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ABSTRACT OUVT i

Observations are recorded on variables x and y but a mechanism, which

may depend on the observed x values, causes some of the y values to be

missing. For three parametric examples, exact or approximate ancillary

statistics are constructed. Conditioning on these ancillaries enables the

missing data mechanism to be ignored under certain conditions. A

correspondence is shown between these conditional procedures and the use of

the observed information matrix in measuring the dispersion of the maximum

likelihood estimator.

AMS (MOB) Subject Classifications: 62A20, 62D05, 62F25.

Key Words: 'affine ancillary: ancillary statistic; conditional inference,

curved exponential family; ignorability; information; missing

data; survey sampling. 1
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SIGNIFICANCE AND EXPLANATION

Many statistical problems can be viewed as missing data problems. Data

may be missing for practical reasons, out of the control of the data-

collector, or missing by design, such as in sample surveys where, for some

* variables, data is available for the whole population but, for other

variables, data is recorded for the sample and is 'missing' for the remainder

of the population.

Rubin (1976) has shown that the mechanism which causes the data to be

missing (the sampling design in the survey context) can, for a wide class of

situations, be ignored for Bayes or Likelihood inference but not for classical

sampling distribution theory inference. This non-ignorability of the missing

data mechanism can make classical inference much more complicated and even

impossible if the mechanism is unknown.

In this paper we apply ideas of Barndorff-Nielsen (1980), for a class of

statistical models called curved exponential families, to construct ancillary

statistics for some missing data problems. We show that if classical

inference is carried out conditional upon the observed values of these

ancillary statistics then the missing data mechanism may be ignored, in

certain situations. Some correspondence between these conditional procedures

and likelihood methods is established. The approach rests heavily on

examples. This is characteristic of the conditioning literature, where

specific results are often more enlightening than attempts at generality.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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CONDITIONING IN A MISSING DATA PROBLEM

C. J. Skinner

I. INTRODUCTION

In this article we consider the possibility of conditioning, using either exact or

approximate ancillary statistics, in a problem of estimation with missing data. The

approach is not general but illustrative, using three examples.

Rubin (1976) showed that the mechanism which causes data to be missing may, in a large

class of situations, be ignored for Bayesian or Likelihood inference but not for sampling

distribution inference. We shall show how conditioning can enable this mechanism to be

ignored for a wider class of situations under sampling distribution inference. Essentially

we show, as in Efron and Hinkley (1978), that the conditional distribution of the maximum

likelihood estimator (MLE) given an approprite ancillary corresponds, at least

approximately, to the use of the inverse of the observed Fisher information matrix to

measure the dispersion of the MLE. The latter procedure, being purely likelihood based,

shares the ignorability properties of Likelihood inference. To provide initial motivation

for the form of the conditioning procedure we compare our estimation problem with a

prediction problem in survey sampling.

We assume the pairs (yi,xi), i - 1,...,N form a random sample from a bivariate

distribution p(y,x;*) belonging to a family indexed by the (generally vector) parameter

4. We do not observe the complete data 4C - (Yl,...IYN, x1 ... xN) but only the

incomplete data dI - (Yil,...,Yin 5, s, ,...,x N ) where - (il,.. .i n ) is a subset of

size n from U - {1,...,N}, n ( N. We assume that s, and hence di, is obtained

from dC by a selection mechanism which assigns probabilities p(sjxc), possibly

dependent on xC - (xl....,xN) but not on *, to selecting each of the (N) possible

subsets s.

The above set-up occurs, for example, in survey sampling where a sample s is

selected from a finite population U, an auxiliary variable x is known for each unit

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is

based upon work supported by the National Science Foundation under Grant No. DNS-8210950,
Mod. I.
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i in U and is available for use in the selection of a and where y is a variable

measured in the survey. The mechanism p(sjxC) is called the sample design in this

- context.

Consider two problems:
N

(A) the prediction of a function of (yl...yN), specifically y = N - I yi

(B) the estimation of a parameter of the marginal distribution of yr specifically

iy - 1(y).

In the sample survey context, (A) is the traditional descriptive use, usually

concerned *ith means and totals, whilst (B) is the analytical use, usually concerned with

the estimation of underlying models such as regression models (see e.g. Hartley and

Sielken, 1975). Our consideration of only y and jy may be taken as special cases of

this more general use.

Under the sampling distribution approach to inference, it is usual and natural in (A)

"- to make predictive inference about y conditional on (sxc). Prediction proceeds as in

the usual regression context where (xiryi), i e s are known and xi, i s a are new x

*" values for which we wish to predict y. More formally, note that the conditional

distribution of dC given dZ depends only on the parameter 9 which indexes the

*" conditonal distribution of y given x. Suppose we may write 9 1,A), where

,.' p(YX) = p(ylxgI)p(xA), so that the distribution of the data is

( P(Yi j'..'yi s,xC1F)P(s1xC)p(XCIA)
1 n

= [ ' p(yixi1q,)lp(sl) R p(xiux)
ies i1

Then, provided 9 and A are variation independent, it may be argued (Cox and

Hinkley, 1974, p. 35; Barndorff-Nielsen, 1978, p. 50) that (sxC) is (extended-iS-)

ancillary for 9, treating A as a nuisance parameter, and that inference about y and

hence the prediction of y should be made conditional on (@,XC). (More precisely we

condition on a minimal sufficient reduction of (srXC), see Section 4.)

* -2-
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For the estimation of uy in (B), however, the same argument does not apply.

Although (s,xC) may be ancillary for qP, the parameter of interest y is in general a

function not only of T but also of X and will not be identifiable in the conditional

distribution of d, given (s,xc). Hence inference about U, conditional on (9,xC) is

generally inappropriate.

Now if N is large, and in the sample survey context N may be very large, the

difference between y and jy may be very small, even though it would appear from the

discussion above that sampling distribution inference about these two quantities could

proceed quite differently. This apparent 'paradox' provides one source of motivation for

seeking an alternative procedure for conditional inference about U *

In Bayesian or Likelihood inference about Uy the selection mechanism only enters as

a multiplicative factor free of 0 in the likelihood in (1) and hence is ignorable. In

other words, making the false assumption that a is derived from U by simple random

sampling rather than by the true mechanism p(stxc), would make no difference to the

inference for given di . In Rubin's (1976) terminology this is because we have assumed the

data is 'missing at random'. The selection mechanism is not, however, ignorable for

unconditional sampling distribution inference (nor for inference conditional on s but not

on xC as in Rubin, 1976).

In Section 2 we present the three examples. They are chosen to be of increasing order

of complexity. In Example I there is an exact ancillary and the conditional distribution

for inference about V y is exactly normal. In Example 2 there is an exact ancillary but

the conditional distribution is only asymptotically normal. In Example 3 there is only an

approximate ancillary.

In Section 3 we consider the prediction of y conditional on (s,xC). In Section 4

we consider the estimation of u on the assumption that s is a simple random sample
y

from U. We adopt the approach of Barndorff-Nielsen (1980) to determine appropriate

conditioning procedures. These are then compared with Section 3. In Section 5 we compare

the conditional procedures with the use of asymptotic maximum likelihood theory using

dispersion estimates based on either observed or expected Fisher information matrices. In

-3-
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Section 6 we consider conditioning under a general selection mechanism p(sIxC) and

discuss in what sense this mechanism in ignorable.

In asymptotic arguments we shall assume that n indexes fixed sequences N - M, and

p(sIxC ) = pn(slxC) and that n/Un + f, a constant, as n + -. Notation will be of three

types. The key quantities * A 9. y. , t, a are defined generally but take different

forms in the different examples. The remaining statistics such as x•, x, are defined in

terms of di and are invariant with respect to the example. The remaining parameters,

such as a, 0 and Y, are example-specific.

2. THE ZXA14PLS

Example I

We assume (yx) is bivariate normal. The parameter vector is ( 4 1 ) where

2", ), A ( a 2) and yx- N(, + Ox. a 2.), x - N(Vo 2.
y6,,0x x x yx x x

The parameter of interest is iy - a + Bax . The MUL of * is (Anderson, 1957)

-- 1 - -8s- e - b•a b, n1Y.xs, , N

where Y• - Yt, x i s.Xi N I. xi

2
b a i(xi - xs)/SSxs . - (xi -Xs )

5 5

y.xs -a-i ' ' xi) ' x ' X(xi- ) .

Hence the M of Py is my a + 0 x y + b (x ) which siturvey sampling is

termed the regression estimator (Cochran, 1977). A mi:Lnmal sufficient statistic for * is

t- (y ,x 8b 88 x, SSyxsX SS x). Neither * nor t depend on the selection mechanism

because p(slx C ) is a multiplicative factor free of # in (1). The family of

distributions for di indexed by # is a curved exponential family, labelled (7,5) by

sarndorff-Nielsen (1980) since dim(t) - 7, dim(#) - 5.

- , ., 2-". " .-. . ".". .*" . ... "-. .... ' :'. •" " "." .',- .U " ". U *. .'"." ,.-•... .W". XP .;". .,"r .-- .tU .
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Example 2

We assume that

ylX - (yx,O 2x) , x - Gama (A,k) , k known

(. p(xsA) - )kxkle).k/(k)). The parameter vector is 4i (y,)) where i - (y,a2).

The parameter of interest is uy yk/A. The MLE of # is

-( ;,x , n- ( i- i)2/xi ,k/j).

Hence the MNL of iy is my - ysx/X so the ratio estimator (Cochran, 1977). A minimal

/_2 -
sufficient statistics for *, is t y (*,xsj yi/Xix). The family of distributions for

di indexed by * is a (4,3) curved exponential family.

Example 3

We assume that y and x are both 0 - I variables with

Pr(yulIx=O) - o, Pr(yr"Ix-1) = q1, Pr(x,1) =

The parameter vector is * - (9,)) where 9 = (e0,91) The parameter of interest is y

Pr(y-1) = X9 + (1-X) 9 0 . The KLI of * is 4 - (n 1 0/n. 0 , n 1 /n 1, N 1 /N) where the cell

counts in s and U are defined by

naB " Y("-Yi-c' xS -("'x 1  '.s - 0.1

= X ~1y) l*G ( 1-x )

as i i

and the margins are defined by

n. n,u N. N , . - 0,1

The NL! of Iy is thus

yy
= N 0. ni1o _ 1  n11

.y "N n.0 N n.1

a poststratification estimator (Cochran, 1977). A minimal sufficient statistic for 4 is

t (noo,nlo,no1,N.0 ). This example also defines a (4,3) curved exponential family.

~*%* %*~ N .- *: '.. I~~ -6 % % %V *%~~~%.
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3. PREDICTION OF y

A natural predictor of y given di  is the regression predictor:

N "" 1 Y, + I E(ylx - l) 1•
ice ion9-

This predictor can be shown to be identical to ;y in each of our three examples.

Under conditions obeyed by the examples, this predictor is the minimus variance unbiased

predictor of y conditional on (s,xC) (Skinner, 1983). We nov evaluate the conditional

* distribution of Uy - Y given (@,xC ) for each of the examples.

SExample I (continued)

We obtain

1y - O 0 1 - I,)a + A ) (2)

where a- (Xa-x)SSxe"2 Note that it is not necessary to condition on all the xi

values and a but only on a1 . An exact (1-)-level conditional confidence interval for

y given a, is

ua * ((1 - n/N + na n(n-2)] 2

where t V(a) is the a t h  point of Student's t-distribution with v d.f. note that this

interval does not depend on the selection mechanism. It distinguishes between 'good'

samples where a1 is small and hence y may be more precisely predicted and 'bad' samples

where a1  is large and hence y is nore poorly predicted. Such a distinction ts an

essential aim of conditioning.

Example 2 (continued)

We obtain

Uy7. ~ O,(0 rx(,x - n)/N Ia2/n . (3)

An exact (1-u)-level confidence level for y conditional on (xix) is
-2B(y (N, - nx )fx J/(n-,)/ n_-i/)

In this example a 'good' sample is one in which y is missing for small x values so

that is large.

-%-
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Example 3 (continued)

We may write

_ (N 0/n 0 - 1)n10 + N-(N 1/n - 1)nll - N_1 11
10 1 1 •1 .n0 11

where n 8 0 Nas - na , cgs 1 0,1.

Conditional on (sxC) the quantities N.0 t N.1, n.0 and n.1  are fixed and the

distribution of iy - y is determined by the independent Binomial distributions of

nil, nl0 and nll which possess parameters (n.0t 0 ) (n I1 91 )r (N.0 - n.01t 0 ) and

(N.1 - n. ,1) respectively. An exact conditional confidence interval for y appears

intractable. Instead, suppose that 0 < X., p, 9 < 1 and that the sequence of designs is

such that n.0/n is almost surely bounded away from 0 and 1 as n + w. Then almost

surely

n1/2a90D a2 (pi Yfls'xC N(u, (1 - 1,(1-,910/

(4)

+ (I - fa )L 91(0-91)/a2 )

where f - lim(n/K), a, n.0N/(nN.0 ) a2 - n.N/(nN.1).

A large sample conditional confidence interval may therefore be obtained substituting

y for 9.

4. ESTIMATION OF Uy - MISSING VALUES SELECTED BY SIMPLE RANDOM SAMPLING

In general jy is not identified in the conditional distribution of dI given

-1
(8,xc). For example, the transformation Py + Iy + 8, ux + Ux + f- , fixed leaves

p(dzjsxC,*) unaffected in Example 1. Hence conditioning on (sx C ) as in Section 3 is

inappropriate. Instead we seek what Barndorff-Nielsen (1980) term a 'conditionality

resolution', that is we seek an exact or approximate ancillary statistic a such that

(*,a) Is a one-to-one transformation of the minimal sufficient statistic t. The

conditional distribution of * given a is then the appropriate one for inference. For

a (k,d) curved exponential family we seek a (k-d)-dimensional ancillary. Whilst

and t are unaffected by the missing data mechanism, the ancillarity of any statistic a

i % 
-7-
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, may be affected. Hence, in this section we suppose that a is obtained from U by simple

random sampling of fixed size so that {xijiml,...,N) are lID whether or not

i e a. We consider the general mechanism in Section 5.

Example I (continued)

For this (7,5) curved exponential family we seek a two-dimensional ancillary. Since

the normal family is a location-scale tranformation family the following function of t:

a = (ala 2) = [(x -x)/SS SSxs/SSx]

is an exact ancillary, in the sense that its distribution is free of #. Note that the

* tranformation t to (*,a) is one-one.

The distribution of 4 given a is in fact tractable although we shall only be

concerned with the distribution of y given a. Corresponding to (2) we have

y 2Pst~xC - Wle + 07, 10 + na Il)ay. x/n) •(5)

But x is independent of a (since for example a is a function of x i -xi

'. i = 2,...,N) and so

'.. xa - NlX x /M1 • (6)

Hence

Aa 2 )2 2 2
v y I -. (yt (1+ n1 y .x/n + Bo 0xt) (7)

This provides an appropriate conditional distribution for inference about p In

* fact we only need to condition on a, and from (2) this permits us to apply the same level

of conditioning in the estimation of Uy as in the prediction of y. In the sense of
ey
Section 1 we have therefore resolved the 'paradox' of different levels of conditioning for

the estimation and prediction problems.

It only appears possible, however, to obtain a large-sample (rather than exact)

conditional interval for py , since no pivot based on "y - Py seems to exist.

". Example 2 (continued)

For this (4,3) curved exponential family we seek a one-dimensional ancillary. Since

X ) is a scale parameter, an exact ancillary is given by a - x/x . The transformation

t + (;,a) is one-one. It may be shown that a is independent of x. Hence the exact

S-6-
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distribution of Py given a is obtained by integrating x out of the joint distribution

of (p yx) defined by
y2

V y a - N(yx,xaa2 /n) (8)

x(a - Gamma (NA,Nk) (9)

As n +12

(IigUy)Ja N(0,kac2/X + ky f/ ) .(10)

The 'paradox' of different levels of conditioning for y and py is only partially

resolved here, since in (3) inference about y is made conditional not only on a but

also on x, whereas from (8) inference about uy given both a and x is not possible.

Example 3 (continued)

We again have a (4,3) curved exponential family and seek a 1-dimensional ancillary.

In this example no exact ancillary, which is a function of the minimal sufficient

statistic, appears to exist. Sarndorff-Nielsen (1980) discusses the construction of an

approximate ancillary, termed the affine ancillary, for a general curved exponential

family. In this 1-dimensional case the affine ancillary is

aaff = k($)(t - r(*)]r 1 (*) (11)

where T($) - E(t), Tj(*) is a 1 x 4 vector which is orthogonal to the rows of the

3 x 4 matrix 3T(*)/a* and k(*) is a scalar chosen such that

var{k(*)[t - '(4)]i($)1 = 1

In our example TI(4) I (I 1 0 -n/N), up to a scalar multiple, which implies that

aeff , k(;)(n.0 /n - N. 0/N)

where

MA) = ((N-n)A(I-A/nN]" 1/2

Now let

T 1  k(A(1-A)(a 1-1) , T2 = (A)(-a2

a1 - n.0 N/(nN.0 ) , a 2 = n. N/(nN. 1 )

Then T1 , T2  and aaff all converge to the same (standard normal) random variable as

n + . Hence in the limit as n + -, conditioning on aaff is equivalent to the first

-9-
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i

order to conditioning on (alla2 ). Also in the limit as n + -, N 0/ is independent of

aaff. Thus

n 2 1N .O /M - ))lla1 la2 * viol fX1-X)] (12)

and as in (4), almost surely

nY IliJ - ( o+ N ,)AIj 1a~ga N. /M
L:- ,'/2 [y 1.0,0 +,1,1) .,2f,.0

(13)
N[0, V0(1.V0)1l0AMa1 + ,(- 1 (- 0 4/ 1

Hence, almost surely

J/2 (lIyj Yyl Iaaff N[0, (-)ql) 0 1- 0 )/a1 + ) 111-y 1 1/a2

+ (O0 -9 1) 2 (1-)f (14)

Note that the level of conditioning is again less than for the prediction of y,

since in (4) the conditioning is not only on a1  and a2 but also on N.0 /N - 14.

5. OBSERVED VERSUS EXPMCTD FISHNR INFORPATZON

The asymptotic theory of maximum likelihood estimation for the regular 11D case may be

extended to the incomplete data structure of d, (c.f. Hocking and Smith, 1968).

% According to this theory, two estimates of the (asymptotic) covariance matrix of * are

*,ja) and il()"1  here J(') and i(;) are the observed and expected Fisher

information matrices respectively:

i(M) - E[i()] , J() -32 log p(d 1 A)/ 
T .

Effron and Hinkley (1978) show that J(l) "1 is often a good approximation to the

- conditional variance of * given an appropriate ancillary, a. Barndorff-Nieleen (1980)

* considers the extension to the multi-parameter case. we now compare var(a I), as
y

obtained from Section 4, with the estimates derived from i(;) and J(;), which are

* T ^1vobsl W) - g' ( *) ,
ve I~y) - g'1;)Tj1;)"9' (;1
exp y

where py g() , g'(*) "g(=)/a

-10-
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Example I (continued)

We obtain

vbs(Ph) + n2 ;2 + ^2;2.

na+ )a./ 0 M

vexp ()y yx X n+ CxI

and comparing with (7), Vobs is identical to var(Iz 1a) evaluated at 4 -
y

Example 2 (continued)

We obtain

v obs(U - ka ;2/jn + n k 2/y2

exp,(y - /in 72/j2N

and it follows immediately from (8) and (9) that Vobe is identical to var(Pya Ia)

evaluated at 4' = 4o

Example 3 (continued)

We obtain

AA A ** *AA2

vob g; " (1-X 0 -(140)/naj + AX1(1-41)/na2 + (y 1- 0) )C 
,/"

Vexp(Iy ") (--A);0 (1; 0 )/n + );,I(1-; 1)/n + , )2^(1-_j/tI

and comparing with (14), nvob s  is identical to lim var[n /2 (y-y)Iaaff ] with 4 and

f replaced by 4 and n/U respectively.

6. ESTIMATION OF u -GENERAL KISSING DATA MECHANISM

The mechanism p(alxC) does not affect 4 or t but may affect the ancillarity of

the statistics a discussed in Section 4. We shall first show that the exact ancillaries

given for Example 1 and 2 remain exactly ancillary for a broad class of mechanisms and that

the distribution UyIa is also invariant. We then consider the more general problem.

y

U -11-
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Example 1 (continued)

Condition Cl, the selection mechanim depends only on the configuration

z [(x3 -xl)/(x2 -xi), (x4 -x1)/(x2 -x 1),...,(xN-x 1 )/(x2-xfl) of xc.

In other words, under C1, p(s•xC) is invariant with respect to location or scale

changes in x. This condition holds for a variety of ample designs, for example in

stratified random sampling when strata are determined by quantiles of xc and in truncated

sampling where the point(a) of truncation are quantilee of xC.

Under C1, a remains ancillary. For a is a function of z and a. The

distributions p(sjz) - p(sIxC ) and p(z) are free of *. Hence the distribution of a

is free of *. Furthermore x is independent of z and is conditionally independent of

s given z. Hence x is independent of (9,z) and therefore of a. Thus (5) and (6)

still apply and the distribution uy a is again given by (7).

Sxample 2 (continued)

Condition C2: the selection mechanism depends only on the ratios

w - (x2/xlx 3/xl,...,xN/xl).

In other words, under C2, p(sixc) is invariant with respect to scale changes of

x. This condition holds, for example, with probability proportional to size designs,

where x is a size measure, which are often used in conjunction with the ratio estimator.

Under C2, a remains ancillary by a similar argument to that in Example 1. Also it

may be shown that x is independent of (s,w) and therefore of a and hence that the

expressions (8), (9) and (10) remain valid.

We now turn to the general situation where the statistics a defined in Section 4

need no longer be ancillary, even approimately. We begin by attempting to construct

ancillaries which may now depend on the mechanism p(sIxC). We could consider the affine

ancillary but a slightly modified approach simplifies the distribution theory for ; y Ia.

Let A1  be the ML! of X were only xi, i 65 , to be observed, so for our three examples

As . (,n SS.), k/x and n. 1/n respectively. Let T(i) - aIA) In each of our

examples A is sufficient for A, and hence T( ), although critically dependent on
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P(sjxC), ise free of A. We assume that the sequence of designs is such that T(-) is

continuous at X and that

n 5 T (A) I N [0 k (A)JI

where k(M) is a finite positive-definite matrix. This seems a fairly weak condition

although, for example, it would exclude the stratified design in Example 3 where n.I is

set at a fixed fraction of N.1  so that k(MA) - 0. We adopt as an approximate ancillary

IV [ M (15)

Note that, when the missing values art randomly selected, a reduces to the ancillary

in Section 4 for Example 3 and is asymptotically equivalent to the ancillaries for Example

I and 2. Since cov(A. - T(k),) - 0, n 2 (X-A) will be asymptotically independent of

a. Now the conditional distribution of ; y given (s,xc) is unaffected by selection and

in each of our examples we may write (almost surely)

n - f (.,y)1s',. x N[o. , ( .,)] (16)

where fO and f are certain functions, continuous at A = A, such that fO(X,V) - iy

Now define f2  such that f(AsOq) = f 2 (Xa,9). Then

n/Y2[ y - f 0 (X,,)]la, A N(O, f 2 6,a.,)I

J/2(i-1)Ia "to, f 3()]

so that n/2( 1 la y NO, f (,a,) + f (*)] where

f 4 (*) lia n var(fo( ,9)]
n+O

The estimated asymptotic variance of n2 (uy-ly) given a is thus

S-f(A,a, ) + f 4 i)

But from (16) f4 (.) and f2 (A,a,q) - fI(AIXs,) are unaffected by the missing data

mechanism and hence this mechanism is ignorable for conditional inference. In other words,

if we supposed incorrectly that the missing values were randomly selected so that xi,

i e a is distributed identically to xi, i 0 a we would obtain the same V.

For a given mechanism the quantity T(A) in (IS) and hence the ancillary a may be

very complicated to compute. In practice, however, this is unnecessary. We showed in
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Section 4 that n V was equal to vo*(y) (with n/M replaced by f) for our

examples. Hence for inferential purposes we only require the straightforward computation

of ; yand vobs(; ) which do not depend on p(slxC).

Note in contrast that the estimation of the unconditional variance of /Vn(y -Vy) or

the evaluation of Vp (;y ) does depend on p(* xC) and can be quite intractable. This

provides a further practical advantage of conditioninq.

7. CONCW8 I0

We have indicated how exact or approximate conditioning argments may be applied in

three examples of a missing data problem. Conditioning is attractive here for several

reasons: (1) it can permit the mechanism which causes the data to be missing to be

ignored, (2) it can lead to more tractable procedures, (3) it makes inference more 'data-

dependent' (Fisher's original motivation).

The results of this article are specific to the examples chosen although some possible

generalization is suggested in Section 6 for models where t is a 1 - I transformation

of a ). in this case the asymptotic maximum likelihood approach using the observed

information matrix corresponds, under certain conditions, to conditioning on the ancillary

defined in (15).
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