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ABSTRACT

Certain elastic solids when subjected to sufficiently high loads abruptly

change their mechanical properties and yet continue to respond elastically to

further loading. In one dimension such mechanically induced elastic phase

transitions may be due to a non-monotonic stress-strain relationship. This

appears to be particularly true for certain mineral crystals, such as calcite.

This work considers a one-dimensional dynamical problem for a special

material. The problem reduces to determining the location of the internal

moving boundary separating distinct elastic phases. This phase boundary is

similar to a gas dynamical shock wave. For the problem considered here, this

phase boundary is shown to be governed by a functional equation of the form

f(f(t)) + F(f(t)) + t - 0

for the unknown f(t), where F() is a known function involving the boundary

conditions. The unusual equation is derived by considering the effect of

acoustic waves repeatedly reflecting between the phase boundary and the

external boundary. The equation is shown to possess a unique solution and is

treated asymptotically to determine the large-time behavior of the phase

boundary.

AMS (MOS) Subject Classifications: 35L65, 35L67, 39B05, 41A60, 73D05

Key Words: phase transitions, elastic solids, Functional equations

Work Unit Number 2 - Physical Mathematics

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
materia'. ts based upon work supported by the National Science Foundation under
Grant No. MCS-8210950.

... . .. . . . .
.' ' ° .•"o°.•°t. , , '-"-", . -- . - ••. -°-• -°° .. . .0,



-T 77 777

SIGNIFICANCE AND EXPLANATION

- Certain elastic solids when subjected to sufficiently high loads abruptly

change their mechanical properties and yet continue to respond elastically to

further loading. In one dimension such mechanically induced el. ..tic phase

transitions may be due to a non-monotonic stress-strain curve. This -work

investigates the cumulative reflection of acoustic waves between the external

boundary of the solid and the internal moving boundary separating distinct

elastic phases. This latter phase boundary is similar to a gas dynamical

shock wave. For the material introduced in this work, a functional equation

governing the trajectory of a phase boundary is derived and shown to have a

unique solution. This equation is treated asymptotically to determine the

large time behavior of the phase boundary.
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A FUNCTIONAL EQUATION GOVERNING MOVING PHASE BOUNDARIES IN AN ELASTIC BAR

Thomas J. Pence

1. Introduction

C rCertain elastic solids when subjected to sufficiently high loads will abruptly change

their mechanical properties and yet continue to respond elastically to further loading.

An example of this type of behavior is found in the mineral calcite, which suffers a

*change in its crystal structure whenever it is sufficiently compressed [1]. James [2],

(3] cites other examples in materials ranging from metals to natural rubbers and various

polymers. The possibility that a material may cease to behave in an expected manner has

an impact on a host of geophysical and engineering problems. It is also interesting to

note that metals which undergo a phase transition due to a change in temperature are being

promoted as a means for performing specific engineering tasks [4].

The study of such phenomena within the theory of elasticity centers around material

models involving non-convex strain energies (in addition to [2], [3] see Ericksen [5],

Knowles & Sternberg [6], [7], [8], Abeyaratne (9], [10] and Pence (11]). In one

dimension, these models are equivalent to theories of materials with a non-monotonic

stress-strain relation. This type of model is not new; the theory of a Van der Waals

fluid is based upon a non-monotonic constitutive relation. Indeed, phase boundaries in

certain solids may be kinematically similar to the liquid-vapor phase boundary in a Van

der Waals fluid. Admissibility criteria for the later type of phase boundary have been

studied by Serrin [12], Slemrod [13], and Slemrod & Hagan [14].

This paper considers the problem of determining the motion of the front associated

with a phase transition for a model elastic material in one dimension. We imagine a bar

in which transverse displacements are absent and we let u(x,t) be the longitudinal

displacement in a Lagrangian frame. We also let C, C - Lu and v = 2 denote

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. MCS-8210950.
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respectively the stress, strain and velocity in the bar. The material is assumed to obey

a stress-strain relation like that depicted in figure 1.

c(e)

I I I I

a1  8 a2 a2

Figure 1.

The function a(c) is taken to be of unlimited smoothness, concave down on the first

ascending branch, and is assumed to approach - as e + -. These restrictions are not

essential to the general theory; what is essential is the existence of two distinct

ascending branches. It is these two branches which are associated with distinct material

phases. We consider a tensile load g(t) applied at x = 0 to a bar which is initially

undeformed and at rest, and which is also taken to be semi-infinite in order to avoid

having to treat waves reflected from a second fixed boundary. The equation of motion is

a 2u .20(1.1) 32u 80
at 

2  ax

It is to be solved subject to

(1.2) O(£(O,t)) - g(t), (t ; 0),

(1.3) £(xO) = 0, v(x,O) - 0, (x , 0)
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As discussed in [11], solutions will include discontinuities in a, c, v in the event

that g(t) > O. If x = s(t) is the trajectory in the (x,t)-plane of such a

discontinuity, the jump in the dynamical fields across x = s(t) are to be restricted by

the familiar conditions

(1.4) dIsEI +Iv o, Is I jv j+ a 0
(1.4) dt dt

Phase boundaries are those particular discontinuity fronts that separate strains

associated with the two different ascending branches of fig. 1.

The model is explained more fully in section 2, where we also consider the special

problem of an impulsive load (g(t) a step function). This problem is studied in order to

touch upon some questions concerning uniqueness as well as in order to discuss an unusual

- and physically desirable - feature of certain mathematical solutions: phase boundaries

which travel at lower speeds than the sound speeds of the material in both adjacent

phases. In section 3, we return to a more general loading program, and introduce the

notion of an energy confining phase boundary. In section 4 we restrict attention to

materials for which the second ascending branch is linear. This gives rise to a problem

involving a linear wave equation in a region of the (x,t)-plane which is partially bounded

by the (as yet unknown) location of a phase boundary. This problem is reducible in

certain cases to a functional equation of the form

(1.5) *(l(z)) - 2f(z) + z - Q($(z))

where 4, the function to be determined, is subject to some additional conditions and

Q is a known monotonically increasing function which incorporates the function g(t).

The unusual equation (1.5) is derived by considering the cumulative effect .f acoustic

waves repeatedly reflecting between the moving phase boundary and the fixed external

boundary. In section 5, we prove the existence of a unique solution f by means of an

iterative scheme. A more delicate argument subsequently guarantees the differentiability

of this solution. In the final section, eqn. (1.5) is treated asymptotically to determine

the large-time behavior of the phase boundary. The resulting asymptotic solution agrees

-3-
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with the particular solution of the impulsive load problem presented in section 2 in the

limit t + f, x/t fixed.

Equations in which a function to be determined appears in its own argument arise in

other branches of mathematics. Specifically, (1.5) is a special case of the equation of

invariant curves. Thus the theoretical results presented in section 5 extend some pre-

vious results in that theory (see Chapter XIV of [151). In the field of continuum me-

chanics, problems involving wave propagation can lead to equations involving a delay in

their argument. Although this work is devoted to solid mechanics, a set of functional

equations have been considered by Seymour & Mortel [16] in connection with the study of

oscillations occurring in an inviscid gas confined in a closed tube. In fact, their eqn.

1. can be manipulated into the form of (1.5), although the properties of Q (H in (161)

differ. In both this work and [16], the appearance of a function in its own argument is

due to the unknown time delay for the return of a reflected signal. It is intriguing that

in [16] this delay is due to an amplitude dependent acoustic speed, whereas in this work

the sound speeds are known prior to the derivation of (1.5). In the problem considered

here, the unknown delay stems from the unknown location of the reflecting phase boundary.

-4-
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2. Solutions for the impulsive Load Problem

The sound speed of the material is given by the value .'a'(0), where the symbol

is the usual nutation for derivative. Shock waves arise naturally in the solution of

(1,1-4) due to the intersection of characteristic curves in the (x,t)-plane. In contrast,

phase boundaries occur in this theory because no single branch of the a(c)-curve can

accommodate stress values both less than a and greater than a . As discussed in (31,

phase boundaries differ from the aforementioned shock waves in that they may travel at a

much lower velocity than the sound speeds of the material in each adjacent phase.

In an equilibrium setting, configurations involving strains on the descending branch

of the oa()-curve are extremely unstable (2]. For the dynamical problem, the sound

speeds are no longer real on this branch. This prompts us to seek solutions to (1.1-4)

which avoid this branch altogether. Thus every time-interval during which g(t)

traverses the range [cQ00B ] must generate at least one jump in c(O,t) between the two

ascending branches. Let us suppose that g(t) increases monotonically from 0 to a

value greater than a and discuss solutions with only one such jump, say first occurring

at t - t,. Than a 4 g(t*) = aj ( 08 where a is the stress at which the change of

phase first occurs.

A criterion for selecting aj remains elusive. A well-known stability argument

yields the value associated with the Maxwell line [3]. Recent work in this vein has

addressed how strain rates and strain gradients can affect oJ (see [121, (13], [14] for

the corresponding problem in a van der Waals gas), as well as how a may be affected by

a phase boundary surface energy [17). This paper addresses the simplier and more

immediate problem of constructing solutions to (1.1-4) for a given value of a3 . Thus we

append the following restrictions upon the strain at x - 0:

(2.1) 0 4 C(0,t) C Ej or E(0,t) > Ej, (t> 0)

where e and c denote respectively the first - and second - phase values of strain

associated with oO via

-5-
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(2.2) O(E ) O(tJ) = j, a I  E < a ll a2 E - a 2

One might expect condition (2.1) to render solutions of (1.1-4) unique, this, however, is

not necessarily true. Consider first the impulsive-load problem

0, t = 0,
(2.3) g(t) =%

a- > oi, t > 0.

Following James [3], we seek a similarity solution of the form

(2.4) e(x,t) = Z(A), v(x,t) = ;(M), A = x/t ,

where ("), v(") are piecewise differentiable functions defined on 0 4 A c . If

either function is discontinuous at A = A1 , then x = Ait is either a shock or phase

boundary. Since every ray x = At meets at the origin, we shall in this section

interpret (2.1) as requiring ZoA) e [0,ej U ccj,A]- Equations for E and v follow by

introducing (2.4) into (1.1). One finds that Z(A) is either constant or obeys

(2.5) - A
2

The function ;(A) satisfies

(2.6 ) v -A X .

This last equation, in conjunction with (1.3-4) indicate that V follows from £ as

- / 37(s) ds, 1 <

(2.7) A(X) n+ < A < X (n = 1, ... , N - 1)

V(A -)- f ,'~)ds, n+n
E ( i  )  0 4 A < A N

where Al > A2 > ... > XN are the values of A at which £ is discontinuous and

(2.8) v(X -) ;(A .i+) + A. [Z€ + ) - Z - •

Thus it merely remains to find an E(A) which:

(a) is either constant or obeys (2.5) on some partitioning of 0 4 A 4 into open

intervals,

-6-
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(b) yields the correct boundary values for E(x,t) via the relations,

(2.9) Z(-) = 0, Z(O) = C where oa(c) = o

(c) at points of discontinuity ,. obeys1

(2.10) 2  ] = o(ix)
i i))

and

(d) has range [O,ej] E. J,

Notice that (2.8), (2.10) are necessary and sufficient to guarantee the discontinuity

conditions (1.4). We now present a method for generating solutions Z(M) obeying (a) -

(d). The constriction makes use of an upper concave envelope of portions of the function

G(E).

A function h(x) defined on a < x b is concave if h(Ax + (I - A)y) > Ah(x) +

(1 - X)h(y) for all x,y E (a,b] and all A e [0,1]. The upper concave envelope k(x)

of a function k(x) is the smallest concave function obeying k(x) ) k(x). Thus at each

fixed x0 either k(x0) k(x0 ) or (x 0 , k(x0 )J lies on a line segment bridging two

points on the graph of k. Figure 2 depicts 0(E), the upper concave envelope of a(e)

in the domain [0,r ] for a value E as given in (2.9).

/

d-e /

figure 2. r :rcc'vo cnvoicp C given in figure 1, for

-7-
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Since the derivative o'(E) decreases continuously from &(0) to o'(e=) the equation

(2.11) 
A2 =

has at least one solution C for each value A e #d (0)]. The value Z is

unique if £ does not lie on a linear portion of ;(C). Let Ai  be the positive square

root of the slope of the it-h linear portion of a(r). Then A1 > A2 > ... > AN  and

(2.11) has an interval of solutions £ for each A = A.. Thus (2.11) implicitly defines1

a decreasing function C(A) on /o(c ) 4 A ' (0) which is discontinuous at each

A = A.. By L 'nstruction Z obeys (2.5) between these discontinuities. At the same

time, (2.10) holds for all A = A. on account of A2 being the slope of a secant line to2. 1

the curve o(C). Since C.(E)) = t and Z(4(0)) = 0, we can generate a function

obeying (a) - (c) by extending c(A) to the complete domain A > 0 via

(2.12) "(A) = 0, X > /()

Z(AL) C. 0 4 A < T--I

It remains to determine whether or not (d) holds. Before doing so, however, we note that

the first line segment of ;(c) traverses an c-interval including [81,02] by virtue of

a*(c) < 0 on 0 4 E 4 01. Thus AI is the phase boundary speed. The next N - 2 shock

speeds Ai are

(2.13) v'C i-)) =i = /'C (7+') , (i = 2, .... N - 1)

since linear portions of ;(E) strictly interior to (0,C_) must join smoothly to points

on a(c). Thus the shocks x X it (i = 2, ..., N - 1) are transonic with respect to

the material flanking it on both sides. If N > 1, the phase boundary speed XI obeys

(2.14) / ,Cc~-)) = A1 , / o xCA1 +)) . (N > 1.

where the inequality is strict only if (X I+) = 0. In such a case the phase boundary is

supersonic with respect to the material in front. Similarly the fastest shock x = AN t

obeys

-8-



(2. 15) 40- _IX -I X1o I sN)) (N > 1)

Finally, if the phase boundary is the only discontinuity front, then

(2.16) V7(-,( X,)l ) 1 ) X 'I ' C(X 1+)) , (N - 1)

Turning now to the question of whether or not (d) holds, we note that nothing in the

above construction prevents c() from taking values in the range [E3 ,81]. We can,

however, enforce (d), while maintaining (a) - (c), by repeating the same construction, not

to the upper concave envelope of a(e) on 0 C C (C ., but rather to the upper concave

envelope on 0 ( £ r C of the "deleted" function

(2.17) C(c ) 4 C < o(c )l 0 j C.)

i not defined*, F < C < j .

The program is now to define c(t) in a fashion analagous to (2.11) by means of the

equation

(2.1bh) 2 (C

where 02 - a;( i ;)/ac. The only apparent difficulty is that, unlike a(c), o(C ;E) may

be kinked at c - c., rendering 2(Cj ;c) discontinuous at this point. Examples of the

two exhaustive alternatives:

(2.19) Alt. 1: O(C1£ ) = IC , Alt. 2: o(C3 ;tj) > a

are shown in figure 3. No kink occurs for Alt. 2; indeed in this case a(cj;.) = o(-)

and the original construction (2.11) - (2.12) yields an Z(A) obeying (a) - (d). The

*or, if one prefers, 0(c ;) = -" on c < E < C



Then the solution e S of (5.2) is continuously differentiable with 0(0) 1 and

0 < ;(t) < 1 for all t > 0.

The theorem will be proved in several stages. The hypotheses of Theorem 2 are

assumed throughout.

Lemma 1: Let A: B + R+ , where the set B C R
+  

is such that (B) C B and 0 e B.

Let A obey

(5.16) 0 4 A(t) 4 1

and

(5.17) LA(O(t)) - 2 - Q( (t))]A(t) + 1 = 0

for all t e B. If tk e B and tk 0, then A(tk) * 1.

Proof: If A(tk) 4- 1 we conclude from (5.16) the existence of a subsequence tk

such that A(tk£) + Y0 , 0 4 Y0 < 1. Thus it is sufficient to show that if A(tk) + Y0'

then Y0 = 1.

For each n 0,1,2. (5.3) yields

(5.18) lim [n[(t ) = 0 , lim Q(0 [n](tk)) = 0

k+- k+

Since O(B) C B, (5. 17) ensures the existence of each limit

(5.19) Yn = lim A( [nj (tk)) , n
k -a

obeying

(5.20) Yn 2 - 1/ _ n-1 n = 1,2,...,

which is the same as

(5.21) 1 - 7 (1 - Yn
1
)/-in_ , n = 1,2,...

From (5.19), (5.16) and the definition of Y0 , we have 0 Yn ' 1 (n = 0,1,...), thus

(5.21) gives yn r Tn-1 Hence Yn + Y with I - y = (1 - y)/y, so y = 1. Collecting

results we have 1 = = lim Yn Y0 1 , whence 0 
= 

I.
n o

-23-
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for all n 1,2,3... and all t ) 0. Taking the limit of (5.11) as n + - and using

(5.8) we arrive at

(5.12) *(t) - '(t)l 4 I0(0) - *(O)i = 0

hence 0 =

0 0
Theorem 1 implies that 0 exists a.e. on R+ with 0 4 1 and moreover that

t.

0(t) = 0 *(s)ds, the integral being in the sense of Lebesgue. Our next aim is to show
0

that 0 is continuously differentiable and satisfies (4.21). Let D C R be a Lebesgue

0C
measurable set with (D) - 0 such that ; exists for all t e D . Here and throughout

the section, U will denote Lebesgue measure and c will denote set complement in R+.

Differentiating (5.2) gives

(5.13) [0(0(t)) - 2 - (f(t))j;(t) + I = 0

for all t e D such that o(t) e D . Since t e D need not imply 0(t) e D , it is

inconvenient to work with the sets D and Dc . instead, we seek a set F C e such that

(i) w(F) - 0, (ii) ; exists for all t e Fc and (iii) O(Fc ) C Fc . Clearly the set

(5.14) F U {(0-1) [n](D)l
n=0

c
satisfies the latter two requirements. Thus (5.13) holds for all t e F To show that

u(F) = 0 we note that o e S ensures that - is a strictly increasing function.

Moreover, (5.2) gives explicitely

(5.15) 0- (t) = 2t + Q(t) - 0(t)

Suppose Q is absolutely continuous. Then so is 0- which, in turn, renders

w(F) = 0. In particular, Q is absolutely continuous under the hypotheses of

Theorem 2: Let Q be continuously differentiable with Q(0) = Q(0) = 0, O(z) > 0 for

z > 0 and, in addition, let be Lipschitz on every interval (O,z0].

-22-



We are first going to show that the iterative scheme

(5.7) 0n(t) K-
1 
(LOn 1(t)), 0 (t) = K-1 t)

converges pointwise to a solution $e S of (5.5).

We have 0 0n (t) ( t since n e S. An inductive argument now gives

n (t) > *n- i(t), thus Cn(t) + O(t) for all t ) 0. Since 0n e S, it follows that

O(t) is i) Lipschitz with Lip[O] ( 1, (11) increasing, and (iii) obeys *(O) - 0.

Since 14 n(t) - LOt) and KOn (t) + K((t) it is immediate from (5.7) that 0 is a

solution of (5.5) or equivalently (5.2). From (5.2) we have tI * t2  implies

*(t I) * O(t 2 ), whence * is strictly increasing and so * e S. In addition, for

t > 0 we have O(t) > 0, so that K- IL(t)) < L4(t) ( t by (5.4). Since

K I(LO(t)) - *(t) , this establishes (5.3). It remains to show that 0 is the unique

solution of (5.2) in S.

It is immediate from (5.3) that

(5.8) lim [n)(t) - 0 , t. 0)

Suppose now that E t S is also a solution of (5.2).

Then

j$(t) - V(t)I " 1K'(L(t)) - K (L*(t))! l

(5.9) (JL(t) -L((t) -1 (O ()(t)) - ((t))(

whece( +()o t) - 0((t)) + 0 ((t) - t

-1

whence22

(5.10) *¢t (t)l 4 lo(wt}) - *( (twj

This gives, by iteration,

(5.11) 4 t) - (t) I  c ( n] (t)) - *(0 [n] ) l )

-21-
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5. Existence of a Solution to the Functional Equation

In this section, we prove that (4.14), (4.19) has a unique solution obeying (4.21).

In addition, the first of the two theorems in this section furnishes an iterative scheme

for solving (4.19). n

Let 
+  {xix ; 0} and for n - 0,1,2, ... let [n](x) =(x)

0 ] (x) = x . Define the set of functions

(5.1) S {:R + RI1(0) = 0 , 0(t) strictly increasing

and * Lipschitz with Lip(] 4 1} .

Note that S is closed under composition. The following theorem shows that (4.19) has a

unique solution e • S for a class of functions Q which include those Q obeying

(4.14).

Theorem 1: Let Q: + e+ be continuous and strictly increasing with Q(0) = 0. Then

the equation

(5.2) 0(f(t)) - 20(t) + t - Q(O(t)) - 0 , (t ) 0)

possesses a solution 0 e S . Moreover this solution 0 obeys

(5.3) 0 < 0(t) < t , (t > 0)

and is the only solution of (5.2) in S.

1 1 + +

Proof: Define L: S + S by Lp(t) - - *(*(t)) + - t. Also define K: R + R
2 2

by K(z) = z +1/2 Q(z). The hypotheses on Q ensure that K is invertible on R+ with

the inverse function K- 1 obeying

(5.4) 0 < K-1(z) < z , (z > 0)

Furthermore, one may verify that K-I1 e S.

We may write (5.2) either as

(5.5) K(f(t)) = LO(t) , (t ) 0)

or as

(5.6) f(t) = K- (L(t)) , (t > 0)

-20-
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Then (4.15) requires that

1 ( )+ 1
(4.17) b(0(z)) = (z) +-1 z

whereas (4.11) demands that

(4.18) b((z)) G(() (z)) - .(z), (b(O(z)) < t•

Consequently (4.12), (4.17-18) yield the equation

(4.19) 0(0(z)) - 20(z) + z = Q(O(z))

which is (1.5). In light of (4.16) and (4.9), the phase boundary trajectory s(t) is

given in terms of 0 as

(4.20) S(t) = cla-I(t) - tj , a(t) = (t) + tj , t <t

where the restriction t < t follows from b(O(z)) < ;. Physically for t > t,

E(s(t),t) < £J and (4.8) no longer reduces to (4.10). Note that s(t) completely

determines the region U for t < t and, by virtue of (4.7), the displacement u(x,t) in

this region.

The derivation of (4.19) assumes that s(t) is continuously differentiable and obeys

(4.5). These conditions are equivalent to 0 being continuously differentiable with

(4.21) 0(0) - 0, 0(0) = 1, 0 < *(z) < 1 for z > 0

Notice that (4.21) and the second of (4.20) yields 1(t) >1/2, which, in turn, guarantees

the existence of a-1(t) which appears in the first of (4.20).
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h(t) generates acoustic waves which drive the phase boundary forward while ringing back

and forth between it and the loading device. I am unaware of a general mathematical

theory appropriate for treating this system in the above form. Fortunately, this problem

simplifies considerably in the event that +(,) and v( *) are individually

constant. Recall that such a situation prevails immediately ahead of the phase boundary

for all times t < t Consequently, for all times t such that b(t) < t, one has

t(s(b(t)),b(t)) - t(s(a(t)),a(t)) = cj, v(s(b(t)),b(t)) = V(s(a(t)),a(t)). This, in

conjunction with [O(EJ)-D]/c
2  

j, reduces (4.8) to

(41) O- 1 - Cj]19(t) - ae(t)) + cif (b(t) < t
(4.~~ lei h-t - [ J

This equation integrates immediately and, with the aid of a(O) = b(0) = 0, may be cast

into the form

(4.11) a(t) + b(t) = G(t), (b(t) < t)

where

t

(4.12) G(t) - 2t +-1 Q(t), Q(t) = - C )If [h(r) - T dr
0

We note for future reference that Q is of unlimited smoothness with

(4.13) O(z) - 4[h(z) - J - e

which in conjunction with (3.3) yields

(4.14) Q(O) = 6(0) = 0, O(z) > 0 (z > 0)

Return now to (4.9) and note that (4.5) ensures that a(t) and b(t) are each

continuously differentiable and monotonically increasing. Let a- I (*), b- 1 (*) denote

their respective inverse functions. Eliminating s() between (4.9) furnishes

(4.15) a-1(t) + b- 1(t) = 2t

We introduce

(4.16) f(z) = 2a(z) - z , z ) 0

-18-
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one may express u(s(ta),ta) and u(s(tb),tb)* as line integrals of c(s(n)-,n),

v(s(n)-,n) along - s(n). Upon subsequently eliminating c(s(n)-,n), v(s(n)-, n) in

favor of t(s(n),n), (s(fn),n) by means of (1.4) and (4.1) one arrives at

t
u(xt) - u(O,O) + f a {s(nl) (s(rI),nj) + (s(n),n)jdn(

(4.7) - 0
1 tb +[(n + +

---. b [ c]sn),n) cs(n) (slsl)-D

t
a

The function s(n) appearing in (4.7) is as yet unknowni it must be chosen so as to

satisfy the remaining condition C(0,t) = h(t). With a view toward expressing

c(0,t) in terms of quantities along - s(n), we differentiate (4.7) with respect to

x and subsequently set x - 0. This exercise essentially reduces to a calculation of

at x0 and at b These may be expressed in terms of 1(t) and t(t), where
TX X-0 x XC=0

a(t) S ta(Olt) and b(t) S tb(U,t). The result of these calculations is

h(t) - {[0(E(s(b(t)),b(t)))-DI/c
2 

- t(s(b(t)),b(t))}b(t)

(4.8) + -1 {[a(t(s(a(t)),a(t)))-D]/c
2 

- t(s(a(t)),a(t))}a(t)

+. {((sa(t)),a(t)) + ((s(b(t)),b(t)) + l[(s(a(t)),a(t))

- (s(blt)),blt)lj/c 2
)

The functions a(t) and b(t) are connected to s(t) by means of the implicit relations

(4.9) s(a(t)) - c[t - act)] - 0, s(b(t)) + c[t - b(t)] = 0, a(O) = b(0) = 0

Equations (4.8), (4.9) for the unknowns WC.), a(*), b(*) describe how the end-strain

*which are continuous across = s(n) by virtue of the first of (1.4).

-17-
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values behind the phase boundary by means of the discontinuity conditions (1.4). With the

aid of (4.1), these discontinuity relations can be solved for E(s(n)-,n) and

v(s(n)-,n) provided that s(n) * c. In the interior of U, the dynamical fields obey

(1.1), which becomes

a 2u 2 a 2u

by virtue of (4.1).

We assume, subject to later verification, that 5(n) is continuously differentiable

with

(4.5) s(O) - (O) = 0 and 0 < s(n) < c for n > 0

The standard representation for solutions of (4.4) in terms of Cauchy data on a given

curve furnishes

u (x, t) 1l/2fu (s (ta )'t a) + U(S(t b )'t b

(4.6) 1 ft 0 (n 2
- .... bJV(s(n)-nn) c (s(n)-,n)}dn
2ct

a

for all (x,t) e U. Here, ta .ta(xit) and tb = tb(xlt) delimit the domain of

dependence upon =s(n) as depicted In figure 4.

nU

b Xt

a

V

Figure 4. Graphical representation of the times tb = tb(x~t) and ta =ta(x~t)

for (x,t) e U. These times are also given implicitely as the roots of

x S(t1b) + cit -tbl and x =S(ta) -cit -ta] respectively.



4. A Functional Equation

For the remainder of this paper we restrict attention to materials for which

i) 0 < cat

(4.1)

ii) GMe = c2 C + D , > zj

Such "second phase linear" materials have been studied previously in [11] in connection

with this problem in which oj = a . We shall show that there exists a time t > t*, and

possibly infinite, such that P(t) has a solution with an energy confining phase

boundary, the location of which is governed by (1.5).

By transforming the time variable t + t - t we may, without loss of generality,
*

set t - 0. Let (C,n) be a point in the (x,t)-plane and let V and U be

respectively the regions in front and behind the phase boundary. In terms of ( ,n), we

have

V = {(,,n) I & > S(n), n ' of
(4.2)

U = ( 0 4 < S(n), n 0}1.

The fundamental difference between U and V is that whereas the dynamical fields

£ and v in U remain to be found, these fields in V are determined by events

occurring at x = 0 before the time of phase boundary emergence. To acknowledge this
+ +

distinction, we shall let £ and v be respectively the (known) strain and velocity in

the region V. In particular, t and v are individually constant in that portion of

V between the phase boundary = s(n) and the characteristic curve F .'o'(£j) f.

Should the phase boundary overtake the front of this region, we shall denote by t the

time at which this event occurs. Thus t > 0 is the (first positive) root - if it

exists - of

(4.3) s(t) = t , t > 0
AJ

We shall say that t = in the event that the phase boundary never overtakes this front.

For all values n > 0 the strain and velocity immediately in front of the phase

boundary - (s(n)+,n) = £(s(n),n) and v(s(n)+,n) = v+(s(Wn),n) - are functions of the

values n and s(n). This strain and velocity is in turn related to the corresponding

-15-
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particular, the characteristic C which would issue from (xt) - (O,t*) is the ray

x - VO'(CJ) t - t*].

At the time t = t* a phase boundary -- x = s(t), say -- emerges at x - 0 and

subsequently propagates into the interior. By virue of (1.4), the phase boundary velocity

obeys

(3.4) s(t) - { O(£(s(t)+,t)) - O(E(s(t)-•t))} 1/2
C(s(t)+,t) - e(s(t)-,t) /

* This relation, in conjunction with the continuity of g(t) at t - t*, yields

. e(t*) - 0. Thus there exists a region in the (x,t)- plane

(3.5) s(t) < x < VO'( ) It - t*]
3

immediately in front of the phase boundary, which is conspicuous because the solution

within this region is not as yet determined. We now inquire as to the value of the strain

in this region.

A first alternative is that the value of £(x,t) in this region could exceed the

value e and yet remain below the value B1 . If such is the case, then events at the

external boundary occurring after t = t* should play some role in determining c(x,t)

in this region. A second alternative -- that which shall be pursued here -- is that the

strain in this region remains fixed at the value cj . In this case, the velocity in this

region must also be constant, its value being given by the (constant) velocity on the

boundary characteristic x - /a'(cJ) It - t*]. Unlike the first alternative, this

situation is one in which events at the external boundary occurring before t - t*

completely determine the fields in front of the phase boundary. What is not determined is

the location of this boundary itself, as well as the fields behind it. Physically this

corresponds to a situation in which all of the energy delivered to the bar after the

. emergence of the phase boundary remains confined behind the phase boundary. We shall use

the expression energy confining phase boundary for this second state of affairs. In the

* next section we formulate a free boundary problem for such a phase boundary and show that

it leads to equation (1.5).

-14-
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3. Enerqy Confining Phase Boundaries in the Presence of Smooth Loads

We now focus attention upon loads g(t) which are of unlimited smoothness with

g(O) - 0, (t) ) 0 for 0 ( t ( t* and g(t) > j for t > t*. It will be convenient

to write the boundary condition (1.2) a.

(3.1) e(0,t) - h(t)

where h(t) is the end-strain, obeying (2.1), associated with the traction g(t). It is

given uniquely as the solution to

(3.2) g(t) - U(j ;h(t))

The function h(t) of (3.2) is discontinuous at t - t*, while at all other values t it

is of unlimited smoothness. Specifically it obeys
*

(3.3) h(O) - 0, A(t) ; 0 (0 4 t 4 t ),

hit -) - cj, h(t +) - FJ, h(t) > C (t > t

In terms of h(t), the problem we seek to solve is given up to any time T > 0 as

Find u: (x > 0, 0 4 t < T) + R. which is twice

continuously differentiable except across curves where

possible discontinuities in s - au/ax and v - au/at
P (T)

are to be restricted by (1.4). Otherwise u, c and v

are to obey (1.1) on (x > 0, 0 < t < T), (1.3) on x ) 0, t = 0

and (3.1) on x - 0: 0 < t < T.

We are interested in solving P(T) for T > t*. Notice that the problem p(t*) describes

the situation before and up to the emergence of the phase boundary; it is easily solved

by the method of characteristics. The following two sentences summarize the pertinent

features of this solution; a complete development may be found in (11]. In brief the

solution for T 4 t* relies upon the condition a"(c) < 0 for c < cJ in conjunction

with A(t) > 0 to ensure that the characteristics C+ - curves obeying

dx. -l'i(Cx,t)) - do not intersect, the resulting smooth solution is one in which each
dt

member of C+ is a straight ray upon which the strain and velocity are constant. In

-13-
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say (C, X) where C {X 1+),X) - C( ). All the solutions for C* < C(X+) have phase

boundaries which travel faster than that of the solution Cod.

Now suppose that C(A1 -) < E. Then the upper concave envelope of a(e) deleted on

(C ,E**) with C( I-) < C** 4 C. again differs from (Cj ;c) and the resulting

solutions all have slower moving phase boundaries than that of the solution Z(A).

Solutions with more than N discontinuities can result from deleting a(c) on additional

intervals. Finally, the extreme case of deleting everything but the end-points C - 0

and C - c. yields an upper concave envelope which is the line segment connecting

(0,0) to (E,g%). The associated solution is

C 0, OX < ra0/C

- - (2.26)

0 X > / --€,
v1.) =

- o," ' ,0 < ,A < /C. .

As is the case with C, these other solutions C do not satisfy all of the inequalities

(2.13) - (2.16) unless fC) = G(C) for all 0 4 E < C

In summary, whenever 0(C ;C) differs from the line segment connecting (0,0) to

(C.,O ), there exist solutions other than c()., v() for the impulsive load (2.3). In

particular, a family of solutions occurs for Alt. 1, since then (AI +) = C > 0. A

pertinent question is: which, if any, of these solutions, gives an asymptotic description

of the dynamical fields in a bar subject to a smooth load g(t) with g(t) + O_? In what

follows it will be shown under certain conditions for a special class of materials that

the problem with a smooth load is reducible to equation (1.5). One result of examining

this equation asymptotically will be that if g(t) + a. and Alt. 1 holds, then Z(X/t)

is the x/t fixed, t e limit of the resulting strain field.

.
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Finally, c(X) obeys (2.5) whenever *' graph of a2 (l j) is neither horizontal nor

vertical. Thus extending Z(X) to X > 0 by

(k)= 0 , X > I2 (E ) ,

(2.22)

C(X) = , 0 , X < /V (c 1E.)
2 1

yields an Z(X) which fulfills all the requirements (a) - (d).

An interesting feature of this solution is that the phase boundary may travel slower

than the sound speed of the material into which it is proceeding. Although (2.13), (2.15)

remain in force for ordinary shocks, (2.14), (2.16) continue to hold only for Alt. 2. For

Alt. 1, (2.14) is replaced by

(2.23) X, 4 ((X1'), (N > 1, Alt. 1)

whereas (2.16) is changed to

(2.24) Al "i ")' 1 ' /'[£( +)) 1 /a'{c ) " (N -1, Alt. 1)

We now reserve the notation E(X) for that particular solution of (a) - (d) given by

(2.17), (2.18), (2.22) and enquire into the uniqueness of this solution.

The construction leading to Z(X) succeeded in satisfying (d) while maintaining

(a) - (c) by "deleting" 0(c) on c < E < E befo.e taking the upper concave

envelope. Indeed, if even more of O(E) is deleted, giving say f(c), then the ensuing

concave envelope f(C) leads to a solution ZCA) of (a) - (d) by the same procedure

applied to

(2.25) X f,, (X) •

Thus, for example, if g(A +) > 0, then the upper concave envelope of a(E) deleted on

(r5 ,c ), with 0 4 r* < C(( i), differs from o(r ;c) and the resulting Z(A) differs

from rCA). Moreover each choi. e of on the interval 0 c* 4 ( I +) generates a

different upper concave envelope tiA) so that * parameterizes a family of solutions,

"..

,.°
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! I I I _ IE! EE |1 ,I , l - 1,

Fiue3 h percnaeevlp c(e ;E) frtodfeetvle f et

Tnah"

03 /

h l n r1 a

(220 0'( 2 Ei (ie!+

3 J

in the fac of(-0 eesare oietf'. Figure 3. The upper concave envelope ( E ;r) for two different values of .

2 This envelope need only be above the dashed curve, which is ece.

Scon The left and right figures are examples of Alt. 1 and Alt. 2 respectively.

program, however Rust be modified for Alt. i , because it is generic for this alternative

* that

(2.20) C' (j) 2(E r -) > A .

. .. . . . . 3 2. .3 .

In he aceof(2.20) let us agree to identify o2 (c3 ,eJ ) with the full interval

[02 (E3 ;c3 +), a2 (e,3 ;j-)]. The graph of a2(r ;EJ will then be continuously decreasing

on 0 ( £ ( £ and will involve a vertical segment at £ = *j Hence (2.18) defines a

piecewise continuous (A) on ,I2(7J;7 A ( / 2 (U§O) . If A1 > A2 
>  ' >
,

*are the values where £ (.) is discontinuous, then A'2  is the height of thei h

* horizontal portion of a2(£.3;£). On the other hand, the vertical segment of o2(£.3;£) at

• c £ g yields

*(2.21) etA) = j, /7o£ ; +) ( A ( O

-10-



that ; obeys (5.16), (5.17) for B . FC. Thus we draw three corollaries central to the

following development

Corollary 1: All A:Fc+R+ obeying (5.16), (5.17) on 7c have the property

that A(t ) + I whenever t k + 0, t k 6

. .. .. . . .2 f.t k. .1 r a l + 0. ,

*Corollary 3: If A: i+ + R obeys (5.16), (5.17) on R ,then A is

continuous at the origin with A(0) - 1.

The first two corollaries guarantee that is the unique solution of (5.17) in the

following sense

Lemma 2: If A: R + R obeys (5.16), (5.17) for all t e F then

A(t) 2: *(t) for all t e Fc

Proof: write (5.17) in the form A(t) A-1/[A((t)) - 2 - Q(tflI; a corresponding

oo

result holds with replacing A. By subtracting these two expressions and invoking

m(5.16), 0 C A: 1, and Qo(t)) ), 0, we arrive at

(5.22) IA(t) r JA((t)) (t e F)

*which gives, by induction since *(Fc) C Fc,

(5.23) iA(t) - int)I I tA(,[n ](t)) - 2(- (n]tlo(t 6 Fc, n = 1,2,...)

Letting n +- , we have from (5.8) and Corollaries 1 and 2,

(5.24) IA(t) - *(t)I < lim IA(r) - f(r)>l , (t e C,
r+0

We already have that *is a solution of (5.17) on Fc * We now show that (5.17)

possesses a solution not only on Fc, but also on

Lemma 3: There exists A: R e , continuous with AM) 1, 0 < A(t) 1

for t > 0 such that (5.17) holds for all t e R

-24-
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II

~~Proof: Consider the sequence of functions generated by

(5-25) A+lCt) - 1/2 + l) ltl) - Ak(0)}t) st Alt) 1/2 + oot) f

Separate arguitint based upon induction and Q(z0) 0 yield 0 < A C( (t ) 0)

and A(+lCt) ) 1(t), (t 0). Hence At) - lim 0 t) exists and obeys

0 4 A(t) 4 1. It is evident from (5-25) that Aft) is a solution of (5.17). Also

AM) 1 /12 + Q(0(0)) -A( (0))} - 1/12 - A(0)} so that AM0 - 1. moreover, for

t > 0, the strict inequality Q(Olt)) > 0 furnishes I/A(t) - 2 + QlO(t)) - A(Olt)) >

2 - A(#(t)) > 1, whence 0 < A(t) < 1 for t > 0. The continuity of A at the origin

is the result of Corollary 3. It remains to show that A(t) is continuous for t > 0.

Let t > 0 and E > 0 be given; we shall show that there exists 6 > 0 such that

if T > 0 with It - TI < 6 then IA(t) - A(T) I < e. Let q be a Lipschitz constant

for Q on 0 4 z < t + 1. Choose d > 0 such that 0 4 x < d, 0 4 y 4 d implies

IAx) - A(y)I( < /2. Now (5.8) guarantees the existence of an N such that

* (t + 1) < d. From (5.17) and the bounds A(z) 4 1, Q(z) ) 0, it follows that

(5.26) IAct) - A(T)I 4 ((O(T)) - Q( (t))j + IA(O(t)) - A(O(T)) I, (t > 0, T > 0)

Iterating this inequality N - I times, we arrive at

N

(5.27) (A(t) - A(M) I { I [k](t)) - Q([k]T())I } + IAO (t)) - AI4 [N (T))I
k-1

Let 6 = milni, £/2Nq} and suppose that it - Ti < 6. Then (5.27) implies

N
(5.28) IA(t) - A()I 4 { qlt - tJ + C •

k-12

We now rapidly complete the

Proof of Theorem 2: Let A be as given in Lemma 3. Then Lemmas 2 and 3 furnish,

since 4(F) = 0,

-25-
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(5.29) *()=f *(s)ds =f A(s)dS
0 0

In view of the continuity of A, the latter integral is a Riemann integral. Hence, by

* the Fundamental Theorem of Integral Calculus, *(t) exists for all t > 0 and

* *(t) A(t). Finally, Le-n 3 ensures all the requisite properties of

-26-
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6. Large Time Behavior of Solutions

Theorems 1 and 2 guarantee the existence of a solution (t) to the system (4.14),

(4.19), (4.21). The function , in turn, enables one to determine the regi.on U and

the function u(x,t) in U by means of (4.6), (4.20). Thus we arrive at a solution

involving an energy confining phase boundary to T(t) for the class of materials (4.1).

Here t is found from (4.3). Thus the question arises, what circumstances - if any -

give rise to a problem for which t = ? Or, equivalently, in terms of the known fields

in front of the phase boundary: what conditons give rise to a phase boundary which never

overtakes the front of the constant-strain region?

Since the leading edge of this front travels at speed /a'(ej), a partial answer to

the above question is immediate from the bound 8(t) < c. Namely, if VW'(C) > c,

then s(t) < /7T(e) which yields t = . On the other hand, for materials with

_(_ ) < c, we will now show that t < - provided h(t) becomes sufficiently large.

Consider h(t) + E > e as t + . Then from (4.12) it follows that

(6.1) Q(O(t)) - 4 *(t)

whence (4.19) yields, to leading order as t + , the asymptotic relation

(6.2) ,(~it)) + t - 12 + 4 t) = +2](t)

where we have introduced y = 4[e - -j]/[c. -j] > 0. The equation *( (t)) -

[y +2]0(t) + t = 0 has two solutions, *(t) = [y + 2 j I 7 t. However, since

y > 0, only the negative root yields a (t) obeying 0 < *(t) < t for t > 0. Hence

(6.3) [(t) ~ + 2 -.

-27-
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Assume now, for the sake of argument, that t - . Then (4.20) leads to

+f2+4 t C C t,
Sit) ~ -

y+ 4 -
2 

+ 4y

(6.4)

-£ -c
s lt) C. -J C •

In view of (4.3), (6.4) a necessary condition for the assumption t - to hold is

E - TJ

(6.5) £ I c 4 C

This condition is satisfied

for e - < C. 4 C T if a(Cj) <c

(6.6)

for all C. > Ej if , 7)

where the value

-2
- £3O0 (C)

(6.7) £ r -  
2

c 01('(e

The second of (6.6) was anticipated from the previous discussion. The first of (6.6)

provides a boundary data upper threshold which is necessary for the phase boundary to

remain behind the front of the constant strain region; hence it is a necessary condition

for t = . We do not enquire in detail as to conditions sufficient to ensure that

t = - for the case 'o'Wo() < c, other than to remark that it is evident from (4.3)
J

that if :(t) 4 v'o(e) for all t ) 0, then t = 0. Thus . < cT is also a

sufficient condition for t - whenever s(t) > 0 for all t P 0. We conjecture that a

condition sufficient to preclude a decellerating phase boundary is

S(t) ) 0 for all t > 0.

-28-
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For the cases h(t) C, > ) with t = ,we may calculate the large time strain and

velocity fields for the problem P(-), (4.1), in the limit t * with X x/t fixed.

As mentioned in Section 3, these fields in the region x > /jc5(C [ t - t*], are calculated

Ji

in reference E11]. Whence we verify for x > ['- cji/[T - ej]} 1/2ct s(t), that £

and v admit the expansions E(x,t) - E(Xt,t) c I M(+) 2 c(A't), v(x,t)

v (X) + v 2(X,t) where c Pv 2 + 0 as t * for fixed X, and

(i) C 1 MA 0, v I(X) =0, ;0,(0) 4 X 4

(ii) £ MA t- [a- I (N2)

(6.8)(ii v1 (A) = os d o£) &0

0!

v() M f .'0'(s) ds v*, X1 - c A
C

aI

Behind the phase boundary, (4.7) leads to the exact expressions:

*0 *
a(xtt) - He v/c)sb + D 2(0] t) () c)]

+ Be + V*/c)(t ) + (a /c + v /c)] 2((ta) + c

(6.9) v(xt) C(C) - O,/c)(tb) + (a c + v /0/) [2(1 + (tb)/c)

+ [(E) + v'/c)(ta) + (a c + V - D/c I (2(1 + ;(ta)/c)]

where v is the same value defined in (6.8) and t ta(xlt), tb tb(xlt) are, as

before, depicted in Figure 4. Now it f'ollows, either from Figure 4 -or by writing

expressions for ta and tb-that ta t tb + in the limit t + -, x/t fixed,

(a l Z() -9(tb J

0 1/J

this result yields, as t + a x/t fixed,
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C(xt) + E.

(6.10)-

v(x,t) + - AC, - C3 )/(C, - cE) c + v* 0 < A < A,

For materials obeying (4.1) and values of c subject to (6.6), the right-hand sides

of (6.8), (6.10) furnish an exact solution of the form (2.4) to the problem P(-) for the

impulsive load

'O 0, t - 0
(6.11) h(t) - % E > C , t > 0

Since this solution also satisfies conditions (a) - (d) of section 2, we shall compare

this solution to those impulsive load solutions obtained in that section.

For the materials now under consideration, condition (6.6) implies (and is implied

by) Alt. I of (2.19). Recall that for this alternative, the impulsive load problem has a

one parameter family of solutions C(C ,A), 0 1 C E J C. However, of these solutions,

only £(C3 ,A) - 6(A) given by (2.17), (2.18), (2.22) has a region in front of the phase

boundary with C = £J. Indeed, it is easily verified that this Z(X) is given precisely

by the right hand sides of (6.8), (6.10). Thus Z(M) given by (2.17), (2.18), (2.22)

is - at least for materials obeying (4.1) and loads obeying (6.6) - appropriate for

energy confining phase boundaries.

We close this paper on the remark concerning the case of a smooth h(t) + c. > CT

for materials (4.1) with ia'(C ) < c. Then, as shown, t < w, and the solution * of

(4.19) does not lead to a solution of P(T) for T > t. Nevertheless, we conjectue that

P(-) has a solution involving an energy confining phase boundary and, moreover,

anticipate that c(A) given by (2.17), (2.18), (2.22) is the A = x/t fixed, t -

limit of the strain field. In particular, this predicts, in place of (6.4), that

lir *(t) < -[. - C / [E - CJI} /2c. The problem P(T), T > t may be studied in the

framework developed here by treating the system (4.8), (4.9) which describes an energy

confining phase boundary advancing into a more general strain and velocity field.
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