
A *asi 14 PRACTICAL ASPECTS Of FUNCTIONAL TESTING TECHNIQUES(UILI VERPOL tINV (EN)OLDPT OF STATIlSTICS AND

COMPUTATIONAL ATHMATICS U A HENNELL El AL. 31 JAN 85
O AJA3781-C-0736 r/a 9/2

I II IIIIIIIIIIl
IIIIIIIIIIIIII

1. I
7 1 11

1-25 1*4

00
W

AD j A

0

Practical Aspects of Functional

Testing Techniques

Final Technical Report

by

M. A. Hennell

M. U. Shaikh

S. Presland
o

11. Fairfield

Dept. of Statistics and Computational Mathematics

University of Liverpool

Liverpool L69 3BX

U.K.

United States Army

EUROPEAN RESEARCH OFFICE OF THE U. S. ARMY

London, England

Contract No. DAJA37-81-C-0736

0_

SApproved for Public Release; distribution unlimited.
LW

9~

/FI) INITR'C rI IL REPORT DOCUMENTATION PAGE HF- '\IR ''Ti1 - .m

-'inal Technical Report
'17 Sept 81-1 Jan. l5

ract ical, Aspects of cunctional esting Tech- PERFORMING, R-, PEP:)P .3.ER

- - niques
7 8 CONTRACT OR GRANT NuJM8S-R'4,

,".A. Hennell, M.U. Shaikh, DAjA37-8l-C-0736

S. Presland, P., Fairfield

9 PERFORMING ORGANI ZATION NAME AND ADDRE3S 10 PROGR&M ELEMENT PRO - TAS

AREA & WORK NIT NUMBERZ,

61102A 1T161102BH57

1 '.RPOLLING O-ICE NAME AND ADDRFSS 12, REPORT DATE

USARDSG-UK 31st January, 1985.
Box G5 FPO NY 09510-1500 13 NUMBER OF PAGES

137
14 MONI TGRING AGENC' NAME & AODRESS(If different from Corntrolling Olice) 'S SECURITv CLASS (,,f this report

Unclassified

5, DEC LASSIF C A TIC' DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (.1 :his R ep.,()

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enltered In, Block 20, It different fro Report)

Approved for public release; distribution unlimited.

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse ilde it nece.say ed Identify by block number)

Functional Testing, Requirements Analysis, Design Methods, Software Functions
Testing)ethods.

20. A rRACT c Caoot m rea ideIf If itrmn .er d Ide tIfy by block number)

This document reports an investigation into the processes involved in
functional testing. The objective was to determine criteria by means
of which the process can be quantified and hence controlled.

The report demonstrates that insufficient knowledge about functionality
exists for general metrics to be constructed. Indeed it clearly indicates
that any method dependent on a knowledge of functionality is unlikely,
except in special application areas, to be successful.

A,"7 *4Tj EDITION OFI NOV 6& IS OBSOLETE Unclassified

SECURITY CLASSIFICATION Or THIS PA -F ',W.n P .In-r- dl

--EC%.r :Tv 'Z C.ASSIFICA? 1,)N i PAGf'Wh- lfD.C.l d)~~rd

!. A. BFRC' kc !1', iflu'd

lie maL n problems lie in the lack of criteria for identifying functions
in requirements documents.

S JREIT CL ASS rCIAT'"N -, S NA3F ' nD
e

c. t'
e t

edN

CONTENTS

Abstract 1

Introduction 2

Chapter 1 Functional Testing

Chapter 2 The Role of Functions in Design Methods 20

Chapter 3 Detecting Functionality in Text 40

Chapter 4 Experimental Assessment of Functional Tests 67

Chapter 5 The Organisation of Functional Testing 83

Chapter 6 Summary and Conclusion 97

Appendix System Development Life Cycle 100

Glossary 132

References 135

A7
/

1

t

Abstract

This document reports an investigation into the processes

involved in functional testing. The objective was to determine

criteria by means of which the process can be quantified and

hence controlled.

The report demonstrates that insufficient knowledge about

functionality exists for general metrics to be constructed.

Indeed it clearly indicates that any method dependant on a

knowledge of functionality is unlikely, except in special

application areas, to be succesful.

The main problems lie in the lack of criteria for identifying

functions in requirements documents.

Keywords: Functional Testing, Requirements Analysis, Design

Methods, Software Functions, Testing Methods

.Investigation into Practical Aspects of

Functional Testing Techniques

Introduction

The origins of Functional Testing are buried in the mists of

time. Nowhere in the literature is the technique explicitly

described. Nevertheless, the use of functions in describing

software attributes is all pervasive, from widely used terms

such as functional requirements through to functional

maintenance.

Given that a software system does have a degree of

functionality, then it is desirable to demonstrate that the

functionality possessed is indeed the functionality required.

It may even be argued that this is the only demonstration which

is of interest to the "users". The concept is therefore of

primary importance to the role of acceptance testing, in which

the users or their agents assess the software.

In the context of this report the term Functinnal Testing will

refer to the black-box approach in which the user perceived
view of functionality will be explored.

This report will explore both the basic concepts involved

together with the practical realities. Further, it will explore

techniques for systemising Functional Testing. This will be

accomplished by:

1) a very careful definition of terms,

2) the formation of a model of software development (a

generalised life-cycle),

3) exploration of common 'design' methods to determine

their impact both on the life-cycle model and more

particularly the detection of functions,

2

4) a critical analysis of natural language to determine

whether various paradyms for the detection of

functionality actually work,

5) experimental analysis of the successes and failures of

conventional functional testing techniques,

6) some proposals for systematic functional testing in

limited areas.

It will be shown that attempts to establish clear-cut

validation criteria expose severe weaknesses in all current

software development processes. In particular it will be shown

that there is no consensus as to what constitutes a software

function. This is particuarly interesting because

implementation language designers have clearly expected such

entities to be of high significance since they have in genera].

provided powerful facilities (procedures and subroutines)

which express such a concept. indeed the higher the level of

the language the more powerful these facilities become.

Ultimately this culminates in the resurgence of functional

programming languages.

Within a mathematical framework the concept of function is well

understood and this understanding has spread into computing in

many different ways, such as the development of functors, or

the use of functions in VDM [45) and HOS [46). All these

developments however are bottom-up in the sense that if one has

an idea of function then here is a method for expressing that

idea. What is missing are techniques and criteria for

identifying functions in the first place. This effect is even

more traumatic in situations where the software developer might

feel secure, for instance if a project is to implement a

program to solve a system of mathematical equations (a nice set

of non-linear partial differential equations for example). Here

the functionality is clear and unambiguous. Nevertheless, the

detailed examination of a program which offers a solution (or

approximate solution) shows that there may be a lack of

3

distinct functionality in the code, and an attept to test this

code fares little better than for other classes of software. In

this work the view is taken that the lack of clear-cut

functuality in the software is not the result of carelessness,

or incompetence in the programmers, but is a manifestation of a

real intellectual problem.

One area which leads to confusion regarding the functions of

software, is the relationship of the users view to the

developers view. The distinction between these two views

becomes blurred as the application becomes nearer to the

software implementation environment. If the application area is

totally divorced from the software implementation, e.g. a

financial control package, then the software developer can

easily distinguish between his or her view and that of the

user. On the other hand, if the application area is software

development (e.g. an operating system), then great confusion

can arise as to which view is being examined, indeed very

rarely are the different views even distinguished. The software

developers cannot even see a problem because they relate easily

to both views, after all, potentially they are both the user

and developer. However a tester may have a more difficult

problem. The tester must show that the user requirements are

met, not that the software performs such tasks as perceived by

the developers. The difference is subtle, but can have

important consequences. Consider a user-friendly editor. To the

developers user-friendly might mean having single character

commands. These are user-friendly because they minimize effort.

To other potential users, not involved in the development

process a more meaningful command is more desirable, at least

in the short term. This document emphasizes the difference

between these two views.

The objectives of the project are to isolate where the problems

of identifying functions lie, to attempt to improve the

identification of these functions and finally to produce

metrics which will enable a meaningful assessment of the

success of the Functional Tests. This objective has been

4

gravely handicapped by the appalling use of terminology endemic

in the literature. Terms are either not defined or are

re-defined in ways which do not comply with common use.

This report considers the issues in the inverse order to which

they were investigated in this research project. The approach

actually taken, was to look at ways in which the current

functional testing activities proceed. From an investigation of

the achievements of these testing activities it was hoped that

various defects would emerge. New techniques to rectify these

defects could then be developed. In practice, defects were

discovered but the problems of rectification proved

troublesome. The reason is that the defects are easy enough to

state in terms of the internal structure of the software, but

no mecnanism has been discovered to transmit this knowledge

back to the class of function or function combinations which

leads to this class of structure being tested.

The major cause of difficulty is that current design and

analysis methods do not consider functions with sufficient

care. Indeed, this report shows that almost nothing is known

about the detection and specification of software functions.

The structure of the report consists of a definition of a

generalised Life-cycle in Appendix A. Chapter 1 discusses the

general principles and problems of functional testing. Chapter

2 investigates the current "design" methods for definitions of

functionality and criteria for the detection of functions.

Having failed to find anything satisfactory in the literature,

the chapter then includes a new definition of function which

collects together the bits and pieces discerned in the

literature. This is followed by an attempt at general criteria

for functional decomposition. Chapter 3 takes up the clues

recorded in chapter 2, which state that functions may be

associated with verbs. The structure of English is examined to

see how the concept of function is expressed. It is shown that

there are numerous ways of expressing functionality other than

by verbs so that the simple paradym fails.

5

Chapter 4 looks at the experimental assessment of functional

testing activities and points out some explanations for

failure. Chapter 5 describes one general method which we have

devised to improve functional testing. Chapter 6 is a general

discussion of other observations made in the course of this

work and attempts to summarise the findings of this project.

6

CHAPTER 1

FUNCTIONAL TESTING

1. General Issues

The principal objective in functional testing is to verify that

a 6oftware system satisfies the requirements. This is achieved

by constructing test data which in some way explores each of

the possibly many functions which the system is required to

perform.

Success in this activity does not imply that the system is

wholly free from errors since the combinations of functions

arising from actual use may cause interference and hence

errors. Functional testing does not usually attempt to explore

the (sometimes multitudinous) combinatorial problems.

Furthermore design and implementation issues may cause

subdivision of each function.

Such a testing strategy is extremely attractive, particularly

to potential customers. If customers can see that the system

really does perform these functions in the required way then

their confidence in the usability of the system is greatly

increased. Functional testing techniques therefore form the

major techniques used in acceptance testing.

In general it is arguably an approximation to functional

testing which most programmers attempt when no particular

testing strategy is specified, i.e. the 'do the best you can'

strategy. The test data sets in this case usually consist of an

amalgam of:

the most obvious functional tests,

..

historically troublesome tests which appear relevant,

intuitively interesting data sets,

and, in desperation, sheer bulk.

Whether this strategy succeeds depends largely on the

complexity of the new software, the experience of the

implementors with similar systems, and luck.

The principal problem with functional testing is that it is

extremely difficult to systemize. That is, one does not know

what proportion of the functions one has successfully isolated,

what the overlap between them is and to what extent they

contribute to the implementation as a whole. For example, the

principle functions of a system as viewed by the users may be

implementable in a very small amount of code; the less obvious

features contributing to the vast bulk of that code. This point

will be explored in more detail later in this report. The

problem of counting the funcLions and providing convincing

evidence that all have been found is a convincing demonstration

of the authors' thesis.

The difficulty stems in part from the lack of an adequate

practical def init ion it I tie term 'function' as applied to

software. This far t' -ri .n an examination of modular

programming wherf 2 i , W .1j".y dqreed that a module should

implement a furtyi .' .. t functions [33]. In practice

this is replaced .y •d , ntain more than 50 lines of code',

or '60 lines' or perrhap:3 i,. -, -. r'w' as can be d(splayed on a screen',

and so on j4ZJ .Fre .ri ,t s3uch simple paradyms in

practical situations is ,ri., at ive (A a deep seated conceptual

problem.

2.

A partial solution to any fundamental problem is to proceed

B

b. System Development in Shared Data Environment: D2S [28]

This method defines functions as business processes which

are carried out for the enterprise to perform and satisfy

its objectives or goals. Functions are like business

activities i.e. what the enterprise does; and are

performed as a result of an event and change some input

into an output. Function does not show "how" things are

done or who does them. Success in identifying such

functions clearly depends on knowledge of the business

processes. Presumably innovative projects are precluded.

c. Structured Systems Analysis and Design: SASD [4,12,18,20]

.. the hole left unplugged by any truly adequate

definition of function is a structural defect in the

theory through which camels and MACK trucks could rapidly

pass".[20]

There is no explicit definition of the term function. From

their literature it is clear that they are using this word

informally and inconsistently, in general terms which are

used in finance or business e.g. "accounts receivable",

"accounts payable", etc.. They also use the term function

for task, e.g. generating monthly payroll, performing a

mathematical function (e.g. calculation of square root,

logorithm and Basel function), which takes a value e.g.

particular activation of SQRT takes on a value that is

used in evaluation.

A function is described by an imperative sentence, ideally

having an active verb such as produce, compute, verify,

delete, extract, save, store etc., followed by a single,

i.e. non plural, object clause e.g.

Display - overdrawn

Extract - weekly income

Enter - new books purchased

22

"Where did knowledge of the properties of the functions

come from?"

It is in the attempt to check that the stated functionality is

correct that the unsatisfactory knowledge of the functionality

comes to light.

1. Definition of Function

The first step is to abstract the definitions of function from

the methods and then compare and contrast the differing

viewpoints. In the following, for each of a number of methods,

explicit definitions will be reported and definitions of other

terms which probably refer to function will be discussed.

a. JSD [211

This method defines function as an action or set of

actions performed by the system and resulting in the

production of output. The term action is defined as an

event in which one or more entities participate by

performing or suffering the action. The term event is not

defined. It is claimed that a model of the real world can

provide a ccnceptual as well as a computational basis on

which various functions and an information model can be

built. The JSD model makes an abstract description of

reality and determines how abstract descriptions can be

realised in working computer models. The model defines a

set of words to be used in functional specifications. From

this set (dictionary) of words functions can be specified.

Any function which appears in that dictionary is then

specified. The result is that the system's functions are

expressed in words whose meaning depends upon the users

view of reality. It does not state how the functions may

be derived other than to suggest that functions might be

related to verbs.

21

CHAPTER 2

THE ROLE OF FUNCTIONS IN DESIGN METHODS

In this chapter, the concept of function is explored by means

of some of the established design methods. The term design

referred to here is used in the coarse sense in which such

methods are described in the literature. The choice of methods

covers the more widely used methods and a smaller number of the

more specialised methods. Most of the methods referred to cover

a much wider span of the life-cycle than purely the design

phase. Indeed many claim to cover the whole of the life cycle.

Their great value is that they have been widely used and

developed over many years. Considerable knowledge and

experience have been built into them and this should not be

lightly discarded.

The objective of this chapter is to discover how these methods

direct the discovery and use of functions. Firstly the

definitions of function will be investigated, then directions

for producing functional specificatio..- and performing

functional decompositions will be analysed.

The approach taken in this chapter is the highly critical

approach of a validator who must ask questions, such as:

"Is this really the function that is intended?"

"Are there any other related activities missing?"

"What evidence is there that the functions stated are

really wanted?"

"Are there any wanted functions which are missing?"

20

constraints introduced within the design phase affect those

user perceived functions. This effect manifests itself for each

example as follows. For the numerical problem we are unaware of

the class of function for which the program will work. For the

compiler, the class of wrong programs which that compiler can

successfully process is not known.

In this chapter a number of well known application areas have

been examined and it has been demonstrated that even within

these areas the identification, characterisation and testing of

functions is not straightforward. It is clear that there are

areas where the functionality can be established and other

areas where it cannot. There are no criteria to help identify

in which class an arbitrary problem lies.

.9

programming may be banned with more than a certain number of

users on-line.

The interesting question which arises from this analysis is how

a particular requirement can be characterised when it does have

a distinct functionality. It is desirable to be able to

determine the situation where functionality is uniquely

derivable from the requirements. One such criterion might be

the situation where no input data is specified and the output

is loosely specified. An example would be the solution of a set

of mathematical equations. The functional decomposition could

proceed top-down purely on basis of mathematically determined

functions. The output would be the computed solution. Provided

only that the solution method chosen satisfied the condition

that the corresponding algorithms were completely understood

then this decomposition can be (and has been) succesful. In

such a situation the inputs (being dependent on the selected

algorithms) and their ordering is determined by the nature of

the decomposition.

At the opposite extremum there is the situation where a given

set of inputs are to be used to produce a defined set of

outputs. The global transformation which yields the required

outputs from the set of inputs is not known and does not need to

be known. The Jackson method accomplishes this by, first

deriving the program structure from the structure of the inputs

and outputs, and then produces the computational processes as a

set of actions, each of which is a basic system function. The

user perception of function is never considered.

From these arguments it may be seen that for any given problem,

the knowledge of functionality may vary from the case where

only the functionality is known to the case where it is wholly

unknown. Worse still, it may happen that initially the

functionality is known but the introduction of algorithms

prevents the understanding of functionality proceeding through

the design stage. What we have is a knowledge of the user

perceived functionality without the additional knowledge of how

ig

constructs. Neither is there any concept of completeness or

convergence. The difficulties here are compounded by error

states, error recovery and special cases. In our example of a

compiler we would also have to add data consisting of all

examples of wrong programs to the input data.

Clues for input data classification must be obtained from

knowledge about the software implementation. Organising inputs

according to some size criterion is a technique derived from

knowledge that the software under test has internal structure

dependant on size, not just tables, etc., but also loops and

choices. So far the discussion has considered software which

has one discernable (albeit complex) function. Consider next,

an equally familiar problem which has a much more diverse

functionality, namely an operating system. Firstly take a

single user system. The Global Function is to service a set of

distinct subfunctions, hiding system structure from the user

and simplifying the users tasks. The set of functions could be

editing a file.

running a program.

creating or deleting files.

sending messages to another machine.

Yet it may be possible to perform all these functions whilst

editing a file (even editing a second file). That is, these

functions may be performed separately or as further

subfunctions. The subfunction role may be slightly different

from the primary function role, e.g. deleting a file as a

subfunction may be additionally constrained by not permitting

the deletion of the file currently being edited. The

functionality is therefore dependant on the context. When next

a multi-user environment is considered the problem becomes much

more complex. The context may in fact enforce the abandonment

(temporarily) of certain functions, e.g. interactive

1I

introduced in order to permit communication between the

fragments. The nature and type of both the housekeeping and

method of communication will depend strongly on the properties

of the functions and their environment. The inverse, however,

is not necessarily true, that is, if a number of functions

communicate via some housekeeping functions, it does not

necessarily mean that they therefore constitute fragments of a

more complex function. The techniques of communication may be

the same in both cases.

-1. Testing Functions.

The grossest descriptions of software functionality are

embodied in the Global User Perceived functions. Each of these

functions expresses a relationship between some class of input

and corresponding output. The relationship will not be unique,

indeed it may be a complex relationship. For example consider a

compiler again. At the grossest level, submitting a source code

program which is successfully translated int machine code

which, on execution, delivers the expected result, can be said

to be a succesful demonstration of the functionality of a

compiler. The problem is that this demonstration does not imply

that all source programs will be succesfully translated.

For the compiler, it might be said that the Basic User

Perceived functions are that every conceivable source program

should translate successfully. Since generat nq every example
of a user program is not a realistic proposition, it is

necessary to decompose the source code programmes into classes.

This implies that the functionality of the compiler is to be

decomposed e.g. into classes of size, starting with the

smallest possible program, then by adding the constructs

systematically to obtain the largest (in which each construct

is repeated up to a given number of times). Note, however, that

the decomposition notion is actually derived from the structure

of the data, not from any explicit decomposition of the Global

Function. There is no way to decompose the notion of compiling

for all programs into compiling programs according to size or

16

example the syntax charts do not show the relationship to the

lexical analysis. The criteria for taking one flow in the graph

as opposed to another are not necessarily simple, one may need

a look-ahead facility.

The point of the foregoing analysis is to show that in general,

even for the best understood problems, techniques for design

are not well developed. Worse still, even when functionality is

clear at a global level, if may be totally unusable at a lower

level. This problem has been well known in the field of

numerical sofiware. Here one starts with a well-defined,

completely specified problem. The specification is a set of

mathematical equations and boundary conditions which ensure

unique solutions. The problem is that in transforming the

problem, firstly to one for which a numerical solution can be

found (a mathematical model) and, secondly introducing

numerical algorithms (design) for solving the equations,

knowledge of the functionality is lost. This is because

particular properties of the equations require special

attention, and the corresponding treatment of these properties

requires the introduction of special functions (algorithms).

The result is often a hotch-potch of algorithms tenously held

together. That the program will solve particular problems is

established experimentally by testing and it is then inferred

that the program will solve similar problems. Even the

definition and meaning of the word 'similar' is not clear. At

the present time, techniques for determining the class of

problems for which the programs produce valid solutions are not

known [43].

Returning to the development of the compiler, the concept of a

lexical analyser component is well understood and accepted. If

the language design is such that a degree of parsing must be

accomplished before all lexemes can be identified uniquely then

the lexical analysis function will become distributed. In more

complex systems, this problem of function fragmentation and

distribution can become extreme. Whenever a function suffers

from this effect, special housekeeping functions must be

between the functions are now missing. The essential detail is

a knowledge of the classification of languages which relate to

the techniques which can be used in compiler construction. An

experienced compiler writer may have little difficulty but an

inexperienced analyst would almost certainly guess wrongly.

Taking an alternative viewpoint we can say that the structure

of the compiler is almost wholly determined by the structure of

the source and target languages. This suggests the use of the

Jackson method. Unfortunately, here too things are not

satisfactory. Firstly the Jackson method requires the structure

of the data to have rather simple properties. Thus recursive

definitions cannot be handled and these are widely used in

language definition. If one takes the view that all recursive

structures are actually implemented as finite trees, the number

of structure clashes (see [21]) will probably be overwhelming.

Nethertheless if these clashes are examined closely it will be

seen that many can be resolved by the classic Jackson solutions

of intermediate files. The solution is then equivalent to the

standard multi-pass practices familiar to compiler writeru.

With the Jackson method, however, the number of intermediate

files (or equivalently, program inversions) is likely to render

the method unusuable at present.

The third attempt is to try a data flow model. Here there are no

rules and no methods. The input entities can be viewed at any

level e.g. characters, lexemes, statements, modules, etc.. The

relationships between the entities are closely defined but how

is this translated into a data flow diagram. Examining language

definition documents one may see a number of graphical

representations of the syntax e.g. Pascal. These clearly can be

used to design the early stages of a compiler. The further

problems of semantic analysis and code generation are missing

but presumably could be added. Missing in turn is the large

amount of housekeeping to handle names, modes, checking, block

structure, etc., but this could possibly be added as a second

stage. What is missing is a set of rules, criteria or methods

which will enable the additional components to be added. For

14

If then Functional Testing is seen as the process of executing

user perceived functions to the satisfaction of the users or

their agents then the goals can be classified along the

following lines:

i) Execute every Basic User Perceived function.

ii) Execute all combinations of up to ni Basic User

Perceived functions.

iii) Execute all primary (high level) functions.

In order for such goals to be meaningful it is necessary in

cases i) and ii) to be able to identify each Basic User

Perceived Function. This is currently beyond technolgy. In case

iii), the goal is only meaningful if the relationships between

functions are clear and the dependant functions can be

identified. There are an enormous number of papers and books

which refer to functional decomposition but, as shown later,

none of these actually give the rules which enables the task.

That software developers actually succeed, at least to some

extent, in this task is a tribute to their skills.

3. Analysis

In the search for functionality consider the following

well-understood problem."A compiler is to be written for the

language X for a target machine Y, where X is defined by a

language definition document and the machine code of Y is

defined in the hardware manual". The global functionality of

the compiler is immediately clear, it is the transformation

from X to Y. Morever we can now consider a second level

decomposition of this function too: lexical analyser, parser,

code generator. Unfortunately this second level decomposition

may not be valid, for instance the lexical analysis may not be

unique without a degree of parsing, e.g. if keywords are not

reserved we may need a multi-pass compiler. The criteria which

will inform us of the necessary extent of this interaction

13

unfortunately this may be extremely difficult. Design methods

themselves are not designed to make this possible.

At the completion of the implementation phase the software will

be composed of the Basic System functions. These Basic System

functions can be classified as either housekeeping functions or

implementations of algorithms relevant to the application area

of the software. Housekeeping functions are those which are

introduced post requirements analysis in order to be able to

implement the required system on a computer, examples are

functions to manipulate data structures, deal with errors,

etc.. The proportion of these Basic System functions which are

purely due to housekeeping can be of the order of 50% in typical

systems. This point will be discussed later in Chapter 4.

Some conclusions can also be drawn from the previous

discussion. Firstly, executing every Basic User Perceived

function in a test need not necessarily result in every line of

implemented code being executed. For example, housekeeping

functions may not be invoked. Hence even the simplest possible

check on test completeness is denied. Also the converse is not

true even under the assumption of system completeness. That is,

if the system is complete in that every user perceived function

is implemented, then exercising every line of executable code

does not guarantee exercising every user perceived function.

This is because each Basic User Perceived function is

implemented as a combination of basic system functions and this

combination can be arbitrarily complex. It is this factor which

prevents structural tests from being optimal for acceptance

testing.

Exercising every line of code will, however, cause every basic

system function to be exercised, providing only that there is

no optimisation i.e. function overlap or redundancy. This can

be seen as follows. Each line of code performs some part of a

specific system function, hence exercising every line of code

ensures that every part of each system function (and hence each

function) is executed.

12

searching a table,

clearing a buffer,

queueing an interrupt.

The system design in turn considers the mapping of the system

functions onto the computer hardware. This process may lead to

restrictions from hardware constraints being imposed on the

valid input data space. In turn, the transformation of the

design into code can lead to further restrictions being

imposed. This process can be seen as follows. Consider a single

integer input problem for which the valid input data space from

the requirements is (--, +-). The restriction imposed by a

particular machine reduces this space to (-M, +M) where M is

the largest integer representable in the machine. However, if

the program implementation is taken into account where the

program is:--

READ x

Y=X* X

WRITE Y

then the valid input data space reduces to (-4M, +,M). The full

input data space of (-M, M) can of course be restored by

testing the value of X and taking special action such as the use

of multi-length arithmetic. This structure would, however, not

be visible to a tester using functional testing techniques.

In a multi-dimensional input data space for a complicated

algorithm with many inputs, considerations of this type may

lead to a fragmented valid input data space where, (possibly)

whole domains have been excluded and others extensively

subdivided into sub-domains due to additional fine structure.

It would be convenient if it were possible to relate this fine

structure back to the user perceived functions, but

It

In general it is probab' not sensible or even possible to test

these Basic User Perceived functions individually so that they

aust be tested in various combinations. This is because there

would need to be as many runs of the software system as there

are functions. However as a comprehensive test even this still

leaves much to be desired as will be discussed later.

From the requirements it is possible (in principle at least) to

determine an input data space. This is the space determined by

all the permitted inputs and their constraints. This space is

then partitioned into various domains. All input values in a

given domain require the same sequence of Basic User Perceived

functions to be performed. Different domains may, however,

require the same sequence of functions to be performed. The

determination of these domains and their corresponding

functions can, for certain classes of problems, be accomplished

by Case Analysis as in [34].

The next step in the software cycle after completion of the

requirements is the production of the system specification.

This is also developed in layers of abstraction, presumably,

but not necessarily, different to those used for the

requirements. In this case the User Perceived functions are

mapped onto the system functions. For example, in an aeroplane

seat reservation system the user perceived functions might be:

an availability enquiry,

a purchase option,

a reservation,

a cancellation option.

The system functions might be:

creating a file,

i0

systematically. III an advanced software implementation

environment a 'requirements definition' document should exist

(see Appendix A for definitions). This document is constructed

by both users and analysts working together (hopefully) and

summarises at least a global view of the functions which the

system is to implement. More precisely it contains at least the

Global User Perceived Functions: these are the principal

functions which the user (guided by the implementor) conceives

that the system should perform.

Difficulties may arise from grossness in the requirements, i.e.

the level of detail may be insufficient to be able to isolate

the fine structure which is needed for a comprehensive test.

For instance, a single global function may require slightly

different actions to be taken within the system depending on

some minor change in an input. In an invoicing system a

particular customer account may have to be processed slightly

differently from the mass because the customer requires special

transportation facilities. A global view of the invoicing

system may not be sufficient to display this possibility.

In principle the more detailed the requirements definition, the

more useful it is likely to be to the tester. There is, however,

no reason why the requirements should be expressed in terms of

functions, so that in extreme cases the requirements can be

useless to the process of functional testing. This can arise

for instance with the use of the Jackson design method [21] in

which a purely data view of the system is taken. When the

requirements are expressed in terms of functions, then it is

possible (in principle) to expand the detail until the

requirements are expressed in terms of Basic User Perceived

functions. These Basic User Perceived functions are those in

which all other functions can be expressed. Termination

criteria for this process are difficult to specify, the point

is that there should be no further fine structure as perceived

by the users. One task of functional testing is to take each of

these Basic User Perceived functions and supply test data to

exercise them.

93

Delete - names of students who

have left the university

Compute - overtime

Unless the text is written this way in the first place

this is not helpful.

Function is expressed like an order, in a way that it can

easily be understood, rnd hence can be performed in an

easy way. However there are no explicit criteria to select

a function.

d. Nijessens Information Analysis Method: NIAM [14]

Here function means the capability to transform

information flows, such capability is often represented by

a verb. The function may be:

j) Formalised i.e. whose performance is known, called a

formalised function.

ii) Unformalised i.e. functions for which we do not know

the in- and outgoing information flows, and their

mechanism for achieving the transformation is not

known.

Only formalised functions can be a part of an automated

information system in the NIAM method.

In an existing system an inventory of all the functions

(represented by verbs) which the information system is

expected to support is made. These functions are

decomposed into subfunctions to a level of detail where

information flow and transformation achieved by the

function become clear.

It is claimed that an information flow (i.e. stream of

messages which represents a communication between two

certain objects such as users) always has a function as

its origin or destination. Information flow gives an

23

information structured diagram which shows functions and

constraints formally.

No criteria for detecting functions, other than by

identifying verbs are given.

e. Sysdoc [27]

The term function is used as a business function or

mathematical function; and is primarily described by its

processing rules in a high level language. This is similar

to b.

f. SADT [11]

No clear definition of function is available from their

literature. Probably they use function in terms of

activities which are represented by verbs in natural

language. No criteria for detecting activities are given.

The identification of the main activity, which is further

decomposed at some level, depends entirely on the

intuition of the analys ;/designer. Functions are

diagramatically represented by boxes in the activity

diagram. These boxes represent collections of related

activities. A box may perform different parts of its

function under various (different) circumstances, with

different combinations of its inputs and controls, giving

distinct outputs as a result of different activations.

In the data diagram which presents a different view of the

same subject, its decomposition is based on classes of

data not on classes of function. In this type of diagram,

activities i.e. functions expressed by verbs are

represented by arrows entering or coming out of the boxes.

There is no mention of any method to select a sub-function

such as might be needed if one arrow splits and terminates

24

at two boxes.

g. $DL [47]

The term function is not explicitly determined by SDL.

However, in SDL, the term function mainly deals with tasks

or jobs concerned with switching systems where the action

of a function is to alter the current values of local

variables of a process such as

- call processing and

(e.g. call handling, routing, signal sending,

signal recognition, metering, call charging,

etc.),

- maintenance and fault treatment

(e.g. alarms, automatic-fault clearing,

configuration control, routine test, etc.),

- system control

(e.g. overload, control, modification and

extension procedures, etc.).

SDL is also applicable to a range of other systems.

From this search of some of the major design methods it can be

seen that considerable problems exist with current definitions

of function and criteria for detecting such functions.

The IEEE (52] defines function in two parts, firstly as

"the specific purpose of an entity or its characteristic

action".

The other part of the definition refers to the specific use of

the term in programming languages. Note that entity is not

defined and nor is action; these therefore have their wider

meanings. The word purpose is ambiguous being either an aim, or

an effect. The IEEE definition is essentially useless.

25

2. Functional Specification

Even though methods may not be explicit with a definition of a

function, it may nevertheless be possible to deduce the

characteristic properties of functions from the way in which

the term is used. The term functional specification is widely

used and hence this aspect is explored in the hope that more

light will be shed on the problem.

The IEEE defines a functional specification as

"a specification that defines the functions that a system

or system component must perform".

Function has its previously mentioned definition and perform is

not defined. This definition of functional specification is

therefore meaningless.

a. JSD uses the term functional specifications in the general

sense of specification. There is no clear difference

between the two terms. The abstract description of the

real world (term not defined explicitly), which is a

partial description, and its realisation both provide the

context for functional specifications. The basis for:

deriving an abstract description,

developing the dictionary of words,

knowing the meaning of each word in the real world,

is not stated. However functionality is not particularly

emphasized, and furthermore they believe that a system

design methodology based on function will always produce

systems which are difficult to maintain.

b. DU2S2 uses slightly different terms called

1) the function logic model. They build for each of the

most important (not defined) elementary (not defined)

functions, a logic model showing entity types and

relationships necessary to support that elementary

function. A list of attributes possessed by each

function is also compiled. It does not state how the

entity types and their relationships, nor how the

function attributes may be obtained.

2) the function dependancy diagram, which shows dynamic

pictures of function hierarchies. This diagram

portrays functional dependencies by depicting which

functions must proceed others in time. Again, how this

information is to be obtained is not stated.

c. SASD uses functional specification in the sense of

1) the functional requirements. They define functional

requirements as "a precise description of the

requirements of a computer system". This includes a

statement of the inputs to be supplied by the user, the

outputs desired by the user, the algorithms involved in

any computations desired by the user, and a description

of such physical constraints as response time, values,

etc. (20].

It seems that by this term they mean a detailed

statement of what the system is to do, and it is free

from physical consideration of how it is to do them.

The term functional requirements (or as they mean

functional specification) is the re-statement of the

problem in a manner which emphasises the data flow, and

ignores procedural aspects of the problem (20]. These

specifications are expressed by using decision trees,

structured English, data dictionaries, etc.. They

stress that the functional specification should not be

developed on a machine dependent basis, and should give

an idea of the end product which is to be achieved.

Furthermore it can be used as evidence as to what the

user prefers to have.

2) the classical product of analysis, a description of a

system to be implemented [5]. In general it is not

possible to deduce the characteristics of a function

2.,

from the use of the functional specification. The

adjective functional appears to be without content.

d. NIAM does not use the term implicitly or explicitly.

e. SYSDOC methodology is basically data-oriented and

therefore not suitable for describing functionally

oriented systems. The term functional specification is not

used by them. However they do use the term requirements

specification.

f. SADT does not specifically define the term functional

specification. However they say that the result of

functional analysis is the functional specification, and

functional specifications serve as one of the inputs to

the design phase of SADT. The major components of

functional specifications are provided by:

j) Activity diagram (describing the system in terms of

activities).

ii) Data diagram (describing the system in terms of data).

In SADT the requirements are converted into a functional

specification and are expressed as a functional model

which shows cross-referenced activity and data aspects of

the system and represents "what" the problem is. They also

use the term functional architecture to express the layout

of the activities performed by a system. In general

activities approximate to functions. it does not appear

possible to deduce the characteristics of a function from

the description of the functional specification.

g. $DL defines the term specification of a system as a

description of the required behaviour. This term is used

by them to define the requirements of the system and can

be specified (i.e. consists of) by

i) set of general parameters required by the system,

ji) functional specifications of its required

29

behaviour.

By functional specifications of a system they mean the

specifications of the total functional requirements of the

system from all significant points of view. The functional

specifications can be portioned into a number of

functional block specifications. Each functional block

contains one or more processes which performs a related

group of functions e.g. call charging, signal recognition,

maintenance, etc..

In SDL functional specification of a new system or new

facilities and functions can be expressed by using a

formalised method called SDL/GR which is more compact and

has a predefined and well specified set of concepts,

rules, symbols and diagrams. They claim this method is

easy to understand.

Whilst there is thus a method for representing functions

there are no criteria for identifying functions.

The above set of definitions and descriptions appears wholly

inadequate in order for someone to actually produce a

functional specification. It is almost impossible to frame a

set of questions which would determine whether or not a

functional specification has been produced let alone whether it

is correct or not.

3. Functional Decomposition

This is the third term connected with functionality which

appears widely in the literature. Again our purpose is to

attempt to deduce the characteristics of functions from the

knowledge that they can be decomposed.

The IEEE defines functional decomposition as "a method of

designing a system by breaking it down into its components in

29

such a way that the components correspond directly to the

system functions and also sub-functions".

The terms "system functions" and "sub-functions" are not

explicitly defined. A system is defined as:

I) A collection of people, machines and methods organised to

accomplish a set of specific functions.

2) An integrated whole that is composed of diverse

interacting, specialised structures and sub-functions.

3) A group or subsystem united by some interaction or

interdependence, performing many duties but functioning

as a single unit.

None of which is greatly enlightening. Analysing the design

methods reveals the following:

a) JSD considers functional decomposition as an activity of

decomposing the system function which is organised as a

hierachy of functional procedures. No criteria are given.

b) D2S2 uses the term functional decomposition to analyse an

existing system (if there is one) to determine which of

the elementary functions is to be supported, either in

whole or in part. Functions are decomposed to about three

levels of detail. The entities involved with each of these

functions are listed and an entity-function relationship

matrix is developed. This decomposition is stopped when

the analyst is dealing with a level which is concerned

more with the mechanics of the function rather than its

purpose. The objectives of functional decomposition are to

find out the business activity of an establishment

independently of its organisational structure and to

represent the elementary functions as transactions for

future design. No criteria are given for the decomposing

process.

c) $S g. does not use the term directly. There is no criterion

30

for the decomposition of a function, but the criteria for

measuring cohesion (the functional relatedness within a

module) are given, so that poor decomposition can be

recognised after it has been performed.

In SASD, which is based on the concept of modularity, a

logical module is a defined function, having a name which

expresses the purpose of the function.

The term functionality as used in SASD represents the

concept of module strength, i.e. how tightly the

processing elements within a module are related to each

other and how strong is intramodular functional

relatedness. The term cohesion is used for the same

concept. Cohesion shows the structure of the problem i.e.

how the problem is defined, because processing elements

can be functionally related in any number of ways, in

other words the structure of the problem can be decomposed

in different ways by different analyst/designers. They

have specified the following seven distinct levels which

show the strength of cohesion, starting from the least or

weakest cohesion.

1. Coincidental association,

2. logical association,

3. temporal association,

4. procedural association,

5. communicational association,

6. sequential association,

'. functional association.

Each logical function can be broken into a more detailed

data flow diagram when it is no longer useful to subdivide

the logical functions. Their external , business logic is

expressed by using decision trees, structured English,

etc..

A module whose processing elements are designed in a way

3L

that they are elementary in nature, and every element of

processing is an integral part of, and is essential to,

the performance of a single module, is called a completely

functional module.

SASD claims that a functional module can be identified by

a process of elimination and examining the design for any

potential defects in the form of low cohesion. This

elimination is preferably repeated until the module

functions can be described fully, and accurately, in a

single English imperative sentence with single transative

verb and a single object. So if the module is functional

in nature, it should be possible to describe its operation

fully in the above manner.

With this criterion, which appears to have no experimental

or theoretical backing, it is possible to recognise a

function only after it has been fully designed and

possibly even implemented.

d) NJIAM Here functional decomposition means the

decomposition of information flow, in order to reduce the

complexity of the transformation. This is achieved by

dividing the transformation capability of one function

into more than one function (called sub-functions). These

sub-functions possibly can be further decomposed until

functions are obtained for which it is possible to

describe in full detail both its transformation and its

information flow. It appears that the decomposition is not

functional but data decomposition.

e) SYSDOC does not use this term being a data oriented

methodology.

f) SADT uses the term functional analysis for functional

decomposition nearly in the similar sense. functional

analysis starts with a statement of systems requirements

and delivers functional specifications as output. During

the phase of functional anlysis emphasis is given to

analysing and documenting "what" the system is supposed to

do rather than "how" it will do it. However in some cases,

considerations about "how" also take place. The boxes in

the activity diagram which represent a function can be

broken down, when needed, into a number of more detailed

boxes. This means each function can be decomposed into

simpler functions. This process of functional

decomposition is done in a top-down structured hierachy,

with not less than three per level, and an upper limit of

six. This top-down approach avoids providing too many

details at once, and depicts uniform and systematic

information. Again no criteria are given for the actual

process of decomposition.

g) SDL. In SDL a functional block (which is like a module or

subsystem) can be decomposed into sub-blocks and

sub-channels by forming a hierachical multi-level

description of the system. Each sub-block represents a

subsystem. The information contained in the upper levels

should be contained in the interfaces of the lower levels.

This can be described by a tree structure of blocks such

as

33

During functional block decomposition it is only necessary

to make sure that the most detailed sub-blocks contain

processes. It is claimed that this makes the description

more meaningful.

One of the users of "A System Design Methodology, based on

SDL" [481 mentions that, "functions are generally

decomposable into sub-functions, all of them will have the

same behaviour". There are no particular criteria in this

methodology, for functional decompos ition, and it is

mainly based on the designer's decision. If a function

cannot be decomposed then it must be a Vrqcess. This

functional decomposition stops when all the functions

cannot be further decomposed, and at this stage all are

processes, and as such can be implemented.

The conclusion reached from this analysis of the major design

methods is again that the term functional decomposition is used

lightly. No criteria are developed and yet the audience are

expected to know what is meant.

4. D)efinition of Function

As an aid to future analysis a definition of function is vital.

To this end the following is the best which the authors can

construct from analysis of the literature and their own

pragmatic knowledge.

With respect to a software system, existing or proposed; a function is a
process, activity, event or task which performs some perceptable action, set of
actions or causes a change of state. A function has the following properties;

1. It produces by virtue of Its actions, at least one distinct output. This
output may consist of one or more, data items, messages, conditions,
function descriptions, or changes of state, in any combination.

2. It may have zero or many distinct inputs. These inputs may consist of data
items, messages, conditions and function descriptions, in any
combination. Such inputs may be transformed, combined or otherwise
manipulated by the actions of the function to produce the outputs.

3. The actions of the function may be dependant on the state of the system,

34

or on the value of the inputs, or both.

A distinct input or output will be loosely defined as, an

individual item, a class or set of items; such an item, set or

class of items being deemed distinct by the relevant beholders.

To this definition, for mathematical convenience is added the

null function which has no outputs. This function has no

practical use since it would never be known whether it was

working or not. Note that a validatory function, say, checking

the ordering of data, must have one output through which to

report failure. The above definition also includes the

possibility of the identity function.

There are a number of precise definitions in the literature,

e.g. "A function maps inputs onto outputs" is a typical

exemplar. Such definitions are meaningless in the search for

functional requirements. Neither users nor analysts find this

helpful. Nevertheless the underlying meaning of the formal

definition is captured in the above general definition.

The previous definition of a function covers at least the

following cases.

i) A mathematical package which produces the solution for

one complex equation. No inputs, the "solution" is the

output.

ii) A switching system which merely takes "messages +

address" structures and routes them in some way. The

outputs are identical to the inputs.

iii) A transformation system, such as a compiler, which

takes one representation of an entity (a program) and

outputs another.

iv) An operating system in which the response (outputs)

.35

depends on whether one is logged on, editing, etc..

v) A commercial D.P. system which takes input records and

produces analysis tables.

vi) A program which takes input and produces another

program to perform a particular function or class of

functions. An example would be the YACC [53] system.

If the function has at least one of the following properties:

a) it produces more than one distinct output;

b) it has more than one distinct input;

c) its distinct actions are dependant on the state of the

system;

d) its distinct actions or consequent changes of state are

dependant on the values of the inputs;

then the function might be decomposable into sub-functions. A

distinct action is one which a beholder perceives as being

indivisible, inseparable or otherwise unique.

The precise mechanism which can be invoked will be highly

dependant on a number of factors. One factor which will not be

discussed here, is the dependancy on the mechanism by means of

which the actions will be performed.

That a function can be decomposed into sub-functions does not

necessarily imply that it should. Reasons, such as efficiency

or resource limitations, may motivate towards composition.

Functions may also be decomposable if there is knowledge of the

specific actions which are to be performed.

The action of decomposition may add to the number of distinct

system inputs. This can happen, for instance, in a process

whereby the mechanism to be used in the decomposed function

requires the use of tables of data, or parameters, etc..

The converse is however not true. That is, if two functions are

referred to in conjoined phrases, or separate sentences etc.,

it does not imply that they are independant. For i-xample:

"Before driving adjust the mirror and check

that no traffic is approaching" (17)

does not imply that the two functions (to adjust and to check)

are independent. It is pragmatic knowledge that links the two.

One cannot check until the adjustment is complete. The two

functions are also in temporal order but this also is not

obvious. The inclusion of "then" after the conjunction would

have made this clear.

There is also no reason to assume just from ordering in text,

that any two functions which appear should be evaluated in the

order of their occurrence. For example:

"emptying the mixer will be simplified if the motor

is revved and water is added" (18)

Here the water must be added before emptying starts.

The relationships between functions will frequently arise in

prepositional phrases

"Printing the paper will be performed

after the checking of spelling" (19)

Note here that both functions (to print and to check) are not

described by a verb, but by a noun (nominalised verbs). The

above relationship is temporal as indicated by "after". Other

relationships can be confusing, e.g. prepositional phrases such

as:

"together with...."

"at the same time"

and the verbs

50

Relative clauses are used to modify nouns and as such are

essentially selecting from the class of all exemplars of that

nioun. In the case of iteration, the selection process is

usually reasonably clear but for embedding considerable

confusion can arise. This is particularly true in situations

where the pronoun "that" is omitted such as in the example

above.

However consider

"the table that stood in the house that Jack built"

and

"the table stood in the house that Jack built".

Did Jack build the table or the house? In this case the

ambiguity is greater in the sentence containing the pronoun

"that".

It appears that the binding order of relative clauses is not

defined and hence this is a source of ambiguity.

3.2. Relationships between Functions

In this section is is assumed that some functions have been

detected and the relationships which exist among them are to be

found.

If two functions are completely independent then they might be

described in a single sentence (with a conjunction between the

fragments describing each function), two separate sentences, or

two separate paragraphs (or however much text is needed). For

example:

"Insert the key and adjust the seat".

The action of inserting the key and the action of adjusting the

seat are completely independent.

49

"the same difficulty" (15b)

To say that "the traveller is commercial" is nonsense, as it is

to say "the difficulty is the same". It is not clear whether

these adjectives can be deemed to define functions.

From this it can be seen that not all noun groups necessarily

imply functionality. For example:

"a plane tree" (16)

is not a subset of trees which have the characteristic of being

plane.

Relative clauses are also a source of problems. These clauses

are sentence-like structures which usually start with the

pronouns,

"who", "which" or "that".

These clauses can be iterated or embedded. Examples are: for

iteration,

"This is the dog that worried the rat that ate the malt

that lay in the house that Jack built".

and for embedding,

"the birds the woman who painted fed died".

Here the "woman who painted" describes a particular woman,

"(that) the woman fed" describes a particular set of birds.

Finally, these particular birds died.

There are no limits to the possible extent of either the

iteration or the embedding other than the limits of human

understanding.

48

of subject, or object of the verb form. Consider:

"company purchases" - purchases by a company

"machine calculations" - calculations by a machine

where purchases and calculations are nominalised verbs which

are now subjects whereas for;

"machine purchases" - purchases of machines

"weather calculations" - calculations about the

weather

the purchases and calculations are nominalised verbs which are

now objects.

Nouns may also be modified by the use of adjectives. There are

two types of adjectives which are of interest to this paper.

The first type are the predicating adjectives which work in the

same sort of way as previous noun strings, thus

"a red car" (14)

is a subset of cars with the attribute of being red. Care must

be taken with the use of the predicating comparative

adjectives, such as "big", "small", "large", etc.. For example,

"a big mouse" will generally still be much smaller than " a

small elephant". So "a big car" is the subset of cars which have

the attribute "big" when this is applied to "cars". Predicating

adjectives may be successfully paraphrased as

"a car which is red" (14a)

The second type of adjective of interest to this chapter are

the non-predicating adjectives. These cannot be paraphrased as

in (14a). For example:

"a commercial traveller" (15a)

47,

in fact combine as a compound noun to form the selector "water

meter". This could be resolved by writing "water meter" as

"watermeter" or "water-meter". There appear to be no rules

concerning the construction of compound nouns e.g.

"field-mouse" and "harvest mouse" in the oxford Dictionary. Why

one of these nouns should have a hyphen and the other not is a

matter for conjecture.

Continuing the theme of noun-noun modification, that is, when

one noun is modified by another, it can be seen that other

relationships can be expressed. For example:

"machine maintenance" (11)

expresses the function of "maintenance" being performed on

"machine".

"COBOL program" (12)

describes a program written in the Cobol programming language

not a selection.

While

"card reader" (13)

is a name for something which reads cards and hence an implied

function, but a

"human reader" (13a)

does not read humans. It generally describes a human who

performs the action of reading.

Nouns may also be modified by nominalised verbs, that is, by

verbs used as nouns. These usually occur with the relationship

4b

telecommunication systems is an example of a method applicable

to this sort of problem. The functions which perform the change

of state need not be explicitly stated.

Functionality can be expressed in other ways. Consider the

phrase:

"water meter cover adjustment screw" (I0)

This is a string of nouns but the interpretation refers to a

series of subset operations being applied to the head noun.

There is initially a set of screws (input data). Selecting the

class of adjustment screws results in an output set

"adjustment-screws". Further selecting those which hold

covers, results in a further output

("cover-adjustment-screws"), and so on. A requirement

specification may refer to a set of screws and then state what

should be done with each (or some) of the sub-sets. The

selection function, or functions is/are only implicitly

mentioned. One of the more interesting properties of

functionality when presented in this way is that temporal

ordering of the functions is clear. One cannot have

"cover water meter adjustment screws" (10a)

"adjustment cover meter water screws" (lOb)

"adjustment water meter cover screws" (10c)

although

"cover adjustment water meter screws" (10d)

might be acceptable provided that cover-adjustment is one of

the selection functions. The relationship functions will be

returned to later. Note that there are lexicographic problems

because "water" and "meter" are not two separate selectors but

45

is, at least, that of stopping the production line. (The reader

is expected to visualise these sentence fragments in a larger

technical context).

The word "stationary" is an adjective and is used in its own

adjectival phrase. The use of adjectives can often infer an

action and this observation will be examined later.

Worse still there are the implied actions which cannot be

resolved from the text but depend for their resolutions on a

larger body of knowledge. This body of knowledge is usually

referred to as PRAGMATIC KNOWLEDGE. An example is the problem

with the lorry, example (6). No lorry can perform the tasks of

going out and collecting anything. There is the implied

knowledge that a lorry must be driven to the collection point

and at that point another action "collect" will be performed

(probably by humans or some other agency) which will cause

something to be placed within the lorry. Another example of

this type occurs when the word used to detail the action is a

label for a defined sequence of actions. i.e.

"The product is weighed up to mark "A"

on the weighing machine". (9)

The weighing process referred to here implies the process of

continually adding an amount of the product until its weight

can be seen to be "A" units on the scale on the weighing

machine. This process is what is referred to by the phrase

"weighed up to".

Collecting knowledge concerning the states can be just as

misleading as collecting verbs, because the information may

also refer to the background.

It is interesting to note that it is possible to completely

specify a complete system by means of stimuli and resulting

states. The SDI, design method 147], designed for

44

All these sentence fragments can be used to describe the

process in which a program is run and which consequently

produces output. They may even all appear in the same document

and hence be classed as different functions when the same

function was originally implied. Or conversely they may be

classed as the same function when the writers actually intended

to emphasize the subtle differences which could be inferred

from the different terms.

It is already clear that merely collecting the verbs is not

sufficient to determine the functionality implied in either a

requirements or specification document.

Let us now examine the second part of the original premise. It

would appear initially that if all the noun phrases were

collected, a list of all the data entities would be available.

This is also not true. In many cases, similar to the case for

verbs, nouns are used to provide background information.

Consider the text:

"A patient-monitoring program is

required for a hospital." (P)

In this example, "a patient-monitoring program" introduces the

subject of the requirements document, but "hospital" is an

external entity to the proposed system. It is not mentioned

again and has been used for scene-setting.

Changing the direction of the attack, and dropping the original

over simplistic premises it must be noted that actions (or

functions) need not be stated explicitly. They can, for

instance, be inferred from the text. For example:

"The production line is stationary". (8)

describes the state of the production line. The action implied

43

a functional viewpoint will probably have a relatively higher

number of active verb uses than a system described from an

informational (data) viewpoint. Thus classifying the verbs in

this way is unlikely to be particularly helpful.

Another problem is that many verbs are also used to describe

other features of the system such as data structures. Consider:

"The words in the telegrams re separated

by sequences of blanks". (4)

"The stream is available as a sequence of letters,

digits and blanks on some device". (5)

Neither of the verbs "to be separated" and "to be available"

describe actions. Another interpretation of these sentences

could be the verb "to be", modified by an adjective in each

sentence, but this also does not describe an action.

A bigger problem arises from the fact that verb phrases in

natural language text may consist of more than one verb. e.g.

"The lorry is going out to collect...". (6)

where there are the verbs "to be", "to go out" and "to collect".

Ignoring the copular verb "to be" for the moment, then neither

the verb "to go out" nor "to collect" describes the action

which must be performed. We will return to the problem shortly.

Another problem which arises, is the use of different verbs to

describe the same process.

"The program will be run"

"Its execution will yield"

"Its output will be...."

"The process terminates"

42

Indeed each sentence may be rearranged and then given in the

imperative form, as an active command:

"Produce a grid reference using the program". (la)

"Operate the mixer for time TV. (2a)

Consider, however, the following text:

"For the production line monitor consider

the main drive motor". (3)

There is one verb "consider". If this is a statement within the

requirements document then it is clear that the production line

monitor the subject of the requirements document) would not be

expected to consider anything. It is only the reader who is

expected to do the considering. This is an example of a verb

which is used for scene setting and background information.

Other verbs of this background type are "seem", "look", etc.,

i.e. the copular verbs. To emphasize this point table I shows a

breakdown of the verbs in use in a small sample of simple

specifications.

$nM~C $Vec2 Spec 3 sp 4

BACKGROUND 8 3 4

FUNCION1AL 4W

TOTAL 12 10 9 4

The relative number of active verb uses to passive verb uses

will fluctuate depending upon the viewpoint from which the

system is being described. For example, a system described from

41

CHAPTER 3

DETECTING FUNCTIONALITY IN TEXT

The problem which we address here is whether it is possible to

detect functions in natural language text. If functions can be

so detected then can their relationships be inferred from the

text? Basically the problem is examined from the point of view

of a validator, but it should be noted that precisely the same

problems will be encountered by someone writing a specification

from a natural language requirements document. The discussion

firstly considers how functionality is expressed in natural

language text, then the sources of relationships between

functions are analysed. The next section seeks ways in which

constraints upon the working of functions may arise. The final

sections cover the problems of textual terseness, through

ellipsis, substitution and informality, and some of the sources

of ambiguity.

3.1. Discovering Functions

It is claimed in a number of books [12) 121] that the functions

of software will be described by the verbs found within the

requirements document and that the data structures in turn will

be described by the nouns. This premise will be examined first

and then the search will be widened to look at further issues.

At first sight the premise appears to work for verbs. Consider

the following texts:

"The program produces a grid reference". (1)

"The mixer operates for time T". (2)

Each of these describes a particular aspect of an action.

40

be in the form of an input, a set of constraints, a

corresponding action (function) and the resulting outputs. The

whole system is then an amalgam of all these fragments. In the

inverse problem, where a complete system exists, knowledge may

be required as to which components are relevant to a particular

input-constraint set. The input-constraint sets and

corresponding component relationships are known as "threaded

links". This idea of taking the threaded links and building a

system was one of the early ideas of the SREM system [15). It

involved the building of R-nets from these fragments.

The rules for composition are also not well formed, thus a

validator is faced with a severe problem.

Summary

In this chapter a number of major design methods have been

analysed to find whether they indicate the steps which lead to

a knowledge of functionality for a given software project. Our

conclusion is that they do not specifically state such steps,

although interestingly such a knowledge must be gained in order

to use some of the methods.

In the absence of suitable criteria the authors have attempted

to define such criteria, basing their definitions on the

snippets of insight which were discerned in the literature. In

the next chapter some of the indicants of functionality

referred to in this chapter are pursued in detail.

39

stores are frequently passed as parameters to sub-functions but

are defined globally.

One of the problems encountered in decomposing functions can be

seen in the SADT method. In SADT each process (function) has

four sets of arrows associated with it. There are the input

arrows (from the left), the output arrows (from the right), the

constraint arrows (from above) and the mechanism arrows from

below. The constraint arrows carry with them the criteria which

must be satisfied in order for that process to perform its

task. The problem referred to above concerns the separation of

the data streams from the constraint streams. It is frequently

found that the output from one function appears to act both as a

constraint to another function and an input data stream to

further functions. The decomposition then appears difficult

because the reader is unsure of the significance of the data

and constraint inputs. The confusion between data and

constraints appears fundamental. It probably arises from

difficulties encountered in expressing ideas in natural

language. These difficulties arise because sufficient care is

riot taken to express the ideas in a way which makes the

distinction between data and constraints clear. This topic is

dicussed in detail in the next chapter. Basically the

constaints should be boolean expressions. The data however may

also have boolean values.

5. Functional Composition

In many projects it might be necessary to perform a composition

of functions instead of, or as well as, a functional

decomposition. What proportions of projects fall into one class

or another is not known or indeed whether there is a need for

both composition and decomposition in a significant number of

projects.

The need for composition arises from the way in which the user

perceived functions can arise. Each user perceived function may

38

The actual decomposition rule will depend on many factors. Two

such factors are:

I) If the structure of the input data and also the output data

are corresponding, then the hierachy can be a Jackson tree

structure.

a) A special case of this is when the inputs consist of a

sequence of clusters of independant data and the output

relates directly to the clusters. Then the function

representing the whole can be decomposed into a

sequence of functions.

There are two further sub-cases:

i) the functions do not communicate i.e. inputs of

each are independant of the outputs of others.

ii) the outputs of each function in turn is also an

input to its successor.

2. In general any functions resulting from the decomposition

of another function must have a method of communication.

That is, there must be a mechanism by means of which the

output of one function can become (part of) the inputs of

another function. There are two main methods:

i) transient values,

ii) data stores.

In computer software the transient values are locally declared

variables which transmit the values generated by one function

to another (other) function(s). In some languages, for

technical reasons, these variables may be defined globally.

Generally, however, such variables are passed as parameters.

The data stores are global repositories of data and they have a

lifetime exceeding that of the individual functions. They may

even be permanent, residing for example, in a long term data

base, l'brary or archive. In computer software these data

37

"takes place"

"happens"
"occurS"

may imply simultaneity or not depending on context.

"If you go to town could you visit the

library at the same time" (20)

does not imply being in two places at once.

If the prepositional phrase contains "by" and also a noun group

containing "ing" then the phrase contains an implied mechanism

for performing the action, rather than a condition.

Compare

"the mixer is emptied by tipping" (21)

where the prepositional phrase describes how the mixer is to be

emptied.

With

"the mixer is emptied by the wall" (22)

in which the prepositional phrase is locative.

The problem of detecting functions which are the subfunctions

of others is extremely difficult from graphically unstructured

text. If graphical structuring is present, e.g. indenting and

assigning hierachical numbers to paragraphs, the problem is

greatly eased. Nevertheless there does not appear to be any

well developed, generally accepted convention either for

expressing such relationships textually or by graphical

structure.

3.3. Constraints

When a function is detected it is necessary to determine the

51

conditions for the performance of this function, i.e. the

constraints. Some of these constraints (e.g. temporal ordering)

have been briefly discussed previously. The detection of these

constraints is hindered by the lack of rules for the scope of

such constraints. It is, for instance, possible to qualify the

function within the sentence which defines or introduces that

function. Such a constraint may be specified by a prepositional

phrase.

"The lorry must be parked by the wall".

This specifies that the operation of parking the lorry is

restricted to a place by the wall (it is locative).

Unfortunately the constraints (pre-conditions) may have been

explicitly introduced earlier in the text, by sentences such

as;

"in the following it will be assumed that

where the extent of the following text is not defined.

Occasionally a specific indenting notation is used, in which

case there is the implicit assumption that the scope is that of

the indentation. More frequently the constraints are introduced

implicitly, that is they arise in the text without necessarily

being highlighted, and these constraints are cumulative. They

are cumulative because there is no natural language mechanism

for dropping constraints other than explicitly stating those

which will cease to apply. Usually pragmatic knowledge and

content are used to discard these constraints.

A further level of difficulty arises from the use of backwards

directed constraints. These are frequently in the form of

afterthoughts, e.g.

"Of course, this only holds if

52

where the context of "this" is not explicitly stated and which

can be inferred to relate either to the last statement, or part

(even the whole) of the preceeding text.

There is also no mechanism in natural language text to discover

whether the constraints are contradictory. For this the

constraints need to be formalised in some way in order to

permit analysis with a mathematical basis. Inadequacy of the

constraints is unlikely to be discovered by any mechanism

except considered thought by those involved.

The types of constraints can vary widely, e.g.

temporal,

locational,

possessional,

communicational.

The sources of knowledge concerning these constraints are again

diffuse. They occur in prepositional phases,

"....under manual control",

in adverbial phrases,

"....move the records on Monday".

Through the use of modal verbs such as,

can, must, will, shall,....

where these modal verbs are normally used to qualify other

verbs, as in,

"the software must control.... "

Sometimes, the constraints introduced are strong enough to

53

imply a "mechanism" whereby the function can be implemented.

"The program extracts keywords and deduces the exact

location by scanning the input text near the keywords".

Here the verb "to deduce" introduces a function and the

preposition "by" introduces a mechanism "scanning" whereby the

program will "deduce" the exact location.

The introduction of constraints into natural language text can

also be achieved by the use of conditional sentences:

"If a then b else c".

Such a form is recommended in a number of texts [12] [5].

However, the common use of such structure can vary

dramatically. Consider the following text in which the

condition is spread over two sentences:

"For order with payment or good credit, inventory is

then checked to see if the order can be filled. If it can

a shipping note with an invoice (marked "paid" for

prepaid orders) is prepared and sent out with the

books".

Here a condition is introduced (the order can be filled). This

condition is substituted in the second sentence by "it', which

makes the document more informal and more readable. This

technique may be extended over many sentences. There is then

the problem of the alternative, that which happens when the

condition does not apply. As discussed later, an ommission of

an alternative leaves unresolved ambiguities. If an order

cannot be filled is nothing to be done, or is an invoice to be

sent without the shipping note and books?

The alternative can be introduced explicitly, implicitly, or by

the introduction of another condition.

54

"Otherwise a confirmation of order will be sent".

"Confirmation of order notes will be sent with estimated

delivery dates".

"If no books are available a confimation of order will

be issued".

Failing to recognize the relationship between the conditional

in this last alternative with that of the original statement

will lead to the possibility of infeasible branches in an

implementation.

It is clear from formal methods for proving or partially

proving programs (45], that pre- and post-constraints for

functions are a powerful weapon. This is particularly true in a

data flow model where the data links between functions

(processes, activities, etc.) are modelled. In such a model

there is the implication that the availability of data is

sufficient to trigger the process. This may not necessarily be

true, there may be conditions deriving from the state of the

system, or from other processes. In SADT each process is

governed by the imposition of conditions. However, in this

method confusion between data and constraints occurs

frequently. This problem appears to be resolved if pre- and

post-conditions are introduced explicitly.

One extremely useful post-condition, is to derive the condition

whereby the completion of the process can be established. Often

such a post-condition can be trivially true because it is not

possible for the process to terminate any way other than after

having completed its task.

Distinguishing between constraints and mechanisms is also

difficult:

"When the data is sorted...."

55

can imply either a post-condition, or it can state that a

sorting process must be invoked.

3.4. AmiZgut

It is widely recognised that natural language text contains

many sources of ambiguity. It is frequently claimed that this

is a major disadvantage of using natural language. In this

section some of the causes of ambiguity are investigated.

Consider the sentence

"The lorry must be parked by the car park attendant".

The cause of the ambiguity here is the preposition "by", which

can be interpreted in its locative form (specifying the place

to park the lorry) or in its subjective form (specifying who is

actually to park the lorry). The consequent information on the

parking function is dramatically different. In the first case

the sentence describes a constraint on the function. In the

second case the sentence describes how the function is to be

performed. This ambiguity cannot be resolved without reference

to some further relevant knowledge.

Throughout the discussion preceding this section, a specific

interpretation of the sentences or fragments has been taken. In

many of them other interpretations are possible.

Some sources of ambiguity are:

A) LEXICOGRAPHIC AMBIGUITY

This occurs because many words have many different common

meanings e.g.

"dog, cow, badger, fly, horse".

This list of nouns could also be a list of verbs!

In the computing environment confusion can arise with the use

5b

of words such as "process, effect...."

Probably the worst examples are words such as "cleave" which

has two opposite meanings. One is to split apart, etc., the

other is to adhere to, etc.. A list of such problem words would

be useful.

B) LOGICAL AMBIGUITY

There is no universal agreement in natural language as to the

semantics or meaning of certain syntantic structures. For

example, the construct

IF a THEN b

has two interpretations:

INTERPRETATION I

If a is TRUE, the content of b is relevant

If a is FALSE, the content of b is irrelevant

Example: If the sun is shining then dig the garden.

This does not omit the possibility of digging the garden if the

sun is not shining.

INTERPRETATION 2

If a is TRUE, the content of b is relevant

If a is FALSE, the content of not b is relevant

Example: If a person is convicted then they are a criminal (and

if a person is not convicted then they are not a criminal).

Clear documentation of the two interpretations can be found in

legal histories where both possibiities are observed (49].

Computer specialists, by their training, always take the first

57

inter pr etat ion.

The problem is compounded by the many different ways in which a

conditional sentence may be expressed: For example

(i) c UNLESS a, IN WHICH CASE b

(ii) C. HOWEVER, IF a THEN b

(iii) c, BUT b WHERE a

(iv) - ONLY WHEN a SHOULD b

(v) IF a THEN b. OTHERWISE b.

Each of these conditional statements reduce to the logical

structure:

IF a

THEN b

ELSE c

It should be noted however that conditions are not always

expressed within one sentence (examples (ii) and (iv)).

Similarly, it should be appreciated that in general use

structural words and punctuation marks might be omitted.

Example (ii) could be written:

c. HOWEVER, IF a, b

When a condition is expressed in more than one sentence, the

alternative clause (the ELSE part) might not be expressed. This

will generally result in "loose-ends" in a specification.

Clearly great care is needed in the use of such logical

constructs.

The conjunctions "and", "or" and "not" are sources of ambiguity

when more than one of them appear in a condition expressed in

English. Consider:

59

"packages which are being sent abroad and weigh less

than 20Kgms., or are marked urgent are to be sent

airmail".

What happens to a domestic parcel weighing LOKgms. marked

urgent? If one interpretation is used then it will be sent

airmail, if the other interpretation is used then it will not

be sent by air mail. It is not clear whether the 'and' includes

one or both of the adjectival phrases following. The problem is

that the scope of the logical implications are not defined. For

example, the scope could be the next phrase or the whole of the

remainder of the next sentence. e.g.

"No person shall be Senator who shall not have attained

the age of thirty years and been nine years a citizen

of the United States, and who shall not when elected,

be an inhabitant of that state for which he shall be

chosen".

Does the first rgt, negate the phrase "attained the age of

thirty years", or "attained the age of thirty years and been

nine years a citizen".

In problems of this type a list of the predicates seems

preferable.

c) GRAMMATICAL AMBIGUITY

There are four main areas of grammatical ambiguity. We shall

examine each of them in turn:

(i) The bracketing of constituents within sentences can

sometimes cause ambiguities. We have already seen one

example with compound logical statements in the

previous section. The wider problem occurs when a

modifier can be attached to more than one of the

preceeding constituents of the sentence. These

59

modifiers can occur as relative clauses or preposition

groups. For example:

"The man saw the woman in the park"

Who was in the park? This type of ambiguity can

sometimes be resolved using either contextual

knowledge or pragmatic knowledge.

(ii) The bracketing within constituents of a sentence can

cause ambiguities. Consider the sentence:

"We want to attract more intelligent students".

Here, without reference to further knowledge the

sentence is ambiguous. The ambiguity can only be

resolved if it is known whether the general level of

intelligence is to be raised or whether a greater

number of bright students is required.

(iii) Interpretations of nominallizations can cause

ambiguities. Consider the sentence in which the verb

"to shoot" has been converted to a noun:

"The shooting of the hunters was disgraceful".

The ambiguity arises from the fact that "the shooting

of the hunters" can have a subjective interpretation

(they were doing the shooting) or an objective

interpretation (they had been shot). Again, this type

of ambiguity might be resolvable given appropriate

background knowledge.

(iv) Ambiguities can be caused by words which belong to more

than one syntactic group. For example, words such as

"flies" and "process" which can be both a verb and a

noun. If more than one of these words occur in a

60

sentence then many interpretations are possible.

Consider the sentence:

"Time flies like an arrow",

which has at least three interpretations.

D) TERMINOLOGICAL AMBIGUITY

The problem here is that in different technical areas

particular words have different technical meanigs. e.g.

"Buy a car with two wheels and a banana".

In grocery circles, a banana is an item of fruit; in hot-rod car

circles a banana is a fancy chromium plated exhaust-system. In

motor-cycle circles, the banana might be interpreted as a fancy

type of seat! No doubt other interpretations exist.

Resolution of these problems requires a careful definition of

terms, for example the construction of a data dictionary.

Other problem areas leading to Possible ambiguity.

The casual way in which people use punctuation marks can create

misinterpretation. It is riot sLrictly an ambiguity but does

cause problems. Compare the sentence:

"The Prime Minister called for an end to violence and

internment, as soon as possible".

With the similar sentence:

"The Prime Minister called for an end to violence, and

internment as soon as possible".

Worse still, punctuation marks are often omitted. Consider:

"Drink ye all of this"

This could mean either

6l

"Drink ye, all of this"

or

"Drink ye all, of this"

Legal documents avoid these problems explicitly by avoiding the

use of punctuation. The ambiguities however seem to remain

implicitly.

Humans are also very casual in the way in which they

communicate numbers. The phrase "twelve and a half" is usually

taken to mean the numeric value 12.5. However, the phrase "one

million and a half" is usually taken to mean 1,500,000 NOT

1,000,000.5.

Whilst on the subject of numbers it is worth noting that humans

often omit the qualification of numbers (i.e. what they

actually refer to). Consider:

"A basic practice allowance of V1000 a year, with a

standard capitation fee of 15p a year for each patient

under 65 and 20p a year for patients over 65. For each

patient after 1,000 there would be a supplementary

capitation fee of 30p a year".

The phrase "over 65" would generally be taken to mean "over 65

years of age", whilst "over 1,000" would be taken to mean "over

1,000 patients". This example demonstrates the vagueness with

which humans use the terms "greater than" and "less than". In

the above, a doctor would strictly get no additional allowance

for a patient exactjy 65 years old.

Numbers can be used to demonstrate the terminological ambiguity

claim made earlier in this section. What does "negative" mean?

In mathematical circles, a "negative" number is a number whose

value is less than zero. In laboratory circles, a "negative"

sample is a sample that does not contain any trace of a

particular feature looked for. The police, however, consider a

6 2

breathalyser test to be negative if the reading is less than 80

mgm/100ml.

From this it is clear that great care must be exercised in

documents involving numbers.

Another area which leaves the opportunity for misinterpretation

occurs when certain operands are omitted from a sentence.

Consider (ignoring other ambiguities):

"The program extracts keywords and deduces the exact

location by scanning the input text near the keywords".

What are the keywords extracted from? This information has been

left implicit.

There are many ways in which ambiguities can arise. It is

essential that before any semantic processing of the text can

be performed, ambiguities must be removed. This in itself leads

to two problems:

1) The identification of ambiguities, and

2) the resolving of the detected ambiguities.

If humans perform the analysis the major difficulty lies with

1), whilst with automated systems it is 2) which poses the

major problem.

3.5. Ellipsis. Substitution and Informality

These processes produce sentence fragments, incapable of

standing alone as sentences and which rely for their

interpretation on the context and the ability of the reader to

reconstruct the "understood" sentences to which they relate.

J) Ellipsis is a process whereby a word or many words

can be omitted from a sentence, the complete meaning

63

li | I K-O W

being obtained by inference e.g.

"The colour is unsuitable".

This sentence by itself is meaningless, what is

needed is knowledge that it is a room being referred

to. This knowledge can be obtained either by

reference to the previous text or by inserting the

missing words e.g.

"The colour of the room is unsuitable".

The danger with ellipsis is that there may be more

than one interpretation based on the previous text.

The removal of ellipsis is not usually desirable but

attempts to ensure that it is unique and obvious what

is being replaced is worthwhile. For example this

last sentence would be better written as

"but it is worthwhile to ensure that what is

being replaced is unique and obvious".

ii) Substitution is the process whereby a pronoun is used

to replace a noun or noun phrase, e.g.

"It is a widely used technique".

Here "it" substitutes for the noun "substitution".

The main use of substitution is to reduce the length

of text. In this role it is extremely powerful but it

can also be highly dangerous. The problem is that it

is not clear which noun phrases are those which are

being substituted for by a given prcnoun and hence

ambiguous sentences can result. e.g. (paraphrased

from the definition of Pascal)

"Any text enclosed in curly brackets is called a

comment. It may be removed from a program

without altering its meaning".

There are two substitutions in the second sentence.

64

a). An analysis of 22 Cobol programs from a D.P. environment [7].

Average per program

Cobol source cards 988.40

Comment cards 73.40

Cobol statements 528.09

Unexecuted Cobol statements 27.54%

b). Results from a few samples of commercial programs [8].

Case A: 10 programs from an accounting suite.

size: 181 - 1321 procedure division statements

Ter = 72.4%2

Case B: 3 programs from a large applications suite

size: 789 procedure division statements on average.

Ter 2 - 47.3%

Case C: 150 module system

size: approx 20K lines of code

Ter2 - 53.2%

Results for the structural testing metrics when used to evaluate to conventional
functional test data. Note that in general the statement cover (Ter1) is usually
about 10% better than branch cover (Ter).

78

CATEGORY PROGRAM 1 PROGRAM 2 PROGRAM 3

MODULES 115 70 160

DECISION OUTCOMES 730 490 1040

FUNCTIONAL TEST COVERAGE 70% 75% 85%

ERRORS DISCOVERED 8 8

FINAL COVERAGE 90% 90% 90%

ERRORS DISCOVERED 4 2

ACCEPTANCE TEST ERRORS 1 1 0

ADDITIONAL ERRORS 7 5 0

Fqge 4.3

Results from (6) showing 'coverage' of branches (Tex) achieved by a
2

functional test, together with the number of detected errors. The final cover

was achieved by utilising structural information.

7.,

Ter Ter Ter
1 2 3

TDI 78.56 63.56 40.55 Functional

test Cata set.

TD2 96.41 88.89 63.98 Structural

test data set.

TD3 97.80 91.36 65.84 Error exit

test set.

TD4 98.00 92.59 67.08 Inialisation

sequence.

TD5 98.60 93.00 67.39 Error exit

test set.

TD6 99.00 93.83 68.01 Error exit

test set.

TD7 99.40 94.65 68.63 Special case.

TD8 100.00 97.12 71.74 Special case.

TD9 100.00 97.53 72.36 SpeCial case.

Figure-4.2

Results from (51 showing *coverage' of statements, branches and LCSaJ attained

firstly by the best functional test data and then showing how other tests were

added to give an acceptable cover.

7b

LogicalExecutavle 5surce decision Soints Subroutine

tatementS or branches invocations or calls

4491 1 1 35~ . (2 Olgl

13 600 8 783
55.5) (64.91) (62.8%)

Not tested Not tested I Not tested

2I 891
44.5 i 752
ActuaIly 4 752 (37.2%)

. tested (35.1%) Actually
Actually tested
tested

,'e ample size 40 669 source statement

Source: tucki - 750612 Mc Donnell Douglas Automation)

:i sortware suite dlsplayed bq an an uto ted tiol

f-igu re _d

75

specifications of these programs in order to classify the

failures the authors have not been successful. There do not

appear to be any general principles which can be established in

order to ensure that these test cases are not missed. The only

patterns which were observed have been incorporated into the

method advocated in the next chapter.

Some of the test case omissions observed fell into the same

category as that described above for the triangle program. That

is, within a clear functional class it is possible, with only a

minor degree of pragmatic knowledge, to deduce that special

cases or subcategories might be worth exploring. The

specification does not however explicitly indicate them.

In conclusion, the analysis of this chapter demonstrates that

functional testing strategies do not achieve significant

coverage of the program code. The code that is missed is

largely implementing features introduced at the design phase.

Some of the housekeeping code is currently successfully tested,

more could be tested by organising the functional tests in a

manner outlined in the next chapter and finally there is a body

of code for which the authors see no external mechanism for

executing (other than chance). In this latter case there is no

necessary cause for concern provided a structural test strategy

has also been performed. On the other hand this means that

functional tests alone will not demonstrate the absence of

errors.

74

knowledge of its presence. Note that if an error is introduced

into the isosceles triangle component of this algorithm, four

test cases will be unlikely to discover the error and yet the

functionality will now differ from that intended.

Notwithstanding this problem, which is not resolvable from an

external view, there is the thought that perhaps a functional

approach should consider the overkill possibility. That is, the

functional approach should seek potential sub-functions and

provide test data for each of these, even though there is the

possibility that these sub-functions may not have been

implemented in the code. Thus in the triangle problem there

should be six test data sets:

one equilateral,

one scalene,

three isosceles,

one not a triangle

This still will not approach the error detecting power oL

structural testing which would require of the order of thirteen

test cases. Knowledge about these possible subfunctions does

riot come from the specification but either from a knowledge of

the design or pragmatic knowledge.

Returning to the analysis of functional tests by means of the

structural test metrics it is now worthwhile to differentiate

between, these cases where the testers could have deduced

missing test cases from the specification, and those where they

reasonably could not. This is not an easy task because in

general, for the major samples of software examined, the

specifications are no more than descriptions. However for the

mathematical software the situation is more clear cut because a

precise specification is available. In this case 62% of the

unexecuted code could have been executed by constructing test

data deducible from the specification and combined with

pragmatic knowledge. The remaining code was associated with

design functions not discernable externally. In studying the

73

isoscoles triangle,

equilateral triangle,

scalene triangle,

riot a triangle.

From this analysis it is reasonable to assume that there are

only four paths within the program. It is indeed possible to

write such a program. However, assume that our software

developers choose an alternative proposal, perhaps for reasons

of efficiency (figure 4.8).

From the specification there are four verb phrases:

1) to be written,

2) reads,

3) classifies,

4) forms.

The first is an action to be performed by the software

implementers. The second is a trivial action of the program.

The third is the principal action of the program. The fourth

describes the data structures. Judging functionality from this

viewpoint the function performed is that of classification and

there are four such classes.

If the implemented code is that of figure 4.7 then four test

cases, one exemplar for each class will not only execute every

line of code but also every branch. However, if the implemented

code is that of Ligure 4.8, then every line of code is not

executed. Both programs are correct, they differ only in

design, one chooses to use complex predicates and the other

prefers an algorithm which counts the number of equal sides.

The algorithm introduced in figure 4.8 is not referred to in

the specification and hence a functional tester has no

72

The systems analysed in figure 4.5 are large, e.g. greater than

10,000 lines of code and it is possible that the proportion of

housekeeping code grows at a rate which is faster than the

length. If smallish programs are analysed [51] it can be seen

that some of the code which is missed in even an exacting

environment, can be classified as housekeeping. For example;

error exits leading to failure messages and special cases which

are dependant on the specific solution algorithm chosen are a

significant portion of the untested code.

When the software referred to in figure 4.5 is dynamically

analysed, the unexecuted code also falls into similar

categories. That is, the unexecuted code consists of:

error exits,

special cases, and also

code associated with the housekeeping functions.

In fact most of the unexecuted code can be attributed to the

housekeeping functions and this fact provided the main

motivation for developing the testing technique described in

the next chapter.

The problems of functionally testing a program can easily be

illustrated by a well known example. It is a triangle program,

for which the specification is:

"A program is to be written which reads a set of three

positive integers and classifies them into; those sets

which can form the sides of isocoles, scalene and

equilateral triangles, or which cannot form the sides

of a triangle".

Two programs which satisfy this specification are shown in

figures 4.7 and 4.8.

From the specification there are four classes of the integers

which are significant.

71

comprehensively test the software nor remove all the errors.

It appears that the results are essentially independant of the

application area. The variations can be quite dramatic but the
picture which emerges is that the programmers seriously

overestimate their performance. In the following analysis it

will be assumed that results such as those presented above are

produced by programmers conscientiously trying to do a good
job. It is generally accepted that computer programmers are
highly intelligent people and the statistics are such that they

cannot be wholly explained on the basis of incompetance and

lazyness.

An explanation as to why these functional tests provide a
rather poor coverage can be made by the following argument. In

figure 4.5 the results of an analysis of the type of each module

of some software systems are presented. It can be seen that in

each case nearly half of the modules are performing
housekeeping functions, i.e., functions not reflected in the

requirements. These housekeeping functions are purely a design

artefact, introduced in order to perform some task determined

purely by the design strategy. Without a detailed knowledge of
how these housekeeping modules interrelate to the user

perceived functions it is clearly unlikely that they will all

be executed. The housekeeping functions referred to here are a

subset of the design functions described in (32]. In figure 4.6
another analysis is made of two small systems written to the
same specification and again it may be seen that housekeeping

code dominates over code which is more clearly related to the

user functions [41]. The classification of either code or

modules into classes such as those discussed above is not a

simple clearcut problem. it requires judgement and is subject

to considerable error. No attempt has been made to bound this
error because insufficient statistics are available. These

results should be treated with some caution. Nevertheless the

extent of the code implementing housekeeping functions can be

considerable.

70

provide a very detailed functional test. The testers were given

an unbounded time to think about the test data, which, since

the software was a Cobol testing tool, was well defined (the

Cobol syntax). In the event the results were very significantly

worse than the testers expected. A figure of around 96% for

Ter (as always) was the guess submitted in advance of the

measurements. It should also be noted that the numbers quoted

in figure 4.2 favour the experimenters for the following

reason. The original test data caused the tool to fail, and the

test data was only successfully processed after the tool had

been significantly rewritten. This process caused the tool to

become significantly smaller. Most of the code removed was

infeasible.

Figure 4.3 reproduces some results from [381 in which the

testing of three software tools is described. Again the

coverage attained by the functional tests is poor considering

that the test data was well understood. The attainments of the

functional tests was clearly unacceptable to the software

developers because testing continued in a structural testing

mode. In this latter process additional errors were found. The

environment was essentially text processing/system

development.

Results obtained for standard D.P. programs in a Cobol

environment are reported in [40] and also [39], which are

summarised in figure 4.4 Again the overall picture is one of

poor performance. In both environments the programs were mostly

smallish and since the environments were accountancy and

standard D. P. the functionality ought to have been simple and

well understood.

Investigations with scientific software, specifically

numerical analysis have shown improved results but nevertheless

the programmers have been seriously concerned with the results

[51]. In this case even a complete, unambiguous specification

was available and yet the testers were neither able to

69

There is now a considerable body of functional tests which have

been investigated by using structural testing metrics. Results

have been obtained from all over the world and cover many

different programming environments and implementation

languages. Some have been controlled experiments, others have

been 'a postiori' measurements where the test data has

fortuitiously been available. That is, after the functional

tests have been completed, the software and its test data are

examined by structural testing techniques to obtain the

coverage metrics.

The metrics which have been used are, either the coverage of

the statements Ter (the percentage of executable statements1
actually executed by the test data) or branch coverage Ter 2
(the percentage of the branches executed).

In figure 4.1 one of the earliest and most famous analyses

appears [36]. The programmers in this case were not consciously

using a functional testing strategy. Since they were using no

other strategy it can be safely assumed that the choice of test

data will have fallen into the functional test category. The

main guidance the programmers will have had being a knowledge

of the specification. Their environment was Fortran in the

aerospace industry and hence it was probably a scientific

calculation. The results they obtained are appalling.

Interestingly it appears that in similar cases where the

results have also been similar, the programmers upon being

questioned were of the opinion that they had succeeded to a

much greater extent. This intuitive feeling is confirmed in a

small number of controlled experiments where testers have given

their estimates of coverage in advance.

A more clear cut case is shown in figure 4.2. Here the

investigators were specifically interested in knowing how good

the functional tests could be in terms of structural coverage

[50]. The environment was Fortran and Cobol in a text

proces na/D.P. environment. A considerable effort was made to

6

CHAPTER 4

EXPERIMENTAL ASSESSMENT OF FUNCTIONAL TESTS

This chapter analyses the deficiences of current functional

testing strategies. The method of assessment is the use of

structural testing metrics. On the face of it, this is not a

fair way to assess functional testing. What is needed is some

metric or measure which will provide some guidance as to how

well the functional tests are performing relative to the tasks

of functional tests. Such a measure might be the percentage of

the 'significant combinations' of functions tested. However the

previous discussions have shown that currently this is

impractical.

On the other hand some aspects of functional tests are worthy

of consideration in a non-functional context. The first point

is that a functional test ought to be a reasonably

comprehensive test of the software, exposing it to many

combinations of its working load. This suggests that most of

the code should be executed by such a test. It is the fact that

this does not happen very often that exposes current functional

testing practices to criticism. The fact that a large amount of

code is unexecuted by the functional test can be used to infer

that there is a high probability of a very large class of errors

remaining in the software. This is particularly true if it is

the only testing method used. Since the users of the software

will be able to make this inference without a significant

degree of technical knowledge some other assurance would be

needed. Where this assurance has been contractually essential,

the technique has been to monitor the functional tests using

structural testing techniques and then improve the testing by

using structural tests until some chosen metric is satisfied as

discussed below. Even in this case, it is accepted that an

improvment in functional testing techniques is desirable.

61

The solution to the problems of informality is to

ensure that all knowledge, detail, etc., needed to

comprehend the text is present within the text. Some

readers will skip this text as trivial and obvious

and still make erroneous interpretations. The move

towards data dictionaries can be a significant help

in overcoming these problems.

3.6 Summary

In this chapter the authors, who are not linguists, have

attempted to find rules and techniques for identifying

functions. What has been found, in widely diffuse sources,

indicates that humans have not found it necessary in the past

to develop precise techniques for expressing ideas concerning

functionality. No authoritative papers or books have been found

which either discuss the problems or offer solutions.

The content of this chapter is entirely negative in the sense

that it has demonstrated that a simplistic approach will not

work. The problem of identifying functions and their

interrelationships is highly complex and essentially very

little fundamental research on this problem appears to have

been published. The authors have attempted to produce some

guidelines and validation procedures but these require vastly

more work before being useful.

6b

The first "it" refers to the comment but the second

"it" could refer either to the "comment" or to "the

program"

The usual signs of substitution are the appearance of

pronouns such as

"it, them, that, those, one".

iii) Informality is the process whereby the writer assumes

that the reader knows what is being referred to,

thereby, utilising the fact that the language is

context sensitive.

For example consider the following mathematical

problem:

"What is the probability of being dealt a

complete hand of spades in a card game".

An examiner setting this problem might not be aware

that many students cannot solve this problem because

they are unaware of what constitutes a card game or

what is the process of dealing. Only those who have

played card games with the 52 card pack of four suits

are in a position to produce correct answers.

Informality is a very powerful weapon because it

provides the mechanism whereby text can be terse. By

not defining these terms, vocabulary, etc., with

which the audience is familiar the text can be

shortened considerably. It is argued that it is this

technique which makes natural language text superior

to mathematical text.

There is an obvious danger with informality, readers

may believe that they unirstand the text but their

interpretation may differ from that of the writer.

Fb

Software Stock

tool control

INITIALISATION 3 1

HOUSEKEEPING 30 28

ALGORITHMIC 27 35

DIAGNOSTIC 6 1

66 65

F igure 4.5

An analysis of the roles of modules in medium sized systems. A

housekeeping function is one which performs a task which is in no way

reflected in the requirements. It is introduced during the design

stage as an artifact.

"79

I I

z 3O

Mode <ser "I C-o HeW Error Movriq Data Conmets
a TC tons p , f -ftts rnress e orocess,n data dtclarations,

processinq around for-ats

Figure 4 b

What does a software product do? An analysis of two implementations of the same

specification.

Source: Boehm, B., "An experiment in small-scale application of software

engineering". IEE Trans. on Software Engineering, SE-7, 482-493, 1981.

so

read (ij,k);

f, j Ock + iand L q + k Aa(I k 0 4

then

if j= k and k - 1

then

print ("equilateral triangle")
else

,I j = k o_ k - i or j -

then

print ("isosceles triangle")
else

print ("scalene triangle")

til

else
print ("not a triangle")

f.1-

Fi ure 4 .'

Triangle program with no house-keeping code.

91

read (i,j,k);

_a i - j 3 j k

then

match: = 4

else

if j 4(k + i and i << - + k and k • j + i

then
match: 1;

if i = j then match: = match + 1 ii;
if j = k then match: = match 2f I fi;
if k = 1 then match: = match + I Li;

else
match: = o

f~i

if match = 0 then print ("not a triangle")
else

if match = 1 then print ("scalene triangle")
else

if
match = 4

then
print ("equilateral triangle")

else
print ("isosceles triangle")

fi;

Figure 4.8

Triangle program incorporating an algorithm to classify triangles.

92

CHAPTER 5

THE ORGANISATION OF FUNCTIONAL TESTING

The purpose of this chapter is to consider how functional

testing can be organised in order to improve confidence in the

success of the functional tests. Much of the motivation

resulted from an analysis of code not executed by conventional

functional testing activities.

Consider the possibility that the user perceived functions can

be identified. if one of these functions is executed with

appropriate test data, the correct results may be produced,

e.g. in an airline reservation system, a seat request may be

initiated which results in a seat being booked. The problem is

how to assess whether this result was obtained by coincidence.

For example, the reservation system may always reserve seats,

regardless of whether seats are or are not available.

To resolve this ambiguity, there are two possible strategies;

either to monitor the execution of the code by some form of

dynamic analysis, or to organise the execution of a sequence of

the User Perceived functions so that the success of the

sequence indicates that each individual function is probably

executing correctly. Note the careful choice of words, there is

no certainty in functional approaches. To illustrate the second

approach, consider the reservation system again. If a function

Is executed which defines a particular flight with a particular

aircraft, then a specific number of seats will become

available. Now, if the number of seats is N, then the first N

requests for seats may be correct by coincidence. However, the

failure of the N + 1 th. request provides a higher level of

confidence that the request functions are working correctly.

The fact that this N + 1 th. function execution yields,

correctly, a different output to the previous executions

83

suggests that coincidental correctness is unlikely.

These two approaches to functional testing will be explored in

detail.

MONITORING OF FUNCTIONAL TESTING

To obtain the highest confidence in the success of a functional

test, the outcome must be seen to be correct, the stored data

values must also be correct and the appropriate code segments

should have been executed. The possibilit' .:s of coincidental

correctness then lie solely within the comi tational processes

of the actions. Elimination or reduction of this latter

possibility is best accomplished by Structural Testing

Techniques [35].

Determining which are the executed code s~gments can be

accomplished at a number of levels:

i) By full dynamic analysis as required in Structural

Testing Techniques.

ii) By selective dynamic analysis in which larger units

than lines of code or Basic Blocks are instrumented.

For example, module-calling sequences may be

sufficient.

iii) By using diagnostic trace facilities. This possibility

is similar to ii) above but also utilises the output of

selected data items from which it is possible to deduce

the execution sequence.

Consider the merits of these cases in turn. In the case of i),

the cost of the dynamic analysis is higher than in the other
cases. However, the detailed tracing which results from this

can be used to document the tests to the extent that precise

benefits of the test can be evaluated. The value of the test

94

for validating subsequent software modifications can then be

assessed. This knowledge is particularly helpful during

maintenance or enhancement activities. The major benefit of

detailed tracing is that the corresponding structural testing

metrics can be obtained, so that if these metrics are not

satisfied to the required level, then structural testing

techniques can be used when the functional tests ait exhausted.

The combination of monitored functional testing, followed by

structural testing, is very powerful and 1 as been used by many

practitioners. It has the advantage of obtaining the best of

both worlds. Both [37] and [38) describe how a poor functional

test was enhanced by structural testing techniques with

comparatively little extra effort.

The option ii) is significantly more economical, but

correspondingly the information available is more sparse.

There is greater scope for coincidental correctness and less

accurate documentation of the test data coverage. Finally, the

tie-up with structural testing coverage metrics is lost. This

latter loss means that both techniques must be used separately

with the possibility that both kinds of tests could be

performing essentially the same tasks. However there is a

considerable saving of resources because full dynamic analysis

can be very expensive.

The possibility iii) can be used in a situation were dynamic

analysis tools are not available. It has the consequence,

however, that the software must contain a diagnostic trace

mechanism as an integral part, and that the designers of this

mechanism must have carefully considered whether the resultant

information can be used to deduce which code segments have been

executed. Automated analysis of the trace is highly recommended

because humans tend to be poor at this kind of analysis.

9B

principles of Confirmatory Functions

In this section the exploitation of one function to provide

confirmation of the correct functioning of others is

considered. In order to accomplish functional testing by

utilising the confirmatory power of the functions, two steps

can be taken:

i) the assessment of the confirmatory power of the

identified functions and the construction of the

appropriate temporal sequence for their evaluation;

ii) the provision of special functions, not reflected in

the user requirements, which are introduced purely to

provide confirmatory power. An example is a checksum

which is introduced solely to confirm that data

movement operations are performed correctly. A

checksum would not form part of user requirements.

These additional functions are termed Ivalidatory functions'

and, in general, they will have a high confirmatory power.

Frequently, the correct functioning of subsystems of the

software project can be confirmed by the use of one or more

validatory functions. This practice is commonplace with

scientific programs, although there is no reason why this

should not also be true of most classes of software. At the

simplest level a diagnostic print statement is a validatory

function, its role is to provide a means for checking internal

data stores, etc.

It should, however, be noted that there is an inescapable

run-time penalty associated with the use of these extra

functions. This price is cheerfully paid for operations close

to the hardware, e.g. checksums, but software engineers are

wary of using them at higher levels. This is a sad waste of a

powerful ally.

eb

The organisation of the functions to determine their

confirmatory power is not a simple exercise. Firstly it is

worthwhile distinguishing between types of confirmatory

functions. in order to be able to confirm the actions of

functions executed previously, it is essential that these

functions generate some outputs which are accessible to other

functions. That is, the functions must have a communication

mechanism. Ini a sequential system this communication will be

through the use of data stores. The concepts of data stores are

widely used in a number of design methods, such as Yourdon

[20], Gane and Sarson [12] and the MASCOT method [22]. A data

store is a place where items of data are retained for future

use. This should not be confused with the use of temporary

variables introduced for optimisation or algorithmic purposes.

These data stores may be internal or external. An internal data

store resides within the software system's data storage areas,

whilst the external data stores are contained in files,

data-bases, etc.. An external data store implies that the

temporal sequence of function executions can be across many

separate runs (executions) of the software system. An internal

data store implies that the temporal sequence of function

executions must be within the same run, because with an

internal data store the lifetime of the data is purely that of

the current execution.

In the discussion it will be assumed that an instance of a

function execution has the following properties:

1). A predicate (or guard) which must be satisfied before

that instance of a function can be evaluated. This

predicate is dependant on the values of the data stores

or is null (true). In the airline reservation system

this is to perform N + 1 executions before the

confirmatory power of the function becomes a maximum.

2). An action which causes the values of the data stores to

W'I

be either defined (i.e. changed) or referenced (i.e.

used in a computation or an output).

These functions may involve other predicates and actions which

have no effect upon the data stores in question (ie. effect

output only). It is assumed that these outputs will be checked

independently of the testing activity described here.

An exact definition of a function is not needed in this context
because it is assumed that the functionality of the software

system is resolved before the organisation of testing is

considered.

The justification for associating guards with instances of
functions follows from the need to order the execution of the
functions so as to achieve maximal impact. The guard then is
dependant on the contents and properties of the data stores and
the particular actions of the functions. This guard is not
necessarily reflected in the actual implementation of the

function.

An example of the use of guards can be seen with respect to the
organisation of functional tests for the airline reservation

system as shown in figure 5.1. This figure models the
sequences of the following functions:-

f - initiates a flight by creating files and initialising0
values.

f - is a function which enquires into the availability of1
a seat.

f is a function which books a seat. It is assumed that2
it is always preceeded by f from which vital1
information (to the booking clerk) is gained.

f 3 is the function to obtain a standby reservation.
3

'39

f - closes and dispatches the flight.4

f - cancels a booking of either type.

The nodes of the graph contain three fields, one contains the

guard (or null where the guard is always true), the second

contains the function name and the third contains the action

(or null) performed on the contents of the data stores. The
arcs of the graph are directed and indicate the temporal

sequencing.

In this graph the function f appears twice but each instance1
has a different guard. The reason for this is that by

separating out the two different roles for the function its
ability to confirm previous function executions is
substantially increased. On the other hand the function f also

5
appears twice, this is purely to simplify the graph.

The property of these functions which is of interest here is

their confirmatory power which is defined as follows.

1) Type A functions with zero confirmatory power. These

functions do not reference or define elements of the data

stores, i.e. they have no guards or access to data stores.

2) Type B functions with weak confirmatory power. The

references to the data stores occur solely in the guards.

3) Type C functions with high confirmatory power. They

contain references and definitions for the data stores in

the actions but not the guards.

4) Type D functions with strong confirmatory power. Both the

actions and the guards contain references to the data
stores and the actions may also define data store values.

Note that the first node of a graph cannot have any

09

confirmatory power regardless of its access to the data stores.

Thus from figure 5.1,

f is type A,0

f is type B,I

f , f and f are of type C,2 3 4

and the function f is of type D.5

The construction of such a graph will be covered in the next

section.

CONSTRUCTING CONYIRNATOR FUNCTION SEOUENCES

To perform a test using confirmatory function sequences it is

necessary to obtain the temporal sequences of User Perceived

functions which will cause the confirmatory functions to be

executed in the appropriate order.

The steps involved in the process are as follows.

1. Identify the various data stores and select those which

will form the basis of the test. Find those functions

which reference or define values in these data stores.

This step is usually fairly straightforward. This is

particularly so in the case when the design contains

explicit references to data stores. It is also easy to do

for an implementation because the information can be

obtained with the aid of a cross reference. The functions

so detected need to be assigned the appropriate value for

their confirmatory power.

2. The temporal sequence of these confirmatory functions

90

must then be deduced. The construction of the guards

gives helpful insights into the number of different

instantiations required for each function. The hint to

include more than one instance of a function is usually

indicated by the number of successor functions. If there

is a selection between these successors and this

selection depends on the contents of the data store then

repeating the function with this condition in the guards

is indicated.

The temporal sequence charts such as that shown in figure

5.1 are worthwhile constructing. This is because there

will usually be one per data store, since in general

functions which access one data store will not access

another. These charts are then analysed to produce

execution sequences of the confirmatory functions. The

rules for producing these sequences are as follows.

Firstly self loop entries involving only type B functions

can be removed. Then paths connecting the confirmatory

functions need to be constructed so as to maximise the

confirmatory power of the sequence. Whilst this step may

appear difficult, in practice the interrelationships of

these functions is not high, even in large software

systems.

3. The final step is the hardest. It is to relate the

confirmatory functions back to the sequences of User

Perceived functions. in the examples examined by the

authors this has not proved to be too difficult but in

general this may not always be true.

The problem of relating these functions backwards to the User

Perceived functions depends enormously on the design method in

use. The problem arises because to date the inventors of design

methods have given little attention to the needs of testers. It

is of course also true that testers have not made their needs

clear to esign theorists.

951

USES OF CONFIRMATORY FUNCTIONS

Housekeeping functions which were introduced earlier can now be

seen to be closely related to the concepts of data stores. In

general but not always these data stores are not reflected in

the requirements, they are artifacts introduced at the

specification and design levels. The operations performed upon

these data stores are usually encapsulated into the

housekeeping functions. Frequently however these housekeeping

tasks are interleaved into the routines implementing User

Perceived functions. This frequently occurs as the result of

optimisation.

It is clear that exploiting the confirmatory power of functions

in general will result in the exercising of the housekeeping

functions. Moreover the confirmatory power of a given function

can be emphasised by separating out its differing roles as for

f in the seat reservation system. In this way the more1
pathological possibilities can be explored.

When the functional sequence chart has been constructed it may

be found that certain data stores have very few functions of

high or strong confirmatory power associated with them. Or it

may be felt that the accuracy of the contents of these data

stores is of particular significance. In this case validatory

functions can be introduced. They will perform some analysis of

the contents of the data storc which will either yield

confirmation or partial conf irn-tion of the correctness of the

contents. This may be on a sampling basis or each time the

contents are changed. For example a random parity check could

be made on a data file, whereas a model problem inserted into a

large scientific calculation yields high confirmation over the

whole run.

A validatory function should not alter the contents of data

stores, it should merely reference the contents either in

guards or preferably in its actions. An example of a validatory

92

S PACTICAL ASPECTS OF FUNCTIONAL TESTINO TEC4NIQUESIU TLIVERPOOL UNIV I ENGLAND) DEPT OF STATISTICS AND

COMPUTAIIONAL MATHEMAIICS U A HENNELL ET AL. 31 JAN 85
,ML#AAMP DAJA37-81 -C-0736 rI 012 9/2

"" IIIIIII

_______2_8 VI 2 -5_

~fl~1..2 II II 1

function which references the data stores through the guards is
error detecting code which prints out an error message when,
say, a data store overflows. Here the contents of the guard are

explicitly present in the code.

A more powerful validatory function would have been one which
by monitoring the data stores was able to predict the overflow
and retain a diagnostic trail or execution history from which
an accurate diagnosis could be made. The function would have

referenced the values of the data stores in its actions.

Another example of validatory functions lies in the use of
assertions which are essentially predicates inserted into the
code at key points. These assertions are type B validatory
functions which report when a violation of their predicate

occurs. Such techniques have been used in testing tools for

many years [36].

su MMaR

The technique advocated here is that the design (or code)
should be analysed for the occurrence of data stores. The
functions (or modules) which access these data stores should be

obtained. Then the appropriate guards for instances of these
functions should be deduced. This may require an analysis of
the properties of the data stores and the successors of the

functions.

The confirmatory power of these functions or modules should be
considered. If it is found that the contents of individual data
stores are not confirmed to the required extent, then

additional validatory functions (modules) should be added to

the software.

Finally paths through the functional sequence charts should be
obtained which maximise the confimatory power. These paths then

93

indicate the ordering for the execution of the functions in a

test run.

The benefits of the method are that the functional tests can be

organised so that the risk of coincidental correctness is

minimised. Further, the problem of test outcome assessment is

minimised because the correct internal functioning of the

software is checked automatically. In some sense these

functions perform the tasks of an automated oracle [31].

94

CHAPTER 6

SUMMARY AND CONCLUSION

The general thrust of this research project has changed

direction a number of times in response to difficulties

encountered.

The original thesis was that functional testing under achieves

and that this claim was demonstrable by assessing these

achievments by means of structural testing methods. The authors

believe that this point has been made convincingly by the

extensive results which have been reported both formally

(in published papers) and informally (at conferences and

specialist meetings).

Using the acceptance of under achieving as a starting point the
question to address was what further steps should a functional
tester take in order to improve the activity. It was

anticipated that a careful study of those areas in which

functional testing was deficient would indicate ways in which

an improvement could be sought. This has been found to be

partly true although perhaps in a wider context than originally

thought.

The study of the unexecuted code has shown that a considerable

proportion of this code is implementing functions which are not

directly related to the external or User Perceived functions

and therefore targetting such external functions towards the

unexecuted code is unlikely to be successful. There is,

however, considerable scope for targetting at least some of the

functional tests towards the remainder of the unexecuted code.

To this end the report describes the method of confirmatory

functions which actually contributes to the execution of code

implementing both User Perceived functions and also

housekeeping functions.

The next stage in the research was to relate areas of

unexecuted non-housekeeping code back to the user perceived

functions. In order to do this it is necessary to be able to

recognise a function implementation either directly from the

code or from its external viewpoint. Our analysis shows that

from the directed graph representation of a program there

appear to be certain structures which are consistently missed

in the choice of functional tests. The next step was clearly to

detect the corresponding items at the design level in order to

move closer to the external view. At this stage, despite a

detailed analysis of the major design methods, no clues have

been uncovered and hence this approach has failed.

Despite the failure of the analysis to produce any significant

benefits to functional testing the results look very promising

for application in structural testing methods and hence are not

included in this report.

In studying the design methods it was found that great

difficulty arose from confusion with terms. This led us to

attempt a systematic analysis of the use of these terms and to

produce generalisations which incorporate individual uses. One

result of this is the generalised life-cycle incorporated in

the appendix. This life-cycle is an incorporation of all the

life-cycles which have been found in the literature, it is not

a new life-cycle as such. Its relevance to this project is

purely that of a useful tool. A detailed classification of

which parts of this life-cycle are covered by the design

methods is only partly complete and hence not covered in this

report.

Many of the design methods examined offered suggestions as to

how functions could be detected in requirements documents.

Naturally these suggestions have been followed up in detail and

the results of our investigations are fully reported in this

document. The conclusion reached, however, is extremely

disappointing. It does not appear that functionality is

96

derivable from natural language text in a simple way. That is

not to say that functionality cannot be so deduced, we believe
that it can, but that either the techniques for obtaining this

functionality must be highly sophisticated, or very great care
must be taken in the writing of the documents. Our

investigations have indicated that certain possibilities might
be worth investigating and these will be pursued under other

research contracts.

In summary then this research has produced three substantial

contributions to knowledge:

1. The development of confirmatory function techniques. This

method can be developed to a much greater extent when

design methods are adapted to yield a suitable viewpoint.

2. The evidence that current concepts of functionality are

completely inadequate and hence methods which rely on such

concepts are themselves inadequate. This alone has
enormous consequences for such concepts as top-down

functional decomposition.

3. The generation of the life-cycle and introduction of new

definitions.

Other contrLbutions have also been made in that a number of
topics for future investigation have been uncovered.

The work on confirmatory functions has been reported at a
Workshop on Specification, Design and Testing Te hniques whose

proceedings will be published shortly. A paper on the
identification of functionality in natural language text is in

preparation. Finally the generalised Life-cycle will be
reported to the IEEE working party producing a standard for the

Life-cycle, and will also be published separately.

'.

"System Development Life Cycle"

I ntroduct ion

The term "System Development Life Cycle" is used to identify

the main phases which occur in the development of a software

system from initial conception to final realization. A glossary

of terms used in this document is included at the end.

There are several System Development Life Cycles, sometimes

called System Development Processes. These Life Cycles are used

by various System Development Methodologies as an integral

part, mostly without definition, e.g., SASD (5,18], LSDM.LBMS

(16], NIAM (14], HOS [46] and SADT [11], etc. There are also

some System Development Life Cycles defined by Enger N. L.

[55], Biggs C.L. [56], Blum B. [57], Ramamoorthy C. V. & Ma Y.N.

[58], O'Neill D. [59], Freeman P. [60], and many others. These

Life Cycles have several problems in common, for example, not

covering the whole span of System Development. They are

suitable only for certain types of problems and have lengthy

phases which may increase the probablity of committing errors.

Their lack of by-pass options for the separate phases may

increase the overall costs for particular projects, after all,

unnecessary phases will cost money. The most critical

deficiency is the lack of knowledge about the Requirements of

the User/Management, since they do not in general have phases

devoted to this problem.

In real world problems it is a common practice in developing

any system to start from some vague idea, some proposal, some
'wants'. At the beginning of a development the actual

requirements are usually incomplete, at least for a short

period and possibly for ever in a complex system.

In computer software systems, it is a well recognized problem

that users of software frequently cannot state clearly and

99

completely what they want until they see a finished system

running. Due to this incomplete knowledge of 'wants' and their

specification a large number of problems solved by computers

are initially ill-defined.

Some explanations for this inconsistency as mentioned above are

the present dominating, but inadequate System Development Life

Cycles. Mostly thcurrently Cycles are based on the assumption

that the user can express his/her 'requirements' in a complete

and comprehensive way. It has been shown [l), that the most

frequently occuring problems arise through (a) incorrectly

specified requirements, (b) inconsistent and incompatible

requirements and (c) unclear requirements. Past experience

reveals that the user's requirements cannot be stated fully at

the beginning because the User/Management are unable to

articulate their wants and expectations completely. Further,

they cannot forsee clearly the directions into which further

requirements will develop. "Requirements specification

languages are supposed to enable thc developers to state their

understanding of user's ideas in a form comprehensible to the

user but the user himself has only very vague ideas of what

he/she wants" [2). The study of present System Analysis and

Design Methodologies reveals that these methodologies do not

cover the whole span of the System Development Life Cycle in

the way we generally solve other problems. Furthermore they do

not contain clear definitions of the starting and end points of

their phases. Peter Freeman points out that "repeatedly I

encounter life cycles in use that do not fit the 'natural' flow

of work that should take place for a given application" (3]. In

present methodologies there is no check to ensure that the user

understands his/her problems and further that what he/she

'wants', really will solve his/her problems. There is no

mechanism by which to enquire why there should be a new system,

what this system will actually do and how it will do its tasks.

Different Systems Development Life Cycle models given by these

methodologies have several common features and steps, and use

99

the same terms but for differing concepts, and frequently

different terms for the same concepts. These terminologies and

freqently used common words are used carelessly and without

proper definitions. This causes communication problems

especially when two different methodologies are used in the

same organization. For example, the term ACTIO is used in

ACM/PCM (23] to update an OPERATION on an information base. The

same term ACTION is used in JSD [21] to represent an EVENT in

which one or more entities participate by performing or

suffering the action. The term Y in LSDM-LBMS [16] is used

for PROCESS. In SADT [ii] the similar term ACTIVITY, identified

by a verb in a natural language, is used to represent a

happening, which may be performed by a computer or people,

etc., in a system. In NIAM [14], and ISAC (25), the term

ACTIVITY is used for an ACTION taking time and resources. In

MASCOT [22], the term ACTIVITy represents a process. The term

ENTITY in D2S2 [28], LSDMLBMS [16] and SYSDOC (27] is used for

an OJEC which is actually occuring as a concrete thing of

interest in a system. The same term in JSD is used for an OEC

in the real world which participates in a time-ordered set of

actions ie. entities perform and suffer actions. In SADT, the

term P is used to represent OBJECTS or THINGS working

together to perform functions in a system. Furthermore in

ACM/PCM, ISAC and NIAM, the term OBJCT is used to represent an

ENTITY. The term FUNCTION is used in SYSDOC in a general sense,

i.e., to represent any mathematical or business function, where

as in JSD the term FUNCTION represents an action or set of

actions performed by the system and resulting in the production

of output. FUNCTI in MASCOT represents an action. These

methodologies start from a phase which identifies the problems

to be solved and give a solution for the problem with the

assumption that output will satisfy the user's requirement.

The above mentioned problems compelled us to develop a new

"System Development Life cycle", the aim of which is to build a

global framework which can help to develop a system in a way

which is similar to that which is used to develop systems for

100

solving other problems. It is an amalgam of all cycles

currently found in the literature. All such cycles are

incorporated into it on the grounds that they are probably

suitable to at least one class of problems. This Cycle consists

of a set of phases, which are generalised. It will be

appropriate for all classes of problems and different

environments. It is not restricted to any Software Design

Method or Methodology- This Cycle starts from the project

proposal, i.e., the user's 'wants', not from 'Requirements'.

There is a difference between 'wants' and 'Requirements' [4.

The 'Requirements' should ideally be targeted towards the

user's 'needs'. The Cycle attempts to identify the true 'wants'

and gives a better understanding of the problem. The major

purpose of this System Development Cycle is to help the Analyst

and the Designer to analyse, design, implement, and maintain a

system in an evolutionary manner. This Cycle therefore covers

all aspects of system development such as strategy, analysis,

system specification, design, implementation, transition,

maintenance and Verification & Validation. It is based on the

active participation of the user as well as operational

personnel (if there are any), who can help the Analyst in

understanding clearly what they (the users) 'want'. This

approach provides a conceptual framework for developing a

system by using existing powerful and widely used Design

Methodologies and allows the use of established programming

methods such as JSP [61), Top-down, Bottom-up [62, 63], etc.

This Cycle gives clear but flexible phases which can be

bypassed or modified according to the environment and type of

problem. In a senue it is a global but at the same time

standardized System Development Life Cycle. It offers guide

lines and gives some ideas on how to proceed when developing

and implementing a System. Any step can be by-passed if found

unnecessary. iterative processes and prototyping are regarded

as integral parts of the Cycle.

101

The Life Cycle

In the following the first figure in the heading is the

principal phase number, the second is the subphase number. The

star indicates the phase name.

1 *Project Proposal Phase

Sub Phases

* Study of Proposal

* Initial Investigation

* Initial Feasibility Study Report

Before starting any System Development activity the

User/Management will first have to consider how such a system

might improve their work and make extensions in their

organization. They then prepare a proposal in this regard. In
this proposal they may 'want' to have some modifications in the

existing system or to have a complete new system which may or

may not be computerised. Usually such a proposal is prepared by
the management in consultation with the user. It gives some

description of the project and the objectives to be achieved,

together with preliminary estimates of manpower and cost

involved.

1.1 Study of Proposal

The main objective of this step is to study the proposal given
by the management. There is no doubt that management and user
always face difficulties, as in other fields, in expressing

correctly and precisely what they 'want'. In fact in most cases

they are not clear themselves what is their exact requirement.

They either propose something ambitiously, thinking 'bigger is

better' or some times, underestimate the problem and hence

their needs. In this phase the Analyst will study the proposal,

recording possible benefits that can be accomplished with it,

102

taking into consideration the size and working capacity of the

organization, budgetary and manpower constraints, annual

recurring systems, operating, maintenance and training costs

which may be involved. The Analyst will try to understand at an

initial level what the management/user actually 'needs'.

The possible outcome of this subphase will be in the shape of

some comments or notes recorded by the Analyst for his/her own

convenience, better understanding and memory.

1.2 Initial Investigation

Objectives of this subphase are:.

I. to study the most frequent problems likely to

occur in the system, in the User's/Management's

opinion,

2. to investigate the proposal and check for

correctness, completness and redundancy of

wants,

3. to find out possible benefits or disadvantages

that can be obtained from the Proposal,

4. to review 'wants' and seek out actual needs and

objectives because it is likely that the

proposal will not cover the actual 'needs',

5. to select from the proposal any radical changes

that may positively effect the working of the

organization and decrease costs.

The Analyst assigned to study the proposal will discuss it with
User/Management in a number of meetings to achieve these steps.

The output of the Initial Investigation subphase should be a

statement postulating actual 'needs' including preliminary

identification of cost & benefits.

103

-1.3 Initi-al- Feasibililty _Stu~dy

The basic purpose of this step is to find out possible ways to
implement the output of the Initial Investigation step, i.e.,
the user's 'needs'. The Analyst has to collect basic
information that will be required to implement these 'needs'
The Analyst will then write his/her recommendations about the
selection of a particular Analysis Methodology such as SADT
[11], SSA [12], PSL/PSA [13], NIAM [14], STRADIS [24] and
LSDMLBMS [16], etc., suitable for this particular problem. The
selection of a particular Methodology or Method is not an easy
job and, "it is often difficult to determine whether a given
methodology applies in a qiven situation. it is even more
difficult to select one methodology from among all the ones
that might be used" [17]. It is not possible to say that a
particular Methodology or Method is superior to others in an
overall sense even though it is better than others in a
particular situation. Therefore, the criteria for the selection
of a particular Methodology or Method or a combination of them,
should depend on the type of problem, the environment and
working area and finally the personal experience of the
Analyst. Furthermore the Analyst will also write a brief plan

expressing estimated cost, manpower required, tentative

completion date, equipment required and finally the potential

benefits from these changes. The deliverables of this step will
be used as a basis for setting detailed objectives and

developing strategies for further System Design. This report
will be submitted to the User/Management for consideration.

2 _$ tgategy-ha

Strategy means a proposed set of actions clearly designed to
achieve certain well defined goals over a period of time.

In the domain of Systems Analysis and Design, strategy means
choosing between practices, guidelines, recommmended sets of
actions and the ordering of development decisions. In general

104

cost of the system.

5 * Desgn Phase

Sub-Phases

" Planning and Decision

* Conceptual Design

Physical Design

"Design is the process of transforming what has to be done into

a means of doing it" [18]. In this Phase emphasis will be given

to the application of the System Specifications, rather than

understanding the User's 'needs', and 'requirements'. "Design

is concerned with what might be in the future if the Design be

implemented, and hence is concerned with what is not yet or

does not yet exist" [19]. The Design Phase starts after

fLinalising the System Specifications which are in fact a plan

for the detailed proposal expressed in technical terms, and

must preceed and not be confused with implementation, i.e. its

scope is up to implementation point. The Design activity, if

performed carefully, converts this plan into an unambiguous

model, (although there may be more than one model). It involves

devising ways which lead to the attainment of the required

goals, i.e., to solve the problem in a way which is according to

the proposal and its Specifications and satisfies the

User/Management. Usually experienced Designers have certain

assumptions, beliefs and tricks and they develop a Design with

the help of this known-how, i.e., their past experiences. They

use these as a theory consciously or unconsciously. Such

assumptions, beliefs and tricks are usually correct and worth

using, if the resulting Design is passed through well prepared

testbeds. The recent study of System Design Metholodogies

revealed that in general there is no methodology or tool which

is suitable for building a system for all different types of

problems and environments and is capable of satisfying or

likely to satisfy different user's needs, requirements and

corresponding specifications. Any Design problem can be solved

lie

boundaries, system interface, etc.,

3. to specify details about processes, functions

and operations of a system,

4. to specify provisions for error handling and

recovery thereof,

5. for use as a standard against which an

implementation can be verified,

6. for use later to support system maintenance,

I. in some cases for use in building a prototype.

The quality of a system depends to a great extent on the way

System Specifications are developed. In this Life Cycle, System

Specifications are developed from a selected detailed proposal,

i.e., output of Analysis phase-3. In the System Specifications

phase the Analyst/Designer elaborates the proposal into a set

of different clear steps which are used as a basis for system

design. This elaboration can be based either on functions,

processes or data, and some times on both. it may lead towards

one or more concepts of system design such as Structured Design

118], Top-down method, Bottom-up method [62] [63], JSD [21],

MASCOT [22], etc., as the case may be, according to the type of

problem. It is, therefore, recommended that System

Specifications should not be described in accordance with a

particular design methodology. Again here at this point we are

riot ranking one design method above an other. These

Specifications, we consider as the foundation of design,

therefore, it is essential that user and management must agree

and confirm that these Specifications represent their

requirements and serve their purpose. This will help and

encourage the Designer in making further steps.

Many implementation and maintenance problems are due to

incomplete Specifications. Incompleteness in Specifications

implies that the Analysis work and its output are incomplete

and, therefore, may require a return to the Analysis phase

(phase-3). Paying sufficient attention during the development

of System Specifications can result in reducing maintenance

117,

emphasize management and documentation aspects. These previous

methods are not widely used in industry. Thirdly, and most

commonly, there are specifications expressed in naturaL

language.

The System Specifications phase represents an interface between

Analysis and Design phases. This phase separates completely the

Design work from the Analysis and refers to that information

which must be delivered from the Analysis to the Design phase.

It converts the terminology and pragmatics of the application

area into the terminology and pragmatics of computing. For

example a User's requirement that a system should be reliable

to a given extent must be transferred into constraints which

are relevant to computing, such as appropriate values for

reliability metrics. Another example would be that a

requirement for completion of a document for a particular task

would lead to a precise definition of the contents of that

document in terms of the inputs to the computer system. This

phase separates the User's/Analyst's view of the problem, and

its solution, from the Designers. Without such an interface it

will be difficult to know how to represent the output of the

Analysis results technically. Further such an interface helps

to determine, up to a reasonable extent, that proposed changes

will not have any adverse effect on the present system (if

there is one). This interface will also help in providing

flexibility in system design, enabling the Designer to execute

easily the changes which may occur from time to time. System

Specification can be considered as a basic source from which

alternate design decisions can be made.

The main purposes of System Specifications are:

1. to express in precise and consistent form what

the system will do, according to the

User's/Analyst's proposal,

2. to define the objectives and constraints which

the system must satisfy, e.g., system

I lb

system, and possible effects if trie old system is contirlued.

Systems required purely to achieve certain technical objectives

may have unpredictable human consequences because technical

decisions may cause changes in policies, strategy, environment,

status of personnel, and organization. These changes may result

in serious industrial relations problems. it is, therefore,

necessary that the Analyst in the feasibility study and

detailed proposals should avoid chances of developing human

aggravation and provide a way to gain the user's confidence.

Sometimes changes may occur during the development process

which cannot be ignored. These changes may be due to the time

factor and a better understanding of the requirements, or

earlier communication failures and their correction. It is

recommended to submit more than one complete proposal with the

Analyst's recommendations, and conclusions, giving summarized

statistics about, cost, time, etc. and comparisons between the

present and the new system and the possible benefits thereof.

These proposals should be discussed, before any move, by

User/Management or a committee on their behalf. They will

decide accordingly which proposal should be accepted and

approved for further progress. However, if User/Management or

their committee is unable to decide and does not agree with any

proposal then it will be essential to repeat the Cycle, do all

the excercises again, and submit new proposals or otherwise

terminate the project.

4 * System Specifications Phase 4

System specifications should state clearly and unambiguously,

what a system must do. It is a statement of the requirements in

technical terms which are meaningful in a computing

environment. There are three main description methods for

system specifications. Firstly the use of formal notation

methods, such as HOS (46), AF[RM [54] and VDM [45], etc..

Secondly methods like PSL/PSA [13) and SREM [15], etc., which

115

3.6 Feasibility Analysis and Detailed Proposals

Feasibility Analysis means studying how the Requirements

Specification can be implemented within the given constraints

such as technical, operational and economic factors. It is

useless and painful to design a system which cannot be

implemented under given constraints. In this subphase the

Analyst will prepare a detailed report, the purpose of which is

to give Management:

1. a detailed review of the requirements and

Requirements Specification and surety that

there are no redundant factors and that its

implementation is feasible,

2. the expected implementation, running and

maintainence costs of the new system,

3. a detailed plan with which to develop,

implement, and test the new system,

4. estimates about completion time, staff needed

and hardware required,

5. cost benefit analysis for the new system,

6. information about essential changes in policies

environment, status of personnel,

organizational changes and effects thereof.

The Analyst should select first those requirements which may

cause major changes in the existing system (if there is one),

and are relatively expensive to implement. On the basis of this

selection the Analyst will recommend whether it is advisable to

implement those requirements or not. This report should also

justify the implementation of the rest of the requirements for

the new system, keeping under consideration the implementation,

running, and maintenance costs against possible benefits which

management may get from the new system.

The Analyst should inform the management in the report about

the expected results which may come after implementing the new

114

3.5 Search for Existing Available System

Shortage of skilled and experienced Analyst/Designers and their

cost of employment is becoming a serious administrative

problem. For example, it is estimated that up to 90 percent of

the data processing intellectual effort in a large corporation

is devoted to developing and maintenance of Software [64]. This

problem can be eased by making use of available proven systems

from the software market. This involves detailed searching of

software banks/catalogues to pick up a system suited to the

Requirements Specification, or otherwise modify one of the

software systems which is similar to the required one and

involves a minimal degree of changes. In such an approach the

Analyst has to make sure that the system which is being

selected is sufficiently free from bugs, has sufficient good

documentation and is acceptably user friendly etc. This

information can be obtained in a number of ways, e.g. by

submitting a number of questions to various establishments

using the chosen system. After this selection the Analyst can

move directly to the implementation step by-passing all

intermediate steps of the cycle which are discussed below.

Before this the Analyst has to satisfy the User/Management that

the implementation is consistent with the Requirements

Specification. Purchasing systems in the above manner will cost

less money and timc than creating it by oneself because the

development cost of a system available commercially is spread

over a number of purchasers.

It may be that a system can be found which is close to the

required system. In this case commercial consideration may

force the omission of these missing requirements. Clearly some

considerable thought must be given to finding these missing

requirements and then studying the implications of these

omissions.

113

Maintainability

Inevitably errors will be introduced in the final product which

have not been trapped during the previous stages. If It is

important to the user that the system be corrected then the

ability to maintain the system will be a requirement.

Transporting the system to other machines may also be a part of

this requirement. The criteria by means of which this

requirement can be enforced must be considered and

implementation anticipated.

3.4 Check for consistency

By consistency we mean to examine critically in order to locate

any contradictions in the Requirements Specification which may

be due to:

i. a difference between the Requirements

Specification and what the user 'intended',

2. modification of the Requirements Specification,

which may happen from time to time,

3. contradiction and incompatibilities between

requirements,

4. missing components, undefined entries, etc..

After every modification care must be taken to ensure that

consistency is maintained. For these reasons it is essential to

have frequent consistency checks. These checks should be made

before moving to further steps of the System Development Life

Cycle, especially before searching for existing available

systems and writing feasibility analysis and detailed

proposals. Any error at this level may cause many problems in

future steps. To eliminate contradiction at this stage is not

an easy job and becomes more difficult when the system being

modelled gets bigger and more detailed. This problem can be

greatly simplified if a detailed cross-reference is available.

112

omissions in the Requirements Specification and to develop them

in such a manner that they are understandable. The
understandability of Requirements Specification can be
obtained by imposing constraints on the style of writing in
natural language and using diagramatic help.

Reliability

A Requirements Specification having a high probability of being
complete, correct and consistent and which can lead towards
successful development and implementation of a software system
over a period and under predefined conditions, is called a
Reliable Requirements Specification. Unreliable Requirements
Specification leads towards uncertainty as to whether or not
the system can be successfully implemented. To get a reliable
specification it is essential to verify consistency between
Requirements and Requirements Specification. This can be done,
as mentioned earlier, by using the participative method of
systems design in which the Requirements Specification is shown
to the user to avoid complications, chances of misunderstanding
and to reduce discrepancies, before implementation.

Evaluatin

The Requirements Specification should reflect the user's
requirements which may not be static and may change whenever
the user wants. These changes may be due to improvement,
elaboration, specialisation and generalization. It is,
therefore, necessary to develop a Requirements Specification
which is evolvable. In our System Development Life Cycle any
changes or modifications should compel the Analyst/Designer to
go to the start of Phase 3 and repeat the same excercise. It
will be easier to do this as the previous skeleton or model for
the system can be re-used.

lit

4. to specify initially the data, processes or

functions which might be required in the system,

5. to act as a basis for system assessment.

The preparation of a Requirements Specification is a complex

and time consuming process. Its success depends to a great

extent on the quality of the Requirements Analysis. This job

needs high quality, intellectual, creative and experienced

Analysts.

The output of Requirements Specification must be expressed in a
clear and comprehensive report. This report will be used

further as a basis to prepare detailed proposals for the new

system and can either be prepared by using a specification

language or a natural language supported by diagrams.

A Requirements Specification having the following properties

can be considerd to be of high quality.

Feasibility

Requirements Specification which are developed in such a way

that they are capable of being implemented successfuly and are

according to the agreed needs and constraints mentioned in

Phase 1, are said to be feasible. It is difficult but important

to develop such Requirements Specification. Lack of feasibility

may cause serious implementation problems and hence increases

cost and frustration.

Understandability

Requirements Specification which are developed in such a manner
that they are clear, unambigious and difficult to misinterpret

are said to be understandable. During the process of software

development some Requirements Specifications are ignored
intentionally or unintentionally by the Designer because of

these problems. It is, therefore, necessary to avoid errors and

1I0

overwhelming in industry regarding the dramatic consequences of

incorrect or inefficient problem definition work. The causes

are misunderstanding of the problem and insufficient analysis

to decompose the problem" [10]. Some essential properties of

the Requirements must be:

Completeness,

Consistency,

Unambiguity and

Modifiability.

3.3 Prepare Requirements Specification

It is difficult but desirable to have a clear definition of the

Requirements Specification. The problem in formulating a clear

definition is that different authors have different concepts

about 'Requirements' and 'Specification' and hence of

'Requirements Specification'. We are proposing a definition

which is a general one. To specify is to state particularly and

precisely. Hence a specification is a particular and precise

statement of something. A requirement is something which is

deemed to be needed. A Requirements Specification is therefore

a particular and precise statement of those things which are

deemed to be needed. Note that this perception of needs is from

the viewpoint of the user, their management and environment.

The main objectives in preparing a Requirements Specification

are:.

1. to define clearly what the system or part of it

must do in accordance with agreed requirements,

i.e., the output of the subphase for

Requirements Analysis,

2. to help in transforming the requirements into a

system specification by providing a well

defined starting point,

3. to act as an initial model which can exhibit, as

much as possible, relevant information for

forming a design,

109

understanding the problem and of communicating that

understanding among the concerned individuals and

organizations" [7]. In short, Requirement Analysis encompasses

all aspects of the sysLcm and yields its specification. Its

main objectives are:

I. to decide clearly whether or not those

identified needs will actually be required,

2. to collect further information about 'needs'

and formulate its structure,

3. to consider the social, legal, security,

privacy, managerial, and, financial impacts

which may come as a result of fulfilling the

above 'needs'. These aspects may impose

additional requirements on the system.

4. to consider the environment where the system

will work,

S. to communicate all the above information to

User/Management.

A part of this work can be done best by using the "Participative

approach to System Design method" [8] [9], which gives emphasis

to the need for meeting the human needs of staff when designing

computer systems. This method is supported here because the

user is likely to be the most appropriate person inside the

organization, who may know something about the 'needs' and

predict any further changes in these user 'needs' which may

possibly occur during the process of system development. This

is because the 'needs', may not be stable throughout the entire

system development process. The process of Requirements

Analysis developed in the above way can help both user and

Analyst to learn from each other and thus to write a better

analysis report.

The product of Requirements Analysis must be a clear statement

of the user's requirements, some sound results from which the

Requirements Specification can be built. "The evidence is

Los

mentiones that "A high quality of system design will be very

difficult to produce unless systems Designers have an adequate

understanding of the industry in which the organization does

business (and the) technical environment in which the

system must be implemented" [6]. Unfortunately in present

existing cycles too little emphasis is given to the importance

of collecting information about the environment in which the

system will be working.

Objectives of this subphase are:

1. to collect and understand information about the

environment in which the system will work,

2. to know about the application area for which the

system will be designed,

3. to develop a dictionary of all different terms,

concepts, notations and definitions which are

used in the establishment, in order to avoid

misinterpretation of words and communication

problems,

4. to investigate factors which may effect the

system environment, i.e., factors which are

responsible for the occurrence of incorrect

data, creating inefficient processes or

functions, and

5. to investigate factors which cause the system to

be less portable, create security and integrity

problems, etc..

The output of this subphase is a small report showing adequate

information about the environment and working area for which

the system is being designed. This report will be used by the

Analyst in subphase 3.2,i.e, Requirements Analysis.

1.2 Reguirements Analysis

"Requirements Analysis deals with the difficulties of

10)

(if it exists) or an idea for a new one into its components in

an attempt to reveal and examine how those components work and

interact with each other in order to accomplish the purpose. It

is a process to show 'what is in' the system and 'how it works'
within the user's environment. "In the specific domain of

computer system development, Analysis refers to the study of

some business or application area, usually leading to the

specification of a new system" [5). The term 'Analysis' is used
in our System Development Life Cycle for the purpose of
analysis of 'needs', (obtained from phase 1), in order to
identify and find the causes of the problems and user's
requirements. The result of this analysis leads eventually
towards detailed proposals and their feasibility for developing
system specifications. In these proposals the Analyst develops

a definition of the Requirements and Requirements
Specification, important parameters, and the environment in
which the system will work. Emphasis should be given to the
Analysis phase in order to get a better understanding of user's

requirements and expectations.

3.1 Analysis of Environment

In general, no Designer designs a system badly by choice, but
at present many systems which are working in different
environments are either working badly or are total failures.

One of the possible reasons for that is that both Analyst and
Designer are unaware of the problem area and its environment.

In the process of System Development the Analyst often does not
have much information about the user and the environment for
which the system will be designed. Hence an outcome of the

Development process may be something over which the user/
management disagree with the Analyst, resulting in
dissatisfaction and frustration. An Analyst who does not have a
thorough understanding of the environment, working area and its
terminology cannot communicate effectively with the
User/Management and convince them if required. Brown G.L.

106

the strategy adopted to solve a particular problem, depends on

the size and complexity of the problem. In a similar way the

strategy to develop a software system will depend on its size,

complextiy and environment. This is because a so .'are system

for a complex problem cannot be developed in a similar way to

one for simple problems.

In this phase the output from the Initial Feasibility Study

subphase will be used to develop a strategic plan discussing

how the Company will proceed with the project. Whether some

aspects will be pursued further than others, who will undertake

the task and accept the consequences and responsibility of:

1. the changes in personnel, hardware, etc.,

2. the effects of implementation, transition and

possible delay,

3. the arrangements for formal training and

development of new manuals, etc..

This strategic plan should be developed in the light of

managements long term policies.

3 * Analysis Phase

Subphases

* Analysis of Environment

* Requirement Analysis

* Prepare Requirement Specifications

* Check for Consistency

* Search for Existing Available

System

* Feasibility Analysis & Detailed

Proposal

Analysis means to decompose something (which is under study)

into its component parts for identification, examination and

interpretation. Systems Analysis means to break an old system

lo5

in an infinite number of ways. This number eventually is

reduced by deciding to adopt a single or a set of particular

methods or Methodologies. There are several Design Methods or

Methodologies suitable for different fields and environments,

such as Structured Design (20), SADT (111, JSD [21), MASCOT

(22], ACM/PCM (23), ISAC [25], LSDM-LBMS [16) and STRADIS [24],

etc., each one having many drawbacks. These Design Methods or

Methodologies, can be classified according to four distinct

main approaches, i.e.

1. Building a system by giving emphasis to

functions and processes This is called

functionally or Process based De3ign such as

ISAC, NIAM, SASD, etc..

2. Designing a System by giving emphasis to the

flow of data to be used, i.e., describing the

System in terms of data. This is called a data

driven System, such as SYSDOC, D2S2, LSDM-LBMS,

etc..

3. Designing a System by developing a model of the

real world. This is done without initially

mentioning the functions to be performed by the

System, but introducing these functions

explicitly at a later stage, by using verbs in

the Specification. The JSD method is of this

type.

4. Designing a system based on the States of

entities and processes or their behaviour and

changes in any combination within the

environment. Designs based on SDL [47) [48) are

of this type.

Criteria for the choice of a particular method, or Methodology,

as in the Analysis Phase, should be based in the Feasibility

Analysis and the Detailed proposal. To obtain a good Design the

following are some general guidelines and recommendations; but

of course as mentioned above, the final selection must be based

119

on considerations of the type of problem under study.

I. Similar to the Analysis Phase develop a

dictionary of all the different terms,

concepts, notations, and definitions, which are

to be the in the System in order to avoid

misinterpration of words and communication

problems.

2. Decompose the overall problem and its

Specifications successively into smaller and

smaller subproblems, possibly called modules or

subsystems. This decomposition continues till a

point is reached from which the Design looks

relatively easy. The criteria for this

decomposition depends on the type of problem,

environment and experience of the Designer.

3. The modules or subsystems must be able to be

conveniently and coherently connected.

4. Each major module or subsystem must be further

investigated with a view to finding out its main

functions, processes, entities, actions, and

their relationships, etc..

5. Each module or subsystem must be tested to make

sure it is performing its functions and

processes up to a satisfactory level. This needs

the development of suitable test data having

acceptance criteria and possibly mentioning the

time dependence between modules or subsystems.

6. Each module or subsystem should be protected

against the possibility of incorrect input

data. This needs the development of certain

constraints to prevent incorrect input.

7. Modules or subsystems must be easy to integrate,

manage and perceive, i.e., which can easily be

implemented, maintained and amended.

As the design is decomposed it may be necessary to use the Life

120

Cycle recursively. This is because further requirements

relevent to a subsystem may need to be determined or clarified.

In this case many of the subphases need not be performed.

The detailed subphases for Design are as follows.

5.1 Planning and Decision

"Design involves both making decisions about what precisely a

system will do and then planning an overall structure for the

software which enables it to perform its task" [263. The

Planning and Decision activity involves using the System

Specifications to develop the System. In this subphase crucial

decisions about the basic structure of the Software Design and

how to convert them into a series of hierarchical steps are

made. At this stage, great care is needed as these decisions

have great impact on the final Software Design and can have

consequential effects for the later Maintenance Phase. This

activity needs consideration and it is probably of an iterative

nature.

The Designer must establish, in consultation with the Analyst

and the User/Management, clear definitions, main functions and

general processes of the system, operat rig parameters, nature

of data to be stored, and patterns of output. The Designer must

prepare a list of instructions and formulae, if there are any,

depicting how to solve the problem. Clear definitions of

functions and the general processes of the system will help the

project team in understanding and deciding which functions and

process are to be taken and which are to be by-passed. It will

further help in making decisions about which tool or

methodology should be implemented.

5.2 Conceptual Deign

The Conceptual Design or visualized model means an appropriate

image of the actual Design, its information flows, processes

121

network, entities, functions, modules, subsystems, their

relationships, and interactions in the Designer's mind.

In this subphase the Designer will make certain basic

assumptions about the Design to be built based on the decisions

and planning made in the previous subphase, the environment,

nature of tne selected proposal and System Specifications

thereof, developed in phase_4, and of course his/her

experience. The Designer will produce ideas for creating

modules, subsystems, databases, etc., for example:

1. The Designer can assume that it will be better

to develop a conceptual model of the real world,

based on the results of Analysis and System

Specifications phases; and later introduce

functions. Thus the Designer uses the JSD method

with the essential required knowledge about the

Systems Environment, Analysis results, and

System Specifications, i.e., some extra items

which are missing in the JSD method.

2. The Designer can build a conceptual Design or

model about entities types, relationship types

and data element types using the Analysis

results and System Specifications e.g., using

the SYSDOC Methodology.

3. For a Real time System the Designer can make a

conceptual Design based on the Analysis results

and the System Specifications showing that

changes in the computer system will occur in the

same sequence as changes in the environment,

e.g., SDL method.

4. A Conceptual Design of a System consisting of

object and activity classes and rules can be

developed by using the information obtained

from the Analysis results and the System

Specifications. The description of this

Conceptual System is called an abstraction

system by NIAM, and it can be expressed by using

122

a Conceptual grammer.

S. If the Structured Design approach is followed,

then a Conceptual Design can be built by

developing concepts about data, data structure,

data tlow diagrams, a data dictionary,

hierarchies of modules, etc. based on the

Analysis results and the System Specification.

The output of Conceptual Design should be documented properly

atter consulting with the Analyst and the User/Management for

further use in developing Physical Design.

5.3 Physical Design

By Physical Design we mean designing details of data, data

format, data structure, data base, data dictionary, functions,

processes, modules, subsystems, etc., according to the selected

Design Method or Methodology which can be represented and

implemented physically, (like actual things) at a particular

time in a system.

In Physical Design each module or subsystem will be physically

or actually identified along with its interfaces with other

modules or subsystems.

To develop a Physical Design in this Life Cycle the output of

Conceptual Design will be used. In this subphase modules or

subsystems, data dictionaries, data bases, etc. conceived in

earlier subphases will be developed physically in detail.

The Physical structure of data, data dictionaries, modules or

subsystems etc., for example, can be described by charts,

diagrams, tables, and coding formats. This involves the

development of

]. dataflow diagrams,

2. structure charts, decision tables, etc.,

123

3. modules or subsystems as a part of a hierarchy

and showing their points of entry and exit,

4. input details, and the layout of, for example,

the data format, the data structures, the input

variables, and their points of entrance into the

module or subsystem etc.,

5. output details and their layout e.g. output,

output structure of files or databases, their

point of exit from modules or subsystems and

conditions thereof, format of error messages,

and physical source of output etc.,

6. Details about file structures, and the

procedures to retrieve and update, indicating

which files are to be permanently kept.

The Physical structure of processes, procedures, activities,

and functions can be described by using structured English,

pseudocode, machine processable language, diagrams, charts etc.

The Physical Design of user interface can be developed from

user options, clerical routines, available or proposed

Hardware. This interface will assist the User/Management in the

selection of the report option.

The output of the Physical Design subphase will be a Design in

which each software module or subsystem will be physically

available along with all its interfaces to other modules or

subsystems, and will be matched.

It is important to mention that the whole process of developing

the physical Design like other subphases is of an iterative

nature, and needs frequent consultation with the Analyst and

the User/Management. The output of this subphase will be

available for the Program Development subphase.

The details about modules or subsystems, their control,

dataflow, output layout, different constraints etc.,

124

elaborated in the different Design subphases, will be

integrated to form a frame or skeleton of a Software System to

be used in the Implementation Phase.

On the basis of this frame or skeleton the Analyst/Designer

will be able to estimate the program development, installation,

and implementation cost of the System. This cost estimate will

be submitted, along with the Design frame, to the

User/Management for their approval prior to any further move.

0 * Verification & Validation Phase.

Verification is defined variously as:.

1. "The process of determining whether or not the

product of a given phase of the software

development cycle fulfills the requirements

established during the previous phase."

2. "Formal proof of program correctness."

3. "The act of reviewing, inspecting, testing,

checking, auditing, or otherwise establishing

and documenting whether or not items,

processes, services or documents conform to the

specified requirements" [52].

Verification implies to the establishment of the correctness of

some thing by comparing it against some standard. For example

to compare the developed system with its Requirements, System

Specifications, etc.

Validation means:

"the process of evaluating Software at the end

of the software development process to insure

compliance with Software requirements" [52].

Thus validation ensures that the output of a Phase complies

with a standard such as the Requirements, the Detailed

125

Proposals, the System Specification, etc..

The purpose of a V & V Phase is to:

I. guide the Analyst/Designer and the

User/Management in making decisions about their

next move, which may be to go ahead or abandon

the project,

2. satisfy that the System Specifications are

developed according to the result of the

Analysis Phase and serve its purpose,

3. satisfy oneself and the User/Management that the

System Design is developed according to the

Requirements and the System Specifications,

4. check out the output of the Design Phase against

the basic rules of the selected Design Method or

Methodology, such as rules about input/output

data structure, criteria to build modules or

subsystems, their connections and calling or

exit methods etc, and

S. ensure that its result satisfies the test data.

The V & V Phase may be activated at any time and in any Phase of

the Life Cycle if needed. Specifically it is activated after:

1. Requirements,

2. Detailed Proposals,

3. System Specifications,

4. Design output,

5. Program Structure,

6. Coding, etc.

For example.

I. The V & V Phase should be called during the

Analysis Phase to ensure that the Requirements

and the Detailed proposals have been developed

properly, because any error at this Phase can

create major effects in terms of complexity,

12b

time, and cost.

2. The V & V Phase should be used during the Design

Phase to ensure that the modules or subsystems

are complete, cohesive and minimaly coupled.

That the combined effect of the modules or

subsystem, data flow, control flow etc. is

according to the Requirements & System

Specifications. Furthermore it must be

documented that the Software is feasible to

implement and can serve the purpose and the

environment for which it was designed.

3. The V & V Phase must also be applied during

implementation to ensure that the Program is an

appropriate representation of the Design output

and no unapproved changes were introduced by the

Programmer during the Phase. It will be better

to use another V & V Phase after integration of

modules or subsystems to check their combined

effect.

4. The V & V Phase can be used for detecting

unperformed Requirements and mistakes, which

later can be traced back to find the source of

error.

The V & V Phase can be achieved by,

1. Testing or Auditing,

2. Inspecting & Reviewing,

3. Implementing & Running the Phase.

Activities such as testing the output of a phase, must be based

on testing against certain pre-selected factors and constraints

to ensure that the Requirements and the Specifications have

been implemented properly.

The goals of the V & V Phase can be achieved by inspecting and

reviewing the selected factors which according to the

User/Management may effect the performance of the System.

127

Many of the V & V activities for any Phase can also be achieved

by running and implementing the System or by using a Prototype

variant of the Life Cycle.

Great care must be taken in preparing the list of the important

factors and constraints which might be used for the above

purposes. This list must depict the sequence and level of

extent up to which the V & V Phase will be done. The output of

the above activities must be documented for possible future use.

If the User/Management or anyone concerned is not happy with

the output of the Validation Phase , it means that perhaps:

]. User/Management have changed their mind about

what they 'want'.

2. The Analysis was not done properly.

3. The System Specifications were not developed

carefully.

4. The selected detailed proposal, the basis of

System Specifications does not reflect the

Requirements of User/Management or is not

suitable for that particular problem and the

environment.

5i. The Design activity was not done properly.

b. The selection of the Design Method or

Methodology is not appropriate and cannot solve

the problem properly.

Hence due to any of the above reasons it will become necessary

to go back to the appropriate phase and do the whole excercise

again using the recursive property of the cycle.

This re-useability of a V & V Phase in the Life Cycle can

certainly increase the quality of the output for the particular

Phase in which it is being used and as a direct result the

overall quality of the System.

128

Commnts

This iife Cycle has been constructed by piecing together the
various Life Cycles and Life Cycle fragments occuring in the

literature. In order to do this, words and names have been

changed or redefined for the sake of consistency. It is hoped

that in doing this no useful information has been lost. The

rationale and motivation for some of the steps are not always

obvious to the other but these steps have been included

provided only that the original sources include some

explanations. It is assumed that these explanations are

meaningful to these who actually work in those particular

application areas.

Missing from the Life Cycle is a Prototyping Phase. The reason

for this is that prototyping appears to be a name for a
particular (simplified) form of the Life Cycle itself. All

prototypes must be built or evaluated etc.. These are

particular phases of a more general Life Cycle. It seems

unlikely that this is the only special case of a Life Cycle but
the authors have not detected any other well established

instances as yet. One possibility is the concept of
establishing a general 'framework' by means of a rapid and

specific Life Cycle and then adding details or additional

facilities by another pass over a more general Life Cycle.

It is clear from the literature that iterative or recursive

application of Life Cycles are the norm and indeed there is

little discernable evidence that Software should be implemented

by a single pass. It is understood that experiments are
proceedinq and more information from controlled experiments

should be available in the future.

129

I G I I- a I- y

Sys t ejn

I. A System represents a set of interconnected

items or elements arranged in a certain order,

for example, management of an organisation, a

computer system, a railway network, etc..

2. In the domain of computer science a system may

be defined as any combination of hardware and

software, which fulfils a specific purpose.

System User

A system user is:

1. a person who will be using the system such as an

operator, software programmer, quality

controller, stock control officer, accountant,

etc.,

2. a person who will be using the system in a

managerial capacity such as a bank manager,

quality control manager, etc.,

3. a person or organisation who will be using the

system as the owner, for example, a government

ministry, a banking organisation, etc.,

4. a person who will be using the system without

knowing anything about hardware or software,

but are supposed to know clearly about the

results they are expecting and be able to check

the input or output, e.g., bank customer, user

of flight information services, etc.,

5. the clerical and other people who will work

directly with the system by using terminals,

filing output forms or interpreting output for

their jobs etc.,

6. a person or organisation whose requirements are

to be evaluated and understood and the result of

130

the study is then submitted to them for further

actions, e.g., bank manager, government

officials, etc.,

/. anyone who uses the system by issuing commands.

8. but it excludes Analysts and Designers and

anyone who supplies the system.

Management

1. The management of an organlsatlon for which the

system is to be developed.

2. The management of the system development team.

. The management whose requirements are to be

evaluated, understood and the results of the

study to be submitted to them.

4. The management of a data processing section or

computer section within an organisation.

Systems Anayst

A person who talks and works with the user and their management

in order to discover their needs and wants, and identifies the

working environment.

Des igner

A Designer is a person who:

I. uses proposals developed by the Analyst to

develop system specifications,

2. specifies how to convert system specifications

into a design to meet the user's requirements,

3. is concj~rned with designing details of a system,

subsystems, modules, etc..

rg}r ammer

A programmer is a person who implements the design decisions in

a programming language.

N.B. words like Analyst, Designer, User, Programmer and

Management may be used as either singular or plural and male or

131

female. Combinations such as user/management should be

interpreted as a member of either or both groups.

Methodology

Methodology involves philosophies, management techniques,

methods, phases, rules, techniques, tools, aids and

documentation required to develop a software system. A

methodology may contain more than one method to do different

software development activities together with the rules to

apply them.

Method

A method is a way or steps which should be followed during

software developing activities, such as project Management,

analysis, design and testing, etc.. It does not usually cover

all the activities of software development. It may in fact be

considered as a subset of a methodology. It is available for

small projects only.

Phase

A phase is a state or stage of development of a software

activity over a discrete period of time. Conceptually they do

not overlap and keep time ordering, although in practice this

is not usually essential. Each phase has both input and output.

132

References

1. Bell T. and Thayer T., "Software Requirements: are they
really a problem", Proceedings of 2nd. International
Conference On Software Engineering, San Francisco, 1976.

2. Fischer G. and Scheider M., "Knowledge Based
Communication Processes In Software Engineering",
Proceedings of 7th. International Conference On Software
Engineering, Orlando, Florida, USA., March 1984, pp. 359.

3. Freeman P., "Why Johnny Can't Analyze", Systems Analysis
and Design, A Foundation For The 1980's, pp. 323, North
Holland Inc.,1981.

4. Longmans New Universal Dictionary,

5. De Marco T., Structured Analysis and System
Specification, pp.4, Prentice-Hall Inc., Englewood
Cliffs, N.J. USA.

6. Brown G. L., "Logical Design Of Computer Based
Information Systems", Systems Analysis and Design, A
Foundation For The 1980's, pp. 18283, North Holland
Inc., Englewood Cliffs, N.J. USA, 1981.

7. Wasserman A.I.,"The User of Software Engineering
Methodology": An Overview, Information Systems Design
Methodologies : A Computer Review, Proceedings Of IFIP
WG.8.1, pp. 591-628. North Holland Publishing Company.

8. Mumford E. & Henshall D., A Participative Approach To
Computer System Design, Associated Business Press
Lordon, ISBN 085227 2219, 1979.

9. Mumford E. & Weir M., Computer Systems in Work Design-The
ETHICS Method, Associated Business Press London, ISBN
085227 2308, 1979.

10. Sarvari I. L., "Modules & Languages For Software
Specification and Design", pp. 119, Workshop Notes:
International Workshop on Models & Languages For Software
Specification & Design, March 1984, Orlando, Florida,
USA, ISSN 0225-0667.

11. An Introduction To SADT, SofTech, Inc., Waltham, Ma.,
Document 9022-78, Feb. 1976.

12. Gane C. & Sarson T., Structured Systems Analysis,
Englewood Cliffs, N.J. Prentice-Hall 1979.

13. Teichroew D. & Hershey E. A., "PSL/PSA: A Computer Aided
Technique For Structured Documentation And Analysis Of
Information Processing System", pp 41-48, IEEE
Transaction Of Software Engineering Jan. 1977.

133

14. Rheilen V. E. & Bekkum V. J., "NIAM, Nijssen Information
Analysis Method", Information System Design
Methodologies: A Comparative Review, Proceedings Of IFIP
WG. 8.1, pp 53789, 1982, North Holland Publishing
Company.

15. Alford M. W., "Software Requirement Engineering
Methodology", Final ReportVolume I; Ballistic Missile
Defence Advanced Technology Center, Huntsville, AL,
August 1979.

16. Introduction To LSDM, Learmonth & Burchett Management
Systems, 22 Newman Street , London WlP 3HB, Document No.
9/83.

17. Teichroew D., Macasovie P., Hershey E. A. & Yamamoto Y.,
"Application Of The Entity-Relationship Approach To
Information Processing System Modelling",
Entity-Relationship Approach To Systems Analysis And
Design , P.P. Chen (ed), pp. 1538, North Holland
Publishing Company, 1980.

18. Yourdon E., Structured Design Workshop, pp. 1-2, Edition
2.1, 1980, Yourdon Inc., 1133 Avenue Of Americas, New
York, N.Y.10036.

19. Chapin N., "Graphic Tools In The Design of Information
Systems", Systems Analysis And Design, A Foundation For
The 1980's, pp 121-162., North Holland Inc., 1981.

20. Yourdon E. & Constantine L.L., Structured Design, Yourdon
Press, 1133 Avenue Of Americas, New York, N.Y. 10036.

21. Jackson M.A., Michael Jackson System Development,
Prentice-Hall, International.

22. Jackson K. & Simpson H.R., "MASCOT", RRE., Technical Note
No. 778, RRE. Procurement Executive, Ministry Of Defence,
Malvern Worcs.

23. Brodie M.L. & Silva E., "Active And Passive Component
Modelling ACM/PCM", Information Systems Design
Methodologies: A Comparative Review, Proceedings of IFIP
WG. 8.1, pp 41-91, North Holland Publishing Company, 1982

24. McAuto, Stradis: System Development Methodology Product
Description (undated)

25. Lundeberg M., "The ISAC Approach To Specification Of
Information Systems And Its Application To The
Organization Of An IFIP Conference", Information Systems
Design Methodologies: A Comparative Review, Proceedings
Of IFIP WG. 8.1, pp. 173_234, North Holland Publishing
Company, 1982.

26. Liskov B. H., " A Design Methodology For Reliable
Systems", Tutorial On Software Design Techniques, 3rd.
Edition, Edited By Peter Freeman, A.I. Washerman IEEE,

134

1980.

27. Frode A., "IFIP WG. 8.1 Case Solved Using Sysdoc and
Systemator", Information System Design Methodologies: A
Comparative Review, Proceeding of IFIP WG. 8.1, pp.
1540, North Holland Publishing Company, 1982.

28. Macdonald 1. G. & Palmer I. R., "System Development In a
Shared Data Environment", The D2S2 Methodology,
Information System Design Methodology: A Comparative
Review, Proceeding of IFIP WG. 8.1, pp. 235_283, North
Holland Publishing Company, 1982.

29. Meyer B., "A System Description Method", p. 42, Workshop
Notes: International Workshop on Models & Language for
Software Specification & Design, March, 1984, Orlando,
USA., ISBN 02250667.

30. Mascot Supplies Association, "Official Handbook of
MASCOT", RSRE, Malvern, Worcs. U.K.

31. Howden W. E. and Eichorst P., (1978), "Proving Properties
of Programs from Program Traces", in Tutorial Software
Testing and Validation Techniques. Eds. E. Miller and W.
E. Howden. IEEE Computer Society, pp. 46-56.

32. Howden W. E., "Functional Testing and Design
Abstractions". J. of System and Software. Vol.1, No.4,
1980, pp. 307-314

33. Parnas D. L., "On the Criteria to be used in Decomposing
Systems with Modules". CACM, Vol. 15, pp. 1053-1058,
Dec.1972

34. Goodenough J. and Gerhadt S.L., "Towards a Theory of Test
Data Selection",IEEE Trins. on Software Engineering,
SE-I, pp. 156-173, 1975.

35. Woodward M. R., Hedley D. and Hennell M. A., "Experience
with Path Analysis and the Testing of Programs". IEEE
Trans. Software Eng., Vol.6, No.3, pp. 278-286, May
1980.

36. Stucki L. G., "Automatic Generation of Self-Metric
Software". Proc. IEEE Symp. on Computer Software
Reliabilty, N.Y., APRIL 1973.

37. Hennell M. A., Woodward M. R. and Hedley D., "The Testing
of a Software Tool". Proc. Int. Symp. on Applications and
Software Engineering, Montreal, September 1979, ACTA
Press, ed. M. H. Hamza, pp. 16-20, 1980.

38. Holthouse M. A. and Hatch M. J., IEEE Computer, Vol.12,
No.8, pp. 33-36, August, 1979.

39. A1-Jarrah M.M.F., "The Study and Application of Program
Analysis in a Cobol Environment". Ph. D. Thesis, Brunel
University, Middlx, England, 1982.

13!

40. Kishida K., "Techniques of CI Coverage Analysis". Testing
Techniques Newsletter, Vol.3, No.3, 1980 p. 4.

41. Boehm B., "An Experiment in Small-Scale Application of
Software Engineering",IEEE Trans. on Software
Engineering, SE-7,482-493,1981.

42. Hennell M. A. and Yates D., "An Examination of Standards
and Practices for Software Production". Computers and
Standards. Vol. 1, pp. 119-132, 1982.

43. Hennell M. A. and Delves L. M., "Conference on the
Performance and Assessment of Numerical Software".
Academic Press. 1980.

44. Foster J. M. and Foster P. D., "Abstract Data and
Functors". RSRE Malvern, Worcestershire, U.K.

45. James C. "Software Development: A Rigorous Approach".
Prentice Hall. 1980.

46. Hamilton M. and Zeldon S., "Higher Order Software - A
Methodology for Defining Software". IEEE Transactions on
Software Engineering Vol. SE-2, No. 1. pp 9-32. March
1976.

47. Series Z, Recommendations (Z.101 to Z.104) Specification
and Description Language (SDL) Vol. VI-l. CCITT.

48. Cerchio L., "A System Design Methodology Based on SDL",
SDL News Letter No. 4 November 1982, pp. 19-20.

49. Allen E. and Engholm C. R., "The Need for Clear Structure
in "Plain Language" Legal Drafting". Journal of Law
Reform Vol. 13, No. 3, 1980

50. Hennell M. A., Woodward M. R. and Hedley D., "The Testing
of a Software Tool". Proceedings of International
Symposium on Applications and Software Engineering,
Montreal, September 1979. ACTA Press Ed. M. H. Hamza. pp.
16-20.

51. Hennell M. A., Woodward M. R. and Hedley D., "Experience
with an Algol 68 Numerical Algorithms Testbed".
Proceedings of the Symposium on Computer Software
Engineering, New York. April 1976. Polytechnic Institute
of New York Microwave Research Institute Symposia Series,
Vol. XXIV, ed. J. Fox. pp 457-463, 1976.

52. IEEE. Standard Glossary of Software Engineering
Terminology, IEEE Std. 729-1982

53. Johnson S. C., "YACC: Yet Another Compiler-Compiler".
Bell Laboratories. 1978.

54. Gerhart S., Musser D., Thompson D. et al, "Overview of
the AFFIRM Specification and Verification System", IFIP
80.

136

55. Enger N. L., "Classical and Structured Systems Life Cycle
Phases and Documentation", Systems Analysis and Design, A
Foundation For The 1980's, pp. l_24.

56. Biggs C. L., Birks E. G., Atkins W., "Managing The System
Development Process", Prentice-Hall Inc., Englewood
Cliffs N.J. 07632, ISBN No.0-13-550830-4.

57. Blum B., "Models and Language For a Specific Application
Class", Workshop Notes: pp.68-9, International Workshop
on Modles and Languages For Software Specification and
Design, 1984, Florida, USA.

58. Ramamoorthy C. V. & Ma Y. N., "Design and Analysis of
Computer Communication Systems", Systems Analysis and
Design, A Foundation For The 1980's, pp. 452-460.

59. O'Neill D., "Software Engineering Techniques Applied To
The Systems Development Process", Systems Analysis and
Design, A Foundation For The 1980's, pp. 330-340.

60. Freeman P., "The Context of Design", pp. 2-4, Tutorial on
Software Design Techniques, 3rd. Edition, 1980, IEEE
Computer Society.

61. Tutorial, JSP & JSD: The Jackson Approach to Software
Development, IEEE Computer Society, ISBN No.
0-8186-8516-6.

62. Mills H., "Top-down Programming In Large Systems",
(Courant Institute).

63. Hamilton M, and Zeldon, "Top-down, Bottom-up Structured
Programming and Program Structuring", Charles Clark
Darper Laboratory, M.I.T., December 1972.

64. Corner M. F.,"Structured Analysis and Design Technique",
p.213-234, Systems Analysis and Design, A Foundation for
the 1980's.

i37

I)ATE

FILMEI'F

