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ABSTRACT

We discuss the motion of nonlinear viscoelastic materials with fading

memory in one space dimension. We formulate the mathematical problem, survey

results for global existence of classical solution to the initial value

problem if the data are sufficiently small, and discuss in detail the

development of singularities in initially smooth solutions for large data.

iCcession For
NTIS GRA&I

DTIC TM6.'

By__

AMS (MOS) Subject Classifications: 35L70, 45K05, 73F15

2 Key Words: nonlinear hyperbolic problems, Volterra -" ',"l
Dist

integrodifferential equations;, smooth solutions,

dissipation; global existence, decay; development of -

singularities, shocks; viscoelastic solids, viscoelastic

fl31ndS4Ifluids, materials with memory. AIIlivfnl

Work Unit Number I - Applied Analysis oaa

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. The
work of M. Renardy was supported in part by the National Science Foundation

under Grant No. MCS-8215064.

.................. .... .... ... .... ... .... .....: . . . . . . . . . . . . .. .



DZV.LOPNU OF SINGULARITIES IN NONLINEAR VISCOEASTICITY

J. A. Nohel and M. Renardy

1. Introduction and Discussion of Results

In this paper we discusshe motion of nonlinear viscoelastic materials

with fading memory in one space dimension. We- concentrateAon viscoelastic

solids and briefly remark on similar results for fluids. After formulating

the mathematical problems, .M survey results for global existence of classical

solutions to the initial value problem, provided the initial data are

sufficiently small. W-then discuss in some detail the development of

singularities in initially smooth solutions for large data. -

We consider the longitudinal motion of a homogeneous one-dimensional body

occupying an interval B in a reference configuration and having unit

reference density. For simple materials, the stress a at a material point

x is a nonlinear functional of the entire history of the strain E = ux at

the same point x (here u denotes the displacement). In this paper, we

confine ourselves to the following model problem, which can be motivated as a

natural generalization of Boltzmann's constitutive relation for linear

viscoelasticity [1] (the derivation of similar results in a variety of other

models will be discussed in a later paper)

O(x,t) = e(xt)) + f
(1.1)

(x e B, -- < t <C)

Here * and * are given smooth functions R + R with

*(O) = *(0) = 0, *' > 0, 4' > 0 , (1.2)

and for physical reasons the relaxation function a : [0,-) + R is positive,
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1

decreasing, convex, and a' e L [0,-), where denotes the derivative. The

conditions on a imply that the stress relaxes as time increases and that

deformations which occurred in the distant past have less influence on the

present stress than those which oc- curred more recently. Since only a'

occurs in the equation, we may use the normalization a(-) = 0. In the

rheological literature the relaxation function a is often taken to be a

finite linear combination of decaying exponentials with positive coefficients

obtained by a least square fit to experimental data.

When (1.1) is substituted into the balance of linear momentum, the

following integrodifferential equation for the displacement u results

utt = 0(ux)x + aI**(ux)x + f , x e B, t > 0 . (1.3)

Here * denotes the convolution (a*8)(t) = ft a(t-T)8(T)dT, and f is the

sum of an external body force and the history term fo a,(t-T)*(u x(x,T))x dr.

An appropriate dynamical problem is to determine a smooth function

u : B x (0,-) * R which satisfies (1.3) together with appropriate boundary

conditions if B is bounded and which at t = 0 satisfies prescribed initial

conditions

u(xO) = Uo(X), ut(x,O) = ul(x), x e B

for certain smooth functions u0 and uI. To avoid technical complications,

we assume in the following that f = 0. We restrict the discussion to the

case when B = R and thus obtain the Cauchy problem

utt = O(ux)x + al**(ux)x , x e R, t > 0 , (1.4)

u(x,O) = uo(x), ut(x,O) = ul(x) , x e R • (1.5)

When a' E 0 and 0 satisfies (1.2), the body is purely elastic. In

this case it is well known (see Lax [14], MacCamy and Mizel [15], Klainerman

and Majda [13]), that in general the Cauchy problem (1.4), (1.5) does not have

globally smooth solutions, no matter how smooth and small the initial data are
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chosen. The initially smooth solution u develops singularities (shock

waves) in finite time.

If a' Z 0 and a satisfies the sign conditions above, the fading memory

term in (1.4) introduces a weak dissipation mechanism. Significant insight

into the strength of this mechanism was gained by the work of Coleman and

Gurtin [2], who studied the growth and decay of acceleration waves in

materials with memory. They showed that the amplitude q(t) of an

acceleration wave propagating into a homogeneously strained medium at rest

satisfies a Bernoulli-Riccati ordinary differential equation. The coefficient

of q2 in this equation is proportional to a second order elastic modulus,

which is given by 0" in our model problem, and there is a linear damping

term proportional to a'(O). Thus amplitude q(t) = [utt] decays to zero

as t + , provided jq(O)j is sufficiently small. On the other hand, if

0" # 0, then q(t) + - in finite time if Iq(0)l is large enough, and

q(0) is of a certain sign.

This suggests that, under appropriate assumptions on @, p and a, the

Cauchy problem (1.4), (1.5) should have globally defined classical (C2 )

solutions for sufficiently smooth and small initial data u0 , u1 , while

smooth solutions should develop singularities in finite time if the initial

data are large in an appropriate sense. Such a global existence result for

small data was recently established by Hrusa and Nohel [10] using delicate a

priori estimates obtained by combining an energy method with properties of

Volterra equations (even in the presence of a small body force). We refer to

a recent survey [9] for earlier small data results on initial boundary value

problems modelling the motion of finite viscoelastic bodies, and for technical

simplifications of the analysis in the special cases * 5 or a(t) = e-

For the global results the Cauchy problem is more difficult than the finite
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body problem because the PoincarA inequality is not available to estimate

lower order derivatives from higher order derivatives.

The remainder of our discussion will deal with the formation of

singularities in finite time from smooth solutions of the Cauchy problem

(1.4), (1.5). For the special case * - *, Markowich and Renardy [17] have

obtained numerical evidence for the formation of shock fronts in finite time

from large data, and Hattori [7] has shown that, if *" 1 0 and if the body

B is finite, then there are smooth initial data (which he does not

characterize) for which the corresponding Dirichlet-initial value problem does

not have a globally defined smooth solution. On the other hand, Hrusa [8] has

shown that if 0 is linear and only * is allowed to be nonlinear, then the

Cauchy problem (1.4), (1.5) does have globally smooth solutions, even for

large smooth data. Therefore, we shall restrict ourselves to the case when

fn 0 0, at least over the range of the solution. The case when *" changes

sign will require further refinements.

An important ingredient in the analysis (which is also important for the

global theory) is the following local existence result which is established by

combining Banach's fixed point theorem on an appropriate function space with

standard energy estimates and Sobolev's embedding theorem.

Proposition 1:

Assume that 0, J e C3 (R) satisfy (1.2); assume a, a',
1" (I *)

a" e L [0,w),
(  and there is a constant K > 0 such that

) , e R

(0)

Here the square bracket means integrability up to 0. No sign condition on a
are required, but a'(0) finite is essential.
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Assume that u0 e L 2(R) and that u6, u1 e H
2 (R). Then the Cauchy problem

(1.4), (1.5) has a unique classical solution u e C2(R x [O,T 0 )) defined on

a maximal interval (0,T0 ). If To is finite, then

sup [luXX(x,t)I + Iuxt(x,t)I] =
Rx[O,T 0)

The proof of Proposition 1 is almost identical to that of Theorem 2.1 of

[6], and we omit the details; only certain readily available energy estimates

for lower order derivatives are needed. The characterization of the maximal

interval of existence is established by combining the energy estimates

obtained in [6] with a Gronwall inequality argument. We remark that the

energy estimates used in the proof of Proposition 1 yield time-dependent

bounds which cannot be used to obtain global estimates. These can only be

constructed by taking advantage of the damping mechanism induced by the memory

term under appropriate sign conditions on a and by assuming the initial data

to be small (see [10] for details).

The assumptions concerning the kernel a in Proposition 1 imply that

a' is absolutely continuous on [0,-). Recently, Hrusa and Renardy [11]

established a result similar to Proposition I (and proved a global existence

result for small data for bounded bodies) under assumptions which permit a

singularity in a' at t = 0 (e.g. a'(t) -- , 0 < a < 1 as t + 0

Such singularities are relevant for certain popular models of viscoelastic

materials.

Our main result on development of singularities for large enough data is

Theorem 1:

Let *, 4 e C3 (R) satisfy (1.2) and assume a, a', a" e LL [0,-).-- ' £oc

Assume that 0"(0) # 0. Then, for every T, > 0, we can choose initial

data u6, u, e C2(R) n LO(R) such that the maximal time interval of
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existence, given by Proposition 1, for the smooth solution of the Cauchy

problem (1.4), (1.5) cannot exceed T. More precisely, if sup lu;(x)l and
xeR

sup lu1(x)( are sufficiently small, while u"(x) and u(x) assume

xeR

sufficiently large values with appropriate signs, then there is some

t 4 T, such that

sup * {lu x(x,t)l + luxt(x,t)l} =0 , (1.6)
RX[O,t

while

sup flux(x,t)i + lut(x,t)I} < (1.7)
RX[O,t )

(and in fact, this latter quantity remains small).

In view of the analogy with hyperbolic conservation laws and the

numerical evidence [17], it is to be expected that a blow-up as established by

Theorem 1 will lead to the development of a shock front.

The method of the proof, sketched in section 2, is to show that the

memory term is in fact of lower order than the elastic term *(ux)x and can

be treated as a perturbation. While considerably more technical, the proof is

a gereralization of the approach of Lax [14] for showing the development of

singularities for the quasilinear wave equation

utt = f(ux)x  •

Theorem I was established independently by Dafermos [4) using an approach

which is different from ours but similar in spirit. The result can also be

established by modifying the results of F. John [12] and extending them to

systems of quasilinear hyperbolic conservation laws which contain lower order

source terms (F. John, private communications).

Similar results for first order model problems were derived by

Malek-Mandani and Nohel [16] and, using different methods, by Renardy [18] and

Dafermos [3].
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A particular case of the model equation studied in this paper leads to a

model fo. shearing flows of viscoelastic fluids studied recently by Slemrod

[201. With v(x,t) denoting the velocity of the fluid in simple shear,

Slemrod studies the problem

vt = a*(v x)x  , (x e R, t > 0)

(1.8)

v(xO) = v0 (x) , (x e R)

for the special case a = e-t. Problem (1.8) leads to a Cauchy problem of the

form (1.4), (1.5) after differentiation with respect to time. Thus Theorem 1

can be used to get a blow-up result for this problem, like the result found by

Slemrod for a(t) = e -t. The global existence of solutions for small data

follows from [5, Theorem 4.1]. Other popular models for viscoelastic fluids

have been analyzed by the method used in this paper; the results will be

published elsewhere.

2. Development of Shocks

In this section, we sketch the proof of Theorem 1 establishing the

development of shocks from initially smooth solutions of the Cauchy problem

(1.4), (1.5) in finite time. For simplicity, most of the analysis will be

carried out for the special case a(t) = e-t; the proof for more general

relaxation functions as well as for a more general class of model equations

will be carried out in a forthcoming paper.

We begin by transforming (1.4) to an equivalent system. We let

w = Ux, v = ut, and write the constitutive assumption (1.1) in the form

a O(w) - z , z = -a'**(w) .

Since we have assumed ' > 0, the first of these equations can be

solved for w,

-1
w = 1 (O+z) g(oz)

-7-



and g is a smooth function of a e R, z e R. As long as the solution

remains smooth, the Cauchy problem (1.4), (1.5) is equivalent to the first

order system

vt = ax

at = c 2 (a,z)v + a'(O)*(g(a,z)) + a"*0(g(a,z)) ,(21)

zt  -a'(0)*(g(a,z)) - a"*(g(az))

The initial conditions become

v(x,O) = u 1 (x), 0(x,0) = f(u;(x)), z(x,0) = 0 • (2.2)

By c we have denoted the wave speed

c(o,z) := [4'(g(o,z))] I/ 2  ;

c is a smooth function of a and z. The system (2.1) is hyperbolic, and

its eigenvalues are +c, -c and 0. Under the assumptions of Proposition 1,

a C 1-solution exists on some maximal interval R x [0,T 0 ). If To  is finite,

then v, a, z or one of their first derivatives must become infinitc as

t + To . It is immediate from equation (2.1) that at, 0x, zt  and zx will

remain bounded as long as v, A, z, vt and vx are bounded.

To proceed further, we extend the classical approach of Lax [14] for

first order hyperbolic 2 x 2-systems. We define "approximate" Riemann in-

variants by those quantities which would be the classical Riemann invariants

if z in the first two equations of (2.1) were treated as a parameter. These

quantities are given by

r = r(v,o,z) = v + 1(o,z)

s = s(v,a,z) = v - D(a,z)

(2.3)

¢(a,z) = fa dC
a0 c( ,z)

-8-
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thout loss of generality we may take co = 0. Since D (o,z) =

1 > 0, this correspondence is smoothly invertible, and we have
cz)

r+s r-sV = 2 ( ,z) 2

i the following, we assume a(t) = e -t . Then (2.1) takes the simple form

vt x

= c2 (,z)v - p(g(a,z)) + z (2.4)

Zt = i(g(oz)) - z

e now differentiate r and s along the c and -c characteristics,

espectiv-ly, and z along the zero characteristic (i.e. we form

t - crX' st + csx and zt). This leads to the following first order

Lyperbolic system equivalent to (2.4), (2.2)

r t - Ar. = -Bzx + CD

s + As = -Bz - CD (2.5
t x x(25

Z = D ,t

vith the initial data

r(x,0) = ul(X) + (P(U;(X)),0)

s(x,0) = u (X) - ?((U;(X)),0) , (2.6)

z(x,0) = 0

-9-



A = A(r,s,z) :=c(0(r,s,z),z) > 0 ,

B = B(r,s,z) c(0(r,s,z),z) (O(r,s,z),z)z

C = C(r,s,z) : D ( (r,s,z),z) - 1
z c(a(r,s,z),z)

D = D(r,s,z) = (g(O(r,s,z),z)) - z

To establish the development of shocks in finite time, we study the

lution along characteristics of the quantities

0
xp :=V +x c(o,z)

(2.8)
0
xT :=v V __

x c(o,z)

zx . Note that if z wore a constant parameter, then p and T would

1 1
the x-derivatives of r and s. We have vX = (P+T), O X c(p-T), and

c2 (0,z) = 2cc = ,aO O @ (g(a,Z))*

edious but straightforward calculation using the relations (obtained by

ferentiating (2.4))

Vtx = Gxx

0t= c2 (, z)v + 'c2 (Gz)o v
. a(2.9)

+ (c2)( ,z)zV - Dx x

Ztx = Dx

1I ,s the system

2
(c

t x 0 Ppg-T) + O( H jzx + ITiII X

+ PIo + ITI + Iz )

(C2)(c2

,- Tp-T) +o(olliI + Ii II -  (2.10)
t X X X

+ 10l +l + xIZ + z)

u(K + j + iz x[)



subject to the initial data

p(xO) = u;(x) + *,(u6(x))l2u"(x)

T(x,O) = u;(x) - *'(u6(x))I/2u;(x) , (2.11)

z (X,0) 0

The cross product terms pT in (2.10) are eliminated if one considers the

characteristic derivatives of c(a,z)2p and c(o,z) 'r (see Lax 14] and

Slemrod [19]). We find

+ oIc + Ii + I i ,1)

+ IpI + ITI + Iz xi)

Ext = O(Il + ITI + IjZj)

Here the coefficient function y is given by

Y Y(JJ) 1 *"(g(oz))
4 = (g(Oz)) 5/4

For definiteness, let us assume *"(0) > 0 (the discussion for "(0) < 0 is

analogous). We take initial data with the following properties: u6 and

" u I  (and hence p(x,O), T(x,0) as well as z(x,O) S 0) are uniformly small,

" and p(x,0), T(x,0) are such that at least one of them has a large positive

maximum (by choosing u" or u or both sufficiently large). At the same

. time, the maxima of -p and -T should not be too large.

As long as (r,s,z) remains within a given neighborhood U of 0, we

have upper and lower bounds for the coefficients occuring in (2.12), in

particular, we have a positive lower bound y0 for y. we shall see later

that (r,s,z) will remain in U up to the time of blow-up if they are small

; - .- .- - - ........... -... ...

*. l o . , . . . . . . , . . . *,* * . -.. .. .
...- .",.

A .



enough initially and if we make the maximum of p(x,O) or T(x,O) large

enough.

For every t > 0, we now set

h(t) = max(max p(..,*.), max T(x,t)]

x x

From (2.12), we find that, as long as (r,s,z) e U, while h(t) is large

and maxlzxI << h(t), we have, for some positive constants Y0 and K
X

d + h(t) 20(h(t)) and max ( ixt c h(t) << (h(t))2

-, 0 (~)),mXjt2

Initially, we have Izxj = 0 and it follows from these inequalities that it

will remain small compared to h(t). We also find that h(t) becomes

infinite in finite time. Since there is also some constant y such that
d 2*
(T)+ h(t) < y1(h(t)) , it can be shown that, with t denoting the blow-up

cI c
time of h, we have < h(t) - for some constants c I and c2.

t -t t -t

The third equation of (2.12) then implies that jzxj grows at most

logarithmically as t + t*. Since log(t*-t) is integrable, equations (2.5)

imply that r, s, and z remain bounded and in fact small if their initial

* data are small, and t* is small (which is the case if h(O) is large). In

this way, we can choose the data such that (r,s,z) will in fact remain in

* "U up to the time of blow-up. This completes the sketch of the proof.

-12-

.. . . . . . .*. -. *'.*..°**. . . . . . . . . . . . . . . .

..4.*,|**



References:

El] L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Ann. Phys. 7

(1876), ErgAnzungsband, 624-654.

[2) B. D. Coleman, M. E. Gurtin and 1. R. Herrera, Waves in materials with

memory, Arch. Rat. Mech. Anal. 19 (1965), 1-19; B. D. Coleman and M. E.

* ,Gurtin, ibid, 239-265.

[3] C. M. Dafermos, Dissipation in materials with memory, in: J. A. Nohel,

M. Renardy and A. S. Lodge (eds.), Viscoelasticity and Rheology,

Academic Press, to appear.

(4] C. M. Dafermos, Development of singularities in the motion of materials

with fading memory, Arch. Rat. Mech. Anal., to appear.

( 5] C. M. Dafermos and J. A. Nohel, Energy methods for nonlinear, hyperbolic

Volterra integrodifferential equations, Comm. PDE 4 (1979), 219-278.

(6] C. M. Dafermos and J. A. Nohel, A nonlinear hyperbolic Volterra equation

in viscoelasticity, Amer. J. Math., Supplement (1981), 87-116.

[7] H. Hattori, Breakdown of smooth solutions in dissipative nonlinear

hyperbolic equations, Q. Appl. Math. 40 (1982/83), 113-127.

[8] W. J. Hrusa, Global existence and asymptotic stability for a semilinear

hyperbolic Volterra equation with large initial data, SIAM J. Math.

Anal. 16 (1985), 110-134.

* [9] W. J. Hrusa and J. A. Nohel, Global existence and asymptotics in one-

dimensional nonlinear viscoelasticity, in: P. G. Ciarlet and M. Roseau

(eds.), Trends and Applications of Pure Mathematics to Mechanics,

Springer Lecture Notes in Physics 195 (1984), 165-187.

[ 110] W. J. Hrusa and J. A. Nohel, The Cauchy problem in one-dimensional

nonlinear viscoelasticity, J. Diff. Eq., to appear.

(11] W. J. Hrusa and M. Renardy, On a class of quasilinear partial integro-

differential equations with singular kernels, J. Diff. Eq., to appear.

-13-

* %a*= .n . mnn..sire . . . ... .



[12] F. John, Formation of singularities in one-dimensional nonlinear wave

propagation, Comm. Pure Appl. Math. 27 (1974), 377-405.

[13] S. Klainerman and A. Majda, Formation of singularities for wave

equations including the nonlinear vibrating string, Comm. Pure Appl.

Math. 33 (1980), 241-263.

[14] P. D. Lax, Development of singularities of solutions of nonlinear

hyperbolic partial differential equations, J. Math. Phys. 5 (1964), 611-

613.

[15] R. C. MacCamy and V. J. Mizel, Existence and nonexistence in the large

for solutions of quasilinear wave equations, Arch. Rat. Mech. Anal. 25

(1967), 299-320.

[16] R. Malek-Madani and J. A. Nohel, Formation of singularities for a

conservation law with memory, SIAM J. Math. Anal. 16 (1985), 530-540.

[17] P. A. Markowich and M. Renardy, Lax-Wendroff methods for hyperbolic

history value problems, SIAM J. Num. Anal. 21 (1984), 24-51;

Corrigendum, SIAM J. Num. Anal. 22 (1985), 204.

[18] M. Renardy, Recent developments and open prolems in the mathematical

theory of viscoelasticity, in: J. A. Nohel, M. Renardy and A. S. Lodge

(eds.), Viscoelasticity and Rheology, Academic Press, to appear.

[19] M. Slemrod, Instability of steady shearing flows in a nonlinear

viscoelastic fluid, Arch. Rat. Mech. Anal. 68 (1978), 211-225.

[20] M. Slemrod, Appendix: Breakdown of smooth shearing flow in visco-

elastic fluids for two constitutive relations: the vortex sheet vs. the

vortex shock, in: D. D. Joseph, Hyperbolic phenomena in the flow of

viscoelastic fluids, to appear in: J. A. Nobel, M. Renardy and A. S.

Lodge (eds.), Viscoelasticity and Rheology, Academic Press.

JAN/MR/jvs

-14-



SECURITY CLASSIFICATION Or THIS PAGE (WN.n Data Entered)

PAGE READ INSTRUCTIONS
REPORT DOCUMENTATION P EDEFOR COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENToS CATALOG NUMUER

#28211

4. TITLE (and Subel~le) S. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific
Development of Singularities in Nonlinear reporting period
Viscoelasticity 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(#) S. CONTRACT OR GRANT NUMBER(a)

MCS-8215064

J. A. Nohel and M. Renardy DAAG29-80-C-0041

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Mathematics Research Center, University of AREA U WORK UmT NUMBERS

610 Walnut Street Wisconsin Applied Analysis

Madison, Wisconsin 53705 AppliedAnalysis

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
May 1985

See Item 18 below 1S. NUMBER Of PAGES

14
14. MONITORING AGENCY NAME & AOORESS(if dlferent from Controlling Ofice) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
15a, DECLASS FI CATION! DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of tit Report)

Approved for public release; distribution unlimited.

1?. DISTRIBUTION STATEMENT (of the abesact entered In Block 20. II different from Report)

IS. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, DC 20550
Research Triangle Park
North Carolina 27709

IS. KEY WORDS (Continue an revere side If necessary aid Identify by block number)

nonlinear hyperbolic problems, Volterra integrodifferential equations, smooth
solutions, dissipation, global existence, decay, development of singularities,
shocks, viscoelastic solids, viscoelastic fluids, materials with memory.

20. ABSTRACT (Continue an reverse aide It necessary mid Identify by block number)

We discuss the motion of nonlinear viscoelastic materials with fading
memory in one space dimension. We formulate the mathematical problem, survey
results for global existence of classifical solution to the initial value
problem if the data are sufficiently small, and discuss in detail the development
of singularities in initially smooth solutions for large data.

DD Fa 1473 DITION OF I NOV65 ISOBSOLETEDD , AN ,,UNCLASSI FIED
SECURITY CLASSIFICATION OF THIS PAGE (4ben efet. Entored)

I I'illl lne IH Iia it lli aI


