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CHAPTER 1

INTRODUCTION

The Problem

"Common sense reasoning" subsumes a vast repertoire of familiar but hard to

articulate skills for understanding and dealing with the world. One of the most

import.nt skills underlying common sense is the ability to recognize and describe

regularities in the world in terms of causal relations. Causal descriptions enable us

to generate useful explanations of events, recognize the consequences of our actions,

reason about how to make things happen, and constrain hypotheses when expected

events do not occur. Without the ability to construct causal descriptions, we would

be unal-le to impose any order on the bewildering changes that pervade our everyday

experiences; we would be unable to understand or control our environments.

Imagine waking up in the morning to find the refrigerator door ajar and the food

spoiled. One can construct an explanation easily, even if one is not quite awake.

People commonly turn down the volume control on the home stereo before turning

the power on, anticipating and knowing how to prevent a possibly unpleasant jolt.

When the lamp does not work, we will sooner or later change the bulb, check the

plug, and check the fuse.

Goals of this Work

This thesis investigates ways to construct causal descriptions of physical systems

which undergo continuous changes. The learning process produces a causal model

a set of rules which make explicit the causal mechanisms underlying the behavior

of the s ystem and its parts. The particular goals of this work are:

" To p-esent common-sense heuristics and a learning procedure which show how

causal models of physical systems can be hypothesized.

* To show how a causal model can be refined by generalizing over further experience.

" To siow how a learned causal model can support causal reasoning, particularly

planning.

e To illustrate how representations for quantities provide a basis for qualitative

reasoning which supports both learning and planning.

. . : - + .: ; ' . . :. .. . .- : : : -: - : -. ., . . • , . .: . -. - . . ... .. ,.
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* To demonstrate how causal models can be extended through the use of analogy.

Key Ideas - Constraints on Causal Hypotheses

This thesis argues for a set of constraints oi: causal explanations which make the

problem of formulating causal hypotheses a tractable one. These constraints are:

o Temporal and physical proximity.

This constraint reflects the common sense notion of causality which states that

causally connected events are contiguous in space and time.

e Causal explanation abstractions.

Changes and causal relations are represented perspicuously in terms of changing

values of quantities and dependences between quantities. This representation

language exposes constraints which reduce the number of causal explanation types

to a manageable size.

* Teleological assumptions.

Assumptions about the nature of dependences between parameters in designed

physical systems can be used to test causal hypotheses.

The Domains

A learning system, with these embedded constraints to guide it, was tested in

two experimental domains: a sink, the familiar kind of sink one finds in kitchens

and other places, and a toaster.

The I'itchen Sik
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ThesE particular devices were thosen for several reasons. They are composed

of many parts without being overwhelmingly complex. They display continuous

changes which can be modelled by qualitative representations for quantities. Water

rises in the sink; bread turns to toast in the toaster. Because external inputs control

their behavior, planning problems can be posed. External inputs of the sink include

the setting of the faucet and placement of the stopper. For the toaster, external

inputs include the depressing of the lever, the placement of the bread, and the

setting of the thermostat.

In addition, the sink displays an equilibrium state - water flowing in at the tap

and out at the safety drain. The problem of explaining why water rising in the sink

does no, overflow will illustrate how abstract causal explanations can effectively

constrain the set of admissible causal hypotheses so that the correct one can be

generated quickly.

Finally, the toaster will demonstrate how the learning system can produce

usabl- causal models of electronic devices without resorting to a wiring diagram.

This thesis is concerned with naive rather than expert causal hypothesizing and

reasoning.

A Preview

Causally connected events are often temporally and spatially contiguous. This

principle is easy to see in reasoning about sinks and toasters. Pulling the plug

makes the water flow out immediately. The controls on the blender acro,3s the

counter cannot affect the toaster. This principle is embodied in heuristics which

guide the recognition of causality.
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These heuristics capture a useful, but not always correct notion of causality.

Causes and effects may appear to be quite separated in time when the causal chain

is hidden. Furthermore, some causal relations Irvolve interactions which occur over

large distances without an apparent medium, e.g. gravity.

Further experience provides opportunities to generalize causal models originally

constructed on the basis of a single experience. Various generalization heuristics

allow conditions to be dropped, boundaries on the closed system to be better

circumscribed, and dependences between parameters to be recognized. For example,

two observations of the toaster for two different settings of the thermostat lead

to the recognition of the correspondence between the thermostat setting and the

darkness of the resulting toast.

How to Avoid Burnt Toat?

Quantities model the continuous changes which occur in physical systems and

expose constraints which can be exploited. Qualitative reasoning with quantities

supports both learning of and planning with causal models.

The must interesting problem posed for the learning program in the sink domain

is to understand what is happening when the water reaches the level of the safety

drain and stops rising. This is a passive change of behavior; no overt, external

action occurs. The learning program solves this problem by making an imaginative

though tightly constrained conjecture about the function of the safety drain.



Why did the Water Stop Rising?

The i,,arning program knows from its background knowledge about equilibrium

states th ,at either 1) no influences, or 2) balancing influences, could be the explanation

for the :hange. At this point in the learning session, the learning system already

knows that the faucet being on and the presence of the water column makes the

water rise. These causes are intact, so equilibrium must be the explanation. Since

only one influence is explicitly known, there must be an unknown influence of

opposite direction, i.e., one which makes the water fall. These inferences lead to

the identification of the safety drain as the causal culprit. Without the reasoning

afforded by quantities, the learning program would have been hard put to construct

the correct causal explanation in this situation.

The reasoning which the causal model supports also provides feedback about

deficiencies in the model. When plans fail, this can indicate an incomplete or

toc-abstract model. Analogies can help when the causal model is deficient by

m-ipping missing information from other areas of knowledge.

The most interes'ing of the planning problems in the sink domain is one that

cannot be solved with the causal model as it exists after the initial learning session

is complete. The problem is this: how to make the water rise above the safety drain.

The planner, by reasoning in terms of quantities, realizes that the equilibrium state

at the safetv drain must be changed to a state of increase. However, it finds no way

to do so Thl problem is solved finally by extending the causal model through the

use of ai analogy. This analogy is illustrated below.



When You've Seen One Drain...

Chapter 2 presents the representation language for describing physical systems

and their changes. Chapter 3 describes the constraints on causal hypotheses

exploited by the learning system and the heuristics and procedures based on these

constraints which are used to hypothesize and refine causal models. This chapter is

the core of the thesis. Chapter 4 shows that learning has taken place by describing

how a planner can use the causal models which emerge from the learning process.

Chapter 5 discusses analogy as one way to extend causal models. Chapter 6 recounts

the accomplishments of this thesis, discusses limitations, and suggests areas for

further research.

How This Work Fits In

Previous work in artificial intelligence has addressed acquiring descriptions of

static or non-causal structures or concepts [Winston 75, Michalski and Chilausky 80,

.Michalski 83, Mitchell 821, representing causality [Rieger 76, Rieger and Grinberg

77, representing and reasoning about structures which undergo changes [Hayes 79,

de Kleer 79, Forbus 84, Kuipers 82, de Kleer and Brown 83, Simmons 83, Weld

84, and representing continuous changes in physical systems in terms of quantities

4Forbus 841.

This the!sis builds on this foundation and shows how causal models of physical

systems which undergo continuous changes can be hypothesized and refined. The

ideas presented hopefully point the way towards further research on integrating

learning and common sense reasoning systems.



CHAPTER 2

RE.ISENI'ING IIiYSICAl, SYSI'NMS AND TIIEIM CIIAN(QES

The input to the learning program is English text. This text substitutes for visual

pecr pcc - a,:d descrilbes the structure of the sink and toaster and the changes

tat oc "u- (w,-er timc. The text is translated by a parser which is part of a general

narural jag 2 a~eiknowledge representation system. This chapter summarizes the

-:u .oigc: r, prc'scntatiorn language of this system, describes its time representation,

and sicv.,' hovw physical systems and their changes can be represented within this

fra-new ark. The entire parser/representation system is described in [Katz 80, Katz

and \Vie sto 82, Doyle and Katz 84].

Relat~ons arir Triitb-Values

The- :sic structure iin the knowledge representation scheme is the relation.

:e~atiD- hav, the following form:

2 IECT r:1 T1OI ()B,TECT

a ,irTs. u°;irn u!es cr

1 : To A P>

.. r -. ma i: seF b a <SURJECT RELATION OBJi.JcT> triple and

I-d I cnml relation, either TRUE or FALSE.

T;l .- ,"i i -,'rarchicial structural descriptions of' the sink and

* ]5 .. .



21

* Sico a ii(1 dirci tIons of chMige.

The s)i :ns or c01 c~onst of changae of quan tities and d cpeidcri ces have to be

Direction of cha,'nge or Direction of change or Sign of

sign of Independent__uuantity- sign of (lepefldeflt quantity dependence

F ecoric-nrder causal explanations.

Dcfinie tnl sat of a quantity to be its direction of change and the signis of the
"rtrIn - iotroltitin on that quantity. There are a finite number of ways in

ivhich tht xz at'. of q,.ant ity can change.

Clrut-5---teAdd -- Add - Del -4 Del -

C-onstanit C. (0,1 D) 1 D X X

Increase I (,j)I EC x

Decrease P(-,j E D x C

Equilibrilum rE (,- E D I

Tor example., a decreasing quantity can change to a steady quantity because

a Single neaiecontribution wvent away or because the quantity achieved an

eauifluruim tt when a positive contribution was added.

Tni mhcr of vecond3-ordcr causal explanations for changes in quantities is

tic~' cn-lc~~a ~bya f e 1icity condition [VanLehn 83] which excludes tradeoff

- ~ ~ ~ i tl '1 -l~tos of opposite direction may resolve to a net change

an an equilibrium state. Furthermore, equilibrium !;tates

ne11 ~ easily perturbed to a positive or negative tradeoff

Sit2;l 1

An :.tr'~orr 2 iles~k domain illustrates how constraint at the quantity level

I 'u'.~. , 2: ', fter- the fauicet is turned on and w%%hile the stopper

* ~ ~ , 'L'.10*th level of the safety drain and stops. JACK
.7 ;1 7 -hla en influiences could he the explanation
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intended to interact. Thje structure of the physical systcrm itself is used to draw

boundaries within which to ilook for causal relations.

These heuristics for proposing causality effectively prune the space of admissible

hypotheses. No heuristic is perfect though; these can pass incorrect hypotheses.

PAR-.T OF PAf\T-OF

PAQL ?fT-O f

PHYS Py

C HA,.JC, C wA tj Cr.

The Weaker Sliolcanelty arid Same Device Heuristics

Constraint at thec Quantity Level

There are only a finite niumber of ways to explain changes in dependent quantities

in terms of dependences arid ciiangecs in independent quantities. R~epresenting

changes and causality Mic rm- of quaniti~ies and dependences exposes constraints

that collectively definie a- kind of syntax of causal explanation. In particular, three

kinds of kno-wledgre at toe,, quantit-V lecl car, constrain the hypothesizing of causal

rejations.

0Discretc, vs. contuiiucis cniaiigeL.

Types of changes in quantitie- are Lke to t:.pes of derpendences.

Type of ch ar TVDoe Of *'ineT-~ of
____ (l!j TC1iT-,':!'N It, ir 1111i~ ependence

discrete udiscret~e function

O'.S~~tC C " !!]()!:Iws Influence

contilnUOUS rorlr !Iti1ous function
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graphs, they too must be individually seeded.

Another flavor of causality that is captured neither by temporal adjacency

nor simultaneity is the "delaved" reaction. But delayed reactions are really just

delusions; there is no real temporal discontinuity. The problem is that the structural

description being used to understand the causality is too abstract, so that the

causal mechanism is hidden. If enough lower-level detail were added to the model,

then a causal chain would be revealed, and each causal relation in the chain would

satisfy either temporal adjacency or simultaneity.

The s:lution then, is to have the capability for hierarchical descriptions -- both

structural and temporal. A hierarchical partitioning of time was discussed in the

chapter on knowledge representation; a hierarchical description of structure would

be a useful parallel. These descriptions could support a hierarchical description

of causzlitv so that what looked like a delayed reaction at one level, would be

a continuous causal chain at a lower level. [See Allen 81, Davis et al 82, Davis

83, de Kleer and Brown 83, for work that has addressed the issue of hierarchical

descriptions].

To summarize: When events in time are adjacent, the temporal adjacency heuristic

is applicable. When events in time are simultaneous, the physical connectedness

heuristic can sometimes disambiguate. When events in time are discontinuous,

perhaps the model can be fleshed out until all events are adjacent or simultaneous.

Consicier now the physical connectedness heuristic.

A problem with the physical connectedness heuristic is that it is incapable of

handling situations which involve "forces at a distance". More accurately, it is
incapable of modelling phenomena such as gravity, magnetism, heat exchange, etc.

uniesc soei. kind of medium is proposed. This level of understanding can be likened

to that of nin. ecnth- century physicists who proposed the "ether" to explain the

prCpagaiori of ele:ctromagnetic radiation within the solar system.

This r roble can be partially addressed by relaxing the physical connectedness

requirerrent to physical proximity. However, there is a danger of removing too much

constraint and it is not at all clear when two objects are near enough to possibly

affect ea:h other.

A bt'er idi,'a is to consider only objects which are part, of the same physical

s .stemn ,wo owDctS ar., part of the same device if their P'.RTc-O hierarchies join.

This heristic embodies a teleological assumption about parts of a device being

• -:.'. : " . ... . . . .. . . . .. . . ....i. •"- " i:.- " . . -....... .... :-: - - .:-+ .: ......... .. : :



Ilowever, the physical connectedness heuristic is already powerful enough in

some cases to supply suflicient constraint to correctly identify causality when the

temporal adjacency heuristic fails because of simultaneity.

Consider the following situation:

CAUSE EFFECTS

Event Q changes Q2,Q3 change

T'ime ( i I

t t+1

There are three possible interpretations of causality:

DEPE NENE ADEA4~'CE

The correct interpretation is the one which displays the same topology as the

graph of the physical connectedness relations on the physical objects associated

with the quantities.

60WP -TO co0-To

Since the coN-i( r, -,(, re',itlori is symmetric, at ieast one of the dependences
must be given a directioi IrndepelIdentiy (C.g. by the temporal adjacency heuristi

or if a change in a quantiy is due to an external actioni) to "seed" the constraint

propagation Otherwise. 0ie ITdpcenlefI quntities and 1lhe dependent quantities ..-

would not be distinguisii If any cx ies c:,st in tic deperidcnce and connectedness
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cow v -r-O C~J-
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Q Q

Temporal Adjacency and Physical Connectedness

In summary, the identification of causality has two steps. First, two quantities

are found, one changing immediately after the other. Second, it is verified that the

objects which the two quantities are associated with are physically connected.

There is a theme of reasoning at two levels throughout this research. The temporal

adjacency heuristic operates at the quantity level; here causality is suspected. The

physical connectedness heuristic operates at the physical level; here causality is

reinforced.

Coincidences can be defined and recognized. A coincidence is two events
which satisfy the temporal adjacency heuristic, but do not satisfy the physical

connectedness heuristic.

Limitations and Extensions of the H1curistics

Th,f two heuristIrF given above for identifying causality are general and powerful

enough to be sufficient in a large number of situations. However, they can fail to

identifv' some ciasses of causally connected events. This section discusses the limits

--f the tv:o heuristics and some simple extensions.

Consider first the temporal adjacency heuristic.

It is not. strictly true that causality always implies that the cause immediately

precedes the effect in time. For instance, in the case of purely mechanical, rigid

connecLionS, the cause and eftect occur simultaneously. Think about pushing on

one end of a rod. There is no delay before the other end of the rod starts moving.
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The learning prograr ur.n ior two changes, one immediately following the other

in time. More specificaiy b,' ause causal reltations can be represented succinctly

by dependence, bet Weeil :tiar' t ,'5. be learniing program looks for the pattern of

one quantitYs value rh.i ,:: mm, ullnlldialt ely after another quantity's value changed.

The following igrar:; r

'muud-q) (dep-q)

CA ISE EFFECT

I.'u: I changes c- changes

Time I. i i "

t t+1

Temporal Adjacency

Whenever such a pattern appears in the sequence of events, the learning program

suspects causality, and the two quantities may be linked in a dependence.

However, the temporal adjacency heuristic does not provide enough constraint

by itself because coincidences are possible. Additional constraint is provided by the

physical connectedness heuristic.

Physical Connectedness

In our common sense view of causality, in order for two events to be causally

connected, there must be some kind of medium between the two along which

"forces" or "agents" which mediate the causality can propagate. This medium

might be, for example, a mechanical, rigid connection or a fluid coupling. For

the learning program to identify causality, the exact nature of the medium is not

important, just whether a medium does in fact exist.

Physical connectedness is tested by determining if there is a CONNECTED-TO

relation between the two objects associated with the quantities whose changes

satisfied temporal adjacency. Since the CONNECTEI) TO relation is transitive, the

physical connectedness heuristic can be satisfied by a chain of objects.

The two heuristics - temporal adjacency and physical connectedness - are

combined as illustrated in the following diagram:

..-- :-:.-. .....................
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CHATER 3

PROPOSING AND GENERALIZING TIE CAUSAL MODEL:

LEARNING

Learning systems are often described by specifying an initial representation,

a target representation, and a learning procedure. Using this framework, the

construction of causal models can be described as follows:

The 'nitial representation is a temporally ordered sequence of events describing

behavicrs of the physical system being investigated.

The target representation is a set of causal rules which describes the various

behavicrs of the physical system in terms of causal relations; each causal rule

is a description of causality at two levels: the abstract level of quantities and

depende!nces and the real-world level of physical objects and relations. The set of

causal rules makes up the causal model.

The task of the learning system is to recognize causality in the sequence or events

and render the identified causal relations in the form of causal rules. This chapter

b * explains the learning procedure in full detail. This procedure was implemented in

a learning system called JACK (Justifiably Assimilating Causal Knowledge).

Identifying Causality

The common sense view of causality that the learning program exploits is the

followirg: Two events which are causally connected are contiguous in space and

time. This is a useful, but not always correct notion of causality, as will be discussed

later.

Repetition of conjoined events is also a clue to causality but is not used by the

learninr, program as a basis for proposing causal relations. If this heuristic were

to be used alone, some kind of thresholding mechanism would be needed, which

would likely be ad hoc. However, causal relations do have to satisfy repeatability

after being proposed.

Tempcral Adjacency

A st.tement of the form "A causes B" almost always implies "B imcdiately

follows A". This is not always correct, but this is the assumt.tioin which forms the

basis for thr- temporal adjacency heuristic. This heuristic is used as follows:

. .. ".. . ...

...... .. . .. ".. ...: -- ." .- :- . . . .. : . : . .. . - . .
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THE, OBJECTS ARE
THE DRAIN
THlE WATER

THE QUANTITIES ARE
THlE FLOW OF THlE DRAIN
THlE HEIGHT OF THlE WATER

THE DEPENDENCES ARE
<FLOW INFLUENCE HIEIGHIT> NEGATIVE

THlE PHYSICAL-P1RECONDITIONS ARE
(T) <DRAIN CONNECTED-TO WATER> TRUE
(T) <DRAIN CONTAIN STOPPER> FALSE
(T) <DRAIN PART-OF B3ASIN> TRUE
(T) <WATER CONNECTED-TO WATEII-COLUM N> FALSE
(T) <WATER CONNECTED-TO DRAIN> TRUE
(T) <WATER CONNECTED-TO SAFETY> FALSE
(T) <WATER IN I3ASIN> TRUE

THE QUA NTITY-PRECONDITIONS ARE
(T) <HEIGHT AMOUNT> BLOW-SAFETY
<HEIGHT RATE> ZERO

THlE PHYSICAL-EFFECTS ARE
(7--2) <DRAIN CONNECTED-TO WATER> FALSE
(T-*2) <WVATER CONNECTED-TO DRAIN> FALSE
(T-+2) <WATERZ IN BIASIN> FALSE

THE QUANTITY-EFFECTS ARE
(T) <FLOW AMOUNT> POSITIVE
(T) <FLOW RATE> ZERO
(T) <HEIGHT ILATE> NEGATIVE

(T+2) <HrIGHT AMOUNT> ZERO
(T-+-2) <IIEIGIIT RATE> ZERO

ACausl Rule

Thin causal rule describes ho-w% water flows out of a drain.
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when the independent quantitv's amount is negative, the dependent quantity's

rate is negative (and the dependent quantity's amount is decreasing)

A negative influence is defined in the obvious way.

A function is a dependence between the amounts of two quantities or the rates of

two quantities. An influence is a dependence between the amount of one quantity

and the rate of another. It is possible, by chaining influences through several

quantities, to represent higher-order derivatives.

It is also useful to define the correspondence, which is a relation (in the

mathematical sense) between the values of two quantities. A correspondence

represents an observation about empirical links between the values of two quantities

- but it is not yet clear which quantity is independent and which is dependent.

A correspondence such as:

CORPESPONDENCE-1 <Q-5 CORRESPONDENCE Q-6> NEGATIVE

means there is a one-to-one correspondence between the values in the one

* quantity's quantity space and the values in the reverse of the other quantity's

quantity space. A correspondence is symmetric.

Causal Rules Capture Behavior

The representation of causality afforded by quantities facilitates the construction
of causal models of physical systems by the learning program. Causal models consist

of a set of causal rules defined on a set of physical objects and a set of quantities

associated with those physical objects. The causal model makes explicit the causal

relations underlying behavior. Causal rules describe causality at two levels: At

the quantity level in terms of independent quantities, dependent quantities, and

de r,rpecnces, and constraints on the ranges of the values of the quantities. At the

physical level in terms of a set of preconditions and a set of effects, both of which

are rel.tions on physical objects, and the times these relations hold. The quantity

level ails the learning program in the recognition of causality, because quantities

and dependences support abstract causal explanations. The physical level provides

a means for describing causality in terms of objects and relations at the physical

r.:al-wvorld ievel for use by a planner.

An exarnr)le of a causal rule illustrates its form:
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The quantity space for the rate of the coils' temperature is:

(1!(11:1'. ' - > ZlRO - > POSITIVE)

Quantities extend the ability to represent change along two dirncnsions: first,

continuous as well as discrete changes can be represented; second, the direction of

a change can be represented, because of the ordering imposed on the set of values

for a quantity. Representing directions of change can support reasoning about the

next value of a quantity and equilibrium states. Quantities not only add a richer

representation for change, they add reasoning power as well.

Dependences Capture Causality

The task of the learning program is to identify causality. Causality can be

represented in terms of quantities in a concise manner. A quantity that can be

affected by another quantity is functionally dependent on that quantity. It is useful

to define two kinds of dependences, the function and the influence lForbus 84).

An example of a function is:

FUNCTION-I <Q-I FUNCTION Q-2> NEGATIVE

The independent quantity or causing quantity is Q1 and the dependent quantity

is Q2. A dependence is usually signed, to indicate whether it is a direct or inverse

dependence. The meaning of this function is:

0 when the independent quantity's amount increases, the dependent quantity's

amount decreases

* when the independent quantity's amount decreases, the dependent quantity's

amount increases

The definition of a direct (positive) function is symmetrical in the obvious way'.

The meaning of an influence such as

INFLUENCE-I <Q-3 INFLI.UNCE Q-4> POSITIVE

is slightly different:

• when the independent quantity's amount is positive, the dependent quantity's

rate is positive and the dependent quantitys amount is increasing)
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objects. They are borrowed from Ken Forbus' seminal work on representing and

j reasoning about physical processes [Forbis 84].

Quantities are always associated with a physical object and the possible values of

a quantity correspond to well-defined states of the object. The values of quantities

are symbolic, not numeric. An ordering is imposed on the set of values of every

quantity, so it is possible to reason about the relative magnitudes of different values

of a quantity. It is also possible to compare the relative magnitudes of values of

different quantities. However, no information about absolute magnitudes is given.

A quantity has two parts, an amount and a rate. The rate is the first derivative

of the amount. As an example, changes in the temperature of the coils in a toaster

can be -epresented as:

QUANTITY-I <COILS QUANTITY TEMPERATURE>

(1-TRUE->)

AMOUNT-1 <TEMPERATURE AMOUNT>

(1-COLD-2) (3-CHANG ING-4) (5-i[OT-5) (6-CHANGING-7)

(S-COLD- >)

RATE-1 <TEMPERATURE RATE>

(1-zERo-2) (3-posTvE-4) (5-zERO-5) (6-NEGATIVE-7)

(S-ZERO->)

The rate of one quantity may be the amount of another. A more powerful

representation for the flight of a rock might involve another quantity called velocity

whose amount is the same as the rate of the height. Higher-order derivatives can

be represented as well.

The above example shows how quantities fit into the overall representational

scheme. If the values placed in histories are generalized from truth-values to arbitrary

values, then quantities can be represented without any additional machinery.

The set of possible values for a quantity and the ordering imposed on that set is

called a quantity space lForbus 84]. Usually the quantity space is a total ordering,

but partial orderings are possible too. The quantity space for the amount of the

coils' temperature is:

(((,LD - HOT)

0.
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The starting moment of the interval is always the current moment given by the

internal clock. The stopping moment is, by default, -,-oc. Relations are assumed to

be persistent.

Finally, it is possible to represent how relations can change. The interval/truth-

value construct is generalized to a history, a list of interval/truth-value pairs. If a

relation is asserted again, it is not created anew, rather the history of the relation

is modified according to the following rules:

o If the value has not changed; do nothing.

* If the value has changed and time has passed; close the previous interval and

create a new persistent interval with the new value.

As an example, the following set of sentences,

Initially, the stopper is in the drain.
Later, the stopper is not in the drain.

Next, the stopper is still not in the drain.

Later still, the stopper is in the drain again.

a would be represented in the knowledge base as:

IN-1 <STOPPER IN DRAIN>

(I-TRUE-2) (3-FALSE-5) (6-TRUE->)

Note that the final interval is an open interval, while the others have been closed.

For the purposes of this research, it was critica! to be able to represent a

sequence of events, in which the learning program would look for causal relations.

It was necessary to be able to control the exact temporal ordering of relations in

the knowledge base. The particular interaction between the parser and the time

representation described above might be called the "sequence-of-events" mode.

Other interactions between the parser and the time representation are possible.

Quantities Capture Continuous Change

Truth-value histories repre.:ent how propositional statements about the world

change, but they are not well-suited to representing how properties of objects can

change. In physical systems. changes often occur continuously. The representations

for quantities described in this section capture continuous properties of physical

'.-,:.,,.. .. :..._._._..-.~.........,.....-... ........ .... _... ..-..... .............-...... ..-..... , -....:...-



Our time representation is simpler than others that have appeared in the arificial

intelligence literature, [Allen 81, McDermott S2, Vere 83, Simmons 83>. !Sirnmcns 84]

is an excellent discussion of the important issues for designing a time representation.

The basic unit of time is the interval, which is r-presented by specifying two

moments, one being the beginning of the interval, the other being the end of the

interval. Moments themselves are the primitive intervals and they, meet at points.

Time is divided into a sequence of moments at the finest level of resolution, and

all intervals are defined on these moments. Moments are conveniently represiented

as integers.

As an example, the interval <3,8> starts at the beginning of the third moment

and stops at the end of the eighth moment. An interval such as <5,5> is

well-defined. This interval is exactly the fifth moment.

In principle, it would be useful to be able to define intervals on top of other

* intervals, rather than on moments only, to any number of levels. Then seconds,

minutes. hours, days, etc. would be easy to represent. (See [Allen 81] for a solution).

The two-level partitioning of time into moments and intervals is sufficient to support

the temporal reasoning the learning program needed to do.

Another limitation in our time representation is the absence of any information

about scale, i.e., about the absolute duration of any particular moment. (See [Vere

83] for a solution and [Simmons 84] for a discussion). Once again, there was no

need for this kind of information to support the research at hand, so the issue was

not addressed. Only information about the ordering of events was necessary, not

about their relative durations.

The interaction between the parser and the time representation is clean and

simple. The parser strips temporal adverbs from sentences and makes them available

to thu knowledge system. There is an internal clock which keeps track of the current

moment, the "now". Temporal adverbs adjust the clock as follows:

9 INITLLLY -- sets the clock to 1.

• ALREADY - sets the clock to 0, i.e., sometime in the past.

,, ALWAYS - sets the clock to -cc, i.e., for all time.

SNEDXT - advances the clock once.

• LATER - advances the clock twice, to create an intermediate interval during

which nothing changed.

-TVhen a relation is inserted into the knowledge base, both a truth-value and an

interval are assigned to it, representing when that relation has that truth-value.

-:: ;~~.............. .-....--.....-.... . . ... -. . .
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* Relations Can Change

Before change can be represented, there must be a representation for time.
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for the change. At this point in the learning session, the learning program already

knows that the faucet being on and the presence of the Water column makes the

water rise. These causes are intact, So equilibriuni inust be tie explanation. Also,

the unknown contribution must be of opposite direction, i.e., it must make the

water fall. All of this reasoning ultimately leads to the identification of flow at the

safety drain.

W ATE , R
COLUMWJ~Fr POIIE

N P L Q E, 11 C E + A TE(kX WIVEwCE-

An Equilibrium State

Without the reasoning available at the quantity level, particularly the repre-

sentation for equilibrium staLes, the learning program would have failed to construct

the correct causal explanation in this situation.

Tradeoffs and Overdetermined Systems

The number of dependences in the various types of causal explanations at the

quantity level outlined above is in all cases minimal. If a quantity is not steady, a

single dependence explains why it is changing. If a quantity is steady, either there

are no dependences, or if evidence indicates an equilibrium state, there are exactly

two dependences.

In genera!, a cnanging quarititv can be the result of any number of interacting

dependences (except zero', all sharing the same dependent quantity, whose net0
effect is to move the ciuantt::; in a particuiar direction. Similarly, an equilibrium

state can be achieved by any number of dependences greater than one, again all

sharing the same depend-:nt quantity, whose net effect is a state of balance.

However, the followinig qualit3tive checks can be peirforined to see if the set of

dependences is at leas' rio: lnconsitcnt withi e, rved change in the dependent

quantity.

0 - . - : . :;:; :: : . . , : ;:::: ::i -: :. . € : : . .: :: - : ,: -:;;::; ,:. -i:.: ::- " : : 7: _ -_ : "
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For non-steady quantity, there must be at least one dependence in the set of

dependences whose contribution has the correct sign. (The sign of a depcndence's

contribution is the resolution of the sign of change of the independent quantity

and the sign of the dependence).

* For a steady quantity, if there are no dependences, that is sufficient explanation.

Otherwise, the quantity is in a state of equilibrium In this case, there must be

at least one dependence in the set of dependences in each direction.

The -Lmount of constraint may not be sufficient when there are several dependences

to resolve. For instance, if a quantity is decreasing, three negative influences and

one poitive influence may not be a correct explanation, because the magnitude of

the single positive influence might be greater than the sum of the magnitudes of

the negative influences.

Whe'i there are several dependences which satisfy the causality-proposing

* heuristics, the complete and correct way to Verify that the net effect of the

dependnces is consistent with the change in the dependent quantity is to sum

the contributions of all the dependences. But this would require knowledge about

the absolute magnitudes of quantities and perhaps even an equation to represent

U the functional relationship captured by the dependence. This kind of quantitative
information is not available. Therefore, t-adeoff situations are not allowed.

This felicity condition IVanLehn 83) does not preclude overdetermined systems

where several dependences contribute to move a quantity in the same direction.

The learning program can construct correct causal explanations in these situations.

They ,-re the only situations in which JACK can construct causal explanations

which involve more than the minimal number of dependences.

Making Hypotheses

JAK( learns by proposing causal explanations for changes in quantities. This

section outiines how the causality-proposing heuristics and knowledge about

quantities critr, in  Ihe hypotheses which the learning program generates to Cxplain

change:i.

Givei a change in a (dependent) quantity, JACK tries to construct a causal

explan-tion in terrnis of dependences and independent quantities with the following

roccrd ire:

Step 1.

,--, ,:,:~~~~.... .. .. . ,--. ..... i.. .. :... . . -. •. • " "1
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Different kinds of changes in quantities are associated with different kinds of

causal explanations in terms of dependences.

* If the quantity has stopped changing, look for no dependences or balancing

dependences.

e If the quantity has begun changing, look for a new dependence or a broken

equilibrium state.

Step 2.

If JACK cannot explain changes in terms of known dependences, then the

causality-proposing heuristics are used to propose new dependences. This is when

learning takes place. The learning program proposed new dependences by searching

for a change in an independent quantity and an associated physical object which

satisfy either:

• temporal adjacency or simultaneity and physical connectedness, or

0 * temporal adjacency or simultaneity and same device

with the change in the dependent quantity and its associated physical object.

Step 3.

*The type of a new dependence is chosen according to the following rules:

o If the amount of the dependent quantity changed and the amount of the

independent quantity changed, then the dependence is a function.

9 If the amount of the dependent quantity changed and the rate of the independent

quantity changed, then the dependence is a influence.

o If the rate of the dependent quantity changed and the rate of the independent

quantity changed, then the dependence is a function.

Functions are causal relations between the amounts or rates of two quantities.

Influences are causal relations between the amount of one quantity and the rate of

another.

* Step 4.

The sign of a new depeiidence is chosen according to the following rules:

. If the directions of change cr the two quantities are of the same sign, then the

* dependence is pof:t:vc (direct).

I- f the directions of change of the two quantitiues are of opposite sign, then the

dependence is ncga v:t in verse).

. . . . . .. - - . --.- . -. . . . ... . . .U. .
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The direction of change of any quantity is found by locating the previous value

and the current value in the quantity's quantity space. If it is not possible to

determine the directions of change of the two quantities, then the dependence is

left unsigned.

If the changes in the two quantities satisfy simultaneity and neither is attributable

to an external action, then it is not possible to determine which quantity is

independent and which is dependent. In this case, a correspondence is proposed

rather than a dependence.

Proposing dependences is the first step in constructing new causal rules. The

dependcnces represent the description of causality at the quantity level. The next

section ,-xplains how the description of causality at the physical level is constructed.

Preconditions and Effects

Causality can be described concisely at the level of quantities but there are

two :easons why this is an inadequate representation. First, it is too abstract - a

S Srepresentation of causality must also describe objects and relations at the physical,

real-world level to support planning. Second, a representation of causality must

include not only explicit causes, but also the enabling conditions which must hold

for the causality to be realized. A good example is the operation of a gun. Pulling

the trigger is the direct, overt event which causes the bullet to be fired. However,

unless the safety iock is off, the gun will not fire. The release of the safety lock

is a precondition which must hold before the causal relation between pulling the

trigger and the bullet firing can be realized.

Similarly, there may be indirect effects which result when a causal relation is

realized. Some side effects of a fired gun are the recoil of the gun and the odor of
the ignitor gunpowder. It is ,articularly important to represent side effects which

can onl3 be realized indirectly, through a causal relation whose primary effect is
* something else.

The q iantity level of causal rules provides a concise rendering of causal relations.

Changes in independent quantities result in changes in dependent quantities

through dependences. The physical level of causal rules allows an arbitrary number

of preccrnditions and side effects to be represented for each causal relation.

Preconditions dnd efiects are either relations on physical objects or constraints on

the ranges of values for ouantities.

• - --S ' ..i - --.' " . . -' ' - - - -. . : -. : -: : : i ' . . ' . - ' . : -
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When a dependence is asserted b(.twee tWo quaritities, this is only the first step

in constructing a causal rule. The preconditions arid effects which make lip the

physical level of the causal rule must also be identified.

The procedure for constructing the physical level of a causal rule is:

Collector:

Given the independent quantities, the dependent quantities,

the associated physical objects, and the changes which are

the primary cause arid efiect in a causal rule,

Collect the values of the quantities and relations on the

physical objects which Judd at the time the primary cause

occurred. These are the preconditions.

Collect the values of the dependent quantities and relations

on the physical objects associated with the dependent

quantities which chan.-ed at the time the primary effect

occurred. These are the effects.

"o "- -
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Normally, efiects are issunieci to be persistent. llovever. an effect which involves

a continuous clhange is t trokd to see if a liit value is reached. If so, this value is

included in the causal rule as a long-tern effect.
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Earlier, it was stated that the first attempt to arrive at a causal explanation for a

change in a quantity involves checking known dependences and determining if the

independent quantities changed in the expected way. What JACK actually does is

check known causal rules and determine if the independent quantities changed in

the expected way and all preconditions were satisfied.

The procedure for identifying preconditions and effects can be either over-general

or over-specific. Spurious preconditions arid effects may be included. Relevant

preconditions and effects may be missed. A later section which discusses how causal

rules can be generalized over further experience addresses this problem.

Imagination Orders the Explanation Hierarchy

JACI first tries to explain changes in quantities by appealing to former experience

encoded in existing causal rules. This kind of explanation does not involve an

hypoth sis.

If such an explanation is not forthcoming, JACK tries to propose a new

dependence. This type of explanation assumes that the primary cause of the change

in the dependent quantity is an observable change in an independent quantity.

This is the nominal situation for the learning program. However, the last satisfied

precondition - which may not be manifest in an observable change in a quantity

- sometimes plays the role of primary cause. Because preconditions can become

satisfied in different orders, different instantiations of a causal rule may display

different primary causes.

Therefore, if an explanation involving a change in an independent quantity and

a dependence is not forthcoming, JACK searches for a change in a relation on a

ph sical object. This physical object and the time of the change also must satisfy

the temporal and physical proximity requirement.

The explanation now is that the change establishes a precondition for a

drpendenre whose dependent quantity is the quantity which changed. The unsatisfied

preconc Ion was nreventing the causal relation from being realized. The change

in the dependent quantity was latent, and the now-satisfied precondition was the

important cause, not an unobservable change in an independent quantity. This type

oF causal explanation proposes a new dependence and a new quantity.

An e::arnple from the sink domain illustrates how this hypothesizing can work.

Whiie there is water in thc basin, the stopper is removed from the drain and the

vater h!egins to fall.
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CAUSE EFFECT

Event <STOI'PIIR IN DRAIN> FALSE <WATEUI-ILICHIT RATE;> NEGATIVE

Time i "

t t

Since the flow at the drain is not observable, the learning program cannot know

about this influence directly. But JACK does know that the drain, which is touching

the water (physical connectedness), underwent a change, namely the stopper was
removed from it. as the water began to fall (simultaneity). This evidence is suficient

to propose a new quantity for the drain, and construct a new dependence and

causal rule, one of whose preconditions states that the stopper must not be in the

drain.

If there is no observable evidence about a cause for a change in a quantity, a
final attempt to construt a causal explanation might be made by using analogy. If
another situation matches well with the current one, it may support an hypothesis

about an unobservable independent quantity, or even an unobservable physical
object and change which establishes a precondition. The analogy would proceed by

matching observable effects of the two situations, and then trying to map the causal
explanation in the known situation onto the current situation. This explanation
would have to satisfy the temporal and physical proximity constraint as well.

Although the use of anaiogy to construct causal models -was not implemented,
its use to extend causal models was, and is explored in Chapter 5.

JACK learns by making hypotheses to explain changes in quantities. JACK may
make several attempts to construct causal explanations. Each type of explanation
is more imaginative than the previous because each successive type of explanation
proposes more to complete an adequate causal explanation.

In summary, these are the types of causal explanations JACK tries to construct
(in order) when c'xnfrnted with a change in a quantity:

The Expianation Hierarchy

" Idcartifv a knov'n depenaencf and causal rule in the e:isting causal model,

What i: proposed: rothing.

" Identify a change iI a cluantity vhich satisfies the temporal and physical proximity

heuristics. v h ','p ilesiS trhli: nuantitv is lte iIndependent quantity.
\Vha: is prm -d, d,'pcndcnce. causal ruiC.

. .. .- _ .
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* Identify a change in a relation on a physical object which satisfies tile temporal

and physical proximity heuristics. By hypothesis, this relation is a precondition.

What is proposed: independent quantity, dependence, causal rule.

* Idcntify a similar causal rule which explains a similar change in a similar quantity

and which satisfies the temporal and physical proximity heuristics. By analogy,

the causal explanation is transferable.

What is proposed: physical object, relation, independent quantity, dependence,

causal rule.

Resolution and Boundaries

JACK's ability to construct causal explanations is limited by the level of

resoluticn at which a physical system and its changes are presented and by the

implicit boundaries [Kirsh 841 on the space of candidate causes and preconditions

imposed by the causality-proposing heuristics.

JACK is provided with a structural description of a device at a single level of

resolution - roughly what can be seen from the exterior of the device. JACK is not

allowed To "open up" the device to know of additional components and connections.

The temporal resolution is matched to the visible changes undergone by the parts

if the device.

The heuristics of temporal adjacency, simultaneity, and physical connectedness

allow JACK to make causal hypotheses about interactions which are visible. The

same device heuristic essentially allows the learning program to hypothesize new

connections between components.

The use of the heuristics is ordered so that the boundaries on the space of

candidate causes and preconditions is expanded as JACK searches for a causal

cxplanation for a change. These heuristics embody the notion of a closed system

whise iternal behavior is not impinged upon by events outside the system's
bol, dari es.

Generalizing Over Further Experience

Causal models are oric.inally constructed on the basis of a single experience with a

physical svstem. Any form of the causality-proposing heuristics can admit, incorrect

or incompiute hypotheses. More likely than not, causal models will need refinement.

Th, next few sections discuss ways to recognize deficiencies in causal models and

ways to roneralize cau'al models to repair such deficiencies.
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Spurious Preconditions arid Effects

Preconditions and effects at the physical level of a causal rule are collected by

noting, respectively, what relations held, and what relations changed when the

causation was manifest. Spurious effects are less likely because of the additional

constraint, but this procedure does not guarantee the exclusion of either spurious

preconditions or effects. However, an irrelevant precondition will never prevent a

causal relation from being realized, and an irrelevant effect will not necessarily

occur. Therefore, any precondition or effect which is respectively, unsatisfied or

unrealized w'hen a causal rule is otherwise intact, can be dropped. This pruning is

a kind of gencralizing from negative examples.

An example from the sink domain illustrates how a spurious precondition can

be recognized and dropped. When JACK first attributes the recession of the water

in the sink to the removal of the stopper from the drain, there is a bar of soap

floating in the water. ,JACK includes but later drops the presence of the soap as a

precondition ,%hen the water flows out again sans soap.

IMaking Better Hypotheses

A causal rule may fail to explain apparently similar events because the causal

reiation it describes may subsume a chain of causality, or may itself be part of

a larger causal structure. Such an incomplete causal description may be missing

reevant dependences, preconditions, and effects.

\\7rlen ~he effects )ist.d in a causal rule do not obtain despite all known

: rccciation. ib-2ing satisfied, this is evidence that the causal model is incorrect

u- at icast rinompilc. JACK night resume the search for an hypothesis where it

originally tcrrmiinated and try Lo generate a causal explanation which covers both

li lie'; ail z:rc , uus vnts. A better idea is to try and determine why the causal

mocicl faijed by comparing the situation where it failed to the situations where it

did not fail...nv dificrercex can support new hypotheses which can then be tested

n'. thre ca'usa!;.-ropcsing heuristics. Differences reveal causes in rehypothesizing

J,,:;' as changes reveal cause. ini iiiitial h3:"othesizinig. Rehypotcesizing is a kind of
generaiizinig from both p itivc arid negative examples On the other hand, JACK's
initial hypotheses are based on uxpianations of a single positive example.

The procedure for rcviypothiesizing is:
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Rchypothesizer:

Given two situations, one where a causal rule provides a causal
explanation and one where it does not,

Compare the two situations.

Until an adequate causal explanation which covers both
situations has been constructed,

For each difference,

Try to construct a causal explanation.

An ex:ample from the toaster domain illustrates how a better causal model can

result when JACK is forced to rehypothesize because the current model fails.

Part of JACK's initial model of the toaster includes an influence between the

position of the lever and the temperature of the coils. This model works fine until
the toaster's plug is pulled from the outlet. JACK compares (see Appendx V for

a description of the matcher) the state of the toaster at the time of the initial

hypothesis and at the time of the failure and discovers the difference involving the

plug. The plug now becomes a candidate for affecting the coils. JACK asserts a
new dependence between a new quantity associated with the plug (which we might

call current) and the temperature of the coils. One of the new preconditions is that

the plug must be in the outlet.

To see how differences play the same role in rehypothesizing as changes do in

initial hypothesizing, imagine that JACK's first experience with the toaster had
involved the lever being already down and the plug being put in the outlet last. In

this case, JACK vwould have made the better hypothesis first.

Deperidences; in Devices

TherE are additional situations in which deficiencies in causal models can

be recognized, if one assumes that dependences are always functions (in the

mathematical sense) from the independent quantity's quantity space to the dependent

luantitv's quantity space. One-to-many relations between parameters of a device

make li tlc sense because tliv imply random behavior. This is an oversimplified,

but usc^ul telcological assumption about the nature of dependences in designed

physical rvstcrs. If a one-to-many relation is ever observed, this is evidence that

.he cau :a m , ir!cornTletC and a better hypothesis is needed.
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Thi,; assurnption is buttressed by a felicity condition [\aniehl 83' which requires

dependences to be monoionzc functions. This condition guarantees one-to-one

correspondcnces between quantity spaces across dependences, which makes some

qualitative reasoning easier. For example, increasing an independent quantity

must increase (or decrease) the corresponding dependent quantity. Many-to-one

dependences in physical systems also can be useful, e.g., to transform a wide range

of inputs into a finite set of stable states - but they were avoided in this work.

Therefore, further experience with dependences should result in nothing more than

the possibie parallel expansions of the appropriate quantity spaces.

An example from the toaster domain illustrates how the teleological assumption

about dependences can enable the learning program to recognize incomplete causal

models.

The toaster produces toast of a certain darkness the first time through. JACK's

iritial model inciajes a dependence between the temperature of the coils and the

darkness of the toast [>i this dependence cannot explain why a second piece of

toast comes out lighter. On each occasion, the plug was in, the lever was down, and

the coils heated up. JACK compares the two situations to find an explanation for

the diference between the two pieces of toast. JACK finds that the thermostat dial

was set differently in the two situations and asserts a function between the setting

of tie thermostat dial and the darkness of' the toast. The learning program does

not actuali:; discern the thermostat mechanism or the heat exchange process which

controls the darkness of the toast. However, the abstract causal relation JACK

noes propose is accurate to the resolution available, and useful.

This kind of analysis does not apply to rates of quantities because of another

r, .tio.n imit-tion. Values in quantity spaces for rates are limited to negative,

2ero, arI positive. 1 is not possible to determine if a quantity is changing faster

t*" !I c than a- a previous time.

The Learning Session in the Sink Domain

,i s~ion contaio: an anmotated transcript of the learning session in the sink

C',rn1ain. i e sew,'!nce o! evcn's (the actual input to the learning program) appears

ir. u zc tvpe. 'The sfequenc,, of cvents also appear, in ;\ppeidix I). The causal

": ,x .tns ..,. co:itri, ct. tc unders'atid these events are given in bold type.

r),M ,erC L t ; a -,,:17' ,ri nornai type.
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Already, the tap, the faucet, and the basin are part of the sink.

The drain, the safety, and the stopper are part of the basin.

These two sentences create a hierarchical structural description of the sink.

The stopper is in the drain.

The faucet's position is closed.

The light-switch's setting is off.

The win iow's height is down.

The adverb already signifies that the relations so far described have held since

some indeterminate time in the past. The learning session proper begins here.

Initially, the faucet's position is open.

The iight-switch's setting is on.

Thinking at t 1.

The adverb initially starts the internal clock at 1.

The learning program is told a priori which changes are due to external actions

and does not try to explain them. These include turning the faucet on and off, and

turning the light on and off.

Nezt, a water-column appears between the tap and the basin.

The water-column's width is steady.

Thinking at t=2.

The adverb next ticks the clock once.

JACK observes that both the faucet's position and the light switch's setting

ch,.nged at t=l. Either of these changes could explain the change in the water

column's width at t=2 because both satisfy the temporal adjacency heuristic.

However, the light-switch fails to satisfy either the physical connectedness heuristic

or the same device heuristic with the water column. On the other hand, the faucet

does satisfy the physical proximity requirement. The water column is connected

to the tap and the tap and faucet are part of the sink. The same device heuristic

enables JACK to hypothesize about the pipe - which is not visible - connecting

the faucet and the tap.
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Asserting a function between

tile position of the faucet and

the width of the water-column.

This dependence satisfies

the temporal adjacency and same device heuristics.

The width of the water-column increased because

the position of the faucet incrcased.

WNhen JACK asserts a dependence to construct a causal explanation, he gives

the justification for the new dependence (which causality-proposing heuristics were

satisfied), and the explanation supported by the new dependence.

C CLU MJ)

Q u A Ji T I i l -b F -Q 
A T i r

FUCTO - COLmJ

OPEW AT- I PO'cITNE AT 2

"', e, ap :rs ir. the basin.

-hne . cer-coiu-rr is connected to the water.

re wate- is connectcd to the drain.

Tne water s hei.'t is increaszng.

Thinking at t.=3.
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Asserting an influence between

the width of the water-column

and the height of the water.

This dependence satisfies

temporal adjacency and physical connectedness.

The height of the water is increasing because

the width of the water-column is positive.

This explanation is straightforward. Notice that the learning program finds a

non-intuitive two-link chain of causality between the faucet, the water column, and

the water in the basin. JACK treats the water column and the water as separate

objects. He does not know that the water column and the water are the same
'stuff". This curiosity notwithstanding, the causal explanation that the learning

program finds is useful.

~COadNCT~b -10a

QVAwl iTY - cFQUAWTITY- OF

-mrL ECE. 4- w

POITIVE AT 2 pO~I IvE AT 3

Latc,. tah u,,ater Is connected to the safety.

The wa:e:-'s hCe2ht Is equal to the safety's height.

The u,ae-'s height Is steady.

Thinking at t=4.

Thinking at t--5.

......
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The k:nown results about rule-based inference apply to causal rules and have

been exploited implicitly )y the learning program all along.

Explanation, prediction, and planning done at the physical level deals with

real-world objects, relations, and events. Reasoning at the quantity level can be

incomplete because the full set of preconditions is omitted. However, the abstractions

available at the quantity level which support hypothesizing also support qualitative

reasoning which can in sorie cases, go beyond what is modelled explicitly in the

causal riiles.

Explanation, Prediction and Planning is Done by Rule-Based Inference

Explanation of phenomena in the physical system is done by backward chaining

on the set of causal rules that makes up the causal model of the physical system.

This kind of explanation uses the existing causal model as is. It is different from

the causal explanations which support hypotheses to create and modify the causal

model.

The following is the procedure for doing explanation:

Explainer:

Given an event,

Find a causal rule which lists that event as an effect.

If there is no such causal rule, stop.

The preconditions of that rule and the time they hold are

the explanation.

'Fo. each precondition,

Explain that precondition.

The following is an explanation in the sink domain for the appearance of water

ir. t e b2sin.

. - - - . - . - .-. - - .. . - . •- . .• . . . . . • -
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CHAPTER 4

REASONING WITH TIlE CAUSAL MODEl:

EXPLANATION, II')ICTION, AND P'LANNING

The definition of learning that guides this research is the following: Learning
is the creation of useful knowledge structures to facilitate reasoning that was not

possible before the learning took place.

The learning program described in this thesis constructs causal models of physical

systems. The models consist of a set of causal rules, each of which describes some

aspect of a physical system's behavior in terms of causal relations.

There are three kinds of causal reasoning that a causal model should support:

" explaining phenomena

" predicting pheromena

" constructing plans to generate phenomena

This section shows how the learned causal model supports these kinds of reasoning

and also how these kinds of reasoning provide feedback about deficiencies in the
model. When predictions are inaccurate or plans do not work, this is evidence

that the causal model is incomplete and rehypothesizing is in order. Thus learning

supports reasoning which drives further learning.

Causal Rules are If-Then Rules

A causal rule consists of a set of dependences between quantities at the quantity

level, and a set of preconditions and effects at the physical level. A causal rule can

be restated as follows:

Quantity Level

IF ithe independent quantities change in the manner prescribed by the

dependences]

THEN the dependent quantities will change in the manner prescribed by the

dependences]

Physical Level

IF Ithe preconditions are satisfied]

THEN ithf effects will occurl"
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This completes the initial learning session in the toaster domain. The figure

below shows the quantities and dependences JACK uses to causally explain the

observed behavior of the toaster.

~tJPQE~L - CILSFUJCT %0f -t

Thes3 are the quantity spaces of the quantities of the toaster.

Lever Position (DOWN -> UP)

Coils Temperature (COLD -> HOT)

Bread Shade (WrnTz -> DARK)

JACK will have cause (no pun intended) to refine this initial model of the toaster

when the plug is pulled from the outlet and when toast of varying darkness is

produced. The transcript of these further experiences appears in the next chapter.

The final causal model of the toaster appears in Appendix IV.

This chapter has shown how the learning program goes from a sequence of events

describing changes in a physical system to an explicit representation of the causality

which underlies the behavior of the physical system.

The goal of a learning system is not just to create new knowledge structures,

but to create new knowledge structures which can support reasoning which was

impossible before the learning took place. The next chapter shows that this goal

has been achievcd.
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A function between

the shade of the bread arid

the position of the lever.

This dependence satisfies

simultaneity and same device.

The position of the lever decreased because

the shade of the bread increased.

The figure above shows why JACK cannot distinguish these hypotheses. JACK

now does what reasonable learning programs do in such situations - he waits for

less ambiguous experience. Later, when JACK sees that the coils are always hot

when the lever pops up but the pieces of toast can be of any darkness, he will be

able to make a justified choice between these competing hypotheses.

Next, the coils' temperature is decreasing.

The window's height is down.

Thinking at t=5.

The temperature of the coils is decreasing because

the position of the lever is positive.

JACK uses a known dependence to construct a causal explanation. The change in

the window's height is ignored because it fails the physical proximity requirement.

Later, the coils'temperature is cold.

Thinking at t=6.

Thinking at t=7.

The temperature of the coils has reached a stable value.

Another long-term effect.

F-mally, nothing is changing.
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Thus JACK chooses the coils as the causal culprit. Notice that the same device

heuristic enables JACK to handle an instance of "action at a distance", in this case

heat flow.

VAR-O PAILr -OF

GLVAPT TYOF{F -lt QiJAITtY - oF

90,5rI'VE h-A . PoSIIVE Ar 2.

There are more than one possible explanations for

the change in the position of' the lever.

A function between

the temperature of the coils and

the position of the lever.

This dependence satisfies

simultaLneity and same device.

The position of the lever decreased because

the temperature of the coils increased.

or

"" " " " "" ° " ' ." ".""
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This value "hot" is included as a long-term effect in the causal rule just constructed

which describes how the temperature of the coils increases.

There are two changes which JACK will try to explain - the lever has popped

up and the bread has turned to toast.

Asserting a function between

the temperature or the coils and

the shade of the bread.

This dependence satisfies

simultaneity and same device.

The shade of the bread increased because

the temperature of the coils increased.

JACK first makes the inference that the bread's darkness was changing

continuously during the time it was not visible. JACK asserts "The bread's

shade is increasing." at t=2 and "The bread's shade is steady." at t=4.

Then JACK looks back in the sequence of events to try and construct a causal

explanation.

Both the change in the position of the lever (by temporal adjacency) and the

change in the temperature of the coils (by simultaneity) are candidate causes.

Also, both the lever and the coils satisfy the same device heuristic with the bread.

However, the bread and coils are closer in the PART-OF hierarchy than the bread and

the lever. (The iN relation implies the PARTOF relation. This inference is handled

by a demon).

PAMT -OF-o

PAVXT- ' %PAPT -OF

.1.,... ,. , .- : . . . .,: . . . ... ,.. 1 ..... ,., ,. . .: .. .. . . : .. .,. ., . .
, . J r" .. " I " *,*''. *l 1; J • *" - -" . ., '. . '* " ." '." - "
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of the coils. However, the faucet does not satisfy any physical proximity test with

the coils.

\ h ?RT -0 r
P Ak-T OF GZ I i -

\ PAIT- OF

Qv AtwlITY -OF QUA QT I" -OF

DOwVJ AT I hpo aIlJ iT 2

The sink will continue to exhibit changes but for clarity's sake, its behavior will

now be omitted.

Later, the lever's position is up.

The coils' temperature is hot.

The coils' temperature is steady.

The brecd is visible.

The bread's shade is dark.

Thinkifig at t=3.

Thinking at t=4.

The temperature or the coils has reached a stable value.

• " " ' " " " ' " . i .: -:-: - -- . . . - -. : .*... :. .. - .& Z . . :- . : :. .- : . .
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The coils are part of the slot.

These sentences form a hierarchical structural description of the toaster.

The coils' temperature is cold.

The lever's position is up.

The dial's setting is D.

The plug is in the outlet.

The bread is in the slot.

The bread's shade is white.

The faucet's position is closed.

The light-switch's setting is on.

The window's height is up.

These sentences describe the state of the toaster in terms of physical relations

and values of quantities.

Initially, the lever's position is down.

The faucet's position is open.

The bread is not visible.

Thinking at t=1.

Next, the coils' temperature is increasing.

Thinking at t=2.

Asserting an influence between

the position of the lever and

the temperature of the coils.

This dependence satisfies,

temporal adjacency and same device.

The temperature of the coils is increasing because

the position of the lever is negative.

Both the changc in the position of the lever and the change in the position of the

faucet satisfy temporal adjacency with the change in the rate of the temperature
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FC OU I

A~oW MATE

These are the quantity spaces of the quantities of the sink.

Faucet Position (CLOSED -> OPEN)

Water Column Width (ZERO -> POSITIV)

Water Height (ZERtO-> BELOW-SAFETY-> SAFETY)

Safety Flow (ZERO - POSITIVE)

Drain Flow (zrRO- POSITIVE)

The set of causal rules which make up JACK's full causal model of the sink

(including preconditions and effects) appear in Appendix UI. This model has been

refined over further experience. The transcript of these experiences appear in the

next chapter.

The Learning Session in the Toaster Domain

This section contains an annotated transcript of the learning session in the

toaster domain. As in the previous section, the sequence of events which describes

changes in the toaster over time appear in italic type. (This sequence of events

also appears in Appendix III). The causal explanations JACK constructs for those

change!. appear in bold type. Comments appear in normal type.

Already, the iri -r, the plug. the dial, and the slot are part of the toaster.

• . - . . . .. - . - ° . .' , - . - . - . , - . • . . . , . ... A, . ,. . .
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Co#1T Al W

1171

1P0'IT IVE AT r5 Nrr_&T1IVE AT 13

Later, the water disappears.

Thinking at t=14.

Thinking at t=15.

The height of the water has reached a stable value.

The height of the watcr is not changing because

there is nothing affecting it.

'When the water finally disappears, this event is included as a long-term effect of

the causal rule just constructed which describes how flow at the drain causes the

water's height to fall. Such long-term effects will happen as long as the preconditions

of the pertinent causal rule hold persistently. In this case, the stopper must remain

out of the drain.

Fznaliy, nothing is changing.

This completes the initial learning session in the sink domain. The figure below

shows the quantities and cependences JACK uses to causally explain the observed

behavior of the sink.

.. . . . - . . • . . - - , ° - . -. " . . " . . . . '.
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the flow of the drain and

the height of the water.

This dependence satisfies

simultaneity and physical connectedness.

The height of the water is decreasing because

the flow of the drain is positive.

The height of the 'water begins to fall when the stopper is pulled from the drain

and the window is opened. The change in the window's height is eliminated as

a candidate explanation because the window does not satisfy either the physical

connectedness or the same device heuristic with the water. Since, the learning

program cannot perceive flow at the drain directly, it is unable to construct a causal

c:.:planation in terms of a change in an independent quantity. Instead, JACK looks

for a change in a physical object which satisfies temporal and physical proximity.

The only such object and change JACK finds is the drain and the fact that

the stopper has just been pulled from the drain. Assuming that this change is

a just-satisfied precondition for a newly discovered causal relation, the learning

program assigns a new quantity to the drain, asserts a new influence, and constructs
a new causal rule. This rule includes another precondition which states that soap

must be in the water because this was true when the rule was formed. This spurious

precondition will be pruned by later experience.
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A previously learned dependence explains why the water column disappears when

the faucet is turned off. \With the faucet off, for just a moment water continues to

flow out of the safety drain until enough has flowed out to actually break contact

with the safety drain. For that short moment, the positive half of the equilibrium
state has been broken because thle water column has disappeared, but the negative

half of the equilibrium state is still intact arid some water flows out. JACK has no

trouble understanding this situation.

Nezt, the water is not connected to the safety.

The water's height is steady.

Thinking at t=9.

The height of the water has reached a stable value.

The height of the water is not changing because
there is nothing affecting it.

The height of the water is now steady because enough water has flowed out to

break contact with the safety drain. From JACK's viewpoint, a precondition on
the remaining negative half of the equilibrium state has become unsatisfied, and

there are now no influences on the height of the water.

Later, soap is in the water.

Thinking at t=1O.

Thinking at t=11.

Later, the stopper is not in the drain.

The window's height is up.

The water's height is decreasing.

Thinking at t=12.

* Thinking at t=13.

I am proposing a new quantity for the drain.

Please give a name for this quantity.

* > flow

Asserting an influence between

0'
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condition for water to flow out of the safety drain. There is an equilibrium state

between water flowing in at the tap and flowing out at the safety drain.

Once the safety drain has been identified as the causal culprit, assigning a

quantity to it and forming a new dependence to complete the causal explanation is

straightforward.

-rrxUE AT g

CO ,MMCTED - TO

GVANT1I'( -OF GQUAJT ITY-OF

TOIVLVEWiCE - A
* FLO~.D14E1&"TJ

Ih EA(o AT 5

hN

POSIT IVE AT 5

I%"tAT) o~rJ RTIO~

Later, the faucet's position is closed.

Thinking at t=6.

* Thinking at t=7.

Nezt, the water-column disappears.

The water's height is decreasing.

0
Thinking at t=8.

The width of the water-column decreased because

the position of the faucet decreased.

The height of the water is decreasing because

the flow of the safety is positive.

..0. -. . .: . . -. . . . . . .. . .. . . .- .. , - : .: . - . . . .. . . .. , . .
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The adverb later ticks the clock twice. This creates an intermediate interval

during which no additional 1:" ges occur. Tte water rises to the level of the safety

drain during this interval.

The height of the water has reached a stable value.

When a changing quantity reaches a stable value, this event is included as a

long-term effect in the causal rule which includes the appropriate dependence. A

demon makes these addenda.

I am proposing a new quantity for the safety.

Please give a name for this quantity.

> flow

Asserting an influence between

the flow of the safety and

the height of the water.

This dependence satisfies

*simultaneity and physical connectedness.

The height of the water is not, changing because

there is an equilibrium between

the flow of the safety and

the width of the water-column.

The water has now reached the safety drain and has stopped rising. JACK knows

that a steady quantity has two possible explanations. Either there are no influences

or there are balancing influences. Since the faucet is still on, the only possible

explanation is that an equilibrium state has been achieved. Unfortunately, there is

no other independent quantity in sight, so the learning program must make a more

imarginative conjecture. JACK tries to find an object which satisfies the physical

proximity requirement with the water and which just underwent a physical change

of some kind (to satisfy the temporal proximity requirement). The assumption is

tnat the change is a newly-satisfied precondition which is now enabling a latent

causal relation.0
The object and change that the learning program finds are the safety drain and

the fact that the water is now touching the safety drain. This is in fact an enabling

-0



S50

(T) <FAUCET PART-OF SINK> TRUE

(T) <FAUCET.I'OSITION AMOUNT> OPEN

(T-I) <WATI-'I(-COLUMN CONNECTED-TO TAP> TRUE

(T+I) <WATER-COI.UMN CONNECTFD-TO BlASIN> TRUE

(T+I) <WATER-COLUMN-WIDTH AMOUNT> POSITIVE

(T+2) <WATER IN BASIN> TRUE

An Explanation

* Prediction of phenomena in the physical system is done by forward chaining on

the set of causal rules.

The following is the procedure for doing prediction:

Predictor:
Given a state of the physical system,

Find all causal rules whose preconditions are completely

satisfied.

If there are no such causal rules, stop.

The effects of these causal rules and the time(s) they hold

are the prediction.

Update the state of physical system according to this set

of effects.

Predict.

The following is a prediction from the sink domain about what will happen when

water is in the basin and the stopper is removed from the drain.

6 ..

4 ::

---------------------------------------------------------------------



(T) <\\ATEt IN itASIN> TRUE

'1" <I)IAIN CONNIECT.I). TO WATER> TRUE

(T) <IIRAIN I'ARTOF IIASIN> TRUE

(T) <STOPPEIR IN DRAIN> FALSE

(T) <WATER-HEIGHT RATE> NEGATIVE

(T+2) <WATER IN BASIN> FALSE

(T-4-2) <DRAIN CONNECTED-TO WATER> FALSE

(T+2) <WATER-IIEIGIIT AMOUNT> ZERO

A Prediction

Planning also is done by backward chaining on causal rules. However, instead

of explaining an event, the task is to achieve a goal. A plan must specify how to

* • make something happen. It must describe not only the pertinent causal relations,
but also the actions which must be taken in order to achieve a goal.

Because the planner must know about actions, it is told which states of the

physical system are externally settable.

The procedure for doing planning is given below:

Achiever:
Given a goal to achieve,

Find a causal rule which lists that goal as an effect.

If there is no such causal rule, fail.

T -e preconditions of that causal rule and the time they

hold is the plan.

For each precondition which is neither externally settable,

nor already holds,

Find a plan for achieving that precondition.

The following is a plan in the sink domain to make the water reach the safety

,. .. .-.,0. -.. .-. ..L . . --.-.-i -, _ . . . .. _ .. . . . .. ...- -. .- .- . .-.. .
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drain.

T) I'Al'C'lT I'AI tl" O1" SINK> TRUE

(T) <FAUCET-POSITION AMOUNT> OPEN

'T+I) <WAT1]It-('O,LiMN ('ONNECTEI)-TO TAP> TRUE

(T-rI) <WATEI-COLUMN CONNIFCTEI)-TO BASIN> TRUE

(T- I) <WATER-COT.UMN-WIDTII AMOUNT> POSITIVE

I
(T-+2) <WATER IN BASIN> TRUE

(T+2) <WATER-IIEIGIIT RATE> POSITIVE

(T+4) <WATER CONNECTED-TO SAFETY> TRUE

A Plana
The planner distinguishes the actions which are at the roots of the causal chains

in a plan.

Explanations, predictions, and plans are causal chains of events which are

relocatable in time. Each node in one of these structures describes states that hold

simultaneously. Links between nodes are justified by causal rules which describe a

causal relation between a set of preconditions and a set of effects.

It may be possible to find more than one explanation for the same event, or

more than one plan for the same goal, if the physical system is overdetermined. A

causal model of an overdetermined system would list the same relation as an effect

in more than one causal rule. However, the implemented explainer and planner do

not search for multiple solutions; they stop at the first one.

Similarly, the same relation may appear as a precondition in more than one rule.

Unlike the explainer and planner, the predictor finds all possible changes which can

proceed from a given state of the physical system. A branching prediction violates

the teleological assumption about devices not being designed to produce one-to-many

behavior. This would be evidence that the causal model needs refinement.

6
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In addition, conflicts can arise if the structure of an explanation, prediction,

or plan is non-linear. A conflict would be, for example, one branch of a plan

undoing what was achieved in another branch. Such conflicts might be evidence

for spurious preconditions or effects or other deficiencies in the causal model.

Fortunately or unfortunately, these situations did not arise in this research. Dealing

with contradictions and resolving conflicts in planning has been discussed in other

research, such as !Sussman 75, Sacerdoti 77, Doyle 781.

The Plk.nner has Two Modes: Achieve & Prevent

The planner has two modes, and in this respect it differs from the explainer and

predictor, and also from many other planners. In one mode, the planner generates

plans to achieve a desired event. This mode was discussed in the previous section.

In the other mode, the planner generates plans to prevent an unwanted event from

occurring.

Preventing a goal is harder than achieving a goal because while any way of making

something happen is adequate, if the task is to stop something from happening,

all the ways it can happen have to be inhibited. The preventer, given a goal to be

prevented, must find all the causal rules which list that goal as an effect, and for

each of these rules, it must prevent the effect from occurring. Curiously enough,

breaking individual causal rules is easier than satisfying them. The achiever has
to sqtisfy all of the preconditions (a conjunction) of a causal rule to ensure that

its effects will be realized, while the preventer only has to deny any one of the

precondi,ions (a negated conjunction is a disjunction) of a causal rule to ensure

that the effects of that rule will not be realized.

Another way to prevent something from happening is to generate a normal

plan to achieve a mutually exclusive state, e.g. the same relation with a different

truth-value or the same quantity with a different value. The current planner does

not try to do p-evention planning this way. However, both modes. of the planner

do interazt to produce complex plans which include both the achievement of some

states an 1 the denial of others.

The procedure for preventing a goal is:
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Preventer:

Given a goal to prevent,

Find all causal rules which list that goal as an effect.

If there are no such causal rules, fail.

For each causal rule,

Find any precondition which is either externally

settable, or does not hold.

The denied preconditions of these causal rules (one from

each) aiid the time they are denied is the plan.

If there are no such preconditions, then

For any precondition

Find a plan for preventing that precondition.

The following is a plan in the sink domain to prevent water from collecting in

the basin.

(T) <FAUCET-POSITION AMOUNT> CLOSED

(T+I) < WATER- COLUMN- WIDTH AMOUNT> POSITIVE

(T+2) <WATER IN BASIN> TRUE

A Prevention Plan

Conjunctions appear at the level of preconditions of individual causal rules in

plans to achieve a goal. Consequently, it is at this level that the achiever is sensitive

to incompleteness of the causal model. Conjunctions appear at the level of causal

rules in plans to prevent a goal. Similarly, it is at this level that the preventer is

sensitive to incompleteness of the causal model.

Note that. the possible incompleteness of the causal model at the level of the set

of causal rules does not affect the achieve mode of the planner. Only if the achiever

could not find a plan at all could a more complete model possibly make a difference.
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Thus a plan generated by the achiever is guaranteed to work only if tile causal

rules that make up tile plan are complete; a plan generated by tile preventer

is guaranteed to work only if the causal model itself (tile set of calsal rules) is

complete.

Both modes of the planner are useful, not only because they do the right thing in

many cases, but precisely because they can create situations in which deficiencies in

the behavioral model can become explicit. If a plan to achieve something fails, this

suggests a relevant precondition was missed (one involving objects and relations

out of sight, for instance) during the construction of the appropriate causal rule - a

precondtion which is now unsatisfied. Similarly, when a plan to prevent something

fails, this suggests that unknown causal relations exist. Feedback generated by

failed plans indicate the need for better hypotheses to refine the existing causal

model.

Qualitative Reasoning with Quantities

Plans are always constructed at the physical level, but the quantity level can aid

planning by supporting reasoning which can go beyond what appears explicitly in

the causal model.

Consider the planning problem of achieving a goal which involves a state that

has never been observed before. Certainly, there can be no causal rule which lists

this state as an effect. However, if this state corresponds to a conjectured value for

a quantity which is greater, or less, than a value in the quantity's quantity space

previously thought, to be a limit, then the planner can look for a causal rule which

shows how the quantity can be made to change in the desired direction. Given the

felicitv condition that correspondences between quantity spaces across dependences

are monotonic, such a plan should work as long as the preconditions are maintained

while the quantity is changing. The plan may fail because the quantity achieves a

stable or limit value before reaching the desired value or because the causal model

is incomplete, but at least there is something to try.

This kind of reasoning allows the planner to generate a plan to produce toast

of an unprecedented lighter shade by extrapolating the dependence between the

setting of the thermostat dial and the shade of the resulting toast.

Recall the table which lists knowledge about second-order changes in quantities,

used in hypothesizing causal relations.
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Constant C (0,[ ]) I D x x

Increase I(+1- ]) I E C x

Decrease D (-,-]) E D x C

Equilibrium (04,+,-]) E E D I

For example, a state of equilibrium can be changed to a state of increase by

deleting the negative half of the equilibrium. A state of decrease can be changed

to a stable state by adding a positive contribution and achieving equilibrium or by

deleting the negative contribution.

The felicity condition which prohibits tradeoff situations simplifies this table

considerably. Without this restriction, there would be many ambiguous entries.

For example, adding a negative influence to a positive one could result in positive

tradeoff, negative tradeoff, or equilibrium.

This knowledge can be used by the planner to generate plans to achieve a state

for quantity which is different from its current state. The achieve mode can add

contributions and the prevent mode can delete them.

An example from the sink domain illustrates how reasoning with this knowledge

can facilitate planning. The planner is given the task of making the water rise

above the safety drain. Because this event has never occurred, there is no causal

rule which lists it as an effect. However, the planner does know that the height of

the safety drain is an equilibrium value for the water's height. It reasons that the

water can be made to rise above the safety drain by keeping the positive half of

the equilibrium state intact and inhibiting the negative half. Unfortunately, even

this reasoning is not enough because the planner can find no way to prevent flow

a: the safety drain. The problem is ultimately solved by using an analogy, which

is the subject of the next chapter.

Reasoning with the Sink Model

This section contains an annotated transcript of causal reasoning problems in

the sink domain presented to and solved by the explainer, the predictor, and the

two complementary halves of the planner - the achiever and the preventer. The

ability of these reasoning programs to solve these problems serves to demonstrate

that learning has taken place. When predictions prove wrong or plans do not work,

this is evidence that the causal model is incomplete. In these cases, JACK is callkd

back in to try and improve the model. The same conventions will be followed here
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as in the learning session transcript. The statement of the problems to the various

reasoning programs and the sequence of events appear in italic type. The responses

of the explainer, predictor, and planner appear in bold type. Comments appear in

normal type.

This reasoning session takes place immediately after the learning session. The

faucet is off, the stopper is out of the drain, and there is no .ater in the basin.

Later, thr stopper is in the drain.

Predict uhat will happen.

Nothing will change.

The predictor correctly determines that the sink is in a stable state. No causal

rules have their set of preconditions completely satisfied.

Make the water-column appear.

To achieve:

<WATER-COLUMN-VIDTH AMOUNT> POSITIVE

These must hold:

<FAUCET PART-OF SINK> TRUE

<FAUCET-POSITION RATE> ZERO

< WATEIR- COLUMN-WIDTH AMOUNT> ZERO

<W-ATER-COLUMN-WIDTH RATE> ZERO

rhese should be set:

<FAUCET-POSITION AMOUNT> OPEN

Stop the water-coiumn from appearing.

To prevent:

<WVATER?- COLUMN- WIDTH AMOUNT> POSITIVE

These should be set:

<FAUCET-POSITION AMOUNT> CLOSED



The same goal i-presente,( to the acniever and the preventer. The achiever finds

a causal rule 'which lists the desired goal as an effect. Satisfying all thc preconditions

of this rule con1stitutes a' I)!an fur nilk ing the water columT1n appear. The planner

always identifies the actions aniong the set of conditions that must be satisfied to

carry out a plan.

The preventer finds the same causal rule. Since it is the only, rule which lists the

appearance of the wvater column as ani effect, it is the only rule the preventer has

to break. The prevcntcr only has to inhibit a single precondition of a rule to break

it.

Later, the Jaucet's position is open.

Predict what will happen.

Next, these wili hold:

< WATER- COLUIMN CONNECTED-TO BASIN> TRUE

<WATER-COLUMN CONNECTED-TO TAP> TRUE

<WATER- COLUM,,jN-WIDTH AMOUNT> POSITIVE

Next, these wiill hold:

<WATER CONNECTED-TO DRAIN> TRUE

<WATER CONNECTED-TO WATER-COLUMN> TRUE

<WVATER-COLUMIN CONNECTED-TO WATER> TRUE

< WATER IN,, BASIN> TRUE

<WATER-IEICIIT RATE> PLUS

Later, these wvill hold:

<WVATER CNEE)TOSAFETY> TRUE

<WVATERi-IIE,1IfT ,AMOUNT> SAFETY

<W "ATER-IIEIGIIT RATVIE> ZERO
Next, nIothing v.1il chiatigc.

After the fauc-t, is turned on, tlhe predictor is invoked. It correctly predicts that,

as !ong as no further chan c~ occur. the w, ater column will appear and the water

Srise until it rcache,- t:i i.evci o, the safety drain.

W,:: a C, r- C 01:1rn rq 7) -' ( .5t I"r7-, t~c tapD and the basin.

T 5i w(2..eT-cotZ -1, 5 "i .' 7



Next, water appears in the basin.

The water-column is connected to the water.

The water is connected to the drain.

The water's height is increasing.

So far, all of the predictor's prophecies about what would happen when the
faucet was turned on have been fulfilled. The water will not quite reach the safety
drain. ')ut only because the faucet will be turned off before it gets there.

Eiplai. why there is water in the basin.

<WATER IN BASIN> TRUE

holds b)ecause:

First, these held:

<FAUCET PART-OF SINK> TRUE
<FAUCET-POSITION AMOUNT> OPEN

<FAUCET-POSITION RATE> ZERO

<WATER-COLUMN-WIDTH AMOUNT> ZERO

< WATER- COLUMN- WIDTH RATE> ZERO

Then, these held:
<WATER-COLUMN CONNECTED-TO TAP> TRUE
<WATER-COLUMN CONNECTED-TO BASIN> TRUE

<WATER-COLUMN-WIDTH AMOUNT> POSITIVE

The explainer finds the correct causal explanation for the appearance of water

in the basin. It back-chained through the same two rules that the predictor just
forward-chained through. The explainer does not treat actions (such as turning on

the Faucet) specially.

Nex", the ;a'icc!'s position is closed.

Nezt, the water-colurnn disappears.

The water's height .s steady.

Thinking at t--24.

The height o" the water has reached a stable value.

- -- n -- . .
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The height of the water is riot changing because

there is nothing affecting it.

Because the earlier prediction is not entirely corroborated, JACK returns to try

and explain what went wrong. If necessary, JACK will try to refine the causal

model.

In this case, the preconditions for making the water rise became unsatisfied

before the water reached the safety drain. No rehypothesizing is necessary.

Make the water disappear.

To achieve:

<WATER IN BASIN> FALSE

These must hold:

<DRAIN CONNECTED-TO WATER> TRUE

<DRAIN PART-OF BASIN> TRUE

<WATER CONNECTED-TO WATER-COLUMN> FALSE

<WATER CONNECTED-TO DRAIN> TRUE

<WATER CONNECTED-TO SAFETY> FALSE

<WATER IN BASIN> TRUE

<WVATER-HEIGHT AMOUNT> BELOW-SAFETY

< WATER-IIEIGIIT RATE> ZERO

These should be set:

<DRAIN CONTAIN STOPPER> FALSE

<VATER CONTAIN SOAP> TRUE

The planner generates a plan for making the water go away.

Later, the stoppe- z not In the drain.

Predict what will happen.

Nothing will change.

This prediction is Lased on an unsatisfied precondition in the rule which describes

how water flows out of the drain - namely, there is no soap in the water. JACK

will now discover that this is a spurious precondition.
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The wvater 's height is decreasing.

Thinking at t-26.

This precondition is spurious:

At t=11, <SOAP IN WATER> FALSE.

At t=-26, <SOAP IN WATER> TRUE.

Water flows out of the drain whether or not there is soap in the water. This

precondition is flushed.

Later, the water disappears.

Finally, nothing is changing.

This completes the reasoning session in the sink domain which shows how the

explainer, predictor, and planner can all use the causal model which was constructed

during the learning session.

Reasoning with the Toaster Model

This section contains an annotated transcript of solved causal reasoning problems

in the toaster domain. JACK will have three opportunities to refine the causal

model of the toaster when causal reasoning does not corroborate the behavior of

the toaster. Again, the problems and the sequence of events appear in italic type.

JACK's new hypotheses and the responses of the causal reasoning programs appear

in bold type. Comments appear in normal type.

This reasoning session takes place immediately after the initial learning session.

he toast has popped up and the coils have cooled down.

Later, the bread is not in the slot.

Nezt, the plug is not In the outlet.

Nezt, the new bread is in the slot.

The bread's shade is white.
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Next, the lever 's position is down.

The bread is not visible.

Predict what will happen.

Next, these will hold:

< COILS-TEMP ERATUIRE RATE> POSITIVE

<BREAD-SIHADE RATE> POSITIVE

Later, these will hold:

<COILS-TEMPERATURE AMOUNT> HOT

< COILS-TEMPERATURE RATE> ZERO

<BREAD 1S VISIBLE> TRUE

<BREAD-SHADE AMOUNT> DARK

<BREAD-SHADE RATE> ZERO

Xext, nothing will change.

Notice that the prediction does not mention the lever popping up. This is because

[ACK was unable to generate an hypothesis from the earlier, ambiguous experience

,o explain this event.

\ezt, nothing is changing.

The prediction is not corroborated. This is evidence that the causal model is

ncomplete. JACK compares the situation in which the causal model for the toaster

vas first constructed against the current situation. Any differences might explain

vhy the model worked then but not now.

""" " ' ' " " ~~~~~ ..- :.: :. ......
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nking at t-=14.

is precondition was missing:

t t 1, < PLUG IN OUTLET> TRUE.

t t-=13, <PL1UG IN OUTLET> FALSE.

oposirig a new quantity for the plug.

2ase give a name for this quantity.

current

iserting an influence between

e current of the plug and

.e temperature of the coils.

his dependence satisfies

.me device.

he temperature of the coils is increasing because

ic positive or the lever is negative and

te current, of the plug is positive.

JACIK is abie to generate a causal explanation based on a difference which

assumed to revcal a precondition which became unsatisfied. The plug being

/out of the outlet is the only difference JACK finds. Furthermore, the plug and

Le coils satisfy the same device heuristic. The temporal proximity requirement

Des no, apply when JACI's hypotheses are generated from differences between

%'o situations rather than from changes which are causes in a single situation.

ifferences are an altcrnate way of generating candidate causes.
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A Mapping

Successful Anialogy

This section contains an annotated transcript of a planning problem which

•iginally fails and then succeeds after missing knowledge is provided by means of

-i analogy.

The input to the program is in italic type. The program's responses arc in bold

'pC. Comments appear in normal type.

fake the water's height greater than the safety's height.

The problem is to make the water's height rise above the safety drain. In its

<perience with the sink, the learning program has never seen the water above the

ifery drain, therefore there is no causal rule in the causal model which lists this

.ate as an effect.

Htowever, the planner does know that the height of the safety drain corresponds

an equilibrium state for the water's height. It reasons that the water can be

iade to rise above the safety drain by changing the equilibrium state to a state of

icrease, i.e.. by brcaking the negative half of the equilibrium state.

Henc, the planner identifies the causal rule which describes flow at the safety

rain - the negative half of the equilibrium state. Here it gets stuck. The planner

in find no wa.-v of disabiing any of the preconditions for flow at the safety drain.

'o achieve:

<KWATEI,-IILTGITT AMOUNT> A3OVE-SAFETY

not possible.
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lapper:

Given a target causal rule and the lists of unmatched states

(preconditions or effects), unmatched objects and matched

objects from the causal rule matcher and the relational

network matcher,

For each unmatched state (precondition or effect) consisted

of a SUBJECT, RELATION, OJI..CT and VALUE,

Construct a matching state for the target causal rule

according to the following:

Map the RELATION exactly.

Map the VALUE exactly.

For the SUBJECT and OBJECT,

If they are relations, identify their

values and map them as states.

If the) are objects,

If they appear in the matched

objects list, map the correspond-

ing objects.

If they appear in the un-

matched objects list, generate

another object in the immediate

class which contains the un-

matched object and map the

new object.

There is one )recolidition which does not match when the rule which describes

ow at the normal drain is compared to the rule which describes flow at the safety

rain. This precondition says that the stopper must be out of the normal drain. The

-iapper maps this precondition by preserving the relation iN and the value FALSE,

ubstituting SAF!;TY for IRAIN which are corresponding objects, and generating a

e%% STOPPER.
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not as powerful as others that have appeared in the artificial intelligence literature

I\Vinston 80, 82, Brotsky 801, but tle)y serve to support the use of analog) in this

research. The matchers are described in Appendix V.

flow to Map

Once an analogy is selected, performed, and justified the last thing to do is to

reap the results of the comparison by mapping information from one causal rule

to another. The assumption behind analogy is that relations or constraints which

hold in one concept will hold in another if the two are similar enough.

The mapper uses the results of the causal rule matcher. The preconditions and

effects that did not match are the concern of the mapper.

The following is the procedure for mapping preconditions and effects from one

causal rule to another:
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the water can rise, the other how it can fall.

The rule which the selector finally chooses is the rule which describes flow at the

normal drain. Both rules describe negative influences on the height of the water.

"T4FLUE N1 CE -FL CE -

II

A Selection

Although the procedure for doing selection for analogies presented here is highly

specific to this research, it does expose a principle which is applicable to the problem

in general. The idea i7 to find relevant knowledge structures by comparing abstract,

summarized descriptions of those knowledge structures first. Only if the abstract

descriptions match well is the full matcher invoked to do a detailed comparison of

the knowledge structures. Thus selection can be merely another form of matching.

The difference is that selection involves matching at an abstract level. The small

investment made by matching at an abstract level avoids committing the matcher

to doing detailed comparisons until there is some assurance that the effort will bear

some fruit.

How to Match

There are two matchers. One works on the relational network which is the

foundation of our kriowle'dge representation scheme. This matcher concerns itself

with nodes and arcs in the rela'ional network. The other matcher works on causal

rules, which are built from objects and relations in the relational network. The causal

rule matcher uses the results of the relational rnetwork matcher. These matchers are
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The way to avoid doing a full match on preconditions and effects of causal rules

until it appcars justificd is to first match a description of the same knowledge which

captures the essence without the details. This is exactly the difference between the

quantity level and the physical level of causal rules. The way to select causal rules

for analogies is to compare their quantity levels. Only if they are similar there is

the matcher invoked to compare the more detailed physical levels.

The procedure for selecting causal rules for analogies is:

Selector:

Given a causal rule CAUSAL-RULE-I,

For each causal rule CAUSAL- RULE-2 in the set of other causal

rules until success,

Compare pairs of dependences, one from CAUSAL-RULE-

i and one from CAUSAL-RULE-2 with the relational

network matcher.

If all dependences match, succeed.

Call the causal rule matcher on CAUSAL-IULE.2 and CAUSAL,

RULE-1.

The planner stalled on the problem of making the water rise above the safety

drain when it could find no action which prevents water from flowing out of

the safety drain. The causal rule which describes flow at the safety drain is now

identified and the selector tries to find a different but relevant causal rule which

can be used in an analogy.

The quantity level of the causal rule which depicts flow at the safety drain

describes a single influence between the flow at the safety drain and the height of

the water.

There are five other rules to consider. Two of these rules - the ones which describe

the causal links between turning the faucet on and off and the appearance and

disappearance of the water column - describe discrete changes, functions rather

than influences, and are quickly eliminated. Another rule describes the equilibrium

at the safety drain. This rule has two dependences and cannot match. Yet another

rule describes how water rises when the water column is present. This rule comes

close to matching because it also describes an influence which changes the height

of the water. However, the directions of the influences clash - one describes how
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f low to evaluate a match.

What constitutes a good match? Part of this problem is solved implicitly when

a good selection is made. But some parts of a concept are more important than

others in a given context. This issue is not addressed here beyond requiring that

matches be nearly, but not quite perfect.

•How to map.

Once an analogy has been selected, performed, and justified, the final task is

to reap the results by mapping constraints over from the known domain to the
evolving domain. The mapper presented here uses the results of the matcher to

augment causal rules, moving knowledge in the form of preconditions and/or effects

from the source rule to the target rule.

What to Compare

The first step in doing analog) is determining what concepts to compare. Some

kind of selection process should precede the matching. Otherwise, the only option

is to blindly compare all pairs of known concepts in the hope of finding two that

match well and form a useful analogy.

This is the selection problem. The selection problem is really two problems -

relevance and retrieval. The selector must find another knowledge structure which

is relevant to the reasoning task at hand and the search process should be made

efficient by making candidate knowledge structures easy to access.

In principle, both of these problems can be solved simultaneously by employing

an appropriate indexing scheme. Unfortunately, the indexing problem seems to be
very complex and there does not appear to be a simple solution. Any knowledge

structure might describe several different items and might support several different

kinds of problem solving tasks. Also, different knowledge structures might describe

different aspects of the same items.

\Winston has noted that i. less constrained analogy situations, causal relations

should be matched first MWinston 80]. Because analogies in this work always and

only involve causal rules, some of the problems involved in selection are implicitly

solved. The selection problem for this research reduces to locating causal rules

which describe similar causal relations an similar objects. Selection tries to ensure

before the matcher is invoked that the knowledge structures being compared are

indeed simiiar and that the results of the matching have a strong possibility of

being useful in an analogy.

." .,. .. .

-,." • . , ,; , ,a,,- : -.. .. . . . . . . . .... .. - ? . : . . . . - ....... ..
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Issues in Analogy

* What to compare.

Finding an appropriate domain to compare to the given domain is not an easy

task. A solution is offered which is rather specific to this research and involves

abstracting to the level of quantities and dependences where causal descriptions

are summarized. This solution exposes a more general heuristic of comparing

summarized descriptions before comparing detailed descriptions. This solution is

only a hedge, and does not propose any memory model or indexing/retrieval scheme.

These appear to be necessary elements of any general theory of selection.

9 How to match.

The basic operation of analogy is comparing two domains to determine how well

they match. The partial matcher presented here comes in two parts. There is a

relational matcher and a causal rule matcher.
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CtIAPTER 5

EXTENDING TIlE CAUSAL MOI)EL:

ANALOGY

A pervasive common scnse competence is the ability to apply knowledge from

former experience to new problems. Analogy involves comparing two domains, one

which is well understood, and one which is the subject of current investigation.

The driving assumption behind analogy is that if two domains are similar enough,

then constraints which hold in one domain will also hold in the other.

Analogy can be used to extend causal models by comparing the causal relations

modelled by causal rules. Successful analogies result in preconditions and/or effects

being mapped over from one causal rule to another. Since causal rules support

explanation, prediction, and planning, analogies enhance the capability to do these

forms of causal reasoning. An example from the sink domain illustrates how this

works.

The planner is given the problcm of making the water rise above the safety

drain. It knows that the height of the safety drain is an equilibrium value for the

water's height and concludes that it must change the equilibrium state to a state of

increase. This means preserving the positive half of the equilibrium and breaking

the negative half. The planner quickly determines that keeping the faucet ol will

make the height of the water rise but it searches in vain for a way to stop the water

from flowing out of the safety drain. There is no known action which can inhibit

the operation of the safety drain.

An analogy with the normal drain comes to the rescue. The planner knows that

water will not flow out of the normal drain when the stopper is in. The analogy

leads to the discovery that the normal drain has a stopper and the safety drain

does not. This knowledge is mapped over by adding a new precondition to the

rule for flow at the safety drain - the safety drain must not contain a stopper

either. The original planning problem can now be solved by plugging up the safety

drain. a previously unknown action which is now available to the planner. The use

of analogy augments the causal rule which describes flow out of the safety drain.

The extended causal model enables the planner to solve a problem it would have

otherwise failed on.

.. ..-..,.. .. .... . .. , .. ,. ,........ ..... ,.... .. .... , , ... -.......
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<LEVER PART-OF TOASTER> TRUE
<PLUG PART-OF TOASTER> TRUE

<COILS-TEMPERATURE AMOUNT> COLD

<PLUG-CURRENT AMOUNT> POSITIVE

These must be set:

<DIAL-SETTING AMOUNT> L

<PLUG IN OUTLET> TRUE

<LEVER-POSITION AMOUNT> DOWN

JACK is able to solve this planning problem by extrapolating the correspondence

due to the function between the setting of the thermostat dial and the darkness of

the toast. Because the function is assumed to be monotonic, a lower setting of the

dial should result in a lighter shade of toast.

This completes the reasoning session in the toaster domain.

Causal reasoning can provide feedback about deficiencies in a causal model at

any stage of its evolution. In the case of the toaster model, several inadequacies

0 were discovered when predictions proved inaccurate and plans did not work. JACK

was able to generalize the model to explain these new phenomena by applying

generalization rules adapted to causal models and by exploiting constraints formed

from a teleological assumption about the nature of dependences in devices.

There is one more planning problem remaining in the sink domain which the

planner is unable to solve. The planner will not be able to solve this problem

until the causal model of the sink is extended via an analogy. The account of the

planner's initial failure, the analogy, and the final successful plan appear in the

next chapter.
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TEMiP

1.RE AD~
COIL$ S 4AT'E

TEMP ONC AOUWT

The quantity spaces of the quantities are:

Lever Position (DowN - > uP)

Plug Current (zERo -- > POSITIve)

Coils Temperature (COLD -> HOT)

Dial Setting (M -> D)

Bread Shade (WH:TE -> MEDIUM -> DARK)

JACK's model of the thermostat mechanism in the toaster is abstract. JACK

does not know that a coil of metal expands until a circuit is broken and that

darker pieces of toast say in the toaster longer. Although the "guts" of the toaster

remain unknown, JACK's model of the toaster is useful. For example, consider this

planning problem:

Make the bread's ,hade iighter.

To achieve:

<BREAD-SI[ADE AMOUNT> LIGII£

These must hold:

<COILS PAIRT-OF SLOT> TRUE

<BREAD PART-OF SLOT> TUIJE
<DIAL PART-OI' TOASTER> TRUE

. . .. .. -: : -. : . .: .-: -: :: --- : -- -: :. , .- -: .:-- - .:: .; , ".
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JACK has seen the lever pop up for two shades of toast. This dependence would

be many-to-one, violating the felicity condition that dependences be monotonic

functions, hence one-to-one. JACK chooses the remaining hypothesis - the lever

pops up wvhen the coils reach their maximum temperature.

PARLT- OF

PAIL- o 0

QvJAw~t vTy-of{Q~l'O% 0 Q U hA T IT Y ' -0F

COILS FUNCTMWt +

HOT AT q 1 % UP AT 'f, 1%

Next, the coils temperature is decreasing.

Later, the coils are cold.

Finally, nothing is changing.

Here is JACKs refined model of the toaster.

- -. -. . . .•. . .. . .. ..... .
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p PT - OF

PAwr-0F
"i -oF

l ^ %LT - OF

QUAWT ITY- Or- QuAMTITYfOf

S~rrl~6 , SHAVEj

t) AT 2 PARK AT 4

M AT 16 HEviUm AT ISi

At t=--4, <BREAD-SHADE AMOUNT> DARK

At t= 18, <BREAD-SIADE AMOUNT> MEDIUM

Asserting a function between

the temperature of the coils

and the position of the lever.

This dependence satisfies

same device.

The position of the lever increased because

the temperature of the coils increased.

JACK also finds an cxplanation for why the lever popped up. Earlier, there

were two competing hypotheses - either the change in the shade of the bread

or the change in the temperature of the coils caused the lever to pop up. No-.%,
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Nezt, the coils ' temperature is increasing.

Later, the lever's position is up.

The coils' temperature is hot.

The coils' temperature is steady.

The bread's shade is medium.

Another prediction has gone awry. Two shades of toast (dark,medium) have

resulted from apparently the same increase in the coils' temperature. (JACK cannot

perceive differences in the durations of the intervals during which the coils heat

up). The dependence between the coils' temperature and the darkness of the toast

appears to be one-to-many. Because of the teleological assumption that dependences

in devices are functions, this is evidence that the causal model is incomplete. JACK

compares the two situations to try to explain the difference.

At t-2, <DIAL-SETTING AMOUNT> D

At t=l6, <DIAL-SETTING AMOUNT> M

Asserting a function between

the setting of the dial

and the shade of the bread.

This dependence satisfies

same device.

The shade of the bread decreased because

the setting of the dial decreased.

JACK finds a new dependence which displays a satisfactory one-to-one correspon-

dence between values of the thermostat dial and shades of the resulting toast. The
thermostat dial and the bread satisfy the same device heuristic.
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ri

\ PRT- OF

P'ART-Of

FALE A-T '1 6 D

QIUANTITY-oF QUAN1ITY-OF

CNFLUENCE + 4

POSITIoW4 AT 1. POSTOW AT Z
;IMO AT 13 .IEPIo AT I'f

Next, the dial's setting is M.

The plug is i. the outlet.

Predict what will happen.

Next, these will hold:

< COILS-TEMPERATURE RATE> POSITIVE

<BREAD-SHADE RATE> POSITIVE

Later, these will hold:

S< COILS-TEMPERATURE AMOUNT> HOT

< COILS-TEMPERATURE RATE> ZERO

<BREAD IS VISIBLE> TRUE

<BREAD-SHADE AMOUNT> DARK

* <BREAD-SHADE RATE> ZERO

Next, nothing will change.

.................................--;-2. . ... . .".; ; • .
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An analogy now helps to solve this planning problem. The first step is finding

another causal rule to use in the analog'. Selection is done by comparing the

ji summarized descriptions of causality appearing at the quantity level of causal rules.

The assumption is that if rules match well at the abstract quantity level, there is

a good chance they will maLch well at the detailed physical level and be useful in

an analogy.

The selector finds that the quantity level of the causal rule describing flow at

the normal drain matches best with the quantity level of the causal rule describing

flow at the safety drain.

<DRAIN-FLOW INFLUENCE WATER-IIEIGIIT> NEGATIVE

<SAFETY-FLOW INFLUENCE WATER-HEIGHT> NEGATIVE

Matched Objects: (DRAIN-FLOW SAFETY-FLOW), WATER-HIEIGHT

The matcher compares DRM.N.FLOW to SAFETY-.'LOW by exploring the networks

surrounding these two nodes. This matching reveals the following matched and

unmatched preconditions.

Matched preconditions:

<DRAIN CONNECTED-TO WATER> TRUE

<SAFETY CONNECTED-TO WATER> TRUE

<DRAIN PART-OF BASIN> TRUE

<SAFETY PART-OF BASIN> TRUE

<NATER CONECTED-TO WATER-COLUMN> FALSE

<WVATER CONECTED-TJ O WATER-COLUMN> FALSE

<WATEtk CONNE2TTED-TO T)RA/IN> TRUE

<WVATER CONNECTED-TO SAFETY> TRUE
S

<WATER IN BASIN> TRUJE

<WATIER IN BASIN > TRUE

0 o

.S
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Unmatched Preconditions:

<DRAIN CONTAIN STOPPER> FALSE

The mapper maps the relation involving the stopper over to the causal rule

describing flow at the safety drain.

Proposing a stopper as iii

<DRAIN CONTAIN STOPPER> FALSE

With this new information, the planner now can successfully generate a plan to

make tfe water rise above the safety drain. The preconditions for the rule which

shows how water can be made to rise must be satisfied, and some precondition for

the rule which shows how water flows ou" the safety drain must be inhibited.

To achieve:

<WATER-IIEIGhIT AMOUNT> ABOVE-SAFETY

These must hold:

'<WATER-COLUMN CONNECTED-TO TAP> TRUE

<WATER-COLUMN CONNECTED-TO BASIN> TRUE

< WATER- COLUMN-WIDTH AMOUNT> POSITIVE

These should be set:

<SAFETY CONTAIN STOPPER> TRUE

Analogies extend the causal model by augmenting causal rules. Problems in

explanation, prediction, and planning which fail because the causal model is

* incomplete can become solvable after it is extended through analogies.

Although this is the only place where analogies are employed in this work, they

could be applied in the learning process itself. Learning is motivated by the need to

explain changes in the visual environment, and results in the construction of causal

rules. Corceivably, causal explanations for changes could be based on analogies

with known causal rules. This kind of analogy would be more difficult because it

would involve comparing a causal rule to an unstructured situation, rather than

comparing two known causal rules. This problem might be the subject of future

research.
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CIMIAI~''ER 6
LOOKING BACK, AR .OUND, ANI) AIEAD

N

This Work

This section reviews the accomplishments of this thesis in terms of the issues

Faddressed, the solutions offered, and the principles behind those solutions.

This thesis presents a learning system which hypothesizes and refines causal

models of simple physical systems by constructing causal explanations for observed

changes in these systems. The problem of formulating causal hypotheses is made

*- tractable by a set of constraints on causal relations which are embedded in the

learning system. This is the main result of this thesis.

These constraints are:

* Temporal and physical proximity.

Four heuristics capture the common sense notion that causally connected events
are contiguous in space and time. Temporal proximity is tested by the temporal
adjacency or the simultaneity heuristic. Physical proximity is tested by the physical

connectedness heuristic or the weaker same device heuristic.

9 A finite set of abstract causal explanations for changes in terms of quantities and

dependences.

Shifting the representation for changes and causality to the level of quantities

and dependences exposes various constraints that reduce the set of viable causal
explanations. The constraints exposed by this perspicuous representation include:

* Types of changes in dependent quantities are linked to types of changes in
independent quantities and types of dependences.

• The signs or directions of change of quantities and dependences have to be

consistent.

* There are a finite number of explanations for second-order changes in quantities.

The set of second-order causal explanations is simplified considerably by a felicity

condition which excludes tradeoff situations.

"- "-... --- .-- A



These constraints collectively define a kind of syntax of causal explanation which

the learning system exploits to hypothesize causal relations.

The causal rules which make up JACK's causal models are constructed at two

levels - at the quantity level in terms of independent quantities, dependences, and

dependent quantities, and at the physical level in terms of preconditions and effects.

Preconditions embody the notion of enabling conditions for causal relations.

They also permit causal explanations to be hypothesized in terms of the last of a

set of preconditions becoming satisfied.

JACK is able to refine causal models by generalizing over further experience.

The generalization rules JACK uses include:

* Given two positive examples of a causal relation, any unsatisfied preconditions

or unrealized effects can be dropped.

This is a variant of the well-known drop-condition specialization rule IWinston
75].

* Given a positive and negative example of a causal relation, any differences are

likely to include a missing precondition.

This induction rule harks back to the time-tested near-miss idea [Winston 751.

The causal models which JACK constructs support causal reasoning (explanation,

prediction, and planning) which in turn provides feedback about deficiencies in the

causal models. Inaccurate predictions and failed plans reveal situations where the

above generalization rules can be fruitfully employed.

A teleological assumption that dependences in devices are functions, and a

felicity condition that requires these functions to be monotonic together constrain

dependences to be one-to-one. Thus one-to-many or many-to-one behavior also lead

JACK to try to refine the existing model.

Analogies are another way to improve an existing causal model. Causal rules

are compared first at the summarized quantity level, then at the physical level.

Differences between otherwise well-matched causal rules are mapped over.

Other Work

This section describes the relations between this research and other previous and

current research efforts.
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The representations for quantities and dependences are borrowed directly from

Ken Forbus' setminal Qualitative Process, Theory [Vorbus 84]. Also, the causal rules

which JACK constructs are reminiscent of Forbus' process descriptions.

The abstract causal explanations employed by the learning system were inspired

originally by Chuck Rieger's work on representing causality [Rieger 761.

Pat Hayes' object-based histories [Hayes 79) implicitly include the notion of

temporal and physical proximity defining boundaries on causal interactions.

The physical proximity principle is similar to Randy Davis' locality principle

[Davis 83] - used to generate candidate faults in the troubleshooting of electronic

circuits. Modelling and troubleshooting employ some of the same kinds of reasoning.

The inductive inference rules used to generalize causal models over experience are

variants of rules introduced in Patrick Winston's landmark thesis [Winston 75]. In

addition, Ryszard Michalski has treated induction comprehensively [Michalski 83]

and Tom Mitchell has provided valuable insights on the induction of conjunctive

concepts [Mitchell 82].

Johan de Kleer pioneered the use of causal and teleological reasoning in the

domain of expert analysis of circuits [de Kleer 79]. This contrasts with the more

naive modelling of physical systems in this work.

The rule-based causal reasoning programs which perform explanation, prediction,

and planning, have roots which go all the way back to STRIPS [Fikes and Nilsson

711.

The use of analogy to construct and refine concepts has been investigated

fruitfully in [Winston 80] and [Gentner 83].

Future 'Work

This section discusses limitations of the current learning system and where

appropriate, identifies solutions from other research efforts, as well as thoughts on

extensions to this work.

A_1 learning systems are limited ultimately by any fixed representation language.

JACK is limited by the representation language for describing physical systems

and their changes and the representation language used to describe the various

constraints on causal hypotheses.

The temporal and physical proximity heuristics capture a useful common sense

notion of causality but exclude at least two classes of causal relations - those that

involve "action at a distance", and those that involve "delayed reactions".

• :q -:"...-... ..... .. . . ... .- " .,.-.... • - - v '-.'- - - -- '", '. ..-... ..-
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Part of the problem is the limited ability to construct hierarchical descriptions.

The PART-oF" relation supports only crude hierarchical structural descriptions.. More

importantly, there is no ability to "open up" a physical system by expanding

to a description at a lower level. Similarly, the time representation does not

support nested intervals which could partition time at several levels of resolution.

If both structure and time could be represented hierarchically, then "delayed

reactions" might be explained by constructing a causal chain at a lower level

of resolution. [Davis et al 82] offers ideas about representations for hierarchical

structural descriptions. Allen has a hierarchical time representation [Allen 81].

JACK does successfully model an instance of action at a distance when he

proposes a dependence between the temperature of the coils and the darkness of the

toast. However, this is somewhat fortuitous. JACK uses the same device heuristic

in this situation, effectively proposing a physical connection between the coils and

the toast. Thus JACK gets the right answer for the wrong reason. JACK does not

model the heat exchange as an instance of action at a distance because there is no

available representation for this class of causal relations.

If there was an abstract, explicit representation of what a causal relation is,

perhaps it would be possible to derive context-dependent heuristics for identifying

causality - heuristics like the ones used in this thesis, but also more relaxed versions

of temporal and physical proximity which would not exclude instances of action

at a distance and delayed reactions. These heuristics should be ordered so that

levels of resolution and boundaries denoting where the closed system ends would be

systematically expanded until a viable hypothesis was constructed. Such a learning

system could dynamically augment the language used to represent constraints on

causal relations. This capability would address the fixed representation bottleneck

problem in learning systems. These conjectures identify a difficult, but potentially

fruitful area in which to expand this thesis.

Another limitation of the current representation language is the simplified set of

causal explanation abstractions for understanding states of physical systems. The

most complex abstraction available is the equilibrium state. An extended version

of the learning system might model positive and negative tradeoff situations and

make use of more complex abstractions built up from many dependences, such as

feedback loops.

The role of analogy both in extending and hypothesizing causal models is another

area for possible exploration. Analogies could be used to generate hypotheses which
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could then be tested by some version of the temporal and physical proximity

constraint. Analogies also might be useful in "opening up" a system, i.e., in

hypothesizing invisible components and connections to construct causal explanations.

Analogy is a huge problem which subsumes the issues of indexing, partial matching,

and transferring knowledge - each a difficult problem in itself.

JACK's hypotheses are justified by satisfying the temporal and physical proximity

requirements, by matching one of the abstract causal explanations, and by not

violating teleological assumptions about the nature of dependences in devices.

JACK can distinguish competing hypotheses only by ordering them according to

the version of physical proximity they satisfy (physical connectedness or same

device), ar.d by how much must be proposed to complete one of the abstract causal

explanations.

Because JACK's ability to order competing hypotheses is limited, and because

models are always generalized over a finite set of experiences, JACK's theories are

always sensitive to the local maximum problem. In other words, a causal model

may adequately explain some finite set of experiences, yet still have latent, possibly

gross deficiencies.

JACK already uses inductive inference rules for refining causal models and in the

worst case, would need a deperdency-directed backtracking capability for retracting

hypotheses. A better way to address the local maximum problem is to give JACK

the ability to gather more context-dependent justification for hypotheses to better

distinguish them immediately, rather than waiting for more revealing experience.

JACK needs the capability to design experiments to distinguish and test hypotheses.

The methodology of science obviously provides some abstract guidelines. The

ability to design experiments relies on such skills as recognizing parameters and

finding ways to isolate them. Being able to change levels of resolution and expand

boundaries on the closed system can also aid in the design of experiments. In

addition, analogies can suggest experiments. The issue of how to design experiments

identifies a most intriguing direction in which to extend this thesis.

...-.---- .---.- s.-.......--.A...-..~.-- .. . .. . . . ."
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APPENDIX I

THE SINK SCENARIO

This appendix contains the sequence of events which makes up the learning
session in the sink domain.

Already, the tap, the faucet, and the basin are part of the sink.
The drain, the safety, and the stopper are part of the basin.

The stopper is in the drain.
The faucet's position is closed.
The light-switch's setting is off.
The window's height is down.

Initially, the faucet's position is open.
The light-switch's setting is on.
Next, a water-column appears between the tap and the basin.
The water-column's width is steady.
Next, water appears in the basin.
The water-column is connected to the water.
The water is connected to the drain.
The water's height is increasing.

Later, the water is connected to the safety.
The water's height is equal to the safety's height.
The water's height is steady.

Later, the faucet's position is closed.
\ez , the water-coiumn disappears.
The water's hezht is decreasing.
Nczt, the water is not connected to the safety.
The water's height is steady.

Later, soap is in the water.

Later, the stopper is not in the drain.
The window's height is up.
The water's height is decreasing.

Later, the water disappears.

Finally, nothing is chaning.
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Later, the stopper is in the drain.

Later, the faucet's position is open.
Next, a water-column appears between the tap and the basin.
The water-coiumn's width is steady.
Next, water appears in the basin.
The water-column is connected to the water.
The water is connected to the drain.
The water's height is increasing.

Next, the faucet's position is closed.
Next, the water-column disappears.
The water's height is steady.

Later, the stopper is not in the drain.
The water's height is decreasing.

Later, the water disappears.

Finally, nothing is changing.
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A13P N D IX 1l
THlE CAUSAL MOI)EL OF THlE SINK

This appendix contains thv six causal rules which make up the causal model of
sink. Refinemnents and extensions to the causal model were made at various

,ies. The results of these changes are noted in the appropriate places.

This causal rule describes how turning the faucet on makes the water column
pear.

JSA L- RULE- I

F,OBJECTS ARE
nIE F'AUCET
rHE WATER-COLUMN

_QUANTITIES ARE
mIE POSITION OF THE FAUCET
17HE WIDTH OF THE WATER-COLUMN

7DEPENDENCES ARE
< POSITION FUNCTION WIDTH> POSITIVE

PIYSICAL-PRECONDITIONS ARE
T' <FAJ]CET PART-OF SINK> TRUE

7QUA NTITY- PRECONDITIONS ARE
T) <POSITIO)N -AMOUNT> OPEN
T; <POSITION RATE> ZERO

T<WID-11 AMOUNT> ZERO
T) <W'IDThI iRATE> ZERO

PHYSICAL-EFFECTS ARE
<WATU.COUMNCONNLCTE.D-TO BASIN> TRUE

,ri, <W\TELt.COLtJMN CONN ECi'ED-TO TAP> TRUE

- QUANTITY-EFFI-CTS ARET,
T-.-) <W 10711 AMAOUNT> POSITIVE
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This causal rule describes how the water rises eventually to the level of the safety
ain as long as the water column is present (and by the previous rule, the faucet
on).

,USAL-RULE'-2

If' OBJECTS ARE
TIHE WATER-COLUMN
TIlE WATER

IE QUANTITIES ARE
TIIE WIDTH OF THE WATER-COLUMN
TIHE IILIGIIT OF TIHE WATER

IE DEPENDENCES ARE
<WIDTI INFLUENCE IHEIGIIT> POSITIVE

IE PIIYSICAL-PRECONDITIONS ARE
7) <WATER-COLUMN CONNECTED-TO TAP> TRUE
(T) <WATER-COLUMN CONNECTED-TO BASIN> TRUE

IE QUANTITY-PRECONDITIONS ARE
!T) <WIDTH AMOUNT> POSITIVE
'7) <WIDTH RATE> ZERO
:T) <tIEIGIIT AMOUNT> ZERO
(T) <HEIGHT RATE> ZERO

HE PHYSICAL-EFFECTS ARE
(T--1) <WATER CONNECTED-TO DRAIN> TRUE
(T-fI <WATER CONNECTED-TO WATER-COLUMN> TRUE
(T-I) <WATER-COLUMN CONNECTED-TO WATER> TRUE
T-+- <WATER IN BASIN> TRUE

(T-3) <WATER CONNECTED-TO SAFETY> TRUE

IE QUANTITY-EFFECTS ARE
'T--I <IIEIGIIT RATE> POSITIVE

3) <HEICI HT IbATE> ZERO
(7 3 .HtIli(;IIT A.MO N','T> SAFETY
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This causal rule describes the equilibrium state that occurs when the faucet is
on and the water has reached the level of the safety drain. Notice that there are
two dependences of opposite sign. Also notice that there are no effects which are
continuous changes. The equilibrium state is stable.

CAUSAL-RULE- 3

TIlE OIJECTS ARE
TIE SAFETY
TIlE WATER
TIlE WATER-COLUMN

TIlE QUANTITIES ARE
THE FLOW OF THE SAFETY
THE HEIGHT OF THE WATER
TIlE WIDTH OF TIIE WATER-COLUMN

THE DEPENDENCES ARE
<FLOW INFLUENCE IIEIGHT> NEGATIVE
<WIDTH INFLUENCE HEIGHT> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <SAFETY CONNECTED-TO WATER> TRUE
(T) <SAFETY PART-OF BASIN> TRUE
(T) <WATER CONNECTED-TO WATER-COLUMN> TRUE
(T) <WATER CONNECTED-TO DRAIN> TRUE
(T) <WATER CONNECTED-TO SAFETY> TRUE
(T) <WATER IN BASIN> TRUE
(T) <WATER-COLUMN CONNECTED-TO TAP> TRUE
(T) <WATER-COLUMN CONNECTED-TO BASIN> TRUE
(T) <WATER-COLUMN CONNECTED-TO WATER> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <FLOW AMOUNT> POSITIVE
(T) <FLOW RATE> ZERO
(T) <WIDTH AMOUNT> POSITIVE
(T) <WIDTH RATE> ZERO

THE PIIYSICAL-EFFECTS ARE

TIE QUANTITY-EFFECTS ARE
'T) <ITEIGIIT AMOUNT> SAFETY
(T) <11EIGHT RATE> ZERO

0
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This causal rule describes how turning the faucet off makes the water column
disappear. The same dependence appears here as in the rule which describes how
turning the faucet on makes the water appear.

CAUSAI-RULE-4

THE OBJECTS ARE

THE FAUCET
TIlE WATER-COLUMN

THE QUANTITIES ARE
THE POSITION OF THE FAUCET
THE WIDTH OF TIE WATER-COLUMN

TIlE DEPENDENCES ARE
<POSITION FUNCTION WIDTH> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <FAUCET PART-OF SINK> TRUE
(T) <WATER-COLUMN CONNECTED-TO TAP> TRUE
(T) <WATER-COLUMN CONNECTED-TO BASIN> TRUE
(T) <WATER-COLUMN CONNECTED-TO WATER> TRUE

THE QUANTITY-PRFCONDITIONS ARE
(T) <POSITION AMOUNT> CLOSED
(T) <POSITION RATE> ZERO
(T) <WIDTH AMOUNT> POSITIVEI (T) <WIDTH RATE> ZERO

THE PHYSICAL-EFFECTS ARE
(T+1) <WATER-COLUMN CONNECTED-TO WATER> FALSE
(T+I) <WATER-COLUMN CONNECTED-TO BASIN> FALSE
(T+I) <WATER-COLUMN CONNECTED-TO TAP> FALSE

THE QUANTITY-EFFECTS ARE
(TI) <WIDTH AMOUNT> ZERO

".o.o.. " ° - -. .. * - o o' . - o ° .. . . . . . . . . .
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This causal rule describes how water flows out of the safety drain until it reaches

a stable height just below the safcty drain. Notice that one of the preconditions

in this rule is that the safety drain not contain a stopper. This precondition was

not part of the original rule. It is the result of comparing the normal drain to the

safety drain in an analogy.

CAUSAI,-RULE-5

THE OBJECTS ARE

THE SAFETY
THE WATER

TilE QUANTITIES ARE
THE FLOW OF THE SAFETY
THE IhEiGHT OF THE WATER

THE DEPENDENCES ARE
<FLOW INFLUENCE HEIGIIT> NEGATIVE

THE PIIYSICAL-PRECONDITIONS ARE

(T) <SAFETY CONNECTED-TO WATER> TRUE

(T) <SAFETY PAIRT-OF BASIN> TRUE

(T) <SAFETY CONTAIN STOPPER> FALSE

(T) <WATER CONNECTED-TO WATER-COLUMN> FALSE

(T) <WATER CONNECTED-TO DRAIN> TRUE

(T) <WATER CONNECTED-TO SAFETY> TRUE

(T) <WATER IN BASIN> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <FLOW AMOUNT> POSITIVE

(T) <FLOW RATE> ZERO
(T) <HEIGHT AMOUNT> SAFETY

TIE PHYSICAL-EFFECTS ARE

(T1I) <SAFETY CONNECTED-TO WATER> FALSE

(T-I) <WATER CONNECTED-TO SAFETY> FALSE

TilE QUANTITY-EFFECTS ARE
(T) <IIEIGIIT ILATE> NEGATIVE

(T-1) <HEIGHT AMOUNT> BELOW-SAFETY
(T--) <IIEIGHT RATE> ZERO



. .. . . . .. . . .r

95

This causal rule describes how water flows out of the normal drain. A precondition
which stated that there must be soap in the water was dropped.

CAUSA- RULE-6

THE OBJECTS ARE
TIlE DRAIN
TIlE WATER

THE QUANTITIES ARE
TIlE FLOW OF TIlE DRAIN
TIlE HEIGHT OF TIlE WATER

THE DEPENDENCES ARE
<FLOW INFLUENCE IlEIGIIT> NEGATIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <DRAIN CONNECTED-TO WATER> TRUE
(T) <DRAIN CONTAIN STOPPER> FALSE
(T) <DRAIN PART-OF BASIN> TRUE
(T) <WATER CONNECTED-TO WATER-COLUMN> FALSE
(T) <WATER CONNECTED-TO DRAIN> TRUE
(T) <WATER CONNECTED-TO SAFETY> FALSE
(T) <WATER IN BASIN> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <IIEIGHT AMOUNT> BELOW-SAFETY
(T) <FLOW AMOUNT> POSITIVE
(T) <FLOW RATE> ZERO

THE PHYSICAL-EFFECTS ARE
(T+2) <DRAIN CONNECTED-TO WATER> FALSE
(T+2) <WATER CONNECTED-TO DRAIN> FALSE
(T+2) <WATER IN BASIN> FALSE

THE QUANTITY-EFFECTS ARE
(T) <H1EIGHT RATE> NEGATIVE

(T-42) <HIEIGHT AMOUNT> ZERO
(T--2) <HEIGHT RATE> ZERO

• .. . : -- --- :.- ----.- :. - , : : "' , .
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APPENDIX H
THE TOASTER SCENARIO

This appendix contains the sequence of events which makes up the learning

session in the toaster domain.

Already, the lever, the plug, the dial, and the slot are part of the toaster.

The coils are part of the slot.

The coils' temperature is cold.
The lever's position is up.
The dial's setting is D.
The plug is in the outlet.
The bread is in the slot.
The bread's shade is white.
The faucet's position is closed.
The light-switch's setting is on.
The window's height is up.

Initially, the lever's position is down.
The faucet's position is open.
The bread is not visible.
Nezt, the coils'temperature is increasing.

Later, the lever's position is up.
The coils' temperature is hot.
The coils' temperature is steady.
The bread is visible.
The bread's shade is dark.

Next, the coils' temperature is decreasing.

The window's height is down.

Later, the coils' temperature is cold.

Finally, nothing is changing.
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Later, the bread is not in the slot.
Next, the plug is not in the outlet.
Next, the new bread is in the slot.
The bread's shade is white.

Next, the lever's position is down.
The bread is not visible.
Next, nothing is changing.

Next, the dial's setting is M.
The plug is in the outlet.
Next, the coils' temperature is increasing.

Later, the lever's position is up.
The coils' temperature is hot.
The coils' temperature is steady.
The bread is visible.
The bread's shade is medium.

Next, the coils' temperature is decreasing.

Later, the coils are cold.

* •  Finally, nothing is changing.

-" "~ ~~~~.. .... '- :-:..''' ." ...'.'.. .".".. :.:.'. . " . ....'. . ... . . . :'' - :'':.. . - -' .'. .'. -.-:. .. '' . .
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AP'PENDIX IV
TIlE CAUSAL MODEL OF TIlE TOASTER

This appendix contains the three causal rules which make up the causal model
of the toaster. Generalizations were made at various Limes and are noted in the
appropriate places.

This causal rule describes how the temperature of the coils increases when the
lever is pushed down and decreases when the lever pops up. JACK learned that
the plug has to be in the outlet also.

CAUSAL-RULE- I

THIE OBJECTS ARE
THE LEVER
THE COILS
THE PLUG

THE QUANTITIES ARE
THE POSITION OF THE LEVER
THE TEMPERATURE OF TIlE COILS
THE CURRENT OF THE PLUG

THE DEPENDENCES ARE
<POSITION INFLUENCE TEMPERATURE> NEGATIVE
<CURRENT INFLUENCE TEMPERATURE> POSITIVE

THE PIIYSICAL-PRECONDITIONS ARE
(T) <LEVER PART-OF TOASTER> TRUE
(T) <COILS PART-OF SLOT> TRUE
(T) <PLUG PART-OF TOASTER> TRUE
(T) <PLUG IN OUTLET> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <POSITION AMOUNT> (DOWN,UP)
(T) <POSITION RATE> ZERO
(T) <TEMPERATURE AMOUNT> (COLDIIOT)
(T) <TEMPEIATUIL RATE> ZERO
(T) <CURRENT AMOUNT> POSITIVE
(T) <CURRENT RATE> ZERO

TIlE PHYSICAL-EFFECTS ARE

TI11- QUANTITY-EFFECTS ARE
(T+I) <TLMPEILATURE RATE> (POSITIVE,NEGATIVE)

T43) <TEOM'ERA'rURF AMOUNT> (IIOT,COLD)
(T-43) <TEMPI'RATURE RATE> ZEIRO
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This causal rule describes how the heating coils turn bread into toast. JACK
learned that the thermostat dial controls the darkness of the toast, when the ;nitial
model could not explain why one piece of toast caine out darker than another.

CAUSAL-RULE-2

THE OBJECTS ARE
TIE COILS
THE BREAD
THE DIAL

TIHE QUANTITIES ARE
THE TEMPERATURE OF THE COILS
TIlE Sh:',DE OF THE BREAD
THE SI:TTING OF TIlE DIAL

THE DEPENDENCES ARE
<TEMPERATURE FUNCTION SIIADE> POSITIVE
<SETTING FUNCTION SIIADE> POSITIVE

THE PIIYSICAL-PRECONDITIONS ARE
(T) <COILS PART-OF SLOT> TRUE
(T) <BREAD PART-OF SLOT> TRUE
(T) <DIAL PART-OF TOASTER> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <TEMPERATURE RATE> POSITIVE
(T) <SETTING AMOUNT> (L,M,D)
(T) <SETTING RATE> ZERO

THE PHYSICAL-EFFECTS ARE

THL QUANTITY-EFFECTS ARE
(T) <SHADE RATE> POSITIVE

fT+2) <TEMPERATURE AMOUNT> HOT
(T-2) <TEMPERtATURE ILATE> ZERO
(T-2) <SHADE AMOUNT> (LIGIIT,MEDIUMDARK)
(T+2) <SIIADE RATE> ZERO

.-. . .. .-.-. ..... - . ..-.. - .. - .
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This causal rule describes how the lever pops up when the coils reach their

maximum temperature. This is the closest JACK comes to modtlling the thermostat

mechanism.

CAUSAL- RULE-3

TIlE OBJECTS ARE
TIlE COILS
TIlE LEVER

TIIE QUANTITIES ARE
THE TEMPERATURE OF TIlE COILS
TIll, POSITION OF TIlE LEVER

THE DEPENDENCES ARE
<TEMPEIRATUIRE FUNCTION POSITION> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <COILS PART-OF SLOT> TRUE
(T) <LEVER PART-OF TOASTER> TRUE

THE QUANTITY-PRECONDITIONS ARE

(T) <TEMPERATURE AMOUNT> IIOT

(T) <TEMPERATURE RATE> ZERO

THE PHYSICAL-EFFECTS ARE

THE QUANTITY-EFFECTS ARE
(T) <POSITION AMOUNT> UP
(T) <POSITION RATE> ZERO
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APPENDIX V

TIE NLATCHERS

This appendix describes the matchers used in generalizing and forming analogies.

The Relational Network Matcher

The relational network matcher is given two concepts to compare. These concepts

correspond to two entities in the relational network, and the matcher compares the

concepts by exploring the subnetworks which the two entities are embedded in.

Relations define the template which must be common to both concepts, hence

they provide the major source of constraint for the matcher. The intent of matching

is to find what relational structures are shared by the two concepts. Shared relations

in turn indicate which objects correspond to each other across the two concepts.

Relations are matched first and objects are matched only by virtue of participating

in the same relations.

The primitive structure in the relational network is the relation:

<SUBJECT RELATION OBJECT>

There are two dimensions of complexity in the relational network. Each SUBJECT

and OBJECT can participate in an arbitrary number of relations and relations can

be nested, i.e., any SUBJECT or OBJECT can itself be a full <SUBJECT RELATION

OBJECT> structure. The matching is done in a bottom-up fashion, starting at two

locations in the relational network and proceeding outwards. Primitive relations

are encountered in pairs along the way and they must match in the following way:

* the arcs (RELATIONS) must match exactly and

" the nodes (atomic SUBJECTS and OBJECTS) must either match exactly or be shown

to be in the same class (their A.KIND-Or hierarchies join.

Matching continues through the network, exploring the subnetworks surrounding

the original two locations, until no further matches can be made, or the network is

exhausted.

The following is the procedure for doing matching on the relational network:

% " . . - . . .. .- .. °*.*,*,...*-*,. ..... •......
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Relationa! Network Matcher:

Given two locations in the' relational network,

If they are relations, call the arc (relation) matcher.

If the), are objects, call the node (object) matcher.

If they are not of the same type, fail.

Node Matcher:

Given two nodes in the relational network,

If the nodes are the same node, succeed.

If the nodes are in the same class (their A-KIND-OF hierarchies

join), succeed.

If no match, fail.

Othe:wise, call the relation pairer on the two nodes.

Arc Matcher:

Given two arcs in the relational network,

If the arcs are not the same arc, fail and stop here.

Call the network matcher on the entities at the source

ends of the arcs - the SUBJECTS.

If the SUBJECTS do riot match, fail and stop here.

Call the network matcher on the entities at the target

ends of the arcs - the OBJE:CTS.

If the OIJwECTS do not match, fail and stop here.

Otherwise, call the value matcher on the two arcs.

Call the relation pairer on the two arcs.
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Relation Pairer:

Given two entities SuJ.:cri and SUB LCT2 in the relational

network (corresponding to nodes or arcs),

For each arc RUEATIONI adjoining SUBJECTI,

Identify oBJi-c'ri at the opposite end of RELATION1.

Collect all arcs RELATIONS2 adjoining SUBJECT2.

Collect all OBJECTS2 at the opposite ends of the

RELATIONS2.

If OBJECT1 is in ODJE'CTS2, succeed.

Otherwise for each OBJECT2 in OMJrCTS2 until success,

Call the network matcher on OBJECTi and

OBJECT2.

If no match, put RELATIONI on the unmatched relations

list and put OBJECTI on either the unmatched objects

or unmatched relations list depending on whether

OBJECT! is a node or an arc.

The final step in matching relations is comparing values. Since relations have

histories which describe how their values change, the times at which the comparison

is to be made must be specified as well.

The following procedure compares values:

Value Matcher:

Given two matched relations RELN1 and r.ELN2, and two times

Ti and T2,

If the value of IELNi at TI is the same as the value of RELN2

at -,2, put the relations and values on the matched relations

list, and the corresponding objects on the matched objects

iist, succeed.

Otherwise, put the relations and values on the unmatched

relations list, and the corresponding objects on the

unmatched objects list, fail.
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The output of the relational network matcher is a set of lists showing what

relations matched, what objects matched, and just as importantly, what relations

and objects did not match. The unriatcLed relations and objects are mapped over

* in analogies and reveal differences which can form the basis of new hypotheses

*: when generalizing.

The Causal Rule Matcher

When the causal rule matcher is used to support rehypothesizing because the

causal model failed, the question of what to compare is easy to answer. The causal

rule which failed is compared to itself at different times.
When the causal rule matcher is used in an analogy, the results of selection -

matched dependences from difference causal rules - are used to answer the question

of what to compare. The results of selection tell where to "anchor" the comparison

of causal rules.

The causal rule matcher uses the results of the relational network matcher. The

following is the procedure for comparing causal rules:

Causal Rule Matcher:

Given two matched dependences from two causal rules,

Compare, using the relational network matcher, cor-

responding independent quantities, one from each depen-

dence, at the times the causes occurred in the respective

causal rules.

Compare, using the relational network matcher, cor-

responding dependent quantities, one from each depen-

* dence, at the times the effects occurred in the respective

causal rules.

Isolate preconditions and effects from the list of matched

and unmatched relations.

Since quantities and linked to physical objects by the QUANTITY-OF relation, the

preconditions and effects, which are relations on these physical objects, also will be

* compared.
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