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ABSTRACT

Sampling-Rate Effects on Radar-Derived
Rainfall Estimates. (August 1985)

Jeffrey Lynn Fornear, B.S., University of Utah

Chairman of Advisory Committee: Dr. George Huebner

Shis study investigates the errors due solely to sampling intervals

that occur with radar-derived total rainfall estimates. The study was

limited to nine cold-frornt passages over eastern Texas, in the Fall of

1984. Digitized, 10.3 cm wavelength radar observations were recorded

using a one minute sampling-rate. Total rainfall estimates, for 10 km

by 10 km areas, based on these data were considered ground truth"

totals.

Sample-rates, ranging from 5 to 60 minutes, were applied to the re-

corded data to calculate total rain estimates for each sample rate.

These derived rain totals were compared to the ground truth" totals,

with the differences referred to as 'errors."'' These errors were plotted

against the sampling-rate. They ranged from over 100% for sample inter-

vals greater than 50 minutes, to less than 25% for intervals less than

15 minutes. The errors were also jlotted against the number of samples

taken. There was no significant increase in estimate accuracy when

greater than seven samples were taken per 80 minute period.

Other variables, the mean rain rate, total rain, sequential varia-

bility, storm width, and storm speed of movement, were found to have

very low correlations with the errors. Analyses of variances done on

subdivisions of the storm width, storm peed, and mean rain rate
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variables proved inconclusive because of small, unbalanced sample sizes.

Regression analyses were used to develop the "best" models, using error

as the dependent variable. The resulting equations relate the errors to

the sampling-rate and the number of samples taken. These models were

then used as predictors of the expected errors in total rain estimates.

The predictions are applicable to individual, 10 km by 10 km area,

total rain measurements.
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that occur with radar-derived total rainfall estimates. The study was

limited to nine cold-front passages over eastern Texas, in the Fall of

1984. Digitized, 10.3 cm wavelength radar observations were recorded

using a one minute sampling-rate. Total rainfall estimates, for 10 km

by 10 km areas, based on these data were considered "ground truth"

totals.

Sample-rates, ranging from 5 to 60 minutes, were applied to the re-

corded data to calculate total rain estimates for each sample rate.

These derived rain totals were compared to the "ground truth" totals,

with the differences referred to as "errors." These errors were plotted

against the sampling-rate. They ranged from over 100% for sample inter-

vals greater than 50 minutes, to less than 25% for intervals less than

15 minutes. The errors were also plotted against the number of samples

taken. There was no significant increase in estimate accuracy when

greater than seven samples were taken per 80 minute period.

Other variables, the mean rain rate, total rain, sequential varia-

bility, storm width, and storm speed of movement, were found to have

very low correlations with the errors. Analyses of variances done on

subdivisions of the storm width, storm speed, and mean rain rate
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variables proved inconclusive because of small, unbalanced sample sizes.

Regression analyses were used to develop the "best" models, using error

as the dependent variable. The resulting equations relate the errors to

the sampling-rate and the number of samples taken. These models were

then used as predictors of the expected errors in total rain estimates.

The predictions are applicable to individual, 10 km by 10 km area,

total rain measurements.
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CHAPTER I

INTRODUCTION

Overview

Radar-derived values of total rainfall are, in addition to many

other factors, a function of the time interval between radar samples.

Most users of such information have little quantitative knowledge re-

garding the errors in total rainfall estimates that can occur due to

variations in the rainfall rate during the intervals between samples.

Sampling intervals usually range from 5 to 30 minutes.

In addition to the desirability of determining these errors, there

is a specific need in the military for such information. A tactical

military weather radar must operate no longer than is absolutely neces-

sary because it presents itself as a target through electromagnetic

radiation. Such a radar used for military hydrological purposes needs

to accumulate precipitation data sufficient to derive the total rainfall

over the area of interest.

A derivation of such errors due to the variations in the sampling

interval is of major importance to the military as well as the scienti-

fic community.

Objectives

This study was undertaken to identify and quantify the differences

This study follows the style and format of the Journal of Climate
and Applied Meteorologiy.

, a. . . . .. r • , ' " " , ' ' " . - ',+ " • P " . " . " ," " . " " ' ' , " . ., " . " ,- - ., ' ., ' " .
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between total rain estimates as functions of the radar sample-rates.

The total rain estimate derived using radar data recorded at a one-

minute sample-rate was assumed to be the "ground truth" estimate. Total

rain estimates using other sampling-rates were compared to this "ground

truth." The resulting differences are referred to loosely as "errors"

in this study. The specific objectives are as follows.

(1) Complement and extend the applicability of previous, similar

studies that were based on only rain gage retwork data.

(2) Use descriptive statistical techniques to describe and place

bounds on the expected error associated with specific radar sampling in-

tervals.

(3) Develop regression relationships that can be used to predict

the expected error when given a certain sampling interval and field

determinable parameters, such as storm depth and speed of movement.

V Previous Research

Wilson (1964) showed that the sampling rate used to observe preci-

pitation events can contribute significant errors to the overall rain-

fall estimates. This is patently clear to anyone but more importantly,

just what factors have a bearing on these errors and Just how much can

be attributed to each such factor?

The results of this study can be applied in several meteorological,

hydrological, and agricultural specialties. Models for weather modifi-

cation verification and streamflow or flood control forecasting use in-

tegrated precipitation over areas as important inputs (Larson, 1974;

McGuiness, 1963). Outputs from these models can be no more accurate.4
'.4

." - . . -"4. . ., ,, ," *.',- '' , , '" , ". ' , :, " " " " " -" . , ; . ,

.; .. :,,,,,,. ,..:,'. ,,, .,'K' ;. ,, . ,.. .,, ,, 5 . ,:,,...,I,-, , ,, . ,",,4 r, . .;-,-~ :.,,'-' , .. ,, ;.;"., .
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than the inputs. Therefore, any research that can describe and quantify
the expected errors in radar rainfall measurements would be of benefit

(Brandes, 1975; Jatila and Puhaka, 1973a,b).

In addition, a measurement of these errors is important to the

survivability of tactical weather radars now in use. When such a radar

is operating, or active in its hazardous battle environment, the radar

beam can act as a homing beacon for enemy rockets or missiles. Thus,

the less frequently the radar is active, the better its chances of sur-

vival. If the weather officer has knowledge of the relative accuracies

of different sampling rates, he can then use the minimum rate necessary.

To achieve this, a delineation of the expected statistical bounds of

error for certain sampling intervals is needed.

Previous studies, Huff and Neill (1957), and Linsley and Kohler

(1951), looked at sampling-rate caused errors with extensive raingage

networks. Neill (1953) worked with raingage data from 8 storms. He re-

lated the standard error of the estimate to the total storm rainfall and

the sampling interval used. His equation is

Es - 4 x 10"3 Rt1.13 T1.29  (1)

where Es is the standard error of the sampling interval estimate, Rt is

the total integrated rainfall in inches, and T is the sampling interval

in hours.

Mueller (1957) worked with one-minute data from Neill's 8 storms

plus 12 more, of varied synoptic types. He investigated a measure of

the rate of change of rain intensity with time, which he called sequen-

tial variability, written as

.,

S .. i;'. ,' , : ,. .. .. ' . ; .' . .' ... ,, , ., ,- . . . -,,- , ,,".. -.
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IRI-R 21 + 1R2-R3 1 +... + IRnRn+lI (2)N- I

where D is the sequential variability in nm/h, R is the mean rainfall

rate in mm/h for the minute indicated by the subscript n, and N is the

total number of minutes sampled. This quantity will be used in this

study.

However, in considering the best multiple correlation coefficient,

he concluded that a simple relationship between the standard error of

the total rainfall estimate, the total mean storm rainfall, and the

sampling interval was the best estimate of sampling error. Thus

Mueller's equation is
-3 57 T1.54

Es = 1.05 x 10- R T. (3)

This equation showed the standard error to be less dependent on

total storm mean rainfall than Neill's. Mueller attributed this to the

difference in storm types.

Huff (1970) was not concerned with sampling rates but related the
mean rainfall rate and the gage density to the sampling error in the

equation

E - 1.522 Rm'87 G"52  (4)

where E is the sampling error in inches, Rm is the areal mean rainfall

rate in inches per hour, and G is the gage density in square miles per

gage. This was done for 29 storm samples over a gage network of 100 mi

square. He determined that the mean rainfall rate, or intensity, was an
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important variable when assessing errors.

Wilson (1970) also used rain gages to infer expected errors in

radar rainfall estimates as functions of sampling interval and size of

the integration area. While showing the expected increasing error due

to increasing sampling interval length, it became apparent that there

was a large effect caused by the size of the total integrated area.

.

4'
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CHAPTER II

PROCEDURE

Data Collection

The WSR/TAM-1, 10.3 cm wavelength radar was used to collect the

rainfall data. Digitized radar data were recorded for later playback

and analyses.

The physical range of this study, seen in Fig. 1, consisted of a

300 km by 300 km area divided into four quadrants, with the radar in the

center. This range of 150 km radius about the radar limited volume

filling or beam height errors. This large area was subdivided into a

10 km by 10 km grid, which is the military's basic hydrologic unit.

With the aid of a data processing program a determination was made

of the average radar reflectivity factor for each 10 km by 10 km grid

area. This average reflectivity value is then converted to an instan-

taneous average rainfall rate for the grid area with the often used

relation

R ( 1~l625

Ru Z (5)

where Z is the average grid area reflectivity factor in m 6 /m3 and R is

the rainfall rate in mm/h.

The study was limited to cold front type precipitation events for

two reasons:

(1) This type of system occurred most frequently in this area

during the data collection period from September to November of 1984.
.,

S
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10------ -I I I I
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100

150 -.. .
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Fig. 1. Illustration of the data grid of 10 km by 10 km areas.

The actual recorded data was from nine different storms.

(2) A somewhat homogeneous type of line shape of radar echo was

needed to measure directly several of the physical characteristics of

the storms.

0* " : :
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The storms were observed by the radar and recorded at an antenna

rotation rate of I rpm. This allowed information on every grid area

every 60 seconds. This rate was then somewhat comparable, time-wise

only, to the previously mentioned studies because they used one-minute

recording rain gages. The recorded one-minute radar data was then con-

sidered "ground truth" or the best possible estimate of rainfall. Total

rain estimates based on this one-minute data were also considered the

"ground truth" for comparisons with other sample-rate estimates.

The 1 rpm recording rate forced an extrapolation of the rainfall

rate data at several of the sample intervals. This extrapolation became

necessary because the digitized radar tapes recorded for 85-90 minutes

at this antenna rotation rate. With this time span in mind it was de-

cided to process all tapes for a uniform 80 minute time span. The

problem then was how to choose the sample intervals to use on the data.

Only the intervals of 5, 10, 20, and 40 minutes fit evenly into the 80

minute tape time. While the errors beyond the 40 minute interval were

of interest it was desirable to have more data points at the shorter

sample intervals. If the 80 minute observation was included as the last

data point for all extrapolated intervals then the stated sample inter-

vals would not accurately reflect the actual time intervals with which

the data was observed. In that case the stated 50 minute sample inter-

val would actually consist of an end observation interval of 30 minutes.

Therefore it was decided to extrapolate the last rain rate measured by a

full sample interval to the 80 minute end time. For example, the 50

minute sample was based on a first observation at starting time, a

second at the 50 minute point, and then this 50 minute rate was used as
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the rain rate at the 80 minute end point. This was thought to be the

best way to handle the dilemna because without actually taking a radar

observation at the tape end point it would not be known if the rain rate

had increased or decreased, both being equally possible. Over a large

sample the mean of the data errors due to these extrapolations should be

very small because of the equal possibility of under-estimating or over-

estimating any given rain rate. The sample intervals of 5, 10, 15, 20,

25, 30, 40, 50, and 60 minutes were used in this study. They are shown

with their amounts of extrapolated data in Fig. 2.

Sample
Interval (min)
60 -f - - -- -
40 I~...
30
25
20

'15 - xK- - J - -

10 1"

0 10 20 30 40 50' 6 70 80
Time (min)"#

a' x Actual sample measurement
e Extrapolated value

Fig. 2. Illustration of sample interval points of measurement and
extrapolation within an 80 min time span.

- '.
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The selected sample intervals consisted of a set number of saw e

because of the fixed 80 minute data tape time in this study. These

numbers of samples provide a different measure of how the storw wa-

sampled. The 50 and 60 minute sample intervals are different becea-.

their measurements are taken at different time points. Altnougr

these two intervals are compared by the number of samples, they art "

same, they both allow two actual samples in the fixed time span. '*

sampling error of a total rain estimate ultimately depends on how el'

the sampling technique can define the temporal rain profile. In this

way the number of samples is important because they obviously have a

direct effect on how well that profile is defined. For this reason re-

lating numbers of samples to errors of rain estimates could develop use-

ful predictive type relations. Using the selected sample intervals of

5, 10, 15, 20, 25, 30, 40, 50, and 60 minutes allow 17, 9, 6, 5, 4, 3,

3, 2, and 2 samples respectively for each total rain estimate made in

the 80 minute time span.

Variable Selection

There are several variables that could possibly help to explain the

observed errors when increasing the sampling interval. The grid instan-

taneous rainfall rate R in mm/h is the basic unit used to compute these

variables. The first three variables were calculated by a program that

processed the radar data and gave the variables of interest for each

grid area within one quadrant. These variables are as follows:

(1) The total integrated rainfall, Rt (mm), is

N-1 T(Rn+Rn+1)
R = 2 (6)

n=l

.4 4. 4



- " total rain for the entire sampled time.

" m r rainfall rate, Ra (am/h), is

ba

• . ,(7)

,mear grid rain rate over the entire sampled time.

" s $equential variability D in n/h is the rate of change of

• ntns~ty witi time. It is shown in Eq. (2).

"m following three quantities were determined from tracings of the

ecroe s first and last position:

1l) The horizontal depth of the precipitation area, in km, is

measured along the direction of movement. This depth is the arithmetic

mean of the distances from the area's leading edge to its training edge,

measured at the first and last sample times.

(2) The horizontal depth of the sampled portion of the precipita-

tion area, in km, is the portion of the precipitation area that has

passed over the sampling point during the sampling time. This depth is

measured as the distance the area's leading edge has moved during the

sampled time.

(3) The precipitation area speed, in km/h, is the average rate of

movement during the sampling time. The speed is calculated as the

arithmetic mean of the distinaces that the leading and training edges

moved during the sampled time, divided by the sampled time.

Raw Data Analysis and Products

In analyses of the digitized radar data tapes the previously
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mentioned calculations were done for the variables of interest. The

calculated values were then plotted for each grid area over the 150 km

by 150 km quadrant of interest.

A portion of such a plot for a sample interval of one minute is

shown in Fig. 3. Such derived results were plotted for each grid area.

The upper number is the grid rain rate in mm/h at the last sample time

while the second number is the mean grid rain rate in mm/h for the total

sampled time. The third number in each grid area is the grid's total

integrated rainfall in mm for the entire sampled time and the lower

number in each box is the sequential variability in mm/h. These values,

derived using the one-minute sample data, were then considered "ground

truth" estimates for each grid area.

A somewhat similar plot was used for each of the sample intervals

ranging from 5 to 60 minutes. The upper number is the rain rate in mm/h

at the last sample time while the sample interval's total integrated

1kmn

1.653 1.222 1.103

1.972 1.476 2.101

2.121 1.903 2.833
0.677 0.596 0.712

RAIN RATE AT 10
1.798 1.432 LAT SA

TIME1.453 1.116 HU RAIN RATE

2.103 1.742 OTAL RAIN

0.633 0.542 vABL

km30 20 10

Fig. 3. Illustration of plotted variables within grid areas for
the 1 min sample interval.

. . .
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rain in mm is the lower number. This plot is shown in Fig. 4. Such a

plot was generated for each sample interval.

The total integrated rainfall estimate for each sample interval was

then compared to the "ground truth" one-min interval total rainfall on a

grid by grid basis. From this comparison the error was calculated and

expressed as the absolute percent error of the total rain estimate for a

given sample interval. This quantity was calculated as

APE = 100 IRt(n) - Rt(1)1 (8)Rt(1)

where APE is the absolute percent error, Rt is the total integrated rain

calculated for the subscripts n and 1 which refer to the number of

minutes in the sample interval used.

The recorded radar data tapes were played back to make tracings of

the storm echoes. Fig. 5 shows a typical tracing of the echo positions

20
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RAIN RATE AT
2.334 I1.977 LAST SAMW,.E
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lai 30 2 0 1 RADAR

Fig. 4. Illustration of plotted variables within grid areas for
the 5 to 60 min sample intervals.
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at the first data processing time (dashed line) and the last processing

time (solid line). The tracings were constrained to enclose areas of

precipitation rates greater than 2.4 nn/h. These tracings grid areas

were selected along the storm's leading edge. Two different sample

sets of data were selected from each storm. One sample set, ADATA, was

selected with the condition that the grid areas were within the precipi-

tation area for the entire sampled time. This set was comprised of

values from 103 grid areas. The other set, BDATA, had grid areas under

the traced echo at the beginning sample time but not always under the

echo at the last sampled time. This data set had 89 grid areas.

Since the mean rain rates were calculated by averaging over the

total sampled time, rain rates in BDATA are not valid measurements. The

only other difference between the sets was that BDATA grid areas were

generally 10 to 20 km further into the storm, away from the leading

edge. The two data sets were assumed to be independent samples. Two

large data sets were useful for comparisons of mean errors.

Huff (1970) stated that rainfall measurement variables are not

normally distributed. This makes statistical analyses difficult because

analyses of variance and multiple comparison tests require assumptions

of normality and equal variances (Ostle and Mensing, 1982). Huff (1970)

found that using log transofrmations of the rainfall variables was the

best method of approaching normalization of the data. Natural log

transformations of the rainfall errors and rainfall variables were used

for all statistical analyses of the data in this study. All statistical

testing in this study was done at the 95% significance level.

The total sample in numbers of grid areas was very large by
S,

S.
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statistical standards. The data were from 192 grid areas. The errors

were determined for nine different sample intervals for each area, or a

total of 1728 calculated errors. For a sample this large the results

can be generalized fairly accurately with descriptive statistics (Ostle

and Mensing, 1982).

2

0

'S

,%

'4



.jc. W J L , _ .& .r - '__ ~-i . * . I 2V .. .- 'L - = T --. - ° .. .. - -

17

CHAPTER III

STATISTICAL ANALYSES

Descriptive Statistics

The absolute percent error descrtbed in Eq. (8) was decidedly the

most practical measure of the difference between a certain sample inter-

val's total rain estimate and the 1 minute sampled "ground truth" total

rain. The percentage part of this type of measurement scaled the errors

in an important way that made the errors of a light rainfall comparable

to that of a heavy rain. Taking the absolute value of the percentage

error was necessary because there is no possible way of knowing if a

radar is under-estimating or over-estimating the rainfall at any speci-

•fied point and time. Thus, in interpreting the results presented here

it must be kept in mind that the true errors could be positive or nega-

tive.

The arithmetic mean, over all grid areas, of the absolute percent

errors for each sampling interval and their associated standard devia-

tions were calculated for each data set. A summary of each individual

data set's statistical measures of the errors are shown in Table 1.

This table shows that the BDATA set of observations had larger mean

errors than the ADATA set, at all sample intervals except 10 min. The

BDATA set also had larger standard deviations at all sample intervals

except 10 and 20 min.

Are the two data set's mean errors of total rain estimates statis-

tically different? The sets came from different grid areas within nine

storms. If it can be shown that they are not significantly different

A.
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Table 1. Summary of statistical values of absolute percent error
by sample interval (min) for the individual data sets.

Sample Minimum Mean Maximum Standard
interval error error error deviation
(min) (%) (%) (%)

Data set = ADATA

5 0.00 1.23 5.76 1.16
10 0.00 4.56 26.16 5.38
15 0.00 7.52 38.56 7.1!
20 0.07 11.77 131.44 14.53
25 0.31 14.53 71.29 12.72
30 0.53 23.43 138.60 22.05
40 0.66 29.49 104.97 24.78
50 0.24 41.09 128.85 28.77
60 1.00 42.55 106.36 27.71

Data set BDATA

5 0.00 1.70 32.31 3.43
10 0.00 4.31 26.22 4.65
15 0.00 8.61 51.33 9.58
20 0.23 12.87 52.56 11.38
25 0.00 18.15 82.60 18.30
30 0.10 26.66 177.43 28.68
40 0.90 34.06 149.18 30.50
50 0.26 43.03 181.40 39.25
60 0.30 38.80 254.88 40.58

then one plot of combined mean data would be more representative of the

recorded data because the sample size would be effectively doubled. An

analysis of variance was used to compare the mean errors of the data

sets. This statistical test assumes equal variances and a normal dis-

tribution, thus it required the log transformation of the errors. The

log transformed errors were then tested in two different ways.

First a t-test was done by sample intervals to compare the mean

errors of the sets. The ADATA set had 103 observations averaged for
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each sample interval, while for the BDATA set each mean was of 89 obser-

vations. The results of the tests are shown in Table 2. The overall

results of this test show the highest t-statistic to have a level of

significance of p = .1676. From this it was concluded that there were

no significant differences between the mean errors of the two data sets

when they were compared by sampling intervals.

The second t-test was a comparison of each data set's mean error

averaged over all sample intervals, shown as the lower line in Table 2.

The results were a t = 0.8369 with a level of significance of p =

0.4028. The conclusion was that there was no significant difference in

the overall mean errors of the data sets.

Table 2. ADATA and BDATA t-test comparisons of mean absolute per-
cent errors by sample interval and by overall data set means.

Sample Conclude
interval t-statistic p-value means(min) are:

5 -1.3852 .1676 EQUAL
10 .2598 .7953 EQUAL
15 - .3597 .7195 EQUAL
20 - .7735 .4402 EQUAL
25 - .5207 .6032 EQUAL
30 - .4955 .6208 EQUAL
40 -1.3630 .1745 EQUAL
50 .9749 .3310 EQUAL
60 - .4762 .6345 EQUAL

md

.4

From the above t-tests it is seen that the mean errors of total

rainfall estimates of the two data sets were not statistically dif-

ferent. This then allows the sets to be combined and a mean error of
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the rain estimates calculated for each sample interval. These overall

mean errors were plotted in Fig. 6. The actual statistical values for

the combined data set are listed in Table 3. For such a large sample
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Fig. 6. Plot of mean absolute errors by sample Interval. Data
were the combined ADATA and BDATA sets, 192 observations per plotted
point.
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Table 3. Summary of the statistical values of absolute percent
error by sample interval (min) for the combined data set.

Sample Minimum Mean Maximum Standard
interval error error error deviation
(min) (%) () (%)

Data set = combined data

5 0.00 1.45 32.31 2.49
10 0.00 4.45 26.22 5.04
15 0.00 8.02 51.33 8.37
20 0.07 12.28 131.44 13.14
25 0.00 16.21 82.60 15.62
30 0.10 24.93 177.43 25.32
40 0.66 31.61 149.18 27.60
50 0.24 41.99 181.39 33.95
60 0.30 45.44 254.88 34.33

size the errors are assumed to be normally distributed. Thus, it can be

said that 95% of the absolute errors measured would be expected to lie

within limits described as

95% of the absolute errors APE + 1.96 s , (9)

where APE is the mean absolute percent error and s is the associated

standard deviation. This limit, when plotted for each sample interval,

results in the upper curve in Fig. 6. The curves were fit to the data

with a SAS cubic regression drawing routine. Since the combination of

data sets almost doubled the sample size this plot is probably more

representative than either of the separate set's curves taken indivi-

dually.

In Fig. 6 the mean errors, the lower curve, increase as expected

with increasing sampling interval. The lower slope of the curve at

-4
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larger sample intervals may be due to the extrapolation technique used.

It must be remembered that the 50 minute interval had 30 minutes of

extrapolated data, whereas the 60 minute interval had only 20 minutes.

Thus, somewhat less confidence can be placed in the curves beyond the

40 minute point on all plots that use the sample interval as the

abscissa.

With the above stated cautions applied, Fig. 6 and Table 3 can be

used to approximate mean errors from other large samples. The mean

errors summarized here are very similar to those found by Wilson (1970)

in a study of convective storm radar-derived rain total estimates. By

comparison he found 45%, 25%, and 13% mean error at the 60, 30, and 15

minute sample intervals respectively. In Table 3 the combined data

shows that these errors compare favorably with the 45%, 25%, and 8% mean

errors found in this study. The upper curve in Fig. 6 defines the upper

limit of the area within which the errors would fall for 95 out of 100

estimates with a specific sample interval. Nineth-five percent of the

errors of total rain estimates should be less thant 50% if a sample in-

terval of 25 minutes is used. To be within 25% error an interval of 15

minutes is necessary. To keep the absolute percent error of a total

rain estimate less than 100% a maximum sample interval of approximately

46 minutes would be necessary. As a rough check on the statistical

accuracy of the upper curve in Fig. 6, it was found that 96.01% of the

measured errors fell within its limits. This fact reinforces the vali-

dity of the curve and our basic assumptions.

The combined data set's errors were also related to the number of

samples taken in the 80 minute time span of observations. At each of
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the discrete "number of samples" points (i.e., 2, 3, 4, 5, 6, 9, and 17)

the mean errors and their standard deviations were calculated. The re-

sults are summarized in Table 4. The mean errors are plotted in Fig. 7,

along with the limit curve defined previously in Eq. (9).

Table 4. Summary of statistical values of absolute percent error
by number of samples per 80 min time span.

Number Minimum Mean Maximum Standard
of error error error

samples (%) (%) (%)

Data set = ADATA

2 0.24 41.82 128.85 28.19
3 0.53 26.46 138.60 23.59
4 0.31 14.53 71.29 12.72
5 0.07 11.77 131.44 14.53
6 0.00 7.52 38.56 7.17
9 0.00 4.56 26.16 5.38
17 0.00 1.23 5.76 1.16

Data set = BDATA

2 0.27 45.92 254.88 39.91
3 0.10 30.36 177.43 29.75
4 0.00 18.14 82.60 18.30
5 0.23 12.87 52.56 11.39
6 0.00 8.61 51.33 9.58
9 0.00 4.31 26.22 4.65
17 0.00 1.70 32.21 3.43

Data set = combined data4.

4.

2 0.24 43.72 254.88 34.14
3 0.oO 28.27 177.43 26.66
4 0.00 16.21 82.60 15.62
5 0.07 12.28 131.44 13.14
6 0.00 8.02 51.33 8.37
9 0.00 4.45 26.22 5.04

17 0.00 1.45 32.31 2.49

-4

.4
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The plots show the striking lack of difference in errors for num-

bers of samples greater than eight. The mean error from this point and

greater is less than approximately 5%. Evidently this is a point at

which the rainfall temporal profile becomes fairly well defined. In-

creasing the number of samples beyond this number has little effect in

decreasing the errors because the rain profile is almost as well defined

as can be. The mean errors increase dramatically when less than six

samples are taken. If only two samples are taken in an 80 minute span

the error can be expected to be less than approximately 110% in 95 out

of 100 cases. If an error of less than 50% or 25% is required the upper

curve indicates that at least 4 or 6 samples, respectively, would be

necessary during an 80 minute observation period.

Correlations and Analyses of Variance

Previous investigators have been cited that established several

variables important to the explanation of errors of total rain esti-

mates. This present study has beasured or calculated values for the

independent variables of total rain, mean rain rate, sequential varia-

bility, storm depth, storm speed, and storm sampled depth for each grid

area. The other variables are, of course, the sample interval with

which the storm is observed and the number of samples taken of the

storm.

This section deals with finding the relative importance of each of

the variables in relation to the errors of rainfall estimates. The next

step is categorizing or subdividing the variables into groups to further

delineate the errors.

ip"Aa-.. i m. Wm tW .- .. ...- m~l I 
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Which variables have a significant effect or are highly correlated

with the measured errors? A correlation analysis (SAS Institute Inc.,

1982b) was accomplished to determine the relations of the independent

variables to the mean errors. These analyses were done only on the

ADATA set because of inclusion of the mean rain rate variable. The log

of the sample interval and the log of the number of samples clearly had

the highest correlation coefficients, .73 and -.73 respectively, with

the log of the absolute percent errors. The next highest correlation

coefficient with the error was .21, with the sequential variability.

One-minute rain totals and mean rain rates have similar correlation co-

efficients of .12. The last three variables, the precipitation area

characteristics, are all slightly negatively correlated to the error,

with correlation coefficients from -.02 to -.05.

It is obvious that the sample interval selected and the number of

samples taken would have the most effect on the rain estimate's errors.

The other variables can not be dismissed outright as unimportant because

of the wide ranges of the measured variables. The sequential variabili-

ty varied by a factor of nearly 50 in its untransformed state, while the

others varied from a factor of 5 to over 25. It may be that each

variable is more or possibly less correlated with the mean errors de-

pending on where in the ranges the measurements were made. For example,

were the large mean errors associated with large rain rates, or faster

moving storm areas? Even though this study only included storms of a

cold-front type, Huff (1970) found great variability within storms of

the same synoptic type.

In view of this variability it was decided to categorize the
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independent variables in an attempt to further investigate the factors

to which the sampling errors could be attributed. Disregarding the'

variables of sampling technique, the mean rain rate of a storm area is

the only one of the next three largest correlations that is roughly

estimable with one or two radar scans, so it was a candidate for sub-

division into categories. The area sampled depth and the area speed

were found to be highly correlated with a correlation coefficient of

.992. This was known beforehand because the speed was used to calculate

the sampled depth. The speed was the selected variable here because it

could be determined more directly with at least two radar scans of an

area. The storm depth was also categorized because it was not highly

correlated with any of the other variables.

The subdivision of the selected variables was done subjectively by

investigating the ranges of each. The variables were categorized into

- three subdivisions each. The results of these analyses were plotted

using a SAS cubic regression routine to draw the lines-of-best-fit.

The mean rainfall rate was divided into rates of less than 2.4 m/h

(light), with 2.4 and 12 mm/h (medium), and greater than 12 mm/h

(intense). There were 180 observations in the light class, 630 in the

medium class, and 114 in the intense rain rate class. The mean errors

for each subdivision were calculated for each sample interval. These

, calculations had 20 observations per mean error in the light class, 70

in the medium class, and 13 in the intense class. The results were
4.

plotted and are shown in Fig. 8. The outstanding difference in the fig-

Y. ure is that the light rain rate class appears to have considerable less

error than the other classes at large sample intervals. Statistical

.4
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testing was done to see if the classes differed significantly.

An analysis of variance was done to compare the mean log trans-

formed errors between the subdivisions of rain rates. This test calcu-

lated an F value of 7.85 and a level of significance of p = .0004. This

pointed to a significant difference between the mean errors of at least

two classes of rain rates. Fisher's least significant difference t-test

was applied to test which means differed. The results showed the over-

all mean errors of the light rate class differed significantly and were

less than either of the other classes. The more conservative Tukey's

'studentized range test found the light rain rate significantly less than

only the medium rate.

To further pinpoint the rain rate class differences another analy-

sis of variance was run on the data by sample intervals. If this test

indicated significant differences between rates of classes for a certain

sample interval then Fisher's and Tukey's tests were also run on the

data. The analysis of variance indicated significant differences for

only the 5, 20, and 60 minute intervals.

With a sample interval of 5 minutes the analysis calculated an F

value of 7.00 and a level of significance of p - .0014, indicating a

significant difference. Fisher's test then showed that the medium rate

errors differed from the light and intense rate categories. Tukey's

test found the medium rate errors to differ only from the light rates.

Since in this interval t: mean error was less than 1.5% and the great-

est single error was less than 6%. These differences for the 5 minute

interval are of minor importance.

The analysis of variance on the 20 minute sample interval
e
e
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calculated an F value of 4.36 and a level of significance of p = .0152,

indicating significant differences. With Fisher's and Tukey's tests on

this interval the light rate errors were found to be significantly less

than the medium and intense rates.

Finally, an analysis of variance run on the 60 minute sample inter-

val calculated an F value of 5.86 and a level of significance of p =

.0039, again indicating a significant difference in mean errors of the

rain rate classes. Further testing with Fisher's test showed the light

rain rate errors differ from the medium and intense rate errors.

Tukey's test showed that the light rate errors differ only from the

medium rate errors.

In summary the light rain rate class had several significant

differences. In Fig. 8 it appears that the light rain rate class had

less mean error than the other classes at every interval. The analysis

of variance performed on the mean errors of these subdivisions found the
.

light rain rate to be significantly less than the other classes. Yet,

when the light rain rate class was further tested by sample interval it

was found to be significantly less in only the 20 and 60 minute inter-

vals. There is an imbalance in sample sizes in the rain rate classes by

sample interval as the light rain rate class mean was of 20 observa-

tions, the medium mean was of 70, and the intense mean was of only 13.

If this same analysis was run on a more balanced class structure, each

with at least 30 observations, the results would be more conclusive. As

it stands the tests found only two out of nine sample interval's mean

errors in the light rain rate class and the overall class mean error to

be significantly less than the other classes. With sample size kept in

I.. ,. U " ' .
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mind it can not be concluded that the difference in the light rain rate

class is of overall significance.

The next classifications of the data were by precipitation area

depths. Fig. 9 is a plot of the mean absolute percent error against the

sample intervals for -the three subdivisions of area depth. The classes

were by precipitation area depths greater than 80 km (wide), depths

within 40 km to 80 km (medium), and depths of less than 40 km (thin).

There were 351 observations in the wide class, 360 in the medium class,

and 216 in the thin class. The analysis of variance performed on the

mean errors of these classes resulted in an F value of 1.78 with a level

of significance of p - .1699. This indicated no significant differences

between the mean errors of these precipitation area depth classes. In

Fig. 9 the mean errors show no large differences for any class at any

specified interval. In the plot there is a mild overall tendency for

the thin depths to have greater errors and the wide depths to have less.

Synoptically this probably relates to the fact that more turbulent

activity may often be associated with a smaller, thinner line type of

precipitation event and more steady, stratiform type rain associated

with a wider depth storm area. Overall, the statistical testing did

not show these depth class error differences to be significant. Evi-

dently classifications by storm depth do not result in the greater

definition of the mean errors of total rain estimates.

The last subdivisions of the data were by the precipitation area's

speed. The divisions were for area's speed greater than 50 km/h (fast),

for speeds within 30 km/h to 50 km/h (medium), and for speeds less than

30 km/h (slow). This divided the total number of observations into

'.
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groups of 90 in the fast class, 423 in the medium class, and 414 in the

slow class. The analysis of variance performed on mean errors by class

produced an F value of .250 with a level of significance of p = .7775.

This result indicated no significant differences between class mean

errors for the speed subdivisions. The mean absolute percent errors of

these classes were plotted against the sample intervals in Fig. 10. In

the figure the main difference in the respective curves is that the

fast class, at longer sample intervals has less mean error than the

other classes. This may be due indirectly to the imbalance of class

sizes. This small sample of fast moving areas could be unrepresentative

of the population. The fast class had less than one-fourth the observa-

tions of the other classes. For this reason there can be less confi-

dence placed in conclusions about the fast class. It appears that sub-

dividing rainfall data into area speeds does nothing to help explain

more of the mean errors of total rain estimates.

Regression Analyses

Regression analyses are tools for further examining and even pre-
4-

dicting the mean errors associated with different sampling measures. A

correlation analysis is a starting point for selecting possible varia-

bles to include in a regression. Since mean rain rate was a variable of

interest the analysis was done using the ADATA data. Error and rainfall

measurements were log transformed to approach normalization. It is ob-

vious, from the correlations previously stated, that the sample inter-

val, the number of samples, the sequential variability, and the rainfall

measurements were important in explaining the errors of total rain

4
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estimates. There was little correlation between the precipitation

area's physical characteristics of speed or depth, and the errors. The

higher correlations of the sample intervals and numbers of samples to

the errors point to their greater importance in a regression relation.

In addition to the eight previously explained variables that were

discussed earlier, it was felt that several other variable products

could have been important. Variables that could be estimated with two

or less radar scans would be useful in a predictive regression equation.

The sample interval, area depth, area speed, and mean rain rate were

candidates for the variable products. Since these variables could be

determined or estimated before a storm was over the area of interest,

these variables were of use in a predictive sense. Included in the re-

gressions were products of the sample interval with the speed, rain

rate, and area depth, products of the rain rate with the speed and

depth, and the product of the speed and depth.

The next step was to do simple linear regressions with a procedure,

RSQUARE (SAS Institute Inc., 1982a), that does all possible regressions

between the different conbinations of the independent variables and

given variables. The ADATA data were used because of their valid rain

rate measurements. The procedure was run first on the variables, than

on their natural log transforms, and finally on the variable products.

Table 5 summarized the results of the variable's association with the

log of the absolute percent error.

In Table 5 the multiple correlation coefficients, R, are an ex-

pression of the degree of association between the variables in the

model. The coefficient of determination, R2, when multiplied by 100 is

R2
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Table 5. Coefficients of determination and correlation coeffi-
cients for variable's association with the log of the absolute percent
error as the dependent variable.

Independent variables R2  R

Area speed, SPD .0006 .0245
Sampled depth, SAMPDEP .0007 .0265
Area depth, STRMDEP .0025 .0500
Total rain, Rt .0056 .0748
Mean rainrate, Ra .0085 .0922
Sequential variability, D .0308 .1755
Number of samples, N .4548 .6744
Sample interval, T .4760 .6899

Ln (Mean rain rate), LRA .0150 .1225
Ln (Total rain), LRT .0153 .1237
Ln (Seq. variability), LD .0460 .2145
Ln (Number of samples), LN .5273 .7262
Ln (Sample interval), LT .5286 .7270

SPD X STRMDEP .0007 .0265
Ln (Ra X SPD) .0074 .0860
Ln (Ra X STRMDEP) .0074 .0860
T X SPD .2353 .4851
T X STRMDEP .2790 .5282
Ln (Ra X T) .3520 .5933

the percent of variance in the dependent variable that can be explained

by the independent variable or model. The table clearly shows the

sample interval and the number of samples taken to be the most important

variables in any regression used to predict errors. The natural log

transformed values of these variables have greater R2 values than do the

untransformed values, thus the transformed values should be used in a

final regression model.

The sequential variability is seen as the next important variable

for explaining the errors. Its transformed value shows a R of 0.2145.

This evidently makes it a more important value than either the rainfall
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variables or their transforms. This differs from Mueller's (1957)

findings that related the standard error of raingage estimates to the

same type variables used in this study. He concluded that the best

relationship existed between the standard error of the rainfall estimate

with the sample interval and the total rainfall, instead of with the

sample interval and the sequential variability. Mueller's total rain

was for the entire storm time, which is significantly different from the

total rain in this study. Here the total rain was measured for only

80 minutes, which, may or more often may not have been the entire storm

time. This also means that in this study rain along the storm's leading

edge was more often measured. The leading edge of a cold-front may

structurally be more active and turbulent, resulting in a more erratic

temporal rain profile and thus a higher sequential variability with

generally larger sampling errors. This may account for the greater

relative importance of the sequential variability in this study.

The mean rain rate and the total rain appear to be of relatively

less.importance in Table 5, as indirated by their R2 values. They ex-

plain a maximum of only 1.5% of the error's variability even when trans-

formed. These variables were not considered important enough to be

included in the final regression model.

The precipitation area's physical characteristics of speed, depth

and sampled depth have very small R2 values. These measurements are

then nearly useless in helping to explain the errors in total rainfall

estimates. For this reason these variables were not log transformed for

further work in obtaining the final regression equation.

Table 5 has very small R2 values for all of the attempted variable

-.d.i
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products. All products involving the sample interval have much smaller

R2 values than do the sample interval by itself. Since the products and

the interval are mutually exclusive in a regression, only the sample

interval should be used. The remaining products of speed, depth and

rain rate explain less than a maximum of 0.7% of the error variability.

Therefore, they are of no use in a final regression equation.

Table 6 shows the complete result of all possible regressions on

the log transformed model with the relatively important variables. The

sample interval and the number of samples are just two methods of quan-

tifying the radar sampling of a storm, therefore they are mutually ex-

clusive in a regression. This means that there is a "best" model for

each of these variables. In Table 6 the log of either sampling method

alone accounts for approximately 53% of the error variability. Adding

the sequential variability to either sampling method adds less than 5%

to the explained variability. The addition of either rainfall variable

to the model with sampling method and sequential variability increases

the R2 by nearly 7 percent. Including both rainfall parameters in that

model results in approximately a 9 percent increase in explained vari-

ance of the errors.

These results were then used to construct the "best" regression

models. It was immediately obvious that the sample interval and the

number of samples were the variables of most importance and, a separate

model would have to be made for each. The two resulting equations would

allow prediction of the sampling errors by determining a priori either

the sampling interval desired or the number of samples possible in a

specified storm. The sequential variability and the total rainfall were

o°U '. . . ' U U-
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Table 6. All possible regressions on dependent variable LAPE,
natural log of the absolute percent error.

Number in model R2  Variables in model

1 0.015 LRA
1 0.015 LRT
1 0.046 LD
1 0.527 LN
1 0.529 LT

2 0.110 LD LRA
2 0.191 LRT LRA
2 0.244 AD LRT
2 0.527 LN LRT
2 0.529 LT LRT
2 0.530 LT LN
2 0.542 LN LRA
2 0.544 LT LRA
2 0.573 LN LD
2 0.575 LT LD

3 0.244 LD LRT LRA
3 0.530 LT LN LRT
3 0.545 LT LN LRA
3 0.576 LT LN LD
3 0.586 LT LRT LRA
3 0.587 LN LRT LRA
3 0.637 LN LD LRA
3 0.638 LT LD LRA
3 0.646 LT LD LRT
3 0.646 LN LD LRT

4 0.588 LT LN LRT LRA
4 0.640 LT LN LD LRA
4 0.647 LT LN LD LRT
4 0.659 LT LD LRT LRA
4 0.660 LN LD LRT LRA

5 0.661 LT LN LD LRT LRA

seen to be somewhat important but are only known after the fact. They

should be included in a type of equation for post event analyses but

they are not useful in the predictive sense. Since a main objective of

'4
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this study was to develop predictive regression equations it was decided

to not include the sequential variability or the total rain in further

modeling. The mean rain rate can be roughly estimated with one or two

radar scans, therefore would be useful in a predictive equation. In

Table 6 the addition of the mean rain rate to either sampling model only

resulted in an increase of approximately 0.015 in R2 . This slight

amount of improvement in the model was by far outweighed by the fact

that radar scans had to be made for even a rough estimate of the rain

rate. For this reason the rain rate was not included in the final

model, which then allowed estimation of errors without turning on the

radar.

The two "best" regression models for the stated objectives were

then of the simple single variable type. One model,

LAPE = a + b (LT) (10)

relates the natural log of the absolute percent error (LAPE) and the

natural log of the sample interval (LT) in minutes, with a and b re-

* gression constants. The other model's equation is

LAPE = a + b (LN) , (11)

which relates the log of the absolute percent error (LAPE) to the log of

the number of samples taken (LN), again with a and b regression con-

stants. These single variable regression models have a R2 value of

approximately 0.53, as seen in Table 6. The advantage to such simple

models is that they require no measurement of storm characteristics from

preliminary radar scans prior to the start of rainfall measurements.
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Final regressions on the models were done with the combined data

sets. In Figs. 6 and 7 the data indicated that a better fit might be

found using a second or third order polynomial regression. The General

. Linear Models (GLM) regression procedure (SAS Institute Inc., 1982b) was

executed with three models for each of the two independent variables.

The models were

Linear LnY = a + b(LnX) (12)

Quadratic LnY = a + b(LnX) + c(LnX)2  (13)

Cubic LnY = a + b(LnX) + c(LnX)2 + d(LnX)3  (14)

where Y is the dependent variable, absolute percent error plus 2 (to

avoid Ln(0) computations), a, b, c, and d are regression constants, and

X is the independent variable. The variable, X, is the sample interval

in one model, then the number of samples in the other.

Regression analysis was done first using the log of the sample in-

terval (LT) in minutes as the independent variable in Eqs. (12), (13),

and (14). The results are in the Appendix in Tables 9, 10, and 11

respectively. There was no significant improvement in R2 for the poly-

nomial models. The quadratic parameter had a p-value of 0.2131 which

makes it not significant to the regression. In the cubic regression the

intercept and linear parameters were insignificant to the regression and

higher order terms, LT2 and LT3, were significant with p=values of

0.0319 and 0.0392 respectively. The polynomials showed increased stan-

datd errors of estimates over the linear model. The overall results

indicate the best regression is the linear model

APE = e 1 212 T1.161 - 2 (15)

, • *.-.,,- .-. - -.-
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where APE is the absolute percent error and T is the sample interval in

minutes. Here, 2 is subtracted because it was added previously to the

regression model to avoid Ln(O) computations. This model's predicted

error values are plotted with the actual observed mean errors in Fig.

11. As the sample interval increases the model underestimates of the

mean error increases significantly. The model underestimates the ob-

served mean errors by over 20% beyond sample intervals of 25 minutes.

The underestimation is a bias that is a consequence of using the log

transforms for regressions. The bias makes Eq. (15) useful for predic-

tion of errors only at sample intervals below approximately 15 minutes.

Freund (1977) states a method which is used to reduce the bias when

working with log transformed data. A bias correction factor can be

added before the antilogarithms of the estimated errors are taken. The

equation for this correction in this case becomes

APE* = Ln-1 [(LAPE) + k(MSE model)) -2 (16)

where APE* is the bias corrected absolute percent error, LAPE is the log

of the absolute percent error calculated by the regression equation, k =

0.5, and MSE isthe mean square error of the regression model. With the

appropriate numbers substituted this equation becomes

APE* = Ln"I [(-1.212+1.161 LT) + 0.5 (0.761)] -2 (.17)

where LT is the log of the sample interval in minutes. This equation

can be written in a multiplicative form as

APE* = e"'832 T1.161 -2 (18)

where T is the sample interval in minutes.

'4 ,'., . . . , - . , . - , , - , % " . % % ,- , . -- , ,- - % % ,, , , ". ,- "% %' - .- ' - ' - - - - - - -
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*The bias corrected absolute percent errors were calculated using

Eq. (18). The results are listed in Table 7 and plotted in Fig. 11. In

-.' Fig. 11 the corrected errors are seen to closely approximate the obser-

ved errors. Although the regression equation estimates errors that are

more in agreement with the actual observed errors, it must be stated

that the bias correction technique is not mathematically exact enough to

eliminate totally all bias errors. With that caution in mind useful

prediction limits can be drawn about the regression line.

Table 7. Summary, by sample interval, of regression errors, bias
corrected regression errors, and upper 95% prediction limits.

Sample Observed Regression Corrected 95%
interval errors predicted predicted prediction
(min) (%) errors (%) errors (%) limits (%)

5 1.4 - .1 .8 3.4
10 4.4 2.3 4.3 18.6
15 8.0 4.9 8.1 34.0
20 12.3 7.6 12.1 50.8
25 16.2 10.5 16.3 68.4
30 24.9 13.4 20.6 86.5
40 31.6 19.6 29.5 123.9
50 42.0 25.9 38.8 163.0
60 45.4 32.5 48.5 203.8

Fig. 12 is a plot of the bias corrected regression estimated errors

by sample interval, with the observed errors as points. The upper 95%

prediction limit was calculated at each sample interval point using a

standard equation from Koopmans (1981). The prediction limit values for

each sample interval are listed in Table 7. The width of the prediction

limit reflects the great variability in the sample measurements,
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particularly at the larger sample intervals. This is the limit that the

errors would be expected to be within 95% of the time for any single

grid area sample. This prediction limit then clearly illustrates the

wide error range to be expected when making total rainfall estimations

for small numbers of samples or small areas. For example, to be assured

of less than 100% error (95% of the time) the sample interval must be

less than approximately 34 minutes. Conversely, a sample interval of 20

minutes would result in total rain estimation errors of less than 50%,

in 95 out of 100 cases.

The log of the number of samples (LN) was next used as the indepen-

dent variable in Eqs. (12), (13), and (14). The results of the three

regressions are in the Appendix in Tables 12, 13, and 14 respectively.

The linear model gives a fairly good fit to the data. The highly signi-

ficant p-values, less than 0.0001, and the small standard errors are

evidence of a good regression fit.

There was insignificant improvement in R2 for the higher order

polynomials. The linear model's R2 = 0.498, the quadratic R2 = 0.499,

and the cubic R2 a 0.500. The quadratic parameter LN2 was not signifi-

cant (p = .0508), and the standard errors increased. Thus the quadratic

model's fit was not as good overall as the linear's. The cubic model

results indicated an even worse fit. The linear parameter LN was in-

significant (p = .9062), and again the higher order terms were signifi-

cant. Their p-values indicate that a t-statistic this large or larger

could have been found by chance alone in nearly 3 and 5 cases out of

100, for the LN2 and LN3 parameters respectively.

The linear regression model is the best in this set. It can be
4,

4.
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written with regression constants as

APE = e4.339 N"1.309 - 2 (19)

where N is the number of samples upon which the total rain estimate was

based, and APE is the absolute percent error.

A plot of the predicted values from this model with the actual ob-

served mean errors is seen in Fig. 13. Obviously the same bias effects

are seen here, again due to the log transformations used in regressions.

The predicted errors range from 20% less than the actual sample errors,

when taking more than approximately nine samples, to over 60% less with

two or three samples taken. This leaves the important, small number of

sample's errors relatively unpredictable when using this regression

equation.

The bias correction, Eq. (16), was used with Eq. (19) resulting in

a corrected form

APE* z Ln"1 [(4.339 - 1.309 LN) + 0.5 (0.7676)] - 2 (20)

where LN is the log of the number of samples. This equation can also be

written in a multiplicative form as

APE* - e4.723 N"1.309 - 2 (21)

where N is the number of samples taken in 80 minutes.

Using Eq. (21), values of the bias corrected regression estimated

errors were calculated, then listed in Table 8 and plotted in Fig. 13.

The bias corrected regression estimates are a very near approximation to

the observed errors, as seen in Fig. 13. This regression relation can
4.
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Table 8. Summary, by numbers of samples, of regression errors,
bias corrected regression errors, and upper 95% prediction limits.

I

Number Observed Regression Corrected Upper 95%
of errors predicted predicted prediction

samples (%) errors (%) errors (%) limits (%)

2 43.7 28.9 43.4 183.8
3 28.3 16.2 24.7 104.4
4 16.2 10.5 16.3 68.9
5 12.3 7.3 11.7 49.5
6 8.0 5.3 8.8 37.2
9 4.4 2.3 4.3 18.2
17 1.4 - 0.1 0.8 3.2

then be used to plot useful prediction limits.

Fig. 14 is a plot of the bias corrected estimated errors with their

associated upper 95% prediction limit plotted by the number of samples

taken. The calculated values are listed in Table 8. The plot is of the

same general form as the empirically derived Fig. 8. The prediction

limit allows estimation of the largest expected error of any single

total rain sample. For example, the error would be expected to be less

. than 50% (95% of the time) if at least five samples were taken in an 80

d minute time span. The figure also illustrates the problem of over-

sampling, which is actually the lack of significant improvement of the

accuracy of estimates made with more than nine samples during the 80

minutes.
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CHAPTER IV

SUMMARY AND CONCLUSIONS

This study investigated the effects of various sampling-rates on

radar-derived, total rainfall estimates. Radar observations, taken at

one minute intervals, were recorded for nine storms in 1984. Total

rainfall estimates, for 10 km by 10 km areas, based on these data were

considered "ground truth" totals. Sample-rates, ranging from 5 to 60

min, were applied to the recorded data to calculate total rain estimates

for each sample rate. These derived rain totals were compared with the

"ground truth" totals, with the differences referred to as "errors."

These errors were plotted against the sampling-rate and the number of

samples taken. Other variables, investigated for high correlations with

the errors, were the mean rain rate, total rain, sequential variability,

storm width, and storm speed of movement. Analyses of variance were

done on subdivisions of the storm width, storm speed, and mean rain rate

variables. Regression analyses determined the "best" models, using

error as the dependent variable, to allow prediction of the expected

errors in total rain estimates.

With this study's sample size in mind, several conclusions can be

drawn:

(1) Large-sample mean absolute errors of total rain estimates

ranged from nearly 8%, 25%, and 45% with 15, 30, and 60 min sample-

rates, respectively.

(2) 95% of the individual estimate errors were found to be less

than approximately 25%, 75%, and 112% with 15, 30, and 60 min

'- -- 2 .
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sample-rates, respectively.

(3) Taking more than 8 samples per 80 min period does not increase

significantly the accuracy of the measurement. The mean error for

greater than 8 samples taken was less than approximately 5%.

(4) If only 2, 4, or 6 samples are taken in 80 min, the error is

espected to be less than 110%, 50%, or 25%, respectively, 95% of the

time.

(5) The variables of highest correlation with the errors were the

sample-rate and the number of samples taken, with coefficients of 0.73

and -0.73 respectively.

(6) The variables of sequential variability, mean rain rate, total

rain, storm width, storm speed, and sampled storm depth had low correla-

tions with the errors.

(7) Subdivisions of the variables were inconclusive because of

small, unbalanced sample sizes.

(8) Regression equations were derived to relate the errors to the

sample-rate and the number of samples taken. This allows prediction of

errors for individual total rain estimates.

-,,
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Table 9. Regression results on the linear model LAPE = a + b(LT).
LAPE is the natural log of (absolute percent errir + 2), a and b are
regression coefficients, and LT is the natural log of the sample inter-
val in minutes.

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: LAPE LOG (ABSOLUTE PERCENT ERRORL)

SOURCE OF SUM OF SOUARES MEAN SOUARE F VALUE

MODEL 1 1325.46786969 1325.46786969 1741.69

ERROR 1726 1313.37782483 0.76093733 PR > F

CORRECTED TOTAL 1727 2638.84569452 0.0001

R-SOUARE C.V. ROOT MSE LAPE MEAN

0.502291 36.4886 0.87231722 2.39065575

SOURCE OF TYPE I SS F VALUE PR ; F

LT f 1325.46786969 1741.89 0.0001

SOURCE OF TYPE III SS F VALUE PR > F

LT 1 1325.46786969 1741.89 0.0001

T FOR HO: PR > ITI STD ERROR OF

PARAMETER ESTIMATE PARAMETER=O ESTIMATE

INTERCEPT -1.21239178 -13.65 0.0001 0.08884346

LT 1.16097819 41.74 0.0001 0.02781723

;.1
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Table 10. Regression results on the quadratic model LAPE =

a + b(LT) + c(LT)2 .

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: LAPE LOG (ABSOLUTE PERCENT ERROR*.)

SOURCE OF SUM OF SOUARES MEAN SOUARE F VALUE

MODEL 2 1326.64815755 663.32407878 872.00

ERROR 1725 1312.19753697 0.76069422 PR > F

CORRECTED TOTAL 1727 2638.84569452 0.0001

R-SOUARE C.V. ROOT MSE LAPE MEAN

0.502738 36.4828 0.87217786 2.39065575

SOURCE OF TYPE I SS F VALUE PR > F

LT 1 1325.46786969 1742.45 0.0001
LT*LT 1 1.18028786 1.55 0.2131

SOURCE OF TYPE III SS F VALUE PR > F

LT 1 14.23054260 18.71 0.0001
LTOLT 1 1.18028786 1.55 0.2131

T FOR NO: PR I. ITI STO ERROR OF

PARAMETER ESTIMATE PARAMETER-O ESTIMATE

INTERCEPT -0.86721488 -2.98 0.0029 0.29099967
LT 0.90318417 4.33 0.0001 0.20881930
LT*LT 0.04459334 1.25 0.2131 0.03579984

%
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- able 3 11 Regression results on the cubic model LAPE = a + b(LT) +c(LT) + d(LT)3

9

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: LAPE LOG (ABSOLUTE PERCENT ERRORt)

SOURCE OF SUM 3F SQUARES MEAN SQUARE F VALUE

MODEL 3 1329.88234677 443.29411559 583.85

ERROR 1724 1308.96334775 0.75925948 PR > F

CORRECTED TOTAL 1727 2638.84569452 0.0001

R-SQUARE C.V. ROOT MSE LAPE MEAN

0.503964 36.4484 0.87135497 2.39065575

SOURCE OF TYPE I SS F VALUE PR > F

LT 1 1325.46786969 1745.74 0.0001
LT*LT 1 1.18028786 1.55 0.2126
LT*LT*LT 1 3.23418922 4.26 0.0392

SOURCE OF TYPE III SS F VALUE PR > F

LT 1 1.46726572 1.93 0.1647
LT*LT 1 3.49964941 4.61 0.0319
LT*LTeLT 1 3.23418922 4.26 0.0392

" T FOR NO: PR • ITI STD ERROR OF
* PARAMETER ESTIMATE PARAMETER-O ESTIMATE

INTERCEPT 1.54286725 1.29 0.2000 1.20338098
LT -1.93063158 -1.39 0.1647 1.38880136
LTOLT 1.08544392 2.15 0.0319 0.50558040
LT*LT*LT -0.12111800 -2.06 0.0392 0.05868419

,
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Table 12. Regression results on the linear model LAPE = a + b(LN).
LAPE is the natural log of (absolute percent error +2), a and b are
regression coefficients, and LN is the natural log of the sample inter-
val in minutes.

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: LAPE LOG (ABSOLUTE PERCENT ERROR+%)

SOURCE OF SUM OF SOUARES MEAN SOUARE F VALUE

MODEL 1 1314.02367916 1314.02367916 1711.93

ERROR 1726 1324.82201536 0.76756780 PR • F

CORRECTED 7OTAL 1727 2638.84569452 0.0001

R-SOUARE C.V. ROOT MSE LAPE MEAN

0.497954 36.6472 0.87610947 2.39065575

SOURCE OF TYPE I SS F VALUE PR > F

LN 1 1314.02367916 1711.93 0.0001

SOURCE OF TYPE III SS F VALUE PR ) F

LN 1 1314.02367916 1711.93 0.0001

T FOR 1O: PR > ITI STO ERROR OF

PARAMETER ESTIMATE PARAMETER-O ESTIMATE

INTERCEPT 4.33917747 84.10 0.0001 O.05t59460

LN -1.30856716 -41.36 0.0001 0.03162662

.4,
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Table 13. R~gression results on the quadratic model LAPE =

a + b(LN) + c(LN)z.

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: LAPE LOG (ABSOLUTE PERCENT ERROR+1)

SOURCE OF SUM OF SQUARES MEAN SQUARE F VALUE

MODEL 2 1316.94990191 658.47495095 859.27

ERROR 1725 1321.89579261 0.76631640 PR > F

CORRECTED TOTAL 1727 2638.84569452 0.0001

R-SOUARE C.V. ROOT MSE LAPE MEAN

0.499063 36.6174 0.87539500 2.39065575

SOURCE DF TYPE I SS F VALUE PR > F

LN 1 1314.02367916 1714.73 0.0001

LNOLN 1 2.92622275 3.82 0.0508

SOURCE OF TYPE III SS F VALUE PR > F

LN 1 78.51645282 102.46 0.0001

LN*LN 1 2.92622275 3.82 0.050

T FOR HO: PR • ITI STD ERROR OF

PARAMETER ESTIMATE PARAMETERwO ESTIMATE

INTERCEPT 4.55485364 37.39 0.0001 0.12181660

LN -1.61396511 -10.12 0.0001 0.15944756

LNOLN 0.08983264 1.95 0.0508 0.04597106

S
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Table 14. Regression results on the cubic model LAPE = a + b(LN) +
c(LN)2 + d(LN) 3 .

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: LAPE LOG (ABSOLUTE PERCENT ERROR*1.)

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE

MODEL 3 1320.63731126 440.21243709 575.73

4 ERROR 1724 1318.20838327 0.76462203 PR > F
-j

CORRECTED TOTAL 1727 2638.84569452 0.0001

R-SOUARE C.V. ROOT MSE LAPE MEAN

0.500460 36.5769 0.87442669 2.39065575

SOURCE OF TYPE I SS F VALUE PR > F

LN 1 1314.02367916 1718.53 0.0001
LN*LN" 1 2.92622275 3.83 0.0506
LN*LN*LN 1 3.68740935 4.82 0.0282

SOURCE DF TYPE III SS F VALUE PR > F

LN . 1 0.01061884 0.01 0.9062
LN*LN 1 3.02136495 3.95 0.0470
LN*LN*LN 1 3.68740935 4.82 0.0282

T FOR HO: PR > ITI STD ERROR OF
PARAMETER ESTIMATE PARAMETERwO ESTIMATE

INTERCEPT 3.87278729 11.61 0.0001 0.33357677

LN -0.08421019 -0.12 0.9062 0.71457775

LNoLN -0.90630316 -1.99 0.0470 0.45592699
LN*LN*LN 0.19282472 2.20 0.0282 0.08780625

VzI
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