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ABSTRACT

-Wepropose-,a test for detecting serial dependence among multivariate

observations. em test statistic is the maximum absolute value of the lag I
--r,

correlation obtainable from a linear combination -If the observations. -We " .

express the statistic in terms of two eigenvalues and then obtain the

asymptotic null distribution. Asymptotic power is examined for sequences of

local alternatives in a multivariate normal autoregressive process. An

explicit expression is obtained for the density of the limit distribution in

the bivariate case. Mu then compare power with the likelihood ratio
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SIGNIFICANCE AND EXPLANATION

If multivariate observations 'taken at adjacent times are correle ted the

quality of inferences, based on an independence assumption, can be seriously

eroded. After illustrating these effects. we propose a new test for detecting

dependence among adjacent observations. We reduce the problem to one

dimension by considering linear combinations a1X1 + ..- + akXk of the

observations.

Our test statistic is then the maximum, over all linear combinations, of

the sample auto-correlation. We determine its large sample null distribution

from which approximate critical values can be obtained numerically.

Because of the seriousness of departures from independence, it is

important to have procedures for detecting dependence. Our statistic provides

one alternative way of quantifying dependence in a series of multivariate

observations. It should be a useful addition to summary descriptions of

multivariate data sets and serve as a warning when multivariate time series

methods are required.
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A LINEAR COMBINATION TEST' FOR DETECTING SERIAL CORRELATION IN MULTIVARIATE SAMPLES

Richard A. Johnson and Thore Langeland

1. INTRODUCTION

It .s well-known that the presence of even a moderate autocorreLation, among

univariate observations, can cause serious difficulties for procedures based on an

assumptio.a of independence. In the multivariate case, both inferences about the mean

and covarianc& matrix, Z, can be severely affected. To illustrate, let Xt follow the

multivariate AR( 1) model

ýt - -•xt_1 + zt

where the 4 and independent and identically distributed with E(C) = and

Cov() = C and 'all the eigenvalues of # are between -I and 1. As a consequence

of the ergodic theorem

n

--- _s- S 1i. (X'~) ')'

Also

/2n

Cov(n It- (I - + E -(X

and n( - X) is asymptoticaliy normal with this limiting covariance matrix. If the

underlying process has # - 161 k, II < !, then the nominal 95% confidence ellipsoid

i n(d j!) *S (ýS j!) ( x k .0501 has limiting coverage probability

P1x + 4 x(.OSfl. For instance if x has asmension k - 5 and A - .3 theXkI÷

coverage probability is .690. For . - 10 and 0 - .5 it is .193.

Sponsored by the United States Army uinder Contract No. DAAG29-80O<004t and- the -National
Science Foundation under Grant No. KCS-820-220S.
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In the context of principil component analysis, suppose we wish to analyze $'

which is the covariance matrix for Xt 'under independence, but that the correlation

structure is introduced by selecting a sampling interval that is too short. 7he first

principal component has coefficient vector e where 1 A1"t1 with A P Ap

However, if the underlying or-r z-ss has * = C 1where C is just smaller than A
p

A3

2 AC 22

so p. is incorrectly identified as the coefficient vector of the first principal

component.

Numerous tests hpve been proposed for the univariate case. Ligget (1977), Bartlett

ard Rajalaksham (1953). and Chittu--i i1974) have proposed multivariate extensions of the

Bartlett periodogram test, the Quenoulle test and Box and Pierce test, respectively.
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2. A LINEAR COMBINATION TEST

Because first order autocorrelation is most common, it is worthwhile to develop a

test for first order correlation that is both easy to apply and has a graphic

interpretation. We reduce the problem to one dimension by considering linear combinations

4, t 1,2,...,T and selecting g to maximize the lag I correlation

T-1
t'CX t- X)CX -+X) a .

r (1) = __ _ _ _ _ _ _= -
a T aIC

t= 1I

where the sample cross-covariance matrix of lag j is

ST-j
C X - X)(X -~ X)' for j 0 ,1,...,T -1 *(2.1)Tt=I

Our test statistic is then defined as the maximum attainable lag I correlation,

RL = sup Ira(1)I

Setting C('1 21 CC1 + C), ra(1) can be expressed in terms of symmetric matrices as

RL = sup C a max{C1"A1 (2.2)

kc'I/ 2 c c-I/Z •coepitQ

where • ½ 2 ' " are the eigenvalue. of o s1 o , or C 1C'. one pointgf

difficulty is that C is not necessarily non-negative definite.
5

Note that RL has the properties

T-1

St xi -X - C X-i)
R1. A Iri('l)I, r± t.£

t=1 .

-3-
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(ii) RL is invariant under

Xt + mAtQ

where A is non-singular and Q orthogonal.

A plot of '( - ) versus d) splays the concentrated correlation

estimated by RL.

We now indicate the steps leading to the asymptotic null distribution for RL

leaving the more technical algebraic steps until Section 5. We say that the k x k

matrix B is N 2( 04 B t-) if tr(A-3) is N(O,trAA't" 1 ) for every k x k matrix
k

A. Mann and Wald (1943) showed that
1/2 -1 N2(O, a t-11
T'CO C1  2bN (4

so T 1 / 2 C 1/ 2 Cc-1 /2 S where, under the null hypothesis, S has pdf

f(S) - (2v}'k(k+1)/4 2k(k-1)/4etr(- 1 SS) ,(2.3)

with respect to k(k + 1)/2 dimensional Lebesgue measure.

Hsu (1939) encountered the same asymptotic distribution while studying a normal

theory one-way MANOVA problem. He established thdt, if S is distributed as (2.3), the

distribution of its eigenvalues X I < X k has pdf

k
k k -ij /2

g(A1,A2#....X - I2k/2 n r(i/2)1" IF (A - ) A (2.4)

Since T 1 / 2 RL is a continuous function of T 1 / 2 C; 1 / 2 C9C 1/ 2 "

,T . - me-(t•I Ak) • (2.5)

For k - 2, the limit distribution is easy to evaluate

)x 2 '2~~u-Fz 2G

P(T 12.RL 4'xj,+ P(-x < A < A2  x) - x f ut 22u)du' * (K) * (2.6)

It is considerabiy more difficult to present expressions for the general case. Set

-4-
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G (t) f uJe-U
2
/2du, j * 0,1,2,....k , (2.7)

-X

x 22

G.,Llx) - f G (t)t Ie-t a2 dt, 0 j j,L 4 k (2.8)
--x

where it can be shown (see Muhta (1960), p. 399, e-n. (13))

G.,x) W (-1)1+jG(x) (2.9)

In Section 5,, we establish

Theorem. 2. 1. Frr k c-.", the asymptotic cdf of the LCT statistic T1/ 2 RL, under

the null hypothesis of independence, is

F(x) n I r r(i/2)) det({G,(x)})
iI.

for j - 0,2,4,...,k - 2 and I - 1,3,5,...,k - 1, where Gj Wx) is defined in (2.8).

Theorem 2.2 . For k oed, the asymptotic cdf of the LCT statistic T/2RL der

the null hypothesis of independence, is

2 k (- 1k-I)/2
F(x) (,21 H r(i/2)) ) ,-1)(k-l)/ 2 +JG 2 1(x)det(Bj)

i-1 j-O

where G(x) W is defined in (2.7),

FGO, 1 1(x) G0, 3 (x) ... CO.k.2(x)

B,- jr,2j. 2 , 1(x) G2j- 2 , 3 (x) . ... 2-2,2(x)

G2 j+2,1I(x) G2 j+ 2 , 3 (x) ... 2j+2,k-21x)

Gk-t, Ilx) Gk-1,3(x) GKIc-,k-2(x)

for j - 0.1,2,...,(k-1)/2, and G,j,(x) is deflned in (2.8).

-%-
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A table of 1-st, 5-th and 10-th percentiles, for k = 2(1)20 were calculated using

double precision arithmetic (see Lanqeland (1980)).
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3. SC ' COMPETING TESTS AND POWER CONSIDERATIONS

Most tests for independence are motivated from consideration of autoregressive

alternatives. let

for t - 1,2,...,T. The hypothesis of independence is thei

H : 0 0 . (3.1)

A natural test statistic to.use is

SL - -[N -• (k + k + 1)]Iog(fC0 - 4C04-1/1C 01) (3.2)

where N - T - 1 - 1 and 9 - CIC0 1 . If the {}T I axe i'.i.d. multi-ariate normal,
0 -t t-1

then the test statistic in (3.2) has the same asymptotic distribution as the logarithm of

the likelihood ratio test statistic. See Hannan (1970, page3 338-341).

Theorem 3. I. Under the null hypotthesis of independence (3.1), the asymptotic

distribution of the test statistic (3.2) is a X 2 -distribution.
k

In order to obtain an indication of asymptotic power, we introduce the normal theory

ARM1) mode) (3.1) where the rt are independent N(Q,4.). Let {*TI be a sequence of

'alternatives to .independence, where T 1/ 2 T H, and let PT,0 denote the distribution
TT

of )•I,** ' 'T" Let PT be the distribution of •," " under independence.

Theorem 3.2. Under {Z T

S IdPT, T tr[-1 T/2 TT/2C tr[1 T 1/2 TCoT 12 OP + OP (1

AT 0 ndT-

2I n

÷N(- 1 02,02)-

so {PT and (PT,OTt arer contiguous.

It can then be shown that' (AT, T1/2C01/2CsC;1/2) is asymptotica'y normal, under

PT so that we can obtain the 'limiting distribution of the 'linear combinatlea statistic,

RL, under PT, } Even the btvariate case is complicated. The limit distributioa
T

for TI/ 2RL is

-7%.



f( x) =4 -( /2 (1/2)F x2(j 'i~ l)

0 (jl)2 1 0 r! 2
1 2

S- u)2J+lu2i ex2(u2+kl-u)2 du
0

for x > 0 where n (P + 2/2, A (- 1 - P32 + 412]/2 and

0 = u2  = 1/2 1/2 01 f/20rl/2lvec(4)

1A3 L.0 0 0

It also follows directly that .(A,SL) are each jo.ntly normal under (P . From the

contingumty, we then obtain

Theorem 3.3. Under {PT, T} the asymptotic distribution of SL is non-central
2 -

Swith 
nonce.atrality parameter tr[$-IHE H'].

k
It is well-known that the likelihood ra-lo test has s9&veral large sample optimal

properties. However, 4 calculation of asymptotic power in Table 3.1 with I - 2. € - ±

shows that the linear coWbination test haS higher power than the others when

T1/2 .T /2 T diag(h 1 ,11f).
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Table 3. 1

Asymptotic Power

h~~i RL S

.1 .0513 .o050

.5 .0849 .0627

1 .1796 .1055

2 .4666 .3201

3 .7714 .6635

5 .9952 .9894
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4. EXAMPLE

We consider some data reported by Simon (see Duncan (1959), pages 626-630) consisting

of burning times of 30 fuses as recorded by three observers. Since there is one hissing

"observation for tCe second observer, we first confine ourselves to the data given by

observers one and three. Let At = (X1,tX 2,t)', t - 1,2,...,30 denote the

observations. The plot of Xi,t versus Xit+1 for i - I is given below in Figure

4. 1. The plot for i - 2 is similar. Neither exhibits clear signs of first order serial

dependence. The LCT statistic 130 RL - 2.40 and it is significant at the 10 -ercent

level. The value of the corresponding eigenvector is n - (1.0,-.99)1. The plot of

"a'X versus a'X given in Figure 4.2 gives an indication of serial dependence in the
t t+1,

. two series of data. If the missing observation is estimated, the evidence for dependence

Swith three observers is much stronger. The statistic becomes significant at the 3% level.

.10-
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Figure 4.1

PLOT OF DATA OF OBSE•;VER ONE VERSUS THESE

DATA LAGGED ONE UNIT

xl~

10.3

10.2

*o. 10.1

oX
.i X

10.0

9X x
XX X

"* g9.8 X XXX

9.77 x

x x

9.6 x
x x

9-s XX

9.
"9.4 .6 9.8 10.0 10.2

I...

-X1 t .

* .T,



Figure 4.'2

PLOT 01r i
5
x VERSUS i'X t FOR DATA, FOR

OBSERV&L< ONE AND THREE

a'x
.16

x

.15x

.14

.13 x

.2x x

.11. x x
x

.10 x

.07

.06

.05

44 .6 .08 .1.0 .12 .14 .16 .18

xt+Il



5. DERIVATIION OF LIMITING NULL DISTRIBUTION

The asymptotic cdf of T1 / 2 RL is given by

F (x) - P(-x , AI < Ak < x) f ... f g(A1 1 .... ,Ik)dA1 ... I k (5.1)
S• QC-x,x,)
',kX

where g(*) is defined in (2.4) and' Q(a,b) = (a ( 1 <, 2 -.. < A k < b). Since

: " 11 2 •• k
1 2 k- K'~ ~ rX:5 - Ai)=de

"(the Vandermonde deteruina4it), (5.1), can be rewritten as

I: e .e ... e

_X -/2 A2 /2

• 0.fc de a 1 e 2 "". k

Q(-xx)*1 (5.2)

A~2 -/2 2-
k-I 1 /2 i /2k.- • 1 e 2- • . ... •k
AX a e

dA dA 2 . .. d k

k
where ck - [2 k/2 I r(1/2)1'1

eJ.1

In order to obtain an explicit expression for the densities we need some additional

concepts and eimac (see Aitken (1939), pages 50 and 111).

The, signature function Z(xlx2,...,xk), io defined as

"Z(x1*x2,...txk) - RI siqn(xj - SO) (5.3)

for x - (xX2,....,xk)' e a, z(x¶,x2,....Xk) 0 it, X 'fto 0 i 0

i-j . I,2,...,k, end V(x) I I for all x, a.4'.:

S'. -13

.4

4--Z
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Let k 2m and a 1,2,..., and let A={ai,1 be a skew (k x k) matrix, then

the Pfaffian of A, Pf(A), ie defined as

k k k

Pf(A) - (I"1 "... Jk)

Ji- I J Jk
1

ajj 3* 4 "*..
a IJ2 'J J jk- jk

It is well-known that [Pf(A)] 2  det A.

de Bruijn (1955) has established the ,following expression for k even.

Lema 5.1. Assume dot((# (xj)}) e L(Ik) and let k 2 a and m - 1,2,..., then

f .I* f det({$J(x )})dxIdx 2 dxk
Q(a,b)

bb
- Pf({aij f If *i(x)lj(yIsignly - x)dxdy}) . (5.4)

a a

Remark. do Bruijn (1955) gives a somewhat unusual definition of the Pfaffian and his

derivation of the integral on the left-hand side of (5.4), for k odd, is only valid in a

very special case. However, Krishnaiah and Chang (1971, equation 2.6). give a general

solutJon to the odf. case. In their notation *j(x) - xr*J-'l(x) for r ) 0 and some

function *(x) satisfying the integrability conditions. We restate their results as

Lamea 5. 2 (an alternative proof is given in Langelandl(1980)).

Leans 5.2. Assume det(({ (x 1 ))) e L(e') and 1r t k be odd, then

f "'")f d-t({*j(xi)))dx dx2 ** d • (-j)J' 4 Cb)Pf(A
Q(a,b) i 1J"

where

b

(ib) f # (t)t for .

-.14-
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arnd

0 a12  ... alj.1 al,j+¶ ... al,k

a21  0 ... a29,..1  a21 j+i . a,

=j aJ. 1,1 aj..l,2 0 a1.1 ,1..1  ... ai'j- 7

aj+l,, aj+,1 2  ... aj+l,j..¶ 0 ... aj+lk

ak,1 ak,2 .. ak,j..1 ak.,+1 .. 0

for j -1,2, ...,. kand Q(a,b) and aij are an in loina 5*.I

We caa now establish Theorem 2. 1.

Proof of TheoreE 2.1. First we notice 1hat

J , U -i 22teIa-t/ signi(t -u)dmjdt

-X -X

-fx tl- 2/[tJ,,,u
2 /2&, -x uj,- i- /2d2i

-x -x t

G Gjt(x)~ f xt1 -t ~2 E /2Uxj-u/d]t
-x t

x 2 ua 2

G G,x(x) f I ,O- /21 tj e J 't 2djdu

'G J,I(x) G Gt,,(x) for 0 4 J.1 4 k L

-By (2.9), the last quantity equals 0 or t2G W time S. 5. then gives

J115



k1(x) [ 12 k/2 a r(J/2)]- (5.5)

J-i

0 2G0 ,1 (x) 0 ... 
2
Go, k- (cx)

2G 1 , 0 (x) 0 2Gl, 2 (x) ... 0

.Pf .

0 
2
Gk_2, 1(x) 0 ... 

2
Gk_2,k.l(x)

2Gkýl,0) 0 
2
Gk-.l,2(x) ... 0

Let k = 2m, then, according to definition of the Pfaffian and the relation for signature

functions

k k kR(Xll,X2 ..... xk) I(2mt" I ... I• ZJlJ2I .... I)k)

JI-1 J2-1 Jk-1

• KjlXjX)2) • ]Cx:3xj4) ... Zilx:}k-IX:k)

established in de BruiJn '1955), the Pfaffian in (5.5i can be reduced to

S-- Z j ,2 .... ,jj
Jim' J2s-1 •.-l

* G0 , 21 I.ll(x),G2 ,lJ2.1 xl .... ,Gk.., 22 1 .¶I(x) •

But this is nothing but 2m times the determinant in Theorem 2.1. The pr of is complete.

Proof of Theorem 2.2

k 
k-1

r( x) ( 2k/2 [ ri/)]" 1 k (-I)iG(x)Pf(Aj)
a-i 1-0

where A, (apq) is a UI 1) x (kc - 1) matrix with entries ap, Q pjq - Qq~p far

p,q- 0,1,..... 1 -,J * 1, .... k- 1. Next, by (2.7)

-16-



G.(x) - 0

for j odd. (It can also be shown that Pf(A•) - 0 for j odd.) According to (2.9),

for j even, A3 is

0 G0 1 (X) 0 ... G0 ,3 +1 (x)

G 1 , 0 (X) 0 G1 , 2 (x) ... 0

A = 2 (k-1) Gj.l, 0 (x) 0 Gj.., 2 (x) ... 0

GJ+1 ,O(x) 0 Gj+ 1 , 2 (x) ... 0

Gk_ 2 ,0(x) 0 Gk_2, 2 (x) ... 0

o0 Gk_..,(x) 0 G_1,j_1(x)

G0,j+I(X) ... GO,k.2(.x)0

0 ... 0 Go,k_.(x)

0 ... 0. Gjlkk.l(x)

0 ... 0 Gi+ ,k_1(x)

0 Gk-.2,k_ I1(x)

Gk'- ) ... , _kl,k_2(x1 . 0

All entries containing I as a first or as a second index varnish, i.e., all G ,W(x) and

G ,JA(x) for I - 1,3,...,k - 2 vanish. 7he remining number of terms Gpq(X), with

p even, is exactly (k - 1)/2. Thus, the l0faffian of A, reduces to

-17-
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IsI
2,(k- l)/2 • ' . . • E(jl 'j2 ' ..... j ,)G0,2Jl -l(X) •

j1-1 j2-1 jm-l

• G2,2j2-1(x) ... Gj_2,2j(J.2)/2_l(X) a j.•2,2j(j+2)/2_l(X) " GkI,2:jmI(x)

where a , (k - 1)/2. Except for a possible sign change this is nothing but 2(k-1)/2

times the determinant of the matrix B(j/ 2 ) appearing in the statement of Theorem 2.2.

By inspection, the sign is qiven by (-I)(k-1)/2+j. The proof is complete.

We remark that nuclear physicists (e.g. Mehta (1967), Wigner (1967)) are interested

in distributions of the eigenvalues of S.

-Is-
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