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ABSTRACT

Interval integration is used to obtain inclusions of integral operators of

the form falem 2 20T

'Y N
g(u)(s) =§@s,t.ﬂ8),u(t))dt> (1)

which can be carried out on a computer. The resulting inclusions, combined with
interval iteration, are used to compute guaranteed upper and lower bounds for
solutions of integral equations of the form

. u = g(u) (2) -
. N oo Sy

for 8 € S. It is also possible to establish existence or nonexistence of
solutions of integral equations in given regions on the basis of results of the

. computation. Examples of applications of this technique to linear and nonlinear
integral equations are eigenvalue problems for linear integral operators are
given.

AMS (MOS) Subject Classifications: 65G10, 65710, 65J20, 65R20

Key words: Integral equations, Eigenvalue problems, Error bounds, Interval
integration, Interval iteration . -

Work Unit Number 3 - Numerical Analysis and Scientific Computing
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SIGNIFICANCE AND EXPLANATION

This report is the text of an invited address to be given at the llth IMACS
World Congress, to be held in Oslo, Norway, on August 5-9, 1985. The theories
of interval integration, interval iteration and their applications to integral
equations have been developed in previous papers. This report surveys these
results, but concentrates on computer implementation by discussing various ways
in which inclusions of integral transforms can actually be represented on a
computer. The computations based on these inclusions are self-validating, in
that existence of solutions and upper and lower bounds for the solutions of
linear and nonlinear integral equations and eigenvalue problems can be
guaranteed on the basis of computed results alone. It is assumed, of course,
that the computing environment supports interval computation. Since support for
interval arithmetic is now required by the IEEE standard for floating-point
arithmetic, and provided by Pascal-SC for microcomputers and ACRITH for IBM 370
mainframe computers, the need to make special provision for interval arithmetic
is only necessary on outdated systems.

Some simple examples illustrating the techniques presented in the paper are
cited.
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COMPUTABLE BOUNDS FOR SOLUTIONS OF INTEGRAL EQUATIONS
L. B. Rall
Summary
Interval integration is used to obtain inclusions of integral operators of the form
g(u)(s) = ITg(l,t,u(s),u(t))dt (1)

which can be carried out on a computer. The resulting inclusions, combined with interval
iteration, are used to compute guaranteed upper and lower bounds for solutions of integqral

equations of the form

u = g{u) (2)
for 8 € S. It is also possible to establish existence or nonexistence of solutions of
integral equations in given regions on the basis of results of the computation. Examples
of applications of this technique to linear and nonlinear integral equations and eigenvalue

problems for linear operators are given.

Integral Equations

The integral equation expressed by (2) includes many of the varieties of integral

equations of importance in applications. For example, for

Spongored by the United States Army under Contract No. DAAG29-80-C-0041.




g(s,t,u(s),ul(t)) = £(x) + AK(s,t)u(t), (3)

the result is the linear integral equation of Fredholm type and second kind,

uls) = £0x) + A K(s,t)u(t)at, (4)
while the choice

g(s.t,u(s),u(t)) = £f(s,t,u(t)), (5)
gives the nonlinear integral equation of Urysohn type

u(s) = fo(s.t,u(t))dt. (6)
]

and so on [12]. In general, S and T are subsets of some possibly high-dimensional real or

complex spaces. For definiteness, we will take § = T = [0,1], and consider integral

equations of the form
1
u(s) = [og(s,t,u(s),u(t))dt, (7)
since the discussion given here will carry over immediately to the more general case. It
is also worth noting that (7) includes Volterra integral equations as the special case

g(s,t,v,w) = 0 for t > s.

Interval Analysis

Our purpose is to find functions u(t), u(t) such that

u(s) < u(s) < u(s) (8)
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0 < 8 <1, in other words, an interval-valued function

u(s) = [u(s), u(s)) (9)

such that u(s) € U(s) for s € [0,1] [1]. The process described in [12] for this purpose is

a combination of interval integration (1] and interval iteration ({9].

Interval Integration

The integral of an interval function U(t) is defined to be

Jiuteras = [[lusras, [lateras], (10)

where under and overbars on the integral signs within the brackets denote respectively
lower and upper Darboux integrals [1]. Since these Darboux integrals always exist, it

follows that all interval (and hence all real) functions are integrable in thig sense.

Interval Iteration

Interval iteration for the fixed-point problem (2) works like this (9], [12]): Suppose

that one has an interval inclusion G of the operator g, that is, an operator from interval

functions to interval functions such that g(u) € G(U) for each u € U. Then, starting with

an intial interval function 00, one computes

Upyq = Uy NGO (1)

Interval iteration has the following properties [9]:

1. If u €Uy is a solution of (2), then the interval iteration will converge to

* -
U nﬁb Un, (12)

3=

_-‘ -, '.- o .' - ® - . n-‘
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and u € U*.

2. 1f for some integer n,
U, N16(U,) = g, (13)

the empty set, then there are no solutions u of (2) in the initial interval Uy

3. If
G(uy) C Uy (14) i

for some integer n, then a solution u of (2) exists in the initial interval Uo.

.

Thus, interval iteration can be used to prove existence of solutions if (14) holds,

nonexistence by (13), or to obtain improved bounds for solutions by (12). The problem in

re_ ¥

actual computation is then to construct an interval inclusion G of the integral operator g

}
in (1). One way to do this is to construct an inclusion G(s,t,U(s),U(t)) of the integrand :
by using interval arithmetic (6], and then use interval integration to include the )

¥
operator. Here, by "interval arithmetic®, we mean interval inclusions of the ordinary E
library functions available on a computer in addition to the arithmetic operations ' g
themselves. We now present several ways to implement such a construction on an actual !
computer. It is assumed, of course, that interval computation is properly supported, as in
Pascal-SC or ACRITH.

Inclusion of Integral Operators

IS

Interval Arithmetic t
A straightforward method to construct an inclusion of the integral operator (1) simply

»

-
uses interval arithmetic. Here, the interval S = T = [0,1] is partitioned into n "
subintervals &
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with endpoints 8, 4 < 8;, 8; = 0, s, = 1, and widths w(S;) = 8,-8, ,. Further, we define

an interval step function U by U(s) = U= [‘-‘1"-‘1] for 8 € 84 Then, if u € U, it follows

that

g(s.t,u(s),u(t)) € G(S;,Ts,U;.,Us) (15)
b Lt S |

for 8 € Sy t GTj- Thus,

n
u(s) € jZ1Gij(U‘;Uj)-w('1‘j)a (16)

where cij(ui.uj)-c(si,'rj,ui,uj), because the interval Riemann sum on the right side of (16)

contains the interval integral of G(s,t,U(s),U(t)) (1]. 1In this case, the interval

iteration (11) can be carried out in the form

IR n+1
uptl = [ ey il eery +

o1 3 3
(17
n
. n . n n
+ zcij(ui,uj)m(-rj)] nug,

=

a "Gsuss-Seidel" iteration which makes use of updated information as it is produced, and

has the same convergence properties as (11) [13]. This simple approach to solving integral

equations has the following advantages:
1. It is easy to implement on a computer.

2. No special properties of g(s,t,v,w) such as positivity or monotonicity are

B




required.

3. The computation is self-validating, with existence of a solution of the integral
equation and lower and upper bounds for it guaranteed if (14) holds.
4. A form of “"superconvergence" holds at the nodes 8y for £ = 1,...,n-1. Since u(sy)

€ U] and u(s;) €U? ., it follows that
u(sy) €0} nui,,, (18)

which results in narrower bounds for u(s) at these points [12].

The main disadvantage of this simple procedure is very slow convergence if iteration
is carried out to the point at which UP = UP*! on the computer [7]. Instead of wasting
iterations which result in little improvement in the bounds for the solution, it is better

to stop when the decrease in w(U? n U?+1) falls below a given limit.

Monotonicity Methods

Interval analysis of integral equations is simplified considerably if the function
g(s,t,v,w) has known monotonicity properties with respect to v,w. The underlying partial
ordering for real functions is, of course, componentwise. We say that v < w if v(s) < w(s)
for all 8 € S. If, for example, g(s,t,v,w) is isotone (monotone increasing) with respect

to v, and antitone (monotone decreasing) with respect to w, then

G(s,t,U(s),U(t)) =
(19)

= [g(sytlﬁ(s),u(t)): g(slt.ﬁ(s)'u(t))]

will provide an interval inclusion of g(s,t,u(s),u(t)) for u € U. Since interval iteration
is inclusion monotone [1], integration of (19) will yield an interval inclusion G of the
integral operator g. Methods using monotonicity properties of operators to obtain lower

and upper bounds for solutions of functional equations have been investigated extensively

-6~
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by Collatz (2] and others. In theory, a function of bounded variation can be expressed as
the sum of an isotone and an antitone function, so that g(s,t,u(s),u(t)) could be expressed
in terms of a finite number of such functions; however, it is not usually possible to
perform this construction explicitly [4].

The actual implementation of monotonicity methods is hampered by the fact that is
dAifficult to carry out and represent the transform G(U) on the computer, even for simple
interval functions U(s). For example, if y and u are step functions, then G([y,u]) will
not in general be a step function, and the representation of more and more complicated
functions will be necessary as the iteration proceeds. A solution to this problem is

provided by the concept of directed rounding in function space.

Directed Rounding

For actual computation, we take a set ¢ of functions which can be represented exactly
on a computer. For example, ¢ can consist of step functions which have nodes and values

which are floating-point numbers. An upward rounding operator A from the set R of real

functions into ¢ has the following properties:

(i) du=u if u € &

(1i) u € Au for u € R,

(ii1i) 4if u < v, then Au < Av.

These conditions imply, among other things, that there is no element v of ¢ such that u < v

< Av (3], hence, this rounding is "optimal"” in a certain sense. The downward rounding

operator V is defined in a similar way, with the inequality signs reversed. Thus, if one

has the same monotonicity properties for the function g(s,t,u(s),u(t)) as in (19), an

interval inclusion of g can be computed by

-7-




G(u) = [vf(,‘c;(s,c.n_x(s).ﬁ(tndt.

(20)
1 -
Af, G(s,t,uls),u(tnae],
An an example of this type of computation, consider the integrand
Au(slu(t)
g(s,t,u(s),u(t)) = 1 + __i—:_t.—' ’ (21)

which arises in radiative transfer theory, where 0 < A < 0.5 [12]. Here, & will be the set
of step functions, and it follows from (21) that the integrand is isotone for positive

functions. Let f € ¢ have value f; in the subinterval T; of [0,1]. Then, for s € Sy

n s + 8,
g(f)(s) = 1 + Asf » § £ eln{——I-}, (22)
i 3=1 j 8 + sj-‘l

s monotone function which can be rounded downward and upward to bound the integral operator
(10). Numerical computations using this method for bounding the integral operator show
both faster convergence and applicability to an extended range of )\ as compared to the
simple approximation to the integral operator using interval arithmetic {10]. For example,
(14) holds when the operator is approximated by interval Riemann sums only for 0 < A <
}.365, while the use of (22) extends this range to 0 < A €< 0.45% [10]. The number of :

iterations is also drastically reduced over those reported in [7].

Iterative Residual Correction

The method of interval iteration can be combined in a simple way with other
ipproximate methods for the solution of integral equations. The result gives essentially a
ethod for choosing the initial interval Uo in which the solution u of (2) is sought.

luppose, for example, that a numerical solution of the integral equation yields the

-8-




approximation u, = ug(s) to a solution. If this solution is believed to be correct within
€, then it is natural to start the interval iteration with Ug(s) = ugy(s) + e+{-1,1], for
example. If it turns out that (14) is satisfied for n = 0, then the interval computation
immediately validates the existence of the solution u in the interval UO’ and also the
error bound ¢ [3]. The interval iteration can then be continued if it is desired to obtain
a better error bound for the approximate solution than ¢. The same applies to Un if (14)
is satisfied for some value of n > 0.

The advantages to this approach are that it may be much quicker to obtain a good
approximation to the solution of the integral equation using floating-point arithmetic
instead of interval arithmetic, and the width of the initial interval Ug is usually very
small. This is important because interval inclusions of functions on intervals usually
have excess width over the range of the function on that interval, that is, w(F(X)) can be
mach larger than w(f(X)) for a given real function f and real interval X. However, it is
known that w(F(X)) + w(f(X)) as w(X) + 0 if £ is continuous {5). This convergence result
implies that interval calculations conducted with intervals of small width will estimate
the values of the included real function more accurately, and the iteration will hence also
converge more rapidly to whatever tolerance limit is set by the solver of the equation or
the computing equipment used.

In terms of the residual

To = 9lug) = ug.

one can write

u = uy =rg+ glu) - gluy)l,

and if G' denotes an interval extension of the Fréchet derivative g' of g, then the

interval mean value theorem {11] gives

-9~
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o ..; .",.u’

v -uy €rg + G'(U)(U - ug),

~
L

~ or, for Uy = u, + €¢[-1,1],

N
18

u=-u, €ry+ eG'(Ug)e[-1,1].

<

- Eigenvalue Problems

:‘: A simple application of the interval method for solution of integral equations is to

the eigenvalue problem

- b

% u(s) = Af K(s.thu(tiat (31)

o for Fredholm integral operators K with kernel K(s,t). It follows from the above that if
- U(s) is an interval function such that 0 £ (U,U) and U contains an eigenfunction u of K,
-. then the eigenvalue A belonging to the eigenfunction u will be contained in the interval
Rayleigh quotient '
e

." .
'.‘. A = (KRU,U)/(U,U), (32)

N

where the scalar products are formed by interval integration, and the division is done in

:f interval arithmetic [8]. This process forms the basis of an interval iteration method.

P4

'-: Starting with Ug, one can compute Ag by (32). Having U, and A, the next step is to

-'; iterate

o Vet = MKV NV, (29)

~

to convergence, starting with Vg = U,. If V* denotes the converged value of V, then one
i

® . takes

‘¢
.-,

v

l’ v
¢

-10-
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. Upey = V* (30)
R and then
foe 0 e Yne! (31)
1 (01U

The interval Rayleigh quotient (32) has the advantage that it gives lower and upper
bounds for all eigenvalues of K, including the smallest. Most methods for approximating
the smallest eigenvalue give only upper bounds [8]. For example, let K(s,t) be the Green's
function for the differential operator =-y" on [0,n] with boundary conditions y(0) = y(v) =

0. One can start with Uo(s) defined by

u(s) =1, 0<8 <™

ui(s) = (2/7)s, 0 <8 < w/2, (32)

u(s) = (2/x)(n - 8), W/2<s8 <

and obtain Ao = [{0.4052,2.5033], while a second iteration gives A, = [0.6792,1.9454]), which

provides better guaranteed lower and upper bounds for the smallest eigenvalue A = 1 of the

problem.

-11-
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