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ABSTRACT

. This report is the second part of a general theory purporting to describe

the mathematical structure of the elementary particles, deriving it from first

-7
principles. It consists of Chapters VT and VIT, continuing the MRC Technical

Summary Report #2581, October 1983. -I-'emwstudy the implications of

the SLY(R) transformation group of the particles geometry. In Chapter 4--we-

show how the discrete series of representations implies the quantization of

the geometries and in particular why the electron does not interact

I" .7
strongly. In Chapter VI---we obtain~the resonances as states corresponding to

the principal series of representations.
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SIGNIFICANCE AND EXPLANATION

According to Dirac the two fundamental problems that science faces are:

the problem of matter and the problem of life. The present work is a

contribution toward the analysis of the first problem, in the sense that the

true nature of the elementary particles, their fields, masses, interactions,

couplings and transformations can be derived from the basic mathematical

structures found to be physically relevant, by a step by step analysis of the

.. intrinsic objects pertaining to these structures. Not only are general

results obtained but also numerical ones that compare favourably with the

experimental data. The relevance of any progress in this direction needs

hardly to be stressed.

Accessi For_
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THE MATHEMATICAL STRUCTURE OF ELEMENTARY PARTICLES - II

P. Nowosad*

CHAPTER VI. LIGHT QUANTA SYMMETRIES

6.1 INTRODUCTION

In this chapter we consider the effects of the action of the symmetry groups of the

geometry on the light waves whose superpositions yield the stationary states (5.69)

described in 5.10/12. Henceforth, for convenience, these states will be called harmonic

states to witness that they are analytic or anti-analytic in X2 + iX3 or linear

combinations of both.

The main result is that the ratio of the mass of the (bare) particle to that of its

basic massive quanta is quantized over the integers, according to the formula

(6.0) m m; a (n + 1/2)w• e(log coth

0 1 + IsI (log coth n +-1/2 )4

Here n,-s = 0,1,2,..., a is the fine structure constant and e is the function

defined in (5.58), (5.58)'. The integer n stands for the most stable energy level (5.66)

of the geometry and s describes the discrete series representation of SL2 (R) in which

this occurs: in fact Isl + I is the winding number of the stable states around the spin-

axis.

Condition (6.0) classifies the geometries according to the smallest pair of integers

(I + IsoI,no) that satisfy it. It turns out that for the proton (baryons) 1 + Is0 1 = 8

and no = 3, and for the electron (leptons) I + Is01 = 3 and no = 0. These stable

energy levels are in perfect agreement with experimental facts, hitherto in lack of

theoretical explanation. In particular no = 0 explains why the electron does not

interact strongly. The dimensions I + Isol 8 and 1 + Is0l 3 turn out to be related

to the unitary symmetries of these particles.

j The considerations that lead to this result are as follows.

*Instituto de Matematica Pura e Aplicada, Estrada Dona Castorina 110, 22460
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One observes that the group that preserves the indefinite (r,t) metric in (5.39)

contains properly the subgroup that, in addition, preserves the shell of the particle.

Whereas the later can be interpreted as a mere change of coordinates of the given system,

the action of the quotient subgroup instead gives rise to new, equally valid physical

systems, which are however unrelated to each other and so provide no new information.

However instead of looking at the action of the quotient subgroup as providing change of

coordinates we may alternatively look at it as inducing linear transformations on a space

of functions on a fiber space where the base is diffeomorphic to the given (r,t) geometry

and the fiber is isomorphic to the quotient subgroup. In other words we look for fiber

bundle representations of the group action. Then the shell-preserving subgroup yields the

so called external symmetries, whereas the fiber representations yield the internal

symmetries, i.e. the symmetries of the internal states described by functions on the fiber

space.

Distinct (smooth) sections of the fibration represent now the same geometry in

distinct states as a result of some kind of excitation imposed on it, which must have a

precise physical meaning.

Representations of the quotient subgroup give rise to induced representations of the

full group on spaces of functions defined on the fiber space (p. 20 [3]). Among these

functions the ones representing physically stable states are those that are invariant, up

to scalar factors, under the changes of states of excitation of the geometry, that is they

are eigenfunctions of the quotient subgroup. The other functions are proper mixtures of

these, and as such, unstable.

Distinct inequivalent representations describe distinct gauges of the geometry.

Physical realizability of the particle requires that at least one among the pairs of

real monochromatic waves that give rise, by statistical superposition, to stationary states

(5.69) describing massive quanta, be (analytic or anti-analytic continuations of) some pair

of such stable eigenstates of the fibering subgroup, in some gauge. This singles out the

stable energy levels of the quanta of the given particle and the corresponding (stable)

representations, and this is how (6.0) is obtained.

-2-
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Furthermore the physical nature of the excitation of the geometry, as described by the

above fibration, is identified to the polarization degree of freedom of the basic

monochromatic waves in the twistor field description of the geometry (Section 4.3.8). Thus

the above distinct gauges of the geometry correspond to distinct behavior of functions

under the polarization group. In this process the quotient subgroup fiber is naturally

identified with the unit circle in the complementary (y,z)-space, so that the fiber space

has a realization as a subspace of the full geometry. The harmonic stationary states

(5.62) are then completely determined as superpositions of the monochromatic waves

= (y ± iz) •-S * e ) (•1)(X
4 ±X

1

6.2 THE POINCARE HALF PLANE

According to the analysis in Chapter V the metric of an elementary particle is

2 (dX1) 2 -_ (dX 4 ) 2  2 2 3 2
(6.1) ds =  cosh)2 1 1 + (dX) + (dX)cosh AXI

The r-coordinate in concrete space is given by

(6.2) tanh )iX ±e ,r-r

the sign being the same as the sign of the charge Q of the geometry. As before X2 =y,

X3 = z, X4 = t.

Let us restrict ourselves to the two-dimensional metric describing the real isotropic

space of the particle, namely

2 (dl) 2-_(dX 4)2
(6.3) do c 2 X cosh2uX1

Since this is a space with constant negative curvature it can be mapped into

the Poincarg half-plane, as follows.

Letting y be a real constant, set

( .) = + n = y + e (X4+X )

(6.4)e l4_ 1

ji(X 4_X1

so that

-3-
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4
n -m eAX cosh pX2

(6.5)
+ Y + a PX sinh JX1 I

and

(6.6) -d = + dn = IelA(X 4 +X 1 )(dX4 + M 1

d = = - dn -- me X4_x1)(dx - dX)

Consequently

(6.7) do 2  dX 1)2 - (dx 4)= d 2 - dn 2  4 .d4d*

2 1 2 2 2coeh2pX 1  I.' Ti ( _ ')2

Direct calculation shows that the group that preserves (6.7) and the upper half-plane

is

(6 .8 ) = ,+ c -a - + c

where (a b) is real and ad - bc - 1, i.e. the real 2 x 2 unimodular group SL2 (R).cd

Since a matrix and its negative yield the same map and both have same determinant the

effective group is actually SL2 ()/{1,-1} S PSL2 ().

In terms of En

(6.9) E t T __> a( + n) + c
b( t n) + d

If we complexify n into in (6.7) becomes

2 2 2

which, except for the scalar factor, is the usual Poincarg metric in the upper half-plane

H : - E + in, n > 0. As for (6.9), it becomes

(6.9)- ac + c
bX+d

-4-
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6.3 GEOMETRICAL CORRESPONDENCE

6.3.1 From 6.2 and (6.5) we get

-,iIr-r 0I(6.11) "Y -t ah UX 1  is 0~

(6.12) 2 K - y)2 . e2it > 0

Therefore the spheres r - const. correspond to the straight lines F - y = const. n

through the point (y,O), with the shell r - r0  corresponding to - Y = n (for a

positively charged geometry) or to y - - -n (negatively charged), and infinity r -

corresponding to the vertical line y .

2 2Constant times t correspond to the upper branch of the hyperbolae (E - y) - T 1

const., with remote past t = - also corresponding to y - - tn. In the figure below

we consider the case Y 0.

S ',.-. .; ( .o

'S

the. a, . . t...

. ryl•..*,

plneifnity n tsrfecinA along the line Y 
M n(r "Y"- if Q < 0 .Th iiepIts may be i

%~ %

-. I V.'

Tnhprticure the shel of the prtl-ae athayti isrrespredseted the pint satei

the angular sector A7 between the line F - y = 0 nd - y T i in the upper half-

plane, if Q > 0, and its reflection A4  along the line F -y if Q < 0. It may be"e

",-.,. ..-...''-'-) ......- -. - . '.,,'--''-,.., ...'.--..,..*-..-..'-",'-..,"... .---,-..-.-. * -.. -.- -- ,..-.. . , -. ...' ,. '- ,-,-. . .-.- .' -'-" ..- " '. . ...... '.. .".-. . " .. ' , ' ' ' . - L '.'-
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considered as covered twice, one for the region x > 0 and the other for x < 0. We have

one representation for the region outside the shell and another identical, but independent,

for the inside continued into anti-space.

6.3.2 INFINITE-HOMENTUM FRAME

It is clear that n is a time-coordinate and g is a space-coordinate. Yet this

coordinate system is not physically equivalent to the coordinate system (r,t) describing

2
do2 ,  in the sense that the elliptic metrics obtained by replacing it for t and in for

n do not define the same L2  spaces of functions. This can be seen directly or by

observing that the spatial sections t = const., which correspond to the hyperbolae

(C - y)2 _ n = const., are asymptotic to the light-cones along the lines y - y ±n

and taking into account Corollary 4, p. 391, and Comments 6, p. 394 in [9].

Furthermore it is also clear that in this referential the particle lies at - and

moves with the speed of light (remark physical space outside the particle is the open

angular sector A y).

The standing point at the vertex, namely (y,.), lying in the left boundary of A

corresponds in physical space to a point at infinity (r = w). Since the shell of the

particle is at rest in the (r,t) referential, in turn it is this point that is moving

with the speed of light in physical space, which means the observer with time-axis n is a

photon. Thus the (&,n) referential describes how an infinitely far photon sees the

particle. There are no contradictions in the above statements because we are referring to

points in the boundary of our geometry A and the mapping between the two referentials isy

singular in any neighbourhood of that boundary. In the (C,n) referential the particle

has infinite momentum. Such referentials are thus called infinite-momentum frames. We

will see their role in the electroweak interactions and in parton theory in Chapter X, and

how they give rise to renormalization groups.

6.4 GROUP ACTION

The group SL 2 (Z) may be decomposed into the product KS of the subgroup S of

lower triangular matrices (a 0_I) , a > 0, and of the subgroup K of rotation matrices
c a

-6-
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with determinant 1

(6.13) 0 4 e < 2wr

This is simply the content of the Gram-Schmidt orthonormalization procedure applied to

the columns of any matrix in the group, starting with the second column.

The subgroup S may be decomposed further into the product VT where TP is the

subgroup with elements (c and D the subgroup ( o), a > 0. Clearly
0

TPd =d'P for every d e D, because

(6.14) (1 0(0 0-)( '2 0)
c 1 0 a 0 a cO 1

To fix ideas consider the case when y -0. Then the subgroup that preserves the

shell of the particle, i.e. the point at infinity along =n (or =-n if Q < 0),

aC +c +a
is precisely S because as C + in (6.9)', b + -c and as at least one of a

1 c0
and b is non-zero, a= if and only if a * 0 and b - 0. In particular ( )

b 1

takes into C' + c, i.e. TP effects translations parallel to the real axis and

(a - )takes C into a 2 i.e. D defines dilatations of the complex plane. In
0 a

particular this means S preserves the set of rays r -const. along the vertex of the

physical sector A -A 0 although it translates the vertex itself.

From (6.5) we see that the maps of D, namely ->a 2, a 2 n define the time

4 4 2
translations X $--> X + -log a in physical space. The subgroup T reflects the

freedom we have in in choosing the origin along the real axis in (E,n) space when
2 2
dE- an

defining the metric 2 whereas V does the same with respect to the time origin
n

when defining (6.3).

we may choose to locate the vertex of the physical sector A at any place along the

real axis. If its vertex is at (C,n) - (Y,0) we have already written A for it so that
Y

in particular A EA 01We then define the action of S modulo the tranelation that takes

the vertex into the point 'y, writing S(mod 'P ) for the group so defined. Because of

(6.14) we may take TP acting on the left or on the right of D, indistinctly, i.e. as

"

.... ... . .. ... .... ... .... ... .... ... .... .-.. °
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regards D alone, that is the external symmetries, we might just ignore T altogether.

In other words the action of S(mod T ) describes the homotheties with center (y,0).

Due to the importance of the role of the fiber bundle concept in our analysis of the

action of K we give an elementary description of the subject of induced representations

directly illustrated on the group relevant to us.

6.5 SL 2 (R) AS A CIRCLE BUNDLE

6.5.1 The group SL 2(R)/{1,-1} is isomorphic to the group of all conformal mappings of

the Poincarg half-plane H, as these are the linear fractional transformations of H.

Define a linear element as a point of H X S i.e. as a pair formed by a point of H and

a direction at that point. Fix a given linear element. Then there is one and just one

conformal mapping of H taking any given linear element into the fixed one. Hence the

given group may be interpreted as the set of all linear elements in H, or in other words,

as a fiber space with base H and fiber SI  (p. 3 [5]).

It is easy to see that the subgroup that leaves 0= i fixed is precisely the

orthogonal group K and that an element in S takes i into C = + in if and only if

it is of the form

1/2 0 1
(6.15) nn1/2 - 1/2 .

d (ac + c) 1 tedrcin tte.
Since for the matrices in the group, d b + 2 the directions at the

_dC (C + d (bC + d)2

original points are rotated by

(6. 16) -2 arg(bC + d)

at the image points.

Consequently if we decompose the inverse of an element in SL (R)/{1,-1} in the form
2

1/2
(1 ± d- = + cos e/2 sin 8/2)( n 0 ), n >0, 0 9 < 2 ,(6.17) b-sin 0 cos 0/2 1/2 -1/2

then by (6.9)' this inverse takes i into = + in and it rotates the directions at

-8-
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C by the amount -2 arg(i sin 8/2 + cos 8/2) = -8, i.e. it takes (i,0) into (t,-8).

The original element of the group therefore takes (C,-8 ) into (i,O). Hence with C and

6 given by (6.17) the correspondence

( b)j <-

establishes the above mentioned representation of SL ()/{1,-1} as H x S , with

(i,O) as the fixed linear element.

To define a similar representation for SL2 (a) itself we write

a b-I= cos 8 sin 8/ /2

(6.18) c d -sin 8 Cos 0' -1/2 -1/2)' r > O, 0 e 2.

Clearly (
a  b) takes (C,-28) into (i,0). By halving the angles of rotation of

the directions we obtain the correspondence (a b) <-> (C,-8 ), which yields thec d

representation of SL2 (l) as H x S1 .

The orbits of the points C = ir, 0 < r 4 1 under the action of K, i.e. the loci

ir cos 8 + sin 8 0 C e < 2w

-ir sin 8 + cos 8' e 2

1 [r i 1r+"

are circles of radius I (r and center - + ). As they cover H they give all

orbits of K. Clearly the rotation of the directions when passing from one to another

point of the same orbit is just the rotation of the tangent to the orbit. Thus the image
of theOS 8/2 -sin 8/2

locii L of the segment C ir, 0 < r 4 1, under (sin 8/2 cos 8/2) are the circles

2 )] )2
2 + [ + -1 (tg /2 - cotg 8/2)12 1 + 1 (tg 8/2 - cotg /2

orthogonal to the orbits. L8  are geodesics and together with the orbits of K constitute

the net of polar coordinates with center i, in the Poincar4 metric.

-9-



R
We take R = 0.12824, in which case log coth - = 2.748368. From (6.47) we get

(6.50) Isl + 1 = ir (2n + 1) = 1.143076 (2n + 1)
2.748368

whose values for various n are

n = 0 Isl + 1 1.143076

n = 1 Isl + 1 3.429227
(6.513

n = 2 Isl + 1 = 5.715378

n = 3 Isl + 1 = 8.00153

This table clearly shows that for the proton the smallest no  fulfilling (6.48)

(within very reasonable margin of error) is

n o = 3, with

(6.52)
+ 1= 8

From (6.49) we thus see that the set of all solutions for the proton is given by

(s',n') with

n' - (2q + 1)3 + q = 7q + 3{ 6S'. + 1 = (2q + 1)8, q = 0,1,2,...

that is

n' = 3, 10, 17, 24,...

Is' + 1 = 8, 24, 40, 56....

Of all the massive quanta associated with the proton those with energy level E3

should be expected to be the most stable. The corresponding representation has index

S0 = -7.

6.9.3 CASE OF THE ELECTRON

For the electron the value of R, determined from the experimental data admitted in

5. 16, lies in

U.74077 < R < 0.74086

-23-
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As seen in Chapter V, R is the basic parameter describing the particle: once R

and, say, its mass m0  are known, we get m, r0 , X, and the coupling constant K.

6.9.1 CONSEQUENCES

The above result shows that the parameter R can only take a denumerable set of

values.

The condition (6.45) means that only the lowest weight vector of the corresponding

representation can correspond to a monochromatic state.

On the other hand if (s,n) is a solution of (6.48) for a given value of R, then

one sees that also

(6.49) ((2q+1)s - 2q, (2q+1)n + q), q = 0,1,2,...

are solutions for the same R.

Therefore along with the stationary state of energy E n , given by (5.66), ani

represented by a statistical superposition of the vectors of dominant weight in the s

representation by analytic and anti-analytic functions in H, also the states of energy

E (2q+1)n+q, q - 1,2,..., will be stable lowest weight eigenstates of K in the

(2q+1)s - 2q representation of the discrete series, respectively, for the same geometry.

From the above analysis we collect the following important consequences.

1. The massive quanta of energy level En, where n satisfies (6.48), associated

with a given particle, must be more stable than those that do not satisfy it.

2. According to a general rule, the one with smallest energy En  satisfying (6.48)

is expected to be the most stable of all.

We will now apply the results of this analysis to the proton and electron.

6.9.2 CASE OF THE PROTON

For the proton the value of R, determined from experimental data, is given by

(5.79):

0.12811 < R < 0.12826

-22-
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As remarked before, the left-hand sides of (6.43) and (6.44) are complexifications of

the monochromatic waves •
- m (x 4 tx 1 )

, x ,X4 e R which are given by points of the immersed

torus M given in (6.41).
Y

Remark that we cannot achieve the simultaneous realization of the two waves in the

same representation: we need K-1 for the first one and K 1 for the second.

6.9 QUANTIZATION OF THE GEOMETRIES

As remarked in the Introduction 6.1, to each value of 8 in H x 51 correspond

distinct states of the geometry. Functions defined on H x S, corresponding to some

representation of the discrete series, are stable under the changes of state of the

geometry, if and only if they are invariant, up to a scalar factor, under the fibering

subgroup K, that is iff they are eigenstates of K in that representation. The other

functions are proper mixtures of these and hence unstable.

Since our geometries have been defined in terms of quanta, which are our basic

objects, physical realizability of the particle requires that some of the pairs of

monochromatic waves that define the quanta (i.e. the stationary states (5.69)), be

eigenstates of K, or K_1 in some representation of the discrete series.

This means that (6.46) must be satisfied for some value of m as given by (5.65),

namely

m - (n + 1/2)w/p 0 , n - 0,1,2,...

I R
with o - T log coth ,R P =r o , according to (5.38).

Substituting these values in (6.46) we obtain the condition

(6.47) log coth R 2n + I

or

(6.48) R = R(n,s) - log coth( n + 1/2 v ), (n,-s - 0,1,2,...)

Combining (6.48) with (5.77) we get the quantization condition (6.0) for the ratio

m0/Mg.

-21-



We now have the Poincar6 half-plane H superposed to our original (C,n) plane but

we notice that the physical angular sector has its vertex at y, not necessarily at the

origin, and this is reflected in the correspondence (6.42) with the physical coordinates

1 4X and X . That is the action of the fiber subgroup K on the physical coordinates (and

so on the monochromatic waves) is parametrized by the constant y. We denote this action

by K .

6.8 REAL MONOCHROMATIC WAVES AS EIGENSTATES OF K

The real monochromatic waves that satisfied the Laplace-Beltrami equation

n 2 (3 2 )a 2 0 in ( 1 ,Y1 )-space, now satisfy

2(02 + 32 0
1 E 2 n I

in H, and so are analytic or anti-analytic in r = 2 + in1"

These functions thus can only correspond to functions in the discrete series of

representations of SL2 (a), because the equations (6.28) and (6.30) have non-zero second

member (0 - s2 ) for the other unitary representations.

From (6.42) we get

(6.43) e-m(X +X const. )m

Z + iy

(6.44) e - I(X 4 -x + , i

Comparing (6.44) with (6.35) and (6.38) with the complex-conjugate of (6.35) namely

(+ i) -m(X4+X ) -m(X - XI
)

i)k-$+, we conclude that e and e are elgenstates of KY if

and only if

(6.45) k - 0

(6.46) m/i - 1 - s

with Y = -1 for the first wave (the function being anti-analytic in H) and y = 1 for

the second one (which is analytic).

-20-
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Notice that M intersects the plane n2 - 0 (i.e. the sets where X = 0o
2 0 or

X = w/21) along the two circles

0 11
My : = cos liX , 2 = sin jiX = Y

'r 1 2

1M n i  01 Y 
- sin UX , 2 = cos lAX

There are represented in the figure below. Notice that the physical space is the

sector A y in the (,1I)-plane.

1

H 2

YY

//

/ -.//
/

/ = \

/ 

my

On the plane (E,2 n 1 the metric do2  given by (6.7) in, up to a scalar factor, the

definite Poincarf metric.

We identify the half-plane n > 0 lying there with the half-plane H on which we

represent the group SL2(f() as the fiber space H x S1  We also rotate it 900 around the

nl-axis to superpose it to the original (&ionI)-plane.

Setting = 2 + in , (6.39) then becomes in H

+ iY - -ie tj
(X 4 +X I

(6.42)

+ iy - ie 
4  

, e H.
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by i times itself. That means we can also think that we first complexify the coordinates

in that local chart and then we identify appropriate n-dimensional sections of it, so that

the original and the new metric are defined on the same background.

Following the above lead we complexify all variables E, i and X4 , x1 in (6.4) and

(6.7). We then look for some (real) 2-dimensional section of complexified space where the

(n) metric is definite, to identify it with the Poincarg half-plane H and to

superpose to our original plane.

Before doing that let us see how the waves stand in the complexification. For that

rewrite (6.4) as

)i 
+  - Y) - es(X4 +X)

(6.39)- - ) -eX 4 -X 1 )

1 4 1 4
Replacing in (6.5) iX and iX for X and X4 , respectively, we get in

complexified (t,rn)-space

4

(640 fri + in 2 - ei coo UK

EI + iE 2 -y + iesXsin pX l

so that

4 1=1 cos X con iXfi 4"1

n2 = sin PX cos x X

y - sin X4.4sin X
I

14 1 1 4 "

E2 Cos X 4.sin X 1, X1 ,X e R.

Thus when the original variables X, X4  in (6.39) are purely imaginary, the waves in

the right-hand side of (6.39) define an immersion MY of a torus T 2  in (Y&,2, 1,q2

space. Each point of My represents the pair of values taken by the two waves at their

1 4
pre-images XI

, X4  in physical space.
,a
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6.7 COMPLEXIFICATION OF THE GEOMETRY

The above unitary representations are realized in the upper half-plane H of

C = + in space. Recall that the action of SL2(a) on H is given by

(6.38) 
a c a + c

bC + d

d9 2 + dn 
2  

d
and that the metric 2 and consequently the measure 2 ' are invariant under

n n

this group (pp. 41-43 and 181 (7]).

Now we want to relate these representations in the Poincar6 half-plane H with the

stationary states associated with the particle in the (En) space with indefinite

Poincarf metric (6.7).

As already mentioned, the complexifications n --> in taken the indefinite metric

(6.7) into the definite one (6.10). This indicates that complexification is the way to

establish these relations. In order to better clarify the meaning of this procedure we

first recall the important concept of elliptic metrics associated with a given observer (p.

389 [9]).

Given an n-dimensional pseudo-Riemannian manifold with signature (1,-I ,... ,-1) say,

for short a Lorentz manifold, and given an observer i.e. a unit time-like vector field T

on it, one associates with this pair an elliptic metric (i.e. a proper Riemannian metric)

as follows. If the original metric is defined by the bilinear form g(vv') on vectors of

the tangent bundle, then the new (elliptic) metric is defined by

g T(v,v') - 2g(v,T)g(v',T) - g(v,v') .

This can be visualized as follows. Choose at any given point x a local chart with

one coordinate axis tangent to T at x and with gij - diag(1,-1,...,-1) there. Then
T

the matrix of g(v,T)g(v',T) at x is diag(1,0,...,0) and so gJ - diag(1,...,1) at

x.

More generally if we take a local chart with Gaussian coordinates

do2 . dT2 _- gdxidx the above procedure yields (dT)2 .dT 2 + ,,dxidxJ.

Alternatively this is the same as replacing the last n - I coordinates in this local

chart by their purely imaginary counterpart or, except for sign, by replacing the first one

-17-
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The other half of the discrete series is similarly defined for the anti-analytic

functions on the upper half-plane n > 0 (or equivalently analytic functions in the half-

plane n < 0) for each a . 0,-l,-2,.. .

No two representations of the discrete series are equivalent.

These representations can also be realized by restricting the functions to the real

line n - 0, because by (6.5) this line is given by * - * and by (6.8) this condition is

preserved under the group action.

The only common eigenfunctions of K under these representations are as follows (p.

183, 187 (7]).

For the analytic functions on n > 0:

(6.35) Uk(; ) kz 0,,2..

k ( + i)k-s+ ,

with corresponding simple eigenvalue

(6.36)i(2k+l-s) 8

(6.36) • , k - 0,1,2,...

Explicitly, if Y cos 8 -sin 0 then

2sin e Cos 0.te

(6.37) Ta(Y)k ( ) - i(2k+ls)Ok)

For the anti-analytic functions in n > 0, just take the complex-conjugate in the

above expressions.

These are all the irreducible unitary representations of SL2 (R) (p. 483 [6], p. 45

(2]), besides the trivial one.

0

-4 -3 -2 -1 0
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The above space is realized by an abstract procedure starting from the previous ones

and where a central role is played by the unique function in these spaces invariant under

K (p. 36 (5]).

In the case of the odd (i.e. e = 1) principal series a representation may be

realized in a certain subspace of functions in the half-plane n > 0 satisfying the

differential equation
2 2 3 2

(6.30) [2(I + a) + in(j_ + i ( 1)
3E2 an2 & a

where C = E + in (p. 57, [5]).

It is given by

(6.31) T ()a(c) - C (b + d)
- 1

sbC + d

and commutes with the differential operator in the left hand side of (6.30).

6.6.4 DISCRETE SERIES (s 0,-I,-2,...,

This series has two distinct representations for each value of a: one defined in the

upper half-plane n > 0 and the other in the lower half-plane n < 0 (p. 36 (5]. p. 480

[6]). They correspond to the representations derived in Section 6.5.

Consider first the case s * 0. A representation is then defined on the set of

analytic functions () in the upper half-plane n > 0, which, together with

s-1(6.32) ; -€- -/;

are of class C in the closed half-plane n ; 0. The representation is given by

(6.33) T (y)*(C) - (b + C)(b + d)

with y (a b) and the inner product iswith7 = c d

(6.34) <*1,,2> Y 0()*2 (On dnd
n>0

For s - 0 the representation is given by (6.33) too and is defined on the set of

2L () functions on the real line which are boundary values of analytic functions in

n > 0, equipped with the corresponding inner product.

-15-
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W' *7 4r z- v-. - .* r

6.6.1 PRINCIPAL SERIES (S ip, P e R, -0,.

The representations are given an L2 (a) by

ft , +cp- 1  
E

(6.25) T (y)#(x) (ax )Ibx +dl agn (bx +d)
x bx +d

where YV b ), ad - bc - 1, and x takes the values above.

Two such representations T, T, are equivalent if and only if £ 'and

P' .

6.6.2 SUPPLU(ENTARY SERIES (0 < Isi < 1, a e 3), e - 0)

These representations are realized in the space of functions on the real line for

C which is defined the inner product

(6.26) =f f 1X - x 1-1#(IW 2ddx

(for s > 0 the integral is in the sense of regularization).

They are defined by

(6.27) T (y)4x) - *(ax + )Ibx + ds1

with Y as above and X - (*,0).

Two representations with indices X, X' are equivalent if and only if either a a'5

or a--a'.

6.*6.3 ALTEIS4ATIVE ]REPRESENTATIONS OF THE ABOVE SERIES

The even (i.e. C - 0) principal series and the supplemientary series can be also

realized on a subspace of the bounded C functions on the upper half-plane ni > 0, that

satisfy the equation (p. 41 (5]):

(6.20 + - s2.

3C2 3n2

In this case the representation X - (s,O) is given by

(6.29) T ()() a
a *(bC+ d~

with 4 + ini, and it coumutes with A.



-. ~~_ iF W_ K..~ .. . ~ .. 

functions h the representation Tq is unitary with respect to the above measure because

if a4 + c we have• . b + d

f IT h()2jdA(4) -f Ih(C')I dA(C,)
H H

Observing that

(6.22) I2' - ImC
IbC + dl2

one can further define the equivalent representation

(6.23) h(C) . h aC + c -(bC + d)n
IC + d)

which is unitary with respect to the new measure dA(C) = (i)n-2 dCdc = (ImC) ndA(C)

Indeed, in view of (6.22)

(6.24) f IihlCl12(ImC),dA(C) -f h1 )12(ImC.n 2WnC)

H q H

It is imediately clear that the set of analytic functions in the upper half-plane as

well as the set of those in the lower half-plane are invariant under (6.23). Further

considerations allow the complete identification of the irreducible representations and of

the precise spaces of functions involved. At this point, having illustrated how the

representations come about, we refer the reader to the literature and we list not just

these but all irreducible unitary representations of SL2 (). As one can see they happen

to consist of extensions of (6.23) to appropriate complex exponents.

6.6 IRREDUCIBLE UNITARY REPRESENTATIONS OF SL2 (R)

The following are all the irreducible unitary representation of SL2 (R), besides the

trivial one. They are indexed by the pair of numbers X - (s,c) where s e C, and

- 0 or 1. (p. 483 [61, p. 33 [5]). (Remark we introduce new notation, distinct from

that of previous section).
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By restriction to K it is clear that the representation becomes a representation

of K; without loss of generality we may assume this is irreducible. In that case the

action of K on the fiber variable alone, that is when f(C,O) --> f(, + 0), is

mna
*necessarily of the form f(c,e) 1--> e f(C,e), n a relative integer. Consequently, by

*(6.19) and (6.20), if u ae K we get

u
am

* As C is arbitrary this implies

mna

+ ao) e f(c,) ie

Hence the sought for subspace of F consists of functions of the form
*(6.21) F :f(4,0) - e h(rC)n

In this case it is clear that the action (6.18) yields a representation of SL 200)

*with the action splitting into the canonically induced action in H plus the action of the

* n-representation of K in Si at each C e H.

This representation of SL2(R) on H x S1 is called the representation induced by

the given representation of its subgroup K.

According to (6.16) the angle a in (6.19), associated with q =(c d at the point

C.is given by

a =-arg(bC + d)

so that

* ia t + d d)-I

Therefore

T f(C,e) e .inafVqC e) -f(qC,O) bC + d )-n
q JC+d

* In particular, setting e - const., we get the representation on functions on H alone

h (C) --+~ h( :r + dO + 1

The element of area in H, associated with the Poincarfi metric in (6.10), is clearly

dA(4) n2 - dmC, and it is invariant under SL2 (R). In an appropriate subspace of

-12-



On the other hand, according to (6.16) the elements of S do not change directions of

the line elements, so they do not & on referentials of the fiber. This is also clear

from the fact that the orbits of T are the lines parallel to the real axis and those

of D are the straight lines through the origin (so tangent directions are unchanged).

i As a consequence one can immediately determine the matrix in the group, factored as

KS, that maps a given point 1 e L and its corresponding fiber referential into

another point C2 e L and its associated fiber referential: find the intersection C0

of the K-orbit of CI with Le2, apply ue that takes CI into C and then the

matrix r e S that takes 0  into C2 " This applies also when one or both points

coincide with i, depending on which fiber referentials are there associated with these

points; in particular when one point, say, t2 * i, we consistently associate with

i= the same fiber referential of 42F for the above purpose.

It is clear therefore from the above analysis, that the action of

q ( b) e SL2 (R) on H x S, induced from its action on SL2 (M) itself, can be

described by

q(r.,e) -(q4,0 + a) , where

qC . + d and

(6.19)

e2 - e1
a 2 , where Ce Le qC 4 L2

2 1l 2

6.5.2 REPRESENTATIONS ON H x S'

There is a standard process, due to Frobenius, to construct a linear representation of

a group starting from linear representations of certain of its subgroups (see p. 16 (3],

p. 17 (2]1. This can be done in a general setup, but we may do it using our previous

analysis.

Consider the space F of complex-valued functions on H x S , and look for a

representation of SL2 (a) on a subspace of F, given by the canonical action on

H x S , namely q 6--> Tq. where

(6.20) T f(C,8) f(q(C,6))
q

-11-
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Le

0

0=0

The orbits and their orthogonal trajectories thus describe the action of any element

of K on H x Si, as induced from their action on SYR).

Indeed, given two points on the same orbit of K, lying in L and L say, the
812

" previous analysis shown that the first is taken into the second one by
cosS -sinS e2 - 1

u :_ (csio cos 0), with 8 = 2 " To complete the description we represent the

fiber S
1  

at each point distinct from i, as a circle normal to and touching the H-plane

"- from above, and choose the origin of the angles so that, at any point of Lo, it

determines the angle -e with respect to the tangent point. At the point i, where all

°." L., meet# we have the usual angle indeterminacy, For convenience we replace (i) x S
1

by the family (i} x Se, 0 ( 8 < 2w, where Se stands for S with the referential it

has in L.

This choice of referentials on the fibers automatically incorporates a geometric

representation of the action of K on H x S
I  

at the same time as K moves a point

* along an orbit, the original angles are increased by the corresponding amount AO, because

- the origin of the referential is displaced by -&0 [we are thus representing the action

- of K on S as a change of referential, not as a map of Si, whose points are thus kept

fixed]. At the point i the effect of K is to change from one to another S , while

." i remains fixed.
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- . _ _ . . . . * . -.

We take R = 0.74080 so that log coth - 1.03749. From (6.48) we get
2

(6.55) Isl + I (2n + 1) = 3.02806 (2n + 1)
1.03749

*i which yields for n = 0 the value

JIs + 1 3.02806

This value is sufficiently close to 3 that the error, which is less than 1%, may be

. ascribed both to the highly indirect experimental method of determination of the mass of

the muon (p. 203, [8]) as to the fact that we computed the mass of the pair neutrino anti-

neutrino v + v by a simple difference in Section 5.16 and assumed it to play the role of

the electron quanta.

Therefore for the electron the most stable states correspond to no - 0 in the

S = -2 representation (i.e. Is0i + 1 = 3) of the discrete series.

From (6.49) also

* (6.56) n' = q, a' = -(6q + 2), q = 0,1,2,...

yield allowed states. In particular Is'I + I = 3(2q + 1).

The corresponding numerical values are

n' 0, 1, 2, 3,...

(6.57) {,Is'l+ 1 3, 9, 15, 21,...

Notice Is'I + 1 are the odd multiples of 3.

6.9.4 COMPARISON WITH EXPERIMENTAL FACTS

By the previous analysis the most stable massive quanta for the proton should have

energy level E3, which corresponds to a system of three pions 31r0 .

Similarly the most stable quanta energy level for the electron is E0 , which means no

quanta at all.

If we consult a table of mesons (p. 402, [1]) we get the following data
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.°,7

quanta decay mode mean life energy level

wo 2y(10 0%) 1.8 x lo-16.se n - 1

aS  2ff*(31%) 0.8 X 10"10sec n - 2

3w*(34%) 5.2 x 10- 8 se n - 3

As we see, the kaon L, which decays into 3w*, is about 600 times more stable than

the kaon S, which decays into 2wr, and 3 x 108 times more stable than the wo.

Furthermore the meson resonance Ti, which decays into w w w°125%) or 31ro(30,8%)

(p. 3, [4]) is an almost stable particle, as far as strong interactions are concerned (p.

81, [4]).

These experimental facts therefore are in agreement with the theoretical analysis,

which thus explains this exceptional behavior.

As for the electron it is well known that they do not interact strongly i.e. by the

exchange of massive quanta (they only interact electromagnetically and weakly). This is

also predicted by our symmetry analysis above, which tells us that its most stable

stationary state is te state with no quanta, i.e. with energy E0 .

b.9.5 PRECISE VALUE OF THE RATIO m0/M

We have identified the proton as a (s0 ,n0 ) = (-7,3) particle, and the electron as

a (-2,0) particle.

The precise R values are then, by (6.48),
7w

(6.58) R - log coth - 0.128172 ,

(6.59) Re - log coth - 0.732985 ,

where the suffix refers to the particle.

These are the values that we used as the end of previous chapter, and the reason for

It is now clear.

We then compute @(R), where 0 is defined by (5.58)', so that

@(R ) - 1.4990 and @(R ) - 3.0647

-25-
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From (5.77) and (6.48) we have

(6.60) . R4  l + 1
m0  a O(R) (2n + 1)w

so that for the proton (no - 3, so = -7)

MOm 16 x 137.036 x 2.69881 x 10
- 4  

0.143604
m0  1.4990 x . 6

ioe.

m0
(6.61) m = 6.9636•

The experimental value is 6.9514, hence the relative error is 0.18%.

For the electron (no - 0, so = -2)

: m 0.288656 3
(6.62) - = 16 x 137.036 x x - = 197.205

m0  3.0647

.whereas the value that we used in Section 5.16 was 205.77, a difference of 4.6%. (We shall

actually see in Chapter VII, that the muon is more likely a resonance state, not an

*internally excited state of the electron).

6.9.6 COMMENT

The numerical agreement (excellent for the proton, reasonable for the electron) of the

theoretical with the experimental ratios m'/m 0 , over such a wide range of values (0.1436

to 197.205), certainly rules out any coincidence due to pure chance. Furthermore the

theoretical anticipation of the higher stability of the E3 energy level for the proton,

i.e. for a system of three pions, and of the E0 level for the electron, i.e. for no

*. massive electron quanta at all, confirms the relevance of the above group-theoretical

analysis of the geometries and explains fundamental facts regarding the exchange of massive

quanta, that is, the strong interactions.
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6.10 POLARIZATION AND THE SUBGROUP K

S By the previous analysis the appropriate complex continuations of the real

* monochromatic states e i  are eigenstates of K+i with eigenvalues

e ±i(s-1 )8 respectively.

The corresponding functions on H x S defined by (6.21) are thus, respectively,

4 1
(6.63) eiP(5 )[X +(X +6/01

On the other hand, in our analysis of the harmonic stationary states in 5.10.1, the

coefficients A,B in (5.62) were analytic or anti-analytic functions of y + iz, which

remained indeterminate. To fix ideas consider in particular the real wave

iU(s-1) (X4-X ) i(1-s)O
e , with eigenvalue e . If we take as its coefficient in (5.62) the

analytic function of y + iz, A - (y + iz)
1- s we obtain

41

(6.64) 4 = (y + iz)1-s eii(s- 1)l x

Consider now the twistor representation of the geometry as described in 4.3.7. As

* shown in 4.3.8 if the polarizations of the spinor fields that describe the two real

"* monochromatic waves are changed by amounts that differ by the angle 8, then the plane

y + iz is rotated by this same angle 0. In this case (6.64) goes into

(6.65) - e

1-sHad we taken instead A - (y - iz) "
, the transformation would have been

'" ,e-i (s- 1 )8
(6.66) lIP-> .e

Consequently the action of K on the eigenstates (6.63) in the representation of the

discrete series with index s, is precisely the same action as that produced on the

harmonic states (6.65) and (6.66) due to the change of relative polarization of the

incoming and outgoing monochromatic waves of the particle. Furthermore (6.63) can be
1-s

lifted into (6.64) by means of the factor (y2 + z2 ) 2

Therefore we can identify the fiber S , on which K acts, with the unit circle on

the complex isotropic plane y + iz, on which the relative polarization group of the

-27-



incoming and outgoing waves acts, and so also equate their effects, provided we take for

coefficients of the real monochromatic waves powers I + sl of y + iz or y - iz. 0

This eliminates the indeterminacy in the waves that constitute the stationary states

(5.62) and gives the gauge theory associated with the representation of SL2 (3) induced by

its subgroup K, a concrete physical meaning. It even provides a realization of SL2 (K)

in terms of the full geometry.

The distinct possible polarization gauges of the geometry are thus indexed by the

different circulation, or winding numbers, of the vector fields given by the waves (6.64),

around the spin-axis y - z 0 0, computed for a fixed time. The only stable gauges for a

given geometry are those with winding number the odd multiples of the minimum solution

I + 1:1 of the quantization condition (6.0) for that geometry. In particular for the

proton (baryons) these are 8, 24, 40, 56, 72,... and for the electron

3, 9, 15, 21, 27,...

We will see in Chapter VIII that the nodal lines y + iz = 0 of * do not carry

additional energy, besides the time-vibrational energy of the real waves.

The multiplicative superposition of the real and of the complex waves in (6.64),

imposed by the action of the relative polarization group 11, confirms that the massive

quanta of the geometry are indeed the statistical superposition of photons, in accordance

with their description in 2.4.1. The additive superposition as in (2.3.1), which is also

allowed, leads to neutrino fields, which however do not obey the conditions imposed by the

polarization group symmetryi that is, they do not belong in the discrete representations.

As a final coament the quantization condition (6.0), as expressed in (6.63), simply

says that, if the variables X4 , X1 and 8 are corrected according to the relative

curvature of the unit circle in the space where these coordinates are immersed (leading

thus to X4 , X1  and 8/P) then the stable harmonic states are those having equal

frequencies in all the corrected variables. Thus, this just becomes an instance of the

familiar Bohr-type rule of quantization.
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The complete harmonic stationary states (5.69) are given by

(6.67) = 
i (1 - s )x 4 . (X ± ix3 ) "sin p(1 - s)X

or making explicit the energy level, by

i(n+ -1 x4  2 3

(6.68) e (X 2 ix 3) sin(n+ -) X'

For the proton no  3, 1 - so  8 so that the stable stationary states are

1(3+ .1~ X42 )P X 1

(6.69) *p e 0 (X2  ix3 )8 sin(3 + X1 x1

and for the electron no = 0, 1 - - 3 so that

1 X4i-x
(6.701 *e " e(X ± iX3 )3sin ! X

2p0

Whereas the stable fields (6.70) for the electron are non-constant, they cannot be

detected by the emission of massive quanta because no - 0 for them. One can only expect

to detect their existence by means of experiments outside the field of strong

interactions. They are thus apparently related to the Higgs fields of electroweak

interactions.

6.11 UNITARY SYM'ILTRY OF THE STABLE QUANTA

We still need to analyze the implications of the fact that two distinct

representations, K, and K- 1 , are needed to describe the outgoing and incoming waves

that originate the quanta of the geometry.

Recall that e- im (x 4 X  is an outgoing wave for a positively charged geometry and an

incoming wave for a negative one, while eim(x 4 X 1) is incoming when Q > 0 and outgoing

when Q < 0 (cf. (5.70)).
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Therefore when m/pJ I 1 s , in the K1  representation the analytic eigenstate

1
18stands for an incoming wave when Q > 0 and an outgoing one when Q < 0, and

the eigenvalue is e i(-).Analogously in the K_1  representation the anti-analytic

sigenstate - -sstands for an outgoing wave when Q > 0 and an incoming one when

Q0, and the corresponding eigenvalue is e More specifically we have the

states

K . e m(x4-qlX 1 1) =const 1_ (X 2 + iX3 )1 -s

(analytic)

Ke m(X4 +qX 1 1) 2 co1t-8

(anti-analytic)

Here q - sgn Q, with Q - charge of the geometry.

The factors in the extreme right side express the appropriate behavior under the

polarization group. In fact the number Y V t in the K Yrepresentations is thus seen

to index the polarization orientation of the photon waves (6.64) and (6.65) for we may say

that (6.65) and (6.66) have oppositely oriented polarizations (for short, opposite

polarizations).

In order to produce the sin ii(s - 1)X factor in the stationary states (6.67) we

must add photon waves with same polarization, that is, we must superpose eigenstates in the

same representation K Y. But then the only alternative is to take subjacent geometries

with opposite charge. In this way we can obtain the stationary harmonic states

6.1*iu~s - 1)1 4. ( 2  3 I-s. 1
(6.7) a X ±ix ) *sin lj(1 - OX

with t sign according as y t 1. For short we may condense the expression for the photon

wave corresponding to charge sign q and polarization orientation y in the form

(6.72) eUx 4 *X ) (1 + iYX3 )-
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and call it the Kq -representation with q,y t +1, where now we have also explicited the
Y

choice of q in the representation. For convenience we write K q  itself to represent the
Y

above photon wave. In that case the stationary states (6.71) are given by

(6.73) K + K Y Y

However we may have new states composed of the statistical superposition of photons
1 -1

with opposite polarization. Thus KI and K_1 are both incoming photon waves and their
1 -1

superposition aK1 + bK_1  has the form, (in the particular case that I - s = 3

(electron)) : e - 41m(x
4-x1) a + b)y(y2 - 3z

2 ) 
+ i(a - b)z(3y2 - z2 •

Here we have two special cases: when a + b - 0 or a - b 0, a 2 + b 0. In the

first case the nodal set in (y,z) space is given by z - 0 and z - ±V3 y, and in the

second case, by y = 0 and y = ±r3 z. On is obtained from the other by a 90* rotation.

A ><
a= b a = -b

In all other cases the nodal set is the intersection of these two sets, which is just

the origin y = z - 0. It is thus seen that only in the two particular cases above the

nodal set of the superposition of the two incoming oppositely polarized photon waves is

diffused on three planes instead of being localized on a line (y = z - 0) in 3-space. Of

course these two states can be used as a basis of the space aK + bK-
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In the general case I - s, -s = 0,1,2,... we will have again the same two diffused

states as above, except that their nodal sets are the 1 + 1si planes where

cos(I - s)8 - 0 and sin(I - s)8 - 0, respectively.

If we superpose diffused outgoing and incoming photon waves we can now get stationary

diffused harmonic states.

This procedure means we are additively superposing monochromatic waves of the

algebras N, N', and N, A' defined in 5.10, (which thus remain harmonic) and so give the

most general stable harmonic states solutions we were looking for.

ht any rate we have a 4-dimensional space generated by the photon waves

Y , Y,q - ±I expressing their possible quantum-mechanical superpositions. We can take

these four states as mutually orthogonal in a natural way because (X2 + iX3) 1- s  and

(X2 - iX3 )1" s are orthogonal on S1 with respect to the Lebesgue measure and so are the

outgoing and incoming waves in the Poincar& plane with respect to the invariant measure

there.

In particular this means that the symmetry group of the stable photon waves is SU4

and that it contains as subgroup the charge-conjugation permutation subgroup C and the

polarization-orientation subgroup H, both subgroups being mixed in SU4 , as shown in

particular in (6.73). These subgroups act originally on the real monochromatic waves or in

the spinor representations of these.

1*
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CHAPTER VII. RESONANCES

7.1 INTRODUCTION

In this chapter we determine which non-harmonic time-pe-

riodic solutions of the wave equation A2 = 0 belong, after

analytic continuation, in some (possibly extended) unitary re-

presentation of SL2 (R).

The main result is that the free states called resonances

belong in a denumerable subset of the principal series represen-

tations, with their total mass mN  being given by the following

general expression in terms of the bare mass m o

no+1/2 4
mN 8 l+lso0 (log coth I1+- T )

(7.0) m0  a n+/) (log coth jl21-ol r)[ n +1/22 11/2

•{n' + 1 + 4 (n-i 2 AN 1 N = 1,2 ....

Here (l+1sol,no) are the quantization integers for the

geometry, a is the fine structure constant, 0 is the function

defined in (5.58), n' . max(On o -i) if the balance of energy

allows it, otherwise 0 . n' ! max(Ono-l), and FN =

4N(N+I)-l + cN with cN - 0.10 for N z 2 and c1 R! 0.09.

In the case of the proton, namely when n o = 3, l+IsoI =8,

we get for n' = 1 and N = I the mass E 1 = 1,234.7 MeV (in

electrostatic units), which is close to the mass of the first

baryon resonance, namely 1236 MeV, usually denoted by N*(1238).

For N > 2, n' = n -1 = 2 is possible and thus takes place.
o
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For N = 3 and N = 4 we then get E3 = 1461 MeV, E4 = 1514 MeV

which agree with the masses of N*(1460) and N*(1515), respect-

ively. And so on.

For the electron no o, l+IsI = 3 and n' = 0. We

then get

N = 1, E 1 = 104-.38 MeV

N = 5, E 5 = 138.54 MeV

N = 28, E 2 8 = 492.82 MeV

N = 52, E 52 891.27 MeV

N = 56, E56= 958.06 Mev

which compare well with the masses (in MeV)

E = 105.66 E = 139.58, E = 493.78,
Tr K

E = 891±1, E = 959t2, respectively

The decays p 4 evv, T- v, K" 4 'v further con-

firm that, from the dynamical point of view, such particles are

indeed resonances of the electron, and that V substitutes

for the (photonic) massive quanta of the electron, found to be

unstable in Chp. VI.

The wave-equation solutions defining the resonances are

given by±2 rN ±2i A-- - Ijr-rol I1.P)/2 2 /2
e ' P 1 .AN (e 0) Jo- (1 + pN) (y + z2 ) 3,

22

with pN v =4N(N4+1)-1, N = 1,2,...

The symmetry group describing their quantum-mechanical

superpositions is SU4 , and time-inversion T and charge-con-

jugation C are mixed in it, when combined to form the solutions
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that are standing solutions at r = r

These results are obtained as follows.

Separation of variables leads to the eigenvalue equation

2(62- a)U = ij.ZU in the Poincar4 half-plane, and to the
d12 l~2
d 2 1-s2

Schr~dinger operator on the real line - 2+dx2  4 cosh22S
2

Time-periodic non-harmonic solutions which are C and

bounded, when continued into the (elliptic) Poincar4 half-plane,

exist if and only if s E (-i,I) U i5. This, together with the

eigenequation above, imply that they correspond to states in the

supplementary or in the even principal series. The spectrum of

the SchrOdinger operator is then purely continuous and consists

of the positive semi-axis A 0. Thus these solutions represent

free states, i.e. they describe scattering phenomena associated

with the given geometry.

Analytic continuation of the metric (5.0) into the region

r E (-a,ro), once we replace (r-r0 ) for Ir-r0 , yields a
2xx

second (singular) solution with cosech
2 x in place of sech

2 x.

These solutions, associated with analytic continuation of the

regular solutions, seem to be characteristic to resonance pheno-

mena and may be called shadow solutions (see for example p.4 7 Eli]).

In fact we shall show in Chp. X that their role is to restore

conformal flatness at infinity, by statistical superposition with

the regular metric, and so they may be considered as resulting

from a boundary condition at infinity.

For s in the above ranage of values, this singular poten-

tial is reflectionless (p.435[ 4 ]), (i.e. the shell of the par-
2

ticle is transparent to incident waves) if and only if 1-s
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= N(N+I), N = 1,2,... and this implies

s = ip = i /4N(N+l)-l, N = 1,2,...

That is to say, under the above conditions, only the

principal series is allowed and then just for the discrete set

of values sN = ipN above. This elimination of the supplementa-

ry series adds to the fact that, of both representations, only

the principal one is induced by the representation of a subgroup,

namely the subgroup b of diagonal matrices ( ) which

describes the time-translations. Thus the allowed scattering

states are eigenstates of time, considered as the parameter of

the fiber in the induced representation rather than as a coordi-

nate in space-time.

The SchrOdinger operator above has the spectral density

Im - i( + IAl[,+ i(P- -')

r[J r(~ C %/)]t- + - A T)

and this has a unique point of absolute maximum at A 1 - 0.75

for N = 1, and at

./KN a!- + 0.10 = J4N(N+l)-l + 0.10, for N 1 2.

These peak-values are taken as the frequencies of the

resonances associated with the given geometry. They are closePN

to the Regge-poles -- i i.e. to the poles of

r[l + - A)] nearest to the real axis. Thus the two ap-

proaches agree for large N and give alternative descriptions

of the sane phenomenon.

We interpret a resonance as a metastable state resulting

from the capture of a massive quanta by the shell of the geometry,
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and this is bounded as z -. 0 if and only if 0,< Re 1.

As for the case when c-a-b = 
1 - 2a = ±2m, m - 0,1,2, this

is the same as a = 1/2 T m, which yields unbounded solutions

at z = 0, by the very same considerations that applied to the

case A > 0.

The theorem is proved.

We rewrite our solution (7.26) explicitly in terms of

Legendre functions by using the identity (p.562 Cl])
1 1 1 1 1

F(a,a+!,c;x)-- 2c-l _(c)(-x) (lx) 2 -  P 2 cl (-x)-

valid for - < x < 0. This yields

(7-39) 2t(x r 2+~~(; 2i.IA) _l./ (tanh-)

Therefore, except for a scalar factor,

(74)u ±2i .±V7X 4  2i,/R
(7.40) U p (tanlsX),CL-1

1 1 1

with a- -!E (-!,!) U R and A m 0.
2 2 2

1 iP
Remark that when a - 1 = - + , with p real, the

Legendre functions for the resonances are the so-called conical

functions (p.174 [ 7 3). The Legendre functions are given ex-

plicitly by (p.121, vol.II, [3)

___ -l2i/A (x )

P ( ± 2 i( ) - -(x +q -Y _ o ) .s in * d *,

valid for Re x >0, A A 0.

In particular when A = 0, Pa-I and thus U in (7.40),

are ,just the spherical functions for the principal series (p.44,
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by the same reason as in that case because we have as before

Re b =-+ Re a > Re a. Only the point z = 0 needs considera-
2

tion. We have from (7.32)

(7.38) U =ZF(.,- + -Y' 2;+

From the identity(p. 560 C ]l

F(a,a+!.,c~w) (I +T !,/-%-w) 2 . F(2a,2a-c+l,c; )

we get

U CL (l+iz) -a F(a,a,l; '-'z).

Now when a =-m., m =0,1,2,..., F is a polynomial

PMof degree m so that as z 4 0

u ~ i 1=1 z .i2) pm(l)zm

But since c-a-b = 1-2a = 1+2m > 0 we get from p.556 [I ]

P (1) = F(L,CL,l;l) = £r~~!)r(.!2m). 0, and therefore U is un-
M ~ r(l+m)

bounded as z 4 0.

Similarly if c-a = 1-ax = -in, m = 0,1,2,... i.e.,

a = m+1 we get (p.559[1l])

Ft l i l-iz 2iz l-2aL 1 iz
F~ct~cL ~ = (lz +iz) F(-m,-m,1; iT-TZ

so that, just as before, as z -4 0,

u - PM(l).zl1- 2a = mJ Z2-

which is unbounded.

Therefore for the remaining cases, i.e. for a m

m = 0,1,2,..., we have c-a-b = 1-2a I 2m. If further

c-a-b ± 2m then by (7.33) we have

U za(.i±LZ), Cco( 21z 1-2a + c] (C clP0),
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Therefore if and -m, m,,- 0,1,2,., we get,

upon letting z - -i (i.e., by letting - i and w - 0.)

l+z
in (7.36):

Ve - const. (l+z2 )"2 (l+z2 )2  .C[. (l+z2 )+c],

which is unbounded as z 4 -i.
1-a

If - = -m, m 0,1,2,... then, by the above remarks,22 -

(1+z 2 ) 2 . 2 1

l+z l+z

a-1
- (I+z2) 2 1i-a p( I)

1+ z
l.2) (_ ) -2m -2m

= (l+Z2)m Pm(. 12) 0 z const. z as z 40
1+ z

and thus is unbounded at z = 0, unless m = 0. Similarly if

9 .2 -, m 0,1,2,... then

2

S

V8 ~ ~ ~ ~~2 = lz) ~ =(+2 m 7:( L--2)z~i

conSt. Z 2m as z 4 O

which is again unbounded, unless m = 0. In the first case,

m = 0 means a = 1 and in the second it means a = 0, and

these are the harmonic cases, that we explicitly ruled out,

because they were already considered in Chapter VI.

To complete the proof we must show that U = U+ -

given by (7.26) and (7.32) with A = 0, is C' and bounded

under the given assumptions on a. Therefore it will be the
0.

only bounded C solution in H, in this case.

As in the case A > 0 we only need to show its bounded-

ness at z = 0 and at z = a. Boundedness at z follows
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are unbounded. Therefore boundedness at z = 0 requires
I ii

a E (-,)u i.
1

As for z 4 - we observe that in (7.26) Re b + Re a

> Re a so that from (7.30) and (7.32) we get

F(a,b,c;l+z2) K(z 2 )-b =z(l+c)
± 2i

and so

U w 2 A z -±2 ,,r as z 4D.

Therefore U are bounded in H under the stated condi-

tions.

Consider now the case A = 0. In this case the functions

V = V N V coincide, and so do V = - V , and we get
e e e 0 0

from (7.29) and (7.20)

a
(7.36) V6 = (+z) z a 1 1

(7.37) V = (1+z2) 2 2 z+F(._, '+, 2. 1
0 2 '2 2 ~

If a, c and c-a -m, m = 0,12,... then from

Fa r(c) (-w-a 0 (an)(l-c+a)n
r(a)r(c-a) n=0 (n!)2  w .

- * (a+n) - *(c-a-n]

we get, as w 4 D

F(a,a,c;w) - const. w'a(n w+c), (p.5 6 0 tI]).

If a -m but c-a = -m, m = 0,1,2,... we have (p.5 6 0 C 1)

F(a,a,a-m;w) . (l-w) -m - a F(-m,-m,c;w), and the last factor is

then a polynomial pm(w) of degree m in w. If a =-m,

m = 0,1,2,... then F itself is a polynomial qm(w) of degree

m in w.
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as w - 0, provided c-a-b * ±m, m = 0,1,2,..., otherwise

(7.34) F(a,ba+b+m;l-w) - A - (a+b+m) wm an wm r~a)r(b)

if m = 0,1,2,..., and

(7.35) F(a,b,a+b-m;l-w) - r(m)r(a+b-m) w-m -

r(a)r(b)

(1M r (a+b-m) Mw

- (a-m)r(b-m

if m = 1,2,....

Due to (7.27) we have just as before that a, b, c, c-a

and c-b in (7.26) are never relative integers. Further

c-a-b = a - a. So if z 0 0, we get from (7.32), in case

CL - 0,±,+2,..., T -:,' c o w ±2i A- c o z

1 1 1*-2i~'K 2if Rem>-!, and L c I w z if Re M < - or a = 4+ iP,

P j 0 real.

In the first case boundedness requires a r 1 an in the

second a z 0 (observe that a is real if Re a ). Thus
12

we get 0< a <1, a : 2'--,r = !+ ip, p 0, p real, as the

boundedness condition at z = 0 if - A 0,tl,±2,...
1

If L =1, i.e., m=O we get
12~~

U± _w *2,/ 2 , z'

1
and if m= - m = 1,2,... we have

1 122 2i -m !+m

Ut c 2  + cz 3 2 z] .

Finally if -m = 1- a, m = 1,2,... we get
1 1
-- n -+1

,-, w±2f/A 1 tc4 z2  + Z &' z]

Clearly the first case is bounded, whereas the two others
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An analogous expression holds for because the addi-
0

tional term 1/2 in the coefficients , b of 0 in (7.20) is

compensated by the power -1/2 of the extra factor sinh in
2

(7.20), cf. (7.22).

Therefore whichever the choice of ± sign in (7.31), the

corresponding function behaves as c(z+i) 22 !  + const., c 0,

which is not even continuous at z = -i, i.e., at = i E H.

The same holds for 0

The only way out is that some linear combination of 
V+

and V , and of V and V, will cancel this singularity.

Indeed, if we introduce the notation (7.28) in (7.26) we get,

except for a scalar factor,

(7.32) =m w±21w/A ZaF(a,b,c;l+z
2)

with a, b, c being the constants in (7.26). In this expression

the singularity at z = -i has simply been removed. Therefore

are C" in H, because they are real analytic in H.

The functions vl(x) in (7.251) are solutions of (7.17)

and indeed v+(v - ) is the only solution belonging to L 2 (0,)

when Im a > 0 (Im fK < 0), respectively, (see p.103 [14]).

Notice that (0,.) corresponds to r > r°  in concrete space.

To check boundedness in H it suffices to check bounded-

ness at the remaining singularities z = 0 and z = w which lie

in ZH (together with w . w). For that purpose we observe that

if a, b, c, c-a and c-b are distinct from 0,-i,-2,... then

(PP.559, 560 C -1):

(7-33) F(abc;l-w) r(a+b-cQr(c) wC-a-b r(c-a-b)r(c)
(a c(a)r(b) * r(c-a)r(c-b)
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The possible singular points of (7.29) as a function of

z are the points z -0, z a a, z a -i, which correspond to

-ng~ 0, to n =, and to -0 and -1, i.e. C a i

respectively. The point -i belongs in H and the two

others in BH.

Consider the case when A > 0.

From (7.29) and (7.19) we have

-(L. - !!+ -21,), b-,

and these are never relative integers if A > 0, by (7.27).

Similarly for 0 in (7.20)

which again are never relative integers. By the same token

neither are 9, 9 in (7.19) and (7.20).

This means that for the values of 9, b and 9 in (7.19)

and (7.20) we have (p.559 Cl J), as w 4

(7.30) _(,,;)-r~r~~(.w)-; +i (-)

=C1 w- + c2 w ,- (c,,c 2  0).

Using this in (7.29), when z 4 -i, we get

(7.31) V*- w cc1 z+i) ~2/ 1 + c(zi 0

respectively.
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7.2.2 THEOREM. The only non-harmonic periodic solutions of

(7.7) of the form (7.8), which are C. and bounded when contin-

ued into the Poincarg half-plane H defined above, are the

functions

(7.26) u± e""'"X 4  ~X

±z~,.pX4.cosh (_*

sinhCL2

s inh (-
where A 2: 0 and

(The same statement holds for the lower PoincarJ half-plane, with

the choice y = -1).

Proof: According to (7.4) non-harmonicity means k 0, and so

by (7.15), a. A 0 and Q I-1 On the other hand as k is real,

(7.15) yields that

(7.27) E 1 j u (R

Periodicity means that A k 0 (by (7.11) and (7.16)).

To check the behavior in H set y = 1 in (7.25) and

rew-rite it with the new variables

(7.28) w - + i, Z

so that, except for a scalar factor,

(7.29) w±21VA (1+z2 ~ 2 2 z CL;,,2)e z

A similar expression is valid for V
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Hence in terms of (C ,) coordinates, we have

(7.24) V, = (-y)t2i _2 

with a, b, c being the corresponding parameters in (7.19).

By the complexification leading to (6.42) this becomes,

except for a scalar factor,

(7.25) v = (A[,(Y). 2 L r y.l .l ),+iy]M/ ;iy
C +iY

Since V split into the product of functions of (C-Y)

and in (7.24), it is clear that if we require V* to be CO
9-Y 8

in a Poincard-like half-plane H then, in the case A 0, we

must have g-y p 0 there. If we require y to be real then the

appropriate complexification is C -- iC and f*-r i, just as

in Section 6.7, with y A 0. Here again we have two choices

Y > 0, say Y = 1, (upper half-plane) and y < 0, say Y = -1,

for the lower half-plane. From now on we fix y = 1.

An expression similar to (7.22) holds for V except
0

that a, b, Z have the values given in (7.20) and there is an

extra factor t(-s-iy) + 1]'l/2

For later reference we single out the following solutions

of (7.17) )

vl(x) r-1 )r( t K 1 e(x)-r la T uf)r(11 + y ; i,-A)

(7.25') r(-!) r(l ; 2i,5)

We now prove the following important
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7 . l '7w 7 V 77 -7

the x-interval may be taken as the whole real line (-,') as

far as spectral theory is concerned (p. 103 C14]). That is, in

our case, we may consider the problem as defined in the wormhole

topology 5.13, with x < 0 corresponding to the region inside

the shell of the particle together with its continuation into

anti-space across the center r = 0.

Now any solution of (7.17) is a linear combination of the

solutions (p.103 [14]),

(7.19) B(x) - cosh 1-F , l2 2 + '4 2;s 2

and

(7.20) ON M cosha L-sinh 1F!+-a+i4A, j+jaI4A, .11; 1sinh
2 x )

and these satisfy

(7.201) e(o) = o'(o) = 1, e'(o) = 0(0) = 0.

By (7.11) and (7.16) the solutions (7.8) are linear com-

binations of

= e2WrX4 - 6  and = e* i -7X.0 1

corresponding to the same choice of ± sign, vertically ordered.

From (6.11) and (6.12), and (7.12), one gets

(7.21) e , p x 4
= 4 n - (C-Y)2 ,

(7.22) sinh 2 ((.y) - 1

2 9-[ 2 C/
(7.23) cosh ' 2 1

i-l

(7.23') tanh = - .

-42-

%.%i
. . . . A**. . . . . . ...

-.-... ,.-. - •... . . ..-.-.. -. ... -.-......- -..-.- -.- ,--.... . .. . .... .. ..- . . -.. ,,-.-.-..-

• . -° . • . ° o........ ...-..... . -.-..-... A ° - -.. ...
. ° °o * . • . . . . . °. . - •- .• .• .•. .°• -. ? ° • . *. . . - ,, • .



(Remark this A has nothing to do with the cosmological constant

in Chapter V.)

From now on we agree to represent any complex number A

in the form A AII e i  rg A with Oc arg A < 2n, so that
i A

.-- JI' e satisfies Im j 0. The other root will

be 4A.

7.2.1 POINCARt HALF-PLANE

Recall that we have

tarnh7 = tanh 1 = sgnQ~e

where Q is the charge of the geometry. To fix ideas we consider

the case Q > 0, so that then x z 0, and so x = +e corresponds

to r = r and x = 0 to r = +w.

By the change of coordinates (6.39) and further by com-

plexification, the eigenvalue equation (7.7) goes into

2 a2 2

(7.18) "(a '2 )+

in the Poincard half-plane.

As mentioned before, when k $ 0 (non-harmonic state),

U can only correspond to a state in the even principal or In the

supplementary series representation of SL2 (R). In this case it

is necessary that U be a C bounded function on r > 0. So

we will check this condition for U having the particular form

(7.8); in this case the corresponding v satisfies (7.17) in the

half-line x z 0.

Since the differential equation (7.17) is regular a- the

end-point x - 0 and since the potential is an even function of x,

-41-

... .4. .-..-.

". * . " . ", ",* ,- . . * -"""- .- -" * .- "-"-" " .-*. .- . . .."-"- -" "-
•

.. •-. - . . - ,--.'- . ,- .' '- '-. "..'..

S -. -. ------A----------...... ..... ... '. ... .....
.. .- € ~~~~~~~~~. .... ,.. .-.. ,.-...... .-..... ,....... ,...... ,... .......



(7.7) cosh 2 6X (62-6)U = kU,

(according to (7.1)), which admit the separation of variables

(7.8) U = u(xl).T(x
4),

we get

(7.9) Tf' = pT

with p a real constant, and

(7.10) u" - (k sech 2 x1 + p)u = 0.

4
Therefore, from (7.9), T(X ) consists of linear combi-

nations of
m4

"(7 .n1 ) e ±,/- x .

If we set in (7.10)

(7.12) xI.L x/2,I1
(7.13) v(x) = u(X u(x/2),

we obtain

(714 -(=E + Vc sech2 f)v =0.4" kx

p .i

(This x should not be confounded with x in Chapter V).

In order to conform with the notation in [14], we set

further

(7.15) k/ 2 _(1-=),

(7.16) A = _p/4uA2

and we get

(7.17) 9" + (A- (1-) = o
4 cosh -
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(7.1) A2  cosh 2uXIa 2 -a 2J + a2 + a 2 A + A2 1-4 2 3 r c

where A refers to (XI,x4 )-space and A to (X 2 ,X3).

.="r c

Assume that the state I satisfying A21 = 0 admits the

separation of variables

(7.2) I = I(xl,x4 ).w (x2 ,x
3),

so that we have then

(7.3) A r = kU,

(7.4) A = -kW.

We expect the operators to be essentially self-adjoint,

so the constant k should be real.

If . is non-harmonic then k 0 in (7.4) and so com-

paring (7.3) with (6.28) and (6.30), and with Ar = 0 in the

discrete case, we reach the above mentioned conclusion.

Let (a,8) denote polar coordinates in (X2,X3)-space.

The solutions of (7.4) of the form W = S(a)F(e), that are re-

gular at a = 0, are given by

:" (75) w= Jn( a) in9
(7.5) W = n( 4 a)e , n = 0,1,2,...

where

(7.6) ns) = z trn+2p
n p=O p rnpl

is the Bessel function of the first kind. (Here, when k < 0,

we set /k= i I/kj).

. 'Similarly, if we look for solutions of (7.3), that is,

of
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which, depending on the imparting energy, goes into an internal-

ly excited state plus an external resonant state; for maximum

stability, the internal state, together with the captured massive

quantashould then constitute a system with the same energy as

that of the most stable internally excited state of the geometry,

or a state as close to it as possible. The total energy of such

system is then given by

r"[ 2n +1 2 14/

E + EO (n' + [I + (I+ ) ANI 1 , N = 1,2,...,

with n' : n -1, which is the same as (7.0), once we make use

of (6.0).

We now present the detailed analysis leading to these results.

7.2 NON-HARMONIC STATES

We consider states in the envelope space e of the algebra

generated by the monochromatic algebras h, h', h and h' defined

in 5.10, that is of the larger algebra where also algebraic com-

binations of both analytic and anti-analytic functions of y+iz

are allowed. In this case a state §(X ,x2 ,x 3x 4 ) need no longer

be an harmonic function of X 2, X 3.

If a non-harmonic state § of the form (7.2) below, with

= 0, should correspond in the Poincar6 half-plane to an

eigenstate of the invariant Laplace operator associated with an

irreducible unitary representation of SL2QR), then it can only

belong in the principal or in the supplementary series, as given

in 6.5.3.

Indeed, the Laplace-Beltrami operator for the metric (5.20)

(with B=l), is
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[5]).

7.2.3 REMARKS

1. It is clear that the same result holds if we take

y = -1 and work in the lower Poincarg half-plane

H- = g+iq, n < 0 (or equivalently on H with [ =

for all the formulae remain valid under this change.

2. Obviously all choices y > 0 (y < O) are equivalent

to y = I (y = -1, resp.) because we can map the vertex

C = (Y,O) into (1,0) (resp. (y,O) into (-1,0)) by a di-

latation C C/Jyj in SL2 (R), which amounts to a simple

change of time origin.

3. From 8.1.2 El] we have

1 ., 1 ± 21
%-I (tanlh44 X 1 )  at X

i.e. at r - ro" Thus U behave as e 121"r(X+X at the

outside of the shell of the particle. By (6.42) these plane

waves correspond to ( +iy)± 2' . Consequently U at r

correspond to (C iY)2k rA. Thus if Y = 1, U are regular

in H, while T are regular in H_. The converse holds if

y = -1. Since U and U are both bounded solutions of the

same pair of equations (7.9) and (7.10), (but with reversed

signs for A) it follows that y = I and y = -1 provide

the same sets of solutions in H, and in H Thus the two

choices y = I and Y = -1 are equivalent. (This is related

to the fact that s = ip and s = -iP yield equivalent repre-

sentations of the principal series.) Notice that the same ar-

gument fails in the case of the discrete series of representa-
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m

tions, for (.)V is bounded and Ca in H whereas its in-

verse (+i J is unbounded.

7.2.4 STANDING SOLUTIONS. MIXING.

We have just seen that at the shell of the particle,

behave as e ±21W(X+X). To build out of these two solutions

a solution that is a standing wave at r = r0  we must again

use two geometries with opposite charges so that X 4+X1  be an

outgoing wave for one and an incoming wave for the other. At

the same time we must change the sign of q1K in one of them

so as to be able to factor out the time exponential. Let then

denote by F the group of transformations v 4 i.e.

the group of rotations by 1 1800 in the complex 1-plane.

Write q = sgn Q, where Q is the charge of the geo-

metry, and f = sgn Im rK, so that f a 1 corresponds to the

usual construction of the spectral theory for the Schr6dinger

operator in Im 4  > 0 and f n -1 to the (isomorphic) cons-

truction in Im .< 0. The functions 9± e+2iflfA/(X 4+qIXll)
f,qm

./T 2 0, represent then all possible choices for the given pair

of waves (but in fact only four of them are distinct, say A+
-fwetae + e2 / (Xk x I

'.If we tak e 9+ l 2 , we mu st take 1- -I l =

'-"2WA(X_ -XI1I) so that

4+ 1 " 2ie2W KX r 1
(7.401) 21e ,.. sin24AIx I

yields a standing wave at the shell.

In the general case standing solutions are generated by
,%

the pair 6+q and . • Thus the discontinuous groups F
fpq -f,-q

(frequency conjugation) and C (charge conjugation) are always
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mixed in the standing solutions. The total symmetry group ge-

nerated quantum-mechanically on the corresponding four-dimensional

space is thus SU4.

Since time-inversion T is isomorphic to FC, in view
X4X FC _41X

of the fact that /X(X 4i ) - JK(-X +X ), we may say, al-

ternatively, that T and C are mixed in SU .

This should be compared with the case of the discrete

series representation when it is C and P that are mixed in

SU4 ' Here P is parity-conjugation, which is isomorphic to the

discontinuous subgroup corresponding to the fiber S , or to the

polarization-orientation subgroup n.

It is important to notice that T is only isomorphic to

FC. In other words FC just mimicks the action of T. This

is relevant because, while we can change the sign of the charge

of the geometry and have both coexist, we cannot have geometries

with oppositely oriented time-arrows in the same space-time,

corresponding to the same particle (however they may do so in
L

space and anti-space or when they correspond to particle and

anti-particle). Therefore whereas X 4-_-X4  should be con-

sidered as non-performable if it is to produce a new time-

oriented geometry coexisting with the original one and for the

same particle, the operations J - 1 and X 1- -X I can be

performed and produce the same effect on U as T.

7.3 NON-HARMONIC STATES AS EIGENSTATES OF UNITARY REPRESEN-

TATIONS

We have just shown that the periodic non-harmonic states

of the form u(X I)T(X 4)W(X ,X3 ) upon complexification become

bounded C functions in the Poincarg half-plane H if and
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only if they are of the form (7.26) with A • 0 and

a ~ E U MR.

Comparing (7.3) (and (7.15)) with (6.28) we get

(7.41) l-s2  k

(7.42) i.e. a -
2 2

The above condition then becomes s E (-I,i) U iR.

Now s E R with 0 < Isl < 1 is precisely the condition

that defines the supplementary series representation, whereas

s E iB is the condition for the even principal series.

Thus if we look for non-harmonic periodic solutions se-

1 4parating in the variables X and X , which when complexified

satisfy the requirements of smoothness and boundedness required

of states in the non-discrete series of unitary representations,

then we get just the two states Ut in (7.26) with A > 0 (or
1 s

U if A 0), and with a- = . , where s is the scalar

indexing the unitary representation.

In Chapter VIII we show that, when s E iR, the states

U+, after complexification, are indeed appropriate limits of

eigenstates of the principal series representations under the

time-translation fiber group A, and, in fact, the only ones

with such property. Thus they belong in fact to a certain mi-

nimally extended representation.

7.4 SPECTRAL PROPERTIES

From (7.40) we obtained that, at X= (i.e. r =r

24 tiI/(X 
4 l 1

- e 'i X +
), whereas at X = 0, (i.e. r = *), we
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e±2igJx 4  +211

get that U- const. e , because P ±2 i (0 ) 0 O, in

view of 8.6.1 in [ 1 ]. "2+

Thus i± are not bound states, i.e. they do not belong

in L 2 (R). In fact they are free states and so describe scat-

tering waves of the operator in (7.7). Indeed, we now show that

the spectrum of the operator (7.17) consists of the real semi-

axis A k 0 and is purely continuous.

First notice that, from our previous construction of Ut

as linear combinations of V and V± with non-zero coeffi-
8 0

cients and from (7.20) we see that neither it nor its deri-

vatives are zero at x - 0, i.e. there are no particular homo-

geneous boundary conditions imposed at x - 0. Since the po-

tential function in (7.17) is even in x, the spectral pro-

perties of (7.17) are the same whether we consider it on (0,-)

or on (-.,-) (pp.38,58 [14]). This second choice corresponds

to continuation of our metric by symmetry into anti-space, i.e.

to the wormhole topology (see 5.13).

The spectrum of (7.17) consists in general of the contin-

uous spectrum A a 0 plus a finite discrete spectrum in A < 0

(P.97 [14J).

In the expansion of functions f E L2 (-=,e) the continuous

spectrum contributes

(7.43) jS 8(xA)g' (A)dA e(y,A)f(y)dy +

O(x.A)C'(A)dA 0(y.A)f(y)dy.TT f
where
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(7.44) '(A) lm ' - 2 m(m2(A))

(!_-'-jvrA)r qla-irA)
(7.45) m 1

2( ) r (l- !(%- i.1A)r ( 1+ ' - ,/ _A)

The discrete part of the spectrum is given by the zeros

and poles of m2 (A) on the real axis and contributes accord-
-I

ing to the residues of m n2 
mad

Thus the zeros of m 2 (A) are given by

I cc iA -n or

- ilA -n ,2

while its poles are

1 - - LA -n or

1+a iv -n , n= 0,1,2,...

Using (7.42) these relations become

s- =4n+l - 4vA

a -4n-I + 4,/

a 4n+3 - 41%/A

a -4n-1 + 41-/., n a 0,1,2,..o, respectively.

When A > 0 it is thus seen that s ' (-1,1) U iR, for the

above values s, while if A z 0 then . i/lAI and

-iA = VIJA I 0 so that the above s E (-,,-1] U [1,-). Thus

the discrete spectrum is void, as claimed.

7.5 REFLECTIONLESS CONDITION. SINGULAR METRIC SOLUTIONS

We next determine which values of s E (-1,1) U iR are

physically relevant. A physically important condition is for

the potential -k -sech 2P in (7.10) to be reflectionless.
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This means that plane waves coming from - in x-space remain

-1I r-roIunchanged in shape at x = +w. Since e = tanh the

condition x = +a means r = r and x = - means also

r = r 0 but coming from inside the shell. That is, the re-

flectionless condition simply states that the shell of the

particle is totally transparent (except for a possible shift in

phase). However this requires k 2 n(n+l), with n E N

4 l-s2

(p43 5 41 ), whereas in our case T =--- > 0, since

E (-1,1) U iR.

Consequently the reflectionless condition cannot be

applied directly to define resonances. Yet this condition

enters indirectly, as we now show.

Indeed, we have neglected one solution of the Liouville

equation

a2 log a = 4%a-1 ,

obtained by taking a time independent in (5.18), for we

have only considered real coefficients B, C in the solution

(5.19). There is however a new real-valued singular solution

TT
obtained by setting B = 1 and C = i 2 . namely

-l 2 1(7.46) a = -cosech 2X

This is a perfectly valid solution in (4.1), provided
-1 -i

we take now % = -i instead of - M1, so as to get

(7.47) ds2 = -cosech2 pdp2 -dt 2 - dy2 - dz2

and thus retain the time-character of t.

This solution has a double-pole singularity at the origin

p = 0 (i.e. at r = *) and it decays exponentially at p -
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(i.e. at r = re). Its spectral properties are well-known and,

in fact, both potentials are special cases of a more general one

(p. 92 E 133 ).

We now show that this second solution is simply what one

obtains if ene takes the analytic continuation of the (r,t)

part of the standard n-.tric (5.39) into the region r-r ° < 0,

i.e. across the shell of the geometry. In contradistinction

to the original continuation by symmetry, which yields anti-space,

we can call the new space so obtained, the analytic anti-space.

It is clear that now there is need for the discontinuity in

(y,z)-space which consists in changing -i from 1 into -1

to keep the signature appropriate.

In fact analytic continuation of

(7.48) do2  dr2  - -2(r-r

(7.48) = 2Ar-r0  (le )t
e -i

from r-r > 0 into r-r < 0 amounts to change of 4 into -*0 0

in (5.0), which gives

(7.49) dO 2  [ dr 2  -(e2LIr-r 0 1 .l)dt2]
(1-e )

and this is just the same as exchanging the coefficients after

taking their reciprocals, and changing sign. Changing sign of

dy2 + dz2  too and trying to obtain the isotropic form (5.21)

with coefficient cp(p), say, yields precisely the same equation

as it would if we applied the same procedure to (7.48) instead,

in view of the above properties of the coefficients. Thus we

- ir-rol
get the same solution e = tanhIp, p > 0, and this

yields the coefficient sech 2 PP for -dt2  in (7.48) and
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-cosech 2p for -dt2 in (7.49), in turn. Therefore the singu-

lar solution (7.47) can be thought of as being the analytic con-

tinuation of the original solution into r-r < 0, plus the

2 d 2

change of sign of dy + dz . This is the same as changing p

2 2
into -4 in (5.0) and the sign of dy + dz

Conversely we may continue analytically the standard

metric given in anti-space, into concrete space thus yielding

what we shall call analytic space, thereby ascribing to them a

completely symmetric role. Graphically we represent this by

the figure below in terms of the r-coordinate alone:

analytic space

r

~~space '

\ anti-space
\ /

. -,

analytic-anti-space

Therefore the more general situation originated by the

existence of these two solutions should be represented by the

statistical superposition of space and analytic space and,

correspondingly of anti-space and analytic anti-space. Remark

that having smooth continuation in (rt) across the shell

implies the discontinuity in dy2 + dz2  (change of coefficient

from +1 to -i) whereas the non-smooth continuation by sym-
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2 2
metry is in turn smooth in the component dy + dz . The figure

is purposely drawn so as to show smoothness and non-smoothness

of the continuations.

Now if we want to superpose states A2* 0 which are

expressed by the same function factor in the (yz) variables,

and thus depend on the same coupling constant k, we notice

that if the potential is sech 2pp for concrete space it will be

cosech 2pp for analytic space because on coming from anti-space

sechhUp becomes -cosech 24p but since dy2 + dz 2 also changes

sign this is the same as ending up with cosech2j and dy2 + dz2

in analytic space. Thus if k A 0 we can always require that

either one or the other be reflectionless, and this implies the

general condition

(7.50) Jkj * . 2N(N+I) N E K if k $ 0,

to guarantee reflectionless either is space or in analytic

space,

Remark that we have thus established a duality between

resonances (k > 0) and reflectionless states with k < 0, by

analytic continuation of the metric from space into anti-space;

this puts them on an equal footing. (In fact this is at the root

of the Cooper pairing affair, Chapter X).

As mentioned in 7.1, these pairs of solutions seem to be

characteristic of resonance phenomena; see for instance p in

tll]. They are characteristic of non-harmonic states, because

the pairing between (r,t) and (y,z) spaces due to the non-

zero constant k, implies also the pairing -k in the alternative

metric solution. In fact we will show in Chapter X that the

statistical superposition of the two metric solutions makes the
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average metric conformally flat at infinity thus removing in par-

ticular the parabolic degeneracy of each of these metrics along

their spin-axis when taken separately. Thus they come into play

not only because they are possible solutions but also because

their superposition has the proper boundary condition at infinity.

From (7.41) and (7.50) we thus get a(i-a) = 1 = N(N+l)

and since s = ip,

(7.51) P = PN = 4N(N+I)-I, N = 1,2,...

Since ip and -ip yield equivalent representations

(which is also clear from the fact that t(z) a PMl(z) in

11
general plus the fact that in our case v = a-l -- - i2- and2 2

-v-i = - 1 , we need consider only P > 0.

Thus the reflectionless condition eliminates the supple-

mentary series of representations (0 < Isl < 1) and allows

only the above denumerable set in the even principal series.

This ties nicely with the fact that, of the two representations,

only the even principal series is induced by a representation of

a subgroup of SL2 (R), in the present case the diagonal sub-

group 8, which describes time-translations. Dhus time plays

here the role of a parameter in the fiber and the stable states

are the eigenstates under time-translation, that is to say, they

are precisely our states it. This justifies the separation in

1 4the variables X and X

7.6 RESONANCE STATES

7.6.1 The points of the spectrum that, in general, con-

tribute the most, locally, are those where Ij'(A)l has a local

maximum. The corresponding eigenstates it are therefore expected
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to behave almost like excited states under external excitations

and should exhibit resonance effects in scattering phenomena.

We expect therefore that they should serve to describe the ex-

perimentally observed resonances.

We thus look for the points A > 0 where I9'(A)I or

(A) hae a(local) maximum, with oL - I =i*_0- in (.5

p real and non-zero.

Therefore let us consider

1 __ _______________________

(7.52) 9' (A) 2 mrji JAij+LP,-)

(7-53) CI(A) = ~Im

Let a E IR. We follow (p.45, [12]) and write in polar form

1(I Ia iY k(a) 9 k=Ol~~
4 2a Gk(a) e , k=0123

where

Y . tg- tanh 2

Using that r(: ia) =r(lk - 'i)and setting a - + /A

we get

1Gl(2,VA+-) G 1 ( Z/7- P2)
(7.54) 1'A 2 sin 0,

3 2 3 2

1 G(2VA+-) G 2F
275)1 3 2 sin 0,

(7.56) (,,/A) =tg' tai TI G/K+ -) +i tg 1l tanhTT(A_

Clearly 0=0 for A =0 so that
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(7(57) (O) = '(0) = 0.

As A4+ , 44 and sin 14 . On the other hand

(by (5.46) in [12]) as a -

G (a) 1 19 631(7.58) T 2 )2 4 i7}.

(4a) 2(4a) 2(4a) 6

Hence as A 4

1 
22

Therefore as g'(0) = g'(+-) = 0, it follows that

'M(A) has a point A of absolute maximum. From the known

expression

r~~y 2 2
1 r (x) TT _ l i + x 0,-1,-2 ....

= TT ( (x+n)x

we obtain, after a few simple calculations,

Gl(a) r l-I~n1
2a2

(7-59) = F(1- n 1 (.~)2 1+ a 2

which shows that this quotient is (an even) decreasing function

of a. On the other hand (7.56) shows that sin $(./A) is a

rapidly monotone increasing function, from the value 0 at

= 0 to 1 at -. The following graphs indicate the behavior

of the various factors in (7.54), where A and B are given by

(7.60) and (7.61).
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-P/4 P/4 7

OeA2B2

,/A

It is therefore clear that 9' (A) has a maximum near and

that it has the shape shown in the figure above.
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express the same phenomenon in terms of the usual (spherical)

Legendre functions, more appropriate to spherical symmetry.

7.7.5 COMPLETING THE DESCRIPTION

We can now complete the description of the mechanism of

resonance, on the basis of our results.

To that end let us recall from previous chapters, the precise

0
meaning of a massive quanta, in our case the pion r . In

1 4
(x ,X )-space a standing pion consists of the statistical su-

perposition of the isotropic waves ±(x ,x 4) = eim(x ±x ) with

equal probabilities, giving rise to the average stationary states
i(n+i/2)moX 4  , .,. -se 0 .sin(n+)mox1 . This is multiplied by (X2±iX3 ) ,

thus originating the point-like higher order singularities of

the associated phase function, and in accordance with the internal

symmetry conditions of the geometry.

This then represents the pion as a point-like carrier of

energy. One gets a corresponding spherical wave picture in con-

crete space on changing from X 1  into the r-coordinate (cf.

(5.35), where p stands for Xl).

The moving single pion instead is simply the statistical

1 4superposition of the two waves in (x ,x ) space with constant

probabilities say a > $ > 0, a+0 = 1. In this case the single

1 4pion will move with constant velocity in (x ,x )-space, in the

direction corresponding to the motion of the wave with the larger

probability.

Let us follow the motion of the single pion in concrete

space, looking however at its wave representation in the natural

isotropic space (x ,x1 )
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7.7.4 COMMENTS

As long as the precise nuclear forces are not known, this

analysis remains limited in scope. In fact, from our analysis

we have obtained the resonances as solutions of the 2-dimensional

wave equation in (r,t) space with a positive coupling k to

(y,z)-space. We appealed to the reflectionless condition applied

to the analytic continuation in r, of the (r,t) metric across

r i r° * Our resonance states are given by conical (Legendre)

functions, no longer by Legendre functions with integer indices.

Repetition of the same analysis for the full wave operator in-

volving all four coordinates would bring in the axial symmetry

effects, but this would be useless because in our case new phe-

nomena arise (exchange forces, metric averaging, Higgs fields)

in order for the metric to adjust itself to the boundary condi-

tions at infinity, and have to be taken into account. Only after

all this has been taken into full account can we think of re-

peating the above classical analysis. But at that stage we will

have already collected most of the relevant information. Thus

we see that our analysis represents a departure from the usual

classical method, but nevertheless the analysis in (r,t)-space

gives the known kind of results. In particular one should no-

tice that the t numbers of partial wave analysis become indeed

imaginary t numbers in our case cf. Section 7.11. Notice

that the main point of departure is the fact that we character-

ized the resonances as eigenstates of the time-translation fiber

subgroup & in the even principal series representations of the

symmetry group SL2 (R), which bring in the conical Legendre

functions, whereas the classical partial wave analysis tries to
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(E-m-U) W pX

(E+m-U)x - a,

looking for bispinor solutions (in 4-vector form)

(f(r) j m  
*, 1 , 2j-

' ,, (r) 2 , ,,

where

and a similar expression for nj •

For r 4. w6 have, for a central potential U decay-
1

ing faster than 1

S- msin(pr - + 6

jL 'm2\ ...v - it_ Ijm si (pr - -

Just like for the non-relativistic case, e2 0 - 1 de-

termines the scattering amplitude and as a function of the

energy has poles at the bound states of the particles (p.157 [ 2 ]).

Under the assumptions on the potential U the behavior at a is

governed by the free equation in which case one gets that each

component of the four vector * satisfies the equation

(A + k2 )* - ,

which coincides formally with the SchrOdinger non-relativistic

equation. Hence it is not surprising that the essential in-

gredients (phase shift, etc.) are basically the same in both

cases.
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2are real then taking complex conjugate in k2 , in (7.80) and

(7.81), it is easy to see that S(t,k 2 ) defined by (7.92) sa-

tisfies

S(tk 2)S(t,-k ) = s(,k)S(,k 2) = 1.

2 2 2 r
Thus if S(L,k ) has a simple pole at k = k - i 2=r - kr and

r real, then we can factor it out as

k 2_k -2

S(L,k
2  r3- S(),k

2

k 2_k + i2r-

with S0 (L,k 
2 ) regular and non-zero near the zero and the pole.

Thus the phase shift 8 near the pole is given by

8 tg [ r 2  +80

80 slowly varying. This is the Breit-Wigner expression for

the phase shift near a resonance. The non-real poles nearest

to the real axis are called Regge-poles (see 19], E11], 13]).

7.7.3 THE RELATIVISTIC PICTURE

There are many possible ways to study this case. One

2 2 2is to derive the analyticity of f(k ,A ), where A =

= 2k2 (1-cos 26) from the general axioms of quantum field theory

(p.290 C11]).

The other would be to specify the field theory by a Hamiltonian

and to compute the scattering amplitude through perturbation

theory i.e. the analogue of the non-relativistic Born series

(namely the Feynman method). More specifically one can consider

the analysis directly on the time independent Dirac's equation

(p.154 [ 2 ])
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paring with (7.78) one gets for the scattering amplitude

2 2t,+1 16
(7.84) f(k ,Cos e) = 0 e sin 8, P (cos e).

The coefficient

(7.85) at(k) = 1 e sin 8

is called the partial wave amplitude.
2 1

Near r = 0, V(r) and k 2  are dominated by -1- so
r

that the solution y (r) must be asymptotic at 0 to the so-

lution of

(7.86) d 2 yt (r)
dr6 -r y2r - .

The solutions are y (r) = r+l and y,(r) = r"t and

only the first one satisfies the boundary condition yt(0) = 0.

We now normalize the solutions of (7.80) at r = 0 by

requiring that

(7.90) t(r ) 4 1 as r 40.

At - the normalized solution may be written, according to

(7.83), in terms of outgoing and incoming waves, as

(7.91) uL(k2,r) , -(t,k2)e
i k r + c +(L,k2 )e 

i k r

r-*-

The factors e- and p+ are simply the transmission and

reflection coefficients.

Comparing (7.91) with (7.83) one gets

(7.92) e 2i6 = ('i)+l (-( ,k 2 ) a S(t,k2

(L+(),k2 )

The solutions ut(k 2 pr), as well as p" and p+, are analytic

functions of k2  in appropriate domains. If t(t+l) and V
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where P is the Legendre polynomial of degree t, (7.77) re-

duces to the infinite set of ordinary differential equations

(78)d 2y4 (r) 2

(780)r + k 2  V(r) - .- A ]yy(r) = 0

with the boundary condition

(7.81) y t (0) = 0.

Here we have set -2 E -2U = V.

The potential generally used is the Yukawa potential
e- r

r = - ,. > 0. Therefore for large r, the asymptotic

behavior of y ,(r) is given by disregarding V and 1/r2  with

respect to k 2 , when k $ 0, so that (7.80) becomes

(7.82) It + k 2 y (r) =0 , r 4c.
dr

2

Its general solution is

y,(r) - c. sin(kr + a),

M a constant phase.

On the other hand the solution of

It. + (k 2 _-(4]l) =
dr2  r t

is given by Bessel functions, which behave as

y4 -  c sin(kr V2.), r+*

.hus if we set a - - + we get

(7.83) y(r) -c. sin(kr- + 5 as rr 4 82

and 8 then expresses the phase shift caused by V in (7.80).

Using (7.83) in the expression (7.79) for * and com-
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on their relative distance r and $ *(r) is the wave-func-

tion describing their relative motion in the quantum-mechanical

sense. This means that 1*12 is supposed to describe the sta-

tistical average distribution of the incident particle over a

very large number of identical two-particle interaction experi-

ments with same initial conditions or, equivalently, the result

of a single experiment with a very large number of mutually in-

dependent particles forming a beam of identical particles.

The solutions representing scattering must behave at
ik,* x

like the sum of the incident plane wave e plus a scattered
ikr

spherical wave f(,) r - jx, k = W, where 0 is

the azimuthal angle with respect to the axis defined by k, and

c is the corresponding latitude angle. The scattering amplitude

f(ecp) describes the relative distribution of scattered particles

on the surface of the spheres r a const. In fact due to the

axial symmetry, f a f(e) only.

Therefore the boundary condition at e is

-ikr

(7.78) *(x) - eik x + f(e) 9 + 0 r
r

The ultimate goal is to determine f(e), because this is what

one measures experimentally. The problem (7.77), (7.78) is

equivalent to the following integral equation
-4. yikjx-yj

*(x) = e i x - I Ix-y V(y)*(y)dy.

1k F I X x-yi

In our case * - *(rO) only, so if we write the decomposition

appropriate to spherical coordinates

(779)y - Y(r)
(7.79) = r pt(cos e),
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(7.74) TL C E-mp +mp+m )2 _ (m +mp)2]

c 2 2 +2 2 2
E [4 +m + 4m m - m -m - 2mm2m p p fl l

2m T
= C1 +. m c2.

p

In general to get the proton excited to the n-th energy

level i.e. (p+nf) we need

m
(7.75) = n[ l + (E. i) --,j-inm c n = 1,2,...n 2 p

A m 2 2
As m a = 134.974 MeV and m c = 938.256 MeV, we haveTrP

m
TrI= 0.143856 and som
p

(7.76) T = [1+0.2.15781134.974 MeV a! 164.10 MeV.

The rest mass of the resonance N* so obtained is calcu-

lated by the corresponding total energy c'R as given by (7.69)

and (7.72), in the CM-system, which is the rest system of N

At the lowest treshold kinetic energy (7.76) one thus

obtains the first experimentally observed resonance N1* 2 (1238).

7.7.2 THE NONRELATIVISTIC WAVE PICTURE

The non-relativistic wave picture of the scattering

process consists in studying the solution * of the time inde-

pendent Schrfdinger equation

(7.77) A* + - E -U]* = 0,

mlm 122
where 1 2 is the reduced mass of the system incident

particle-target, E is the energy level of excitation, U = U(r)

is the interaction potential between the two-particles depending
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We now assume that m 2 is so large that the second par-

ticle may be assumed at rest with respect to the laboratory frame,

i.e. we assume that the laboratory frame is defined by

(7.71) (2) o

With respect to the laboratory frame we have, using (7.64), (7.65)

and (7.71) in the defining expression for s

(7.72) s =2 (E-+E2 ) -

c
2 2(p(1)2 E2 2= ---f-- +- + 2-'-"E

c c c

2 2 2 2 22m

= Mtac + m2c + + T I )2 2

= C (ml+m2 ) + 2m2 T 1 9

where T is the kinetic energy of particle 1 in the labo-

ratory frame.

Comparing with (7.70) one gets

c2f (m3+m4 )
2 - (ml+m 2 )

2)

(7.7) T 1 = 2m2

This is the laboratory treshold kinetic energy of particle 1

considered as impinging on the static particle 2 and gives

the minimum kinetic enercy necessary for the process to take

place.

If we apply (7.73) to the process (7.63) where particle 1

is the pion, particle 2 is the proton, particle 3 is the one-

level excited proton (p+r), and parLicle 4 is the slowed-down

pion, we get for the treshold kinetic energy of the pion:
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These are the appropriate kinematical concepts in special

relativity as shown by Einstein and Minkowski (P.39 [ 6 ]).

Consider therefore the collision of two particles with

4-momenta POO, P (2) and rest masses in, m2  rospectively,

which then become particles of 4-momenta P(3), P(4) and rest

masses m3 , m4 respectively.

Conservation of total 4-momentum

(7.66) ]p(l)+(2) = V(3)+p(4)

Let us concentrate on the Lorentz

invariant s := (p(l),P(2))2 . Consider the center of mass

system (CM-system) defined by

(7.67) (1) +(2 =0 ,

and consequently, from (7.65) also by

(7.68) p0) +(4) _.

In this referential, using (7.64), (7.66), (7.67), we get

(7.69) s = -I- (E +E 2  = I (E3 +E 4 )
2 .

c c

Let us compute the minimum amount of energy in order

for the above process to occur: this corresponds to the newly

formed particles being at rest in the CM-system i.e. to

I(3 4 (4) . .2
p =(p = 0 In this case (7.64) gives E3  m 3 c

E 4 ,= m 4 c2 so that (7.69) becomes

(7.70) s c2 (m 3 +m4 )
2
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A beam of pions impinge on target nucleons (say protons) and

transfer to them their kinetic energy, exciting the protons

i.e. taking them into a higher internal state, as defined in

Chapter V. The occurrence requiring the minimum amount of

energy corresponds to an originally unexcited proton that goes

into its first excited state i.e. into a proton plus a new pion.

In symbolsi

(7.63) T + p 4 i + ( p+r) - 2rr + p.

excited proton

7.7.1 THE RELATIVISTIC POINT PICTURE

As we shall see later on, far from the immediate vicinity

of the particle, the average metric is essentially Minkowskian:

ds2 (a (dx( ) _(dx2)2 -(dx) 2 dx3) 2 . We can therefore apply

the Minkowskian momentum and energy conservation laws to study

the two-body (inelastic) scattering and apply the results to the

above process. First let us shortly recall that if a point-par-

ticle has a 4-momentum P, then in P ( ) (L' ),
the first component times c describes its total energy and the

three-vector p describes its usual 3-momentum, in the given re-

ferential. The Lorentz invariant P 2 divided by c 2 defines

its rest mass m
0

(7.62) 22 2 E 2  2
( mc in P - - -p

c

2 2 2 2 2where p a 0) +

The kinetic energy T of the particle in the given refe-

rential, is defined by

(7.65) mc + T in E, i.e.

JI-2c 2-2

(7.65') T o p M .
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Doing the calculations when N - 2, i.e. when p 2 =1-23
-

- 4.79, we obtain the values

a / _ '__)

0.00 1.20 1.3553

.06 1.23 1.4588

.10 1.25 1.5016

.16 1.28 1.5419

.18 1.29 1.5467

.20 1.30 1.5473 -

.22 1.31 1.5457

.26 1.33 1.5316

.30 1.35 1.5087

.36 1.38 1.4578

.4o 1.4o 1.4187

Therefore for N - 2, amax -a 2 = 0.20 and a= 2  1

As the point Amax moves to the right with increasing p

we thus conclude that

0.10 + . 1 !/ < _L + 0.11, N k 2.

4 ax 4

We shall take the approximation

A' = A' N + 0.10, N z 2.

Thus in general

PN
(7.62) AA N =-- + cN' N = 1,2,...,

c I - 0.09, cN a! 0.10, N k 2.

We now review some general facts about resonances.

7.7 MECHANISM OF RESONANCE

The resonance states obtained by pion-proton (or more

generally pion-nucleon) scattering consist of the following.
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• -+ 0.09.

For N 2 we shall now show that /-, a --- + 0.10.4
2  Gl(a)

Indeed B G--- is decreasing for a 1 0 in view of
(7.61) and by (7.58) its derivative satisfies (B2' 1 -- 1

so it is slowly decreasing for larger a. When p increases

*~ 2the graph of B (A ) is displaced to the left (right, reap.).

Therefore the larger p is the more the relative behavior of

C'(A) is governed by H = sin 0. Now for N a 2

G (2v7A - -L)

and Vj a 0 we have PN z 4.79 and a z 2.39 and thus

sin 1.000 already for a = 2 (see the table). Since sin

is increasing it follows that it is practically one for N z 2.

Thus for N k 2, H is essentially a function of a a 2, A-/_-2

alone. Therefore we can find the point of maximum of H once

and for all. Tabulating H near the previously obtained value

a = 0.18 we obtain

a H

0.00 2.0921

.06 2.2659

.10 2.3436

.16 2.4211

.18 2.4336

.20 2.4398

.22 2.4403 .

.24 2.4366

.26 2.4280

.30 2.3989

.36 2.3337

.40 2.2802

The maximum of H is at a =0.22. Thus certainly /A ' +
ax

+ 0.11 for N z 2.
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7 .6.2 CALCULATION OF THE PEAK FREQUENCY

Let us denote by AN the above peak frequency when

P= PN is given by (7.51).

We write

(7.60) A =a1 ___ Gp2VX:I

and

(7.61) B a+ 2 1
r (+ ij ) G (2V-A4)

so that g' = A 2 B2 .sin 0 and ' = A- 2B-2 .sin . We then make

use of Table V on p.226 [12]. Taking in particular N = 1 we

have p1 = 9! 2.646 and fA- = a-+ 0.661. We thus get the

following table of values

a /A sin

0.00 0.66 0.7069 1.8355

0.06 0.69 0.7707 1.9649

0.10 0.71 0.8063 2.o169

0.16 0.74 0.8554 2.0605

0.18 0.75 0.8695 2.0636+.

0.20 0.76 0.8822 2.0613

0.22 0.77 0.8938 2.0543

0.26 0.79 0.9145 2.0287

0.30 0.81 0.9316 1.9908

0.36 0.84 0.9516 1.9163

0.40 0.86 0.9617 1.8599

0.60 0.96 0.988 1.563

0.80 1.06 0.997 1.312

1.00 1.16 0.999 1.123

2.00 1.66 1.o0o 0.671

* It is clear that the peak value occurs at 0.75
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Suppose the larger probability a corresponds to the

incoming spherical wave in concrete space (r,t). The pion

point-like singularity will then approach the shell of the par-

ticle with total energy E 1 = M I + T L , where T L  is its

kinetic energy. When it reaches the shell the following phe-

nomena occur:

i) the wave with probability amplitude a splits into two

similar waves, one with amplitude y = -, and the other with

amplitude 0. The last one forms with the remaining outgoing

wave, which also 1.is amplitude 0, a single pion standing at

the shell of the particle;

ii) the remaining y wave, which is the carrier of the excess

energy TL , disappears giving rise instea to a standing sta-

tionary state of the proton e isin(n 2) 0,

inside the particles plus a standing stationary non-harmonic

state solution of the wave equation outside the particle, cor-

responding to one of the resonances we have been studying.

There are three observations to be made. The first one

is that the vanishing of the incoming y photon wave and the

simultaneous sudden appearance of the two stationary states,

one inside and the other outside the particle, as well as the

entering of the whole system into a sudden stationary state,

Is in line with the stochastic description brought out by

L.C. Young's theorem on generalized curves as the correct des-

criptors for the solutions of evolution equations of Lagrangian

processes, and corresponds to the following sudden changes of

state:
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a) the y(t) N y (t < to) probability jumping at t - to

into y(t) a 0 (t > to);

b) the internal state of the proton jumping at t - t from

unexcited to the above mentioned internal state of energy level n';

c) the external field of the particle, in addition to the

existing field corresponding to the standing pion, jumping from

non-excited into a resonance state.

The second observation has to do with the reason why the

resonant state should be considered as an external state of the

particle: the point is that the condition (5.63) of zero radial

derivative at r = 0 that is satisfied by the harmonic internal

states has not been imposed as a boundary condition for the re-

sonant states. This condition is absolutely necessary in order

to have stable stationary states inside the shell and can be

dispensed with only for fields outside the shell. Therefore the

resonant state must set in outside the particle.

Thirdly, as we shall see in Chapter X, even if the pion

has been emitted by another particle, near the target its wave
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behaves as an incoming wave of the target particle, which means

we can consider the impinging pion as eventually described by the

target particle geometry.

The so called resonance constitutes therefore the stationary

state formed by the whole system of excited proton plus the slowed-

down incoming pion and plus the resonant state field outside the

shell of the particle.

7.8 MASS OF THE RESONANCES

7.8.1 The energy associated with the states (7.40), or with their

superpositions that behave as the standing states (7.40'), is

given by

r =2ctiI.LrA.

Using the expression (5.67) for 4 =2 this becomes

(7.93) Er A . E' • log coth R/2,

where E' . m'c2  is the mass of the massive quanta in energy
0 0

units. This is the energy associated with the field (7.40) out-

side the shell. This field is superposed to the field of the

captured massive quanta which has energy E' and is of the form
0

(5.69). The energy squared E 2  of the total field outsideOut

the particle is thus E2  E' 2 + E2
out o r

The internal energy consists of the energy En, of the

n'-th excited state (5.69), plus the energy E0 o 2cors

ponding to the mass of the geometry, i.e.

Ei n'E' + E
o o0
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The total mass EA of the resonance is thus Eout + Bin

and therefore we get, using (6.47),

i 2no+1 2

(7.94) EA = [n' . + (2n 0+1) AJE' + E.

Here not iso1 + 1 are the integers characterizing the geometry,

according to (6.47).

Expressing further E/E °  according to (6.0) we obtain

(7.0), with A = AN in it.

In particular if we equate this energy with the initial

energy of the system, namely E' + TL + E 0  where T is the
o L

kinetic energy of the incident pion, we get

2no+1 2

(7.95) TL/E' = (n'-l) + 1+ AN

7.8.2 STABILITY OF THE EXCITATION LEVELS

In the case of the proton the internal energy state with

higher stability is the n=3 energy level corresponding to the

energy of three pions no, for the group-theoretical reasons

given in Chapter VI. We must therefore expect that, as a rule,
0

a system of 3 pions 0 is in general the most stable configu-

ration of pions even if the system is not precisely the E 3 - in-

ternally excited state.

In the case of resonances we have a system formed by the

slowed-down pion at the shell of the particle plus the n' pions

corresponding to the internal energy level En Therefore this

configuration should be more stable precisely when n' = 2.

If we consult a table of decay modes of the resonances

we see that, indeed, with exception of N(1238), wich decays
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into p+n (100%), most of the remaining resonances present a

partial decay into p+2r. There are no decays into more than two

pions (the third pion being converted back into kinetic energy

to set these two pions in motion).

According to (7.75) and (7.76) the laboratoy treshold kinetic

energy necessary to get the n' = 1 and n' = 2 internal energy

levels are, respectively,

T L1 1.216 E' (f 164.10 MeV),

T a2.575 E' (f 347.62 MeV),

where E' is the mass of the pion in energy units.
0

On the other hand the kinetic energy, in multiples of E'
0

available from the total energy of the resonance, is, according

to (7.95),

N=l N=2 N=3 N=4 N=5

n'=l 1.196 1.514 1.876 2.265 2.668

n'=2 2.196 2.514 2.876 3.265 3.668

and so on.

We see that 2.196 > TL /E = 1.216 > 1.196, so that,
I

as long as the incident pion has energy above 1.196 E' and
0

below 2.196 E' the resonance created must correspond to n'=l
0

(first internal energy level) and N = 1 (first resonant state).

Even though the n' = 1 energy level is less stable than the

n' - 2 level, the energy provided is just enough for the first

resonance N(1238) to occur.

However for N = 2,
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(7.96) TL2/E', - 2.575 > 2.514,

so that, even if we lower the kinetic energy of the incident pion

to its treshold value T 2 we can form the (N.2, n'=2)-reso-%o is trshod vaue L2

nance. Therefore for N k 2 the internal energy state n' = 2

will always take place preferentially (provided the kinetic

energy available is enough in each case) as the n' = 1 case is

less stable.

On the other hand for the kinetic energy below the 2.196

threshold we see from the above table that N i 3 may occur with

n' = 1, as far as the energy balance is concerned. In fact how-

ever for n' = 1 only the N = 1 case seems to occur experimen-

tally. This can be explained by the argument that although pre-

sumably less stable than the case n' a 2, it is the resonance

with minimum total energy and so it prevails below the 2.196

threshold.

7.8.3 MASS FORMULAE

According to (7.51), (7.62) and (7.94) the resonance masses

may be computed by

I 2n+1 2
(7.97) EN/Eo = 1 + n+ + AN]E/Eo, N = 1,2,...

(7.98) AN = f4_N(N+l)-l + CN , C1 - 0.09, cN Z 0. 10 N : 2.

Here no, l+IsoI are the integers characterizing the

given geometry and n' r max(O,no-1), preferably n' = n -1.

If we replace EVE by its expression (6.0) we obtain

(7.0).
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7.9 BARYON RESONANCES

Setting no a 3, 1+1sol = 8 in (7.97), or in (7.0), we

obtain the following table for the baryon resonances

ENMeV) Experimental values
N N(MeN' Omnes Frazer

1 0.75 (n'=l) 1235 1236 1236
2n'l) 1273 unobserved

2 1.30 (n,=2) 1413
3 1.81 (n'=2) 1461 1460

4 2.32 " 1514 1515 1518 ± I0

5 2.83 1568 1525

6 3.33 1624 1630

7 3.83 1681 1675 1688

8 4.34 1738 1715

9 4.84 1795 1785

10 5.34 1853 1880

11 5.84 1911 1905 1924

12 6.34 1969 1940

13 6.84 2027 -

14 7.34 2086 -

15 2144 -

16 2203 - 2190

17 2261 -

18 2320 -

19 2379 - 2360

20 2437 2420

21 2496 -

22 2555

23 2614 -

24 2672 2650 2645 k 10

25 2731 -

26 2790 -
27 2849 2850 2825 * 15

28 2908 -
29 2967 -
30 3026 3030
31 3085 -
32 3143 -
33 3202 3230

34 3261 -
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Here we have taken into account the considerations in

7.8.2, regarding the value of n'. In particular for N k 3

we only considered n' = 2.

We see that the agreement between the theoretically com-

puted values and the experimental ones is very good at the low

energies and that, even at higher energies, there are some good

results. As remarked in Frazer p. 51 the experimental values

are subject to variations due to the way that the mass is com-

puted from the experimental data and also, at higher energies,

due to the background noise caused by the presence of the lower

energy resonances.

There are many undetected resonances at higher energies

but the really noteworthy absence is that corresponding to

N = 2, which has low energy. It is clear that the n = 1

state is always occupied at the lower energy N = 1, as men-

tioned before. The (N=2, n=2) case with mass 1413 may be

absent due to the experimental set upt From 7.8.2 we see that

it requires the threshold kinetic energy 2.514 E' which is
0

smaller than but very close to T = 2.575 E' " Under experi-
L2  0

mental conditions it is clear that one has to use values some-

what larger than TL2, and may be they reach the relatively

close level 2.876 E' corresponding to N = 3, which would
0

then explain the appearance of the N(1461) resonance and the

absence of the N(1413) one. However there is no doubt that,

with the presently available theoretical values of the resonance

levels, one should be able to set up experiments to detect their

existence, even if they turn out to be less stable in the final

set up.
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For the baryons we may write, from (7.97) and (7.98),

the following approximations (N > 1):

N 0.125 0.031 1
(7.99) AN + -+ 0.35 + N 0 + 0

1.395 1.120 1N

(7.100) EN = 1249.55 + 59.051 N + N 120 + 0(7)
N N N

(MeV).

It is clear that for N 2 2 and E are prac-
N N

tically linear functions of N.

7.10 ELECTRON RESONANCES

In previous sections we have described resonances of the

proton on the basis of the laboratory experiments of scattering

of pions by target protons and of the peak frequencies in the

spectral density of the associated SchrOdinger operator.

For several reasons no corresponding experimental set up

can be repeated with the same ease for the electron. Among

them:

i) the instability of the n > 0 levels of excitation for

the electron which forbids it from interacting strongly, so that

it has no massive quanta formed by two photons, like the o0

for the proton;

ii) even if, under special circumstances, one could operate

with such photonic massive quanta, there is still the fact that

its mass m' = 197.2 me is much bigger than that of the electron
0

(while the pion is about 6 times lighter than the proton) so that

scattering would more likely occur the other way around.

Nevertheless one should notice that the muon decays into
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the electron plus a pair of neutrinos

4- e + VV

and a pair of neutrinos with opposite helicities describes a mas-

sive quanta just as two photons do, cf. Chapter III.

Although such a pair VU does not belong in the discrete

series representation (cf. Section 6.10) there remains the pos-

sibility that it fulfills a stability condition corresponding to

some other kind of symmetry, for instance the SU2 X U symmetry

of electroweak interactions (Chapter X).

Because no a 0 for the electron this kind of difficulty

will always arise when considering the states of the electron

for we have to work with objects that are well defined but found

to be unstable. As in Chapter V we will have to assume that the

massive quanta vv replaces the photonic massive quanta E 1  of

the electron, and we will have to find later on what makes it

stable. At any rate considerations of spin, i.e. of the

symmetry properties under rotation in the spatial sections of the

Minkowski background geometry will have to enter in our subsequent

analysis, at some stage. Up to the present this has not entered

in our analysis for we are still considering the symmetries of the

nuclear field alone.

It should be emphasized that to have a complete picture

there will have to be a conciliation between the requirements of

the symmetries of the particle geometry and those of the Minkowski

background. At present we are considering only the first ones,

although in part, like in Section 7.7.1, we have already appealed

to considerations on the background.
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The fact that we have atributed to the massive quanta v

the same mass as that of the E 1  state of the electron and

obtained coherent results (in particular the confirmation that

n = 0 is the most stable state) seems to indicate that the

neutrinos forming the above massive quanta are described by the

additive superposition of the same states that enter multiplicat-

ively in E1  in (6.64), i.e. by the states

*(y+iz) 
- s + e((l)(x 4 ±Xl

)

which obviously are still harmonic solutions of A2  = 0

although they do not belong in the discrete series (i.e. are not

eigenstates of X).

Under these circumstances we now consider resonance states

for the electron, formed just like those for the proton, with the

sole difference that always n' = 0 for the electron and that

instead of the photonic massive quanta E 1  standing at the shell

of the electron there will be there a neutrino pair v7 with

the same mass m' .
0

Since the functions 9'(A) and C'(A) and the peak

abciszae 1N, N = 1,2,... do not depend on the particle's

nature, the formulae for the electron resonances is simply (7.94)

with n' = 0, n = 0 and 1 + iso 1 = 3. This yields

(7.101) EN = +1 + 197.205 1 +AN/9]Ee, N = 1,2,...

where Ee  is the electron mass, and AN is given by (7.98).

Computing (7.101) we obtain the following values
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N N E(MeV)

1 0.75 104.386 4

2 1.30 110.339

3 1.81 118.205

4 2.32 127.900
*

5 2.83 138.535 T

6 3.33 151.068

7 3.83 163.933

8 4.34 177.735

9 4.84 191.790

10 5.34 206.256

14 7.34 266.868

20 10.34 362.291

27 13.75 473.088

28 14.35 492.818 K±

29 14.85 509.274

30 15.35 525.753

31 15.85 542.250

40 20.35 691.37

44 22.35 757.91

45 22.85 774.56

50 25.35 857.90

52 26.35 891.27 4-

55 27.85 941.36

56 28.35 958.06 4 ?'
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The values

E = 104.386

E 5 = 138.535

E = 492.818

E = 891.27

=56 958.06

compare well with the masses (Table 1.2 [ 8])

E = 105.659
P

E = 139.580
r

E = 493.78

E = 891±1

= 959±2,

all in MeV.

We thus arrive at the conclusion that , Tr , K and

K*- are resonances of the electron, corresponding to

N = 1,5,28,52 respectively, according to the model that we have

described earlier. This model is in accordance with the decay

modes

- e (100%)

- - v (-100%)

K- - (63.1%)

- (21.5%)

K*- K-n 0  (-100%)

as they all decay ultimately into an electron.
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The neutrino v in the decay of n" and X" is the

carrier of the difference energy of the resonance state formed

outside of the shell of the geometry, whereas the massive quanta

vv carries the mass m' plus the kinetic energy corresponding
0

to the mass of the first resonance state N = 1. Thus this

explains why the mass of the muon is not me +m as it would if

it were an excited state of the electron.

As remarked before we still need to study the symmetry

requirements of the background geometry as well as the unitary

symmetries associated with the various representations of the

symmetries of the internal geometry, to complete the analysis.

This will be done later on.

To close we notice an interesting fact. The T" appears

here as a state of the electron. Since n-r+ = 2 and since

no is a massive quanta of the proton geometry we face here

transmutation of particles, considered as elementary geometries,

into massive quanta, which in first instance are objects of a

distinct nature, However as described in 4.3.7, in terms of

their twistor description they are objects of the same basic

nature, and differ only by the nature of the singularities of

their respective twistor fields. It just suffices that singu-

larities of one kind develop into those of the other in order to

have a transformation of particles (as geometries) into massive

quanta and vice-versa.

It thus seems that we may have here a first clue to the

connection between the structures of the proton and of the

electron, since the basic massive quanta of one turns out to be

a resonance of the other.
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7.11 COMPARISON WITH THE PARTIAL WAVE ANALYSIS

The operator equation in (7.10) is given, in the concrete

(r,t) coordinates by

eir-rol d elr-rol -Ir-r 0 ___

e a- -0e ) dr -2pir-rol =kc

l-e

i.e.

(7.102) -_ + 4coth IA r -r I. .- r

2r dr 22i1 -
dr 4sinh .tr-r l e 00r e - 1

S

Following the same procedure as in (p.128 [9]) we remove

the first derivative AE by introducing the new function y
dr

through q = 1/2 , in (7.102), which yields

-( r-ro0

(7.103) 2 + 2 + 6 2 (1+4 k e
dr 4sinh2uIr-roI 2 sinhr-r] O

This is of the form (7.80) with the modified Yukawa po--I r-re I
tential V = k e and the centripetal (instead ofV2 sinhplIr-r o F

centrifugal) potential - p 1I+4A)

4 sinh wir-r 0 12

Besides this we have a constant term -.P corresponding
'4

to a negative energy.

As r - the solution of (7.103) behaves as the solution
2 2 r k

of d y y, which is of the form Ae* + Be-2 and not as
dr

(7.83).

Near the shell the centripetal term sinh 2 PIr-r0 1

2 Ir-r0 1
2  predominates over the Yukawa potential and over the

constant term so that y behaves there as the solution of
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(7.104) d2y + A+I/4 2 a 0,
.d (r-r 0 )

% whose linearly independent solutions are

(7.105) y± = fr-roi2

Consequently near r0 r behaves as

(7.106) CP: clr-rolUF = c ek /A loglr'

From (5.37), for r- ro , we have

- 1 logir-r I + const.

so that
:- e; 21W/XiX 1

t- - const e

which agrees with 3. in 7.2.3, as it should.

The present solution (7.106) is completely different in

nature from fr-ro& + I  which is the partial wave solution

near ro, according to (7.90).

5% We thus see that the usual partial wave analysis as

presented in 7.7.2 fails to apply to our present situation.

Notice that the tr-ro +  behavior at r = r. becomes

in our case Ir-rol i4 K" while L+l runs over the integers,
1K has the values + 0.35 _ 0.125 + o(I for Nk2 and so

2 N NN~

practically runs over the purely imaginary half-integers.

That the 4 exponents should eventually run over complex

numbers when dealing with resonances has been suspected long ago

in connection with Regge poles.

-95-

% %

-.J* L-- -' K7, 5.*'5 -"1*-r C -M- .- ."
..' . ..+. .. .:.-. "S...', €.'/ .: . + .% .": .../ ..... ".. . .~~ * . . .5. *, .".. 5....' . 5:,."



REFERENCES OF CHAPTER VII

1] Abramowitz, M., Stegun, I.A., Handbook of Mathematical

Functions, Dover, New York, (1965).

(2] Berestetski, V., Lifchitz, E., Pitayevski, L., Th6orie

Quantique Relativiste, Physique Thdorique (Landau et

Lifchitz) Tome IV, Mir, Moscow, (1972).

[3] Burke, P.G., Potential Scattering in Atomic Physics

Plenum, London, (1977).

[4] Calogero, F., Degasperis, A., Spectral Transform and

Solitons, vol. I, North-Holland, Amsterdam, (1982).

[5] Dieudonng, J., Special Functions and Linear Representations

of Lie Groups, Regional Conference Series in Mathematics,

No. 42, A.M.S., Providence, (1980).

-6] Eisele, J.A., Modern Quantum Mechanics with Applications

to Elementary Particle Physics, Wiley-Interscience,

New York, (1969).

[7] Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.,

Higher Transcendental Functions, vol. I, Mc-Graw Hill,

New York, (1953).

[8] Frazer, W.R., Elementary Particles, Prentice-Hall, New

Jersey, (1966).

E9] Landau L., Lifchitz, E. M6canique Quantique, Thgorie Non-

Relativiste, Physique Th'orique Tome III, Mir, Moscow

(1966).

C(lO] Omn~s, R., Introduction to Particle Physics, Wiley-Inter-

science, London, (1971).

11] Omnas, R. and Froissart, M., Mandelstam Theory and Regge

Poles, Frontiers in Physics, W.A. Benjamin, New York,

(1963).

£12] National Physical Laboratory, Tables of Weber parabolic

cylinder functions, Her Majesty's Stationery Office,

London, (1955).

-96-

-A_%*_!...* '02 t.*.!%*L-*.j* *.;

.. -...-......... .,.,........... ,...,.....,..........-......................... .................. ..



F'.
1133 Robin, L., Fonctions Sph~riques do Legendre et Fonctions

Sph6roidales, Tomes 1,11,111, Gauthier-Villars, Paris,

(1958).

,14] Titchmarsh, E.C., Eigenfunction Expansions Associated with
Second-Order Differential Equations, Oxford Univ. Press,

London, (1950).

V

-97-

.o,
7% . Z4S% 

%.

.4 4 4 * 4 4" * ~ * 4 4' . .. . . ..t*.. : .. . . . . 4 4 4

4 4. . . 4** . . - *.'or- L' .4.~44. 4 4 . ~ 4.4..44 .~
4 4

44

% 4 4 4 % 4 4\.'



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ ISTRUCTIONS, BEFORE COMPLETIN FRMs
2. ROVT ACCESSION NO:. RECIPIENT-S CATALOG NUMBER

2818

4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific
THE MATHEMATICAL STRUCTURE OF ELEMENTARY reporting period
PARTICLES - II s. PERFORMING ORG. REPORT NUMBER

7. AUTNORt.) s. CONTRACT OR GRANT NUMBER(@)

P. Nowosad DAAGZ9-80-C-00 41

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Mathematics Research Center, University ofAREA a WOR UNIT NUMES610 Walnut StCeet Wisconsin Work Unit Number 2 -

Madison, Wisconsin 53706 Physical Mathematics

It. CONTROLLING OFPICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office May 1985
P.O. Box 12211 1s. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 97
I4. MONITORING AGENCY NAME & ADDRESS(if different t.m Controllng Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS&. DECL ASSI FIC AT ON/DOWN GRADING

SCHEDULE

'16. DISTRIBUTION STATEMENT (of tie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different two Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side It necessary end Identify by block number)

monochromatic algebras, light quanta, real unimodular group, unitary
representations, Poincarg plane, discrete series, principal series,
quantization of geometries, resonances, Regge poles

'20. ABSTRACT (Continue n reverse side If neceeey md Identify by block number)

This report is the second part of a general theory purporting to describe

the mathematical structure of the elementary particles, deriving it from first

principles. It consists of Chapters VI and VII, continuing the MRC Technical

Summary Report #2581, October 1983. In them we study the implications of the

SL2 (IR) transformation group of the particles geometry. In Chapter VI we show
(cont.)

DD FORM 17
DO , JA 1473 EDITION OF I NOV65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Untere)

~~~~~~~~~................ ,_ , ... ........................... ..... .. .. ..-.. .... . ., . , . . . .,....-. . . ..

................................................................... . .. ... ..



ABSTRACT (cont.)

how the discrete series of representations implies the quantization of the

geometries and in particular why the electron does not interact strongly. In

Chapter VII we obtain the resonances as states corresponding to the principal

series of representations.

i *-:.-,~:.;*-.:-... *-*:*.° *..'Y°o .*% . . .. -.:.*..-



r . . "." "--. - ... *. . ... - ,- - - . . -. , -. - . .- -. -p j- . .- 2.. _.... .

FILMED

9-85

DTIC
, , ' " ' P' . -,, . - .. , . ... . . . . . . '. ,- -. -..-- ' - . ...-* , C".-.-' ,-. -, -. " *" " - "" - -: "'" ' 

'


