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ABSTRACT

Several boundary integral techniques are available for the computation of

the solution to Laplace's equation in multi-connected domains. However, for

cases where the domain is changing, such as in incompressible, inviscid fluid

flow with free surfaces, iterative methods are highly attractive. The paper

describes one such formulation and tests it on circular and elliptic annuli.

It is necessary to use interpolated quadrature points to maintain accuracy

when regions of the annuli are thin.-

Accession For
AMS (MOS) Subject Classifications: 65N99, 65R20, 76B15 '1'T rRA&I

Key Words:- Boundary integral techniques, multi-connected domains, ced 5
)Fredholm integral equations (" , , 7'- ation

Work Unit Number 2 (Physical Mathematics) By

Distribution/

Availability Codes
,Avail and/or

['EN Dist I Special

* Department of Mathematics, University of Arizona, Tucson, Arizona 85710

Partially sponsored by the United States Army under Contract No. DAAG29-80-C-0041, the National Science Foundation, Grant No. MCS-8302549, and by NASA,
Grant No. NGT 03002800.

6

% %-' ....... .. .. ~ .. .% .

a'



SIGNIFICANCE AND EXPLANATION

Several boundary integral techniques are available for the computation of

the solution to Laplace's equation in multi-connected domains. However, for

cases where the dolain is changing, such as in incompressible, inviscid fluid

flow with free surfaces, iterative methods are highly attractive. The paper

describes one such formulation and tests it on circular and elliptic annuli.

It is necessary to use interpolated quadrature points to maintain accuracy

when regions of the annuli are thin.

The responsibility for th.A wording and views expressed in this descriptive
sumarylie wih MC, nd ot iththe authors of this report.
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Section I. Introduction

Various numerical techniques are available to compute solutions to

elliptic partial differential equations. For specific equations, such as

Laplace's equation, the biharmonic equation and Helmholtz's equation, boundary

integral techniques have several advantages over standard finite-difference

and finite-element techniques. Highly accurate solutions for even severely

deformed geometries can be obtained easily by boundary integral techniques.

For exterior problems, the far-field asymptotic boundary conditions are

automatically satisfied. No special effort is required when the domain

changes in time (or with some other independent parameter), since points on

the boundary can be advanced in a straightforward fashion. In particular,

generalized vortex methods, based on boundary integral techniques, have been

used successfully to compute free surface motion of inviscid, incompressible

fluid (Baker et al. 1980, 1982).

Several other researchers, such as Longuet-Higgins and Cokelet (1976) and

Pullin (1982), have also used boundary integral techniques to study free

surface motion. They used costly direct matrix inversion techniques to solve

3
the integral equations, which take O(N3) operatons to perform where N is

the number of points that represent the boundary. In contrast, Baker et al.

(1982) realized that a suitable choice of source or dipole distributions along
t

*Department of Mathematics, University of Arizona, Tucson, Arizona 85710

Partially sponsored by the United States Army under Contract No. DAAG29-80-tC-0041, the National Science Foundation, Grant No. MCS-8302549, and by NASA,

Grant No. NGT 03002600.

h



2

the surface will lead to Fredholm integral equations of the second kind that

may be solved iteratively in O(N2 ) operations. In simply-connected domains,

the solution to Laplace's equation with Dirichlet boundary conditions may be

found iteratively when a dipole distribution along the boundary is used. In

multi-connected domains, an external source contribution must be added to the

dipole distribution along the boundary as a representation for the velocity

potential. This paper will describe how iterative techniques may be used to

find both the source strength and the dipole distribution. Several test

examples are solved numerically. In general, standard quadrature techniques

provide accurate solutions to the boundary integral equations. However, when

the multi-connected domain involves two non-intersecting surfaces that lie

close together, interpolated quadrature techniques are used to solve the

boundary integral equations accurately.

One application of these results is to the study of accelerating thin

fluid shells. Baker (1983) has shown that the motion may be determined from

the solution of Laplace's equation in a multi-connected domain with Dirichlet

boundary conditions. Here the presence of the source term is crucial in

determining correctly the dynamics of the motion. In some cases, it is known

on other grounds that there is no flux across the surfaces and so no source

term is necessary. This is relevant in studies of the classical Rayleigh-

Taylor instability (Baker et al., 1980) and of the motion of water waves over

variable bottom topography (Baker et al., 1982).

In Section II, we start by considering Laplace's equation exterior to a

simply-connected domain. This simple case contains the essential features of

the application of boundary integral equations for potential problems in

multi-connected domains. In Section I1, we consider Laplace's equation

between two closed non-intersecting surfaces and finally, in Section IV, a

numerical technique and results are presented.

* , .'- .'7'' .. , ii .. --. '- .  .: .- .- -... _.. .. ,... ....
%, .,"."J , % % 
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Section II. The Exterior Problem

Consider the region U exterior to a simply-connected domain D with

boundary aD. For convenience, the boundary will be assumed to have a

continuous normal. Boundaries with corners introduce a slight modification in

the mathematics (for details, see Jaswon and Symm, 1977). Suppose that the

potential, *, which satisfies Laplace's equation in D, is specified

along gD. In addition, the behavior of * far from gD must he' specified. In

three-dimensions, a unique solution is determined by requiring that * decays

algebraically far from gD. However, in two-dimensions the situation is more

complicated. A unique solution can be found if * is logarithmic or tends to

a constant at infinity but not both (Kellogg, 1929).

For simplicity of presentation, we shall assume that the potential is

logarithmic at infinity if the geometry is two-dimensional. The other case is

treated similarly. According to classical potential theory, * may then be
expressed in terms of a source distribution a along gD;

*(p) = f a(q)g(p,q)dq , p e DuaD (2.1)
3D

where p and q are field points and g(p,q) is the Green's function for

Laplace's equation in free-space. In particular, when p e gD, equation (2.1)

constitutes a Fredholm equation of the first kind for the source strength a in

terms of the specified potential €. If collocation and numerical quadrature

are used to solve equation (2.1), a matrix equation results which is usually

solved by direct inversion techniques. We are not aware of any matrix

splitting that leads to an iteration scheme that converges globally, that is,

converges for any choice of 3D. Once a is determined, 4 can be evaluated

in U via (2.1).
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Alternatively, as suggested by the form of a solution for an interior

Dirichlet problem, we may seek to express * in terms of a dipole

distribution u along DD. However, such a representation is not

sufficient. A dipole distribution decays to zero at infinity, and a source

term must be added in order to satisfy the condition there. The location of

the source inside 3D is arbitrary but for numerical computations it is best

not to place it near 3D. For convenience, the source may be considered to be

at the origin of the coordinate system. Thus

O(p) = fDu(q) 3- (p,q)dq + AOs(p) , p UuaD (2.2)
aD an q

where n is the normal pointing into U and the normal derivative is taken

with respect to q (hence the q subscript on n). The unit source

potential #s(p) depends on the nature of aD and the spatial dimension. In

particular, for a closed 3D in two dimensions,

= 
(p )  = ogj 1 (2.3)

Clearly, equations for p and A must be sought.

As p approaches aD along the normal, (2.2) takes on the limiting form

0 P(q) - (p,q)dq - '-P = *(p) - A,5 (p) R(p), p c aD (2.4)
aD q

Equation (2.4) has been written explicitly in the form of a Fredhoim integral

equation of the second kind for u. The arbitrariness in A is only apparent

in that the Fredholm alternative must be satisfied in order for (2.4) have a

solution U. As required by Fredholm theory, the eigenvalues x of the

equation,

-" , -" -" ---..

.-" .- .- .. .-... -; "- . -. -.. *. . r , - *'-... *,: .: ' '- -. - . --. - . . . -. . - - - .. . .. . . . ..
-9.-*t. '



2A g p(q) 9-(p,q)dq - ji(p) 0, (2.5)
aD an q

must be known. Kellogg (1929) proves that the eigenvalues are distinct and

real and they all satisfy jxj > 1. In addition, A = 1 is an eigenvalue of

geometric multiplicity one with eigenvector v = C, a constant (Jaswon and

Symm, 1977). This corresponds to a potential distribution * = C in D and

*=0 in -.

Since (2.4) has a non-trivial solution when R = 0 there is no solution

to (2.4) for R * 0 unless P satisfies the Fredholm alternative. Multiply

(2.4) by a source distribution a(p) along aD and integrate around 3D with

respect to p. The result may be written as

u(q)[ ~O(P)W X-nTp,q)dp- 2()]dq = f R(p)a(p)dp (2.6)
8D aD q 3D

In particular, if a is a nontrivial solution of the adjoint problem,

f a(q) 1,1-pq)dq - 0, (2.7)

aD p

then

f R(p)a(p)dp = 0, (2.8)

where the following relationship has been used;

g(pq) = g(q,p). (2.9)

Clearly, (2.8) is a necessary condition for u. to exist. The fact that it is

also a sufficient condition follows from the usual method of proof that

establishes the Fredholm alternative (see Mikhlin, 1957). The Fredholm

alternative also guarantees that there exists only one nontrivial a which

satisfies (2.7) aside from a multiplicative constant.

.......m~r-. i.
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Provided R satisfies (2.8), there is a solution p for (2.4) which is

arbitrary to the addition of any constant 4. Fortunately, a constant uV

corresponds to a constant potential in 0 and zero potential in . In most

physical applications, such as incompressible, inviscid irrotational fluid

flow, it is v¢ that is important and any constant p may be ignored.

Finally, note that condition (2.8) becomes, upon substitution for R

from (2.4),

A f s(p)a(p)dp = f o(p)o(p)dp (2.10)
aD aD

which is an equation for A. Thus, a nontrivial a is determined from (2.7)

and (2.10) is then used to determine A. Next (2.4) is solved for V with any

additional constraint that eliminates the arbitrariness in v. For example, one

may specify the value of v at a point on 3D;

p(po) = 0. (2.11)

At first sight, equations (2.4), (2.7) and (2.10) appear to introduce

greater computational complexity-than (2.1). However both (2.4) and (2.7) may

be solved iteratively. Let p (n)(p) be the nth iterative and obtain the next

iterative from

(n+1)(p) = TI(n) (p) - Tp (Po) (2.12a)

where

Tp(p) =)dq 2R (p). (2.12h)
q
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(n)
As n + , ) + v, the solution to (2.4) subject to (2.11). Similarly, an

iteration procedure for a may be used where for convenience the additional

constraint,

max la(p) 1 (2.13)
pEBD

is imposed to remove the arbitrary multiplicative constant in a. The

convergence of the iteration scheme follows from the global convergence of the

Neumann series for both integral equations. A proof follows from the proof

given in Baker et al (1982) for the case of open periodic surfaces. In

particular, for time dependent domains the iteration is very efficient since a

good first guess is always available from information at the previous time

value, and, if information from previous time levels is retained,

extrapolation further improves the first guess. If the solution * to the

two-dimensional Laplace's equation is being sought in D subject to 0 tending

to a constant at infinity, s(p) = 1 must be used in place of (2.3) and the

source distribution in (2.1) must be modified (Jaswon and Symm, 1977).

As shown in the simple case above, the Fredholm alternative lies at the

heart of the application of dipole distributions to the solution of Laplace's

equation in multi-connected domains. In the next section, a more general

multi-connected domain will be considered and then numerical results will be

presented in the following section.

Section III The Annular Problem

Consider the multi-connected domain as shown schematically in Figure 1.

Domain 02 lies between two closed, non-intersecting surfaces

aD 1and aD2 with aDI enclosing 302. The exterior domain D is composed of

two parts, 03 internal to aD2 and DI external to aD1. Once again, 3D1

and aD2 are assumed to have continuous normals.

", . . . . ..'.-. . .... .-. .-."- "-".,.-. .'' -- - .'".-. -" - -- -.- ," - . ..--- '- -,-- -, . .. . -. - .- - .. .- ,. - - . . -.. -. , . .
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n (x1(e),y(e))

x
D3

D'2

DI

Figure 1. Schematic showing the assumed notation for an annulus.



To be specific and for convenience, suppose that a solution to the two-

dimensional Laplace's equation is sought in D2 with Dirichlet boundary

conditions imposed at aD1  and aD2. Following the procedure adopted in

Section II, the solution is expressed in terms of a source term and dipole

distributions along 3D, and aD2;

2
*(p) = Alogjpj + I qu(q) 1 )dq, p 02 (3.1)

77r ~j=l 3D.ii a

Let aD1  and a02  be parameterised in a counter-clockwise direction by

(x1 (e),yl(e)) and (x2 (e),Y 2(e)) respectively. In free-space, the two-

dimensional Green's function is .1 log{(x-xk) + y 2  where (xkyk)

locates the source point on aDk . The normal derivative of the Green's

function evaluated at the kth surface has the form

K ee xke(e'){yj(e)-y k ( e ' ) } - y k e ( e ' ) { x j ( e ) - x k ( e ' ) }j ke7' {xj(e)-xk(e ' ) z2+{y j ( e ) - y ( )} (3.2)

where the subscript e denotes differentiation and the field point lies on

the jth surface.

The evaluation of (3.1) at aD, and 2D2 gives two coupled Fredholm

integral equations for oI and P2:

ul(e')K 1l(ee')de' + x f 1 2(e')K 2(ee')de' +fD wD 2  12 2

Ao 2

=1(e) - log {X1(e) + yl(e)) (3.3a)

, ,,..........,, ,,, .,. ,-,.,.,,,..'',.-' ," ,1- .. "-.,--..,., .. . . . . . ..,-. -> .- > ... -. ? .. . . .? - . .?.". . . -- - i' -,-, 1 -. i-,1 f , , . . . " , -!, - i-.,!,:' - i"
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interpolated points

,- original points

(xk(eo),yk(e;)) D (xjeye)

Figure 3. Schematic showing notation for regions
where-the annulus is thin.
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defined by the requirement that (xk(e6), Yk(e6)) is the closest point on

surface k to (xj(e), yj(e)). Figure 3 gives a schematic of the

situation. The value e may be found by using interpolation and Newton

iteration to locate the minimum distance. To resolve the peak or trough, N

points are interpolated along the surface in the following :ay. Given that

points (xk(e'), Yk(e')) are originally assigned by evenly spaced intervals

in e', N new points are obtained by taking evenly spaced intervals in e,

where

e' = e + a sin(e - e° 0 ) (4.13)

and e = e'o gives one of the new points. The trapezoidal rule is used with

the new points; quantities such as T and u are also interpolated to be

able to evaluate the integrand. Note that the same number of points N are

used. Clearly, the choice of a will dictate the accuracy. Note that

interpolation must be done whenever a point on the jth surface is too close

to the kth surface.

The error E for the circular case may be analysed in more general terms

to estimate its behavior for other geometries. For large N, the error r is
-N

most strongly affected by the term p , provided p f 1. When j = I and

k = 2, the error is associated with the approximation to the integral

involving K12 (e,e'). Set R2 = R and R1 = R+D. Then,

-N -Np = (1 + D/R)

= exp(-N log(1 + D/R)) (4.14)

- exp(-2wD/AS(1 + D/2R))

-. 'T- -' - - . .- I ' .i.. -..-. ".--.-'-."..... . . -".. . -.. -. "-' '" - " i -- i" ' - ;
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14

- N:128
UJ

0 -

0
mI

7

7- N 64

0 0.4 0.8

D

Figure 2. The maximum of the absolute error E in dipole sheet strength

for the circular annulus as D is varied, where D is the

thickness of the annulus.
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is quite small. Incidentally, the mode m = 16 cannot be resolved by the

numerical quadrature since alternate points were used so m = 15 is the

highest mode realistically treated by the quadrature. The maximum number of

iterations required occurs when m = 1 and the number decreases for larger

values of m, consistent with other iterative, numerical techniques used to

solve elliptic problems. Clearly, multi-grid techniques may be used to reduce

strongly the required number of iterations, but we have not pursued that

aspect here. The numerically calculated value for the source strength A was

always within roundoff error of its exact value.

Unfortunately there are times when straightforward use of the numerical

procedure described above will result in errors of 0(1). From (4.12), it is

easy to see that E is 0(1) when R, and R2  are very close together.

Figure 2 displays the behavior of E as the width of the circular annulus is

decreased in the test case (4.4-6). Here R1 = I+D, R2 = 1, m = 1, N1 = N2 =

N, and an absolute tolerance of 10- 12 was used for the convergence of the

iterations, (3.7) and (3.8). Clearly for a fixed number of discretisation

points N, the strong variation in the integrand Kjk, j f k, is not well

resolved when a point on one surface is close to the other surface along which

the integral is performed. The error begins to downgrade noticeably when the

thickness D of the annulus is sufficiently small. This error has been

previously observed by Maskew (1977) in a related calculation involving vortex

sheet motion. Clearly, as Maskew points out, more points are required to

resolve the strong variation of the integrand, and as N is increased for

fixed D accuracy improves dramatically.

It is expensive and unnecessary to increase N substantially for

accuracy when 0 is small . Consider a point (xj(e),yj(e)) near surface

k. The integrand Kjk(e,e') has a sharp peak or trough centered around e

% .?-.. . - .% %
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N m Error I

16 1 0.305 x 10-3  26

32 1 0.466 x 10-8 26

64 1 0.117 x 10-11 26

32 2 0.528 x 10-8 14

32 4 0.160 x 10-7  8

32 8 0.239 x 10-6  5

32 12 0.382 x 10-5  4

32 15 0.305 x 10-4  3

Table I: Results for the circular annulus as described in the test. I = 2
in all cases.

.....................
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12* (2 +E) (cos (jmh) - 1) (4.11b)

where

-- p + -Pm) (4.12)
PN- P Nf- P M- 1

and p = R1/R2

A numerical code has been written that solves the Dirichlet problem for a

general annulus (not necessarily circular). In particular, the code was

applied to the test case described above. Results are shown in Table I when

R1 = 2, R2 = 1, and N1 = N2 = N points are used. The reported error E is

the maximum absolute difference between the computed dipole strengths and the

exact values given in (4.7); theoretically this error should be 21E I  and the

agreement is perfect as long as the error is above the absolute tolerance of

10-12 used to determine convergence of the iteration scheme. Also tabulated

are the number of iterations I and I required to solve the integral

equations for Tj and uj respectively to within the absolute tolerance. We

emphasize that the error arises solely from the numerical approximation to the

integral that determines the contribution to the field point on one surface

from the dipole distribution along the other surface. For m = 1, there is a

dramatic improvement in accuracy as N increases reflecting the infinite

order of the trapezoidal rule on periodic integrands. Already, for N = 64,

the error is below the tolerance required. Of course, this result is not too

surprising since a circular annulus has been chosen, but later results will be

represented for elliptic annuli that still show the high accuracy of the

method. As the mode number m of the potential is increased with fixed N,

the resolution of the integrand deteriorates, but even for m = 15, the error

T ., . .. , . . . ....-: :. : • . . . . .-.. T . . . . . - "/ • -- , ,',.,."
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The eigenvectors for the discrete equations that represent (3.5) are

proportional to cos(mjh) and sin(mjh). In particular, for m = 0, the

eigenvalue, which corresponds to x = 1 in the continuous case, is

R N R RN
1 2 (4.9)

R N R RN
1 2

and the numerically calculated eigenvector is T, = 1, T2 = -1, which is

exact. When these values for t1, t2 are substituted into (3.4) and the

trapezoidal rule is used to compute the integrals in (3.4), the numerically

determined value for A is also exact, that is A = 1.

Next, the error in solving (3.3) can be computed. The following sums,

2 N-1 cos(kmh) eikh 0 for m (4.0a)
Re IT I eijh  ikh } = {I

k=O ej -e 1fo m 0k+j odd -7 for niO

R2  N-N-m 
N-m R m

2 cos (kmh) ei1 1 2 1 2 R2s____ __m_ _0
Re 1O k=0 ijh - R e ikh T R N R N

R1e2 1 2

R N
m=0 (4.10h)

give the trapezoidal approximation for the various integrals in (3.3). Once

again, (4.10a) implies that the principal-value integrals are computed exactly

and errors come only from the approximation to the other integrals. It is a

straightforward calculation to find the numerically determined dipole sheet

strengths,

I = (2 + E) (cos (jmh) - 1) (4.11a)

-- .. . . ., ;. . ? . . ,,......,,.,. ,.... ..,,..
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R m

1 = (1 - (i1)) cos(me) + log (R1 ) (4.6a)
1

*2- 1) cos(me) + log (R2 ) (4.6b)

on the boundaries aD1 and aD2  respectively. The exact values for the

dipole sheet strengths such that U 1 (o) 0 p2(o) = 0 are

ul(e) = 02 (e) = 2 [cos(me) - I]. (4.7)

For this simple test case, the error involved in using trapezoidal

quadrature can be calculated exactly. The following sums

2 ijhN-1 Cos (kh) 0 , for m A 0Re---~= (4.8a1
kIv eijh - eikh  1/2 for m = 0

k+j odd

N-I RN.'Nm+ RN NmR2m
Re {R e ijh cos(kmh) 1 1 2 1 2 ojn)m 01shkh 1 R-R cos(jnh), n * 0k=0 R1e-R 2e R 1 R2

N (4.8b)
,m= 0

R RN
1 2

Nwhere h = 2WN and 0 4 m < , give the trapezoidal approximation to the

various integrals in (3.5) where N evenly spaced points have been used to

represent each surface. The sum (4.8a) which approximates the principal-value

integrals, gives the exact analytic result, reflecting the spectral accuracy

of the trapezoidal rule. Thus the only errors arise from the sums (4.8b) that

approximate the integrals along the surface opposite to the one containing the

field point, (xj(e), yjk-)), in Kjk(e,e') in (3.2).

r
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The trapezoidal rule is applied as follows. Nj points are selected at evenly

spaced intervals in e to represent surface aD . At each such point, ei

say, in (3.7) and (3.8) as modified by (4.2) and (4.3), Tj(e i) must be

calculated. One integral involves contributions from the other surface and

the trapezoidal rule may be applied directly. For the integral along aDj

however, application of the trapezoidal rule would require evaluation of the

integrand at e' = ej which is an indeterminant form. The limiting value is

easily calculated but involves derivatives of the dipole sheet strength and

the surface. Instead, it is more convenient to apply the trapezoidal rule on

alternate points so that e' = ek for all k such that k + j is odd.

Clearly, a quadrature point never falls on e and the integrand is always

easily computed. A disadvantage to this procedure is a slight loss of

resolution of the integrand. Tests will show that this is not important in

most cases.

As a simple test, consider the annulus lying between the circles defined

by

x= R 1 cos (e) , yl= R1sin (e) (4.4a)

and

x2  R 2 cos (e) , Y2 = R2 sin (e) (4.4b)

where R, and R2 are constants. A solution to Laplace's equation in polar

coordinates (r, 0 ) in the annulus is

m R m

* = ((ri) - (--) ) cos (me) + log(r) (4.5)

which takes on the values

l ~~. ...... ..... .....-""-• " """.....'. .''.'. . ' . -.'. . ... """..-'. .'.-.-''' ''''.''....."
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r Kj(ee ) de = . (4.1)
aD

Thus the integrals in (3.7) may be replaced by

2f ~(n) (e (n) (e)) Kll(e,e') de' -,(n)(e)

301

-2f P2 (n) (e) Kl12(e Ie') de' (4.2a)

3D2

" and

"2 f {u2(n)(e') - 2 (n)(e)} K22(e,e') de' + P2 (n)(e)
anD2

+2 f (n)(4.2b)

+2 f P(n )(el) K21 (e,e') de'

3D1

These integrals have smooth, periodic integrands and may thus be evaluated

accurately by the trapezoidal rule. Indeed, the accuracy is infinite order or

spectral (Isaacson and Keller, 1966). Similarly, the integrals in (3.8) may

?" be replaced by

(n (n (n)e

f T l()(e') G11 (ee') -1 (n)(e) Kll(e,e')} de' T 1 )(e)

+ f T2(n)(e') G12 (e,e') de', (4.3a)
an02

{(n) , 2(n) 1 2(n)(e

IT )(e') G22 (e,e') - ( (e) K22(e,e')} de' - (n (e)
2 (2 (4. 3b)

2: - T1(n) (e ' ) G2 1(e,e') de' .

' "

4...
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T2(r1,T2)(e) f - T1(e') G2 1(e,e') de'-
3DI

(3.8d)

T (e') G22(e,e') de' T2(e)
aD2

.(n).(n
and Tm = max T. 1 nT )(e). The disadvantage to shifting the eigenvalues

j=1,2 1

is that the convergence rate is halved.

The above interation method is effectively a Neumann iteration method

applied to the discrete version of the boundary integral equations. A referee

has pointed out that a generalized conjugate residual algorithm might

significantly improve the convergence (see Eisenstat et al. 1983). The basic

conjugate gradient method was tried on the exterior problem with little gain

in convergence, but we have not as yet tried the improved algorithm.

Clearly, the numerical implementation of the above procedure demands

reliable and accurate evaluation of the integrals. In the next section, a

numerical quadrature and results for some test cases are presented.

Section IV. Numerical ResultsS'.

The design of a numerical quadrature for the integrals in (3.7) and (3.8)

depends on several factors. Firstly, the kernels Kjj and Gjj are

singular. Secondly, the smoothness of the surfaces 3D1  and aD2  and of the

boundary values 0, and 02 may affect the accuracy. Fortunately, for

applications to studies of free surface flows, the surfaces and boundary

values are generally C* functions. Furthermore, for closed surfaces in two-

dimensions, the singularities in Kjj and Gjj may be removed by using the

identity,

t.%r~~rr .%r~ J *- S**

MAo
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T2 (u1,u2 )(e)- 2 u1 (e')K 21 (e'e')de'f+ 2? Du 2 (e')K 22 (ee')de'
aD2  (3.7d)

2 2 (e) + A log x2(e) +y 2 (e))

will converge to values of U, and 02 that are shifted by some constant

value from the correct values. However the net effect of these shifts is to

produce a corresponding constant shift in the potential distribution.

Normally, such shifts in potential are not physically interesting. However,

if necessary, it is a relatively simple matter to add the appropriate constant

to the potential.

The iteration procedure for finding the eigenfunctions T, and T2 that

correspond to A = 1 must be modified differently since the eigenfunctions

Tl and T that correspond to X = -1 are not known in general. Instead the

eigenvalue x = -1 is shifted to the origin by using the following iteration

scheme;

T (n + 1)(e) Tl((n), n))(e)/T m  (3.8a)

1(n + '(e) T (n) (n)

( + l(e) = T2(1n) Tn ))(e)/Tm (3.8b)

where

TI{TI' 2)(e) ri1(e') Gll(ee') de' +

(3.8c)
f 2 (e') Gl2 (e,e') de' + Tl(e)

aD2

°'a. " a'" \ . ""-°- '""" "'"""" , . """"". '""" - , ,"""" """""" , - """" ,"".. ,"", .. , - """" - """"", ""'.*; '



,1.1

Gjk(e,e')= - Kkj(e' e) (3.6)

. and x is related to a source distribution a by T = ose where s is the

arclength.

The solution * may now be calculated as follows. The solution to (3.5)

yields T, and T2 which are substituted into (3.4) so that A may be

calculated. Thus (3.3) may be solved for I  and 02 and * may be

evaluated from (3.1).

There remains the question of how to compute the solutions to (3.3) and

(3.5). The observation has already been made that x = I is an eigenvalue to

* the homogeneous equations associated with (3.3). There is also an

" eigenvalue A = -1 with 01 = C, u2 = -C, which corresponds to a potential

distribution * = 0 in D1  and D3 and * = C in 02. Unfortunately the

eigenvalue x = -1 affects the iteration scheme that arises naturally by the

generalization of (2.12). Since all other eigenvalues satisfy INI > 1 (see

Kellogg, 1929), the eigenvalues x = t 1 are the only ones that prevent

convergence of the iteration scheme. Thus the modified iteration scheme,

(n+-) (n) (n) (n), (n)

Il (e) T1 u1 ,12 )(e) TI(V " )(0) (3.7a)

(2 e) - (n)~ (n) (n) (n)
(en+1) T2  fn), U )(e) . T2 ,1 U 2 )(0 ) (3.7b)

where

Tl(ulu 2 )(e) -2f ul(e')Kll(e,e')de' - 2f u2 (e')Kl2 (e,e')de'

. 1 2 (3.7c)

+ ~1 e)-A 2 +2+ 20(e ) -T log x 1 (e) + y (e)},

.

, -.- -.-...; . .. _. . .; .-.- ,.- -. .-.-. .. - .. . -. . . -... .. . . ..... *... . -. ... .. . .- .. . . , .* ..
'. .. ".- --o,,.-: .' ,", ," " .. ' - "''.€". ,,""- " .,, ,, ,r " , .. * *. ".. .. ' ." .- S ' ." . ",. -.' " . * - - ' . .." • ~ - -. • * - •.-. - . .-. .
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pjai~(e')K 2 1(ees)dem + x 2(e')K 22(ee')de'- U

A 2 2
-(e log (X 2(e) + y2(e)1 (3.3b)

where +1(e) and 42(e) are the values imposed on * at aD1 and aD2

respectively. The origin of the coordinate system has been chosen to coincide

with the location of the source point inside D3 of strength A. Although

=1, it has been introduced to facilitate the discussion on the existence of

*solutions for jand P2and the global convergence of the Neumann series for

* the integral equations.

When =1 , U,= 0 and P2 =C, a constant, are solutions to the

homogeneous equations 4*1 = *2 = A =0) corresponding to a potential

distribution *=0 in D, and D2, 1 C in D3. This eigenvalue is closely

associated to that in (2.5). According to Fredhoim's theorem of the

* alternative, (3.3) has a solution provided

A ie o x2 ()+y2 ()de+fT2 2
T1() lg { 1(e y1 e aD + 2(e) log {x2 (e) + y2 (e)lde]

ol *(e)Tl(e) de +, 2 (e)T 2 (e) de ,(3.4)

where Tand T 2  satisfy the homogeneous, adjoint equations

Tl~e') G, l(e,e') de' + a T (e') G12(e,e') de'- --- 0 (3.5a)
31 2

af T1(e') G21(e,e') de' + f T (e') G22(e,e') de' T t2(e) (3.5b)

ao121a 222 2=+ 0

Here
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* where the quantity AS is the arc length between points and so NAS = 2WR.

This result in (4.14) is obtained by rewriting D/R = 2wD/NAS and considering

- D/AS fixed for large N. The approximation z/(1 + z/2) to log (1 + z) is

J used rather than z(1 - z/2). We found that this modification gave better

agreement with the numerical results reported later.

For the other case, j = 2 and k = 1; set R1 = R, R2 = R-D and

NAS = 2wR 2. Now,

p = (1 - D/R)N exp(-2wD/(AS(l - D/2R))). (4.15)

The factors 1D/2R in (4.14) and (4.15) are curvature JKJ = 1/R

.". corrections to the expression exp(- 2wD/AS) which describes the influence of

the error as a field point approaches a flat surface containing a dipole

distribution (the error for this case is also easily calculated). In general,

the correction can be written as 1 + DIKI/2, 1 - DIiI/2 depending upon

whether the region of the surface nearest the point appears convex (see Figure

2) or concave respectively. In Figure 4, we replot the error as a function of

D/(AS(I - DIaI/2)) where AS and i is determined on the outer surface.

Clearly, the asymptotic forn (4.15), while not strictly valid for all values

of D, does capture the essential behavior of E.

To decrease the error, the local AS between the new, interpolated points

should be given by

D DIKID / (1± ) = c, (4.16)

AS

-. - - * -, ° . ° " o . . - o ° .•o ° , - • .7. : --~ °- - - °. - o .- * * .- o- .
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N146

N:64 Nz128

U.'
0

0,
0

7-

'I.3

0 5 10 15

D
ASi-DIICI/2

Figure 4. The same as Figure 2 except D is scaled by AS(l-dIKj/2) where

the local arclength between points, AS, and K are measured on
the outer boundary.
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where C is a constant, chosen by experimentation to give the required

accuracy. From (4.13), it is easy to determine the new TS in terms of a,

-ES = AS(I + x). (4.17)

*] Consequently, a has the form

D-= /I , - 1. (4.18)

In Figure 5, the error is shown as D is varied for the same test case

* as shown in Figure 2, but now interpolated points are used whenever a > 0 in

(4.18). Interpolation was done using a discrete Fourier representation for

which C = 9.0 was found to be a good choice. For small D, the errors are

w essentially the same as for larger D except for extremely small values of

D, when the interpolated points are all clustered near e0  and there are

effectively no points resolving the rest of the surface. This effect clearly

depends on N.

In some cases, such as a "noisy" representation of the surface, Fourier

interpolation is inappropriate. In such cases, cubic spline interpolation may

be used and we show the results in Figure 6. Because of the errors involved

in using cubic splines, the error can be no better than O(Ae 4). Now there is

4* a transition from spectral accuracy to O(Ae ) as D becomes small and

interpolated points are used. For this case, C = 6.0 since the accuracy is

limited and there is no point in using interpolated points for a large value

of C.

Finally, we demonstrate that these results are not special to a circular

*- annulus but hold true for generally shaped annuli. Take the boundaries of the

*_ e-

-* . * *
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Figure 5. The maximum of the absolute error E in dipole sheet strength
for the circular annulus as a function of D when Fourier
interpolation is used to redistribute quadrature points.
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Figure 6. The same as Figure 5, except cubic spline interpolation is used.
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annuli to be the following ellipses,

x= r cos(e) (4.19a)

Yl= (r2 - 3/4) sin(e), (4.19b)

and

x2 = cos(e) (4.20a)

1

1 =  sin(e) . (4.20b)

Our tests keep the inner boundary fixed and vary the outer boundary by

changing r. The conformal map,

x + iy = - cosh(C + in), (4.21)

transforms the elliptic annulus into a circular one and so an exact solution

for the Dirichlet problem can be found. In particular, we chose the boundary

conditions,

01 : (a cosh(2 I) + a sinh(2 l)) cos (2e) (4.22a)

02 = a + 5 ) cos (2e) (4.22b)

where

...a . ." "o , ." ' ". Q" b e , m i " , , i * " . ".. , , • , , - o * . .. - .

. *.,...."m " ." ° " .-.. ;..," ." % o"'" ' "-* 'e* %- '". ."' ' , ." ".". ."%m,'., "., ' .
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c = - -U 1/(cosh(2c,) + sinh(2c1)) (4.23a)

= - (4.23b)

cosh(c1 ) = 2r (4.23c)

sinh(;l) = (4r 2 /3 - 1)12 (4.23d)

and the corresponding dipole strengths are

p, = ul1 cos(2e) (4.24a)

U2 = U2 cos(2e) (4.24b)

First, results are shown in Figure 7 for the elliptic annulus without the

use of interpolated points and PI = 1 and U2 = 1. Here, D was chosen as

the minimum thickness of the annulus. The pattern of results is similar to

Figure 1. Next, we replot the error in Figure 8 as a function of

D/(AS(1 - DI I/2)), where the local As and i are measured on the outer

surface, and find that the error behavior is again well described by (4.15).

Finally, in Figures 9 and 10, results are given when interpolated points are

used, Fourier and cubic spline interpolation being used respectively.

The relative merits of using Fourier and cubic spline interpolation hinge

upon accuracy versus cost. Our approach is to use a fixed number of

quadrature points, hence the added cost is determined by the type of

interpolation used. For illustrative purposes, we chose two disparate types

of interpolation: discrete Fourier and periodic cubic splines. While the
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Figure 7. The maximum of the absolute error E in dpole sheet strength

for the elliptic annulus as a function of D where D is the

minimum thickness of the annulus.
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Figure 8. The same as Figure 7 except D is scaled by AS(l-DIKI/2) where
the local arclength between points, AS, and K are measured on
the outer boundary at the point of minimum thickness.
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Figure 9. The maximum of the absolute error E in dipole sheet strength for

the elliptic annulus as a function of D when Fourier interpolation
is used to redistribute quadrature points.
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Figure 10. The same as Figure 9 except cubic spline interpolation is used.
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Fourier interpolation is spectrally accurate, each interpolation involves a

summation, and the cost is increased by a factor O(N). Fortunately, Fourier

interpolation is fully vectorizable, considerably reducing the cost. When the

surface representation is "noisy", or the Fourier interpolation considered too

expensive, periodic cubic splines offer an attractive alternative. The error

is now at best O(Ae 4), but the cost is only increased by a factor 0(1).

Section V. Conclusion

In conclusion, it is possible tosolve elliptic problems in multi-

connected domains with smooth boundaries using iterative boundary integral

techniques. High accuracy is possible for relatively few boundary points,

even when the multiconnected region has thin parts. A simple redistribution

of points insures the high accuracy. This technique is now being applied to

the study of accelerating, thin fluid shells (Baker 1983) and of the fluid

motion of vortex layers; these results will be published elsewhere.
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