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r ABSTRACT

We-begin the construction and the analysis of nonoscillatory shock capturing

methods for the approximation of hyperbolic conservation laws. These schemes

share many desirable properties with total variation diminishing schemes, but

TVD schemes have at most first order accuracy, in the sense of truncation error,

at extrema of the solution. In this paper we construct-e uniformly second order

approximation, which is nonoscillatory in the sense that the number of extrema of

' the discrete solution is not increasing in time. This is achieved via a non-

oscillatory piecewise linear reconstruction of the solution from its cell averages,

time evolution through an approximate solution of the resulting initial value

7 problem, and averaging of this approximate solution over each cell.
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1. Introduction. In this paper we consider numerical approximations to weak

solutions of the scalar initial value problem (IVP)

(1.la) u, + f(u)= u, + a(u) u = 0

(1.1b) U(x,O) = u0(x).

The initial data uo(x) are assumed to be piecewise-smooth functions that

are either periodic or of compact support.

Let v' = vh(xj, t.), xj = jh, t. = nT, denote a numerical approximation in

conservation form

(1.2a) V71 + V7 - >-(j+12- fj - A2) = (Eh b

Here EA is the numerical solution operator, X = rnh, and fj+ 1n, the

numerical flux is a function of 2k variables

(1.2b) .+vz = i(vLk,I,...,v+k) Accession For
NTIS GRA&I

which is consistent with (1.1a) in the sense that DTIC T.

(1.2a) A(u,),...,u) = f(..

We consider the numerical approximation v(x,t) in (1.2) to be a> ' ' "
/,: ' " ""LV Cod"es

piecewise-constant function 
: Cdesor

4't 2Oia1

(1.3) v(x,) = V', xj- < x < x+112, nT < t : (n + 1)T I

Accordingly we define its total variation in x to be
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(1.4) TV(V) TV(v(-,tn)) IV.+i- Vil

If the total variation of the numerical solution is uniformly bounded in h for

Ost<T

(1.5) TV(vh(',t)) : C - 2'V(u )

then any refinement sequence h -. O, =O(h) has a subsequence h/-. 0 so

that

(1.6) v.1, - U w

where u is a weak solution of (1.1).

If all limit solutions (1.6) of the numerical solution (1.2) satisfy an entropy

condition that implies uniqueness of the IVP (1.1), then the numerical scheme is

convergent (see e.g [31, [121).

Recently we have introduced the notion of total variation diminishing (TVD)

schemes (see [3]), where the approximate solution operator is required to dimin-

ish the total variation (1.4) of the numerical solution at each time-step

(1.7) 7V(v"* ) : TV(v") ;

these schemes trivially satisfy (1.5) with C = 1. Some early work along these

lines was done by van Leer in [15].

TVD schemes are non-oscillatory in the sense that the number of local

extrema in the numerical solution is diminishing in time (as is customary we use

"diminishing" loosely as short for "non-increasing", throughout this paper).

Moreover, the value of an isolated local maximum may only decrease in time,

while that of a local minimum may only increase.

-2-
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We were able to construct TVD schemes that in the sense of local truncation

errot are high-order accurate everywhere except at local extrema where they

necessarily degenerate into first-order accuracy (see [4], [13], (10], [11], [14]).

The perpetual damping of local extrema determines the cumulative global error of

the "high-order TVD schemes" to be O(h) in the L, norm, 0(h) in the L2

norm and O(h2) in the L1 norm (see [17]).

In this paper we introduce a larger class of non-oscillatory schemes, in which

the solution operator is only required to diminish the number of local extrema in

the numerical solution. Unlike TVD schemes, which are a subset of this class,

non-oscillatory schemes are not required to damp the values of each local

extremum at every single time-step, but are allowed to occasionally accentuate a

local extremum.

In a sequence of papers, of which the present paper is the first, we show how

to construct non-oscillatory schemes that are uniformly high-order accurate (in

the sense of global error for smooth solutions of (1.1)). In this first paper we

describe a second-order accurate scheme of this type.

The fact that the number of local extrema in the numerical solution may only

diminish in time is sufficient by itself to guarantee that the application of the

scheme to monotone data results in a monotone function. Thus non-oscillatory

schemes, like TVD schemes, are monotonicity preserving. In particular, when

applied to a step-function, they do not generate spurious oscillations.

We note that since the number of local extrema in the solution of non-

oscillatory schemes is bounded by that of the initial data, uniform boundedness of

its total variation (1.5) follows immediately if the maximum norm of the solution

is shown to be uniformly bounded.

-3-
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2. Deug Prindple and Overview

In this section we describe how to construct a non-oscillatory scheme that is

uniformly second-order accurate.

Integrating the partial differential equation (1.1a) over the computational cCl

(Xiin, X + x (t,, t.+1) we get

(2.1a) i+ 1+= - X A + 12(U) - 1/2W]

where

(2.1b) j+l ()- f A(XJ2,t)),dt

and

(2.1c) -"-X,_
(2.lc) = f f'+" u(x,t.) dx.

We observe that although (2.1a) is a relation between the cell-averages i7
and j+ 1, the evaluation of the fluxes , + (u) in (2.1b) requires knowledge

of the solution itself and not its cell-averages.

As in Godunov's scheme and its second-order extension by van Leer [161 and

Colella and Woodward [2J, we derive our scheme as a direct app ,xmation to

(2.1). We denote by v7 the numerical approximation to the cell-averages ii7 of

the exact solution in (2.1c), and set vf to be the ceIl-averages of the initial data.

Given v' {v7I we compute v,+' as follows:

First we reconstruct u(x,t.) out of its approximate cell-averages {v7) to the

ap ite accuracy and denote the result by L(x; vn). Next we solve the IVP

(2.2) v, + f(v)- 0, v(x,0) = L(x; v")

-4-
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and denote its solution by v(x,t). Finally we obtain v7+ I by taking cell-

averages of v(x,r)

(2.3) v7+ 1 = .x -.

The averaging operator in (2.3) is non-oscillatory, therefore the number of

local extrema in v" + 1 (interpreted as a mesh-function or the piecewise-constant

function (1.3)) does not exceed that of v(x,T). Assuming v(x,t) to be the exact

solution of (2.2) implies (since the exact solution operator is TVD) that the

number of local extrema in v(x,T) is less than or equal to that of

v(x,O) = L(x; vn). Therefore if the number of local extrema in L(x; Y') does

not exceed that of yE, then the resulting scheme is non-oscillatory.

We conclude that the design of non-oscillatory high order accurate schemes

essentially boils down to a problem on the level of approximation of functions:

Given cell-averages Wj of a piecewise-smooth function u(x), reconstruct .(x)

to a desired accuracy. Prior to studying this problem we tackle another related

question in apprximation of functions, that of constructing a non-oscillatory

high-order accurate interpolation of piecewise-smooth functions.

In section 3 we comstruct a non-oscillatory piecewise-parabolic function

Q(x; u) that interpolates a piecewise-smooth function u(x) at the mesh points

(2.4a) a(xj; U) = U(xj)

and satisfies, wherever .(x) is smooth,

(2.4b) Q(x; u) = u(x) + O(h 3)

(2.4c) - Q(x + 0; .) -- (x) + 0(h2 ).

-, -.-
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In section 4 we make use of this non-OscillatOry Piecewisc-parabolic intcrpo-

lant to design a non-oscillatory reconstruction of a piecewise-smooth function

from its cell-averages. As in (16], (2], (5], and [9] we take L(x: u-) to be the fol-

lowing piecewise-linear function

(2.5a) L(x; ) = ij + Sj(x - xj)h for Ix - xji <Wh/2.

Unlike the above references that present "second-order accurate" TVD

schemes, we compute the slopes Sdh from Q(x; u by

fd d~x + I

Here m(xy) is the min mod function

. min(kIx, iO ) if sn() = sn(y)-s
(2.6) m(x,y) otherwise

We show in section 4 that L(x; u-) is a proper reconstruction of u(x) in the

sense that whenever u(x) is smooth

(2.-7a) L(x; -) = (x) + O(h')

and

(2.7b) L(x; -) i;(x) + 0(h3).

Here ii(x) = h 1 f_ u(x + y)dy and L(x; u-)

h-  f' j L(x+y;u)dy; like Q(x; W), thelatterisalsoanon-oscillatory

piecewise-parabolic interpolant of W(x),

(2.7c) L(xj; ) = i'(xi)

~~~~~~~~~~~~~~~...-. ...-.-.;-............-......-...,.....-....... ... ........... ,...
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We remark that the "second-order accurate" TVD schemes described in the

above mentioned references use a slope S//h in (2.5a) that approximates

(d/dr) u(xj) to O(h), and their loss of second-order accuracy at local extrema

points is due to lack of smoothness of the coefficient in the O(h) term at these

points 1. This problem is circumvented in the present scheme by taking Sj/h to

be (2.5b) which is an O(h 2) approximation to (dldx) u(xj). Unfortunately there

is a price to pay for this extra accuracy, namely the loss of the TVD property. As

in TVD schemes

(2.8) TV(Vq I TV(L ('; Vn)),

however here

TV(L(,; vn)) 2 TV(vn)

and indeed the scheme may occasionally increase the variation of the numerical

solution. Although we prove that the scheme is non-oscillatory we have not been

able as yet to complete a proof of uniform boundedness of the total variation of

the numerical solution; this is due to lack of techniques to verify uniform bound-

edness of the maximum norm of the numerical solution.

In section 5 we study the proposed scheme in the constant coefficient case.

We verify that it is uniformly second-order accurate, examine its behavior at local

extrema points and get estimates for the possible increase in total variation per

time-step.

In this paper where we consider numerical schemes of the form (1.2) that are

1. We repeat that the results of [8] and [11] imply that TVD schemes, no matter how
they are constructed, must have this loss of accuracy at local extrema

-7-
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derived from approximating the relation (2.1), it is only natural to consider trun-

cation error in the sense of cell-averages, i.e. we say that the scheme (1.2) is

second-order accurate if

(2.9) 0+1 = hi" 0 + O(h3)

where ii is the cell-average (2.1c) of the exact solution. Since

(2.10) iz(x) = U(x) + O(h)

whenever u(x) is smooth, (2.9) holds also for pointwise values of the solution.

However, in the context of 3rd and higher order accurate schemes, this difference

in definitions of truncation error will be not only conceptual but of practical

importance as well.

Up to this point we have assumed that v(X,T) in (2.3) is the exact solution

to (2.2). The resulting scheme

(2.11a) - ,,+i = I - Xj+v(V) - ji, (v)],

where .fj + 2(v) is (2.1b) applied to v(x,t),

(2.11b) j+in(v) = -" ' f(v(xt)) dt

is certainly second-order accurate in the sense of (2.9). Starting with the exact

cell-averages v7 = ij in (2.11) we get from (2.7a) that

(2.12a) v(z.t) = ,(x,t + tn) + o(h) for o r t r T

and consequently

(2.12b) j+ 12(v) = !J+ v2(u) + OM

which implies (2.9) due to the sufficient smoothness of the coefficient in the

-8-
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O(h2) term in (2.12b).

In section 6 we replace the exact solution v(x,t) in (2.3) by an approximate

one, which we denote by v,(x,t) . This approximate solution is conservative,

TVD, and second-order accurate in the sense of (2.12a). Thus replacing v(x,t)

in (2.3) by this approximate solution results in a conservative scheme that is non-

oscillatory and uniformly second order accurate.

We remark that an alternative approach to the above is to approximate

4+ in(v) in (2.11b) by using a midpoint rule (or trapezoidal rule) for the

integral and by replacing v(x,t) with a non-oscillating second-order accurate

approximate one v,(x,t) (see [161 and (2J). The resulting scheme

(2.13a) vjj + = v, - X Vj+ in - j_ -in)

(2.13b) 4+ rn = f(vn(xj+ 1n, T/2))

is certainly second-order accurate, and it is -non-oscillatory in the constant coeffi-

cient case. Since we have not used the cell-averaging (2.3) to derive this scheme,

we cannot ascertain in general that the resulting scheme is non-oscillatory.

Nevertheless, our numerical experiments as well as many other experiments in

the context of TVD schemes (see e.g. [1], [2]) demonstrate that the numerical

results are non-oscillatory in many (if not all) applications.

In section 7 we present some numerical experiments that compare the present

scheme with a typical "second-order accurate" TVD scheme.

3. Nonoscillatory interpolation.

The oscillatory nature of second order accurate Lax-Wendroff type schemes

. .. . . . . . -. -. -.-. . . . . -



results from a Gibbs phenomenon associated with high-order interpolation across

discontinuities. In this section, as a preparatory step towards designing a nonos-

cilatory approximation to (1.1.), we construct a non-oscillatory piecewise-

parabolic interpolant Q(x; u) to a piecewise-smooth function u(x) such that

(3.1a) Q(xi; u) = u(x1)

(3. 1b) Q (x; u) m qi + ln(x; u), xj _, x :S xi + 1 ,

where qj + , is a quadratic polynomial, and

(3.1c) Q(x; u) - u(x) = 0(h3), "." Q(x ± 0; U) - d u(x) = O(h 2)

wherever u(x) is smooth.

Q(x; u) is non-oscillatory in the sense that the number of its local extrema

does not exceed that of u(x).

Since

q +2(xi; u) = uj, q1+ 2(xi+ 1; u) = uj+I

it can be written in the form
1

(3.2a)qj+j/2(xu) = ui + dim 2 u(x - x5)lh + -Di+v/2 u - (x - xi)(x - xi+,)lh 2

where

(3.2b) di+ lb u = ui+ 1 - Ui

and Di +/2 u is yet to be determined.

Di + 1/2 u =h 2 qi+ 12(x; u), xi , x s xi+ 1.

-10-
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Q has its local extremum in the interior of some (x,, xi+ 1). We recall that such

an etremum is characterized by Idi + 2 vn < in Pi vI and that S7 and

S + 1 in this case are given by (4.14); therefore S'+I - S7 = Di+ n v". From

(5.3a) and (4.6a) we see that in general
__ 1

(5.10a)v 1 - Q(x,+ 1 - aT; v') = j- Il(l - uL)(D,+ 1/2 v' - S+I + S:)

Hence

(5.10b) Idi+12 VI < - ID,+12 V"1 v7., Q - aT; v)

Relation (5.10b) confirms the second order accuracy of the scheme at local

extrema. Although it does not necessitate accentuation of the extremal values, as
Mn+I

Vi + 1 in (5.10b) may still be in [v7, v+ 11, it does allow vj.n+ to deviate from

this interval by as much as

(5.10c) - ID,+VnI(Idi+1nVnIVIp, + 1 12)2

Thus (5.10b) is the essential difference between the present scheme and the

"second order" TVD schemes.

A similar analysis, which we do not present here, shows that if vIf is a

mesh-extremum then v +  ,j = i, i + 1, relates to Q(xj - a; v") in the fol-

lowing way:

(5.11a) vI+ Q(xj - ar; vI), j = i, i + 1, if vv: is a maximum

(5.11b) vjn+ 1  Q(xj - a-r; v"), j = i, i + 1, if v' is a minimum.

From (5.9)-(5.11) we deduce the following relation between the total varia-

-24-
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(5.6b) Idj _in v1 2t IDj-v ,,I = 1-21 " - S7- t/tdJ-y2 v"_ , 2.

Rewriting (5.3) in this case as

(5-7a) vjn 1  v7 - A d-l,2 vR - 1/2 L(l - Ljj d-jV

=(1 - CrTj- 1/) v7 -I+r -i 7

where

(5.7b) j-in = I. + 1

We see that the C condition 0 < a :5 1 and (5.6b) imply that

(5.7c) 0 S c-ln S 1

thus we conclude

(5.8) lJ_. vI z I Dj- a VI = v7+ [v7..'1, v -

Relation (5.8) shows that if v' is monotone for IL j S JR, i.e.
VJL S VJL+ t S .. * ,J, Or V, vj.j 2t. .. 2tv then v",+1 is mono-

tone for JL + 1 5 j s J, and in the same sense. Relation (5.8) also shows

that mesh-extrema of vn, i.e. those for which Q has its local extremum at a

mesh point, are being damped at the n-th time-step. Namely,

1(5.9a) Id/+l/2 V, 1 ±1L2 vvi, vj_ 1 S Vjo v- 1 I maX( v j 1  '

(5.9b2 IDJ., 2 1vn1, vj., 1 2: vy + = min(vj+l, " .l.+ I)

We turn now to consider interior local extrema of vn, i.e. those for which

-23-
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(5.5a) 7Vv, "l <5 7V(L(- vl)).

Using (4.15) and (5.5a) we get the following upper bound on the possible growth

of the total variation of the numerical solution per time-step

(5.5b) T*V(v' - V(v") _- 1 -vI.+ .nI Id i+ L, Vnj

Here Mn is the set of indices of intervals (xm, x,..l) in the interior of

which L(x; vn) (and also Q(x; vn)) has a local extremum. The number of these

intervals is finite and remains uniformly bounded in time by the number of local

extrema in the initial data.

Clearly the upper bound (5.5b) is overly pessimistic. It estimates the possi-

ble increase in variation in the reconstruction step due to replacing the cell-

averages v7 by the piecewise-linear function L(x; Vn). It does not take into

account the possible decrease in variation in the averaging step (2.3), resulting

from doing just the opposite, i.e. replacing the piecewise-linear function

L(x - aT; v") in (5.2) by its cell-averages (5.3a).

In the following we shall examine the temporal behaviour of the local

extrema of the numerical solution and its total variation by analysing the explicit

values of the cell-averages v7n+ I given by (5.3b). To simplify our presentation

let us assume that a > 0.

First we note that (4.8b) implies

(5.6a) j - Sj- IIs jj/ + ISj.,1 S 2 max(Ij1  vn1, -1 IDj.._vnI)

Hence

-22-
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where L is (4.5a). We have shown in section 3 that the number of local

extrema in L(x; v) does not exceed that of vn. Since vn ' in (5.3a) is a cell-

average of L, it follows that the number of local extrema in Vn + 1 does not

exceed that of v, and consequently the scheme (5.3a) is non-oscillatory.

Using (4.5b) in (5.3a) we get the following expression for the scheme

(5.3b) v7y 1 = (Ek • vn)j

VI - pd, vn - D2 (1 - p)(S - S7-..) if a> 0

{ ILdj+ I2 
v*1 + I2 (1 + 1(S1+ 1 - S 7) if a < 0

Ek denotes the operator form of the finite difference scheme; z = ka, the

CFL-number, is assumed to satisfy

(5.3c) I1< 1

We turn now to prove that (5.3) is second order accurate in the sense of

(2.9), i.e. if P(x) denotes the mean value (4.1) of u(x,t,) then

(5.4a) gin - (Eh .i-")j = 0(h3) .

To show that we observe that in the constant coefficient case (5.1)

i+ 1 = U"(xj - ar), and by (5.3a) (Eh - u")j = l(xj - ar; U"). Hence the LHS

of (5.4a) is nothing but

(5.4b) U"(xj- ar) - L(xj - ar; 0)

which is O(h3) as a direct consequence of (4.bc).

Next we study the time-dependence of the total variation and the maximum

norm of the numerical solution (5.3). In section 2 we have pointed out that

-21-
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(4.14b) Sj+j = Sj. 1 = dj+ 1 +  Dj+ 12 W "

The same analysis shows that (4.14) holds also for the case that Q(x; u-) has a

local minimum in (xj, xj+ )- (4-9b) follows immediately from (4.14) and (4.7a).

We note that since L(x; u-) is continuous at xj

(4.15) 7V(L(;i-)) = E Tvx,,,.d(L(-; u-)) - X max Idj+ La -1, -" pj+ In u)

Y. Idi,.iD251 + I I.+X d l

Here M is the set of indices of intervals (x.,,x, ) in the interior of which L

(and also Q) has a local extremum. The number of these intervals is finite and

is bounded by the number of local extrema of ii(x). Comparing (4.9) with (3.8)

we note that

(4.16) TV(L(-; 7)) V(Q(.; -).

S. The constant coeffieient ce.

In this section we study the constant coefficient case

(5.1) u,+aux=0, a=const.

The exact solution of the IVP (2.2) is

(5.2) v(x,t) = L(x - at; v").

Hence our scheme (2.3) is

( fri L(x - ar; v") dx = L(xj - ar; v")
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To complete the verification of (4.7b) we still have to show that

(4.9b) IA+d/2 I <I D.+1/2 In. - TV O(L('; -) 1
ijt2 2 2'~f x~jd\ ~ iiL

First we observe that

2 I

1
=Di W - !(Di+ln W + D-v In -)

Since (3.2d) implies

(4.11) I , =1 l (ID, -In u! + j,+In -1s)

we conclude from (4.10) that

(4.12) (Sj+ - S-) sgn(D u-) > 0.

We turn now to prove (4.9b). First let us consider the case that Q(x; u-)

hasalocalmaimumin (xj, x+ .), i.e. Dj W < 0, Dj+ W < 0, and

It follows from (4.12) that

(4.13a) SF ; sj = d-. W - $ Dj+ a W > 0

(4.13b) 0 > dj+v Mi + -L D1 + 112 W"= $j"+1 ;m $j++1

The relations (4.13) and the definitions (4.8a), (4.2b) imply that
1

(4.14a) Sj S dj+ a W - -1 Dj+ai

-19-
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to U(x) in exactly the same sense as is to the intrpolated function (see sec-

tion 3).

Next let us denote
d

(4.8a) St = At Q(X, 0 ; -),

i.e.

-1 1 -Iu

(4.8b) SF = djl 2 i + - Dj, W, $j" dj+in W - -L jD

and observe that (4.2b) implies that

(4.8c) -'Il+ j+iD =[m~T -1) - +mS~, A
[*Si' SJ)' +lm(S+IdJ+ 421

< (Is;I + T = "2 IdJ+1 2n - IDj+ln2ul + 2j+ln + 1

s2 n jD2 1 2vid2v i)

ra m (lj,a ul, -1IDj+In u
2

which in turn implies

sn(Sj) - sg(dj+ 112 2) 0, sgn(Sj +1) ssn(dj+ 1/2 U 0

It folows then from (4.8c) that the RHS of (4.7a) is Idj+ In -l. This shows that

(4.9a) Idj+ 1/2 U - IDj 1/2 -' = TV[.,,.+d(L(; u)) = +dJ. 12 U1.

-18-
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also at local extrema points) and therefore

Sj+I - Sj = h2 de U(XJ+11) + 0(h)

On the other hand (3.2) shows that

Dj + L",2 242+Oh
d u(X2 +j + o(u3).

Therefore

(4.6b) Sj+ I - Sj - Dj+ 1 = 0(h3)

which shows that RES of (4.6a) is O(h). Since (2.1c) shows that

aQ(x; -) - W(x) = O(h3)

we conclude from (4.6a)-(4.6b) that

(4.6c) L(x; -) - W(x) = O0(h3).

We turn now to prove that L(x; -) is a non-oscillatory approximation to

i'(x); this certainly implies that L(x; u-) is a non-oscillatory approximation to

u(x). We shall do so by showing that TV[ ,X,.d(L(.; u-)), the total-variation of

L(x; -) in [xj, xj+1], which has the value

(4.7a) Tu-[z, ](L(-; i-)) = (SjIl + ISj+ 1) + Idj+ 12 W - I(Sj + sj+ 1)1

can also be expressed as

(4.7b) TV[.,.,.d(L(.; -)) = max(Idj + In ul, -jID+ lnt1

Then it follows immediately form (4.7b), (4.3a) and (3.8) that L is monotone in

[xj, xj+ 1] if and only if Q is; consequently L is a non-oscillatory approximation
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and therefore it follows from (3.1c) that

(4.4b) RSj= fi-(x) + 0(h2) - --7u(xj) + O(h 2).

Consequently the RHS of (4.2a) can be expanded as

dr(4.4:) L.(x; i-) =f aaj + (x - xj) 4  u(xj) + 0(h2 )

= a(x) +O(h2) for k - XI< 1h

and thus (4.3b) follows.

Denoteby E(x;i-) the mean value of L(x;-)in (x- h2,x+ h2), i.e.

(4.5a) E(X; U) h f L(y; u-) dy.

Using (4.2a) to evaluate the integral in (4.5a) we find

. (x - xj)/h + (1a)(S + - Sj)(x - xJ)(x - xj+ Yh2 ,

for xj S x < xj+ 1

(4.5c) L(xj; -) = ii.

Hence L(x; u-), like Q(x; u-), is a piecewise-parabolic interpolant of ii(x).

Comparing (4.5b) with (3.2) we find that for xj S x S xj +1
1

(4.6a) L(x; -) - Q(x; -) = -1(si+ - sj- D -. ) i(x - xj)(x - xj.O/h-

From (4.4b) we see that S= h -±- (xj) + O(h) (Note that this is true
tfr
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4. Nmon-OWf 7 Rcomsctoma.

Let u(x) be a piecewise-smooth function and denote by i(x) its mean over

(x - h/2,x + h/2), i.e.

(4-1) 1(X) Z+h1/2 (y ) d.

We denote W = i(xj) and refer to these values as cell-averages of u(x). Given

{ jj, the task in hand is to reconstruct u(x) to O(h 2) in a non-oscllatory way;

denote the approxmately reconstructed function by L(x; ii). To achieve O(h2)

accuracy it is sufficient to consider L(x; u-) to be a piecewise-linear function. To

make L(x; u-) a non-oscillatory approximation we use the non-oscillatory piece-

wise parabolic interpolation Q(x; u-) to compute its slopes as follows:

(4.2a) L(x; u=) + Sj(x - xj)/h for j- 1 < x - h

(4.2b) Sj = h " m "-I Q(Xj - 0; U-), --I Q(Xj + 0; U-).

Here m is the min mod function (3.3); d+ a W" and Dj+ a W are (3.2b) and

(3.2d), respectively.

We note that L(x; u-) may be discontinuous at {xj + V2 and that

(4,.3a) L (xj; u- = ij.

To see that wherever u(x) is smooth

(4.3b) L(x,u-) - u(x) = O(h2)

we observe that in this case

(4.4a) F(x) = u(x) + O(h2)

-15-
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(II u 2
mE, I)+ l

mEM

The sum in the RH of (3.8c) is taken over the set of indices M of intervals

(xm, x,+ 1) in which IDm+ I uj > 214 + ln u1, i.e. where Q has interior-

exm.

Next we show that if u(x) is a piecewise-smooth function of bounded varia-

tion, then

(3.9) l,. 7o (Q('; u)) = V(u).
-o-

We observe that in this case the number of intervals in M is finite and is uni-

formly bounded by the number of local extrema in u(x). Hence (3.9) will follow
S.

if we prove that Dm+ I 2 u - O as h - O frall m E M. To accomplish this we
show that for h sufficiently small M does not include intervals (x,, x,. 1) in

which u(x) is discontinuous. To see that let us examine the case where u(x)

has a discontinuity at F E (x, x1+ 1) . Clearly di+ L u approaches the size of

the jump in u while di 1 /-u approaches zero as h-. 0. Consequently

(3.10a) M/jud1.1. uj = 11 - d1 ,2 u/d1 .jn ul 1 as h - 0

Hence for h sufficiently small

('3.10b) 21dj ln ul > j , ui a I ,+l U1

which implies i M.

\V
o-.- -14-
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mesh function {aj} (for obvious reasons the case u1 - u, I is counted as a

single-etremum). The above analysis also shows that interior-extrema are iso-

lated, i.e. if Q has an interior-extremum in (xi, x,+ 1), then it is the only local

extremum of Q in (xI- 1, xi+2).

We turn now to examine the case that Q has a local extremum at a mesh

point x1; this will be refered to as a mesh-extremum. The above observation

that interior extrema are isolated excludes the possibility that Q has an interior-

extremum in either (xi_1, xz) or (xi, x ) and consequently { is monotone in

these intervals. This implies that di -g2 u • di + 2 u < 0 and therefore uj is a

local extremum of the mesh function {au}. This concludes the proof that Q(x; u)

is a non-oscillatory interpolant of u.

We next express the non-oscillatory nature of Q in terms of total variation.

If lDj+n 2ul 9 21d+1n ul then (2.5) implies that Q is monotone in (x, xj+1J.

Thus

(3.8a) IDj+ UI S 21dj+ n I =,* TV ,.j (Q) = I.j+v I u.

If IDj+ aI > 21dj+ Iu then Q has a local extremum in (xj,xj +) and

TVrz,,z,+J(Q) = I+2 - +I + l++ - q;+ l

Using (2.6) we get

,ii (3-8b) IDj. a ul > 21d+ 1/ul 7 TV[x,,.+.j(Q)

We conclude that
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mesh function {uj}, the number of which certainly does not exceed that of u(x).

Q may have a local extremum in either the interior of some interval

(xixi+ 1) or at a mesh point xi. The first case, which will be fered to as

interior-extremum, ocurs when there is a point x*, xj < x < x + , such that

d d
Q(x; u) = 0, but -q+ 0°

From (3.2a) if follows that Q has an interior-extremum, in (xi, x+ 1) if and

only if

(3.5) IDIn u> 2d+vn uI.

q+ In = qi+ +,(X*), the value of the interior-extremum is then

-1 _____+ 1 _ 1 ]2

(3.6) qj+I = u - - o,- ,2 ( D 5 1 u 2

. if Di+ u < 0 it is a local maximum; if D+.nu > 0 it is a localinimnm

Since Di+lt2 = mu(Dju, D1+l u), (3.5) holds if and only if

(3.7a) Diu •Dj+tu >0

(3.7b) IDj u > 21d,+v ul, j =i, / + 1.

This implies that q+ In has a local extremum in (x, xi+ ) if and only if both q.

and also have a local extremum in (xi, xj+ 1) and of the same kind. Since

a parabola has at most one local extremum, it follows then that j does not have

a local extremum in (x-1, xz) and &Ij does not have one in (Xi+l, x,+2).

Consequently Q is monotone in both (xi _.1, xj) and (xi+ 1, x + ), but in an

opposite sense, i.e. dglI u • dj+.v2 u < 0; the latter implies that u has a local

extremum in [xi, xj 1] and that either ua or uj+ I is a local extremum of the

-12-
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We consider as candidates for qi+ I the two quadratic polynomials q.

and + interpolating u(x) at (xi-1, x, zx+ 1) and (xi, Xj~l, x+.2), respec-

tively, and choose qj. 1/2 to be the one that is least oscillatory in [xi, x ,, J.

Both j, j = i and j =fi + 1, can be written as (3.2a) with Di.,1/2 u = Dju

where

(3.2c) Dju = dj+rp - ds- nu = uj+l - 2uj + aa-l

Since the least oscillatory of j and +1 can be characterized as the one that

deviates the least from the line connecting (xj,u) with (xi+ ,ui+ ) we choose

D+ In u in (3.2a) to be

(3.2d) Dj+ u = m(D1u, Dj+ u) ,

where m(xy) is the min mod function

(3.) (XY (=I' min(KH~bI if sgn(x) = sgn(y) =(3.3) m(x,y) = "to llll) snx fisn)=to otherwise.

If u(x) is smooth in [xj-.,xj+s], then j as aquadraticinterpolantof u

satisfies

(3.4)j(x) - u(x) = 0(h3), - f(x) - -- u(x) = 0(h2), Xp_.1 G X" Xj 1.

If Diu Di.u 2t 0 then q+ 1/2 is either i or j+1. Otherwise we set

Di + 1/u = 0, but then smoothness of u implies that Dju = 0(h 3) and conse-

quently q + ln - j = 0(h 3) for j = i, i + 1. Thus (3.1c) follows from (3.4).

We turn now to prove that Q(x; u) is a nonoscillatory interpolant of u,

i.e. that the number ofits local extrema does not exceed that of u. We do so by

showing a one-to-one correspondence between local extrema of Q to those of the

-o:

" -11-

: , :-..: _ _ *,. .,. ,, ;.. .,. *0 .. . .** . * *-. ,
. ..- *.*.***s* * j**** ~ *'~* .*=*



tion of the numerical solution and that of its piecewise-parabolic interpolant Q:

5._2) ZV({Q(xj - ar; v")}) S TV(v 1) + TV(Q(.; v))

The LHS of (5.12) is the total variation of the mesh function

{Q(xj - a?; v)}. Relation (5.12) suggests to consider an equivalent definition

T of the total variation of the numerical approximation of the form

V(v") = V(Q-(; v))

with the hope that the scheme (5.3) is TVD with respect to this modified defini-

tion. Unfortunately our numerical experiments have shown that there are

ins , although rather rare, that N(vn) is increasing with n; the same is

true for TV(vl) = T(,(-; 0)).

As we have mentioned in the introduction, because of the nonosclflatory

nature of the scheme, uniform total variation boundedness of the numerical solu-

tion is implied by uniform boundednes of its maximum norm. If we follow a

particular local maximum of the initial data we see from (5.9)-(5.10a) that it

actually decreases most of the time, and whenever it does increase (5.10c) and

(3.10) suggest that it does so by a "small amount" that vanishes with h -. 0.

Since the initial data is only piecewise-smooth we have not been able as yet to

rigorize these arguments.

We remark that our numerical experiments clearly indicate that in a normal

computational situation the maximum norm of the numerical solution is indeed

uniformly bounded. We feel that our inability to prove this fact stems only from

lack of theoretical tools to analyse pointwise regularity of the numerical solution.

-25-
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6. The nonlinear case. In this section we describe an approximate solution

v(x, t) of [5] for the IVP (2.2)

(6.1) v, + f(v). = 0, v(x,O) = L(x; va)

This approximate solution is consistent with the conservation form of the equation

(6.1) in the sense that the cell-averaging (2.3) results in a scheme in conservation

form i.e.

(6.2) vjn+1 1 J*. V n(X,T) dx =, - XJ+ in -- 102)

where the numerical flux 4 j+ t is consistent with f(u) in the sense of (1.2c).

Furthermore, the approximate solution operator is TVD

(6.3) TV(v.(; t)) < TV(v.(-; 0)) = ?V(L(; vn)) for 0 s t 5 T

and thus by the reasoning presented in section 2, the resulting scheme (6.2) is

non-oscillatory.

We turn now to outline the derivation of this approximate solution. To sim-

plify our presentation we ignore entropy considerations and refer the reader to

future papers for details of appropriate modifications. We assign to the point

x. in a characteristic speed that corresponds to the Rankine-Hugoniot speed

j a+ l/ of the two neighbouring cell-averages v, and v, +

fAV7+i) - fAV7) if V7 + I
(6.4a) j+ =

a (vj)i 7=v+

and denote by i(x) the piecewise-linear interpolant of {j+ 1/2, i.e.
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(6.4b) W(x) =j-V + M - V2 (X - MOM.J.Y

for Xj -t 1/2 x Xj4..

The approximate solution v.(x,t) is defined by specifying its constancy

along the approximate characteristics

(6.5a) x(t) = X0 + W(xo)- t

i.e.

(6.5b) v,(x(t), t) - v.(xo,O) = L(xo; v )

Using (6.5a) and (6.4b) to express x0 in terms of x and t

6.5c) xo(x,t) = xj-... + h -[x - xj-12(t)j/[xj+14(t) - xj-t(t)]

for xi_ -z) < x < xj + (t)

we get from (6.5b) that

(6.6a) v.(x,t) =L~x.v + h - X - Xj... in(t) *(i-xi + in(t) - in (t)

for x-(,2 0) < x < Xj MAO

where

(6.6b) Xij +j/(t) = x+ 1/2  t t +1/2 .

Taking cell-averages of the approximate solution (6.6) we get the conservation

form (6.2)

(6.7a) ," =+ 1 v j 1 -1-

-27-

.....,.,,,--, ,, ,-..-.,..,,..:.........,:......-............................ ..... .............. ......... .. ..... . , . . . .



with he nUmeZial flui

(6.7b) fj / i &+ if iij+ 1,1 :S

where

(6. 7c) 9= S/1[1 + X(Y+ - in)]

Note that (6.7) is identical to (5.30) in the constant coefficient case.

We turn now to prove that the scheme (6.7) is uniformly second-order accu-

rate in the sense of (2.9). Starting with the exact cell-averages v7 = i7 in (6.7)

this amounts to showing that

(6.8a) +12 = j+ n(u) + O(h2)

with a sufficiently smooth coefficient in the O(h2) term; here 1/2 is the

numerical flux (6.7b) computed with the exact cell-averages, and /jj +n(u) is

(2.1b). We shall do so in two steps: first we shall show that

(6.8b) fijV(u) = -(L(X,+ /2; u')) + f(L(xo(xj+ /2, 'r); UIA)) OM(h2 )

where xo(xj+in,T) is (6.5c), and then we shall verify that

(6.8c) f(L(x,. 2 u")) + f(L(xO(Jrj + 1/, r); UM))] =f+ 12 + 0(h 2).

Special attention will be given to the smoothness of the O(h2) coefficients.

To show (6.8b) we start by using the trapezoidal rule to approximate the

integral in (2. 1b); we get
1

(6.9a) j+ 1/2(u) = -j[f(u(x+ , tn)) + f(u(xj+ In, tn + T)) + O(h2).
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The smoothness of the O(h2) term follows from that of f(u) and u(x,t). Next

we observe that i(x) in (6.4b) approximates a(u(x,t,)) to O(h), and there-

fore we can use the approximate characteristic line (6.5c) to trace

U(xj+1/2, t. + T) to U(xO(xj+L, 'r), t) with 0(h3) accuracy; consequently

(6.9b) f(u(xj.v 2, t. + T)) = f(u(xo(x+ t2, T), 0n)) + O(h 3).

Finally we obtain (6.8b) by approximating u(x,tn) in (6.9a) and (6.9b) to

O(h2) by L(x; si") (see (4.4)). The smoothness of the O(h ) term in this

a mtion is due to (4.4c):

Sy = h- i(x, t,) + O(h 3).

(We recall that the degeneracy to first order accuracy at local extrema points of

some "second-order accurate" TVD schemes is due to lack of smoothness there of

the O(h2) term in (2.7a)).

We turn now to verify (6.8c). First let us consider the case W+ 0:

L(xj+ In; 0") =j + -1 S2

and expnd the LHS of (6.8c) around ij7. We get

(6.10a) f(j) + -- a(ij-)(1 - X Wj+1/2) - + -1a'(tj-')[(1 -. j-11) 2

+ (( i+/2) 2j(Sj)2  O 0(h 3) = j + L2 (2L2a2 - 1)" a' (u) 2 j+y2 + O(h 3).

Similarly in the case Wj+In:%O:
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1
L(xi+ 1n; U') = + - y 1 +, L(xo(xj+ a, r); )

= - +" 1+ ?(a+I 2-LI + 1

we expand the LHS of (6.8c) around gj7+ 1 to get

(6.10b)f('7 i) - -L a(j"+I)(1 + 3+ 2JSj I

. ao'(u7+,)[(1 + )IWJ+3 12) 2 + (Xaj+ l• (SJ+1) 2 + o(h3)

= f+1L2 + -j (2) 2a2  a 1) a' (u,,z ,2t + o(h).

We see from (6.10a) and (6.10b) that i p dtly of the sin of + W, the

O(h2) term in (6.8c) is the same, namely

h2

T (2k 2a 2 - 1). (UX) 2 ,1+.

TI completes the proof that the scheme (6.7) is second-order acmrate in the

sens of (2.9) wherever u(x,t) is smooth, including local extrema and sonic

Vf = 0) points.

Remarks: (1) The numerical flux (6.7b) can be rewritten as:

(6.11) 1+1/2 = I+ f(v+i) - I + (v7+) - v)

+ MAT~O, IiJ + "@ - in) j

min(, +1/2) (1 + +
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(2) Our proof that the scheme (6.7) is non-oscillatory is based on the

representation of (6.7) as the cell-average (6.2) of the non-oscillatory approxi-

mate solution v,(x,t) in (6.6).. To ensure that v.(x,t) remains univalued for

O t Sr we have to restrict the time-step T sothat forall j

(6.12a) Xj+ a(T) > xi-_n(T).-

This implies the condition

(6.12b) -r mazj(W_-jn - Wj+j2 <s h.

On the other hand, to derive the particular form of the numerical flux (6.7b) we

have made the assumption

(6.13a) j ja(T) - xj+ ln < h for all j,

which implies the condition.

(6.13b) T mnax=jj+i,2 < h.

The two time-step restrictions (6.12b) and (6.13b) are characteristic to

Godunov-type schemes. The practice of reconciling the two conditions by

T mazjl(+ nj:1 h

is completely unecessary: The scheme (6.7), as the original Godunov scheme,

remains non-oscillatory (or TVD in the case analysed in [101) for the full CFL-

restriction (6.13b). The reasoning for this observation is as follows: The approxi-

mate solution (6.6) under the CFL restriction (6.13b) may fail to be univalued in

the j-th cell only if ija>0 and i/ n<0. In this case the numerical fluxes

& 1/2 as defined by cell-averaging in the neighboring cells j ± 1, remain (6.7b).

Thus the only thing that needs to be changed in this case is the definition of
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v.(x,T) in the j-th cell.

(3) We observe that once v (x,T) is defined globally in (6.6) there is no

intrinsic need to average it on the original mesh. We may average it on different

intervals and still conclude that the resulting approximation is non-oscillatory and

conservative. Furthermore, the construction of the interpolant Q, the approxi-

mation L and the approximate characteristic field W(x) needed to define

v.(x, t), does not depend on the uniformity of the mesh. Therefore the scheme

(6.7) generalizes immediately to non-uniform moving meshes. Of particular com-

putational interest are the self-adjusting moving grids of the type described in

[121, which make it possible to obtain perfectly resolved shocks and contact

discontinuities.

(4) We note that since the approximate solution v,(x,t) in (6.6) is conser-

vative, it is possible to consider an associated random-choice method obtained by

replacing the cell-averaging in (6.2) by a sampling with respect to a variable that

is uniformly distributed in the cell, i.e.

V1+ = vR(Xj + 07hT)

where 07 is uniformly distributed in [- 1/2,1/2J. Following the reasoning of [71

it is clear that the resulting random-choice method is non-oscillatory and that its

limits are weak solutions of (1.1). Although the random-choice approach has

many attractive computational features, it has been our experience that in many

application it is possible to accomplish the same computational goals with a self-

adjusting moving grid. In this case the use of the latter is preferable as it offers

gain in resolution without a loss in pointwise accuracy that is associated with sam-

pling.
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7. Numericaml fMltratlm. In this section we compare the new uniformly

second-order non-oscillatory scheme of this paper (to be refered to as UN02) to

the typical second-order TVD scheme (to be refered to as 1VD2). Both schemes

can be written in the form (6.7), i.e.

(7-1a) vY *' - X l -- ){ - V)

(1(v)') + 1/2 IWJ+11(1 - )LWip.17SY1I1 + X'(WJ+v2 - "1j-112)1I if j+ In 0
(7.1b)f =f(vjn+,) - 1/2 Wj +1 (1 + taj+3,2)Sj+1/41 + )(Ii+3- "j+L1.)1

if g+1 n1 T.O

(7.1c) Si = M(SP+,SF);

here W+a is (6.4a) and m(xy) is the min mod function (3.3). S/ are dif-

ferent for TVD2 and UN02:

(7 .2) TVD2: S/ -dj:, 2 v'

(7.3) UNo 2: S? = djtlv :F I Dj,1,2vn

where d I and Di, L,2 are definedin (3.2).

UNO2 and TVD2 are both second-order accurate Godunov-type schemes

that differ only in the reconstruction step (4.2a):

(7.4a) L(x;u) = uj + Sj(x - xj)/h for k - xjI < h/2,

where the slopes of the lines are calculated by (7.3) and (7.2), respectively.

Therefore we start our comparison on the approximation level.

In Table 1 and Fig. I we present approximations to
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u(x) = sinirx, -I s x s 1. We divide [-1,1] into N equal intervals and

define

2
(7.4) xj = -1 + 0Sj N,

The symbols in Fig. I denotes values of u/ = sinrxi for N = 10 in (7.4b). In

Fig. la we show the piecewise-parabolic interpolant Q(x;) (see section 3). In

Fig. lb we show the piecewise-linear approximation LI-r(x;u) which is (7.4a)

with (7.1c) and (7.3). In Fig. ic we show the piecewise-linear approximation

LTVT(x;u) which is (7.4a) with (7.1c) and (7.2). We make the following obser-

vations regarding Fig. 1: (i) Q is a better approximation than LT.M; LUM is a

better approximation than LTM. (ii) TV(LUt ) > TV() > TV(LTVD). In

table 1 we quantify the first observation; we list the L,-error and the Ll-error of

these approximations to sinarx for a refinement sequence of N = 10,20,40,80

in (7.4b). Clearly Q is an O(h 3) approximation, while LI M  and LTV 2 are

O(h2). Theerrorin LIM isabouta 1/3 of the error in L" v .

In Table 2 and Fig. 2 we present solutions of UN02 and TVD2 for the con-

stant coefficient case

(7.6) t+ ux = 0, u(x,O) sin rx, -I S x :Sl

with periodic boundary conditions, at t =2 with /h = 0.8. Figs 3a and 3b

show UN02 and TVD2, respectively, with N = 20 in (7.4b). In table 2 we list

the L.-error and LI-error for a refinement sequence with N = 20,40,80,160.

Clearly UN02 is second-order accurate in both L. and L 1, while TVD2 is

second-order accurate in L, but only first order accurate in L.. Fig. 3b demon-

strates that the degeneracy to first order accuracy at local extrema in the TVD

-34-
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scheme adversely affects the accuracy everywhere (Because the scheme is TVD it

cannot switch abruptly to second-order accuracy as this would introduce oscilia-

tious; consequently it takes quite a while to recover the second order accuracy).

Next we approximate the discontinuous function

(-xsin(3rx2/2) , -1 < x' < -1D3

(7.7) u(x) = JIsin(2'rx)l , I < 1/3

12x - 1 - 1/6sin(31rx) , 1/3 < x < 1

which we extend to have period 2 outside [- 1,1].

In Fig 3 we present approximations to +(x), using N = 20. Fig 3a shows

Q(x;u-), Fig 3b shows LI'°2 (x;i-), and Fig 3c shows LTVD2 (x;u-). We again

observe that Q is better approximation then LL°, while LL1 °2 is a better

approximation then LTV 2 .

In Fig 4 we present solutions of UNOZ and TVD2 for the constant coeffi-

cient problem (7.6), initial data given by (7.2), and periodic boundary conditions.

We take t = 2 and /h = O.8. Figs 4a and 4b show UN02 and TVD2 respec-

tively with N = 40. Fig 4b shows the damping effect that the TVD scheme

imposes due to its degeneracy to first order accuracy at local extrema.

In Fig 5 we solve the same problems, except we impose boundary conditions.

At x = -1 we impose the given function (7.7) evaluated at -1 - t. No boun-

dary conditions are imposed at x = 1. We implement this numerically using

UN02 and TVD2 except at the boundary points. There we are in general, unable

to construct non-oscillatory piecewise parabolic interpolants Q(x,u-), so we con-

struct the only possible parabolic interpolant thru x,,xi I and the point to either

the left or right which lies in the region. The analogous procedure is carried out
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at the reonstruction stage. Figs 5a and 5b again show the results at t - 2 with

T/h = 0.8.

The possible introduction of oscillations through the boundary conditions

does not seem to have degraded the performance of either scheme (in fact the

opposite is observed). Again the TVD2 scheme shows a damping effect.

In Table 3 and Fig. 6 we present results for Burgers' equation

(7.8) u + WS, = 0, u(x,0) = a + sin Wr(x + /),-1 x 5

with periodic boundary conditions and T/h (I + li) = 0.5. The solution to (7.7)

is smooth for t < 1/w; at t = I/ir it develops shocks. In Table 3a we list the

L.-error and L 1-error of UN02 and TVD2 at t = 0.15 for a = 0 = 0 in

(7.7). This table shows the same asymptotic behaviour as Table 2, except that

because of the large gradients it shows for a smaller h.

In Figs 6aand 6b we show results of UN02 and TVD2 for (7.8) with a = 2

and 3 = 1 at t = 0.35 with N = 20. In this case the solution to (7.8)

develops a shock moving with speed 2 beginning at time t = 1/r = 0.318.

In Table 3b and Figs 6c and 6d we repeat the previous calculations for the

schemes (2.13):

(7.9a) J/+ 1 = v7 -+. j-112)

(7.9b) J+ = f(vn(Xj+vn, T/2)) = f(L(xo(xj+n, ,/2),V"))

where xo(xj+ I, T/2) is (6.5c), i.e.

1V 1 L - d Gj+ 1n + Jj n fd i

2 1 + )(aj+l - aj_ 1/2)n2 - 0

(7 "9cy + 1  2 1 1 + (d + /2 + / 2 . .<

f ! - 2"" 1 + >(dy+3V2 - dy+
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As we have remarked in section 2, vj'I in (7.9a) is not a cell-average of

vn(x,'r), but only an approximation to it. Therefore it is not necessary to take

dj+ a2 in (7.8c) to be (6.4a). We choose dj.n so that (7.9c) is continuous at

dJ+v2 = 0:

(7.gd)aj.+. = (f~v; - S7y 1) - f(v7 + IS)j/ (v+i - SY 1- (v + {SJ.

We denote the schemes (7.9) with Sjn defined by (7.1c) and either (7.2) or

(7.3) by FVD2 and FN02, respectively. We note that (7.9) is identical to (7.1) in

the constant coefficient case, and consequently FVD2 and FN02 are nonoscilla-

tory in the constant coefficient case. Figs 6c and 6d show that FN02 and FVD2

are also non oscillatory in the case (7.8). Furthermore, Table 3b shows that

FN02 is much more accurate than UN02 (FVD2 is about the same as TVD2).

In all previous examples we have presented pointwise calculations; namely,

we have initialized the numerical solution by taking vY to be the value of the ini-

tial data at xz, and we have considered vy to be an approximation to u(xj,t,).

(Surely this is an acceptable practice for second order accurate schemes.) In Table

3c we repeat the calculation for UN2 in Table 3a, but now in a sense of cell-

averages and denote it by AN02. Now we initialize UN02 for (7.8) with

a = 0 = 0 by cell-averages of the initial data, i.e.

1 sin(_ ')_-_sn(___
(7.10a)vy = -- [cos(irxj+wj - cos(irx-i-n)] = sn( Thn) . sin(lrxj)

1rh (ih/2)

and regard v7 to represent cell-averages of u(x,tn). To obtain a pointwise

approximation to u(x,t.) we first compute point values Vj+ n of its indefinite

integral u"(xj-2) fJ' u(y,t) dy by
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(7.10b) W .,.l h V?:.

Next we obtain a global piecewise-linear approximation v(x,t,) to U(x,t,) by

(7.10c) v(Xtn) = - Q(x;V")

where Q is the piecewise-parabolic interpolant of section 3. Finally we get

d 1(7.1Dd) v(xp~tn) = - Q(xj;v") = - (V7v]+1 2 - 1:7-I/2) = v7.

Thus the only difference between AN02 in Table 3c, and UN02 in Table 3a

is the initialization (7.10a), which itself differs only slightly from the mesh values

of the initial data (since sin(rhi2)/(wh/2) = 1 - 1/6(irh/2)2 + 0(h4)).

We remark that cell-averages do play a significant role when the initial data

is discontinuous (since they provide information about the location of the discon-

tinuity) and in higher-order Godunov-type schemes; this will be described else-

where.

We turn now to present calculations with a formal extension of UN02 and

TVD2 for systems of conservation laws. We consider a Riemann problem for the

Euler equations of gas dynamics

(uL x<0

(7.11a) ut + f(u)X = 0, u(x,O) = U >R X>O'

(7.11b) u = (p,m,E)T, f(u) = (m,m 21p + P, m(E + P)lp) ,

(7.11c) P (y - 1)(E - .- m2/p)

Here p, m, E and P are the density, momentum, total energy and pressure,
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Table 3a. Numerical solutions of u, + uuz = 0, u(x,0) = sinfrx, at t = 0.15 and T/h - 0.5 -

UNO2 and TVD2

.- , L.-ERROR LI-ERROR

N UN02 TVD2 UN02 TVD2

20 1.890 x 10-2 2.238 x 10 - 2  1.090 x 10-2 1.854 X 10-2

40 5.712 X 10- 3  1.054 X 10-2 3.034 x 10- 3  5.051 x 10- 3

80 1.552 x 10- 3 4.422 x 10- 3  7.771 x 10- 4  1.340 x 10- 3

160 3.985 x 10 - 4  1.837 x 10- 3  1.965 x 10- 4  3.621 x 10-

Table 3b. Same as Table 3a for FN02 and FVD2.

L..-ERROR L1-ERROR

N FN02 FVD2 FN02 FVD2

20 6.938 x 10- 3  2.091 X 10- 2 3.726 x 10- 3  1.322 X 10-2

40 1.959 x 10 -  1.054 x 10-2 8.869 X 10 -  3.835 x 10

80 5.106 x 10 - 4  4.424 x 10- 3 2.163 x 10 - 4  1.072 X 10- 3

160 1.251 X 10 - 4  1.837 X 10 - 3  5.270 x 10- 5  2.946 x 10 - 4

Table 3c. Same as table 3a for AN02.

N L®-ERROR L1.ERROR I
20 2.249 x 10-2 1.221 x 10-2
40 6.623 x 10- 3  3.243 -10 - 3

80 1.781 x 10 -  8.259 x 10

160 4.597 x 10 - 4  2.079 x 10- 4
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Tabe 1: Approximations to u(x) = sin(wx), - 1 :s x s 1, with periodic boundary conditions.

La-ERROR LI-ERROR

N Q LQ LM LU, LT

10 1.545 x 10- 2  5.122 x 10-  J.'420 x 10- 1 1.494 x 10-2 2.467 x 10-2 7.016 x 10- 2

20 1.971 x 10- 3  1.231 x 10- 2  3.558 x 10- 2  1.802 X 10- 3  5.576 X 10- 3  1.525 x 10- 2

40 2.476 x 10- 4  3.083 x 10 3  9.163 x 10- 3  2.148 x 10- 4  1.355 x 10- 3  3.902 x 10- 3

80 3.104 x 10- 5  7.710 x 10- 4  2.308 x 10- 3  2.617 x 10- 1 3.351 x 10- 4  9.787X 10- 4

Tabl 2: Numerical solutions of u, + =0, u(x,O) =sin x, -1 5 x : 1 at t= 2

with periodic boundary conditions and Tlh = 0.8.

L.-ERROR LI-ERROR

N UN02 TVD2 UN02 TVD2

20 7.097 x 10- 3  8.119 x 10- 2  8.944 x 10- 3  6.778 x 10- 2

U 

I 

I

40 1.607 X 10- 3  3.477 x 10- 2  2.044 x 10- 3 2.033 x 10- 2

80 3.870 X 10 - 4  1.453 X 10 - 2  4.926 x 10 - 4  5.626 X 10- 3

160 9.201 x 10 - 5  5.975 x 10 - 3  1.172 X 10 - 4  1.528 x 10 - 3
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Likewise , denotes the component of the vector of slopes in the k-th charac-

teristic field, and is defined as follows:

(7.13e) ,! = m(S_.,s j)/[1 + )(a+ - _)1 ;

m(xy) is the min mod function (3.3). Sj are different for VD2 and N02:

(7.14) TvD2: Ski=d1*it,

1

(7.15) UN02: Skj dj+v12w :F Ij t;

.i Dt/W = M(d+ MW - d. 1/2,, - d. 12 .

In Figs 7.8 and 7.9 we show numerical solutions of UN02 and TVD2, respec-

tively, for the Riemann problem (7.1b) with

UL = (1,0, 2 .5)T, UR = (0.125,0,0.25).

These figures demonstrate that the formal extension to systems is nonoscillatory

in this case. Since the solution to the Riemann problem is just constant states

seperated by waves we do not get to see here the extra resolution power of UN02,

except that its numerical solution is somewhat "crisper" than that of TVD2. In

this calculation we have not employed any artificial compression in the linearly

degenerate field and therefore the contact discontinuity smears like n1 3, as

expected. The interested reader is referred to [4], [51 and [101 for a detailed

description of such compression techniques, as well as for details of entropy

enforcement mechanisms.
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respectively; we take -1 = 1.4.

In the following we apply the extension technique of (3] to UN02 and TVD2.

The idea is to extend UN02 and TVD2 to systems in such a way that will be

identical to (7.1) in the scalar case. and will decouple into (5.3) for each of the

characteristic variables in the constant coefficient system case. To accomplish

that we "ise Roe's averaging for (7.11) (see (13])

(7.12a) vj + = V(v7, V* I)

for which

(7.12b) f(vl+ 1) - f(vj) = A(vj +)1@(v)' I - vjl), A(u) = af/au,

and define local characteristic variables with respect to the right-eigenvector sys-

tem {Rj-1n2} - of A(vj+lt2). We extend (6.11) to systems as follows:

(7.13a) v7+1 + v7 - + L2 - -1/2)

(7.13b) + = + v) 1)f(v+ - 1 c2+Rj+1/2]

(7_13c)4.~j = I a4+2I nw - maxq(O.a4j.v2)(1 - ,-*ngj

+ min(Oq-j +2)(1 + k.a- ?'4. )& j+ l

Here a.t is the k-th eigenvalue of A(vj+l/2) corresponding to RJ, 2 , and

d +lzw denotes the component of dj. Inv = vy+I - vj in the k-thcharacteris-

tic field, i.e.
3

(7.13d) dp. 1/2v = (d. 1 2w)R4+ ,.
k-1
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