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A FAMILY OF CURVES FOR THE ROUGH SURFACE

REFLECTION COEFFICIENT

INTRODUCTION

Recently, Miller, Brown, and Vegh [1] gave a short derivation that showed the rough surface
reflection coefficient R, or roughness factor, was given by

R - F/E0 r == exp (-2(2irg) 2 )10( 2(27rg) 2 ) (1)

where
g =- (a sin qo)/x

Here k is the average electric field, Eo the field due to the direct wave, r0 the smooth sea reflection
coefficient, o, the standard deviation of the sea surface elevation, q# the grazing angle for specular
reflection, X the electromagnetic wavelength, lo(z) the modified Bessel function JO(iz), and E/Eo Fo
the normalized coherent reflected field; g is a measure of the effective surface roughness or simply sur-
face roughness [2, p. 101.

Equation (1) was first obtained by Brown and Miller [31 in 1974. This result agrees well with the
experimental results obtained by C.I. Beard [4] in the range 0 < g < 0.3 rad. An earlier theoretical
result of W.S. Ament [51 had agreed with Beard's experimental curve only in the range 0 K, g 4, 0.1
rad. Ament's result is simply Eq. (1) without the I0 factor (Fig. 1).

1.0

0

L.
-0.5-

NJ , Eq.1

I "\' EPERIMENTI ' .

0.0 AMENT"....
0.0 0.1 0.2 0.3

g = (a sin 0/X

Fig. 1-Comparison of theoretical and experimental results
for the reflection coefficient

Equation (1) was derived in Ref. 1 by taking the Fourier transform

t/Eo Fo- exp 4 vi sin I D(y)dy (2)
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MILLER AND VEGH

of the probability density function D(y) for sea wave elevation y given by Eq. (3). Equation (2) was
obtained by Ament (51 and may be understood by observii-g that D(y)dy is the frequency of
occurrence of a plane wave that is reflected from the sea surface with a grazing angle it, and at a point
between y and y + dy. The expression (4 wy sin 0)/X represents the phase of the electromagnetic
wave after reflection.

The statistical model for sea wave elevation y used in obtaining Eq. (1) is

y - H sin 1. x (3)
AX

where sea wave crest height H is distributed normally and x is distributed uniformly in the interval
[-A/4, A/4], A, denoting water wavelength. This model implies that the sea surface is divided into a
large number of domains and that within each domain the elevation variation is a single sinusoid with
random Guassian amplitude. Other statistical models of the ocean surface may be found in Refs. 6 and
7.

In this report, we use a theoretical density for H derived by Rice [81 and by Cartwright and
Longuet-Higgins [9], together with the model of the sea surface elevation given by Eq. (3) to obtain a
family of curves for the rough surface reflection coefficient. We obtain an envelope wherin these
curves lie. Additionally, we obtain the distribution function for sea wave elevation under the stated
assumptions.

PRELIMINARY RESULTS

Rice and Cartwright and Longuet-Higgins have derived an expression for the probability density
of H which may be expressed in the form

K (He) = e exp I-H1I+ - H expI - 11 +erf 1 o1- -H (4)
01HJ2/- 2E 'aJ 2o2 17 2OI 2 0aH 6

Here erf (z) is the error function defined by

erf (o) = 2  exp ( -t 2 ) dt

o'H is the standard deviation of /F, and 0 < e < 1. The parameter e, known as the spectral width
parameter, is described fully in Refs. 9 and 10, p. 515. It may easily be seen that

lim K(H,e) exp IHt < o (5)

and

lmKW ) H exp I L H >t01rn ) (6)

0 He<x0l N

In the first instance we have a Gaussian density as a limiting case; in the second instance we have a
Rayleigh density (Fig. 2).

2
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Fig. 2-Density function for the sea wave crest height H for different
values of the spectral width parameter E

It is shown in Appendix A, with the model of sea wave elevation given by Eq. (3) and the density
function for wave crest height H given by Eq. (4), that the standard deviation of sea wave elevation or

* is given by

where i) is defined by

, ~ 1 l +- - (1-E)

+ 62)2

Then it is shown in Appendix B that the probability density function for y is given by

D(y,e) e- 2r/2 y 2 1 X[ 2 I"22

[21r 3/ I..2.± 2 86272 /22J,"2

+ - exp - f0-exp (-S2) erf I- r 2 ds (7)
-I 4,q202 jO 2 2 121

.where Ko is a Bessel function of imaginary argument defined by Eq. (D5) in Appendix D. Graphs for
the cumulative distribution function for sea wave elevation

P(Y,e) f D(t,e) d: 8

are given in Fig. 3. An alternate form for Eq. (7) is developed in Appendix D. When substituted into
Eq. (8), a formula for P(y,e) is obtained that is suitable for numerical quadrature. This formula for
P(y,E) is also given in Appendix D. Yet another form for Eq. (7) is given in Appendix E, together
with a formula for the special case D(y,,V2/2) which is of interest and will be discussed.

3
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Fig. 3-Cumulative distribution function for sea wave elevation y
for different values of the spectral width parameter e

THE REFLECTION COEFFICIENT

Substituting the expression for D(y,e) given by Eq. (7) into Eq. (2), we obtain the following
expression for the rough surface reflection coefficient R:

R (g,E) - e 2 exp ( -2 2,9 (2,rg) 2 )10( 2e 27) 2 (21rg) 2 ) + -11 _ E2 exp ( -472 (2wg) 2

_ '2(1.. e-'i) 1 3 -- 4 2I2

I2 (1 _2 , 1; 2; E2, -4 2 72 (21Tg)2 (9)

Here 01 (a, 18; y; x, y) is a degenerate hypergeometric function in two variables x and y, defined for
jxj < 1, IyI < - by

40(a, 9; y; x, y) (a ,n +m) ( p,n) XofY M  (10)
"'- (y,n + m) n!m!

where the Pochhammer symbol (a,n) is defined by a ratio of gamma functions:

(a,n) --- r(a + n)/r(a) - a(a + 1) ... (a + n - 1

This result for the reflection coefficient is obtained in Appendix C.

Graphs for the reflection coefficient R (g,e) as a function of surface roughness g are given in Fig.
4. The envelope of these curves are effectively R (g,1) which forms the upper envelope, and R (g,0)
which forms the lower envelope. The upper envelope corresponds to the Guassian density given by Eq.(5) and for which the reflection coefficient is given by Eq. (1)

R- %

R~gl) ex (2(2g) 2 )I( 22w V2
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Fig. 4-Theoretical curves for the reflection coefficient for different values
of the spectral width parameter e

•. *. The lower envelope corresponds to the Rayleigh density given by Eq. (6), and for which the reflection

coefficient is given by

R (,0) - exp [ (2wrg) 2

Both these limiting envelopes may be incorporated into the general equation, provided we define the

third term in Eq. (9) to be zero when # - 1.

SOME OBSERVATIONS

Note that for surface roughness 0 4 g -< 0.1 rad, R (g,e) for all e and Ament's result

R (g) - exp [-2(2vrg)21 are similar and agree with Beard's experimental curve. This is not surprising

since all theoretical results must be consistent with the Rayleigh criterion 121. On the interval

0.1 4 g K, 0.3 rad, numerical calculations reveal that the experimental curve of Beard corresponds

almost exactly to R(g,0.7). Noting that 0.7 ==/ /2, a closed form for D(y,.v2/2) is derived in

Appendix E, since this case is of special interest (Fig. 5). Other data points in the domain

0.1 < g < 0.3 rad given by Beard [4, Fig. 2] lie within the two envelopes R (g,1) and R (g,0) (Fig. 6).

CONCLUSIPN

" 'atistical models for the sea surface %&Y*4eo-pW frwam4 an-used to derive a family oficurves

for the rough surface reflection coefficient. One of these curves fits the experimental data curve.

Other experimental data points lie within the envelope of the derived curves. There is, therefore, a

theoretical basis for the experimental data when the surface roughness exceeds 0.1 rad. , / ,. (,. e'

5
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Fig. 5-Comparison of Beard's experimental curve for the reflection
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Fig. 6-Comparison of the theoretical limiting cases for the reflection coefficient
and the dota given by Beard [4, Fig. 2]
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Appendix A
THE STANDARD DEVIATION OF SEA WAVE ELEVATION

Consider the random variable y = H sin 0, where H is a random variable with density K(H,E)
given by Eq. (4), and 0 is a random variable, independent of H, distributed uniformly on the interval
•oI <r/2. Let U(O) be the density of 0, so that

U(9) = 7r-' 191 < -7r12 }(Al)
= 0 Il > ir/2

The expected value or mean of a random variable x is defined by

4 -- E[xl f x f(x) dx

where f is the density function for x and the variance is defined by

o2 -=E[ (x -E[x]) I =E[ (x -x )
2 I =E[x2 ] -,A2

If x and y are independent, then

E[xyI = E[x] Eby

In our case since H and sin 0 are also independent,

=Jy E[H sin 0] = E[H] .-,,/2sin 0 U(o) dO =0

and

-o2 =-E[H 2 sin 2 
0] -E[H 21 '-f/2 sin 2 0 U(O) dO - E[H 2

Hence

2 .2 2 + A 2

Since

If H K (H E),dH ** H 2 exp 2 dH

O2./ H VF f x2 exp (-x2) dx r 2 aH .i E 2

o ... % , , % • ",% , %. %,
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we have

Oc= 27)20"
2  (A2)

where

a 1 +-!- (1- ) (A3)

4-"2

..

If..
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Appendix B
THE PROBABILITY DENSITY FUNCTION FOR y

Consider the random variable y - H sin 0, where H is a random variable with density
K(HWe), I HI < -c given by Eq. (4), and 0 is a random variable, independent of H, with density U (0)
given by Eq. (Al). Let D(y,e) be the density function for y. Since 0 and H are independent, the
joint density g(O,H,e,) of 0 and H is given by

g (0, H,e) K K(H,e) U (0) 101 < #1/2, IHI < c

0 elsewhere

Set v - H so that 0 - sin-'(y/v) and let f (y,v,e) be the joint density of y and v. Then

f (y,v,e) - JJi g(sinf' (y/v), v,e)

where the Jacobian determinant

ay av - V 'ay

A straightforward computation yields

lil W v - y 2) 1/2

and

f (y, H,e) - r- (H 2 -y 2 -112 K (H,e) iyI < IHI <c

0 elsewhere

Now, integrate f (y,H,e) over H to obtain

D(y,e)= - I 1 K(Hle)W IH+± K (H,e)H

Substituting K(H,e) into this equation and using Eq. (A2) we have

exp t 2 2  dH~ . H exp -HI Ierf 2 JIE dH
D (y,e) e- I/2+ Jifl -~i7 2 f 4 72na

where a, and 7) are defined by Eq. WA). A change of variables, namely, H - Iy I NVi- in the former
integral and H2 - y2 s2 in the latter integral, gives

10o*
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D y , ) = 2 1 q e x p 4 e 2 1 02 1 2

2w 3/ 710'

(~ ~ .. 2. "Ix E2 IS2 + Y2-- IId+ exp0 4,
2
Q

2  (-s 2 )er(f1  IE 4,20.2jJ

Now, using Ref. 11, p. 319, 3.383-3 to evaluate the first integral, Eq. (7) is obtained.

* .1I



Appendix C
S.' THE REFLECTION COEFFICIENT R (ge)

Substituting the expression for D(y,E) given by Eq. (7) into Eq. (2), we obtain

-3/2c f X y sin 4 exp 2 
71

2r 2 )Ky 2jr v

+ 2-%f 2 fofo-exp (-s2) exp _ Co 4y sin jerf l2 11T2 1+ /1

The first integral is evaluated by making the transformation x - y2/8e 2?32o 2 and then using Ref. 11, p.

- 765, 6.755-9. See Ref. 1 for essentially the same computation. We have then

R - e2 exp ( -2e 2"12 (2rg)2 )1o( 2E2,q2 (2wg) 2 ) + - fo'fo (. d

where g is defined by g ---- (o sin qo)/, and (.) is the integrand of the double integral. Making the
transformation t - y/27,or and then changing to polar coordinates gives

2V fo fo 2'ds dy 4f- fo fo cs(8 gt)exp(-t2-s2)erf 2 V7+-TsI ds d,

4 4A f/ 2 fw rexp(-r 2)cos(8rqgr cosO)erf 2 rJ dr doird dRE

Since by Ref. 11, p. 402, 3.715-19,

cos (8rqgr cos 0) dO = - Jo(87rqgr)

we have

R (g,e) - exp ( -2e 2712 (2vg) 2 )1(( 2C2.92 (2vg) 2

+ 2v'1 i._e2fo r exp (_r 2) Jo(87rgr) erf r dr (Cl)

I
12
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To obtain a closed form for R, we show the following: for any real numbers a and /3; 0,

fo r exp (-r2) Jo(ar) erf (8r) dr

e.. +2  32)-3/2 ,1 2

2 - I 1 + 2 4( +/32)

where (b, is a degenerate hypergeometric function of two variables defined by Eq. (10). Substituting

Ref. 11, p. 931, 8.252-4

erf (/3r) - 1 - 2P exp (-p 2r 2) f exp (-r 2t2) dt r>0
V f" t2 + P2r > 0

in the left side of Eq. (C2) and noting that Ref. 11, p. 717, 6.631-4 for p > 0 and any real q
00 1 _ 2( 

3

f r exp (-pr2 ) Jo(qr) dr - exp (0)

we obtain. :12 1 3 _:" _y d t
exp - r exp [ -(1 +/32 + t 2) r 2 I Jo(ar) dr 2 +2

Now applying Eq. (C3) again to the integral in braces we obtain

"x p ' '! 1 1 I _ E - 1x4 ( 1 + p 2 + ,t )

2 4 -7r fo (1 + p 2 + t2) (/32 + t2) dt

and on making the transformation t - I+P x I - I we have

I J - x1 /2  x)1 / 2  x 3 -a 2x dx
2 2 (1 + 2)3/2 .1 I +p2 exp2)

, ., ~Finally, using Ref. 11, p. 321, 3.385 we obtain Eq. (C2).

Letting a - 8wrqg,/3 - xfl 2IE in Eq. (C2) and substituting the result into Eq. (Cl) gives Eq.
(9). We may also write

R (g,e) - e2 exp (-2 21 2 (21rg) 2 )10( 2e 2,q2 (2frg) 2 ) + 11 - e2 exp (-4712(2i-g) 2)

- (1 E2) f x/ 2 (1 - x)- 12 (1 - I2x) exp (-422 2 (2vg)2 x ) dx (C4)

This expression for R is used in Appendix D.

13
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Appendix D
THE CUMULATIVE DISTRIBUTION P(y,E)

Defining o (4i/A) sin 1, we obtain from Eq. (C4)

R a,e) -e 2 exp (-!E,nowo) lva )f(+ voI )+2 exp ( - 71 y 2 2 (0
2

22

62( E2) fo x' /2 (1 - X) - e 2x)-' exp (-e 2 2ff2(d2x) dX

Since we may write Eq. (2)
(W,e) - f-. e 'Y D (y,e) dy

we must have

D(y,e) 1 e-i 'y R(w,e) dwo

Substituting the expression for R (o ,E) into this equation gives

D(y,e) - exp (-y 2/8e 27 2o 2)Ko(y 2/8 2q20 2) + -V1 -,E2 cos (cuy) exp (-1-2r2) dw

--
2 (1- ;e 2) 00 Cos (Wy) I 5 x 2 (1 - X)-112 (1 - E2X)-l exp (-e 2 7 2) 2 oC2 x) dx dw

"W.

Noting that Ref. i1, p. 496, 3.952-9

f exp (-p 2x 2) cos (ax) dx _ =- exp ( -a2/4#2)

* -':: we may integrate the single and double integrals with respect to w to obtain

exp--4 _2. 1 ~el 2) S'l exp (-y2/4e2 7)2a2x) d

21r1/2710er 4712(r2 2"r3/2710' (1 - E2X) _f F X d

for the latter two terms in the equation for D(y,e). On making the transformation x(t + 1) - i, we
have another form for D(y,e), viz,

14
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D(y,) = 23/2 exp .y2 K0 y2 I + exp 2

S8E 2, 2o-2'8c2.2o2 2  2r 2 1/2'qo 4 2

3 eexp ._
oo 4 2.20.2.2e)exp 4y i 2  fo S d ( ,I 4,E 2+nx)

Substituting D(t,e) into Eq. (8), noting that

f exp (-t2) dt - Irv (1 + erf u) (DI)

p2

and integrating with respect to t gives

*i P(.ye) = 2 f exp K 0
1  - dt + I1 + erf

8 2,q 2a 2 J 2_ 2o2

, . 2(l - 4E2)  2 *x (D2
2w {fo X/2 (1 + x) (I-E2 + X) x1/2 (+ x) (1-,E2 + X)

Using Ref. 11, p. 289, 3.223-1, we find

fo X I/2 (1+ X) (1 - e2 + X) - i .if D32

Making the transformation x - sinh 2 t in the last term of Eq. (D2), we obtain

erf Y 1 dx erfl ycosht dt

a Ii - 2 IJ I(D4)
J0 x112 (1 + X) (1 _ 62 + x) Cosh t (cosh 2 t _ 62)

Evaluate Ko(t 2/8E 2,q2G.2) using Ref. 12, p. 85

KO(s)f 0 exp (-s cosh x) dx s > O, (DS)

substitute the result into the first term of Eq. (D2), integrate with respect to t, and use Eq. (DI) to
obtain

* fexp 222 K01 2 2 I dt
2 3/-21o. I or &2)202

r y cf h + (D dx

{fo 1 + cosh x f F +coshx

15
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MILLER AND VEGH

Now, making the transformation cosh x - 2:t + 1 and using Ref. 11, p. 289, 3.222-2, we have

fm dx I- dt VW
0' V1 +cosh x - 2 0 ft (t +1) 727

Finally, combining equations (D2), (D3), (D4), (D6), and (D), we obtain

erfi y cosh si ds
P(')- + erf 2S.-)
P~,E =2 2 1 2vwJ 1? f0 cosh s(coshs- )

/22 erf y,1 + cosh s Jds
+ v 2rl /+ cosh s

This expression for P(y,e), which is suited for numerical evaluation, was used to obtain the graphs in

Fig. 3.

16
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Appendix E
A CLOSED FORM FOR THE DENSITY FUNCTION D(y,'2/2)

To give a closed form for the probability density function D(y,%f2/2), we first show that for any
real k and j&

1 r/2 2fo-S
y

1 f exp (-s 2 ) erf (k . ) ds

=ta1 k+ k Ao2(I+kA exp I k2 s Ko(s) ds (El)

To show this, note that

d erf (kf 2:) - -k A exp (-k 2p 2) exp (-k 2s 2)

and hence

z> er ( 2 ' 2) - k 2 -S,) f exp (- k 2 2)
erf (k ,/1i 72) - -2-exp (-k 2 s2 ) dt + erf (ksi)

Making the transformation t - I1 ,/ry gives

erf (k .f,- j _72) p (-k 2s2) f exp (-kI 2 y)er klA+S x - S/s +o VS-2 -y dy + erf (klsl)

Multiplying this by exp (-s 2) and integrating, we have

f0 exp (-S 2) erf (k vj&.+s) ds - Ji 2 fo exp (-k2lAt2y) fo- exp I-(I + k2)s 2 ] ds

+ fo" exp (-s2) erf (ks) ds

Using Ref. 11, p. 649, 6.285-1, we have

f 0 exp (-s 2) erf (ks) ds - I

The integral in braces is evaluated by making the transformation s2 - x and then using Ref. 11, p. 316,
3.364-3 to obtain

17
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MILLER AND VEGH

f0= exp (-s 2) erf (k .j2-+'s2) ds

tan-'k +kA2 f I'~ 1 1 1 1 1 y K JA 0y d- , 2 j 0 expi l-s2(1-k) yo ]-2l ,)l
,r- lr0 1 2 /A1 1 2

Finally, making the transformation IA2(l + k2 ) y - 2s, we have Eq. (El). y

Using k - .lT- /E, I - y/27o in Eq. (El) and substituting the result into Eq. (7) gives

(y,)"" 2,r.1 0 exp .' I Ko1 y2 I

+ V3/2)o"  e ,q 20- 2  8C2l +2 ,2 0

+ x 4,12C,2 iiep~ICOS 1le + EVi~ 62 f( (2f 2 1) s IKO(s) ds 1 (E2)

It may be shown by using Ref. 12, p. 87 that

fo Ko(s) ds - !Ex[ Ko(x) L.(x) + KI(x) LO(x) ]

where K, (x) are modified Bessel functions and L,(x) are modified Struve functions. Defining

a 4/,f4 R7Tr,
we obtain

D(y,,_2/_2) - exp ( -11/222  + + y2 L-1 K 1
2(2w) 112 a0 r aw a2 22 0l- 2  a202

a20 2  a20-2  a202

which is a closed form for D (y,-//2).

The functions fo Ko (t) dt, K,(x), L,(x) may be computed using tables found in Ref. 13 so
that either Eq. (E2) or Eq. (E3) may be used to compute D(y,,I2/2). We remark that it may be shown
for 0 < lal < 1,0 < x

exp (at)Ko(t) dt - sgn a exp (ax) ( a t2 ) 
_t

2

0 1 1 0 (1 + t2) f1 +a 2 t2

t sin (axt) dt 1 cos-,(a1)
f (1 + t2) r. f?22 -1 j-;2

18
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