_AD-A158 177 UNIFORMLY HIGH-ORDER ACCURAT NON-OSCILLATORY SCHEMES I 1/1
’ (U) NISCONSIN UNIY-MADISON MATHEMATICS RESEARCH CENTER

. HARTEN ET AL. MAY 83 MRC-TS5R-2822 DAAG29-86-C-0041
UNCLASSIFIED F/G 12/1 NL

END

FilweD

one




S R

ez
=
2-0

I
I

18

=
——
——
F———

16

NATIONAL BUREAU OF STANDARDS
MIGROCOPY RESOLUTION TEST CHART

A HHEE
HHEFEER

20 =zl ¢

On——————
—————
C—————
——————
——

2 fies u

ll=




AD-A158 177

610 Walnut Street
Madison, Wisconsin 53705

May 1985

(Received April 30, 1985)

DTIC FILE Copy

Sponsored by

U. S. Army Research Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709

........

MRC Technical Summary Report # 2823

UNIFORMLY HIGH-ORDER ACCURATE
NON-OSCILLATORY SCHEMES I.

Ami Harten and Stanley Osher

Mathematics Research Center
University of Wisconsin—Madison

Approved for public release

Distribution unlimited

National Aeronautics
and Space Administration
Washington, DC 20332

N BT MNP R AT
R U I

- B )

. "-{‘- AN PR L N

P I N T R S T o N O

National Science Foundation
Washington, DC 20550

5 9% 091

.'-""'-‘.'.'-'\--‘.'.""“"""‘
a 0 - LIl J R I
........................

.......
--------



ot s ¥ o Vn® Y o 8 oV alim N Toa s T T A Tt a e e e STV, B L I A4 K TN s LaYuwiiw Ty T . W

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

UNIFORMLY HIGH-ORDER ACCURATE NON-OSCILLATORY SCHEMES 1.

Ami Harten'| and Stanley Osher2

Technical Summary Report # 2823
May 1985

e ABSTRACT
- We~begin the construction and the analysis of nonoscillatory shock capturing
methods for the approximation of hyperbolic conservation laws. These schemes
share many desirable properties with total variation diminishing schemes, but
TVD schemes have at most first order accuracy, in the sense of truncation error,

RN oo
at extrema of the solution. In this paper we construct:a uniformly second order

approximation, which is nonoscillatory in the sense that the number of extrema of

the discrete solution is not increasing in time. This is achieved via a non-

oscillatory piecewise linear reconstruction of the solution from its cell averages,

i time evolution through an approximate solution of the resulting initial value

E problem, and averaging of this approximate solution over each cell. B )
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UNIFORMLY HIGH-ORDER ACCURATE NON-OSCILLATORY SCHEMES I.

Ami Harten] and Stanley Osher2
1. Introduction. In this paper we consider numerical approximations to weak
solutions of the scalar initial value problem (IVP)

(1.1a) U+ f(u)e = 4y + a(u) u; = 0

(1.1b) u(x,0) = ug(x) .

The initial data ug(x) are assumed to be piecewise-smooth functions that
are either periodic or of compact support.

Let v} = w(x;, t,), x; = jh, t, = nT, denote a numerical approximation in
conservation form
(1.2a) VIt = v = Mfe12 = fi-10) = (B, - v,

Here E, is the numerical solution operator, A = v/h, and fj.,. 12y the

numerical flux is a function of 2k variables

(1.2b) fi+12 = FOI-kersee¥fin) Accesslon For
NTIS GRA&I T
which is consistent with (1.1a) in the sense that STI‘ivz”“Cd

(1.2a) Fasstayensts) = fu) . PR —
By .

We consider the numerical approximation v,(x,t) in (1.2) tobea’ """ - 3/

L
L

piecewise-constant function ... and/or
SR Lpezelal
(1.3) vi(x,8) = v}, X 1n<x<Xj41p, AT<ts(n+ 1)r. |
all |
Accordingly we define its total variation in x to be =
_ e
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(1.4) TV0") = TVOR( o)) = 3 s = 1.

If the total variation of the numerical solution is uniformly bounded in A for
O0=s:=<T
(1.5) TV(v,(-,t)) s C - TV(ug)

then any refinement sequence k& -0, r = O(h) has a subsequence 4; -0 so
that

(1.6) vy, —> u
where u is a weak solution of (1.1).

If all limit solutions (1.6) of the numerical solution (1.2) satisfy an entropy
condition that implies uniqueness of the IVP (1.1), then the numerical scheme is
convergent (see e.g [3], [12]).

Recently we have introduced the notion of total variation diminishing (TVD)
schemes (see [3]), where the approximate solution operator is required to dimin-
ish the total variation (1.4) of the numerical solution at each time-step
(1.7 V) s V() 5
these schemes trivially satisfy (1.5) with C = 1. Some early work along these
lines was done by van Leer in [15].

TVD schemes are non-oscillatc;ry in the sense that the sumber of local
extrema in the numerical solution is diminishing in time (as is customary we use
"diminishing” loosely as short for “non-increasing”, throughout this paper).

Moreover, the value of an isolated local maximum may only decrease in time,

while that of a local minimum may only increase.




We were able to construct TVD schemes that in the sense of local truncation
error are high-order accurate everywhere except at local extrema where they

necessarily degenerate into first-order accuracy (see [4], [13], [10], [11], [14]).
The perpetual damping of local extrema determines the cumulative global error of
the "high-order TVD schemes” to be O(h) in the L, norm, O(h¥?) inthe L,
norm and O(h?) in the L; norm (see [17]).

In this paper we introduce a larger class of non-oscillatory schemes, in which
the solution operator is only required to diminish the aumber of local extrema in
the numerical solution. Unlike TVD schemes, which are a subset of this class,
non-oscillatory schemes are not required to damp the values of each local
extremum at every single time-step, but are allowed to occasionally accentuate a
local extremum.

In a sequence of papers, of which the present paper is the first, we show how
to construct non-oscillatory schemes that are uniformly high-order accurate (in
the sense of global error for smooth solutions of (1.1)). In this first paper we
describe a second-order accurate scheme of this type.

The fact that the number of local extrema in the numerical solution may only
diminish in time is sufficient by itself to guarantee that the application of the
scheme to monotone data results in a monotone function. Thus non-oscillatory
schemes, like TVD schemes, are monotonicity preserving. In particular, when
applied to a step-function, they do not generate spurious oscillations.

We note that since the number of local extrema in the solution of non-
oscillatory schemes is bounded by that of the initial data, uniform boundedness of
its total variation (1.5) follows immediately if the maximum norm of the solution
is shown to be uniformly bounded.




2. Design Principle and Overview

In this section we describe how to construct a non-oscillatory scheme that is
uniformly second-order accurate.
Integrating the partial differential equation (1.1a) over the computational cell

(Xj=12> Xj+12) X (ty, ty+1) we get

(2.1a) g+ =& = Mfja1a) = fi-120]
where

2.1b) Fin) = L £ ey ) 1
and

(2.19) 7 = % J;Z; " (x,t,) dx .

We observe that although (2.1a) is a relation between the cell-averages i}
and @ *!, the evaluation of the fluxes fj.(u) in (2.1b) requires knowledge
of the solution itself and not its cell-averages.

As in Godunov’s scheme and its second-order extension by van Leer [16] and
Colella and Woodward [2], we derive our scheme as a direct approximation to
(2.1). We denote by v} the numerical approximation to the cell-averages &} of
the exact solution in (2.1c), and set vf to be the cell-averages of the initial data.
Given v" = {v]} we compute v"*! as follows:

First we reconstruct u(x,#,) out of its approximate cell-averages {v} to the
appropriate accuracy and denote the result by L(x; v"). Next we solve the IVP

(2.2) v, + f(v)y = 0, v(x,0) = L(x;v")

-4-
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and denote its solution by v(x,f). Finally we obtain v/*! by taking cell-

averages of v(x,7)
| .
2.3) = L7 vy

The averaging operator in (2.3) is non-oscillatory, therefore the number of
local extrema in v**! (interpreted as a mesh-function or the piecewise-constant
function (1.3)) does not exceed that of v(x,7). Assuming v(x,r) to be the exact
solution of (2.2) implies (since the exact solution operator is TVD) that the
number of local extrema in v(x,r) is less than or equal to that of
v(x,0) = L(x; v"). Therefore if the number of local extrema in L(x; v") does
not exceed that of v, then the resulting scheme is non-oscillatory.

We conclude that the design of non-oscillatory high order accurate schemes
essentially boils down to a problem on the level of approximation of functions:
Given cell-averages u; of a piecewise-smooth function #(x), reconstruct u(x)
to a desired accuracy. Prior to studying this problem we tackle another related
question in approximation of functions, that of constructing a non-oscillatory
high-order accurate interpolation of piecewise-smooth functions.

In section 3 we construct a non-oscillatory piecewise-parabolic function

Q(x; u) that interpolates a piecewise-smooth function u(x) at the mesh points

(2.40) O(xj; u) = u(xy)

and satisfies, wherever u(x) is smooth,

(2.4b) Q(x; u) = u(x) + O(h%)
(2.4c) 4 oG +0;u) = L u(x) + oY) .
dx dx
-5-
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In section 4 we make use of this non-oscillatory piecewise-parabolic interpo-
lant to design a non-oscillatory reconstruction of a piecewise-smooth function
from its cell-averages. As in [16], {2], [5], and [9] we take L(x; &) to be the fol-
lowing piecewise-linear function
(2.5a) L(x;i) = &; + Sj(x — x;/h for I ~ x| < h2.

Unlike the above references that present "second-order accurate” TVD
schemes, we compute the slopes S/ from Q(x; &) by

(2.5b) S/h = m[% 0(x, - 0; ), % 0(x; + 0; a)] .

Here m(x,y) is the min mod function

(2.6) m(z.) = {;' min(jel,y) if sgnx) = sgn0y) = ¢

We show in section 4 that L(x; &) is a proper reconstruction of u(x) in the
sense that whenever u(x) is smooth

(2.7a) L(x; u) = u(x) + o(hd
and
(2.7v) L(x; &) = a(x) + O(h%) .

Here i(x) = h~! j_"fn u(x +y) dy and L(x;it) =
= g1 f_hfa L(x + y; &) dy; like Q(x; i), the latter is alsoa non-oscillatory
piecewise-parabolic interpolant of ¥(x),

=~ - 7
(2.7¢) L(xj; u) = u(xy) . ;
:
R
n
-6-
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We remark that the "second-order accurate” TVD schemes described in the
above mentioned references use a slope Syh in (2.5a) that approximates
(d/dx) u(x;) to O(h), and their loss of second-order accuracy at local extrema
points is due to lack of smoothness of the coefficient in the O(h) term at these
points 1. This problem is circumvented in the present scheme by taking S;/h to
be (2.5b) which is an O(k?) approximation to (d/dx) u(x;). Unfortunately there
is a price to pay for this extra accuracy, namely the loss of the TVD property. As
in TVD schemes

(2.8) V() s TV(L(; vY) ,
however here
TV(L(:;v™) = TV(V™)

and indeed the scheme may occasionally increase the variation of the numerical
solution. Although we prove that the scheme is non-oscillatory we have not been
abie as yet to completé a proof of uniform boundedness of the total variation of
the numericai solution; this is due to lack of techniques to verify uniform bound-

edness of the maximum norm of the numerical solution.

In section 5 we study the proposed scheme in the constant coefficient case.
We verify that it is uniformly second-order accurate, examine its behavior at local
extrema points and get estimates for the possible increase in total variation per
time-step.

In this paper where we consider numerical schemes of the form (1.2) that are

1. We repeat that the results of [8] and [11] imply that TVD schemes, no matter how
they are constructed, must have this loss of accuracy at local extrema

.................................................................

.................
........




derived from approximating the relation (2.1), it is only natural to consider trun-

cation error in the sense of cell-averages, i.e. we say that the scheme (1.2) is
second-order accurate if

(2.9) . il =, @+ o)
where " is the cell-average (2.1c) of the exact solution. Since
(2.10) : a(x) = u(x) + O(h?
whenever u(x) is smooth, (2.9) holds also for pointwise values of the solution.
However, in the context of 3rd and higher order accurate schemes, this difference
in definitions of truncation error will be not only conceptual but of practical
importance as well.

Up to this point we have assumed that v(x,r) in (2.3) is the exact solution
to (2.2). The resulting scheme
(2.118) - v =] = Mfja12l) = f-12001,

where fj.1(v) is (2.1b) applied to v(x,s),
(2.115) fe®) = 1 [ f0e0) @,

is certainly second-order accurate in the sense of (2.9). Starting with the exact
cell-averages v} = i in (2.11) we get from (2.7a) that

(2.12a) v(x,t) = u(x,t +t,) + O(h? for 0st <+
and consequently
(2.12b) fr+172() = fje1n(8) + O(K)

which implies (2.9) due to the sufficient smoothness of the coefficient in the
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O(h? term in (2.12b).

In section 6 we replace the exact solution v(x,t) in (2.3) by an approximate
one, which we denote by v,(x,f) . This approximate solution is conservative,
TVD, and second-order accurate in the sense of (2.12a). Thus replacing v(x,t)
in (2.3) by this approximate solution results in a conservative scheme that is non-
oscillatory and uniformly second order accurate.

We remark that an alternative approach to the above is to approximate
fi+1n(v) in (2.11b) by using a midpoint rule (or trapezoidal rule) for the
integral and by replacing v(x,f) with a non-oscillating second-order accurate
approximate one v,(x,r) (see [16] and (2]). The resulting scheme

(2.13a) VIt = v — Mfie1 = fi-10)

(2.13b) fi+1n = fOulxj412 7/2))
is certainly second-order accurate, and it is ‘non-oscillatory in the constant coeffi-
cient case. Since we have not used the cell-averaging (2.3) to derive this scheme,
we cannot ascertain in general that the resulting scheme is non-oscillatory.
Nevertheless, our numerical experiments as well as many other experiments in
the context of TVD schemes (see ¢.g. (1], [2]) demonstrate that the numerical
results are non-oscillatory in many (if not all) applications.

In section 7 we present some numerical experiments that compare the present

scheme with a typical "second-order accurate” TVD scheme.

3. Nonoscillatory interpolation.

The oscillatory nature of second order accurate Lax-Wendroff type schemes




results from a Gibbs phenomenon associated with high-order interpolation across
discontinuities. In this section, as a preparatory step towards designing a nonos-
cillatory approximation to (i.1.), we construct a non-oscillatory piecewise-

parabolic interpolant Q(x; u) to a piecewise-smooth function u(x) such that
(3-1a) Q(x;; u) = u(x)

(3.1b) Q(x;u) = gi410(xiu), xSx=x4q,

where ¢,41, is a quadratic polynomial, and
(.19 0Giw) - u(x) = O, 2 0(x £ 0;u) - 2 u(x) = O(A)

wherever u(x) is smooth.

Q(x; u) is non-oscillatory in the sense that the number of its local extrema
does not exceed that of u(x).

Since
qi+172(xi; u) = u, gi+12(Xis1; 4) = LTS

it can be written in the form

(3.2a) gjs12(xm) = w; + divypu-(x — x)/h + %DHVZ u - (x = x)(x = x14)/h?
where
(32b) d,'+1/2 U= Ul — U

and D;, i, u is yet to be determined.

Divipu = h g in(x;u), x=xSx4.

-10-
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Q has its local extremum in the interior of some (x;, x;+;). We recall that such
an extremum is characterized by |d;, 17 v*| < 112 |D;4 1 v"| and that S! and
S"., in this case are given by (4.14); therefore S%.1 — ST = D;;1» v". From

(5.3a) and (4.6a) we see that in general

(5-10a)v2H! — O(x;41 — aTy V") = ';' p(l = p)Dis12v" — 41 + 8D .
Hence

(5.10b) di+1n v"| < '%’ IDi 412 v"| = VY = Q(xi4y — am; V") .

Relation (5.10b) confirms the second order accuracy of the scheme at local
extrema. Although it does not necessitate accentuation of the extremal values, as
vt in (5.10b) may still be in [v}, v7,,], it does allow v7'! to deviate from

this interval by as much as
(5.10¢) 2 Disrz vl 12 V'VIDsa 12 vl - V22

Thus (5.10b) is the essential difference between the present scheme and the
"second order” TVD schemes.

A similar analysis, which we do not present here, shows that if v} is a
mesh-extremum then v} *1, j =i, i + 1, relates to Q(x; — ar; v") in the fol-

lowing way:

(5.113) v*l'=Q(x; — ar;v"), j =i, i+ 1, if v is a maximum
(5.11b) v}"” s Q(x; — ar; v7), j=ii+ 1, if v is a minimum .

From (5.9)-(5.11) we deduce the following relation between the total varia-

-24-
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(5.6b) ldj-12 v*| = 1 IDj~12 V| = Wj-1al = IS} = SP-1Vldj-12 V| S 2
2
Rewriting (5.3) in this case as
(5.7a) vj""’l =v] - pdipv' -2 w(l = w)yj-1ndj-1n V"

=(1-0j-1) V] + 9j=1n V]

where
1
(5.7v) Oj-12 =1+ 3 11 = V-1

We see that the CFL condition 0 < uw = 1 and (5.6b) imply that

(5.70) 0= Cj-12 =1,
thus we conclude
1
(5.8) Wj-12 v = 5 1Dj-12 vl = v € vy, VT

Relation (5.8) shows that if v" is monotone for J; < j =< Jp, i.e.
Vv, SV, S "' Sv, 0r v,z = - 2, then v**! is mono-
tone for J; + 1 = j < Jp, and in the same sense. Relation (5.8) also shows
that mesh-extrema of v”, i.e. those for which Q has its local extremum at a

mesh point, are being damped at the n-th time-step. Namely,
(5.93) ldj1n v = -%— Dje12 Vs V-1 SV v = max(v}'*’l, Vi) s vf
(5.9b) L’.l)*m V"‘ = %‘ le*m V"‘, V}....l = Vj' = V}'+1 = min(V;'+l, V:;':ll) = V:' .

We turn now to consider interior local extrema of v", i.e. those for which

-23-




(5.5a) TV(**1) = TV(L(:; V) .

Using (4.15) and (5.5a) we get the following upper bound on the possible growth

of the total variation of the numerical solution per time-step
(.50 TV - TV s S [% D12 vl - |4.+1/2V"|] :
meM, |

Here M, is the set of indices of intervals (x,,, x,.1) in the interior of
which L(x; v") (and also Q(x; v")) has a local extremum. The number of these
intervals is finite and remains uniformly bounded in time by the number of local
extrema in the initial data.

Clearly the upper bound (5.5b) is overly pessimistic. It estimates the possi-
ble increase in variation in the reconstruction step due to replacing the cell-
averages v; by the piecewise-linear function L(x; v*). It does not take into
account the possible decrease in variation in the averaging step (2.3), resulting
from doing just the opposite, i.e. replacing the piecewise-linear function
L(x = ar;v") in (5.2) by its cell-averages (5.3a).

In the following we shall examine the temporal behaviour of the local
extrema of the numerical solution and its total variation by analysing the explicit
values of the cell-averages v/*! given by (5.3b). To simplify our presentation

let us assume that a > 0.

First we note that (4.8b) implies

(5.6a) IS; — S;—i1] = S| + ISj41] = 2 max(ld;- 1 v, % ID; - 12v"]) .

Hence

-22-
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where L is (4.5a). We have shown in section 3 that the number of local
extrema in L(x;v") does not exceed that of v". Since v**! in (5.3a) is a cell-
average of L, it follows that the number of local extrema in v"*! does not
exceed that of v", and consequently the scheme (5.3a) is non-oscillatory.

Using (4.5b) in (S.3a) we get the following expression for the scheme

(5.3b) vi*1 = (B, - v,

Vf - y.dj..m vt - 12 ﬂ-(l - ﬂ)(sjn - S}'-l) if a>0
T pdpnv+ 1200 + p) (S-S if <0’

E, denotes the operator form of the finite difference scheme; u = Aa, the
CFL-pumber, is assumed to satisfy

(5.3¢) nl=1.

We turn now to prove that (5.3) is second order accurate in the sense of
(2.9), i.e. if wW"(x) denotes the mean value (4.1) of u(x,s,) then
(5.4a) @t~ By @)y = 07 .

To show that we observe that in the constant coefficient case (5.1)
@*! = @"(x; - av), and by (5.3a) (E, - &™); = L(x; — ar;@"). Hence the LHS
of (5.4a) is nothing but
(5.4b) u"(x; — ar) - f(xj -an "),
which is O(h%) as a direct consequence of (4.bc).

Next we study the time-dependence of the total variation and the maximum
norm of the numerical solution (5.3). In section 2 we have pointed out that

-21-
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- -, 1 -
(4.14b) SI+1 = Sj+1 = dj+1/‘2 u + —2" Dj+mu .

The same analysis shows that (4.14) holds also for the case that Q(x; ) has a
local minimum in (x;, x;+1). {4.9b) follows immediately from (4.14) and (4.7a).

We note that since L(x; &) is continuous at x;

(415) TVEL(: D) = B TV g0G;) = 2 max[ld,mﬂ. 2 Djern ﬂ]

=3 Mea@l+ 3, (3 Pusiadl =~ buern ).

Here M is the set of indices of intervals (x,,.x,.;) in the interior of which L
(and also Q) bas a local extremum. The number of these intervals is finite and
is bounded by the number of local extrema of (x). Comparing (4.9) with (3.8)
we note that

(4.16) TV(L(-; W) = TV(Q(; ) -

S. The constant coefficient case.

In this section we study the constant coefficient case
(5.1) , +au, =0, a=const.

The exact solution of the IVP (2.2) is

(5.2) v(x,t) = L(x — at; v") .
Hence our scheme (2.3) is
h x-1n ’ J ’
-20-
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To complete the verification of (4.7b) we still have to show that

1 1
(49) ldjup¥ <3 Djs 12 W = TV JLC3 D) = 5 1Djuy ]
First we observe that
(4.10) 5* = 57 = (s1n @ = 3 Disin® = @Gie1n@ + 5 Dic1n ) -

=D;u - ';'(Dnmi + Di~1n 4)

Since (3.2d) implies
(4.12) 1D/l S + (Dic12 @ + Dir12 7D
we conclude from (4.10) that

(4.12) (S =87 sgn(D;u)=0.

We turn now to prove (4.9b). First let us consider the case that Q(x; i)

has a local maximum in (x], x,...l), i.e. Dj u<0, Dj+1 u <0, and

djs12 ] < ‘%‘ IDj+112 1.

It follows from (4.12) that
(4.13a) Sj_ = Sj’ = dj-n-m - % Dj+1/2 u>0
(4.13b) 0> dj+1f2 u+ %Dj'klﬂ u= SJ—+1 2 Sj'.'.,l .

The relations (4.13) and the definitions (4.8a), (4.2b) imply that

-~ 1 -
(4.148) Sj = Sf = dj+l/2 u - "2‘ Dj+1/2u

-19-
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to u(x) in exactly the same sense as is to the interpoiated function (see sec-
tion 3).
Next let us denote
(4.82) st =h'%Q(xji0;lT),
i.e.
- _ -, 1 - + _ - 1 -
(4.8b) Sj = dj-mu + E’ Dj_in 4, Sj = dﬁ.mu - ‘z—Dj'-‘lﬂ" ,

and observe that (4.2b) implies that

@8 205) + 15D = 3[lmts7, 5701+ s, S|
< '%‘(lsfl + ISj%1D) = %[ldﬁ-m w - %Dﬁmﬂ + djs1pu + %D;-nfz ﬂ]

= mﬂ![ldjﬂfz i), %le-HIZ ﬂ] :
We note that if ld.1 #] = 12Dy 12 4] then
sga|djs 127+ %D,ﬂ,z .7] - 5g0(dje1n @) = 0
which in turn implies

sgn(S)) - sgn(dj+12 @) = 0, sgn(Sj+1) - sgn(dj+12 %) =0
It follows then from (4.8c) that the RHS of (4.7a) is |d;. 1, @|. This shows that

(498) M2 @= 3 Djars 7= TV @G D) = Mysin @l




also at local extrema points) and therefore

2
Sj+1 - Sj = 42 "d—" u(xj+m) + 0(’!3) .

dx?
On the other hand (3.2) shows that
- _ . d 3
Dj+1/2 u=ht— u(x]...m) + O(h°) .
dx?
Therefore
(‘&) Sj...l - SI - Dj+1/2 U= 0(,.3)

which shows that RHS of (4.6a) is O(h%). Since (2.1c) shows that

Q(x; @) — a(x) = O(Y)
we conclude from (4.6a)-(4.6b) that
(4.6) L(x; &) - @(x) = O(h%) .

We turn now to prove that L(x; %) is a non-oscillatory approximation to
u(x); this certainly implies that L{x; u) is a non-oscillatory approximation to
u(x). We shall do so by showing that TV, , (L('; &)), the total-variation of
L(x; u) in [x;, x;,1], which has the value

(4.78) TViy g, JLC3 D) = SO+ ISy01D) + Mja12 @ = S5 + S0l
can also be expressed as
(4.70) TVis, 5 J(LC+ @) = max(idys s @l 3 1Dj412 ) -

Then it follows immediately form (4.7b), (4.3a) and (3.8) that L is monotone in

[x;, xj4+1] if and only if Q is; consequently L is a non-oscillatory approximation
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and therefore it follows from (3.1c) that

(4.4b) %s, - % () + 00 = % u(x) + O(?) .
Consequently the RHS of (4.2a) can be expanded as

(4.4c) L(x;%) = uy + (x — xp) i— u(xy) + o 1(%)

= u(x) + O(h?) for lx—xj|<-%h

and thus (4.3b) follows.
Denote by L(x; &) the mean value of L(x;&)in (x — b2, x + h/2), i.c.

J-x+l|/‘2

(4.50) L) =4 [ LoiD .

4

Using (4.2a) to evaluate the integral in (4.5a) we find

(4.5b) L(x;&) = &) + djy1p @
(& = Wk + (12)(Sje1 — SHE = x)(x = x741VR?,
for X Sx= X4

(4.5¢) L(xj; ) = iy .

Hence L(x; &), like Q(x; ), is a piccewise-parabolic interpolant of (x).
Comparing (4.5b) with (3.2) we find that for x; = x = x;,

(4.6a) L(x;is) — O(x; ) = %‘(Sj-»l = §; = Djy1p 0)(x — x))(x — x;41Vh2.

From (4.4b) we see that S; = A % u(x) + O(h%) (Note that this is true




4. Non-oscillatory Recounstruction.

Let u(x) be a piecewise-smooth function and denote by u(x) its mean over
(x — h2x + R2), i.e.

) 7@ =5 [T 10V

We denote &; = u(x;) and refer to these values as cell-averages of u(x). Given
{i}}, the task in hand is to reconstruct u(x) to O(h?) in a non-oscillatory way;
denote the approximately reconstructed function by L(x;&). To achieve O(h?)
accuracy it is sufficient to consider L(x; &) to be a piecewise-linear function. To
make L(x; i) a non-oscillatory approximation we use the non-oscillatory piece-
wise parabolic interpolation Q(x; u) to compute its slopes as follows:

(4.2a) L(x; &) = iy + Sj(x — x;)/h for |x — x| < % h

(4.2b) S;=h- m[-d%- Q(x; — 0; ), -:—x- Q(x; + 0; i)] .

Here m is the min mod function (3.3); d;412 4 and D;,s 4 are (3.2b) and
(3.2d), respectively.
We note that L(x; #) may be discontinuoqs at {x;.17} and that

(4.38) L(Xﬁ la = l-l} .

To see that wherever u(x) is smooth

(4.3b) L(x,i) — u(x) = o(hd

we observe that in this case

(4.4a) u(x) = u(x) + O(h?
-15-

v " g . ' LA T R A M AP A ML T S P TR AR N
:" - _.:" :“.-‘. ',:5 ...................................................................................................................
- am e T T T T T e e T e e T e N e T e e e T e e T T T
e T T e T e e e e e e e e e T e e T e e
o N T e T T U L e L



dm+172 U

Dp+iu

_1)
2

:
3' (3.8c) 0=71V(Q) "? djv12 4| = %‘ [Dm+172 “i[

X 1
e = I 2 le+1/2 ul .
= meEM

The sum in the RHS of (3.8c) is taken over the set of indices M of intervals
(Xm»> Xm+1) in which |D, .1 4| > 2ld, 41 4, i.c. where Q has interior-
extrema.

Next we show that if u(x) is a piecewise-smooth function of bounded varia-
" tion, then
(3.9 lim TV(Q(:;u)) = TV(w) .

We observe that in this case the number of intervals in M is finite and is uni-
formly bounded by the number of local extrema in u(x). Hence (3.9) will follow
if we prove that D, .1, 4 ~0 as k-0 forall m € M. To accomplish this we
show that for A sufficiently small M does not include intervals (x,,, x,+1) in
which u(x) is discontinuous. To see that 1&t us examine the case where u(x)
has a discontinuity at x € (x;, x,41) . Clearly d;. 1, u approaches the size of
the jump in « while d;_,,u approaches zero as & - 0. Consequently

(3.103) lDiu/d‘.g.l/z lll = Il - d;_mu/d,-..,m ul -1 as h-0

Hence for h sufficiently small

(3.10b) 2ld;+ 1 u| > |D; u| 2 D412 4l

which implies i ¢ M.

-14-




mesh function {u;} (for obvious reasons the case u; = u;.; is counted as a
single-extremum). The above analysis also shows that interior-extrema are iso-
lated, i.e. if Q has an interior-extremum in (x;, x;+1), then it is the only local
extremum of Q in (x;-q, x;42)-

We turn now to examine the case that Q has a local extremum at a mesh
point x;; this will be refered to as a mesh-extremum. The above observation
that interior extrema are isolated excludes the possibility that Q has an interior-
extremum in either (x;—j, x;) or (x;, x;+1) and consequently Q is monotone in
these intervals. This implies that d;_1» ¥ * d;4.;» 4 < 0 and therefore u; is a
local extremum of the mesh function {u;}. This concludes the proof that Q(x; u)
is a non-oscillatory interpolant of u.

We next express the non-oscillatory nature of @ in terms of total variation.
¥ IDj+1 u| = 2|d;. 1> u| then (2.5) implies that Q is monotone in {x;, x;.1].
Thus

(3.8a) IDj4 112 4| = 2ldjs 12 4| = TV, o, (@) = [djs12 4] -

¥ |Dj4+1 ul > 2ldj4 12 u| then Q has a local extremum in (x;, x;.;) and
TV, 2. 0(Q) = lgj+12 = wl + lye1 = gj21a| -

Using (2.6) we get

(3.86) D)1l > 2djayr ul = TV, 1(Q)

d!.q.m u
Dj+1/2 u

_1)
1)

= Hyssanl + Dyanzl

We conclude that

-13-
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mesh function {u;}, the number of which certainly does not exceed that of u(x).

Q may have a local extremum in either the interior of some interval
(xi,x;+1) or at a mesh point x;. The first case, which will be fered to as
interior-extremum, occurs when there is a point x*, x; < x* < x;.y, such that
£ 06%5u) =0, bt g, 00
From (3.2a) if follows that Q0 has an interior-extremum, in (x;, x;.;) if and
only if

(3.5 IDi+ 12 4| > 2ld; 1112 4] -

9i+12 = @i+12(x"), the value of the interior-extremum is then

2
e _o._1 | divnu 1)
(3'6) qiv1n2 = W 2 DH-l/Z“ [Dﬁ.mu 2] ’

if Diy12u4 <O itis alocal maximum;if D;,y, u > 0 it is a local minimum.
Since Dj41u = m(Du, D;yq u), (3.5) holds if and only if

(3.78) Di u- D‘.‘.rﬂ >0

(3.7) D ul > 2ldjs1pul, j=ii+1.

This implies that ¢,,,, bas a local extremum in (x;, x;.;) if and only if both J;
and g;.; also have a local extremum in (x;, x;,,) and of the same kind. Since
a parabola has at most one local extremum, it follows then that g; does not have
a local extremum in (x;-y, x;) and g;.; does not have one in (x4, ;4 2).
Consequently Q is monotone in both (x;—q, x;) and (x;4 4, X14+9), butin an
opposite sense, i.e. di_i, u * di+3> u < 0; the latter implies that » has a local
extremum in {x;, x;,1] and that either u; or u;.; is a local extremum of the

-12-
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We consider as candidates for ¢;,1» the two quadratic polynomials ¢;
and g;+,, interpolating u(x) at {x;—y, x;, x;+1) and (%, %;+1, X;+2), rESpEC-
tively, and choose g;41 to be the one that is least oscillatory in [x;, x; .{].
Both gj,j =i and j =i + 1, can be written as (3.2a) with Dj. o4 = Dju
where
(3.2c) D = djy 14 — dj— 14 = Upey = 245 + Wy .

Since the least oscillatory of q; and g;.; can be characterized as the one that
deviates the least from the line connecting (x;,u;) with (x;41,4;4+1) We choose
D;4+1n u in (3.22) to be

(3.2d) Dj+12 4 = m(Du, D;41u) ,

where m(x,y) is the min mod function

3.3 m(z,y) = {; - min(fx,by]) if sgn(,'x) .= sgn(y) = s
X u(x) is smooth in [xj-1,x/41], then g; as a quadratic interpolant of »
satisfies

(3'4)q-j(x) - u(x) = 0("3), % Ej(x) - ‘dgx' u(x) = O(hz), xj-l s5xs 31.4.1 .

If Du-D;.iu=0 then 3., is cither q; or g;4+1. Otherwise we set
Di+1u = 0, but then smoothness of u implies that D;u = O(h%) and conse-
quently g;+12 — @ = O(h®) for j =1i,i + 1. Thus (3.1c) follows from (3.4).
We turn now to prove that Q(x; u) is a nonoscillatory interpolant of u,
i.c. that the number of its local extrema does not exceed that of . We do so by

showing a one-to-one correspondence between local extrema of Q to those of the

-1-
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tion of the numerical solution and that of its piecewise-parabolic interpolant Q:

15.12) TV({Q(x; - ar; v < TV(»"*1) s TV(Q(; v™) .

The LHS of (5.12) is the total variation of the mesh function
{Q(x; — a7; v™)}. Relation (5.12) suggests to consider an equivalent definition
TV of the total variation of the numerical approximation of the form

TV(v") = TV(Q("; V™))

with the hope that the scheme (5.3) is TVD with respect to this modified defini-
tion. Unfortunately our numerical experiments have shown that there are
instances, although rather rare, that TV(v") is increasing with »; the same is
true for TV(y") = TV(L(:; v")). |

As we have mentioned in the introduction, because of the nonoscillatory
nature of the scheme, uniform total variation boundedness of the numerical solu-
tion is implied by uniform boundedness of its maximum norm. If we follow a
particular local maximum of the initial data we see from (5.9)-(5.10a) that it ‘
actually decreases most of the time, and whenever it does increase (5.10c) and .
(3.10) suggest that it does so by a "small amount” that vanishes with A - 0. -
Since the initial data is only piecewise-smooth we have not been able as yet to
rigorize these arguments.

We remark that our numerical experiments clearly indicate that in a normal
computational situation the maximum norm of the numerical solution is indeed
uniformly bounded. We feel that our inability to prove this fact stems only from
lack of theoretical tools to analyse pointwise regularity of the numerical solution.




6. The nonlinear case. In this section we describe an approximate solution

va(x, t) of [5] for the IVP (2.2)

(6.1) v, + f(v), = 0, v(x,0) = L(x; vf') .

This approximate solution is consistent with the conservation form of the equation

(6.1) in the sense that the cell-averaging (2.3) results in a scheme in conservation

form i.e.

x]*lﬂ

" Va(x,7) dx = v} ~ A(fj.‘.l,z - f,_m)

I

X’_

where the numerical flux f;.,, is consistent with f(u) in the sense of (1.2c).

Furthermore, the approximate solution operator is TVD
(6.3) TV, (3 0)) < TV(v,(-;0)) = TV(L(-;v")) for 0<t= T~

and thus by the reasoning presented in section 2, the resulting scheme (6.2) is
non-oscillatory.

We turn now to outline the derivation of this approximate solution. To sim-
plify our presentation we ignore entropy considerations and refer the reader to
future papers for details of appropriate modifications. We assign to the point
Xj+12 a characteristic speed that corresponds to the Rankine-Hugoniot speed

dj.12 of the two neighbouring cell-averages v} and v}*!

(f(v}+1) = FOO])
(6.48) 3‘1.4.1/2 =1 T vj »
a(v) if v} = vl

if Vf + V}'+1

\

and denote by a(x) the piecewise-linear interpolant of {a;+1}, i.e.




(6.45) &(x) = Fy-1 + @re12 = Fo12) - (& = 5y
for Xj-112 sxs Xj+1/2 -

The approximate solution v,{x,f) is defined by specifying its constancy

along the approximate characteristics
(6.52) x() = xq + @(xg) -t

i.e.

(6.5b) valel), 1) = va(x0,0) = Lxg v™)

Using (6.5a) and (6.4b) to express x; in terms of x and ¢
6.50) xg(x,t) = xj~1n + h -[x = xj_ 12O/ [xj4 12() = x;-12(F)]

for xj_lfz(t) <x< xj+m(t)

we get from (6.5b) that

(6.6a) v,(x,0) = L[‘j-uz +h- x = x-10(8) ,,]

xj+172(8) = xj-10(6)

for Xj-m(t) <x <Ixj. 12(0)

where

(6.6b) Xi+12(t) = Xis1p + 1 Ba1n

Taking cell-averages of the approximate solution (6.6) we get the conservation
form (6.2)

(673 ¥ = o = Moz = o1

-27-




with the numerical flux

. P + 1281, 1= NGy - S if Gein=0
6.T = Z Z S0y if @ ’
6.7)  fi+1n (V+1) = 2 8j410(1 + M Gja30) " Sjaq i Gju1n SO

where
(6.7¢) §; = SM[1 + NM@j+1n ~ d-10)] -
Note that (6.7) is identical to (5.30) in the constant coefficient case.

We turn now to prove that the scheme (6.7) is uniformly second-order accu-
rate in the sense of (2.9). Starting with the exact cell-averages v} = i} in (6.7)
this amounts to showing that

(6.82) Frva = Freraw) + O

with a sufficiently smooth coefficient in the O(h?) term; here f;.1 is the
numerical flux (6.7b) computed with the exact cell-averages, and f,.1(x) is
(2.1b). We shall do so in two steps: first we shall show that

(6:85) fya12) = S U215 @) + FLG7 120 7 TN] + O ,
where xg(x;.1,7) is (6.5¢), and then we shall verify that
(6.80) —;'U(L(xﬁ- vas ) + fL(xo(xje 12, 7); &)] = fiv12 + O(RY) .

Special attention will be given to the smoothness of the O(h?) coefficients.

To show (6.8b) we start by using the trapezoidal rule to approximate the
integral in (2.1b); we get

(698)  Fo1a8) = TLW+12: 1)) + fulayaras tn + D] + OG) .
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The smoothness of the O(h?) term follows from that of f(u) and u(x,r). Next
we observe that a(x) in (6.4b) approximates a(u(x,t,)) to O(h?), and there-
fore we can use the approximate characteristic line (6.5¢) to trace

u(xj+ 12, ty + 1) to u(xo(xj4112, 7), fy) with O(h%) accuracy; consequently
(6.9b) Fuxje 12, tn + 7)) = fulxolzj+12 7), 1)) + OHY) .

Finally we obtain (6.8b) by approximating u(x,t,) in (6.9a) and (6.9b) to
O(h?) by L(x; @) (see (4.4)). The smoothness of the O(k2) term in this
approximation is due to (4.4c):

57 = h - uyx, t,) + O(hY) .

(We recall that the degeneracy to first order accuracy at local extrema points of
some "second-order accurate” TVD schemes is due to lack of smoothness there of
the O(h?) term in (2.7a)).

We turn now to verify (6.8c). First let us consider the case aj.1, = 0:

1
L(xj...m;l?') = 17;' + ES",

1 AGj+ 11
L(xg(xj419, 1);87) = u) + | = - — = ST,
R A P 1+ \@412 = G-12) |

and expand the LHS of (6.8c) around . We get

(6.108) fG) + -;—a(z'i;')(l NG §) + %a'(ﬁ}')[(l - NG

+ (AGj+12)7(E? + O = fi1p + 1'83 (2\%a? - 1) - @' - ()41 + O(RY) .

TIPSO WL A Ao

Similarly in the case ;.17 s 0:

ral e D shar s vl b A
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- 1
L{Xjs1 47") = Ujyy — 2 Te1s L{xa(xje12s 1) &")

1 \aj+ 1
='7;+1’ 5+ .

2 14+ NM@+32 ~ Ga1n)

we expand the LHS of (6.8c) around &, to get

* s;+1 *

(6.106)1(@1) = 3 @@ 1)1 + AGja 3201

+ % a' (W41 + MGj+32)? + (\Gj4 1) (§j+1)2 + O(h%)

= frrin + %2 %2 - 1) a - ()12 + O(RY) .

We see from (6.10a) and (6.10b) that independently of the sign of a;,1,, the
0(h%) term in (6.8c) is the same, namely

K2 ,
T (%2 - 1) - a’ - (u)Yj+12 -

This completes the proof that the scheme (6.7) is second-order accurate in the
sense of (2.9) wherever u(x,t) is smooth, including local extrema and sonic
(f = 0) points.

Remarks: (1) The numerical flux (6.7b) can be rewritten as:

6:11) fre1n = 3 [fOP + F0741) = Garal 01 = v

+ max(0, 3j+1n) - (1 = A3j-1p) * §;

- min®, 1) (1+AGe32) - S -

-30-




(2) Our proof that the scheme (6.7) is non-oscillatory is based on the
representation of (6.7) as the cell-average (6.2) of the non-oscillatory approxi-

mate solution v,(x,t) in (6.6).. To ensure that v,(x,t) remains univalued for

0 < ¢t < v we have to restrict the time-step T so that for all j

(6.12a) X4 1/2(1’) > xj_m(‘l') .
This implies the condition
(6.12b) * MAX,(@)- 2 — G410 < K.

On the other hand, to derive the particular form of the numerical flux (6.7b) we
have made the assumption

(6.13a) bj+12(7) — xj410l < b forall j,
which implies the condition.
(6.13b) T max)|a; .10l < b .

The two time-step restrictions (6.12b) and (6.13b) are characteristic to
Godunov-type schemes. The practice of reconciling the two conditions by

T m,ld-jq.m' =< hn2

is completely unnecessary: The scheme (6.7), as the original Godunov scheme,
remains non-oscillatory (or TVD in the case analysed in [10]) for the full CFL-
restriction (6.13b). The reasoning for this observation is as follows: The approxi-
mate solution (6.6) under the CFL restriction (6.13b) may fail to be univalued in
the j-th cell only if aj_;,> 0 and &j.;, < 0. In this case the numerical fluxes
f;*m as defined by cell-averaging in the neighboring cells j + 1, remain (6.7b).
Thus the only thing that needs to be changed in this case is the definition of
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vp(x,7) in the j-th cell.

(3) We observe that once v,(x.1) is defined globally in (6.6) there is no
intrinsic need to average it on the original mesh. We may average it on different
intervals and still conclude that the resulting approximation is non-oscillatory and
conservative. Furthermore, the construction of the interpolant Q, the approxi-
mation L and the approximate characteristic field a(x) needed to define
v(x, 7), does not depend on the uniformity of the mesh. Therefore the scheme
(6.7) generalizes immediately to non-uniform moving meshes. Of particular com-
putational interest are the self-adjusting moving grids of the type described in
[12], which make it possible to obtain perfectly resolved shocks and contact.
discontinuities.

(4) We note that since the approximate solution v,(x,f) in (6.6) is conser-
vative, it is possible to consider an associated random-choice method obtained by
replacing the cell-averaging in (6.2) by a sampling with respect to a variable that
is uniformly distributed in the cell, i.s.

vt = v, (x; + 07h,7)
where 07 is uniformly distributed in [-1/2,1/2]). Following the reasoning of {7]
it is clear that the resulting random-choice method is non-oscillatory and that its
limits are weak solutions of (1.1). Although the random-choice approach has
many attractive computational features, it has been our experience that in many
application it is possible to accomplish the same computational goals with a self-
adjusting moving grid. In this case the use of the latter is preferable as it offers
gain in resolution without a loss in pointwise accuracy that is associated with sam-
pling.
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7. Numerical Ilustration. In this section we compare the new uniformly
second-order non-oscillatory scheme of this paper (to be refered to as UN02) to
the typical second-order TVD scheme (10 be refered to as TVD2). Both schemes
can be wntten in the form (6.7), i.e.

(7.1a) Vit = v = Mfje12 — fi-10)
(S0P + V2 G151 = NGy S + A1 — Gp-12)]
(-15)7p+12 = J(Ve1) = 12 8j415(1 + NBj43)S]41/[1 + M@jr3n ~ @j410)]
if a}+m =<0
(7.10) 87 = m(S;*,5;°);

here a;.; is (6.4a) and m(x,y) is the min mod function (3.3). S are dif-

ferent for TVD2 and UNO02:
(1.2) TVD2: Sf = dj, 10"
(7.3) UNO2: Sf = dj*m\'" ¥ ';—Djtmv" ’

where d;.i» and D;.., are defined in (3.2).

UNO2 and TVD2 are both second-order accurate Godunov-type schemes
that differ only in the reconstruction step (4.2a):
(7.4a) L(xu) = uy + Si(x — x))/h for [x — x| < b2,
where the slopes of the lines are calculated by (7.3) and (7.2), respectively.
Therefore we start our comparison on the approximation level.

In Table 1 and Fig. 1 we present approximations to
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u(x) = sinwx, =1 s x < 1. We divide [-1,1] into N equal intervals and
define

2

(7.4b) xj=-—1+j-N 0=s;jsN.

The symbols in Fig. 1 denotes values of u; = sinwx; for N = 10 in (7.4b). In
Fig. 1a we show the piecewise-parabolic interpolant Q(xu) (see section 3). In
Fig. 1b we show the piecewise-linear approximation LUN%(x:u) which is (7.4a)
with (7.1c) and (7.3). In Fig. 1c we show the piecewise-linear approximation
LTVP2(x4,) which is (7.4a) with (7.1c) and (7.2). We make the following obser-
vations regarding Fig. 1: (i) Q is a better approximation than LUN02; L[UNG jq 5
better approximation than LTVD2, (ii) TV(LWN®) > TV(u) > TV(LTVP?). In
table 1 we quantify the first observation; we list the L,-error and the L,-error of
these approximations to sinwx for a refinement sequence of N = 10,20,40,80
in (7.4b). Clearly Q is an O(h®) approximation, while LUN% and LTVD2 gare
O(h?). The errorin LUN® js abouta 1/3 of the error in LTVD2,

In Table 2 and Fig. 2 we present solutions of UNO2 and TVD2 for the con-

stant coefficient case
(7.6) u, +u, =0, u(x,0)=sinnx, —-1sr=s1

with periodic boundary conditions, at ¢t = 2 with /A = 0.8. Figs 3a and 3b
show UNO2 and TVD2, respectively, with N = 20 in (7.4b). In table 2 we list
the L.-error and L;-error for a refinement sequence with N = 20,40,80,160.
Clearly UNO2 is second-order accurate in both L, and L, while TVD2 is
second-order accurate in L; but only first order accurate in L,. Fig. 3b demon-

strates that the degeneracy to first order accuracy at local extrema in the TVD
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scheme adversely affects the accuracy everywhere (Because the scheme is TVD it
cannot switch abruptly to second-order accuracy as this would introduce oscilla-

tious; consequently it takes quite a while to recover the second order accuracy).

Next we approximate the discontinuous function

: —xsin(3nx%2) , -1<x< -173
(7.7 u(x) = {|sinQ2=mx)| , k| <13
2% -1~ Y6sin(3wx) , BB<x<1

which we extend to have period 2 outside [-1,1].

In Fig 3 we present approximations to ¢(x), using N = 20. Fig 3a shows
Q(x;ir), Fig3bshows LUN%(x:i), and Fig 3c shows LTYD%(x;i). We again
observe that Q is better approximation then LUN®2, while LUN® jg g better
approximation then LTVDZ,

In Fig 4 we present solutions of UNO2 and TVD2 for the constant coeffi-
cient problem (7.6), initial data given by (7.2), and periodic boundary conditions.
We take ¢t = 2 and +/h = 0.8. Figs 4a and 4b show UNO2 and TVD2 respec-
tively with N = 40. Fig 4b shows the damping effect that the TVD scheme
imposes due to its degeneracy to first order accuracy at local extrema.

In Fig 5 we solve the same problems, except we impose boundary conditions.
At x = —1 we impose the given function {7.7) evaluated at —1 — ¢t. No boun-
dary conditions are imposed at x = 1. We implement this numerically using
UNO2 and TVD?2 except at the boundary points. There we are in general, unable
to construct non-oscillatory piecewise parabolic interpolants Q(x,z), so we con-
struct the only possible parabolic interpolant thru x;,x;., and the point to either
the left or right which lies in the region. The analogous procedure is carried out

e PR T Y = -\'.\,"-.\_.'\__\_i.\ > N T e e e T N M IR e e A T S A T
----- e L L I A N N T e e T e T e AR R R I IR
R e T L T 2
o AT L SR o i . oL O A Lo AN et A
W YA IR BRI PR S G R RO A M S A T R AR S S RIS I AT IS RENE AL A N 9.'.‘




at the reconstruction stage. Figs Sa and 5b again show the results at ¢+ = 2 with
t/h = 0.8.

The possible introduction of oscillations through the boundary conditions
does not seem to have degraded the performance of either scheme (in fact the
opposite is observed). Again the TVD2 scheme shows a damping effect.

In Table 3 and Fig. 6 we present results for Burgers’ equation
(7.8) u, + uu, =0, u(x0)=a +sinw(x+p), ~1sx=s1

with periodic boundary conditions and vk (1 + |af) = 0.5. The solution to (7.7)
is smooth for ¢ < I/w; at ¢ = U/n it develops shocks. In Table 3a we list the
L-error and L -error of UNO2 and TVD2 at r = 0.15 for a =8 =0 in
(7.7). This table shows the same asymptotic behaviour as Table 2, except that
because of the large gradients it shows for a smaller A.

In Figs 6a and 6b we show resuits of UN02 and TVD2 for (7.8) with a = 2
and 8 =1 at ¢ = 0.35 with ¥ = 20. In this case the solution to (7.8)
develops a shock moving with speed 2 beginning at time ¢ = 1/% = 0.318.

In Table 3b and Figs 6¢c and 6d we repeat the previous calculations for the
schemes (2.13):

(7.9a) Vit = v = Mfje1n = fi-10)

(7.9b) Frein = fOulxparn, 72)) = FLG(xj4 112, 772),9™)

where xq(x;412, 7/2) is (6.5¢), i.e.

' 1= NMdjs1n + dj-12)2

fv}'+'l_' (]+1f2 -1 ‘Sf lfdj+1,220

2 1+ X(aj...m - dj_.m)fz
1+ X(dj.'.yz + dj.‘.l/z)/z

o, - L.
ah 2 1+X(5j+3rz-ﬁj+m.)f2
\

(7-9°fj+ 1”2 = 1

* S;’+1] if &j+1/2 =0
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As we have remarked in section 2, v}*! in (7.9a) is not a cell-average of
vy(x,7), but only an approximation to it. Therefore it is not necessary to take
dj+1n in (7.8¢cj to be (6.4a). We choose d;.1, so that (7.9c) is continuous at

4f+U2:= 0:
7.9d)dy412 = - Lo yosr+ Lsnl/lon, - Lsn,y - or + L
(7.9d)djr12 = Y41 = 5f41) = FOF + SSP|/ |1 > T+1) — (V] 50| -

We denote the schemes (7.9) with S} defined by (7.1c) and either (7.2) or
(7.3) by FVD2 and FNO2, respectively. We note that (7.9) is identical to (7.1) in
the constant coefficient case, and consequently FVD2 and FNO2 are nonoscilla-
tory in the constant coefficient case. Figs ¢ and 6d show that FNO2 and FVD2
are also non oscillatory in the case (7.8). Furthermore, Table 3b shows that
FNO2 is much more accurate than UNO2 (FVD2 is about the same as TVD2).

In all previous examples we have presented pointwise calculations; namely,
we have initialized the numerical solution by taking v{ to be the value of the ini-
tial data at x;, and we have considered v} to be an approximation to u(x;,t,).
(Surely this is an acceptable practice for second order accurate schemes.) In Table
3c we repeat the calculation for UNO2 in Table 3a, but now in a sense of cell-
averages and denote it by ANO2. Now we initialize UNO2 for (7.8) with
a = 8 = 0 by cell-averages of the initial data, i.e.

(7.103)vf = —-1'_17 [cos(mx;. 1) — cos(mx;— )] = %L/)Z)_ - sin(wx;) ,

and regard v to represent cell-averages of u(x,t,). To obtain a pointwise

approximation to u(x,t,) we first compute point values V7, of its indefinite

integral w"(xj- ) = [ "u(y.t) dy by

-37-




(7.10b) Via=h 3 v
imig

Next we obtain a global piecewise-linear approximation v(x,?,) to u(x,t,} by
(7.10c) W) = 4 0(xiv™)

where Q is the piecewise-parabolic interpolant of section 3. Finally we get
(7.10d) v(x),t,) = zdx- Q(x;:v") = —,1'- (Vie1n — Vi-1n) = v}.

Thus the only difference between ANO2 in Table 3¢, and UNO2 in Table 3a
is the initialization (7.10a), which itself differs only slightly from the mesh values
of the initial data (since sin(wh2)/(wh/2) = 1 ~ V6(mwh/2)? + O(h%)).

We remark that cell-averages do play a significant role when the initial data
is discontinuous (since they provide information about the location of the discon-
tinuity) and in higher-order Godunov-type schemes; this will be described else-
where.

We turn now to present calculations with a formal extension of UN02 and

TVD2 for systems of conservation laws. We consider a Riemann problem for the

Euler equations of gas dynamics

Ur, x<0
(7'113) U, + f(u)x = or u(xio) = {“R x> 0 ’
(7.11b) u = (p,mE), f(u) = (mm¥p + P, m(E + PYp)T,
(7.11¢) P=(y-1)E - %mzlp) .

Here p, m, E and P are the density, momentum, total energy and pressure,
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PIECEWISE PARABOLIC

~0.25 0.25 0.75 1.25

-0.75

-1.25

-1.0 -0.6 -0.2

Figure 1a

Figure 1. Approximations of u = sinmx, -1 < x <1, with N =10.
a) Piecewise-Parabolic interpolant Q(a,u).
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Table 3a. Numerical solutions of u, + uu, = 0, u(x,0) = sinwx, at ¢ = 0.15 and /A = 0.5 -

UNO2 and TVD2
L.-ERROR | L,-ERROR

N UNO2 TVD2 UNO2 TVD2
d 5 poy

20 [1.890 x 1072 [ 2.238 x 10~2 [ 1.090 x 10~ | 1.854 x 10~
40 15712 x 1073 | 1.054 x 10°2 | 3.034 x 10”3 | 5.051 x 10~3
80 J1.552 x 1073 | 4.422 x 10°3 | 7.771 x 10~¢ | 1.340 x 103
160 | 3.985 x 10~4 | 1.837 x 10~3 | 1.965 x 10~¢ | 3.621 x 10~¢

Table 3b. Same as Table 3a for FNO2 and FVD2.

Lo-ERROR

L-ERROR

FNO2

FVD2

FNO02

FVD2

6.938 x 103

2.091 x 10~2

3.726 x 10~3

132 X 102

1.959 x 103

1.054 x 10~2

8.869 x 10~4

3.835 x 103

gl & 8] =

5.106 x 1074

4.424 x 10~3

2.163 x 10~¢

1.072 x 1073

2

1.251 x 1074

1.837 x 1073

5.270 x 10~

2.946 x 10~

I T
S SN
T, . P I g

Table 3c. Same as table 3a for ANO2.

L”‘ERROR

L,-ERROR

2.249 x 10~2

1.221 x 10~2

6.623 x 1073

3.243 x 10~3

1.781 x 10~3

8.259 x 104

4.597 x 10~¢

2.079 x 1074




Table 1: Approximations to u(x) = sin(wx), —1 < x < 1, with periodic boundary conditions.

L-ERROR Ly-ERROR
N Q Lyne Ltvm Q Lune Ltvm
T x0T [ SiE 0T | L0 X 10T |10 x 107 [ 2067 x 10T [ 7016 < 10°7]
20 | 1.971 x 1073 | 1.231 x 1072 | 3.558 x 1072 | 1.802 x 10~3 | 5.576 x 103 | 1.525 x 1072
40 ] 2.476 x 1074 [ 3.083 x 1073 [ 9.163 x 10~3 ] 2.148 x 10™4 | 1.355 x 10~3 | 3.902 x 1073
g 80 | 3.104 x 10~3 | 7.710 x 104 | 2.308 x 1073 § 2.617 x 10~ | 3.351 x 10™* | 9.787 x 10™*

with periodic boundary conditions and /A = 0.8.

| L.-ERROR

L,-ERROR

UNO02

TVD2

UNO02

TVD2

a
20 17.097 x 103

-
8.119 x 10~2

8.944 x 103

6.778 X IO’T‘

40

1.607 x 103

3.477 x 10~2

2.044 x 1073

2.033 x 10~2

80

3.870 x 104

1.453 x 10~2

4.926 x 10~4

5.626 x 1073

160

9.201 x 10~

5.975 x 1073

1.172 x 10~4

1.528 x 1073

LA SN
ata ta®
. .

--------------
............
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‘‘‘‘‘
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.....................

41~
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Table 2: Numerical solutions of u, + u, = 0, u(x,0) =sinmwx, -1 <x=<1 at t =2

................



Likewise Sf denotes the component of the vector of slopé in the k-th charac-
teristic field, and is defined as follows:

(7.13¢) Sf = m(s% 1,84 Y1 + MTe12 - F-10)] 5

m(x,y) is the min mod function (3.3). S% ; are different for VD2 and N02:

(7.14) TVD2: 8% = df, 1w
1
(7.15) UNO2: §% ;= df 1w F 5 D}, 1ow;

Df, 1w = m(dfy 3w — dfyp 1w, dfv 1w — df_1pw) .

In Figs 7.8 and 7.9 we show numerical solutions of UN02 and TVD?2, respec-
tively, for the Riemann problem (7.1b) with

U, = (1,0,2.57, Ug = (0.125,0,0.25) .

These figures demonstrate that the formal extension to systems is nonoscillatory
in this case. Since the solution to the Riemann problem is just constant states
seperated by waves we do not get to see here the extra resolution power of UN(2,
except that its numerical solution is somewhat "crisper” than that of TVD2. In
this calculation we have not employed any artificial compression in the linearly
degenerate ficld and therefore the contact discontinuity smears like n'3, as
expected. The interested reader is referred to [4], [5] and [10] for a detailed
description of such compression techniques, as well as for details of entropy
enforcement mechanisms.
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respectively; we take y = 1.4.

In the following we apply the extension technique of {3] to UNO2 and TVD2.
The idea is to extend UNO2 and TVD2 to systems in such a way that will be
identical to (7.1) in the scalar case. and will decouple into (5.3) for each of the
characteristic variables in the constant cbefficient system case. To accomplish

that we use Roe’s averaging for (7.11) (see [13])

§

: (7.12a) vyerz = VO, vfer)

§ for which

}j (7125)  f(41) = SO = AGpe D1 = v, Alw) = affou,

4 and define local characteristic variables with respect to the right-eigenvector sys-

tem {Rf.1p}ea1 of A(vj41). We extend (6.11) to systems as follows:

(7.13a) VIt = v = Mfje1n = fi-10)
- 3
(7.13b) fi+1n = ';'[/(Vf) + f(v]e1) — kEI cfr12 Rf+1n

(7130)(.‘}4.1/2 = W...mw.‘.mw - max(0.5f+1,2)(1 - Aif_m)§f

+ min(0,3}412)(1 + Adfe3)Sfas .
Here Ef.;m is the k-th eigenvalue of A(v;+1,) corresponding to R,’-‘+ 1, and
df... 12w denotes the component of dj.1,v = vj41 — v} in the k-th characteris-

tic field, i.e.

3
= k
(7. 13d) dj+ 12V = 2 (d}.', I/ZW)RI+1/2 .
k=1
-39-
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