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Zé: ABSTRACT
1 )
Observations are recorded on variables x and y but a méchanism, which

may depend on the observed x values, causes some of the y values to be
missing. For three parametric examples, exact or approximate ancillary

statistics are constructed. Conditioning on these ancillaries enables the
missing data mechanism to be ignored under certain conditions. A i

correspondence is shown between these conditional procedures and the use of

the obgerved information matrix in measuring the dispersion of the maximum

y likelihood estimator. hﬁ’ﬁ-*" AR

AMS (MOS) Subject Classifications: 62A20, 62D05, 62F25.
Key Words: fgffine ancillary:lgncillary statistic; gonditional inference,
curved exponential family; ignorability; information; missing

data; survey sampling. ..
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SIGNIFICANCE AND EXPLANATION

Many statistical problems can be viewed as missing data problems. Data

may be migsing for practical reasons, out of the control of the data-

collector, or missing by design, such as in sample surveys where, for some

variables, data is available for the whole population but, for other

variables, data is recorded for the sample and is 'missing' for the remainder

of the population.

Rubin (1976) has shown that the mechanism which causes the data to be
missing (the sampling design in the survey context) can, for a wide class of
situations, be ignored for Bayes or Likelihood inference but not for classical
sampling distribution theory inference. This non-ignorability of the missing

data mechanism can make classical inference much more complicated and even

MR RCRE AL A  gaaen ot pegugae

. impossible if the mechanism is unknown.

In this paper we apply ideas of Barndorff-Nielsen (1980), for a class of
statistical models called curved exponential families, to construct ancillary
statistics for some missing data problems. We show that if classical
inference is carried out conditional upon the observed values of these
ancillary statistics then the missing data mechanism may be ignored, in
certain situvations. Some correspondence between these conditional procedures
and likelihood methods is established. The approach rests heavily on
examples. This is characteristic of the conditioning literature, where

specific results are often more enlightening than attempts at generality.

E

W

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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CONDITIONING IN A MISSING DATA PROBLEM
C. J. Skinner
1. INTRODUCTION

In this article we consider the possibility of conditioning, using either exact or
approximate ancillary statistics, in a problem of estimation with missing data. The
approach is not general but illustrative, using three examples.

Rubin (1976) showed that the mechanism which causes data to be missing may, in a large
clags of situations, be ignored for Bayesian or Likelihood inference but not for sampling
distribution inference. We shall show how conditioning can enable this mechanism to be
ignored for a wider class of situations under sampling distribution inference. Essentially
we show, as in Efron and Hinkley (1978), that the conditional distribution of the maximum
likelihood estimator (MLE) given an approprite ancillary corresponds, at least
approximately, to the use of the inverse of the observed Fisher information matrix to
measure the dispersion of the MLE. The latter procedure, being purely likelihood based,
shares the ignorability properties of Likelihood inference. To provide initial motivation
for the form of the conditioning procedure we compare our estimation problem with a
prediction problem in survey sampling.

We assume the pairs (y;.x;}, i = 1,...,N form a random gample from a bivariate
distribution p(y.x;¥) belonging to a family indexed by the (generally vector) parameter
¥. We do not observe the complete data dc = (Yqeeoer¥Nr XqeoeorXy) but only the
incomplete data dy = (yi1""'yin' 8¢ Xqreeeexy) where s = {ig,ee.,i,} is a subset of
size n from U = {1,...,N}, n € N. We assume that s, and hence dy, is obtained
from 4, by a selection mechanism which assigns probabilities p(slxc), possibly
dependent on xc = (X4g,...,%y) but not on ¢, to selecting each of the (:) possible
subsets s.

The above set-up occurs, for example, in survey sampling where a sample s is

selected from a finite population U, an auxiliary variable x is known for each unit

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. DMS=8210950,
Mod. 1.
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i in U and is available for use in the selection of s and vhere y is a variable

meagsured in the survey. The mechanism p(alxc) is called the sample design in this
context.

Consider two problems:
(A) the prediction of a function of (yq,.ee,Yy), specifically ; = N-1 ? Yy
(B) the estimation of a parameter of the marginal distribution of y, specifically

by = E(y).

In the sample survey context, (A) is the traditional descriptive use, usually
concerned .ith means and totals, whilst (B) is the analytical use, usually concerned with
the estimation of under].ying models such as regression models (see e.g. Hartley and

Sielken, 1975). Our consideration of only ; and yu_ may be taken as special cases of

4
this more general use.

Under the sampling distribution approach to inference, it is usual and natural in (A)
to make predictive inference about ; conditional on (s,xc). Prediction proceeds as in
the usual regression context where (x;,y;); i ¢ 8 are known and x;, i / s are new «x
values for which we wish to predict y. More formally, note that the conditional
distribution of d, given d; depends only on the parameter ¢ which indexes the

conditonal distribution of y given x. Suppose we may write % = (9,1), where

ply.x39) = ply|xr9)p(xid), so that the distribution of the data is

plag1¥) = p(y11.-o.,yin | l,xcn)p(-|xc)p(xc1X)

N
= (I ply,|x,19)Ip(s]x.) T p(x,5A) .
ies i1 ¢ im1 i M

Then, provided ¢ and X are variation independent, it may be argued (Cox and
Hinkley, 1974, p. 35; Barndorff-Nielsen, 1978, p. 50) that (s,x;) is (extended-;S-)
ancillary for ¢, treating )\ as a nuisance parameter, and that inference about ¢ and
hence the prediction of ; should be made conditional on (s,xc)e. (More precisely we

condition on a minimal sufficient reduction of (s.xs), see Section 4.)

e
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For the estimation of “y in (B), however, the same argument does not apply.

Rt

Although (s,xc) may be ancillary for ¢, the parameter of interest uy is in general a

function not only of ¢ but also of X and will not be identifiable in the conditional

T T R

distribution of d; given (s,x;). Hence inference about Uy conditional on (s,xc) is
w

b

generally inappropriate. ' a
w

Now if N is large, and in the sample survey context N may be very large, the N

1

-— “'g

difference between y and may be very small, even though it would appear from the -

Y
discussion above that sampling distribution inference about these two quantities could

proceed quite differently. This apparent 'paradox' provides one source of motivation for
seeking an alternative procedure for conditional inference about “y'

In Bayesian or Likelihood inference about uy the selection mechanism only enters as
a multiplicative factor free of ¥ in the likelihood in (1) and hence is ignorable. 1In
other words, making the false assumption that 8 is derived from U by simple random
sampling rather than by the true mechanism p(s|xc), would make no difference to the
inference for given dy. 1In Rubin's (1976) terminology this is because we have assumed the
data is ‘missing at random’. The selection mechanism is not, however, ignorable for

unconditional sampling distribution inference (nor for inference conditional on s but not

on xc as in Rubin, 1976).

In Section 2 we present the three examples. They are chosen to be of increasing order

RTINS

of complexity. In Example 1 there is an exact ancillary and the conditional distribution

for inference about uy is exactly normal. In Example 2 there is an exact ancillary but

the conditional distribution is only asymptotically normal. In Example 3 there is only an

approximate ancillary.

In Section 3 we consider the prediction of ; conditional on (s,xc). In Section 4

we congider the estimation of uy on the assumption that s 1is a simple random sample

from U. We adopt the approach of Barndorff-Nielsen (1980) to determine appropriate

conditioning procedures. These are then compared with Section 3. In Section 5 we compare

the conditional procedures with the use of asymptotic maximum likelihood theory using

dispersion estimates based on either observed or expected Fisher information matrices. 1In
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Section 6 we consider conditioning under a general selection mechanisa p(llxc) and
discuss in what sense this mechanism is ignorable.

In asymptotic arguments we shall assume that n indexes fixed sequences N = N, and
p(slxc) = pn(alxc) and that n/N, + £, a constant, as n + =, Notation will be of three

types. The key quantities ¢, ¢, A, u_, t, a are defined generally but take different

4
forms in the different examples. The remaining statistics such as ;., ;, are defined in
terms of d; and are invariant with respect to the example. The remaining parameters,

such as o, 8 and Y, are example-specific. M

2. THE EXAMPLES
Example 1
We assume (y,x) is bivariate normal. The parameter vector is % = (¢,1) where
2 2
’= (a.s.c oAt .o ) and ylx ~ Na + 8x, o] ), x ~ Nl ,00).

The parameter of interest is “y =0 + Bu « Te MLIE of ¢ is (Anderson, 1957)

‘..(;-hx.b,n'ssyu,x,u'ss)
- -1 -
where Yg = n )'_yi,x'-n Xx‘_,x-u )'xt .
[ ] ]
-2
b.-fyi(xi-x)/ls.,ss y(x‘.-x) ¢
8 [
-~ ~ 2 _ N -2
ssy.x'-z(yi-a-sxi),x-{(x‘.-x) .
Hence the MLE of 1 is uy'c*B;-;.+b.(;-;.) which in survey sampling is

termed the regression estimator (Cochran, 1977). A minimal sufficient statistic for % is

t = (y.,x ,b‘,ssx.,ssy.x.,x.ss ). Neither ¥ nor t depend on the selection mechanism

because p(s|xc) 1is a multiplicative factor free of ¥ in (1). The family of
distributions for d; indexed by ¥ is a curved exponential family, labelled (7,5) by

Barndorff-Nielsen (1980) since dim(t) = 7, dim($) = 5.
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Example 2

We assume that

y|x~N(yx,ozx) , X~ Gamma (A,k) , %k known
(i. pi{xd) = Akxkde-n/l‘(k))- The parameter vector is ¢ = (9,)) where ¢ = (Y:Oz)-
The parameter of interest is uy =~ yk/A. The MLE of ¢y is
R ST B TR R L W - R
s

3 Hence the MLE of 1 is u = ;.;/;', the ratio estimator (Cochran, 1977). A minimal

; sufficient statistics for ¢ is t = ('y'. ,;.,): Yf/xi ,;). The family of distributions for
3 s

dy indexed by ¥ is a (4,3) curved exponential family.

Example 3

! We assume that y and x are both 0 - 1 variables with

Pr(y=1]x=0) = ¢g, Pr{y=1|x=1) = ¢4, Prix=1) =1 .
. The parameter vector is % = (9,A) where ¢ = (93,9¢). The parameter of interest is vy =
Priy=1) = D)o, + (1-X)90. The MLE of ¢ is 3 - (nw/n.o, n”/n.v N 1/N) where the cell
counts in s and U are defined by

= a =0 B 4. 1-8 ' -
ngg =V ¥iOry ) T xi(1=x,) a8 = 0,1

N
- a 1 B - 1-8
Nag g Y O=yy) o x Oexy)

-y v v

and the margins are defined by

n.=Jn_, N_ =]N g =0,1 .
8 a aB’ .8 a aB

YR PRIt e

The MLE of uy is thus
- N n N n
g = 0 10 . -1, 11

Yy N n, N n,

-, .

a poststratification estimator (Cochran, 1977). A minimal sufficient statistic for ¥ is

” t = (nggsnqgsngq.N, o) This example also defines a (4,3) curved exponential family.

v v v
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3. PREDICTION OF y
A natural predictor of ; given d; is the regression predictor:

-1
N [ y, + ): E(y|x = x,) .] .
1§. 1 e 1 |.-.

This predictor can be shown to be identical to uy in each of our three examples.

Under conditions obeyed by the examples, this predictor is the minimum variance unbiased

Rl BoX & %

predictor of ; conditional on (s,xc) (Skinner, 1983). We now evaluate the conditional

distribution of "y - ; given (l,xc) for each of the examples.

2 Bk o

Example 1 (continued)

We obtain

by = Flauxg ~ W0, (1 = o + nadre] /n) (2)

. — v -1
where 3'1' - (’x!-x)ssxs/2 . Note that it is not necessary to condition on all the Xy

values and s but only on a4q. An exact (1-a)~level conditional confidence interval for

; given a4 is

s 2
u, & [(1=nM+ m,)ssy./n(n-z)l"ztn_z(a/z)

th

vhere t “(u) is the a point of Student's t-distribution with v d.f. Note that this

interval does not depend on the selection mechanism. It distinguishes between ‘good'

samples where a; is small and hence ; may be more precisely predicted and 'bad’ samples

where a, is large and hence ; is wore poorly predicted. Such a distinction is an

essential aim of conditioning.

Example 2 (continued)

We obtain

-~
—

- — = =2
uy-yll,xc N(O, [x(Nx = nx )/Nx 10°/n) . (3)

An exact (1-u)-level confidence level for ; conditional on (;.,;) is

" — e - - - 1
u, & (RO = n% )/ 0%/ (=112 ar2)

In this example a 'good' sample is one in which y is missing for small x values so

is large.

that Xy
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Example 3 (continued)

We may write

~ - -1 -1 -
My T Y =N N /n g T Mng g PN N /n s Mngy m N Rt N ny,
where nuB = Naa - na8 a8 = 0,1.

Conditional on (8,X.) the quantities N g, N 4 n o and n_4 are fixed and the

P

distribution of uy - ; is determined by the independent Binomial distributions of n4q,
Nyq, ;10 and ;1, which possess parameters (n_g.99): (n_4:9q), (N g = n_gr9g) and

1N., - n_4,94) respectively. An exact conditional confidence interval for ; appears
intractable. Instead, suppose that 0 < A, LI < 1 and that the sequence of designs is

such that n’oln is almost surely bounded away from 0 and ! as n + ». Then almost

surely

1 -~ -~ -~
n/z(uy - Dlsexg ¥ W00, (1 - €a)(1-A)eg(1-9g)/a,
{4)

+ (1~ faz)l ?,(19,)72a,)

where f = lim(n/N), aq = n_gN/(nN ), a3 = n_4N/{(nN_4).

A large sample conditional confidence interval may therefore be obtained substituting

9 for ¢.

4. ESTIMATION OF uy - MISSING VALUES SELECTED BY SIMPLE RANDOM SAMPLING
In general My is not identified in the conditional distribution of d; given

{8;x,). For example, the transformation u_ * ¥_ + s, Uy * ¥y + 68-1' ¢ fixed leaves

Y 4
p(dxls,xc;W) unaffected in Example 1. Hence conditioning on (8,xc) as in Section 3 is
inappropriate. Instead we geek what Barndorff-Nielsen {1980) term a ‘'conditionality
resolution'; that is we seek an exact or approximate ancillary statistic a such that
(;,a) is a one-to-one transformation of the minimal sufficient gtatistic t. The
conditional distribution of ; given a is then the appropriate one for inference. For

a (k,d) curved exponential family we seek a (k~d)~dimensional ancillary. Whilst ¢

and t are unaffected by the missing data mechanism, the ancillarity of any statistic a

-7
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may be affected. Hence, in this section we suppose that s 1is obtained from U by simple
random sampling of fixed size so that {xiyi-l,...,u} are IID whether or not

i € s. We consider the general mechanism in Section 5.

Example 1 (continued)
For this (7,5) curved exponential family we seek a two-dimensional ancillary. Since
the normal family is a location=scale tranformation family the following function of t:
—_ - 1
a= (aqay) = [(x'-x)/ssﬁ ¢ 58,4/88,]
is an exact ancillary, in the sense that its distribution is free of ¢. Note that the
tranformation t to (V.a) is one-one.
The distribution of ¥y given a is in fact tractable although we shall only be
concerned with the distribution of uy given a. Corresponding to (2) we have
- — 2,2
uyl-,xc ~ N(a + 6x, (1 + najlo /n) . (S)
But ; is independent of a (since for example a is a function of X5 = Xq¢
i -2¢otnl“) and so
Xla ~ Nu_,02m) . (6)
x' x
Hence
° 2, 2 2 2
~ + + .
uyia N(uy, (1 na1)oy.x/n 8 ox/N) (7)
This provides an appropriate conditional distribution for inference about "y' In
fact we only need to condition on ay and from (2) this permits us to apply the same level
of conditioning in the estimation of “y as in the prediction of ;- In the sense of
Section 1 we have therefore resolved the 'paradox' of different levels of conditioning for
the estimation and prediction problems.
It only appears possible, however, to obtain a large-sample (rather than exact)

conditional interval for “y' since no pivot based on uy - uy seems to exist.

Example 2 (continued)

For this (4,3) curved exponential family we seek a one~dimensional ancillary. 8ince

A is a scale parameter, an exact ancillary is given by a = ;/;.. The transformation

t * (¥,a) is one-one. It may be shown that a is independent of x. Hence the exact

8=

:
.
-
L]
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E distribution of uy given a is obtained by integrating X out of the joint distribution :
a~ - 1
b . of (uy.x) defined by ;
: uy|;}a ~ N(Y;,;hoz/n) (8) s
o N
‘ x|a ~ Gamma (NA,Nk) - (9) .
- AS n + = E
a2 L 2 2,2 d
: n (uy°uy)|a N(O,kac”/x + ky“£/2°) . (10) j
. The ‘paradox’ of different levels of conditioning for ; and Yy is only partially ;
3 resolved here, since in (3) inference about ;' is made conditional not only on a but {
: _ - .
? also on x, whereas from (8) inference about uy given both a and x is not possible. 4
. Example 3 (continued)
i We again have a (4,3) curved exponential family and seek a 1-dimensional ancillary.
In this example no exact ancillary, which is a function of the minimal sufficient
statistic, appears to exist. Barndorff-Nielsen (1980) discusses the construction of an
4
approximate ancillary, termed the affine ancillary, for a general curved exponential )
family. In this 1-dimensional case the affine ancillary is .

aagr = KWL = THIT (V) (1
where T(y) = E(t), Tl(V) is a 1 x 4 vector which is orthogonal to the rows of the

3 x 4 matrix 93t(y)/3y and k(y) is a scalar chosen such that

DR

var{k(y) [t - r(w)lrf(w)} =1 .

In our example rl(W) =(1 1t 0 -n/N), up to a scalar multiple, which implies that
"aff = k(x)(n.o/n - N-O/N)

where

-1
K(A) = [(N-n)AC1-A)/nN]” 72,

Now let

T, = k(A)(?-A)(a1-1) e T, = k(l)k(l-az) ¢

a, = ".ON/(nN.O) ¢ a, = n.1N/(nN.1) .

1

Then Tqe T, and a,¢¢ all converge to the same (standard normal) random variable as

. n + «, Hence in the limit as n + «®, conditioning on ayfg i8 equivalent to the first

AR

-
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order to conditioning on (aqra3). Also in the limit as n + », N /N is independent of

az¢ee Thus
1
n2 (8 o/ - 2)|aga, ¥ uio, aa1-a) (12)

and as in (4), almost surely

1/ ~
25 -
nZu, = (8 gog + 8 0 )Ml |a a8 N ¥

N[O, 9o(1=9g)N /Ma, + ¢ (V=9 ) (1N ,/M)/a,] . (
Hence, almost surely
n'2 (;y-uy)laaff ¥ wio, (1=M)eg (19 )/a, + A, (1-y,)/a,
+ (o pBrc-ne) . (14)

Note that the level of conditioning is again less than for the prediction of -y-,

since in (4) the conditioning is not only on a4y and a, but also on N_o/N = 1-A.

S. OBSERVED VERSUS EXPECTED FISHER INFORMATION

’

The asymptotic theory of maximum likelihood estimation for the regular IID case may be

‘;:'Z extended to the incomplete data structure of dy (c.f. Hocking and Smith, 1968).

:-: According to this theory, two estimates of the (asymptotic) covariance matrix of ; are
:" j(;)ﬂ and 1(;1)-1 vwhere j(;) and i(;) are the observed and expected Fisher

-~ information matrices respectively:

t 109) = B39, 3(9) = -271og plajiv)/avay’ .

t' Efron and Hinkley (1978) show that :j(:))-1 is often a good approximation to the

conditional variance of ¥ given an appropriate ancillary, a. Barndorff-Nielsen (1980)

considers the extension to the multi-parameter case. We now compare va:(uy]a), as

A

obtained from Section 4, with the estimates derived from i(¢) and 3j(¢), which are
1

_-' .

a ApoA a
vobl("y) = g'(v) " 3(¥) g'(¥)

Vexpily! = 9T W)LY gt ()
vhere u = g(¥) . g'(¥) = agly)/3% .

.
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Example 1 (continued)
We obtain
(uy

- 2,42 2242
Vobs ) (1 + “‘1)°y-x/“ + 8 ox/N

-~ h2 “2‘2
Vexp'Fy) = Tyu/n * B0/

and comparing with (7), vg. is identical to var(uylﬂ) evaluated at ¥ = ¥-

Example 2 (continued)

We obtain

- ag & ag a
vobs(“y) ka ¢°/An + ky /Kzﬂ

Vexplly) = ko7/An + Ky %

and it follows immediately from (8) and (9) that Vobg 18 identical to var(uyla)

evaluated at § = .

Example 3 (continued)
. We obtain

vobs

~ A A ~ an - ~ -~ 2‘ ~
(uy) = (1-k)vo(1'vo)/na1 + A91(1-91)/na2 + (91-90) A(T1=A)/N

-~ A A -~ AN L3 -~ -~ 2A ~
Vexp(ly) = (17A)eg(1=90)/n + de,(1=p,3/n + (9,9 ) A(1-MI/N

1 a
and comparing with (14}, nvg . is identical to 1lim var[n/h(uy-ny)la‘ff] with ¢y and

"
f replaced by % and n/N respectively.

6. ESTIMATION OF uy—G!NERAI. MISSING DATA MECHANISM
The mechanism p(slxc) does not affect ; or t but may affect the ancillarity of
the statistica a discussed in Section 4. We shall first show that the exact ancillaries
given for Example 1 and 2 remain exactly ancillary for a broad class of mechanisms and that

the distribution uyla is also invariant. We then consider the more general problem.
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Example 1 (continued)

Condition C1: the selection mechanism depends only on the configuration
2= [(x3=%x4)/(x3=%q)r (Xg=%X4)/(X3=Xq)reesr(xyg=Xq}/(X3=%¢)] Of xq.

In other words, under C1, p(-lxc) is invariant with respect to location or scale
changes in x. This condition holds for a variety of sample designs, for example in
stratified random sampling when strata are determined by quantiles of x, and in truncated
sampling where the point(s) of truncation are quantiles of xa..

Under C1, a remains ancillary. PFor a is a functionof z and s. The
distributions p(s|z) = p(llxc) and p(z) are free of y. Hence the distribution of a
is free of y. Furthermore ; is independent of z and is conditionally independent of
s given 2. Hence x is independent of (s,z) and therefore of a. Thus (5) and (6)

still apply ind the distribution uy'a is again given by (7).

Example 2 (continued)
Condition C2: the selection mechanism depends only on the ratios

W= (Xo/XqeX3/Xqr o0 e Xy/Xq)e

In other words, under C2, p(l|xc) is invariant with respect to scale changes of
;- This condition holds, for example, with probability proportional to size designs,
where x is a size measure, which are often used in conjunction with the ratio estimator.

Under C2, a remains ancillary by a similar argument to that in Example 1. Also it
may be shown that x is independent of (s,w) and therefore of a and hence that the
expressions (8), (9) and (10) remain valid.

We now turn to the general situation where the statistics a defined in Section 4
need no longer be ancillary, even approximately. We begin by attempting to construct
ancillaries which may now depend on the mechanism p(l|xc). We could consider the affine
ancillary but a slightly modified approach simplifies the distribution theory for ';Yla.

Let X. be the MLE of ) were only x;r i @€ 8, to be observed, so for our three examples

-

A, = (;',n"ssx.), k/;. and n_,/n respectively. Let T(A) = l(l.hh In each of our

examples A is sufficient for A, and hence T(1), although critically dependent on

-12=
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p(||xc), is free of ). We assume that the sequence of designs is such that T(¢) is
continuous at A and that
SCITMRE VPR RTTAETINY
where k(A) is a finite positive-definite matrix. This seems a fairly weak condition
although, for example, it would exclude the stratified design in Example 3 where n_ , is
set at a fixed fraction of N 4 so that k(1) = 0. We adopt as an approximate ancillary
- (;«' T k. I (15)
Note that, when the miassing values ares randomly selected, a reduces to the ancillary

in Section 4 for Example 3 and is asymptotically equivalent to the ancillaries for Example

- - - 1 -
1 and 2. Since COV(l' - T(A),A) = O, n,h(l-l) will be asymptotically independent of

Vi)

a. Now the conditional distribution of uy given (s,xs) is unaffected by selection and

in each of our examples we may write (almost surely)

1, -~ -~ Py
n’2 thy = £o a1 ex, ¥ wi0, £G4 o0 (16)

VYT

where f, and f, are certain functions, continuous at ) = i, such that £4(d,e) = By

Now define f, such that f,(k,l‘,q) = tz(k,a,q). Then

1. » - - -
n’2 b, = £4h )18, ¥ wio, £,00,8,0)

1 ~
w2 -1 ]a ¥ wge, £,00)

that 1'11/2(‘- )laENIO £,(2,a,9) + £,(¥)] wh
8o a "y uy ¢ Iy, 1 4 where

£,0¢) = Lim n vu[fo(i,v)l .
nee

9 -
The estimated asymptotic variance of n/2 (uy-uy) given a is thus
V= fz(x,a,q) + f4(v) .
But from (16) f4(-) and fz(k,a,v) = f1(k.ks.o) are unaffected by the missing data
mechanism and hence this mechanism is ignorable for conditional inference. In other words,
if we supposed incorrectly that the missing values were randomly selected so that X4
i e@s is distributed identically to Xy, 1 ﬁ 8 we would obtain the same V.

For a given mechanism the quantity T(A) 4in (15) and hence the ancillary & may be

very complicated to compute. In practice, however, this is unnecessary. We showed in

-13-
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Section 4 that n "V vas equal to vob'(uy) (with n/N replaced by f) for our
examples. Hence for inferential purposes we only require the straightforward computation

-~

of u, and Vobs(Vy! Which do not depend on pis]xq).

Note in contrast that the estimation of the unconditional variance of fi(;y-ny) or

the evaluation of Vv, (U ) does depend on p(s|xs) and can be quite intractable. This

exp “v
provides a further practical advantage of conditioning.

7. CONCLUSION

We have indicated hpv exact or approximate conditioning arguments may be applied in
three examples of a missing data problem. Conditioning is attractive here for several
reasons: (1) it can permit the mechanism which causes the data to be missing to be
ignored, (2) it can lead to more tractable procedures, (3) it makes inference more ‘data-
dependent®' (Fisher's original motivation).

The results of this article are spacific to the examples chosen although some possible
generalization is suggested in Section 6 for models where t is a 1 - 1 transforsation
of (;,i‘)- In this case the asymptotic maximum likelihood approach using the observed

information matrix corresponds, under certain conditions, to conditioning on the ancillary

defined in (15).
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