 131.44 13.14
25 0.00 16.21 82.60 15.62
30 0.10 24.93 177.43 25.32
40 0.66 31.61 149.18 27.60
50 0.24 41.99 181.39 33.95

0.30 45.44 254.88 34.33

size the errors are assumed to be normally distributed. Thus, it can be
said that 95% of the absolute errors measured would be expected to lie

within 1limits described as

95% of the absolute errors < APE + 1.96 s , (9)

where APE is the mean absolute percent error and s is the associated
standard deviation. This 1imit, when plotted for each sample interval,
results in the upper curve in Fig, 6. The curves were fit to the data
with a SAS cubic regression drawing routine. Since the combination of
data sets almost doubled the sample size this plot is probably more
representative than either of the separate set's curves taken indivi-
dually.

In Fig. 6 the mean errors, the lower curve, increase as expected

with increasing sampling interval. The lower slope of the curve at




o Bl

e N

" e a4

"3 s 0 »

SLr2LLL

PN

]
-~ L

‘]\-'b'. . '; ‘e b

i b

‘f

A RS A UL S D S e S A i el e A A S Sty s S s Pl o P L sl iy el B iy i gty piiy Fhan fiy Souy- fhanSihe o Mty Don b om & 4

22

larger sample intervals may be due to the extrapolation technique used.
It must be remembered that the 50 minute interval had 30 minutes of
extrapolated data, whereas the 60 minute interval had only 20 minutes.
Thus, somewhat less confidence can be placed in the curves beyond the
40 minute point on all plots that use the sample interval as the
abscissa.

With the above stated cautions applied, Fig. 6 and Table 3 can be
used to approximate mean errors from other large samples. The mean
errors summarized here are very similar to those found by Wilson (1970)
in a study of convective storm radar-derived rain total estimates. By
comparison he found 45%, 25%, and 13% mean error at the 60, 30, and 15
minute sample intervals respectively. In Table 3 the combined data
shows that these errors compare favorably with the 45%, 25%, and 8% mean
errors found in this study. The upper curve in Fig. 6 defines the upper
limit of the area within which the errors would fall for 95 out of 100
estimates with a specific sample interval. Ningth-five percent of the
errors of total rain estimates should be less thant 50% if a sample in-
terval of 25 minutes is used. To be within 25% error an interval of 15
minutes is necessary. To keep the absolute percent error of a total
rain estimate less than 100% a maximum sample interval of approximately
46 minutes would be necessary. As a rough check on the statistical
accuracy of the upper curve in Fig. 6, it was found that 96.01% of the
measured errors fell within its limits. This fact reinforces the vali-
dity of the curve and our basic assumptions.

The combined data set's errors were also related to the number of

samples taken in the 80 minute time span of observations. At each of
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N the discrete "number of samples" points (i.e., 2, 3, 4, 5, 6, 9, and 17)
" the mean errors and their standard deviations were calculated. The re-
: sults are summarized in Table 4. The mean errors are plotted in Fig. 7,
2
b along with the 1imit curve defined previously in Eq. (9).
N Table 4. Summary of statistical values of absolute percent error
by number of samples per 80 min time span.

; Number Minimum Mean Max i mum
- of error error error 323?::;gn
- samples (%) (%) (%)
| Data set = ADATA
5 2 0.24 41.82 128.85 28.19
N 3 0.53 26.46 138.60 23.59
- 4 0.31 14,53 71.29 12.72
- 5 0.07 M.77 131.44 14.53

6 0.00 7.52 38.56 7.17
. 9 0.00 4.56 26.16 5.38
X 17 0.00 1.23 5.76 1.16
Data set = BDATA
| 2 0.27 45,92 254.88 39.91
, 3 0.10 30.36 177.43 29.75
. 4 0.00 18.14 82.60 18.30
N 5 0.23 12.87 52.56 11.39
- 6 0.00 8.61 51.33 9.58
. 9 0.00 4.31 26.22 4.65
- 17 0.00 1.70 32.21 3.43
\ Data set = combined data
.
™ 2 0.24 43.72 254.88 34.14
b 3 0.00 28.27 177.43 26.66
. 4 0.00 16.21 82.60 15.62
. 5 0.07 12.28 131.44 13.14
. 6 0.00 8.02 51.33 8.37
4 9 0.00 4.45 26.22 5.04
v 17 0.00 1.45 32.31 2.49
2
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The plots show the striking lack of difference in errors for num-
bers of samples greater than eight. The mean error from this point and
greater is less than approximately 5%. Evidently this is a point at
which the rainfall temporal profile becomes fairly well defined. In-
creasing the number of samples beyond this number has little effect in
decreasing the errors because the rain profile is almost as well defined
as can be. The mean errors increase dramatically when less than six
samples are taken. If only two samples are taken in an 80 minute span
the error can be expected to be less than approximately 110% in 95 out
of 100 cases. If an error of less than 50% or 25% is required the upper
curve indicates that at least 4 or 6 samples, respectively, would be

necessary during an 80 minute observation period.
Correlations and Analyses of Variance

Previous investigators have been cited that established sévera]
variables important to the explanation of errors of total rain esti-
mates. This present study has beasured or calculated values for the
independent variables of total rain, mean rain rate, sequential varia-
bility, storm depth, storm speed, and storm sampled depth for each grid
area. The other variables are, of course, the sample interval with
which the storm is observed and the number of samples taken of the
storm.

This section deals with finding the relative importance of each of
the variables in relation to the errors of rainfall estimates. The next
step is categorizing or subdividing the variables into groups to further

delineate the errors.

e




Which variables have a significant effect or are highly correlated

with the measured errors? A correlation analysis (SAS Institute Inc.,
1982b) was accomplished to determine the relations of the independent
variables to the mean errors. These analyses were done only on the
ADATA set because of inclusion of the mean rain rate variable. The log
of the sample interval and the log of the number of samples clearly had
the highest correlation coefficients, .73 and -.73 respectively, with
the log of the absolute percent errors. The next highest correlation
coefficient with the error was .21, with the sequential variability.
One-minute rain totals and mean rain rates have similar correlation co-
efficients of .12. The last three variables, the precipitation area
characteristics, are all slightly negatively correlated to the error,
with correlation coefficients from -.02 to -.05.

It is obvious that the sampie interval selected and the number of
samples taken would have the most effect on the rain estimate's errors.
The other variables can not be dismissed outright as unimportant because
of the wide ranges of the measured variables. The sequential variabili-
ty varied by a factor of nearly 50 in its untransformed state, while the
others varied from a factor of 5 to over 25. It may be that each
variable is more or possibly less correlated with the mean errors de-
pending on where in the ranges the measurements were made. For example,
were the large mean errors associated with large rain rates, or faster
moving storm areas? Even though this study only included storms of a
cold-front type, Huff (1970) found great variability within storms of
the same synoptic type.

In view of this variability it was decided to categorize the
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independent variables in an attempt to further investigate the factors

to which the sampling errors could be attributed. Disregarding the
variables of sampling technique, the mean rain rate of a storm area is
the only one of the next three largest correlations that is roughly
estimable with one or two radar scans, so it was a candidate for sub-
divisién into categories. The area sampled depth and the area speed
were found to be highly correlated with a correlation coefficient of
.992. This was known beforehand because the speed was used to calculate
the sampled depth. The speed was the selected variable here because it
could be determined more directly with at least two radar scans of an
area. The storm depth was also categorized because it was not highly
correlated with any of the other variables.

The subdivision of the selected variables was done subjectively by
investigating the ranges of each. The variables were categorized into
three subdivisions each. The results of these analyses were plotted
using a SAS cubic regression routine to draw the lines-of-best-fit.

The mean rainfall rate was divided into rates of less than 2.4 mm/h
(1ight), with 2.4 and 12 mm/h (medium), and greater than 12 mm/h
(intense). There were 180 observations in the light class, 630 in the
medium class, and 114 in the intense rain rate class. The mean errors
for each subdivision were calculated for each sample interval. These
calculations had 20 observations per mean error in the light class, 70
in the medium class, and 13 in the intense class. The results were

plotted and are shown in Fig. 8. The outstanding difference in the fig-

ure is that the light rain rate class appears to have considerable less

error than the other classes at large sampie intervals. Statistical
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testing was done to see if the classes differed significantly.

An analysis of variance was done to compare the mean log trans-
formed errors between the subdivisiors of rain rates. This test calcu-
lated an F value of 7.85 and a level of significance of p = .0004. This

pointed to a significant difference between the mean errors of at 1east.

~ two classes of rain rates. Fisher's least significant difference t-test

was applied to test which means differed. The results showed the over-
all mean errors of the light réte class differed significantly and were
less than either of the other classes. The more conservative Tukey's
studentized range test found the light rain rate significantly less than
only the medium rate.

To further pinpoint the rain rate class differences another analy-
sis of variance was run on the data by sample intervals. If this test
indicated significant differences between rates of classes for a certain
sample interval then Fisher's and Tukey's tests were also run on the
data. The analysis of variance indicated significant differences for
only the 5, 20, and 60 minute intervals.

With a sample interval of 5 minutes the analysis calculated an F
value of 7.00 and a level of significance of p = .0014, indicating a
significant difference. Fisher's test then showed that the medium rate
errors differed from the light and intense rate categories. Tukey's
test found the medium rate errors to differ only from the 1ight rates.
Since in this interval t. mean error was less than 1.5% and the great-
est single error was less than 6%. These differences for the 5 minute
interval are of minor importance.

The analysis of varfance on the 20 minute sample interval
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calculated an F value of 4.36 and a level of significance of p = .0152,
indicating significant differences. With Fisher's and Tukey's tests on
this interyal the light rate errors were found to be significantly less
than the medium and intense rates.

Finally, an analysis of variance run on the 60 minute sample inter-
. val calculated an F value of 5.86 and a level of significance of p =
- .0039, again indicating a significant difference in mean errors of the
rain rate classes. Further testing with Fisher's test showed the light

rain rate errors differ from the medium and intense rate errors.

i)
e

Tukey's test showed that the 1ight rate errors differ only from the

.

medium rate errors.

In summary the light rain rate class had several significant
differences. In Fig. 8 it appears that the light rain rate class had
less mean error than the other classes at every interval. The analysis
- of variance performed on the mean errors of these subdivisions found the
,§ light rain rate to be significantly less than the other classes. Yet,
when the light rain rate class was further tested by sample interval it
was found to be significantly less in only the 20 and 60 minute inter-
0 vals. There is an imbalance in sample sizes in the rain rate classes by

sample interval as the 1light rain rate class mean was of 20 observa-

tions, the medium mean was of 70, and the intense mean was of only 13.

[ Wl b A A

If this same analysis was run on a more balanced class structure, each
with at least 30 observations, the results would be more conclusive. As
it stands the tests found only two out of nine sample interval's mean

errors in the 1ight rain rate class and the overall class mean error to

'};'-';' -

be significantly less than the other classes. With sample size kept in
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mind it can not be concluded that the difference in the light rain rate
class is of overall significance.

The next classifications of the data were by precipitation area
depths. Fig. 9 is a plot of the mean absolute percent error against the
sample intervals for the three subdivisioﬁs of area depth. The classes
were by precipitation area depths greater than 80 km (wide), depths
within 40 km to 80 km (medium), and depths of less than 40 km (thin).
There were 351 observations in the wide class, 360 in the medium class,

- and 216 in the thin class. The analysis of variance performed on the
: mean errors of these classes resulted in an F value of 1.78 with a level
of significance of p = .1699. This indicated no significant differences
between the mean errors of these precipitation area depth classes. In
Fig. 9 the mean errors show no large differences for any class at any
specified interval. In the plot there is a mild overall tendency for

the thin depths to have greater errors and the wide depths to have less.

Tl et .:

Synoptically this probably relates to the fact that more turbulent

activity may often be associated with a smaller, thinner line type of

a precipitation event and more steady, stratiform type rain associated

jg with a wider depth storm area. Overall, the statistical testing did

:; not show these depth class error differences to be significant. Evi-

i dently classifications by storm depth do not result in the greater

;; definition of the mean errors of total rain estimates.

_; The last subdivisions of the data were by the precipitation area's
ZE speed. The divisions were for area's speed greater than 50 km/h (fast),
‘g for speeds within 30 km/h to 50 km/h (medium), and for speeds less than

30 km/h (slow). This divided the total number of observations into
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Fig. 9. Plot of mean absolute error by sample interval for
categories of precipitation area depth (km).
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groups of 90 in the fast class, 423 in the medium class, and 414 in the
slow class. The analysis of variance performed on mean errors by class
produced an F value of .250 with a level of significance of p = .7775.
This result indicated no significant differences between class mean
errors for the speed subdivisions. The mean absolute percent errors of
these classes were plotted against the sample intervals in Fig. 10. In
the figure the main difference in the respective curves is that the

fast class, at longer sample intervals has less mean error than the
other classes. This may be due indirectly to the imbalance of class
sizes. This small sample of fast moving areas could be unrepresentative
of the population. The fast class had less than one-fourth the observa-
tions of the other classes. For this reason there can be less confi-
dence placed in conclusions about the fast class. It appears that sub-
dividing rainfall data into area speeds does nothing to help explain

more of the mean errors of total rain estimates.
Regression Analyses

Regression analyses are tools for further examining and even pre-
dicting the mean errors associated with different sampling measures. A
correlation analysis is a starting point for selecting possible varia-

bles to include in a regression. Since mean rain rate was a variable of

interest the analysis was done using the ADATA data. Error and rainfall

measurements were log transformed to approach normalization. It is ob-
vious, from the correlations previously stated, that the sample inter-
val, the number of samples, the sequential variability, and the rainfall

measurements were important in explaining the errors of total rain




34

o
oy

"~
”m

Medium —

~
()

w
o

w
(8]

T ¢ ¢ 4 ¥V D A
Titetatot. )
DOBBIN ZINOIDMDV M QDD
- — ~N ~N
D w ¥ om 3
.MLMM—WM¢M“JMLMWJLMMJ_

w

Q

L] T T LN M 14
: 20 2% 30 35 40 48 50 5% 60
! SANPLING INTERVRL (MIN)

v
(=]
L
—
o
-—
wm

Fig. 10. Plot of mean absolute error by sample interval for
categories of precipitation area speed (km/h).

LI S Y IR T )

AR T IR O S I I 1Y 4 C R Y NC
AR Cr, WL G £ S S O G




e i 24

‘5,‘“0. N

O .?.‘{‘. ,...‘.-‘.. ‘. '... ’1. .-.!.-\"’- _:\ o.‘.-\'.-';‘!.;.q v\'.n{..;‘_..;-\-'\: ~‘.\-.. .'_" YAt \\‘-‘ s Q*‘)i A RSS! 'ﬁ)\..'h’.\.'-..\ v

35

estimates. There was little correlation between the precipitation
area's physical characteristics of speed or depth, and the errors. The
higher correlations of the sample intervals and numbers of samples to
the errors point to their greater importance in a regression relation.

In addition to the eight previously explained variables that were
discussed earlier, it was felt that several other variable products
could have been important. Variables that could be estimated with two
or less radar scans would be useful in a predictive regression equation.
The sample interval, area depth, area speed, and mean rain rate were
candidates for the variable products. Since these variables could be
determined or estimated before a storm was over the area of interest,
these variables were of use in a predictive sense. Included in the re-
gressions were products of the sample interval with the speed, rain
rate, and area depth, products of the rain rate with the speed and
depth, and the product of the speed and depth.

The next step was to do simple linear regressions with a procedure,
RSQUARE (SAS Institute Inc.; 1982a), that does all possible regressions
between the different conbinations of the independent variables and
given variables. The ADATA data were used because of their valid rain
rate measurements. The procedure was run first on the variables, than
on their natural log transforms, and finally on the variable products.
Table 5 summarized the results of the variable's association with the
log of the absolute percent error.

In Table 5 the multiple correlation coefficients, R, are an ex-
pression of the degree of association between the variables in the

model. The coefficient of determination, Rz, when multinlied by 100 is

AYRILILY
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Table 5. Coefficients of determination and correlation coeffi-
cients for variable's association with the 1og of the absolute percent
error as the dependent variable.

Independent variables R2 R

Area speed, SPD .0006 .0245
Sampled depth, SAMPDEP .0007 .0265
Area depth, STRMDEP .0025 .0500
Total rain, R¢ .0056 .0748
Mean rainrate, Ry .0085 .0922
Sequential variability, D .0308 .1755
Number of samples, N .4548 .6744
Sample interval, T .4760 .6899
Ln (Mean rain rate), LRA .0150 .1225
Ln (Total rain), LRT .0153 .1237
Ln (Seq. variability), LD .0460 .2145
Ln (Number of samples), LN .5273 .7262
Ln (Sample interval), LT .5286 .7270
SPD X STRMDEP .0007 .0265
Ln (Rz X SPD) .0074 .0860
Ln (Ra X STRMDEP) .0074 .0860
T X SPD .2353 .4851
T X STRMDEP . .2790 .5282
Ln (Ry X T) .3520 .5933

the percent of variance in the dependent variable that can be explained

by the independent variable or model.

The table clearly shows the

sample interval and the number of samples taken to be the most important

variables in any regression used to predict errors.

transformed values of these variables have greater R

The natural log

2 values than do the

untransformed values, thus the transformed values should be used in a

final regression model.

The sequential variability is seen as the next important variable

for explaining the errors.

Its transformed value shows a R of 0.2145.

This evidently makes it a more important value than either the rainfall
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variables or their transforms. This differs from Mueller's (1957)
findings that related the standard error of raingage estimates to the
same type variables used in this study. He concluded that the best
relationship existed between the standard error of the rainfall estimate
with the sample interval and the total rainfall, instead of with the
sample interval and the sequential variability. Mueller's total rain
was for the entire storm time, which is significantly different from the
total rain in this study. Here the total rain was measured for only
80 minutes, which, may or more often may not have been the entire storm
time. This also means that in this study rain along the storm's leading
edge was more often measured. The leading edge of a cold-front may
structurally be.more active and turbulent, resulting in a more erratic
temporal rain profile and thus a higher sequential variability with
generally larger sampling errors. This may account for the greater
relative importance of the sequential variability in this study.

The mean rain rate and the total rain appear to be of relatively

less" importance in Table 5, as indirated by their R2

values. They ex-
plain a maximum of only 1.5% of the error's variability even when trans-
formed. These variables were not considered important enough to be
included in the final regression model.

The precipitation area's physical characteristics of speed, depth

2 values. These measurements are

and sampled depth have very small R
then nearly useless in helping to explain the errors in total rainfall
estimates. For this reason these variables were not log transformed for
further work in obtaining the final regression equation.

Table 5 has very small R2

values for all of the attempted variable
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products. A1l products invoiving the sample interval have much smaller
R2 values than do the sample interval by itself. Since the products and
the interval are mutually exclusive in a regression, only the sample
interval should be used. The remaining products of speed, depth and
rain rate explain less than a maximum of 0.7% of the error variability.
Therefore, they are of no use in a final regression equation.

Table 6 shows the complete result of all possible regressions on
the log transformed model with the relatively important variables. The
sample interval and the number of samples are just two methods of quan-.
tifying the radar sampling of a storm, therefore they are mutually ex-
clusive in a regression. This means that there is a "best" model for
each of these variables. In Table 6 the log of either sampling method
alone accounts for approximately 53% of the error variability. Adding
the sequential variability to either sampling method adds less than 5%
to the explained variability. The addition of either rainfall variable
to the model with sampling method and sequential variability increases
the R2 by nearly 7 percent. Including both rainfall parameters in that
model results in approximately a 9 percent increase in explained vari-
ance of the errors.

These results were then used to construct the "best" regression
models. It was immediately obvious that the sample interval and the
number of samples were the variables of most importance and, a separate
model would have to be made for each. The two resulting equations would
allow prediction of the sampling errors by determining a priori either
the sampling interval desired or the number of samples possible in a

specified storm. The sequential variability and the total rainfall were




Table 6. A1l possible regressions on dependent variable LAPE,
natural log of the absolute percent error.

Number in model R2

Variables in model

e o THE

.646

.588
.640
.647
.659
.660

0.661
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LRA

LD LRT LRA
LT LN LRT
LT LN LRA
LT LN LD
LT LRT LRA

LT LN LD LRT LRA

they are not useful in the predictive sense.

seen to be somewhat important but are only known after the fact. They

should be included in a type of equation for post event analyses but

Since a main objective of
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this study was to develop predictive regression equations it was decided
to not include the sequential variability or the total rain in further
modeling. The mean rain rate can be roughly estimated with one or two
radar scans, therefore would be useful in a predictive equation. In
Table 6 the addition of the mean rain rate to either sampling model only
resulted in an increase of approximate1y 0.015 in Rz. This slight
amount of improvement in the model was by far outweighed by the fact
that radar scans had to be made for even a rough estimate of the rain
rate. For this reason the rain rate was not included in the final
model, which then allowed estimation of errors without turning on the
radar.

The two "best" regression models for the stated objectives were

then of the simple single variable type. One model,
LAPE = a + b (LT) , (10)

relates the natural log of the absolute percent error (LAPE) and the
natural log of the sample interval (LT) in minutes, with a and b re-

gression constants. The other model's equation is
LAPE = a + b (LN) , (11)

which relates the log of the absolute percent error (LAPE) to the log of
the number of samples taken (LN), again with a and b regression con-

2 value of

stants. These single variable regression models have a R
approximately 0.53, as seen in Table 6. The advantage to such simple
models is that they require no measurement of storm characteristics from

preliminary radar scans prior to the start of rainfall measurements.
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Final regressions on the models were done with the combined data
sets. In Figs. 6 and 7 the data indicated that a better fit might be
found using a second or third order po]ynbmia] regression. The General
Linear Models (GLM) regression procedure (SAS Institute Inc., 1982b) was
executed with three models for each of the two independent variables.

The models were

Linear LnY = a + b(LnX) (12)
Quadratic  LnY = a + b(LnX) + c(LnX)2 (13)
Cubic LnY = a + b(LnX) + ¢(LnX)? + d(LnX)3 (14)

where Y is the dependent variable, absolute percent error plus 2 (to
avoid Ln(@) computations), a, b, ¢, and d are regression constants, and
X is the independent variable. The variable, X, is the sample interval
5n one model, then the number of samples in the other.

Regression analysis was done first using the log of the sample in-
terval (LT) in minutes as the independent variablie in Egqs. (12), (13),
and (14). The results are in the Appendix in Tables 9, 10, and 11
respectively. There was no significant improvement in R2 for the poly-
nomial models. The quadratic parameter had a p-valua of 0.2131 which
makes it not significant to the regression. In the cubic regression the
intercept and linear parameters were insignificant to the regression and
higher order terms, LT2 and LT3, were significant with p=values of
0.0319 and 0.0392 respectively. The polynomials showed increased stan-
datd errors of estimates over the 1inear model. The overall results

indicate the best regression is the linear model
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where APE is the absotute percent error and T is the sample interval in
minutes. Here, 2 is subtracted because it was added previously to the
regression model to avoid Ln(@) computations. This model's predicted
error values are plotted with the actual observed mean errors in Fig.
11. As the sample interval increases the model underestimates of the
mean error increases significantly. The model underestimates the ob-
served mean errors by over 20% beyond sample intervals of 25 minutes.
The underestimation is a bias that is a consequence of using the log
transforms for regressions. The bias makes Eq. (15) useful for predic-
tion of errors only at sample intervals below approximately 15 minutes.
Freund (1977) states a method which is used to reduce the bias when
working with log transformed data. A bias correction factor can be
added before the antilogarithms of the estimated errors are taken. The

equation for this correction in this case becomes
APE* = Ln~! [(LAPE) + k(MSE model)] -2 (16)

where APE* is the bias corrected absolute percent error, LAPE is the log
of the absolute percent error calculated by the regression equation, k =
0.5, and MSE is the mean square error of the regression model. With the

appropriate numbers substituted this equation becomes
APE* = Ln'] [(-1.212+1.161 LT) + 0.5 (0.761)] -2 (17)

where LT is the log of the sample interval in minutes. This equation

can be written in a multiplicative form as
APE* = e"0832 T1-16] -2 (]8)

where T is the sample interval in minutes.
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Fig. 11.

sample interval.

Bias Corrected Regression—

Observed
Mean Errors —

Regression

INTERVAL (NMIN)

Plot of regression predicted absolute percent error by
Observed mean errors, a linear regression line-of-
best-fit, and the 1inear regression line when corrected for log bias are
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: The bias corrected absolute percent errors were calculated using

| Eq. (18). The results are listed in Table 7 and plotted in Fig. 11. 1In
3 Fig. 11 the corrected errors are seen to closely approximate the obser-
_E ved errors. Although the regression equation estimates errors that are
i more in agreement with the actual observed errors, it must be stated

? that the bias correction technique is not mathematically exact enough to

eliminate totally all bias errors. With that caution in mind useful
prediction limits can be drawn about the regression line.

) Table 7. Summary, by sample interval, of regression errors, bias
= corrected regression errors, and upper 95% prediction limits.

‘% Sample Observed Regression Corrected 95%

K interval errors predicted predicted prediction
= (min) (%) errors (%) errors (%) limits (%)
- 5 1.4 - A .8 3.4

v 10 4.4 2.3 4.3 18.6

. 15 8.0 4.9 8.1 34.0

v 20 12.3 7.6 12.1 50.8
b 25 16.2 10.5 16.3 68.4

30 24.9 -13.4 20.6 86.5

: 40 31.6 19.6 29.5 123.9
- 50 42.0 25.9 38.8 163.0
. 60 45.4 32.5 48.5 203.8

N

N

P

Fig. 12 is a plot of the bias corrected regression estimated errors

Es 0
[l ot ol

by sample interval, with the observed errors as points. The upper 95%

oy
o

! standard equation from Koopmans (1981). The prediction 1imit values for
73 each sample interval are listed in Table 7. The width of the prediction
", 1imit reflects the great variability in the sample measurements,
>
$!

‘ [

S

prediction 1imit was calculated at each sample interval point using a
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Fig. 12. Plot of the bias corrected regression predicted error
with the upper 95% prediction limits by sample intervals. Mean observed
errors for each sample interval are plotted as "*".
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particularly at the larger sample intervals. This is the limit that the
errors would be expected to be within 95% of the time for any single

grid area sample. This prediction 1imit then clearly illustrates the

a8 -8 8 _&

wide error range to be expected when making total rainfall estimations

for small numbers of samples or small areas. For example, to be assured

of less than 100% error (95% of the time) the sample interval must be

less than approximately 34 minutes. Conversely, a sample interval of 20

. minutes would result in total rain estimation errors of less than 50%,

in 95 out of 100 cases.

2 The log of the number of samples (LN) was next used as the indepen-
dent variable in Egqs. (12), (13), and (14). The results of the three
regressions are in the Appendix in Tables 12, 13, and 14 respectively.

g The linear model gives a fairly good fit to the data. The highly signi-

ficant p-values, less than 0.0001, and the small standard errors are

evidence of a good regression fit.

There was insignificant improvement in R2 for the higher order
polynomials. The linear model's R2 = 0.498, the quadratic R2 = 0.499,
and the cubic R2 = 0.500. The quadratic parameter LN2 was not signifi-
. cant (p = .0508), and the standard errors increased. Thus the quadratic
| model's fit was not as good overall as the linear's. The cubic model

results indicated an even worse fit. The linear parameter LN was in-

f significant (p = .9062), and again the higher order terms were signifi-

cant. Their p-values indicate that a t-statistic this large or larger

could have been found by chance alone in nearly 3 and 5 cases out of

.l...ls‘, (O

100, for the LN2 and LN3 parameters respectively.

The 1inear regression model is the best in this set. It can be
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written with regression constants as

where N is the number of samples upon which the total rain estimate was
based, and APE is the absolute percent error.

A plot of the predicted values from this model with the actual ob-
served mean errors is seen in Fig. 13. Obviously the same bias effects
are seen here, again due to the log transformations used in regressions.
The predicted errors range from 20% less than the actual sample errors,
when taking more than approximately nine samples, to over 60% less with
two or three samples taken. This leaves the important, small number of
sample's errors relatively unpredictable when using this regression
equation.

The bias correction, Eq. (16), was used with Eq. (19) resulting in

a corrected form

APE* = Ln-'I [(4.339 - 1.309 LN) + 0.5 (0.7676)] - 2 (20)

where LN is the log of the number of samples. This equation can also be

written in a multiplicative form as
APE* = e4-723 N-].309 - 2 (2])

where N is the number of samples taken in 80 minutes.

Using Eq. (21), values of the bias corrected regression estimated
errors were calculated, then 1isted in Table 8 and plotted in Fig. 13.
The bias corrected regression estimates are a very near approximation to

the observed errors, as seen in Fig. 13. This regression relation can




T

y 48
N

. 45+
3

404

o b
., 35
( ]

B 30

- Lo Observed Mean Errors

l_ T :

4_ 4
& E 259

P
13 4
! R
W E 20

: N

A T3
N £

. R ]

R 154

J R Bias Corrected
:: 5 / Regression
s ] -

o 104
>, k
'l -
< ]

: ] Regression
o ]

. :

X o- L L L3 L Ll L} L T T e L] H B LS Ll L4
o } 2 3 4 5 6 7 8 9 10 11 12 13 14 1S 16 17
v NUMBER OF SAMPLES IN 80 MIN
N

o
3
)

N Fig. 13. Plot of regression predicted absolute percent error by
~ number of samples. Observed mean errors, regression line-of-best-fit,

X and the corrected regression line-of-best-fit are shown.
<
o

R N NN N IR WM BN I T L O L g

A



Pava s s 3 2 %

Ay

ML R

49
Table 8. Summary, by numbers of samples, of regression errors,
bias corrected regression errors, and upper 95% prediction limits.

Number Observed Regression Corrected Upper 95%
of errors predicted predicted prediction
samples (%) errors (%) errors (%) limits (%)

2 43.7 28.9 43.4 183.8

3 28.3 16.2 24.7 104.4

4 16.2 10.5 16.3 68.9

5 12.3 7.3 11.7 49.5

6 8.0 5.3 8.8 37.2

9 4.4 2.3 4.3 18.2

17 1.4 - 0.1 0.8 3.2

then be used to plot useful prediction limits.

Fig. 14 is a plot of the bias corrected estimated errors with their
associated upper 95% prediction 1imit plotted by the number of samples
taken. The calculated values are listed in Table 8. The plot ?s of the
same general form as the empirically derived Fig. 8. The prediction
1imit allows estimation of the largest expected error of any single
total rain sample. For example, the error would be expected to be less
than 50% (95% of the time) if at least five samples were taken in an 80
minute time span. The figure also illustrates the problem of over-
sampling, which is actually the lack of significant improvement of the
accuracy of estimates made with more than nine samples during the 80

minutes.
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CHAPTER IV
SUMMARY AND CONCLUSIONS

This study investigated the effects of various sampling-rates on
radar-derived, total rainfall estimates. Radar observations, taken at
one minﬁte intervals, were recorded for nine storms in 1984. Total
rainfall estimates, for 10 km by 10 km areas, based on these data were
considered "ground truth" totals. Sample-rates, ranging from 5 to 60
min, were applied to the recorded data to calculate total rain estimates
for each sample rate. These derived rain totals were compared with the
“ground truth" totals, with the differences referred to as "errors."
These errors were plotted against the sampling-rate and the number of
samples taken. Other variables, investigated for high correlations with
the errors, were the mean rain rate, total rain, sequential variability,
storm width, and storm speed of movement. Analyses of variance were
done on subdivisions of the storm width, storm speed, and mean rain rate
variables. Regression analyses determined the "best" models, using
error as the dependent variable, to allow prediction of the expected
errors in total rain estimates.

With this study's sample size in mind, several conclusions can be
drawn:

(1) Large-sample mean absolute errors of total rain estimates
ranged from nearly 8%, 25%, and 45% with 15, 30, and 60 min sample-
rates, respectively.

(2) 95% of the individual estimate errors were found to be less

than approximately 25%, 75%, and 112% with 15, 30, anq 60 min
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sample-rates, respectively.

(3) Taking more than 8 samples per 80 min period does not increase
significaﬁt]y the accuracy of the measurement. The mean error for
greater than 8 samples taken was less than approximately 5%.

(4) If only 2, 4, or 6 samples are taken in 80 min, the error is
espected to be less than.110%. 50%, or 25%, respectively, 95% of the
time.

(5) The variables of highest correlation with the errors were the
sample-rate and the number of samples taken, with coefficients of 0.73
and -0.73 respectively.

(6) The variables of sequential variability, mean rain rate, total
rain, storm width, storm speed, and sampled storm depth had low correla-
tions with the errors.

(7) Subdivisions of the variables were inconclusive because of
small, unbalanced sample sizes.

(8) Regression equations were derived to relate the errors to the
sample-rate and the number of samples taken. This allows prediction of

errors for individual total rain estimates.
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Table 9. Regression results on the linear model LAPE = a + b(LT).
LAPE is the natural log of (absolute percent errir + 2), a and b are
regression coefficients, and LT is the natural log of the sample inter-

val in minutes.

DEPENDENT VARIABLE: LAPE
SOURCE OF SUM OF SQUARES
MODEL 1 1325.46786969
ERROR 1726 1313.37782483
CORRECTED TOTAL 1727 2638 .84569452
R-SQUARE Cc.V. ROOT MSE
0.502291 36.4886 0.87231722
SOURCE DF TYPE 1 SS
LY 1 1325.46786969
SOURCE OF TYPE I11 SS
LY 1 1325.46786969
T FOR HO:
PARAMETER ESTIMATE PARAMETER=0
INTERCEPT -1.21239178 ~13.65%
LY 1.16097819 41.74

GENERAL LINEAR MODELS PROCEDURE

LOG (ABSOLUTE PERCENY ERROR+4)

MEAN SQUARE F VALUE
1325.46786969 1741.89
0.76093733 PR > F
0.0001
LAPE MEAN
2.3906557%
F VALUE PR > F
1741.89 0.0001
F VALUE PR > F
1741.89  0.0001
PR > |T| STD ERROR OF
ESTIMATE
0.0001 0.08884346
0.0001 0.02781723
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.3
N
% : =
N Table 10. Regression results on the quadratic model LAPE =
a + b(LT) + c(LT)2,
» .
- GENERAL LINEAR MODELS PROCEDURE
b
DEPENDENT VARIABLE: LAPE LOG (ABSOLUTE PERCENT ERROR+4)
- SOURCE OF SUM NDF SOUARES _ MEAN SQUARE F VALUE )
. MODEL 2 1326.64815755 663.32407878 872.00
i ERROR 1728 1312. 19753697 0.76069422 PR > F
CORRECTED TOTAL 1727 2638.84569452 0.0001
2 R-SQUARE c.v. ROOT MSE LAPE MEAN
» 0.502738 36.4828 0.87217786 2.39065578
SOURCE DF TYPE 1 SS F VALUE PR > F
X LT 1 1325.46786969 1742.45  0.0001
» LToLY 1 1.18028786 1.55 0.2131
s SOURCE DF TYPE II1 SS F VALUE PR > F
b .
LY ; 1 14.23054260 18.71  0.0001
» LTeLT 1 1.18028786 1.88  0.2131
>
o T FOR HO: PR > |T] STO ERROR OF
N PARAMETER ESTIMATE PARAMETER=0 ESTIMATE
- INTERCEPT -0.86721488 -2.98 0.0029 0.29099967
= LY 0.90318417 4.33 0.0001 0.20881830
bl LTeLY 0.04459334 1.25 0.2131 0.03579984
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Regression results on the cubic model LAPE = a + b(LT) +

DEPENDENT VARIABLE:

SOURCE
MODEL
ERROR

CORRECTED TOTAL

R-~SQUARE

0.503964

SOURCE

LY
LT LY
LT LT LY

SOURCE

LY
LTLY
LT LTeLT

PARAMETER

INTERCEPT
LY

LTeLY
LTeLT LY

GENERAL LINEAR MODELS PROCEDURE

LAPE

DF

1724

1727

Cc.v.

36.4484

DF

-

DF

-

ESTIMATE

1.54286725
.93063158
1.085442382
. 12111800

LOG (ABSOLUTE PERCENT ERROR+4)

SUM JF SQUARES
1329.88234677
1308.96334775

2638.84569452

ROOT MSE

0.8713%5497

TYPE I SS

1325.46786969
1.18028786
3.23418922

TYPE 111 SS

1.46726572
3.49964941
3.23418922

T FOR HO:
PARAMETER=0

1.2
-1.39
2.18
-2.06

> "-}t. Y ' '-}:. '\'""‘p : \‘é'ﬂ}f ‘-f,\';\\f:- A

MEAN SQUARE
443.29411559

0.75925948

LAPE MEAN

2.3906S575

F VALUE PR > F
1745.74
1.55
4.26

0.0001
0.2126
0.0392

F VALUE PR > F
1.93
4.61
4.26

0.1647
0.0319
0.0392

PR > |T|

0.2000
0.1647
0.0319
0.0392

e

F VALUE
583.85
PR > F

0.0001

STD ERROR OF

ESTIMATE

1.20338098
1.38880136
0.50558040
0.05868419
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Table 12.
LAPE is the natural log of (absolute percent error +2), a and b are
regression coefficients, and LN is the natural log of the sample inter-
val in minutes.

Regression results on the linear model LAPE = a + b(LN).

DEPENDENT VARIABLE:

SOURCE
MODEL
ERROR

CORRECTED TOTAL

R-SOQUARE

0.497954

SOURCE

LN

SOURCE

LN

PARAMETER

INTERCEPY
LN

- e

GENERAL LINEAR MODELS PROCEDURE

LAPE
OF
1
1726

1727

Cc.v.

36.6472

OF

DF

ESTIMATE

4.33917747
-1.30856716

e reaw
4 % e
-

LOG (ABSOLUTE PERCENT ERROR+1)

SUM OF SQUARES
1314.02367916
1324.82201536

2638.84569452

ROOT MSE

0.87610947

TYPE 1 SS

1314.02367916

TYPE 111 SS

1314.02367916

T FOR HO:
PARAMETER=0O

84.10
-41.38

AT N -\-._».a... TR

ek e

MEAN SOUARE
1314.02367916

0.76756780

LAPE MEAN

2.3906557S

F VALUE PR > F

1711.93 0.0001

F VALUE PR > F

1714.93  0.0001
PR > |T|

0.0001
0.0001

R N A NOTN

f VALUE
1711.93
PR > F

0.0001

STD ERROR OF
ESTIMATE

. L

.,

0.05159460
0.03162662
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T Table 13. ngression results on the quadratic model LAPE =
a + b(LN) + c(LN)<.
‘Lo
\'
k‘I
>
Ly
_-‘
o
i
N GENERAL LINEAR MODELS PROCEDURE
a
e DEPENDENT VARIABLE: LAPE LOG (ABSOLUTE PERCENT ERROR+1)
SOURCE OF SUM OF SQUARES MEAN SQUARE F VALUE
. MODEL 2 1316.94990191 658 .47495095 859.27
.. ERROR 1725 1321.89579261 0.76631640 PR > F
° CORRECTED TOTAL 1727 2638 .84569452 0.0001
p R~SOUARE c.v. RODT MSE LAPE MEAN
. 0.499063 36.6174 0.87539500 2.3906557S
. SOURCE DF TYPE 1 SS F VALUE PR > F
, LN 1 1314.02367916 1714.73  0.0001
- LN*LN 1 . 2.9262227S 32.82 0.0508
-
. SOURCE OF TYPE II1 SS§ F VALUE PR > F
- LN 1 78.51645282 102.46  0.0001
LN*LN 1 2.9262227% 3.82 0.0508
>
od T FOR HO: PR > |T] STD ERROR OF
. PARAMETER ESTIMATE PARAMETER=0 ESTIMATE
O INTERCEPY 4.55485364 37.39 0.0001 0.12181660
. LN -1.61396511 -10.12 0.0001 0. 15944756
= LN*LN 0.08983264 1.95 0.0508 0.04597106
'i
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Table 14. Regression results on the cubic model LAPE = a + b(LN) +
c(LN)Z + d(LN)3.

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: LAPE LOG (ABSOLUTE PERCENT ERROR+1)
SOURCE DF SUM OF SQUARES MEAN SOQUARE f VALUE
MODEL 3 1320.63731126 440.21243708 $75.73
ERROR 1724 1318.20838327 0.76462203 PR > F
CORRECTED TOTAL 1727 2638 .84569452 0.0001
R-SQUARE C.v. ROOT MSE LAPE MEAN
0.500460 36.5769 0.87442669 2.39065575
SOURCE OF TYPE 1 SS F VALUE PR > F
LN 1 1314.02367916 1718.53  0.0001
LN*LN" 1 2.92622275 3.83 0.0506

; LN*LN*LN 1 3.68740935 4.82 0.0282

. SOURCE DF TYPE II11 SS F VALUE PR > F

g LN o1 0.0106 1884 0.01 0.9062
LN*LN 1 3.02136495% 3.95 0.0470
LN*LN*LN 1 3.68740935 4.82 0.0282

-

& T FOR HO: PR > |T| STD ERROR OF

" PARAMETER ESTIMATE PARAMETER=0 ESTIMATE

"4

- INTERCEPT 3.87278729 11.61 0.0001 0.33357677
LN -0.08421019 -0.12 0.9062 0.71457775
LN*LN -0.90630316 -1.99 0.0470 0.45592699

LN*LN°*LN 0.19282472 2.20 0.0282 0.08780625
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