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HYPOTHUSIZING S ND REFINING CAUSAL MODELS

Richard J. Doyle

Abstr wet

An important common ~ense competence is the ability to hypothesize cunsal
relations. This paper presents a set of coustraints which piake the prebloang of
forrudating eansal hypotheses about simple physical systems a tractable ons. The
copstraints include: 1) a temporal nad physical proximity roquitentent; 2) a set of
absteret causal explinations for changes i physical systems in tering of dep ndonces
botween quantities; and 3) a teleological ansumption that dependences in d gned
vhiydeal systems 2re functions.

These construints were embedded in a 'earning system which was tested in two

damuins: a sink and a toaster. The learning system successfully generated and
relinod naive cnesid models of these simple physical systems.

e enusal models which emerge from the learning process suppirt causal
3 rexsoning - explanation, prediction, and plauning. Inaceurate predictions and DMiled
pliis in tiura indicate deficiencies ia the causal maodels and the need to rehiy pothesize.
Thus learning supports reasoning which leads to further learning. e learning

p

:-_', svsvem makes use ol standard inductive rules of inference as well as the constraints
- vn causal hypotheses to generulize its causal models.

. Finally, a simple example involving an analopy illustrates another way lo repair
%. incomplete causal models. £ .

{
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CHAPTER 1
INTRODUCTION

The Problem

“Common scnse reasoning” subsumes a vast repertoire of familiar but hard to
articulate skills for understanding and dealing with the world. One of the most
importent skills underlying common sensc is the ability to recognize and describe
regularities in the world in terms of causal relations. Causal descriptions enable us
to generate useful explanations of events, recognize the consequences of our actions,
reason about how to make things happen, and constrain hypotheses when expected
events do not occur. Without the ability to construct causal descriptions, we would
be unalle to impose any order on the bewildering changes that pervade our everyday
experiences; we would be unable to understand or control our environments.

Imagine waking up in the morning to find the refrigerator door ajar and the food
spoiled. One can construct an explanation easily, even if one is not quite awake.
Pcople commonly turn down the volume control on the home stereo before turning
the power omn, anticipating and knowing how to prevent a possibly unpleasant jolt.
When the lamp does not work, we will sooner or later change the bulb, check the

plug, and check the fuse.

Goals of this Work

This thesis investigates ways to construct causal descriptions of physical systems
which undergo continuous changes. The learning process produces a causal model
~ a set of rules which make explicit the causal mechanisms underlying the behavior
of the system and its parts. The particular goals of this work are:

o To present common-sense heuristics and a learning procedure which show how
causal models of physical systems can be hypothesized. '

e Toshow how a causal model can be refined by generalizing over further expcrience.

e To show how a learned causal model can support causal reasoning, parﬁicularly
planning.

e To illustrate how representations for quantities provide a basis for qualitative

reasoning which supports both learning and planning.
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e To demonstrate how causal modecls can be extended through the use of analogy.

Key Idcas — Constraints on Causal Ilypotheses

This thesis argues for a sct of constraints or: causal explanations which make the

problem of formulating causal hypotheses a tractable one. These constraints are:
e Temporal and physical proximity.

This constraint reflects the common sense notion of causality which states that
causally connected events are contiguous in space and time.
e Causal explanation abstractions.

Changes and causal relations are represented perspicuously in terms of changing

values of quantities and dcpendences between quantities. This representation

language exposes constraints which reduce the number of causal explanation types

to a manageable size.
e Teleological assumptions.

Assumptions about the nature of dependences between parameters in designed

physical systems can be used to test causal hypotheses.

The Domains

A learning system, with these embedded constraints to guide it, was tested in
two experimental domains: a sink, the familiar kind of sink one finds in kitchens

and other places, and a toaster.

The Fitchen Sink
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These particular devices were <hosen for several recasons. They are composed
of many parts without being overwhelmingly complex. They display continuous
changes which can be modelled by qualitative representations for quantities. Water
rises in the sink; bread turns to toast in the toaster. Because external inputs control
their benavior, planning problems can be posed. External inputs of the sink in¢lude
the setting of the faucet and placement of the stopper. For the toaster, external
inputs include the depressing of the lever, the placement of the bread, and the
setting of the thermostat.

In addition, the sink displays an equilibrium state — water flowing in at the tap
and out at the safety drain. The problem of explaining why water rising in the sink
does not overflow will illustrate how abstract causal explanations can effectively
constrain the set of admissible causal hypotheses so that the correct one can be
generated quickly.

Finally, the toaster will demonstrate how the learning system can produce
usable causal models of electronic devices without resorting to a wiring diagram.
This thesis 1s concerned with naive rather than expert causal hypothesizing and

reasoning.

A Preview

Causally connected events are often temporally and spatially contiguous. This
principle is easy to see in reasoning about sinks and toasters. Pulling the plug
makes the water flow out immediately. The controls on the blender across the
counter cannot affect the toaster. This principle is embodied in heuristics which

guide the recognition of causality.
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These hcuristics capture a useful, but not always correct notion of causality.
Causes and cffects may appear to be quite separated in time when the causal chain
is hidden. Furthermore, some causal relations involve interactions which occur over

large distances without an apparent mcdium, e.g. gravity.

Further experience provides opportunities to generalize causal models originally
constructed on the basis of a single experience. Various generalization heuristics
allow conditions to be dropped, boundaries on the closed system to be better
circumscribed, and dependences between parameters to be recognized. For example,
two observations of the toaster for two different settings of the thermostat lead

to the recognition of the correspondence between the thermostat setting and the

darkness of the resulting toast.

ow to ol t Toast?

Quantities mode] the continuous changes which occur in physical systems and
expose constraints which can be exploited. Qualitative reasoning with quantities

supports both learning of and planning with causal models.

The most interesting problem posed for the learning program in the sink domain
1s to understand what is happening when the water reaches the level of the safety
drain and stops rising. This is a passive change of bchavior; no overt, external
action occurs. The iearning program solves this problem by making an imaginative

though tightly constrained conjecture about the function of the safety drain.
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Why did the Water Stop Rising?

The 1:arning program knows from its background knowledge about equiiibrium
states that either 1) no influences, or 2) balancing influences, could be the explanation
for the change. At this point in the learning session, the learning system already
knows that the faucet being on and the presence of the water column makes the
water rise. These causes are intact, so equilibrium must be the explanation. Since
only one influence is explicitly known, there must be an unknown influence of
opposite direction, i.e., one which makes the water fall. These inferences lead to
the identification of the safety drain as the causal culprit. Without the reasoning
afforded by quantities, the learning program would have been hard put to construct

the correct causal explanation in this situation.

The reasoning which the causal model supports also provides feedback about
deficiencies in the model. When plans fail, this can indicate an incomplete or
toc-abstract model. Analogies can help when the causal model is deficient by

mapping missing information from other areas of knowledge.

The most interesting of the planning problems in the sink domain is one that
cannot be solved with the causal model as it exists after the initial learning session
is complate. The problem is this: how to make the water rise above the safety drain.
The planner, by reasoning in terms of quantities, realizes that the equilibrium state
at the safety drain must be changed to a state of incrcase. However, it finds no way
to do so The problem is soived finally by extending the causal model through the

use of an analogy. This analogy is illustrated below.

A
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Chapter 2 presents the representation language for describing physical systems
and their changes. Chapter 3 describes the constraints on causal hypotheses
exploited by the learning system and the heuristics and procedures based on these
constraints which are used to hypothesize and refine causal models. This chapter is
the core of the thesis. Chapter 4 shows that learning has taken place by describing
how a planner can use the causal models which emerge from the learning process.
Chapter 5 discusses analogy as one way to extend causal models. Chapter 6 recounts
the accomplishments of this thesis, discusses limitations, and suggests areas for

further research.

How This Work Fits In

Previous work in artificial intelligence has addressed acquiring descriptions of
static or non-causal structures or concepts [Winston 75, Michalski and Chilausky 80,
Michalski 83, Mitchell 82], representing causality [Rieger 76, Rieger and Grinberg
771, representing and reasoning about structures which undergo changes [Hayes 79,

de Kleer 79, Forbus 84, Kuipers 82, de Kleer and Brown 83, Simmons 83, Weld

i
)

84), and representing continuous changes in physical systems in terms of quantities
{Forbus 84].

This thesis builds on this foundation and shows how causal models of physical
svstems which undergo continuous changes can be hypothesized and refined. The
ideas presented hopefully point the way towards further rescarch on integrating

learning and common sense reasoning systeimns.
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CHAPTER 2
REPRESENTING PHYSICAL SYSTEMS AND THEIR CIHHANGES

The input te the learning program is English text. This text substitutes for visual
perceptions and describes the structure of the sink and toaster and the changes
that ocur over urne. The text is translated by a parser which is part of a general
natural language,/knowledge representation system. This chapter summarizes the
knowiedge representation language of this system, describes its time representation,
and shcws hov physical systems and their changes can be represented within this
framework. The entire parser/representation system is described in [Katz 80, Katz

and Winstonu 82, Doyle and Katz 84].

Relations and Truth-Values

The boasic structure in the knowledge representation scheme is the relation.
Ile:ationz have the foliowing form:

< SUATECT RTLATION OBRJECT >
Some o

Lamples are

fereny

OUTER AN DRATY -

FTOTAP >

Any o=t ar Garg ot may teell be a <SUBJECT RELATION OBJECT > triple and
IR
' L
WO U L 1 BASTN >
Trathovalnes cne ctoched to each relation, either TRUE or FALSE.
Te a0 s enabides hierarchical structural descriptions of the sink and
LT T et
. P NP PSP T O

el A Y

L U T S L -‘--i
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e Signs and directions of change.
The signs or directions of change of quantities and dependences have to be

consistent.

Direction of change or Direction of change or Sign of

sicn of independent quantity  sign of dependent quantity dependence

- + +
—_— + —_—
~ - +

e Seconc-order causal explanations.
Define the state of a quantity to be its direction of change and the signs of the
impinginy contributions on that quantity. There are a finite number of ways in

which the state of ¢ quantity can change.

Current state Add + Add —  Del + Del —
Constant C (0,] }) I D x X
Increase I (+,/+]) I E C
Decrease D {~,I=]) E D X C

Equilibrium E (0,/+,-]) E E D I

For example, a decreasing quantity can change to a steady quantity because
a single negative contribution went away or because the quantity achieved an
equilibrium state when a positive contribution was added.

Tne number of second-order causal explanations for changes in quantities is
recineel considerably by a felicity condition [VanLehn 83} which excludes tradeoff

Attiations Ingenesa’ contributions of opposite direction may resolve to a net change

inoert e e s - mer ohan an equilibrium state. Furthermore, equilibrium states
mat met be orof e shev may be easily perturbed to a positive or negative tradeoff
sitiiler

An exampie from the «ink domain illustrates how constraint at the quantity level
Tar otates the ddenniication of causality

[rmirie - one eamnong ~cssion, afier the faucet is turned on and while the stopper
o the drmn the water niees o the level of the safety drain and stops. JACK

Feaitoe o natories o cniences o0 balancing influences could be the explanation
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intended to interact. The structure of the physical system itself is used to draw
boundaries within which to look for causal relations.
These heuristics for proposing causality effectively prune the space of admissible

hypotheses. No heuristic is perfect though; these can pass incorrect hypotheses.

PART-0F E PART-OF

PART - oF \?hhT-OF

G\MNTIT& 4»47 \TY-2f

CHANGES | CHANGES
e
< T 7

t

The Weaker Simultaneits and Same Device Heuristics

Constraint at the Quantity Level

There are only 2 finite number of ways to explain changes in dependent quantities
in terms of dependences and changes in independent quantities. Representing
changes and causality in ierms of quanuues and dependences exposes constraints
that collectively define 2 kind of syntax of causal explanation. In particular, three
kinds of knowledge at tne quantity level can constrain the hypothesizing of causal

reiations.

e Discrete vs. continucus change.

Types of changes in guantities are linked to tvpes of dependences.

Type of change Tvoe of change Tvpe of

Ik Independen:t aquanur ir dependent guanty dependence
discrete discrete function
discrete continnaus imfluence

CONLINUOUS coOniinUous function

L v e T T T e T
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graphs, they toc must be individually seeded.

Another flavor of causality that is captured neither by temporal adjacency
nor simultaneity is the “delayed” reaction. But delayed reactions are really just
delusions; there is no real temporal discontinuity. The problem is that the structural
description being used to understand the causality is too abstract, so that the
causal mechanism is hidden. If enough lower-level detail were added to the model,
then a causal chain would be revealed, and each causal relation in the chain would

satisfy either temporal adjacency or simultaneity.

The s>lution then, is to have the capability for hierarchical descriptions - both
structural and temporal. A hierarchical partitioning of time was discussed in the
chapter on knowledge representation; a hierarchical description of structure would
be a uscful parallel. These descriptions could support a hierarchical description
of causzlity so that what looked like a delayed reaction at one level, would be
a continuous causal chain at a lower level. [See Allen 81, Davis et al 82, Davis

83, de Kleer and Brown 83, for work that has addressed the issue of hierarchical

descriptions].

To summarize: When events in time are adjacent, the temporal adjacency heuristic
is applicable. When events in time are simultaneous, the physical connectedness
heuristic can sometimes disambiguate. When events in time are discontinuous,

perhaps the model can be fleshed out until all events are adjacent or simultaneous.
Consider now the physical connectedness heuristic.

A problem with the physical connectedness heuristic is that it is incapable of
handling situations which involve “forces at a distance”. More accurately, it is
incapable of modeliing phenomena such as gravity, magnetism, heat exchange, etc.
uniess some kind of medium is proposed. This level of understanding can be likened
to that of nineteenth-century physicists who proposed the “ether” to explain the

proepagation of eleciromagnetic radiation within the solar system.

This problewn can be partially addressed by relaxing the physical connectedness
requirement to physical prozimity. However, there is a danger of removing too much
constraint and it is not at all clear when two objects are near enough to possibly

affect ca:h other.

A betrer idea 1¢ to consider onlv objects which are part of the same physical

svstem. Two obiects are part of the same device if their rawr o+ hierarchies join.

This heuvristic embodies a teleological assumption about parts of a device being
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Ilowever, the physical conncctedness heuristic 1s already powerful enough in
some cases to supply suflicient constraint to correctly identify causality when the

temporal adjacency heuristic fails because of simultaneity.

Consider the following situation:

CAUSE EFFECTS
Event Qi changes Q2,03 change
Time & { ] >
t t+1

There are three possible interpretations of causality:

DEPE NDEN7 \EIPEN\D!D\(E

DEPENDENCE

>@

DEPENDENCE
N
>@

EPENDENCE DEPEADERCE
\

@ NG @2

The correct interpretation is the one which displays the same topology as the

graph of the physical connectedness relations on the physical objects associated

with the quantities.

LONN-TO CoONRN-TO
@) @D @) CTED
C‘NH’/ CONN-TO

Since the coNsLeTED TO reiation is symmetric, at ieast one of the dependences
must be given a direction independentiy {e.g. by the temporal adjacency heuristic
or if a change in & quantty 1s due to an external action) to “sced” the constraint

vropagation. Otherwise. the independent quantities and the dependent quantities

would not be distinguishabic. If anv cveles exist in the dependence and connectedness
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Temporal Adjacency and Physical Connectedness

In summary, the identification of causality has two steps. First, two quantities
are found, one changing immediately after the other. Second, it is verified that the
objects which the two quantities are associated with are physically connected.

There is a theme of reasoning at two levels throughout this research. The temporal
adjacency heuristic operates at the quantity level; here causality is suspected. The
physical connectedness heuristic operates at the physical level; here causality is
reinforced.

Coincidences can be defined and recognized. A coincidence is two events
which satisfy the temporal adjacency heuristic, but do not satisfy the physical

connectedness heuristic.

Limitations and Extensions of the Heuristics

The two heuristics given above for identifying causality are general and powerful
enough to be sufficient in a large number of situations. However, they can fail to
identify some ciasses of causally connected events. This section discusses the limits
of the two heuristics and some simple extensions.

Consider first the temporal adjacency heuristic.

It 1s not strictly true that causality always implies that the cause immediately
precedes the effect in time. For instance, in the case of purely mechanical, rigid
connections, the cause and cfiect occur simultaneously. Think about pushing on

one end of a rod. There is no delayv before the other end of the rod starts moving.
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The learning program tooks for two changes. one immediately following the other

in time. More specificallv. because causal relations can be represented succinctly

by dependences between quantities: the learning program looks for the pattern of
onc quantity ‘s value chaneiny wnmediately after another quantity’s value changed.
The following diagran: iustrates:
“ind-q) (dep-q)
CAUSE EFFECT
bovent w0 changes Q¢ changes
Time —— e >
t t+1

Temporal Adjacency

Whenever such a pattern appears in the sequence of events, the learning program

suspects causality, and the two quantities may be linked in a dependence.

However, the temporal adjacency heuristic does not provide enough constraint

by itself because coincidences are possible. Additional constraint is provided by the

physical connectedness heuristic,

Physical Connectedness

In our common sense view of causality, in order for two events to be causally
connected, there must be some kind of medium between the two along which
“forces” or “agents” which mediate the causality can propagate. This medium
might be, for example, a mechanical, rigid connection or a fuid coupling. For
the learning program to identify causality, the exact nature of the medium is not

important, just whether a medium does in fact exist.

Physical connectedness is tested by determining if there is a CONNECTED-TO
relation between the two objects associated with the quantities whose changes
satisfied temporal adjacency. Since the connkcTED-TO relation is transitive, the

physical connectedness heuristic can be satisfied by a chain of objects.

The two heuristics - temporal adjacency and physical connectedness - are

combined as illustrated in the following diagram:

e e Aow i |




CHAPTER 3
PROPOSING AND GENERALIZING THE CAUSAL MODEL:

LEARNING

Learning systems are often described by specifying an initial representation,
a target representation, and a learning procedure. Using this framework, the
construction of causal models can be described as follows:

The :nitial representation is a temporally ordered sequence of events describing
behavicrs of the physical system being investigated.

The target representation is a set of causal rules which describes the various
behavicrs of the physical system in terms of causal relations; each causal rule
is a description of causality at two levels: the abstract level of quantities and
dependences and the real-world level of physical objects and relations. The set of
causal rules makes up the causal model.

The task of the learning system is to recognize causality in the sequence of events
and render the identified causal relations in the form of causal rules. This chapter
explains the learning procedure in full detail. This procedure was implemented in
a learning system called JACK (Justifiably Assimilating Causal Knowledge). ‘

Identifying Causality

The common sense view of causality that the learning program exploits is the
following: Two events which are causally connected are contiguous in space and
time. This is a us=ful, but not always correct notion of causality, as will be discussed
later.

Repetition of conjoined events is also a clue to causality but is not used by the
learning program as a basis for proposing causal relations. If this heuristic were
to be used alone. some kind of thresholding mechanism would be needed, which
would likely be ad hoc. However, causal relations do have to satisfy repeatability

after being proposed.

Tempcral Adjacency

A stiztement of the form “A causes B” almost always implies “B immediately
follows A”. This is not always correct, but this is the assumyption which forms the

basis for the temporal adjacency heuristic. This heuristic is used as follows:




SR e ot ene a4 Bt A Sy A B e S e i e el S et e n - —— — ——— L Smen sbui L Snen ek cufe cuums sung uags Lsun aues 2 v'f‘—_‘

THE OBJECTS ARE
THE DIRAIN
THE WATER |

THE QUANTITIES ARE
THE FLOW OF THE DRAIN
THE HEIGHT OF THE WATER

THE DEPENDENCES ARE
<FLOW INFLUENCE HEIGHT > NEGATIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <DRAIN CONNECTED-TO WATER> TRUE
(T) <DRAIN CONTAIN STOPPER> FALSE
(T) <DRAIN PART-OF BASIN> TRUE
(T) <WATER CONNECTED-TO WATER-COLUMN> FALSE
(T) <WATER CONNECTED-TO DRAIN> TRUE
(T) < WATER CONNECTED-TO SAFETY> FALSE
(T) <WATER IN DASIN> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <HEIGHT AMOUNT> BELOW-SAFLTY
<HEIGHT RATE> ZERO

THE PHYSICAL-EFFECTS ARE
(T+2) <DRAIN CONNECTED-TO WATER> FALSE
(T+2) <WATER CONNECTED-TO DRAIN> FALSE
(T+2) <WATER IN BASIN> FALSE

THE QUANTITY-EFFECTS ARE
(T} <FLOW AMOUNT> POSITIVE
(T) <FLOW RATE> ZERO
{T) <HEIGHT RATE> NEGATIVE

{T+2) <HEIGHT AMOUNT> ZERO
(T+2) <HEIGHT RATE> ZERO

A Causal Rule

Thi< causal rule describes how water flows out of a drain.
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e when the independent quantity’s amount is negative, the dependent quantity’s

rate is negative (and the dependent quantity’s amount is decreasing)
A negative influence is defined in the obvious way.

A function is a dependence between the amounts of two quantities or the rates of
two quantities. An influence is a dependence between the amount of one quantity
and the rate of another. It is possible, by chaining influences through several

quantities, to represent higher-order derivatives.

It is also useful to define the correspondence, which is a relation (in the
matheinatical sense) between the values of two quantities. A correspondence
represents an observation about empirical links between the values of two quantities
- but it is not yet clear which quantity is independent and which is dependent.

A correspondence such as:
CORRESPONDENCE-1 <Q-5 CORRESPONDENCE Q-§> NEGATIVE

means there is a one-to-one correspondence between the values in the one
quantity’s quantity space and the values in the reverse of the other quantity’s

quantity space. A correspondence is symmetric.

Causal Rules Capture Behavior

The representation of causality afforded by quantities facilitates the construction
of causal models of physical systems by the learning program. Causal models consist
of a set of causal rules defined on a set of physical objects and a set of quantities
associated with those physical objects. The causal model makes explicit the causal
relations underlying behavior. Causal rules describe causality at two levels: At
the quantity level in terms of independent quantities, dependent quantities, and
dependences, and constraints on the ranges of the values of the quantities. At the
phvsical level in terms of a set of preconditions and a set of effects, both of which
are relztions on physical objects, and the times these relations hold. The quantity
level aids the learning program in the recognition of causality, because quantities
and dependences support abstract causal explanations. The physical level provides
a means for describing causality in terms of objects and relations at the physical
rral-world level for use by a planner.

An cxample of a causal rule illustrates its form:
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The quantity space for the rate of the coils’ temperature is:
(NLGATIVE = > ZEIRO = > POSITIVE)

Quantities extend the ability to represent change along two dimcnsions: first,
continuous as well as discrete changes can be represented; second, the direction of
a change can be represented, because of the ordering imposed on the set of values
for a quantity. Representing directions of change can support reasoning about the
next value of a quantity and cquilibrium states. Quantities not only add a richer

representation for change, they add reasoning power as well.

Dependences Capture Causality

The task of the learning program is to identify causality. Causality can be
represented in terms of quantities in a concise manner. A quantity that can be
affected by another quantity is functionally dependent on that quantity. It is useful
to define two kinds of dependences, the function and the infiuence |[Forbus 84).

An example of a function is:
FUNCTION-1 <Q-1 FUNCTION Q-2> NEGATIVE

The tndependent guantity or causing quantity is Q1 and the dependent quantity
1s Q2. A dependence is usually signed, to indicate whether it is a direct or inverse

dependence. The meaning of this function is:

e when the independent quantity’s amount increases, the dependent quantity’s
amount decreases
e when the independent quantity’s amount decreases, the dependent quantity’s

amount tnereases

The definition of a direct (positive) function is symmetrical in the obvious way.

The meaning of an influence such as
INFLUENCE-1 * <Q-3 INFLUENCE Q-4> POSITIVE
is shightly different:

e when the independent quantity’s amount is positive, the dependent quantity’s

rate 1s posittve {and the dependent quantty’s amount is increasing)

LT - -~ T T T

RS A ] T B .- .7 PR IS . . . . R . .
P SO VRAE I TR W, WAL W, W YIS Sl S T SN, W LR S, S W i S L T . L . N o NP

P Sy Y]



1
1
1

w d > > B ————
LI T A Gt G o S ren A e S e e e s o o o
RS o - 2 AR It a2 S e — p—

LA R r.vr. \an g ——

objects. They are borrowed from Ken Forbus’ seminal work on representing and

reasoning about physical processes [Forbus 84].

Quantities are always associated with a physical object and the possible values of
a quantity correspond to well-defined states of the object. The values of quantities
are symbolic, not numeric. An ordering is imposed on the set of values of every
quantity, so it is possible to reason about the relative magnitudes of different values
of a quantity. It is also possible to compare the relative magnitudes of values of

different quantities. However, no information about absolute magnitudes is given.

A quantity has two parts, an amount and a rate. The rate is the first derivative
of the amount. As an example, changes in the temperature of the cotls in a toaster

can be -epresented as:

QUANTITY-1 <COILS QUANTITY TEMPERATURE>
(1-TRUE->)

AMOUNT-1 < TEMPERATURE AMOUNT> _
‘-- (1-coLp-2) (3-cHANGING—4) (5-HOT-5) (6~CHANGING-T)
¢ (8-coLp->)

RATE-1 <TEMPERATURE RATE>
(1-zErR0-2) (3-POSITIVE-4) (5-2ERO~5) (6-NEGATIVE-7)
(8-zERO->>)

The rate of one quantity may be the amount of another. A more powerful

representation for the flight of a rock might involve another quantity called velocity

whose amount is the same as the rate of the height. Higher-order derivatives can

be represented as well.

The above example shows how quantities fit into the overall representational
scheme. If the values placed in histories are generalized from truth-values to arbitrary

o values. then quantities can be represented without any additional machinery.

The set of possible values for a quantity and the ordering imposed on that set is
called a guantity space [Forbus 84). Usually the quantity space is a total ordering,
but partial orderings are possible too. The quantity space for the amount of the

coils’ temperature is:

-

(coLp -> noT)
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The starting moment of the interval is always the current moment given by the

internal clock. The stopping moment is, by default, +oc. Relations are assumed to
be perststent.

Finally, it is possible to represent how relations can change. The interval/truth-
value construct is generalized to a history, a list of interval/truth-value pairs. If a
relation is asserted again, it is not created anew, rather the history of the relation

is modified according to the following rules:

e If the value has not changed; do nothing.
1 e If the value has changed and time has passed; close the previous interval and

yﬂ create a new persistent interval with the new value.
As an example, the following set of sentences,

Initially, the stopper is in the drain.
Later, the stopper is not in the drain.
Next, the stopper is still not in the drain.

Later still, the stopper is in the drain again.

would be represented in the knowledge base as:

IN-1 <STOPPER IN DRAIN>

(1-TRUE~2) (3-FALSE-5) (6~TRUE->>)

Note that the final interval is an open interval, while the others have been closed.

For the purposes of this research, it was critical to be able to represent a

'@ e

sequence of events, in which the learning program would look for causal relations.

It was necessary to be able to control the exact temporal ordering of relations in
the knowledge base. The particular interaction between the parser and the time
:Z representation described above might be called the “sequence-of-events” mode.
- Other interactions between the parser and the time representation are possible.
o
.
Quantities Capture Continuous Change
::" Truth-value histories represent how propositional statements about the world
’." change, but they are not well-suited to representing how properties of objects can

change. In physical systems. changes often occur continuously. The representations

for quantities described in this section capture continuous properties of physical




Our time representation is simpler than others that have appeared in the artificial
intelligence literature, [Allen 81, McDermott 82, Vere 83, Simmons 83]. [Simmcns 84]
1s an excellent discussion of the important issues for designing a time represcntation.

The basic unit of time is the interval, which is represented by specifying two
moments, one being the beginning of the interval, the other being the end of the
interval. Moments themselves are the primitive intervals and they meet at points.
Time is divided into a sequence of moments at the finest level of resolution, and
all intervals are defined on these moments. Moments are conveniently represented
as integers.

As an example, the interval <3,8> starts at the beginning of the third moment
and stops at the end of the eighth moment. An interval such as <5,5> is
well-defined. This interval is exactly the ifth moment.

In principle, it would be useful to be able to define intervals on top of other
intervals, rather than on moments only, to any number of levels. Then seconds,
minutes. hours, days, etc. would be easy to represent. (See [Allen 81] for a solution).
The two-level partitioning of time into moments and intervals is sufficient to support
the temporal reasoning the learning program needed to do.

Another limitation in our time representation is the absence of any information
about scale, i.e., about the absolute duration of any particular moment. (See [Vere n
83] for a solution and [Simmons 84] for a discussion). Once again, there was no
need for this kind of information to support the research at hand, so the issue was
not addressed. Only information about the ordering of events was necessary, not
about their relative durations.

The interaction between the parser and the time representation is clean and
simple. The parser strips temporal adverbs from sentences and makes them available

to the knowledge svstem. There is an internal clock which keeps track of the current

moment, the “now”. Temporal adverbs adjust the clock as follows:

o INITIALLY - sets the clock to 1.
o ALREADY - sets the clock to 0, i.e., sometime in the past.

i o ALWAYS - sets the clock to —co, i.e., for all time.

; e NEXT - advances the clock once.

- e LATER - advances the clock twice, to create an intermediate interval curing
;:" which nothing changed.

@

S When a relation is inserted into the knowledge base, both a truth-value and an
E:- interval are assigned to it, representing when that relation has that truth-value.
A
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for the change. At this point in the learning session, the learning program already
knows that the faucet being on and the presence of the water column makes the
water rise. These causes are intact, so cquilibrium must be the explanation. Also,
the unknown contribution must be of opposite direction, i.e., it must make the

water fall. All of this reasoning ultumately leads to the identification of flow at the

safety drain.

WATER
TE POSIT INE POSITIVE

CoLumMN
WIDTH
. AMOUNT
sl \
INFLUENCE o« \. TINFLUENCE —
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An Equilibrium State

Without the reasoning available at the quantity level, particularly the repre-
sentation for equilibrium states, the learning program would have failed to construct

the correct causal explanation in this situation.

Tradeoffs and Overdetermined Systems

The number of dependences in the various types of causal explanations at the
quantity level outlined above is in all cases minimal. If a quantity is not steady, a
single dependence explains why it is changing. If a quantity is steady, either there
are no dependences, or if evidence indicates an equilibrium state, there are exactly
two dependences.

In general, = charging quantity can be the result of any number of interacting

dependences {except zero), all sharing the same dependent quantity, whose net

cffect is to move the quanuty in a particular direction. Similarly. an equilibrium
state can be achieved by any number of dependences greater than one, again all
sharing the same dependent quantity, whose net effect 1s a state of balance.
However, the following qualitative checks can be perforined to sce if the set of
dependences is at least not inconsistent with the oliserved change in the dependent

quantity.




g T T T

S N T T e T e T YT TN WY Y T —— DadlSiaiete atun srs caen e s

23

e For @ non-steady quantity, therc must be at least one dependence in the set of
dependences whose contribution has the correct sign. (The sign of a dependence’s
contribution is the resolution of the sign of change of the independent quantity
and the sign of the dependence).

e For a steady quantity, if there are no dependences, that is sufficient explanation.
Otherwise, the quantity is in a state of equilibrium. In this case, there must be
at least one dependence in the set of dependences in each direction.

The amount of constraint may not be sufficient when there are several dependences
to reso've. For instance, if a quantity is decreasing, three negative influences and
one positive influence may not be a correct explanation, because the magnitude of
the single positive influence might be greater than the sum of the magnitudes of
the negative influences.

When there are several dependences which satisfy the causality-proposing
heuristics, the complete and correct way to verify that the net effect of the
dependances is consistent with the change in the dependent quantity is to sum
the contributions of all the dependences. But this would require knowledge about
the absolute magnitudes of quantities and perlhaps even an equation to represent
the functional relationship captured by the dependence. This kind of quantitative
information is not available. Therefore, t-adeoff situations are not allowed.

This felicity condition [VanLehn 83] does not preclude overdetermined systems
where several dependences contribute to move a quantity in the same direction.
The learning program can construct correct causal explanations in these situations.
They are the only situations in which JACK can construct causal explanations

which involve more than the minimal number of dependences.

Making Hypotheses

JACK jearns by proposing causal explanations for changes in quantities. This
section outiines how the causality-proposing heuristics and knowledge about
quantities constrain the hypotheses which the learning program generates to explain

changes;.

Give1 a change in a (dependent) quantity, JACK tries to construct a causal
explanation in terms of dependences and independent quantities with the following

procediire:

Step 1.
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Different kinds of changes in quantities are associated with different kinds of
causal explanations in terms of dependences.
e If the quantity has stopped changing, look for no dependences or balancing
dependences.
e If the quantity has begun changing, look for a new dependence or a broken

equilibrium state.

Step 2.
If JACK cannot explain changes in terms of known dependences, then the

causality-proposing heuristics are used to propose new dependences. This is when
learning takes place. The learning program proposed new dependences by searching
for a change in an independent quantity and an associated physical object which
satisfy either:

e temporal adjacency or simultaneity and physical connectedness, or

e temporal adjacency or simultaneity and same device

with the change in the dependent quantity and its associated physical object.

Step 3.

The type of 2 new dependence is chosen according to the following rules:

e If the amount of the dependent quantity changed and the amount of the
independent quantity changed, then the dependence is a function.

e If the amount of the dependent quantity changed and the rate of the independent
quantity changed, then the dependence is a tnfluence.

e If the rate of the dependent quantity changed and the rate of the independent

guantity changed, then the dependence is a function.

Functions are causal relations between the amounts or rates of two quantities.
Influences are causal relations between the amount of one quantity and the rate of

another.

Step 4.

The sign of a new dependence is chosen according to the following rules:

o [f the directions of change of the two quantities are of the same sign, then the
dependence is pocitive {direct).
o If the directions of change of the two quantities are of opposite sign, then the

dependence is negative (inverse).

-
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The direction of change of any quantity is found by locating the previous value
and the current value in the quantity’s quantity space. If it is not possible to

determine the directions of change of the two quantities, then the dependcnce is

Jeft unsigned.

If the changes in the two quantities satisfy simultaneity and neither is attributable
to an external action, then it is not possible to dectermine which quantity is
independent and which is dependent. In this case, a correspondence is proposed

rather than a dependence.

Proposing dependences is the first step in constructing new causal rules. The
dependences represent the description of causality at the quantity level. The next

section »xplains how the description of causality at the physical level is constructed.

Preconditions and Effects

Causality can be described concisely at the level of quantities but there are
two reasons why this is an inadequate representation. First, it is too abstract — a
representation of causality must also describe objects and relations at the physical,
real-world level to support planning. Second, a representation of causality must
include not only explicit causes, but also the enabling conditions which must hold
for the causality to be realized. A good example is the operation of a gun. Pulling
the trigger is the direct, overt event which causes the bullet to be fired. However,
uniess the safety iock is off, the gun will not fire. The release of the safety lock
is a precondition which must hold before the causal relation between pulling the
trigger znd the buliet firing can be realized.

Similarly, there may be indirect effects which result when a causal relation is
realized. Some side effects of a fired gun are the recoil of the gun and the odor of
the ignited gunpowder. It is particularly important to represent side effects which
can only be realized indirectly. through a causal relation whose primary effect is
something else.

The gaantity level of causal rules provides a concise rendering of causal relations.
Changes in independent quantities result in changes in dependent quantities
through dependences. The phvsical level of causal rules allows an arbitrary number
of preccnditions and side cfiects to be represented for each causal relation.

Preconditions and effects are cither relations on physical objects or constraints on

the rangess of values for quantities.
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When a dependence is asserted between two quantities, this is only the first step
in constructing a causal rule. The preconditions and cffects which make up the
physical level of the causal rule must also be identified.

The procedure for constructing the physical level of a causal rule is:

Collector:
Given the independent quantities, the dependent quantities,

the associated physical objects, and the changes which are
the primary cause and efiect in a causal rule,
Collect the values of the quantities and relations on the
physical objects which held at the time the primary cause
occurred. These are the preconditions.
Collect the values of the dependent quantities and relations
on the physical objects associated with the dependent
quantities which chaneed at the time the primary effect

occurred. These are the effects.
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Freconditjions and Effects

~ormally, efiects are nssumed to be persistent. However. an effect which involves
a continuous change is tracked to see if a limit value is reached. If so, this value is

included in the causal rule as a long-term efiect.
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Earlier, it was stated that the first attempt to arrive at a causal explanation for a
change in a quantity involves checking known dependences and determining if the
independent quantities changed in the expected way. What JACK actually does is
check known causal rules and determine if the independent quantities changed in
the expected way and all preconditions were satisfied.

The procedure for identifying preconditions and effects can be cither over-general
or over-specific. Spurious preconditions and effects may be included. Relevant
preconditions and effects may be missed. A later section which discusses how causal

rules can be gencralized over further experience addresses this problem.

Imagination Orders the Explanation Hierarchy

JACE! first tries to explain changes in quantities by appealing to former experience
encoded in existing causal rules. This kind of explanation does not involve an
hypothesis.

If such an explanation is not forthcoming, JACK tries to propose a new

dependence. This type of explanation assumes that the primary cause of the change

N in the dependent quantity is an observable change in an independent quantity.
This is the nominal situation for the learning program. However, the last satisfied
precondition - which may not be manifest in an observable change in a quantity
- sometimes plays the role of primary cause. Because preconditions can become
satisfied in different orders, different instantiations of a causal rule may display
different primary causes.

Therefore, if an explanation involving a change in an independent quantity and
a dependence is not forthcoming, JACK searches for a change in a relation on a
physical object. This physical object and the time of the change also must satisfy
the temporal and phyvsical proximity requirement.

The explanation now is that the change establishes a precondition for a
dependence whose dependent quantity is the quantity which changed. The unsatisfied
precondition was preventing the causal relation from being realized. The change
in the dependent quantity was latent, and the now-satisfied precondition was the
important cause. not an unobservable change in an independent quantity. This type
of causal explanation proposes a new dependence and a new quantity.

An example from the sink domain illustrates how this hypothesizing can work.
Whiie there 1s water in the basin, the stopper is removed from the drain and the

water begins to fall.
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CAUSE EFFECT
Event <STOPPER IN DRAIN> FALSE < WATER-HEIGHT RATE> NEGATIVE
Time & t +— >
t t

Since the flow at the drain is not observable, the learning program cannot know
about this influence directly. But JACK does know that the drain, which is touching
the water (physical conncctedness), underwent a change, namely the stopper was
removed from it, as the water began to fall (simultancity). This evidence is sufficient
to propose a mew quantity for the drain, and construct a new dependence and
causal rule, one of whose preconditions states that the stopper must not be in the
drain.

If there is no observablc evidence about a cause for a change in a quantity, a
final attempt to construct a causal explanation might be made by using analogy. If
another situation matches well with the current one, it may support an hypothesis
about an unobservable independent quantity, or even an unobservable physical
object and change which establishes a precondition. The analogy would proceed by
matching observable effects of the two situations, and then trying to map the causal.
explanation in the known situation onto the current situation. This explanation -
would have to satisfy the temporal and physical proximity constraint as well.

Although the use of analogy to construct causal models was not implemented,

its use to extend causal models was, and is explored in Chapter 5.

JACK learns by making hypotheses to explain changes in quantities. JACK may
make several attempts to construct causal explanations. Each type of explanation
1s more imaginative than the previous because cach successive type of explanation
proposes more to complete an adequate causal explanation.

In summary, these are the types of causal explanations JACK tries to construct

{in order) when confronted with a change in a quantity:

The Explanation Hizrarchy

e [dentify 2 known dependence and causal rule in the existing causal model.
What iz proposed: nothing.

* ldentify a change in 2 quantity which satisfies the temporal and physical proximity
heuristics. By hvpothesis this quantity is the mdependent quantity.

What is proposed. dependence. causal rule.
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e Identify a change in a relation on a physical object which satisfies the temporal
and physical proximity heuristics. By hypothesis, this relation is a precondition.
What is proposed: independent quantity, dependence, causal rule.

o Identify a similar causal rule which explains a similar change in a similar quantity
and which satisfies the temporal and physical proximity heuristics. By analogy,
the causal explanation is transfcrable.

What is proposed: physical object, relation, independent quantity, dependence,

causal rule.

Resolution and Boundaries

JACK's ability to construct causal explanations is limited by the level of
resoluticn at which a physical system and its changes are presented and by the
implicit boundaries [Kirsh 84] on the space of candidate causes and preconditions
imposed by the causality-proposing heuristics.

JACK is provided with a structural description of a device at a single level of
resolution - roughly what can be seen from the exterior of the device. JACK is not
allowed 1o “open up” the device to know of additional components and connections.
The temporal resolution is matched to the visible changes undergone by the parts
of the device. _

The heuristics of temporal adjacency, simultaneity, and physical connectedness
allow JACK to make causal hypotheses about interactions which are visible. The
same device heuristic essentially allows the learning program to hypothesize new
connections between components.

The use of the heuristics is ordered so that the boundaries on the space of
candidate causes and preconditions is expanded as JACK searches for a causal
explanztion for a change. These heuristics embody the notion of a closed system
whose iaternal behavior is not impinged upon by events outside the system'’s

houndaries.

Generaiizing Over Further Experience

Causal models are orizinally constructed on the basis of a single experience with a
phvsical system. Any form of the causality-proposing heuristics can admit incorrect
or incomplete hypotheses. More likely than not, causal modecls will need refinement.
The next few sections discuss wavs to recognize deficiencies in causal models and

ways to reneralize causal models to repair such deficiencies.
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Spurious Preconditions and Effects

Preconditions and effects at the phvsical level of a causal rule are collected by
noting, respectively, what relations held, and what relations changed when the
causation was manifest. Spurious effects are less likely because of the additional
constraint, but this procedure does not guarantee the exclusion of either spurious
preconditions or cffects. However, an irrelevant precondition will never prevent a
causal rclation from being realized, and an irrelevant effect will not necessarily
occur. Therefore, any precondition or effect which is respectively, unsatisfied or
unrealized when a causal rule is otherwise intact, can be dropped. This pruning is
a kind of gencralizing from negative examples.

An example from the sink domain illustrates how a spurious precondition can
be recognized and dropped. When JACK first attributes the recession of the water
in the sink to the removal of the stopper from the drain, there is a bar of soap
floating in the water. JACK includes but later drops the presence of the soap as a

precondition when the water flows out again sans soap.

Making Better Hypotheses

A causal rule may fail to explain apparently similar events because the causal
reiation it describes may subsume a chain of causality, or may itself be part of
a larger causal structure. Such an incomplete causal description may be missing

relevant dependences, preconditions, and effects.

When the cflects histed in a causal rule do not obtain despite 2]l known
preconditions being satisfied, this is evidence that the causal model is incorrect
o~ at ieast incoimnplete, JACK might resume the search for an hypothesis where it
oniginally terminated and try to generate a causal explanation which covers both
the noew and provieus events. A better idea is to try and determine why the causal
moac! failed by comparing the situation where it failed to the situations where it
did not fail. Any differences can support new hvpotheses which can then be tested

by tie causality-propesing heuristics. Differences reveal causes in rehypothesizing

o)

1
I ta

U as cnanges reveal causes s itial hypothesizing. Rehypothesizing is a kind of
generahizing from both positive and negative examples. On the other hand, JACK's

initial hypotheses are based on expianations of a single positive example.

The procedure for rehvpothesizing is:
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Rehypothesizer:
Given two situations, one where a causal rule provides a causal
explanation and one where it does not,
Compare the two situations.
Until an adequate causal explanation which covers both
situations has been constructed,
For each difference,

Try to construct a causal explanation.

An evxample from the toaster domain illustrates how a better causal model can
result when JACK is forced to rehypothesize because the current model fails.

Part of JACK’s initial model of the toaster includes an influence between the
position of the lever and the temperature of the coils. This model works fine until
the toaster’s plug is pulled from the outlet. JACK compares (see Appendix V for
a description of the matcher) the state of the toaster at the time of the initial
nypothesis and at the time of the failure and discovers the difference involving the
plug. The plug now becomes a candidate for affecting the coils. JACK asserts a
new dependence between a new quantity associated with the plug (which we might
call current) and the temperature of the coils. One of the new preconditions is that
the plug must be in the outlet.

To see how differences play the same role in rehypothesizing as changes do in
initial hypothesizing, imagine that JACK’s first experience with the toaster had
involved the lever being already down and the plug being put in the outlet last. In
this case, JACK would have made the better hypothesis first.

Dependences in Devices

There are additional situations in which deficiencies in causal models can
oe recognized, if one assumes that dependences are always functions (in the
mathematical sense) from the independent quantity’s quantity space to the dependent
nquantity’s quantity space. One-to-many relations between paramcters of a device
make little sense hecause they imply random behavior. This is an oversimplified,
but use’ul teleological assumption about the nature of dependences in designed
physical systems. If 2 one-to-many relation is ever obscrved, this is evidence that

the caucal model i incomplete and a better hypothesis is needed.
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This assumption is buttressed by a felicity condition [\'zm[,chn 831 which requires
dependences to be monotonic functions. This condition guarantees one-to-one
correspondences between quantity spaces across dependences, which makes some
qualitative reasoning easier. For example, increasing an independent quantity
must increase (or decrease) the corresponding dependent quantity. Many-to-one
dependences in physical systems also can be uscful, e.g., to transform a wide range
of inputs into a finite set of stable states — but they were avoided in this work.
Therefore, further expericnce with dependences should result in nothing more than
the possibic paralicl expansions of the appropriate quantity spaces.

An example from the toaster domain illustrates how the teleological assumption
about dependences can cnable the learning program to recognize incomplete causal
models.

The toaster produces toast of a certain darkness the first time through. JACK's
initial model taciudes a dependence between the temperature of the coils and the
dariness of the toast but this dependence cannot explain why a second piece of
toast comes out lighter. On each occasion, the plug was in, the lever was down, and
the coils heated up. JACK compares the two situations to find an explanation for
the difference between tha two pieces of toast. JACK finds that the thermostat dial
was set diffcrently in the two situations and asserts a function between the setting
of the thermostat diazl and the darkness of the toast. The learning program does
not actualiy discern the thermostat mechanism or the heat exchange process which
controls the darkness of the toast. However, the abstract causal relation JACK

does propose is accurate to the resolution available, and useful.

This kind of analysis does not apply to rates of quantities because of another
ressiution hmitation. Values in quantity spaces for rates are limited to negative,
zero. and pesitive. 1t 1s not possible to determine if a quantity is changing faster

thils fiine than at a previous time.

The Learning Session in the Sink Domain

This gection contains an annotated transcript of the learning session in the sink
eormain. The sequence of events {the actual input to the learning program) appears
inwtaae type. [The sequence of events also appears in Appendix I). The causal
exgianauens JATHK constructs te understand these events are given in bold type.

Comments apuear in normal type.

.
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Already, the tap, the faucet, and the basin are part of the sink.
The drain, the safety, and the stopper are part of the basin.

These two sentences create a hierarchical structural description of the sink.

The stopper ts in the drain.
The faucet’s position s closed.
The light-switch’s setting ts off.

The window’s height ts down.

The adverb already signifies that the relations so far described have held since

some indeterminate time in the past. The learning session proper begins here.

Initially, the faucet’s position 1s open.
The iight-switch’s setting ts on.
Thinking at t=1.

The adverb tnitially starts the internal clock at 1.
The learning program is told a prior: which changes are due to external actions
and does not try to explain them. These include turning the faucet on and off, and

turning the light on and off.

Nezt, a water-column appears between the tap and the basin.
The water-column’s width ts steady.

Thinking at t==2.

The adverb nezt ticks the clock once.

JACK observes that both the faucet’s position and the light switch’s setting
changed at t=1. Either of these changes could explain the change in the water
column’s width at t=2 because both satisfy the temporal adjacency heuristic.
However, the hight-switch fails to satisfy either the physical connectedness heuristic
or the same device heuristic with the water column. On the other hand, the faucet
does satisfy the physical proximity requirement. The water column is connected
to the tap and the tap and faucet are part of the sink. The same device heuristic
cnables JACK to hypothesize about the pipe - which is not visible - connecting

the faucet and the tap.
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Asserting a function between
the position of the faucet and

the width of the water-column.

This dependence satisfies

the temporal adjacency and same device heuristies.

The width of the water-column increased because

the position of the faucet increased.

When JACK asserts a dependence to construct a causal explanation, he gives
the justification for the new dependence (which causality-proposing heuristics were

satisfied), and the explanation supported by the new dependence.

G

PART-OF PART-of

-~TO
EomEeTER - Toy
~ ard

QUANTITY -0F
QUANT ITY-0OF
FAUCET FUNCTION +
PO5IT 1oN
AMOUNT
OPEN AT 1 POSITINE AT 2

Nezt, water appecrs ir the basin.
The waier-column 1s connected io the water.
The water s connected to the drain.

i CL
e water s height 1s tncreasing.

Thinking at t==3.
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Asserting an influence between
the width of the water-column

and the height of the water.

This dependence satisfies

temporal adjacency and physical connectedness,

The height of the water is increcasing because

the width of the water-column is positive.

This explanation is straightforward. Notice that the learning program finds a
non-intuitive two-link chain of causality between the faucet, the water column, and
the water in the basin. JACK treats the water column and the water as separate
objects. He does not know that the water column and the water are the same
“stuff”. This curiosity notwithstanding, the causal explanation that the learning

program finds is useful.

m (. COMNECTED - TO
N
—>

QUANTITY - oF I QUANTITY- OF

POSITINE AT 3 pPosiTiIvg AT 13

Later, the water is connected to the safety.

The water's height 1s equal to the safety’s height.
- . :

1he water's herght 1s steady.

Thinking at t=A+.

Thinking at t=3.

-
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The known results about rule based inference apply to causal rules and have
heen exploited mmphicitly by the lcarning program all along.

Explanation, prediction, and planning done at the physical level deals with
recal-world objects, relations, and events. Reasoning at the quantity level can be
incomplete because the full set of preconditions s omitted. However, the abstractions
available at the quantity level which support hypothesizing also support qualitative
reasoning which can in some cases, go beyond what is modelled explicitly in the

causal rales.

Explanation, Prediction and Planning is Done by Rule-Based Inference

Explanation of phenomena in the physical system is done by backward chaining
on the set of causal rules that makes up the causal model of the physical system.
This kind of explanation uses the existing causal model as is. It is different from
the causal explanations which support hypotheses to create and modify the causal

model.
The following is the procedure for doing explanation:

Explainer:
Given an event,
Find a causal rule which lists that event as an effect.
If there is no such causal rule, stop.
The preconditions of that rule and the time they hold are
the explanation.
For each precondition,

Explain that precondition.

The following is an explanation in the sink domain for the appearance of water

in the basin.
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CHAPTLER 4
REASONING WITH THE CAUSAL MODEL:
EXPLANATION, PREDICTION, AND PLANNING

The definition of learning that guides this research is the following: Learning
is the creation of useful knowledge structures to facilitate recasoning that was not
possible before the lcarning took place.

The Jcarning program described in this thesis constructs causal models of physical
systems. The models consist of a set of causal rules, each of which describes some
aspect of a physical system’s behavior in terms of causal relations.

There are three kinds of causal reasoning that a causal model should support:

e explaining phenomena
e predicting phenomena
e constructing plans to generate phenomena

This section shows how the learned causal model supports these kinds of reasoning
and also how these kinds of reasoning provide feedback about deficiencies in the
model. When predictions are inaccurate or plans do not work, this is evidence
that the causal mode! is incomplete and rehypothesizing is in ord.er. Thus learning

supports reasoning which drives further learning,

Causal Rules are If-Then Rules

A causal rule consists of a set of dependences between quantities at the quantity
level, and a set of preconditions and effects at the physical level. A causal rule can

be restated as follows:

Quantity Level

IF ithe independent quantities change in the manner prescribed by the
dependences]
THEN [the dependent quantities will change in the manner prescribed by the

dependences]

Phvsical Level
IF fthe preconditions are satisfied]

THEN ithe eflects will occur]
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This completes the initial learning session in the toaster domain. The figure

below shows the quantities and dependences JACK uses to causally explain the

observed behavior of the toaster.

coiLs FUNCY\ON +
TEMPERATURE

RATE

TINFLUENCE —
7/

AWMOUNT

Thes: are the quantity spaces of the quantities of the toaster.

Lever Position (DowN -> up)
Coils Temperature (coLd ~> HOT)
Bread Shade (WiTE -> DARK)

JACK will have cause (no pun intended) to refine this initial model of the toaster
when the plug is pulled from the outlet and when toast of varying darkness is
produced. The transcript of these further experiences appears in the next chapter.

The final causal model of the toaster appears in Appendix I'V.

This chapter has shown how the learning program goes from a sequence of events
describing changes in a physical system to an explicit representation of the causality
which underlies the behavior of the physical system.

The goal of a learning system is not just to create new knowledge structures,
but to create new knowledge structures which can support reasoning which was
impossible before the learning took place. The next chapter shows that this goal

has been achieved.

d
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A function between
the shade of the bread and

the position of the lever.

This dependence satisfies

simultancity and same device.

The position of the lever decreased because

the shade of the bread increased.

The figure above shows why JACK cannot distinguish these hypotheses. JACK
now does what reasonable learning programs do in such situations — he waits for
less ambiguous experience. Later, when JACK sees that the coils are always hot
when the lever pops up but the pieces of toast can be of any darkness, he will be

able to make a justified choice between these competing hypotheses.

Nezt, the coils’ temperature ts decreasing.

The window’s height s down.
Thinking at t==5.

The temperature of the coils is decreasing because

the position of the lever is positive.

JACK uses a known dependence to construct a causal explanation. The change in

the window’s height is ignored because it fails the physical proximity requirement.
Later, the coils’ temperature is cold.

Thinking at t==86.
Thinking at t=7.

The temperature of the coils has reached a stable value.
Another long-term effect.

Finally, nothing 1s changing.
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Thus JACK chooses the coils as the causal culprit. Notice that the same device

heuristic enables JACK to handle an instance of “action at a distance”, in this case

heat flow.

"RV PaeT -OF

QUANTITY -oF

FUNCTION +

POSV\TIVE AT 2 POSITIVE AT 2

There are more than one possible explanations for

the change in the position of the lever.

A function between
the temperature of the coils and

the position of the lever.

This dependence satisfies

simultaneity and same device.

The position of the lever decreased because

the temperature of the coils increased.

or
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This value “hot” isincluded as a long-term effect in the causal rule just constructed

which describes how the temperature of the coils increases.

There are two changes which JACK will try to explain - the lever has popped
up and the bread has turned to toast.

Asserting a function between
the temperature of the coils and
the shade of the bread.

This dependence satisfies

simultaneity and same device.

The shade of the bread incrcased because

the temperature of the coils increased.

JACK first makes the inference that the bread’'s darkness was changing
continuously during the time it was not visible. JACK asserts “The bread’s
shade is increasing.” at t=2 and “The bread’s shade is steady.” at t=4.
Then JACK looks back in the sequence of events to try and construct a causal .
explanation.

Both the change in the position of the lever (by temporal adjacency) and the
change in the temperature of the coils (by simultaneity) are candidate causes.
Also, both the lever and the coils satisfy the same device heuristic with the bread.
However, the bread and coils are closer in the PART-OF hierarchy than the bread and
the lever. {The IN relation implies the parT-oF relation. This inference is handled

by a demon).

vmf—or/‘ ‘\P“‘T -of

R N P . S -
S N - . P . LI R .
PSR UL LN cabant gl mT L o e s 4.

e N X Y O T W

AT A T TR S e
PORPIPON Y TN RV TR R T R S




ST T T T T e T I T R T S T T W T W e e —— s

T W XV eTw

43

of the coils. However, the faucet does not satisfy any physical proximity test with

the coils.

PART-0F

QU ANTITY -~ OF

LEVER
PoSVTION
AMOUNT

DOWN AT

TINFLUENCE ~— >

QUANTITY - OF

cons
TEMPERATURE
RATE

PosATIVE AT 2

The sink will continue to exhibit changes but for clarity’s sake, its behavior will

now be omitted.

Later, the lever’s position ts up.

The coils’ temprrature ts hot.

The coils’ temperature 1s steady.

The brecd 1s visible.
The bread’s shade ts dark.

Thinking at t=3.
Thinking at t=4.

The temperature of the coils has reached a stable value.
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The coils are part of the slot.

These sentences form a hierarchical structural description of the toaster.

The coils’ temperature 1s cold.
The lever’s position 1s up.

The dial’s setting 1s D.

The plug is in the outlet.

The bread ts in the slot.

The bread’s shade is white.
The faucet’s position is closed.
The light-switch’s setting s on.

The window's height ts up.

These sentences describe the state of the toaster in terms of physical relations

and values of quantities.

Initially, the lever’s position s down.
The faucet’s position ts open.

The bread ts not visible.

Thinking at t==1.

Nezt, the coils’ temperature 1s tncreasing.
Thinking at t=2.

Asserting an influence between
the position of the lever and

the temperature of the coils.

This dependence satisfies

temporal adjacency and same device.

The temperature of the coils is incrcasing because

the position of the lever is negative.

Both the change in the position of the lever and the change in the position of the

faucet satisfy temporal adjacency with the change in the rate of the temperature

e T T T T R
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FAUCET
PuSITION

AMOUNT

FUNCTION +

TINFLUENCE +

These are the quantity spaces of the quantities of the sink.
Faucet Position (cLOSED -> OPEN)

Water Column Width (zero -> pPosITIVE)

e Water Height (2Er0 —> BELOW-SAFETY —> SAFETY)

Safety Flow (zERO - > POSITIVE)

Drain Flow (zzro -> POSITIVE)

The set of causal rules which make up JACK’s full causal model of the sink
(including preconditions and effects) appear in Appendix II. This model has been
refined over further experience. The transcript of these experiences appear in the

next chapter.

The Learning Session in the Toaster Domain

This section contains an annotated transcript of the learning session in the
toaster domalin. As in the previous section, the sequence of events which describes
changes in the toaster over time appear in italic type. (This sequence of events
also appears in Appendix III). The causal explanations JACK constructs for those

change« appear in bold type. Comments appear in normal type.

Already, the lever, the plug. the dial, and the slot are part of the toaster.
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CoNTAIN
FALSE AT '3

~ 7

QUANTTY -0F QUANTITY - OF

INFLVENCE - o
V4

POSITIVE AT 13 NEGATIVE AT 13

Later, the water disappears.
Thinking at t=14.
Thinking at t=185.

The height of the water has reached a stable value.

The height of the water is not changing because

there is nothing affecting it.

When the water finally disappears, this event is included as a long-term effect of
the causal rule just constructed which describes how flow at the drain causes the
water’s height to fall. Such long-term effects will happen as long as the preconditions
of the pertinent causal rule hold persistently. In this case, the stopper must remain

out of the drain.
Finaliy, nothing 1s changing.

This completes the initial learning session in the sink domain. The figure below
shows the quantities and dependences JACK uses to causally explain the observed

behavior of the sink.
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the flow of the drain and

the height of the water.

This dependence satisfies

simultanecity and physical connectedness.

The height of the water is decreasing because

the flow of the drain is positive.

The height of the water begins to fall when the stopper is pulled from the drain
and the window is opened. The change in the window's height is eliminated as
a candidate explanation because the window does not satisfv either the physical
connectedness or the same device heuristic with the water. Since, the learning
program cannot perceive flow at the drain directly, it is unable to construct a causal
explanation in terms of a change in an independent quantity. Instead, JACK looks
for a change in a physical object which satisfies temporal and physical proximity.
The only such object and change JACK finds is the drain and the fact that
the stopper has just been pulled from the drain. Assuming that this change is
a just-satished precondition for a newly discovered causal relation, the learning
program assigns a new quantity to the drain, asserts a new influence, and constructs
a new causal rule. This rule includes another precondition which states that soap
must be in the water because this was true when the rule was formed. This spurious

precondition will be pruned by later expcerience.
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A previously learned dependence explains why the water column disappears when
the faucet is turned off. With the faucet off, for just a moment water continues to
flow out of the safety drain until enough has flowed out to actually break contact
with the safety drain. For that short moment, the positive half of the equilibrium
state has been broken because the water column has disappeared, but the negative
half of the equilibrium state is still intact and some water flows out. JACK has no

trouble understanding this situation.

Nezt, the water is not connected to the safety.
The water’s height 1s steady.
Thinking at t=29.

The height of the water has reached a stable value.

E. The height of the water is not changing because

3

& there is nothing affecting it.

b The height of the water is now steady because enough water has flowed out to

break contact with the safety drain. From JACK’s viewpoint, a precondition on
the remaining negative half of the equilibrium state has become unsatisfied, and -

there are now no influences on the height of the water.

Later, soap ts tn the water.

. Thinking at t=10.
p
- Thinking at t=11.
f-- Later, the stopper 1s not in the drain.
® . . . . .
1 The window’s height 1s up.
The water’s height 1s decreasing.
g Thinking at t=12.
@ Thinking at t=13.
.
- I am proposing a new quantity for the drain.

Plcase give a name for this quantity.

=
-
[O > flow
4
o

Asserting an influence between
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condition for water to flow out of the safety drain. There is an equilibrium state
between water flowing in at the tap and flowing out at the safety drain.

Once the safety drain has been identilied as the causal culprit, assigning a
quantity to it and forming a new dependence to complete the causal explanation is

straightforward.

TRUE AT §

, CONNECTED - TO
~ d

QUANTITY -OF

THNFLUVENCE - N
4
2ZER0 AT 5

PosITIiVE AT S g

9

GUANTITY-OF

—
—_

M 5

Later, the faucet’s position is closed.

Thinking at t=68.
Thinking at t=17.

Nezt, the water-column disappears.

The water’s height is decreasing.
Thinking at t==8.

The width of the water-column decreased because

the position of the faucet decreased.

The height of the water is decreasing because

the flow of the safety is positive.
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The adverb iater ticks the clock twice. This creates an intermcdiate interval
during which no additional u: -ges occur. The water rises to the level of the safety

drain during this interval.
The height of the water has reached a stable value.

When a changing quantity reaches a stable value, this event is included as a
long-term effect in the causal rule which includes the appropriate dependence. A

demon makes these addenda.

I am proposing a new quantity for the safety.

Please give a name for this quantity.

> flow

Asserting an influence between
the flow of the safety and
the height of the water.

This dependence satisfies

simultaneity and physical connectedness.

The height of the water is not changing because
there is an equilibrium between

the flow of the safety and

d the width of the water-column.

The water has now reached the safety drain and has stopped rising. JACK knows
that a steady guantity has two possible explanations. Either there are no influences
or there are balancing influences. Since the faucet is still on, the only possible
explanation is that an equilibrium state has been achieved. Unfortunately, there is
no other independent quantity in sight, so the learning program must make a more
imaginative conjecture. JACK tries to find an object which satisfies the physical
proximity requirermnent with the water and which just underwent a physical change
of some kind (to satisfy the temporal proximity requirement). The assumption is
tnat the change is a newly-satisfied precondition which is now enabling a latent
causal relation.

- The object and change that the learning program finds are the safety drain and

Sl the fact that the water is now touching the safety drain. This is in fact an enabling




e T N W W T WO - . L e N AAREA SENh Aun nh seul e i sk asude Seulk AU i naeh SMECASME S aadl SN AGhE SN MM ZSeh o —rT v Y .—T

50

{T) <FAUCET PART-OF SINK> TRUE

(T) <FAUCET-POSITION AMOUNT> OPEN

)

(T+1) <WATER-COLUMN CONNECTED-TC TAP> TRUE
(T+1) <WATER.-COLUMN CONNECTED-TO BASIN> TRUE

(T+1) <WATER-COLUMN-WIDTH AMOUNT> POSITIVE

J

(T+2) <WATER IN BASIN> TRUE

An Explanation

Prediction of phenomena in the physical system is done by forward chaining on
the set of causal rules.

The following is the procedure for doing prediction:

Predictor:
Given a state of the physical system,

= Find all causal rules whose preconditions are completely
ﬁ satisfied.
If there are no such causal rules, stop.

The effects of these causal rules and the time(s) they hold

g

are the prediction.

Update the state of physical system according to this set

v q
L

of effects.

Predict.

LEEE ZEn aun s o

The following is a prediction from the sink domain about what will happen when

water 1s in the basin and the stopper is removed from the drain.
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(T) <WATER IN BASIN> TRUE
(TY < DRAIN CONNECTED TO WATER> TRUE
(T) <DRAIN PART-OF BASIN> TRUE

{T) <STOPPER IN DRAIN> FALSE

!

(T) <WATER-HEIGHT HATE> NEGATIVE

!

(T+2) <WATER IN DASIN> FALSE

P

q (T+2) <DRAIN CONNECTED-TO WATER> FALSE

[ (T+2) < WATER-HEIGHT AMOUNT> ZERO

b

o

3 A Predicti

Lff Planning also is done by backward chaining on causal rules. However, instead
4 .

= of explaining an event, the task is to achieve a goal. A plan must specify how to
() Qe make something happen. It must describe not only the pertinent causal relations,

but also the actions which must be taken in order to achieve a goal. : , l

i

Because the planner must know about actions, it is told which states of the

v
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physical system are externally settable.

The procedure for doing planning is given below:

Achlever:

o Given a goal to achieve,

: Find a causal rule which lists that goal as an effect.

t If there is no such causal rule, fail.

:-'_’.' Tre preconditions of that causal rule and the time they
?‘ hold is the plan.

- For each precondition which is neither externally settable,
~ nor alre.ady holds,

:E:: Find a plan for achieving that precondition.

o

S

t | The following is a plan in the sink domain to make the water reach the safety
o
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drain.

IT) <FAUCET PART OF SINK> TRUE

(T) < FAUCET-POSITION AMOUNT> OPEN

!

(T+1) <WATER-COLUMN CONNECTED-TO TAP> TRUE
(T+1) <WATER-COLUMN CONNECTED-TO BASIN> TRUE

(T+1}) <WATER-COLUMN-WIDTH AMOUNT> POSITIVE

1

(T+2) <WATER IN BASIN> TRUE

{T+2) <WATER-IIEIGHT RATE> POSITIVE

T

(T+4) <WATER CONNECTED-TO SAFETY> TRUE

A Plan

The planner distinguishes the actions which are at the roots of the causal chains

in a plan.

Explanations, predictions, and plans are causal chains of events which are
relocatable in time. Each node in one of these structures describes states that hold
simultaneously. Links between nodes are justified by causal rules which describe a

causal relation between a set of preconditions and a set of effects.

It may be possible to find more than one explanation for the same event, or
more than one plan for the same goal, if the physical system is overdetermined. A
causal model of an overdetermined system would list the same relation as an effect
in more than one causal rule. However, the implemented explainer and planner do

not search for multiple solutions; they stop at the first one.

Similarly, the same relation may appear as a precondition in more than one rule.
Unlike the explainer and planner, the predictor finds all possible changes which can
proceed from a given state of the physical svstem. A branching prediction violates
the teleological assumption about devices not being designed to produce one-to-many

behavior. This would be evidence that the causal model needs refinement.
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In addition, conflicts can arise if the structure of an explanation, prediction,
or plan is non-lincar. A conflict would be, for example, one branch of a plan
undoing what was achieved in another branch. Such conflicts might be cvidence
for spurious preconditions or effects or other deficiencies in the causal model.
Fortunately or unfortunately, these situations did not arise in this research. Dealing
with contradictions and resolving conflicts in planning has been discussed in other

research, such as {Sussman 75, Sacerdoti 77, Doyle 78].

The Plenner has Two Modes: Achieve & Prevent

The pianner has two modes, and in this respect it differs from the explainer and
predictor, and also from many other planners. In one mode, the planner generates
plans to achieve a desired event. This mode was discussed in the previous section.

In the other mode, the planner generates plans to prevent an unwanted event from

occurring.

Preventing a goal is harder than achieving a goal because while any way of making
something happen is adequate, if the task is to stop something from happening,
all the ways it can happen have to be inhibited. The preventer, given a goal to be
prevented, must find all the cavsal rules which list that goal as an effect, and for
each of these rules, it must prevent the effect from occurring. Curiously enough,
breaking individual causal rules is easier than satisfying them. The achiever has
to satisfy all of the preconditions (a conjunction) of a causal rule to ensure that
its effects will be rcalized, while the preventer only has to deny any one of the
preconditions {a negated conjunction is a disjunction) of a causal rule to ensure

that the effects of that rule will not be realized.

Another way to prevent something from happening is to generate a normal
plan to achieve a mutually exclusive state, e.g. the same relation with a different
truth-value or the same quantity with a different value. The current planner does
not try to do p-evention planning this way. However, both modes. of the planner
do interact to produce complex plans which include both the achievement of some

states and the denial of others.

The procedure for preventing a goal is:
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Preventer:
Given a goal to prevent,
Find all causal rules which list that goal as an effect.
If there are no such causal rules, fail.
For each causal rule,
Find any precondition which is either externally
settable, or does not hold.
The denied preconditions of these causal rules (one from
each) and the time they are denicd is the plan.
If there are no such preconditions, then
For any precondition

Find a plan for preventing that precondition.

The following is a plan in the sink domain to prevent water from collecting in

the basin.

(T) <FAUCET-POSITION AMOUNT> CLOSED

2

(T+1}) <WATER-COLUMN-WIDTH AMOUNT> POSITIVE

¥

{T+2) <WATER IN BASIN> TRUE

A Prevention Plan

Conjunctions appear at the level of preconditions of individual causal rules in
plans to achieve a goal. Consequently, it is at this level that the achiever is sensitive
to incompletencss of the causal model. Conjunctions appear at the level of causal
rules in plans to prevent a goal. Similarly, it is at this level that the preventer is

sensitive to incompleteness of the causal model.

Note that the possible incompleteness of the causal model at the level of the set

of causal ruies does not affect the achieve mode of the planner. Only if the achiever

could not find a plan at all could a more complete model possibly make a difference.
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Thus a plan generated by the achiever is guaranteed to work only if the causal
rules that make up the plan are compiete; a plan generated by the preventer

is guarantecd to work only if the causal model itself (the set of causal rules) is

complete.

Both modes of the planner are useful, not only because they do the right thing in
many cases, but precisely because they can create situations in which deficiencies in
the behavioral model can become explicit. If a plan to achieve something fails, this
suggests a relevant precondition was missed (one involving objects and relations
out of sizht, for instance) during the construction of the appropriate causal rule - a
precond‘tion which is now unsatisfied. Similarly, when a plan to prevent something
fails, this suggests that unknown causal relations exist. Feedback generated by

failed plans indicate the need for better hypotheses to refine the existing causal

model.

Qualitative Reasoning with Quantities

Plans are always constructed at the physical level, but the quantity level can aid
planning by supporting reasoning which can go beyond what appears explicitly in
the causal model.

Consider the planning problem of achieving a goal which involves a state that
has never been observed before. Certainly, there can be no causal rule which lists
this state as an effect. However, if this state corresponds to a conjectured value for
a quantity which is greater, or less, than a value in the quantity’s quantity space
previously thought to be a limit, then the planner can look for a causal rule which
shows how the quantity can be made to change in the desired direction. Given the
felicity condition that correspondences between quantity spaces across dependences
are monotonic, such a plan should work as long as the preconditions are maintained
while the quantity is changing. The plan may fail because the quantity achieves a
stable or limit value before reaching the desired value or because the causal model
1s incomplete, but at lecast there is something to try.

This kind of reasoning allows the planner to generate a plan to produce toast
of an unprecedented lighter shade by extrapolating the dependence between the

setting of the thermostat dial and the shade of the resulting toast.

Recall the table which lists knowledge about second-order changes in quantities,

used in hvpothesizing causal relations.




Current state Add + Add — Del + Del —
Constant C (0,] ]) l D X X

Increase I (+,[-]) I E C .
Decrease D (—,!=]) E D X C
Equilibrium = (0,{+,—]) E E D I

For example, a state of equilibrium can be changed to a state of increase by
deleting the negative half of the equilibrium. A state of decrease can be changed
to a stable state by adding a positive contribution and achieving equilibrium or by
deleting the negative contribution.

The felicity condition which prohibits tradcoff situations simplifies this table
considerably. Without this restriction, there would be many ambiguous entries.
For example, adding a negative influence to a positive one could result in positive
tradeoff, negative tradeoff, or equilibrium.

This knowledge can be used by the planner to generate plans to achieve a state
for quantity which is different from its current state. The achieve mode can add
contributions and the prevent mode can delete them.

An example from the sink domain illustrates how reasoning with this knowledge
can facilitate planning. The planner is given the task of making the water rise
above the safety drain. Because this event has never occurred, there is no causal
rule which lists it as an effect. However, the planner does know that the height of
the safety drain is an equilibrium value for the water’s height. It reasons that the
water can be made to rise above the safety drain by keeping the positive half of
the equilibrium state intact and inhibiting the negative half. Unfortunately, even
this reasoning i1s not enough because the planner can find no way to prevent flow
at the safety drain. The problem is ultimately solved by using an analogy, which

1s the subject of the next chapter.

Reasoning with the Sink Model

This section contains an annotated transcript of causal reasoning problems in
the sink domain presented to and solved by the explainer, the predictor, and the
two complementary halves of the planner - the achiever and the preventer. The
ability of these reasoning programs to solve these problems serves to demonstrate
that learning has taken place. When predictions prove wrong or plans do not work,
this is evidence that the causal model is incomplete. In these cases, JACK is call.d

back in to try and improve the model. The same conventions will be followed here

-
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as in the learning session transcript. The statement of the problems to the various
reasoning programs and the sequence of events appear in italic type. The responses

of the explainer, predictor, and planner appear in bold type. Comments appear in

normal type.

This reasoning session takes place immediately after the lcarning session. The

faucet is off, the stopper is out of the drain, and there is no ‘vater in the basin.

Later, the stopper is in the drain.
Predict what will happen.

Nothing will change.

The predictor correctly determines that the sink is in a stable state. No causal

rules have their set of preconditions completely satisfied.

Make the water-column appear.

To achieve:
< WATER-COLUMN-WIDTH AMOUNT > POSITIVE
These must hold:
<FAUCET PART-OF SINK> TRUE
<TAUCET-POSITION RATE> ZERO
<WATLR-COLUMN-WIDTH AMOUNT > ZERO
<WATER-COLUMN-WIDTH RATE> ZERO
These should be set:
<FAUCET-POSITION AMOUNT> OPEN

Stop tne water-column from appearing.

To prevent:

<WATER-COLUMN-WIDTH AMOUNT > POSITIVE
These should be set:

<FAUCET-POSITION AMOUNT > CLOSED

....................
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The same goal is presented to the achiever and the preventer. The achiever finds
a causal rule which hists the desired goal as an cflect. Satisfying all the preconditions
of this rule constitutes a plan for making the water column appecar. The planner
always identifies the actions among the set of conditions that must be satisfied to
carry out a plan.

The preventer finds the same causal rule. Since it is the only rule which lists the
appearance of the water column as an effect, it is the only rule the preventer has

to break. The preventer only has to inhibit a single precondition of a rule to break

it.

Later, the faucet’s position s open.
Predict what will happen.

Next, these wili hold:
<WATER-COLUMN CONNECTED-TO BASIN> TRUE
<WATER-COLUMN CONNECTLED-TO TAP> TRUE
<WATER-COLUMN-WIDTH AMOUNT > POSITIVE
Next, these will hold:
<WATLCR CONNECTED-TO DRAIN> TRUE
<WATER CONNECTED-TO WATER-COLUMN> TRUE
<WATER-COLUMN CONNECTED-TO WATER> TRUE
< WATER IN BASIN> TRUE
<WATER-HEIGHT RATE> PLUS
Later, these wiil hold:
<WATER CONNECTED-TO SATETY > TRUE
<WATLR-HEIGHT AMOUNT > SAFETY
<WATER-HEIGHT RATE> ZERO

Next, nothing wiil chauge,

After the faucat is turned on, the predictor is invoked. It correctly predicts that,
as iong as no further changes occur, the water column will appear and the water

wili rise until 1t reaches the jevel of the safety drain.

Sra

Neztoa water-column enpra=s between the tap and the basin.

ine warer-coiumn s uidin < cteady.

........................................

.......
Ableat s
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Nezxt, water appears tn the basin. 7
The water-column ts connected to the water.
The water 1s connected to the drain.

The water's hetght 1s increasing.

So far, all of the predictor’s prophecies about what would happen when the
faucet was turned on have been fulfilled. The water will not quite reach the safety

drain, Hut only because the faucet will be turned off before it gets there.

Ezplarr. why there 1s water in the basin.

<WATER IN BASIN> TRUE

holds because:

First, these held:
<FAUCET PART-OF SINK> TRUE
<TFAUCLET-POSITION AMOUNT> OPEN
<FAUCET-POSITION RATE> ZERO
<WATER-COLUMN-WIDTH AMOUNT> ZERO
<WATER-COLUMN-WIDTH RATE> ZERO

Then, these held:
<WATER-COLUMN CONNECTED-TO TAP> TRUE
<WATER-COLUMN CONNECTED-TO BASIN> TRUE
<WATER-COLUMN-WIDTH AMOUNT > POSITIVE

The explainer finds the correct causal explanation for the appearance of water
in the basin. It back-chained through the same two rules that the predictor just
forward-chained through. The explainer does not treat actions (such as turning on

the faucet) specially.

Nezt, the faucet’s position is closed.
Nezt, the water-column disappears.

The wa'er’s height s steady.
Thinking at t=24.

The height of the water has recached a stable value.

ER NS S T A GEGIr AL R T L o X, M N R P O -A-'-:_".':'A". -




60

The height of the water is not changing because

there is nothing affecting it.

Because the earlier prediction is not entirely corroborated, JACK returns to try
and explain what went wrong. If necessary, JACK will try to refine the causal
model.

In this case, the preconditions for making the water rise became unsatisfied

before the water recached the safety drain. No rehypothesizing is necessary.

Make the water disappear.

To achieve:
<WATER IN BASIN > FALSE

These must hold:
<DRAIN CONNECTED-TO WATER> TRUE
<DRAIN PART-OF BASIN> TRUE
<WATER CONNECTED-TO WATER-COLUMN > FALSE
<WATER CONNECTED-TO DRAIN> TRUE
<WATLCR CONNECTED-TO SAFETY > FALSE .
<WATER IN BASIN> TRUE
< WATER-HEIGHT AMOUNT > BELOW-SAFETY
<WATER-HEIGHT RATE > ZERO

These should be set:
<DRAIN CONTAIN STOPPER> FALSE
<WATER CONTAIN SOAP> TRUE

The planner generates a plan for making the water go away.

Later, the stopper 1= not in the drain.
Predict what will happen.
Nothing will change.

This prediction is based on an unsatisfied precondition in the rule which describes
how water fiows out of the drain - namely, there is no soap in the water. JACK

will now discover that this is a spurious precondition.

........................................
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The water's height 1s decreasing.
Thinking at t=26.

This precondition is spurious:
At t=11, <SOAP IN WATER > FALSE.
At t=286, <SOAP IN WATER> TRUE.

Water flows out of the drain whether or not there is soap in the water. This

precondition is flushed.

Later, the water disappears.

Finally, nothing ts changing.

This completes the reasoning session in the sink domain which shows how the

explainer, predictor, and planner can all use the causal model which was constructed

during the learning session.

Reasoning with the Toaster Model

This section contains an annotated transcript of solved causal reasoning problems
in the toaster domain. JACK will have three opportunities to refine the causal
model of the toaster when causal reasoning does not corroborate the behavior of
the toaster. Again, the problems and the sequence oi events appear in stalic type.
JACK'’s new hypotheses and the responses of the causal reasoning programs appear

in bold type. Comments appear in normal type.

This reasoning scssion takes place immediately after the initial learning session.

‘he toast has popped up and the coils have cooled down.

Later, the bread 1s not in the slot.
Next, the plug 1s not in the outlet.
Nezt, the new bread ts in the slot.

The bread’s shade 1s white.
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Nezt, the lever’s position 1s down.

The bread 1s not visible.
Predict what will happen.

Next, these will hold:
< COILS-TEMPERATURE RATE > POSITIVE
<BREAD-SHADE RATE > POSITIVE

Later, these will hold:
< COILS-TEMPERATURE AMOUNT> HOT
< COILS-TEMPERATURE RATE> ZERO
<BREAD IS VISIBLE> TRUE
<BREAD-SHADE AMOUNT > DARK
<BREAD-SHADE RATE> ZERO

Next, nothing will change.

Notice that the prediction does not mention the lever popping up. This is because
JACK was unable to generate an hypothesis from the earlier, ambiguous experience

.0 explain this event.

Nezt, nothing is changing.

The prediction is not corroborated. This is evidence that the causal model is
ncomplete. JACK compares the situation in which the causal model for the toaster
vas first constructed against the current situation. Any differences might explain

vhy the model worked then but not now.

- . - - - N -~ - ~ ot e T . . . -
alalatalal At nl A e A S A h SRR, SR AT S S . AR SO P T S SO UL SRS YU A SR S




63

nking at t=14.

is precondition was missing:
it t=1, <PLUG IN OUTLET> TRUE.

\t t=13, <PLUG IN OUTLET > TALSE.

oposing a new quantity for the plug.
sase give a name for this quantity.

current

iserting an influence between
e current of the plug and

e temperature of the coils.

his dependence satisfies

.me device.

he temperature of the coils is increasing because
1e positive of the lever is negative and

e current of the plug is positive.

JACK 1s abie to generate a causal explanation based on a difference which
assumed to roveal a precondition which became unsatisfied. The plug being
/out of the outlet is the only difference JACK finds. Furthermore, the piug and
e coils satisfy the same device heuristic. The temporal proximity requirement
ses not apply when JACK's hypotheses are generated from differences between
vo situations rather than from changes which are causes in a single situation.

ifferences are an zlternate wav of generating candidate causes.
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A Mapping

. Successful Analogy

This section contains an annotated transcript of a planning problem which
‘iginally fails and then succeeds after missing knowledge is provided by means of
1 analogy.

The input to the program is in 1talic type. The program’s responses arc in bold

'pe. Comments appcar in normal type.

fake the water’s height greater than the safety’s height.

The problem is to make the water’s height rise above the safety drain. In its
<perience with the sink, the learning program has never seen the water above the
ifety drain, therefore there is no causal rule in the causal model which lists this
.ate as an effect.

However, the planner does know that the height of the safety drain corresponds
» an equilibrium state for the water’s height. It reasons that the water can be
1ade to rise above the safety drain by changing the equilibrium state to a state of
icrease, i.e.. by breaking the negative half of the equilibrium state.

Hence the planner identifies the causal rule which describes flow at the safety
rain - the negative halfl of the equilibrium state. Here it gets stuck. The planner

in find no way of disabiing any of the preconditions for flow at the safety drain.

‘o achieve:
< WATER-TICIGIT AMOUNT > ABOVL-SAFETY

i not possible.

-
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fapper:
Given a target causal rule and the lists of unmatched states

(preconditions or effects), unmatched objects and matched
objects from the causal rule matcher and the relational
network matcher,
For each unmatched state (precondition or effect) consisted
of a SUBJECT, RELATION, OBJECT and VALUE,
Construct a matching state for the target causal rule
according to the following:
Map the RELATION exactly.
Map the vaLUE exactly.
For the suBJEcT and oBJECT,
If they are relations, identify their
values and map them as states.
If they are objects,
If they appear in the matched

objectslist, map the correspond-

ing ebjects.

If they appear in the un-
matched objects list, generate
another object in the immediate
class which contains the un-
matched object and map the

new object.

There is one nrecondition which does not match when the rule which describes
ow at the normal drain is compared to the ruie which describes flow at the safety
rain. This precondition says that the stopper must be out of the normal drain. The
1apper maps this precondition by preserving the relation 1N and the value raLsE,

ubstituting sartty for praiy which are corresponding objects, and generating a

ewW STOPPER.
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not as powerful as others that have appeared in the artificial intelligence literature
[Winston 80, 82, Brotsky 80l, but they serve to support the use of analogy in this

rescarch. The matchers are described in Appendix V.

How to Map

Once an analogy is sclected, performed, and justified the last thing to do is to
reap the results of the comparison by mapping information from one causal rule
to another. The assumption behind analogy is that relations or constraints which
hold in one concept will hold in another if the two are similar enough.

The mapper uses the results of the causal rule matcher. The preconditions and
effects that did not match are the concern of the mapper.

The following is the procedure for mapping preconditions and effects from one

causal rule to another:
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the water can rise, the other how it can fall.
The rule which the selector finally chooses is the rule which describes flow at the

normal drain. Both rules describe negative influences on the height of the water.

INFLUENCE - INFLOENCE -~

WATER
REAGHT
RATE

A_Selection

Although the procedure for doing selection for analogies presented here is highly
specific to this research, it does expose a principle which is applicable to the problem
in general. The idea i: to find relevant knowledge structures by comparing abstract,
summarized descriptions of those knowledge structures first. Only if the abstract
descriptions match well is the full matcher invoked to do a detailed comparison of
the knowledge structures. Thus selection can be merely another form of matching.
The difference is that selection involves matching at an abstract level. The small
investment made by matching at an abstract level avoids committing the matcher
to doing detailed comparisons until there is some assurance that the effort will bear

some fruit.

How to Match

There are two matchers. One works on the relational network which is the
foundation of our knowledge representation scheme. This matcher concerns itself
with nodes and arcs in the relational network. The other matcher works on causal
rules, which are built from objects and relations in the relational network. The causal —

rule matcher uses the results of the relational network matcher. These matchers are
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The way to avoid doing a full match on preconditions and eflects of causal rules
until it appears justified is to first match a description of the same knowledge which
captures the essence without the details. This is exactly the difference between the
quantity level and the physical level of causal rules. The way to select causal rules
for analogies 1s to compare their quantity levels. Only if they are similar there is
the matcher invoked to compare the more detailed physical levels.

The procedure for selecting causal rules for analogies is:

Selector:
Given a causal rule CAUSAL-RULE-1,

For each causal rule causaL-ruLt-2 in the set of other causal
rules until success,
Compare pairs of dependences, one from CAUSAL-RULE-
1 and one from CAUSAL-RULE-2 with the relational
network matcher.
If all dependences match, succeed.
Call the causal rule matcher on CAUSAL-RULE-2 and cAuSAL-

RULE-1.

The planner stalled on the problem of making the water rise above the safety
drain when it could find no action which prevents water from flowing out of
the safety drain. The causal rule which describes flow at the safety drain is now
identified and the selector tries to find a different but relevant causal rule which
can be used in an analogy.

The quantity level of the causal rule which decpicts flow at the safety drain
describes a single influence between the flow at the safety drain and the height of
the water.

There are five other rules to consider. Two of these rules — the ones which describe
the causal links between turning the faucet on and off and the appearance and
disappearance of the water column - describe discrete changes, functions rather
than influences, and are quickly eliminated. Another rule describes the equilibrium
at the safety drain. This rule has two dependences and cannot match. Yet another
rule describes how water rises when the water column is present. This rule comes
close to matching because it also describes an influence which changes the height

of the water. However, the directions of the influences clash - one describes how

————— -
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e llow to evaluate a match.

What constitutes a good match® Part of this problem is solved implicitly when
a good sclection is made. But sore parts of a concept are more unportant than
others in a given context. This issue is not addressed here beyond requiring that
matches be nearly, but not quite perfect.
¢ How to map.

Once an analogy has been sclected, performed, and justified, the final task is
to reap the results by mapping constraints over from the known domain to the
evolving domain. The mapper presented here uses the results of the matcher to
augment causal rules, moving knowledge in the form of preconditions and/or effects

from the source rule to the target rule.

What to Compare

The first step in doing analogy is determining what concepts to compare. Some
kind of selection process should precede the matching. Otherwise, the only option
is to blindly compare all pairs of known concepts in the hope of finding two that

match well and form a useful analogy.

This is the selection probfem. The sciection problem is really two problems — -

relevance and retrieval. The selector must find another knowledge structure which
is relevant to the reasoning task at hand and the search process should be made
eflicient by making candiaate knowiedge structures easy to access.

In principle, both of these problems can be solved simultaneously by employing
an appropriate mndexing scheme. Unfortunately, the indexing problem seems to be
very complex and there does not appear to be a simple solution. Any knowledge
structure might describe several different items and might support several different
kinds of probler solving tasks. Also, diffcrent knowledge structures might describe
different aspects of the same items.

Winston has noted that i1 less constrained analogy situations, causal relations
should be matched first [Winston 80]. Because analogies in this work always and
only involve causal ruies, some of the problems involved in selection are implicitly
solved. The sclection problem for this rescarch reduces to locating causal rules
which describe similar causal relations ou similar objects. Selection tries to ensure
before the matcher is invoked that the knowledge structures being compared are
indeed similar and that the results of the matching have a strong possibility of

being useful in an analogy.
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An Analog:y_

Issues in Analogy

e What to compare,.

Finding an appropriate domain to compare to the given domain is not an easy
task. A solution is offered which is rather specific to this research and involves
abstracting to the level of quantities and depcndences where causal descriptions
are summarized. This solution exposes a more general heuristic of comparing
summarized descriptions before comparing detailed descriptions. This solution is
only a hedge, and does not propose any memory model or indexing/retrieval scheme.
These appear to be necessary clements of any general theory of selection.

e How to match.

The basic operation of analogy is comparing two domains to determine how well

they match. The partial matcher presented here comes in two parts. There is a

relational matcher and a causal rule matcher.
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CHAPTER &
EXTENDING THE CAUSAL MODEL:
ANALOGY

A pervasive cominon scnse competence is the ability to apply knowledge from
former expericnce to new problems. Analogy involves comparing two domains, one
which is well understood, and one which is the subject of current investigation.
The driving assumption behind analogy is that if two domains are similar enough,

then constraints which hold in one domain will also hold in the other.

Analogy can be used to extend causal models by comparing the causal relations
modelled by causal rules. Successful analogies result in preconditions and/or effects
being mapped over from one causal rule to another. Since causal rules support
explanation, prediction, and planning, analogies enhance the capability to do these

forms of causal reasoning. An example from the sink domain illustrates how this

works.

The planner is given the problem of making the water rise above the safety
drain. It knows that the height of the safety drain is an equilibrium value for the
water’s height and concludes that it must change the equilibrium state to a state of
increase. This means preserving the positive half of the equilibrium and breaking
the negative half. The planner quickly determines that keeping the faucet on will
make the height of the water rise but it searches in vain for a way to stop the water
from flowing out of the safety drain. There is no known action which can inhibit

the operation of the safety drain.

An analogy with the normal drain comes to the rescue. The planner knows that
water will not flow out of the normal drain when the stopper is in. The analogy
leads to the discovery that the normal drain has a stopper and the safety drain
does not. This knowledge is mapped over by adding a new precondition to the
rule for flow at the safety drain - the salety drain must not contain a stopper
either. The original planning problem can now be solved by plugging up the safety
drain. a previously unknown action which is now available to the planner. The use
of analogy augments the causal rule which describes flow out of the safety drain.
The extended causal mode| cnables the planner to solve a problem it would have

otherwise failed on.
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<LEVER PART-OF TOASTER> TRUE

<PLUG PART-OF TOASTER> TRUE

< COILS-TEMPERATURE AMOUNT> COLD

<PLUG-CURRENT AMOUNT > POSITIVE
These must be sct:

<DIAL-SETTING AMOUNT> L

<PLUG IN OUTLET > TRUE

<LEVER-POSITION AMOUNT> DOWN

JACK is able to solve this planning problem by extrapolating the correspondence
due to the function between the setting of the thermostat dial and the darkness of
the toast. Because the function is assumed to be monotonic, a lower setting of the

dial should result in a lighter shade of toast.

This completes the reasoning session in the toaster domain.

Causal reasoning can provide feedback about deficiencies in a causal model at
any stage of its evolution. In the case of the toaster model, several inadequacies
were discovered when predictions proved inaccurate and plans did not work. JACK
was able to generalize the model to explain these new phenomena by applying
generalization rules adapted to causal models and by exploiting constraints formed

from a teleological assumption about the nature of dependences in devices.

There is one more planning problem remaining in the sink domain which the
planner is unable to solve. The planner will not be able to solve this problem
until the causal model of the sink is extended via an analogy. The account of the
planner’s initial failure, the analogy, and the final successful plan appear in the

next chapter.
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DiIAL
SETTING

FUNCTION ¢
POSITION s
AmounT J In,

|
!

The quantity spaces of the quantities are:
Lever Position {(powN -> ur)

Plug Current {ZERO -> POSITIVE)

Coils Temperature (coLp - > HOT)

Dial Setting (M ~> D)

Bread Shade (WiITE ~> MEDIUM - > DARK)

JACK’s model of the thermostat mechanism in the toaster is abstract. JACK
does not know that a coil of metal expands until a circuit is broken and that
darker pieces of toast say in the toaster longer. Although the “guts” of the toaster
remain unknown, JACK’s model of the toaster is useful. For example, consider this

planning problem:

Make the bread’s shade iighter.

To achieve:
<BREAD-SUADE AMOUNT > LIGIL{
These must hold:
< COILS PART-OT SLOT > TRUE
<BREAD PART-OF SLLOT > TRUE
<DIAL PART-OF TOASTER > TRUE
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JACK has seen the lever pop up for two shades of toast. This dependence would
be many-to-one, violating the felicity condition that dependences be monotonic
functions, hence one-to-one. JACK chooses the remaining hypothesis - the lever

pops up when the coils reach their maximum temperature,

PART-OF /‘
PART- OF

PART -OF

QUANTITY -Of
Qe QUANTITY - OF

CoiLs
TEMPERATURE
AMOYNT

FUNCTION + .
4

HOT AT 4, 1% UP AT 4,1%

Nezt, the coils temperature is decreasing.
Later, the cotls are cold.

Finally, nothing 1s changing.

Here is JACK's refined model of the toaster.
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PART- OF

'\Pm:r -oF

QUANTITY-0OF QUANTITY - OF

FUNCTION +

D AT 2 DARK AT 4
M AT 16 MEDIUM AT 1%

At t==4, <BREAD-SHADE AMOUNT > DARK
At t=18, <BREAD-SHADE AMOUNT > MEDIUM

Asserting a function between
the temperature of the coils

and the position of the lever.

This dependence satisfies

same device.

The position of the lever increased because

the temperature of the coils increased.

JACK also finds an explanation for why the lever popped up. Earlier, there
were two competing hypotheses - either the change in the shade of the bread

or the change in the temperature of the coils caused the lever to pop up. Now
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Nezt, the coils’ temperature 1s tncreasing.
Later, the lever’s position is up.

The cotls’ temperature 1s hot.

The coils’ temperature 1s steady.

The bread’s shade 1s medium.

Another prediction has gone awry. Two shades of toast (dark,medium) have
resulted from apparently the same increase in the coils’ temperature. (JACK cannot
perceive differences in the durations of the intervals during which the coils heat
up). The dependence between the coils’ temperature and the darkness of the toast
appears to be one-to-many. Because of the teleological assumption that dependences

in devices are functions, this is evidence that the causal model is incomplete. JACK

compares the two situations to try to explain the difference.

At t=2, <DIAL-SETTING AMOUNT> D

At t==16, <DIAL-SETTING AMOUNT> M

Asserting a function between
the setting of the dial

and the shade of the bread.

This dependence satisfies

same device.

The shade of the bread decreased because
the setting of the dial decreased.
JACK finds a new dependence which displays a satisfactory one-to-one correspon-

dence between values of the thermostat dial and shades of the resulting toast. ‘The

thermostat dial and the bread satisfy the same device heuristic.
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PART - OF
PART-0OF
“
TRUE AT 1

§
F: GUANTITY—OFT ]\ QUANTITY - of

.. PLUG

cRRENT INFLUENCE 4+ ceiLs
Moot AN
. POSI1TIioN AT 1 POSITION AT 2
ZERO AT 13 2ERO AT 14

Nezt, the dial’s setting 1s M.
The plug ts 1. the outlet.

Predict what will happen.

Next, these will hold:
< COILS-TEMPERATURE RATE > POSITIVE
<BREAD-SHADE RATE > POSITIVE
Later, these will hold:
< COILS-TEMPERATURE AMOUNT > HIOT
< COILS-TEMPERATURE RATE > ZERO
<BREAD IS VISIBLE > TRUE
<BREAD-SHADE AMOUNT > DARK
<BREAD-SHADE RATE > ZERO S

Next, nothing will change.
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An analogy now helps to solve this planning problem. The first step is finding
another causal rule to use in the analogyv. Selection 1s done by comparing the
summarized descriptions of causality appearing at the quantity level of causal rules.
The assumption is that if rules match well at the abstract quantity level, there is

a good chance they will maich well at the detailed physical level and be useful in

an analogy.
The selector finds that the quantity level of the causal rule describing flow at

the normal drain matches best with the quantity level of the causal rule describing

flow at the safety drain.

<DRAIN-FLOW INTLUENCE WATER-IIEIGHT > NEGATIVE

< SAFETY-FLOW INFLUENCE WATLER-HEICIIT > NEGATIVE
Matched Objects: (DRAIN-FLOW SATFETY-FLOW), WATER-HEIGHT

The matcher compares DRAIN.-FLOW to SAFETY-FLOW by exploring the networks
surrounding these two nodes. This matching reveals the following matched and

unmatched preconditions.

Matched preconditions:

<DRAIN CONNECTED-TO WATER> TRUE
<SAFETY CONNECTED-TO WATER > TRUE

<DRAIN PART-OF BASIN> TRUE
<SATETY PART-OF BASIN> TRUE

<WATLER CONECTED-TO WATER-COLUMN > I'ALSE
<WATER CONECTED-TO WATER-COLUMN > FALSE

<WATER CONNETITED-TO DRAIN> TRUE
<WATER CONNECTED-TO SAFETY > TRUE

<WATER IN BASIN > TRUE
<WATER IN BASIN > TRUE
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Unmatched Preconditions:
<DRAIN CONTAIN STOPPER> I'ALSE

The mapper maps the relation involving the stopper over to the causal rule

describing flow at the safety drain.

Proposing a stopper as in

<DRAIN CONTAIN STOPPER> FALSE

F With this new information, the planner now can successfully gencrate a plan to
make the water rise above the safety drain. The preconditions for the rule which
shows how water can be made to rise must be satisfied, and some precondition for

the rule which shows how water flows out the safety drain must be inhibited.

To achieve:
<WATLER-IIEIGHT AMOUNT > ABOVE-SAFETY
These must hold: .
<WATER-COLUMN CONNECTED-TO TAP> TRUE
<WATER-COLUMN CONNECTED-TO BASIN> TRUE
<WATER-COLUMN-WIDTH AMOUNT > POSITIVE
These should be set:

<SAFETY CONTAIN STOPPER > TRUE
r;.j Analogies extend the causal model by augmenting causal rules. Problems in
& explanation, prediction, and planning which fail because the causal model is
® incomplete can become solvable atter it is extended through analogies.
Although this is the only place where analogies are employed in this work, they
:_ could be applied in the learning process itself. Learning is motivated by the need to
explain changes in the visual environment, and results in the construction of causal
° rules. Corceivably, causal cxplané’cions for changes could be based on analogies
with known causal rules. This kind of analogy would be more difficult because it
would involve comparing a causal rule to an unstructured situation, rather than
comparing two known causal rules. This problem might be the subject of future
°® rescarch.
.
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CHAPTLER 6
LOOKING BACK, AROUND, AND AIHIEAD

This Work

This section reviews the accomplishments of this thesis in terms of the issues

addressed, the solutions offered, and the principles bchind those solutions.

This thesis presents a learning system which hypothesizes and refines causal
models of simple physical systems by constructing causal explanations for observed
changes in these systems. The problem of formulating causal hypotheses s made

tractable by a set of constraints on causal relations which are embedded in the
learning system. This is the main result of this thesis.

These constraints are:

e Temporal and physical proximity. -

Four heuristics capture the common sense notion that causally connected events
are contiguous in space and time. Temporal proximity is tested by the temporal
edjacency or the simultaneity heuristic. Physical proximity is tested by the physical

connectedness heuristic or the weaker same device heuristic.

e A finite sct of abstract causal explanations for changes in terms of quantities and
dependences.

Shifting the representation for changes and causality to the level of quantities
and dependences exposes various constraints that reduce the set of viable causal
explanations. The constraints exposed by this perspicuous representation include:
» Types of changes in dependent quantities are linked to types of changes in

independent quantities and types of dependences.

e The signs or directions of change of quantities and dependences have to be

consistent. .

o There are a finite number of explanations for second-order changes in quantities.

The set of second-order causal explanations is simplified considerably by a felicity

condition which excludes tradeofl situations.
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These constraints collectively define a kind of syntax of causal explanation which

the learning system exploits to hypothesize causal relations.

The causal rules which make up JACK'’s causal modecls are constructed at two
levels ~ at the quantity level in terms of independent quantities, dependences, and
dependent quantities, and at the physical level in terms of preconditions and effects.

Preconditions embody the notion of enabling conditions for causal rclations.
They also permit causal explanations to be hypothesized in terms of the last of a

set of preconditions becoming satisfied.

JACK is able to refine causal models by generalizing over further experience.

The generalization rules JACK uses include:

e Given two positive examples of a causal relation, any unsatisfied preconditions
or unrealized effects can be dropped. _
This is a variant of the well-known drop-condition specialization rule [Winston

75).

e Given a positive and negatii/e example of a causal relation, any differences are
likely to include a missing precondition. .

This induction rule harks back to the time-tested near-miss idea [Winston 75).

The causal models which JACK constructs support causal reasoning (explanation,
prediction, and planning) which in turn provides feedback about deficiencies in the
causal models. Inaccurate predictions.and failed plans reveal situations where the

above generalization rules can be fruitfully employed.

A teleological assumption that dependences in devices are functions, and a
felicity condition that requires these functions to be monotonic together constrain
dependences to be one-to-one. Thus one-to-many or many-to-one behavior also lead

JACK to try to refine the existing model.

Analogies are another way to improve an existing causal model. Causal rules
are compared first at the summarized quantity level, then at the physical level.

Differences between otherwise well-matched causal rules are mapped over.

Other Work

This section describes the rclations between this research and other previous and

current research cflorts.
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The representations for quantities and dependences are borrowed directly from
Ken Forbus' seminal Qualitative Process Theory [Forbus 84]. Also, the causal rules
which JACK constructs are remintscent of Forbus’ process descriptions.

The abstract causal explanations employed by the learning system were inspired
originally by Chuck Ricger’s work on representing causality [Rieger 76].

Pat Hayes’ object-based histories [Hayes 79} implicitly include the notion of
temporal and physical proximity defining boundaries on causal interactions.

The physical proximity principle is similar to Randy Davis’ locality principle
[Davis 83] - used to generate candidate faults in the troubleshooting of electronic
circuits. Modelling and troubleshooting employ some of the same kinds of reasoning.

The inductive inference rules used to generalize causal models over experience are
variants of rules introduced in Patrick Winston’s landmark thesis [Winston 75]. In
addition, Ryszard Michalski has treated induction comprehensively [Michalski 83
and Tom Mitchell has provided valuable insights on the induction of conjunctive
concepts [Mitchell 82].

Johan de Kleer pioneered the use of causal and teleological reasoning in the

domain of expert analysis of circuits [de Kleer 79]. This contrasts with the more

naive modelling of physical systems in this work.

The rule-based causal reasoning programs which perform explanation, prediction,
and planning, have roots which go all the way back to STRIPS [Fikes and Nilsson
71]. ‘

The use of analogy to construct and refine concepts has been investigated
fruitfully in {Winston 80] and {Gentner 83]. -

Future Work

This section discusses limitations of the current learning system and where
appropriate, identifies solutions from other research efforts, as well as thoughts on

extensions to this work.

All learning systems are limited ultimately by any fixed representation language.
JACK is limited by the representation language for describing physical systems
and their changes and the representation language used to describe the various
constraints on causal hypotheses.
The temporal and physical proximity heuristics capture a useful common sense
notion of causality but exclude at least two classes of causal relations - those that -

involve “action at a distance”, and those that involve “delayed reactions”.
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Part of the problem is the limited ability to construct hierarchical descriptions.
The rarT-OF relation supports only crude hierarchical structural descriptions. More
importantly, there is no ability to “open up” a physical system by expanding
to a description at a lower level. Similarly, the time representation does not
support nested intervals which could partition time at several levels of resolution.
If both structure and time could be represented hierarchically, then “delayed
rcactions” might be explained by constructing a causal chain at a lower level
of resclution. [Davis et al 82] offers ideas about representations for hierarchical
structural descriptions. Allen has a hierarchical time representation [Allen 81).

JACK does successfully model an instance of action at a distance when he
proposes a dependcnce between the temperature of the coils and the darkness of the
toast. However, this is somewhat fortuitous. JACK uses the same device heuristic
in this situation, effectively proposing a physical connection between the coils and
the toast. Thus JACK gets the right answer for the wrong reason. JACK does not
model the heat exchange as an instance of action at a distance because there is no
available representation for this class of causal relations.

If there was an abstract, explicit representation of what a causal relation is,
perhaps it would be possible to derive context-dependent heuristics for identifying

causality — heuristics like the ones used in this thesis, but also more relaxed versions

of temporal and physical proximity which would not exclude instances of action
at a distance and delayed reactions. These heuristics should be ordered so that
levels of resolution and boundaries denoting where the closed system ends would be
systematically expanded until a viable hypothesis was constructed. Such a learning
system could dynamically augment the language used to represent constraints on
causal relations. This capability would address the fixed representation bottleneck
problem in learning systems. These conjectures identify a difficult, but potentially

fruitful area in which to expand this thesis.

Another limitation of the current representation language is the simplified set of
causal explanation abstractions for understanding states of physical systems. The
most complex abstraction available is the equilibrium state. An extended version
of the learning system might model positive and negative tradeoff situations and
make use of more complex abstractions built up from many dependences, such as

feedback loops.

The role of analogy both in extending and hypothesizing causal models is another

area for possible exploration. Analogies could be used to generate hypotheses which
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could then be tested by some version of the temporal and physical proximity
constraint. Analogies also might be useful in “opening up” a system, i.e., in
hypothesizing invisible components and connections to construct causal explanations.
Analogy is a huge problem which subsumes the issues of indexing, partial matching,

and transferring knowledge - each a difficult problem in itself.

JACK’s hypotheses arc justified by satisfying the temporal and physical proximity
requirements, by matching one of the abstract causal explanations, and by not
violating teleological assumptions about the nature of dependences in devices.
JACK can distinguish competing hypotheses only by ordering them according to
the version of physical proximity they satisfy (physical connectedness or same
device), ar.d by how much must be proposed to complete one of the abstract causal
explanations.

Because JACK's ability to order competing hypotheses is limited, and because
models are always generalized over a finite set of expericnces, JACK's theories are
always sensitive to the local maximum problem. In other words, a causal model
may adeguately explain some finite set of experiences, yet still have latent, possibly
gross deficiencies.

JACK already uses inductive inference rules for refining causal models and in the
worst case, would need a deperdency-directed backtracking capability for retracting
hypotheses. A better way to address the local maximum problem is to give JACK
the ability to gather more context-dependent justification for hypotheses to better
distinguish them immediately, rather than waiting for more revealing experience.
JACK needs the capability to design experiments to distinguish and test hypotheses.

The methodology of science obviously provides some abstract guidelines. The
ability to design experiments relies on such skills as recognizing parameters and
finding ways to isolate them. Being able to change levels of resolution and expand
boundaries on the closed system can also aid in the design of experiments. In

addition, analogies can suggest experiments. The issue of how to design experiments

identifies a most intriguing direction in which to extend this thesis.
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APPENDIX 1
THE SINK SCENARIO

This appendix contains the sequence of events which makes up the learning

session in the sink domain.

Already, the tap, the faucet, and the basin are part of the sink.
The drain, the sajety, and the stopper are part of the basin.

The stopper s in the drain.
The faucet’s position s closed,
The light-switch’s setting is off.
The window’s height ts down.

Initially, the faucet’s position 1s open.

The light-switch’s setting ts on.

Nezt, a water-column appears between the tap and the basin.
The water-column’s width is steady.

Nezt, water appears in the basin.

The water-column 1s connected to the water.

The water is connected to the drain.

The water’s height is increasing.

Later, the water ts connected to the safety.
The water’s height 1s equal to the safety’s height.
The water’s height is steady.

Later, the faucet’s position is closed.

Nezt, the water-coiumn disappears.

The water’s height 1s decreasing.

Nezi, the water s not connected to the safety.
The water’s height 1s steady.

Later, soap is in the water.

Lcter, the stopper 1s not in the drain.
The window’s height ts up.

The water’s height 1s decreasing.

Later, the water disappears.

Finally, nothing 1s changing.

Caga et e rw.r-wfv_'*rrvvv--—lt




e A A T

Later, the stopper is in the drain.

Later, the faucet’s position is open.

Nezt, a water-column appears between the tap and the basin.

The water-coiumn’s width is steady.

Nezt, water appears tn the basin.

The water-column 1s connected to the water.
The water 1s connected to the drain.

The water’s height is tncreasing.

Nezt, the faucet’s position is closed.
Nezt, the water-column disappears.
The water’s height is steady.

Later, the stopper is not tn the drain.
The water’s height is decreasing.

Later, the water disappears.

Finally, nothing is changing.

89




APPENDIX @I

90

THE CAUSAL MODEL OFF THE SINK

This appendix contains the six causal rules which make up the causal model of
> sink. Refinements and extensions to the causal model were made at various
res. The results of these changes are noted in the appropriate places.

This causal rule describes how turning the faucet on makes the water column

pear.

JSAL-RULE-1

2 OBJECTS ARE
THE FAUCET
THE WATER-COLUMN

Z QUANTITIES ARE
FHE POSITION OF THE FAUCET
FHE WIDTH OF THE WATER-COLUMN

> DEPENDENCES ARE
<POSITION FUNCTION WIDTH> POSITIVE

2 PHYSICAL-PRECONDITIONS ARE
T! <FAJCET PART-OF SINK> TRUE

T QUANTITY-PRECONDITIONS ARE
T} <POSITION AMOUNT> OPEN
T: <POSITION RATE> ZERO

T <WIDTH AMOUNT> ZERO

T} <WIDTH RATE> ZERO

» PHYSICAL-EFFECTS ARE

T~1" <WATER-COLUMN CONNLECTED-TO BASIN> TRUE
T~1; <WATER-COLUMN CONNECTED-TO TAP> TRUE

T QUANTITY-EFFLECTS ARE
T+1} <WIDTH AMOUNT> POSITIVE




8

This causal rule describes how the water rises eventually to the level of the safety
ain as long as the water column is present (and by the previous rule, the faucet

on).

WUSAL-RULE-2

IE OBJECTS ARE
THE WATER-COLUMN
THE WATER

1IE QUANTITIIS ARE
THE WIDTH OF THE WATER-COLUMN
THE HEIGHT OF THE WATER

IE DEPENDENCES ARE
<WIDTH INFLUENCE HEIGHT> POSITIVE

1L PHYSICAL-PRECONDITIONS ARE
{T) <WATER-COLUMN CONNECTED-TO TAP> TRUE
(T} < WATER-COLUMN CONNECTED-TO BASIN> TRUE

IL QUANTITY-PRECONDITIONS ARE
[T) <WIDTH AMOUNT> POSITIVE
'T) <WIDTH RATE> ZERO

{T) <HEIGHT AMOUNT> ZERO

(T <HEIGHT RATE> ZERO

HE PHYSICAL-EFFECTS ARE

(T+1] <WATER CONNECTED-TO DRAIN> TRUE

(T+1} <WATER CONNECTED-TO WATER-COLUMN> TRUE
(T+1) <WATER-COLUMN CONNECTED-TO WATER> TRUE
{T+1} <WATER IN BASIN> TRUE

(T+3) <WATER CONNECTED-TO SAFETY> TRUE

HE QUANTITY-CFFECTS ARE
{T+1) <HEIGHT RATE> POSITIVE

T+3) <HEIGHT RATLE> ZERO
(T=3, <HEIGUT AMQUNT> SAFETY

D IR B U U P P I - Lt . - [
bt e S PR SR P A S S AL NP AP S D | o Y AP, W) N T




. RAD-A138 165

HYPOTHESIZING AND REFINING CAUSAL MODELS(U) 2/2
ﬂSSﬂCHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL

INTELLIG J DOYLE DEC 84 AI-MEMO- 811

UNCLASSIFIED N@@@14- 80 C-O




\““_l_—:EO e M2

w22

11 fu 22
et <E

2 s e

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CHART

..........................

......................................................................................
..................................
................................



W T vy e g

92

This causal rule describes the equilibrium state that occurs when the faucet is
on and the water has reached the level of the safety drain. Notice that there are
two dependences of opposite sign. Also notice that there are no effects which are
continuous changes. The equilibriumn state is stable.

e V‘¢-‘1'.

CAUSAL-RULE-3

THE OBJECTS ARE
THE SAFETY
THE WATER
THLE WATER-COLUMN

THE QUANTITIES ARE
THE FLOW OF THE SAFETY
THE HEIGHT OF THE WATER
t THE WIDTH OF THE WATER-COLUMN

THE DEPENDENCES ARE
< FLOW INFLUENCE HEIGHT> NEGATIVE
{ <WIDTH INFLUENCE HEIGHT> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE

(T} <SAFETY CONNECTED-TO WATER> TRUE
: (T) <SAFETY PART-OF BASIN> TRUE
3 (T) <WATER CONNECTED-TO WATER-COLUMN> TRUE
- (T) < WATER CONNECTED-TO DRAIN> TRUE
(T) <WATER CONNLCTED-TO SAFETY> TRUE
(T) <WATER IN BASIN> TRUE
(T} <WATER-COLUMN CONNECTED-TO TAP> TRUE
(T) < WATER-COLUMN CONNECTED-TO BASIN> TRUE
(T) <WATER-COLUMN CONNECTED-TC WATER> TRUE

THE QUANTITY-PRECONDITIONS ARE
{T) <FLOW AMOUNT> POSITIVE
(T) <FLOW RATE> ZERO
(T) <WIDTH AMOUNT> POSITIVE
(T) <WIDTH RATE> ZERO

THE PHYSICAL-EFFECTS ARE

THE QUANTITY-EFFECTS ARE
IT) <HEIGHT AMOUNT> SAFETY
{T) <HEIGHT RATE. ZLERO
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This causal rule describes how turning the faucet off makes the water column
disappear. The same dcpendence appears here as in the rule which describes how
turning the faucet on makes the water appear.

CAUSAL-RULE-4

I THE OBJECTS ARE
THE FAUCET
THE WATER-COLUMN

THE QUANTITIES ARE
THE POSITION OF THE FAUCET
r THE WIDTH OF TIHE WATER-COLUMN

THE DEPENDENCES ARE
<POSITION FUNCTION WIDTH> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <FAUCET PART-OF SINK> TRUE
(T) < WATER-COLUMN CONNECTED-TO TAP> TRUE
) (T) < WATER-COLUMN CONNECTED-TO DASIN> TRUE
{T) < WATER-COLUMN CONNECTED-TO WATER> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <POSITION AMOUNT> CLOSED
(T) <POSITION RATE> ZERO
: {T} <WIDTH AMOUNT> POSITIVE
| (T) <WIDTH RATE> ZERO

my .

THE PHYSICAL-EFFECTS ARE
(T+1) <WATER-COLUMN CONNECTED-TO WATER> FALSE
(T+1) <WATER-COLUMN CONNECTED-TO BASIN> FALSE
(T+1) <WATER-COLUMN CONNECTED-TO TAP> FALSE

] THE QUANTITY-EFFECTS ARE
(T+1) <WIDTH AMOUNT> ZERO
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This causal rule describes how water flows out of the safety drain until it reaches
a stable height just below the safety drain. Notice that one of the preconditions
in this rule is that the safety drain not contain a stopper. This precondition was
not part of the original rule. It is the result of comparing the normal drain to the
safety drain in an analogy.

CAUSAL-RULE-5

THE OBJECTS ARE
THE SAFETY
THE WATER

THE QUANTITIES ARE
THE FLOW OF THE SAFETY
THE 1lIEIGHT OF THE WATER

THE DEPENDENCES ARE
<FLOW INFLUENCE HEIGHT> NEGATIVE

THE PIIYSICAL-PRECONDITIONS ARE
(T) <SAFETY CONNECTED-TO WATER> TRUE
(T) <SAFETY PART-OF BASIN> TRUE
(T} <SAFETY CONTAIN STOPPER> FALSE
(T) < WATER CONNECTED-TO WATER-COLUMN> FALSE
{T) <WATER CONNECTED-TO DRAIN> TRUE
(T) < WATER CONNECTED-TO SAFETY> TRUE
(T) < WATER IN BASIN> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <FLOW AMOUNT> POSITIVE
(T) <FLOW RATE> ZERO
{T) <HEIGHT AMOUNT> SAFETY

THE PHYSICAL-EFFECTS ARE
(T+1) <SAFETY CONNECTED-TO WATER> FALSE
{(T+1) <WATER CONNECTED-TO SAFETY> FALSE

THE QUANTITY-EFFECTS ARE
(T} <HEIGHT RATE> NEGATIVE

{T~1) <HEIGHT AMOUNT> BELOW-SAFETY
(T+1) <HEIGHT RATE> ZERO
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This causal ruie describes how water flows out of the normal drain. A precondition
which stated that there must be soap in the water was dropped.

CAUSAL-NULE-8

THE OBJECTS ARE
THE DRAIN
THE WATER

THE QUANTITIES ARE
THE FLOW OF THE DRAIN
THE HEIGHT OF THE WATER

THE DEPENDENCES ARE
<FLOW INFLUENCE HEIGHT> NEGATIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <DRAIN CONNLECTED-TO WATER> TRUE
(T) <DRAIN CONTAIN STOPPER> FALSE
(T) <DRAIN PART-OF BASIN> TRUE
(T) <WATER CONNECTED-TO WATER-COLUMN> FALSE
(T) <WATER CONNECTED-TO DRAIN> TRUE
(T) <WATER CONNECTED-TO SAFETY> FALSE
(T) <WATER IN BASIN> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <HEIGHT AMOUNT> BELOW-SAFETY
(T) <FLOW AMOUNT> POSITIVE
(T} <FLOW RATE> ZERO

THE PHYSICAL-EFFECTS ARE
(T+2) <DRAIN CONNECTED-TO WATER> FALSE
{T+2) <WATER CONNECTED-TO DRAIN> FALSE
(T+2) <WATER IN BASIN> FALSE

THE QUANTITY-EFFECTS ARE
(T) <HEIGHT RATE> NEGATIVE

{T+2} <HEIGHT AMOUNT> ZERO
(T-2) <HEIGHT RATE> ZERO
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APPENDIX I
THE TOASTER SCENARIO

This appendix contains the sequence of events which makes up the learning
session in the toaster domain.

Already, the lever, the plug, the dial, and the slot are part of the toaster.
The cotils are part of the slot.

The coils’ temperature 1s cold.
The lever’s position is up.

The dial’s setting is D.

The plug ts in the outlet.

The bread 1s in the slot.

The bread’s shade 1s white.
The faucet’s position 1s closed.
The light-switch’s setting s on.
The window’s hetight s up.

Initially, the lever’s position is down.
The faucet’s position ts open.

The bread 1s not vistble.

Nezt, the coils’ temperature 1s tncreasing.

Later, the lever’s position ts up.
The cotls’ temperature s hot.
The coils’ temperature is steady.
The bread is visible.

The bread’s shade s dark.

Nezt, the coils’ temperature 15 decreasing.
The windouw’s height is down.

Later, the coils’ temperature is cold.

Finally, nothing is changing.

...............
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Later, the bread is not tn the slot.
Nezt, the plug ts not in the outlet.
Nezt, the ncw bread 1s 1n the slot.
The bread’s shade 1s white.

Nezt, the lever’s position is down.
The bread 1s not visible.
Nezt, nothing is changing.

Nezt, the dial’s setting 1s M.
The plug s in the outlet.
Nezt, the coils’ temperature is increasing.

Later, the lever’s position is up.
The coils’ temperature is hot.
The coils’ temperature is steady.
The bread is visible.

The bread’s shade is medium.

Nezt, the cotls’ temperature is decreasing.
Later, the coils are cold.

Finally, nothing is changing.
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APPENDIX 1V
THE CAUSAL MODEL OF THE TOASTER

This appendix contains the three causal rules which make up the causal model
of the toaster. Gencralizations were made at various times and are noted in the

appropriate places.

This causal rule describes how the temperature of the coils increases when the
lever is pushed down and decreases when the lever pops up. JACK learned that
the plug has to be in the outlet also.

CAUSAL-RULE-1

THE OBJECTS ARE
THE LEVER
THE COILS
THE PLUG

THE QUANTITIES ARE
THE POSITION OF THE LEVER
THE TEMPERATURE OF THE COILS
THE CURRENT OF THE PLUG

THE DEPENDENCES ARE
<POSITION INFLUENCE TEMPERATURE> NEGATIVE
<CURRENT INFLUENCL TEMPERATURE> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T} <LEVER PART-OF TOASTER> TRUE
{T) <COILS PART-OF SLOT> TRUE
(T} <PLUG PART-OF TOASTER> TRUE
(T) <PLUG IN OUTLET> TRUE

THE QUANTITY-PRECONDITIONS ARE
{T) <POSITION AMOUNT> (DOWN,UP)
(T) <POSITION RATE> ZERO
(T) <TEMPERATURE AMOUNT> (COLD,HOT)
{T) <TEMPLRATURE RATE> ZERO
{T) <CURRENT AMOUNT> POSITIVE
(T) <CURRENT RATE> ZERO

THE PHYSICAL-EFFECTS ARE

THE QUANTITY-EFFECTS ARE
(T+1) <TEMPERATURE RATE> (POSITIVE,NEGATIVE)

(T+3) <TEMPERATURE AMOUNT> (HOT,COLD)
(T+3) <TEMPLERATURE RATE> ZERO
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This causal rule describes how the heating coils turn bread into toast. JACK
learned that the thermostat dial controls the darkness of the toast, when the initial
model could not explain why one picce of toast came out darker than another.

CAUSAL-RULE-2

TiE OBJECTS ARE
THE COILS
THE BREAD
THE DIAL

THE QUANTITIES ARE
THE TEMPERATURE OF THE COILS
THE SI:ADE OF THE BREAD
TIIE SETTING OF THE DIAL

THE DEPENDENCES ARE
<TEMPERATURE FUNCTION SHADE> POSITIVE
<SETTING FUNCTION SUHADE> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <COILS PART-OF SLOT> TRUE
(T) <BREAD PART-OF SLOT> TRUE
(T} <DIAL PART-OF TOASTER> TRUE

THE QUANTITY-PRECONDITIONS ARE
{T) < TEMPERATURE RATE> POSITIVE
(T) <SLTTING AMOUNT> (L,M,D)

(T) <SETTING RATE> ZERO

THE PHYSICAL-EFFECTS ARE

THL QUANTITY-EFFECTS ARE
{T) <SHADE RATE> POSITIVE

{T+2) <TEMPERATURE AMOUNT> HOT

{T+2) <TEMPERATURE RATE> ZERO

{T~2) <SHADE AMOUNT> (LIGHT,MEDIUM,DARK)
(T+2) <SHADE RATE> ZERO
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This causal rule describes how the lever pops up when the coils reach their
maximum temperature. This is the closest JACK comes to modelling the thermostat

mechanism.

CAUSAL-RULE-3

THF OBJECTS ARE
THE COILS
THE LEVER

THE QUANTITIES ARE
THE TEMPERATURE OF TIIE COILS
THL POSITION OF TIHE LEVER

THE DEPENDENCES ARE
<TEMPERATURE FUNCTION POSITION> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <COILS PART-OF SLOT> TRUE
(T) <LEVER PART-OF TOASTER> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) < TEMPERATURE AMOUNT> HOT
(T) <TEMPERATURE RATE> ZERO

THE PHYSICAL-EFFECTS ARE

THE QUANTITY-EFFECTS ARE
(T) <POSITION AMOUNT> UP
(T) <POSITION RATE> ZERO
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APPENDIX V
THE MATCHERS

This appendix describes the matchers used in gencralizing and forming analogies.

The Relational Network Matcher

The relational network matcher is given two concepts to compare. These concepts
correspond to two entities in the relational network, and the matcher compares the
concepts by exploring the subnetworks which the two entities are embedded in.

Relations define the template which must be common to both concepts, hence
they provide the major source of constraint for the matcher. The intent of matching
is to ind what rclational structures are shared by the two concepts. Shared relations
in turn indicate which objects correspond to each other across the two concepts.
Relations are matched first and objects are matched only by virtue of participating
in the same relations.

The primitive structure in the relational network is the relation:
< SUBJECT RELATION OBJECT >

There are two dimensions of complexity in the relational network. Each susiecT
and OBJECT can participate in an arbitrary number of relations and relations can
be nested, i.e., any sublEcT or oBJECT can itself be a full <sSUBJECT RELATION
OBJECT > structure. The matching is done in a bottom-up fashion, starting at two
locations in the relational network and proceeding outwards. Primitive relations

are encountered in pairs along the way and they must match in the following way:
e the arcs (RELATIONS) must match exactly and
o the nodes (atomic suBjecTs and OBJECTS) must either match exactly or be shown

to be in the same class (their A-kiND-OF hierarchies join.

Matching continues through the network, exploring the subnetworks surrounding
the original two locations, until no further matches can be made, or the network is

exhausted.

The following is the procedure for doing matching on the relational network:
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Relationa! Network Matcher:

Given two locations in the relational network,
If they are relations, call the arc (relation) matcher.
If they are objects, call the node (object) matcher.

If they are not of the same type, fail.

Node Matcher:
Given two nodes in the relational network,

If the nodes are the same node, succeed.

If the nodes are in the same class (their A-KIND-OF hierarchies
join), succeed.

If no match, fail.

Othe:rwise, call the relation pairer on the two nodes.

Arc Matcher:
Given two zrcs in the relational network,

If the arcs are not the same arc, fail and stop here.

Call the network matcher on the entities at the source

ends of the arcs - the suBJcCTs.

If the stniccTs do not match, fail and stop here.

Call the network matcher on the entities at the target
ends of the arcs - the oBskCTS.

If the osiEcTs do not match, fail and stop here.
Otherwise, call the value matcher on the two arcs.

Call the relation pairer on the two arcs.
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Relation Pairer:
Given two entities stoJecT: and susJicT? in the rclational

network

(corresponding to nodes or arcs),

For cach arc RLLATION! adjoining SUBJECTH,

Identify onsecTi at the opposite end of RELATIONT.
Collect all arcs RELATIONS2 adjoining SUBJECT2.
Collect all owssectsz at the opposite ends of the
RELATIONS2.

If oBJECT! is in OBJECTS?, succeed.

Otherwise for each oBJECT2 in oBJECTS? until success,
Call the nectwork matcher on opiecTi and
OBJECT2.

If no match, put RELATIONI on the unmatched relations

list and put OBJECT! on either the unmatched objects

or unmatched relations list depending on whether

OBJECTI is a node or an arc.

103

The final step in matching relations is comparing values. Since relations have

histories which describe how their values change, the times at which the comparison

is to be made must be specified as well.

The following procedure compares values:

Value Matcher:
Given two matched relations RELN1 and RELN2, and two times

T1 and T2,

If the value of RELN1 at T1 1s the same as the value of RELN2

at T2, put the relations and values on the matched relations

list, and the corresponding objects on the matched objects

iist, succeed.

Otherwise, put the relations and values on the unmatched

reiations list, and the corresponding objects on the

urnmatched objects list, fail.
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The output of the relational network matcher is a set of lists showing what
relations matched, what objects matched, and just as importantly, what relations
and objects did not match. The unmatciied relations and objects are mapped over

in analogies and reveal differences which can form the basis of new hypotheses

when generalizing.

The Causal Rule Matcher

When the causal rule matcher is used to support rehypothesizing because the

causal model failed, the question of what to compare is easy to answer. The causal

rule which failed is compared to itself at different times.

When the causal rule matcher is used in an analogy, the results of selection -
matched dependences from difference causal rules — are used to answer the question
of what to compare. The results of selection tell where to “anchor” the comparison
of causal rules.

The causal rule matcher uses the results of the relational network matcher. The

following is the procedure for comparing causal rules:

Causal Rule Matcher:

Given two matched dependences from two causal rules,
Compare, using the rclational network matcher, cor-
responding independent quantities, one from each depen-
dence, at the times the causes occurred in the respective
causal rules.

Compare, using the relational network matcher, cor-
responding dependent quantities, one from each depen-
dence, at the times the effects occurred in the respective

causal rules.

Isolate preconditions and effects from the list of matched

and unmatched relations.

Since quantities and linked to physical objects by the QuanTITY.OF relation, the

preconditions and cffects, which are relations on these physical objects, also will be

compared.
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