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ABSTRACT

Interval integration is used to obtain inclusions of integral operators of
the form "

g(u)(s) = stus)u(t))dD

which can be carried out on a computer. The resulting inclusions, combined with
interval iteration, are used to compute guaranteed upper and lower bounds for
solutions of integral equations of the form

u - g(u) (2-

for s E S. It is also possible to establish existence or nonexistence of
solutions of integral equations in given regions on the basis of results of the
computation. Examples of applications of this technique to linear and nonlinear
integral equations are eigenvalue problems for linear integral operators are
given.
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SIGNIFICANCE AND EXPLANATION

This report is the text of an invited address to be given at the 11th IMACS
World Congress, to be held in Oslo, Norway, on August 5-9, 1985. The theories
of interval integration, interval iteration and their applications to integral
equations have been developed in previous papers. This report surveys these
results, but concentrates on computer implementation by discussing various ways
in which inclusions of integral transforms can actually be represented on a
computer. The computations based on these inclusions are self-validating, in
that existence of solutions and upper and lower bounds for the solutions of
linear and nonlinear integral equations and eigenvalue problems can be
guaranteed on the basis of computed results alone. It is assumed, of course,
that the computing environment supports interval computation. Since support for
interval arithmetic is now required by the IEEE standard for floating-point
arithmetic, and provided by Pascal-SC for microcomputers and ACRITH for IBM 370
mainframe computers, the need to make special provision for interval arithmetic
is only necessary on outdated systems.

Some simple examples illustrating the techniques presented in the paper are
cited.
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COMPUTABLE BOUNDS FOR SOLUTIONS OF INTEGRAL EQUATIONS

L B. Rall

Sunomary

Interval integration is used to obtain inclusions of integral operators of the form

g(u)(s) - T g(st,u(s),u(t))dt (1)

which can be carried out on a computer. The resulting inclusions, combined with interval

iteration, are used to compute guaranteed upper and lower bounds for solutions of integral

equations of the form

u - g(u) (2)

for s ( S. It is also possible to establish existence or nonexistence of solutions of

integral equations in given regions on the basis of results of the computation. Examples

of applications of this technique to linear and nonlinear integral equations and eigenvalue

problems for linear operators are given.

Integral Equations

The integral equation expressed by (2) includes many of the varieties of integral

equations of importance in applications. For example, for

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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g(s't'u(..),u(t)) - f(x) + )XK(st)u(t), (3)

the result is the linear integral equation of Fredholm type and second kind,

U(S) - f(x) + Xf?1(s,t)u(t)dt, (4)

while the choice

g~s't'u~s),u(t)) - f(srtru(t)), (5)

gives the nonlinear integral equation of Urysohn type

U(s) - fTf(dltru(t))dtF 6

and so on (12]. In general, S and T are subsets of some possibly high-dimensional real or

complex spaces. For definiteness, we will take S = T - [0,11, and consider integral

equations of the form~

U(s) - fJ g(s,tju(s),u(t))dt, (7)

since the discussion given here will carry over I-uidiately to the more general case. it

is also worth noting that (7) includes Volterra integral equations as the special case

g(s,t,v,w) S0 for t s .

Interval Analysis

Our purpose is to find functions u~t), i(t) such that

R(s) 4 u(s) < aWs (8)
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0 4 a 4 1, in other words, an interval-valued function

U(s) - [(s), 5(s)] (9)

such that u(s) E U(s) for 6 ( [0,1] [1]. The process described in [12] for this purpose is

a combination of interval integration [1) and interval iteration (9).

Interval Integration

The integral of an interval function U(t) is defined to be

JU(s)ds - [fu(s)ds, f(s)ds], (10)
0

where under and overbars on the integral signs within the brackets denote respectively

lower and upper Darboux integrals [1]. Since these Darboux integrals always exist, it

follows that all interval (and hence all real) functions are integrable in this sense.

Interval Iteration

Interval iteration for the fixed-point problem (2) works like this [9], [12): Suppose

that one has an interval inclusion G of the operator g, that is, an operator from interval

functions to interval functions such that g(u) E G(U for each u E U. Then, starting with

an intial interval function U0 , one computes

Un+1 - Un " G(Un)- (11)

Interval iteration has the following properties [9]:

1. If u E U0 is a solution of (2), then the interval iteration will converge to

U- nno Un, (12)
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and u ( U*.

2. If for some integer n,

Un IG(Un) -0, (13)

the empty set, then there are no solutions u of (2) in the initial interval U0 .

3. If

G(Un) C Un (14)

for some integer n, then a solution u of (2) exists in the initial interval U0 .

Thus, interval iteration can be used to prove existence of solutions if (14) holds,

nonexistence by (13), or to obtain improved bounds for solutions by (12). The problem in

actual computation is then to construct an interval inclusion G of the integral operator g

in (1). One way to do this is to construct an inclusion G(s,t,U(s),U(t)) of the integrand

by using interval arithmetic [6], and then use interval integration to include the

operator. Here, by "interval arithmetic", we mean interval inclusions of the ordinary

library functions available on a computer in addition to the arithmetic operations

themselves. We now present several ways to implement such a construction on an actual

computer. It is assumed, of course, that interval computation is properly supported, as in

Pascal-SC or ACRITH.

Inclusion of Integral Operators

Interval Arithmetic

A straightforward method to construct an inclusion of the integral operator 
(1) simply 4.

uses interval arithmetic. Here, the interval S - T - (0,1] is partitioned into n

subintervals

-4-
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Si - Ti - [ei=lSi]

with endpoints 81 I r ml 80 - 0, On  1, and widths w(Si) - i_, . Further, we define

an interval step function U by U(a) - Ui - [u g i ] for s E Si . Then, if u E U, it follows

that

g(e~t~u(m).U(t)) E G(SiTj.Ui.Uj)  (15)

for a ( Sit t (Te Thus,

n
u(s) I Gij(UA.Uj) ow(T ), (16)

i-i

where Gi (Ui.Uj)-G(SiTfUiUj), because the interval Rimaunn sum on the right side of (16)

contains the interval integral of G(s,t,U(s),U(t)) [I]. In this case, the interval

iteration (11) can be carried out in the form

I C (0U'+') *w(T ) +
j.1 ij i i j

(17)

n
+ nGi (U ,U ).w(Tj)I fU i,

a %Gsuss-Seidel" iteration which makes use of updated information as it is produced, and

has the same convergence properties as (11) [13). This simple approach to solving integral

equations has the following advantagest

1. It is easy to implement on a computer.

2. no special properties of g(s,t,v,w) such as positivity or monotonicity are

-5-
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required.

3. The computation is self-validating, with existence of a solution of the integral

equation and lower and upper bounds for it guaranteed if (14) holds.

4. A form of "superconvergence" holds at the nodes si for i - 1,...,n-1. Since u(s)

E ' and u(si ) E Uni Ui+ 1, it follows that

u(si) EU flUi+, (18)

which results in narrower bounds for u(s) at these points [12].

The main disadvantage of this simple procedure is very slow convergence if iteration

is carried out to the point at which Un _ Un+1 on the computer (7]. Instead of wasting

iterations which result in little improvement in the bounds for the solution, it is better

to stop when the decrease in w(Ut fn UJ+) falls below a given limit.

onotonicity Methods

Interval analysis of integral equations is simplified considerably if the function

g(s,t,v,w) has known monotonicity properties with respect to v,w. The underlying partial

ordering for real functions is, of course, componentwise. We say that v - w if v(s) 4 w(s)

for all s E S. If, for example, g(s,t,v,w) is isotone (monotone increasing) with respect

to v, and antitone (monotone decreasing) with respect to w, then

G(s,t,U(s),U(t)) =

(19)

1 [g(s,t,U(s),g(t)), g(s,t,r(s),g(t)]

will provide an interval inclusion of g(s,t,u(s),u(t)) for u E U. Since interval iteration

is inclusion monotone f1], integration of (19) will yield an interval inclusion G of the

integral operator g. Methods using monotonicity properties of operators to obtain lower

and upper bounds for solutions of functional equation% have been investigated extensively
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by Collatz (2] and others. In theory, a function of bounded variation can be expressed as

the sum of an isotone and an antitone function, so that g(s,t,u(s),u(t)) could be expressed

in terms of a finite number of such functions; however, it is not usually possible to

perform this construction explicitly [4].

The actual implementation of monotonicity methods is hampered by the fact that is

difficult to carry out and represent the transform G(U) on the computer, even for simple

interval functions U(s). For example, if M and E are step functions, then G([],u]) will

not in general be a step function, and the representation of more and more complicated

functions will be necessary as the iteration proceeds. A solution to this problem is

provided by the concept of directed roundin2 in function space.

Directed Rounding

For actual computation, we take a set 0 of functions which can be represented exactly

on a computer. For example, * can consist of step functions which have nodes and values

which are floating-point numbers. An upward rounding operator A from the set R of real

functions into 0 has the following properties:

(i) Au = u if u E 4,

(iiJ u C Au for u ( R,

(iii) if u < v, then Au 4 dv.

These conditions imply, among other things, that there is no element v of 0 such that u 4 v

f Av (3], hence, this rounding is "optimal" in a certain sense. The downward rounding

operator V is defined in a similar way, with the inequality signs reversed. Thus, if one

has the same monotonicity properties for the function g(s,t,u(s),u(t)) as in (19), an

interval inclusion of g can be computed by

-7-
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G(U)= [Vf0 G(s,t,u(s),u(t))dt,

(20)

1Af0 G(s,t,u(s),u(t))dt],

An an example of this type of computation, consider the integrand

AuCs )u (t)
g(s,t,u(s),u(t)) = I + s+t) (21)

which arises in radiative transfer theory, where 0 < A 4 0.5 [12]. Here, 9 will be the set

of step functions, and it follows from (21) that the integrand is isotone for positive

functions. Let f E 9 have value fi in the subinterval Ti of [0,1]. Then, for s E Si,

n S + a.
g(f)(s) - 1 + Asf .j f..lns + s '2 1

, (22)

Sj=1 j-1

monotone function which can be rounded downward and upward to bound the integral operator

[10]. Numerical computations using this method for bounding the integral operator show

Doth faster convergence and applicability to an extended range of A as compared to the

simple approximation to the integral operator using interval arithmetic [10]. For example,

(14) holds when the operator is approximated by interval Riemann sums only for 0 4 A C

).365, while the use of (22) extends this range to 0 e A 4 0.451 [10]. The number of

Lterations is also drastically reduced over those reported in [7].

Iterative Residual Correction

The method of interval iteration can be combined in a simple way with other

pproximate methods for the solution of integral equations. The result gives essentially a

method for choosing the initial interval U0 in which the solution u of (2) is sought.

1uppose, for example, that a numerical solution of the integral equation yields the

-/..-.. *...................,,. --.- ,--..-•.,.,"..........-.. .-.- . ..-..-.-... ',
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approximation u0  u0 (s) to a solution. If this solution is believed to be correct within

e, then it is natural to start the interval iteration with U0(s) = u0 (s) + E-[-1,1], for

example. If it turns out that (14) is satisfied for n = 0, then the interval computation

immediately validates the existence of the solution u in the interval U0, and also the

error bound c [31. The interval iteration can then be continued if it is desired to obtain

a better error bound for the approximate solution than e. The same applies to Un if (14)

is satisfied for some value of n > 0.

The advantages to this approach are that it may be much quicker to obtain a good

approximation to the solution of the integral equation using floating-point arithmetic

instead of interval arithmetic, and the width of the initial interval U0 is usually very

small. This is important because interval inclusions of functions on intervals usually

have excess width over the range of the function on that interval, that is, w(F(X)) can be

much larger than w(f(X)) for a given real function f and real interval X. However, it is

known that w(F(X)) + w(f(X)) as w(X) + 0 if f is continuous [5]. This convergence result

implies that interval calculations conducted with intervals of small width will estimate

the values of the included real function more accurately, and the iteration will hence also

converge more rapidly to whatever tolerance limit is set by the solver of the equation or

the computing equipment used.

In terms of the residual

r0 ' g(u0 ) - u0,

one can write

u - u0 - r0 + g(u) - g(u0),

and if G' denotes an interval extension of the Frchet derivative g' of g, then the

interval mean value theorem 11] gives

-9-
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u - u 0 E r0 + G'I(U)(U - u 0 ),

or, for U0 - +

U - U0 E r0 + e.G'(0)*-I,1].

Eigenvalue Problems

A simple application of the interval method for solution of integral equations is to

the eigenvalue problem

u(s) - AfabK(st)u(t)dt (31)

for Fredholm integral operators K with kernel K(s,t). It follows from the above that if

U(s) is an interval function such that 0 A (U,U) and U contains an eigenfunction u of K,

then the eigenvalue A belonging to the eigenfunction u will be contained in the interval

Rayleigh quotient

A- (KU,U)/(UU), (32)

where the scaler products are formed by interval integration, and the division is done in

interval arithmetic [8]. This process forms the basis of an interval iteration method.

Starting with U0, one can compute &0 by (32). Having Un and An the next step is to

iterate

Vn+1 AnKVn n Vn (29)

"" to convergence, starting with V0 - Un . If V* denotes the converged value of V, then one

takes

-10-
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Un1 =V* (30)

and then

(KU n1, Un+
A n+1 =An fl-( n+1' n+1 (31)

The interval Rayleigh quotient (32) has the advantage that it gives lower and upper

bounds for all eigenvalues of K, including the smallest. Most methods for approximating

the smallest eigenvalue give only upper bounds (8]. For example, let K(s,t) be the Green's

function for the differential operator -y" an [O,w] with boundary conditions y(0) =y(w)-

0. One can start with U0(s) defined by

1,~s 0 r. e. IF,

u(s) -(2/1)s, 0 4 a 4 wr/2, (32)

U(s) - (2/w)(ir - s), wr/2 4 s 4 v

and obtain =O (0.4052,2.50331, while a second iteration gives A, 1 0.6792,1.9454), which

provides better guaranteed lower and upper bounds for the smallest eigenvalue X~ I of the

problem.
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% * '* ; .~Y



References

1. 0. Caprani, K. Madsen, L. B. Rail. Integration of interval functions. SIAM J. Math.

Anal. 12 (1981), 321-341.

2. L. Collatz. Funktionalanalysis und Numerieche Mathematik. Springer, Berlin, 1964.

3. E. Kaucher and W. Miranker. Self-Validating Numerics for Function Space Problems.

Academic Press, New York, 1984.

4. E. J. McShane. Integration. Princeton University Press, Princeton, N. J., 1944.

5. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N. J., 1966.

*: 6. R. Z. Moore. Methods and Applications of Interval Analysis. SIAM Studies in Applied

* Mathematics, Vol. 2, SIAM, Philadelphia, 1979.

* 7. L. B. Rail. Numerical integration and the solution of integral equations by the use

of Riemann sums. SIAM Rev. 7 (1965), 55-64.

" 8. L. B. Rall. Interval bounds for stationary values of functionals. Nonlinear Anal. 6

(1982), 855-861.

9. L. B. Rail. A theory of interval iteration. Proc. Amer. Math. Soc. 86 (982), 625-

631.

_- 10. L. B. Rall. Interval methods for fixed-point problems. MRC Tech. Sunmary Rapt. No.

2583, Univ. of Wisconsin-Madison, 1983.

11. L. B. Rall. Mean value and Taylor forms in interval analysis. SIAM J. Math. Anal. 14

-' (1983), 223-238.

12. L. B. Rall. Application of interval integration to the solution of integral

equations. J. Integral Equations 6 (1984), 127-141.

13. P. Wisskirchen. Vergleich intervallarithmetiecher Iterationsverfahren. Computing 14

-" (1975), 45-49.

-12-

iJ%

.i ..,.. , ., ...., ..... ... . .... .-. .. . .. , .--. .-,.-, .,. ,. .. ., : ,---, ... .-. ..- ..; .,-



SECURITY CLASSIFICATION OF THIS PAGE (7Am DOe teen )_

REPORT DOCUMENTATION PAGE READ DISTRUCTONS
RT BEFORE COMPLETNG FORM

. REPORT HUMMER 2. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMBER

~2816
4. TITLE (and Shubte) S. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific
COMPUTABLE BOUNDS FOR SOLUTIONS OF reporting period
INTEGRAL EQUATIONS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(q) S. CONTRACT OR GRANT NUMSER(e)

L. B. Rall DAAG29-8o-C-0041

. PERFORMING ORGANIZATION NAME AND ADDRESS MO. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Mathematics Research Center, University of Work Unit Number 3 -
610 Walnut Street Wisconsin Numerical Analysis and
Madison, Wisconsin 53706 Scientific Computing
II. CONTROLLIG OFPICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office May 1985
P.O. Box 12211 12. HUMER OF PAGES

Research Triangle Park, North Carolina 27709 12
I& MONITORING AGENCY NAME a ADDRESS(It different 1rn' Contolllnd Office) I& SECURITY CLASS. (of thle report)

I UNCLASSIFIED
I r DECLASSI FICA TION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (o1 off Report)

"" Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of Bhe abastthentered in Btk 20. it different ro Report)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue an revMe elde is noae*amW end Identify by block nmber)

Integral equations
Eigenvalue problems
Error bounds
Interval integration
Interval iteration

20. ABSTRACT (Continue an revere slde If tne.eary md Ildonity by block Mmber)

Interval integration is used to obtain inclusions of integral operators of
the form

g(u)(s) = f g(s,t,u(s),u(t))dt
T

which can be carried out on a computer. The resulting inclusions, combined with
interval iteration, are used to compute guaranteed upper and lower bounds for

FORM1TJ m.o. ov.,sO*ET
-DO I 14n EDIoN OP I NOV 6S IN OSOLETE UNCASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (alIen Date Xntoere
- t. ** * * - - - 1 l e - e - - . * . .

I 
. . .

" .-.... . . .. :,.'. , , ,, , . .'. ,'.'..,. .-:.- .-*. .',.._, ;,,;.;,-. . .• . . .
- - . - -. '* % . .% '. ..' • _%.%'% -% % '* -.. %* ' .'_. °'_* .°.- . ... - -- . ... '. -*0%%% % * °* ,%'Ih .

,. - .. .. . , .- , . . -. -, . -, -. , . .%. .. , ,, .. ._, - - . - , .- .o. ,. * _, ..- .: ,, . - , . , . . ,,,- ' ? ,
J _" * r •. " " q t

e
, '* -- . - -- R'. -- .. . . , • •%' '. w. ... _ ' . .. ** • '-. N



20. ABSTRACT - cont'd.

solutions of integral equations of the form

u = g(u) (2)

for s e S. It is also possible to establish existence or nonexistence of
solutions of integral equations in given regions on the basis of results of the
computation. Examples of applications of this technique to linear and nonlinear
integral equations are eigenvalue problems for linear integral operators are
given.

N '6



FILMED

9-85

DTIC


