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ABSTRACT

Algorithms are presented which find one or all of the critical points of a
smooth function in a rectangular region, or the critical points at which the
function has maximum or minimum value. If no critical points of the function
exist in the given region, then the algorithm verifies this fact. The
computation is self-validating, in that the existence or nonexistence of
critical points is established conclusively, and guaranteed upper and lower
bounds are computed for all quantities of interest, including the values of the
gradient vector and Hessian matrix of the function. The algorithm makes use of
an existing implementation of automatic differentiation and interval
computation. Numerical examples are given.
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SIGNIFICANCE AND EXPLANATION

/
A standard problem in scientific computation is the optimization of a

smooth (at least twice differentiable) function, possibly subject to smooth
constraints. Here, optimization means finding the maximum or minimum value of
the function in some region, or perhaps its stationary points. The algorithm
presented in this paper solves this problem for regions which are rectangular in
form. The method used is a version of interval iteration which finds one or all
of the critical points of the function in the given region (the point or points
at which its gradient vector vanishes), or just the critical points at which the
function has its maximum or minimum values. The required values of the gradient
vector and Hessian matrix of the function are obtained by automatic
differentiation, which does not involve symbolic differentiation or numerical
approximation of the derivatives of the function b.ing investigated. Unlike
algorithms which sample function values only at a discrete set of points, the
ones given here use interval computation to furnish guaranteed bounds for all
quantities of interest over the required subregions of the initial region. ;The
results given by these optimization algorithms are thus self-validating. The
algorithms presented here have been programmed using standard implementations of
automatic differentiation and interval computation. Numerical examples are
given to illustrate the effectiveness of this approach to the type of
optimization problem considered.

The responsibility for the wording and views expressed in this descriptive
sumary lies with MRC, and not with the author of this report.
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GLOBAL OPTIMIZATION USING AUTOMATIC DIFFERENTIATION

AND INTERVAL ITERATION

L. B. Rail

1. Preliminaries

This paper presents an algorithm for global, unconstrained optimization of a smooth (at

least twice differentiable) function f : R ' -* R, that is,

(1.1) f~r) = f(xI, 2 ,. .. ,x.).

As is well-understood, this also includes the case of optimization of a function : R"' -* R

subject to n - m smooth constraints

(1.2) gi( XX2,..,Xm) = 0, i = 1,2,...,n - ,

by formation of the function

- m
(1.3) f W = 0X(i,..,m) + Z r~ * Zmi.. s)

i= 1

where the new ariables xm+ 1, x, are simply the Lagrange multipliers for the problem.

No special properties of f, such as convexity, are assumed.

The method to be used is a critical point method, which will find one or all solutions

of the system of equations

(1.4) Vf(x) =0

in a rectangular region X C Rn, where Vf(x) denotes the gradient vector

___~x df(x) df(x)) ,

(1.5) Vf(x) = (O fX) af daf " ,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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or just the critical points at which the value of f is a maximum or minimum in X. Such

points will be called critical extreml points to distinguish them, if necessary, from non-

critical points on the boundary 8X of X at which f might attain a maximum or minimum

value. &

The algorithm will make use of automatic differentiation [iI] to compute the gradient

vector Vf(x) of f at x = (XI, Z2, ... ,n), and also its Hessian matrix

(1.6) Hf(x) = (a fa()"

This technique will be combined with the use of interval arithmetic and interval evaluation

of library functions [8] in order to compute guaranteed bounds for values of functions and

their derivatives over the region of interest. The result will be an automatic, self-validating

optimiz'ation algorithm.

Automatic differentiation has been used, at least in a restricted form, by McCormick

[6] for optimization problems. Interval methods have been applied by Hansen [2], [31 and

Hansen and Sengupta [4] to global optimization problems, including constrained problems.

Although the basic algorithm given below is for unconstrained problems, the ideas pre-

sented by Hansen indicate the possibility of introducing constraints into the calculations.

2
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2. Automatic Differentiation

The basic idea behind automatic differentiation is to use the formula or subroutine for

the evaluation of the function f at x to obtain also values of its derivatives at the same

point. This is done by the introduction of a new representation of variables, and arithmetic

operations which include the rules for differentiation. The resulting computational scheme

is simple to program for computers [II], 13], and avoids both the complexity of symbolic

differentiation and the inaccuracy of numerical differentiation. The new variables are

triples

(2.1) U = (u'u"),

where u E R is a real number, u' E R" is an n-dimensional real (column) vector, and

U" is a symmetric real n x n matrix. The set of these elements will be denoted by H',

and each u E H" is said to be of type HESSIAN. A variable U of type HESSIAN will

be interpreted in the following way: Its first component u will represent the value of a

real-valued function at some point x e R", and us' and U" the values of its gradient vector

and Hessian matrix, respectively, at the same point.

It is obvious that H" forms a linear space. More importantly, all the standard arith-

metic operations can be defined in H":

(2.2) U + V = (u,u',u")+ (v,v',v") = (u +v,u' v',u" + v"),

(2.3) U - V = (u, u',u") - (v,v',v") = (u - v,u'- ," ),

U V = (u' U") (V, v', V

(2.4)

U/V (uu',u")/(v v .

(2.5) - (~ u-, U.' t12. U V(t,,', UItr T) + 2u ,,-,,, UV V

VV2 Z t, 3

V $0.

3
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The above definitions implement the rules for evaluation and differentiation of sums,

ifferences, products, and quotients of functions with known values and derivatives. In

3rder to use an algorithm for evaluation of a real function to obtain the corresponding

values in H", it is necessary to be able to represent the independent variables xi, i =

,2,..., n and constants c as elements of H". This is done by the mapping

(2.6) xi - (x,,e1,O),

ror the ith independent variable xi, where ei denotes the ith unit vector, and 0 the n x n

cero matrix. (0 will be used to denote zero vectors and matrices, as well as the real number

cero.) Similary, constants c are represented by

(2.7) C'- (C,0,0).

It follows that calculation of the value, gradient vector, and Hessian matrix of a rational

runction can be done simply by making the substitutions (2.6) and (2.7), and applying the

rules (2.2)-(2.5). The results are exact, not numerical approximations, and are obtained

without symbolics.

In actual practice, instead of using the representation (2.7) for constants, it is simpler

to define a mized arithmetic between elements c E R and U = (u, u', u") E H" 113]:

(2.8) c + U= U + = (C + u',U,"),

(2.9) c - U = (c - ,,-U" 

[2.1o) U - c = (U - C', ,"),

.,2.11) c -U = U -c = (c .ts'c. U',cu)

,2.12) C/Uu' 2cu'u - cu.u")

4
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(2.13) U/c (, -i-), c$0.

For example, consider the two-dimensional Rosenbrock function ([11, p. 95):

(2.14) f(X) 100(X2 - ) (1 - x)2

In order to evaluate this function together with its gradient vector and Hessian matrix at

the point x (-1.2, 1.0), one setsx, (1 ( o)), 2 (-,()( 0)),
0 0 01 0 0

and evaluates (2.14) using the above rules. The result is

(2.16) ~~ (f() f()-H x) 2., 215.6) (1330.0 480.0

(2.1) (fx),V~z),f~z)= 242, 88.0 '480.0 200.0 )

which is exactly what one would get by differentiating (2.14) symbolically and then eval-

uating the results for xi = -1.2, X2 = 1.0 in real arithmetic.

In addition to rational functions of several variables, other standard functions can be

defined readily on H'. For example,

(2.17) sinU sin(u,u',) (sinu,cosuu',cosu u"- sinu uu).

In general, if g R -- R is twice differentiable, then it can be extended immediately to

the mapping g : -, H" by use of the chain rule:

(2.18) g(U) g((u,u',u")) (g(u), g'(u) u',g'(u) u" + g"(u) "u'ulT),

111], 131.

It is easy to program automatic differentiation in languages such as Ada and Pascal-

SC 13, which permit introduction of data types and additional definitions of the standard

operator ,': mbols to manipulate such types. (This is sometimes called "overloading" the

standaid e'erator symbols.) In these languages, the variables x, and X2 in (2.14) would

• ~~~~~~~~~~........ ....... "......-...................'..'.......".....-..........,'. ....-....

• ' -* " ' "" " " " " ' " " "" . ' " / " "-" ' ** .
°
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declared to be of type HESSIAN, along with the result f, and the evaluation would be

ried out on the basis of an expression of the same form as (2.14). In ordinary Pascal

FORTRAN, (2.14) would have to be rewritten as a sequence of calls to subroutines

addition, exponentiation, etc. [111. The algorithms described in this paper have been

,grammed in Pascal-SC, and some results are given in the final section.

Interval Computation

ordinary optimization algorithms, the function to be optimized is sampled only at a

crete set of points. This can result in the loss of valuable information about the function.

e algorithms presented in this paper, on the other hand, use interval computation, which

)duces guaranteed bounds for the values of functions and their derivatives over entire

,ions [81. This prevents the process from being misled by incomplete information.

The basic component of interval computation is interval arithmetic 18). Let IR denote

set of bounded, closed intervals on the real line R. For I = [a, b E IR, J = 1c, d] E IR,

! arithmetic operations are defined by

1) I, J = a,bi * [c,dI = {x * y I x E I, y - J} = [rsj,

iere * C { +,-, .,/}, and division by an interval containing 0 is excluded. In actual

plementation on computers, directed rounding is used (downward for lower endpoints,

ward for upper endpoints), so the actual result computed is IVr, As], which always

itains the exact result Ir, s) of the interval operation.

Evaluation of a real rational function f : R --+ R in interval arithmetic results in an

erval inclusion F : IR - IR of f 18], which has the property

2) f(X) = {(x) 1 x E X} C F(X), X E IR.

noting the endpoints of an interval I = ia, b! by inf I = a, sup I = b, respectively, (3.2)

'ans that

3) inf F(X) K f(x) < sup F(X). x e X.

6
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These bounds for the range of f(z) over X are obtained autornatzcally, witif ,ut inv:estiga-

tion of the minimum and maximum values of f(x) on X, and are furthermore guaranteed

(although they may be somewhat crude) 181. This is the basis of the self-validating char-

acter of interval computation. Furthermore. interval extensions obtained by using interval

arithmetic are monotone in the sense that X C Y imples that F(X) C F(Y). In exact

arithmetic, F is an extension of f in the sense that F(!x,X) = f(x) for x C R 81. In

what follows, x will be used to denote the degenerate interval Ix, xj E IR as well as the

real number x. Other handy notations to be used from time to time are

a+b
(3.4) w(I) = w([a,b]) b -- a, r(I) = m(La,b]) -29

for the width and midpoint, respectively, of an interval I C IR.

Just as in the case of differentiation arithmetic, interval arithmetic can be extended to

include various standard functions encountered in applications. Efficient implementations

of interval arithmetic and interval inclusions of standard functions are now available in a

number of computational environments, for example, Pascal-SC for microcomputers and

the ACRITH package for IBM 370 computers.

The space IR' of interval vectors X = (XI, X 2 ,..., X,") is defined in the same way as

R', and the notions of interval matrices and vector and matrix-vector interval arithmetic

arise in a natural way. The interval scalar product of interval vectors X. Y is defined to be

(3.5) X. -Y = ty, X. X,, V, C Y, ,.

t - 1

and the notation m(X) will be used for the midpoint

(3.6) ,.,(A') (m (X,1).mn(X 2),... m(X,))

of the interval vector X.

Now, if the evaluation of the function (2.14) i performed in interval arithmetic with

x -- 0.9,1.2. X2- 0.8. 1.1 then the result is

(3.7) F(X) 0.0.41.0.

7q
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X denotes the interval vector X = (10.9, 1.2], 10.8, 1.1]). This means that

0< f(x) <41

< x, K 1.2, 0.8 < x 2 < 1.1. Thus, the bounds (3.8) are obtained automatically,

by evaluation of (2.14) in interval arithmetic, in much the same way that values

gradient vector and Hessian matrix of (2.14) were obtained in §2 by the use of

itiation arithmetic. Furthermore, as stated above, the bounds given by interval

etic are guaranteed to be valid.

e next step is to combine the differentiation arithmetic in §2 with interval arith-

An element T of type IHESSIAN will be a triple

T =(UU', U

U E IR is an interval, U' E IR' is an interval (column) vector, and U" is a symmet-

!rval n x n matrix. The resulting set of elements will be denoted by IH ' . Arithmetic

ions in IH' are defined by (2.2)-(2.5), with the operations inside the parentheses

d by the interval operations (3.1). Similarly, operations between constants c C IR

ments of IH" are defined by (2.8)-(2.13) and the corresponding interval operations.

)nstants c are mapped into IR by c 1- ]c, c], as before.

,r example, the evaluation of (2.14) as type IHESSIAN can be carried out over the

Is 0.9 < x1 :< 1.2, 0.8 S x2 _< 1.1 by setting

) = J0 .9 , 1.21, [1,1 o) ' 0o , o 1 0 , o0 1

S(8 1 ,0o) 10,0] 10,0X2= [0.8, 1.1j, [,] 00 00 :

wlt is

O(X) (F(X),F'(X), F"(X))([- 139.4.307.61 ( 534.0. 1410.0] -4 80.0, - 360. 01

1- 128.0,58.0 -480.0, -360.01 !200.0,200.01
8"

.........................................



vhere X denotes the interval vector X (!0.9, 1.2],10.8,1.11). This gives not only the

iounds (3.8) for ff(x) over X, but also the bounds

3.12) V f(x) E F'(X) ( , 1

-128.0, 58.0]

or the gradient vector of f, and

[534.0,1410.0] 1-480.0, -360.0])
3.1:) Hessin e F"(X) (1-480.0, -360.01 [200.0,200.0] )
or the Hessian matrix of f over X. These bounds, obtained automatically by the use of

[HESSIAN arithmetic, are guaranteed.

In addition to bounds for the values of f and its derivatives on X, the IHESSIAN

:omputation (3.11) provides information about the continuity of f and Vf on X. For an

interval I = [a, b] E IR, let

(3.14) 111 f[a,b] max{[al, fb[}.

If X (X, X 2 ... , Xn) is an interval vector, then LXII will denote the quantity

(3.15) JtXJJ max j,

and for an n x n interval matrix M = (Mij), let

n

(3.16) JIMI = max Y, iMit.,
*7=1

analogously to the oo-norm in R" [8]. If the IHESSIAN value of a function f R" n R

over X G IR" is denoted by 4(X) (F(X), F'(X), F"(X)), then the existence of F'(X)

implies that f is Lipschitz continuous on X, and L = IF'(X)I is a Lipschitz constant for

f on X. Similarly, the existence of F"(X) implies that Vf is Lipschitz continuous on X,

and F"(X)I; is a Lipschitz constant for Vf on X. Thus, for the function (2.14), it follows

from (3.11) that

(3.17) f(x) - f(y) < 307.6. ix yl

9
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( 8o2 ox 10-9,1.242 x lo1

3.5) F(X*) 6.200 10,2.400 X 1098.

d

0.6)
( [801.999999987,802.000000030 -400.000000004, - 399.9999998] \

(X = -400.-00000004, 39 9 .9 999 9 9 9 9 8  200

o00 4 2

he midpoint of X* was calculated to be t = (1,1), with F2 (t) -0, F2(t) = ), and

Hessian matrix F"2 (1) 8020 -,00) which are validated to be the exact valuese ~- 400 200 '"

x*, f2(x*), Vf 2(x*), and Hf 2(x*) by the above.

The results in three dimensions were completely similar, with the midpoint = (1, 1, 1)
'X* giving the exact values f3(±) 0, Vf 3 (±) (O), and

802 -400 0
0.7) H (f3 () -400 1002 -400.

0 -400 2001

The three-humped camel function g(x) given by (10.2) has five critical points:

0.8) X* (0, 0),

hich is its global minimum point,

.0.9) ± 2.1 - 0.865, 2.1 - V0.865),
2

hich are saddle points, and

0.10) - ± 2.1 + 0.865, 2.1 - .865),
2

hich are relative minimum points. One has

0.11) 0 = g(x*) < g(-z*) = g(z*) < g(-y*) g(y*).

The search for all critical points was conducted in the inital region

0.12) X ( -2.0,1.8 , 0-0.9, 1.0'),

23
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'he modification of the program to search for a global critical minimum gave the

ing results:

Case 1 Case2 Case3 Case4

Transformations 92 140 346 219

Rejected 75 110 169 172

Critical Points I 1 1 1

Transformations to Locate 83 103 330 201

results show a considerable improvement over the search for all critical points. Once

obal minimum value has been found, remaining regions are generally rejected quickly.

algorithm was very effective for the largest problem considered, Case 4 above.

rhe required increase in minimum function values in the search for a global critical

mum forced the algorithm toward the boundary of X0, where regions were quickly

ed. The corresponding results were:

Case I Case2 Case3 Case4

Transformations 9 16 27 37

Rejected 9 16 28 38

Critical Points 0 0 0 0

last two cases, the final regions were rejected without having to perform a Krawczyk

formation.

n two dimensions, the interval iteration to the critical point 1* converged to

X" - (0.999999999999, 1.00000000001 0,999999999999, 1.0o00000000 1])

F2(X*) 0.00.9.62 x 10-2°,

22
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The Rosenbrock function (10.1) has the global minimum fn(x*) 0 at the critical

point x* = e = (1,I,..., 1). It is easy to find x* by Newton's method, but methods which

try to reduce fn(x) at each step find this function rather difficult, particularly in higher

dimensions. Four cases were considered:

1.n = 2, Xo = ([0.9, 1.21,[0.8,1.11);

2. n = 2, Xo = ([-3.7,1.4],I-1.6,3.5]);

3. n = 3, Xo = (10.9, 1.2],10.8,1.1],[0.9, 1.2]);

4. n 3, X0 = ([-3.7,1.4],[-1.6,3.5],[-3.7,1.4]).

The value t = 0 was taken in each case, and no exceptions occured in any of the

examples given here. Searching for all critical points gave the following results:

Casel Case2 Case3 Case4

Transformations 242 957 553 1976

Rejected 167 685 432 1567

Critical Points 1 1 1 1

Transformations to Locate 128 187 328 1672

The algorithm was very busy in the neighborhood of the critical points x* = (1, 1) and

x* = (1, 1,1). The region in which (5.5) holds turned out to be rather small, and nearby

regions not containing x* had to be made very small before they could be rejected with

certainty. The increase in area of Xo by a factor of 289 between cases 1 and 2 increased

the number of Krawczyk transformations required by a factor of less than four, while the

increase in volume of X 0 between cases 3 and 4 by a factor of 4913 resulted in an even

smaller increase in the number of transformations, less than 3.6. Going from two to three

dimensions increased the number of transformations required to search the entire initial

region by a factor of about two in each case.

21
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0. Numerical Examples

he functions selected for numerical computation were the n-dimensional Rosenbrock func-

on

n1-1

0.1) f7 (X) [00(xi+ I - X')2  (I - J2

rd the "three-humped camel" function 13],

10.2) g(z)=2x2_1.05X4 +

The program used was written in Pascal-SC for a microcomputer with a Z80 processor

nd the CP/M operating system. This was done to take advantage of support for interval

rithmetic, an already written library of operators and functions for type IHESSIAN, and

ie utility procedure LGLI for solving linear systems with interval coefficient matrices and

ght sides. On the other hand, the small amount of storage available in this machine (64

ilobytes) limited the values of n for the Rosenbrock function (10.1) to n = 2,3. The

ctual machine used was also rather slow, with a IMHz system clock, giving typical times

r floating-point interval addition and subtraction of 13.5 milliseconds, multiplication,

7.5 milliseconds, and division, 77.5 milliseconds. Nevertheless, the results given below

'ere obtained in a reasonable amount of time.

The most time-consuming part of the computation is the performance of the Krawczyk

•ansformation K(X) (actually, k(X)), using the Pascal-SC utility program LGLI to solve

ie system (5.1) with interval coefficient matrix and right side. A count is made of the

umber of times this transformation is performed, the number of critical points found,

ie number of regions rejected, and the number of regions (if any) in which exceptions

re encountered. The sum of the number of regions rejected (which cannot contain crit-

al points), the number of regions in which critical points are found, and the number of

cceptional regions gives the total number of subregions examined. The Krawczyk trans-

ormation may be applied to a giveni region several times before it is accepled as containing

critical point, or rejected.

20
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points which are not critical, an alteration has to be made in the above procedure. The

value of m(t) is updated only when regions X* containing critical points x* are computed

by interval iteration. If sup F(x*) < m(t - 1), then we set m(t) = sup F(x*), otherwise

m(t) m(t -1). The rejection criterion inf F(Z) > m(t) remains unaltered. The algorithm
4.

will generally be slower than the one given above in this case, but usually still faster than

an exhaustive search for all critical points.

In the same way, a function M(t) giving the lower bound for the global maximum

M of f is constructed by setting M(O) = -MAXREAL, and updating by M(t) to be

the maximum of M(t - 1) and inf F(x)}, assuming that the global maximum is critical.

Intervals are rejected if supF(X) < M(t). Otherwise, M(t) is updated only at critical

points, as above. The modification of the choice algorithm for bisected intervals is done

by reversing inequality signs and interchanging infs with sups in the above.

9. Use of the Algorithm for Validation

In addition to its use for global searching, the algorithm given in §6 can be used to validate

solutions to optimization problems given by other algorithms. For example, suppose that

i is an approximate critical point of f found by Newton's method or some other numerical

technique. Then, the initial region X can be taken to be, say

(9.1) X 6+-e. 1-1,1, "
2

where 6 > 0 and e = (1, 1,..., 1) E R' denotes the vector with all components equal to one.

If (5.5) holds for this value of X, then all components of i are validated to be accurate to a

tolerance of 6. Furthermore, the interval iteration (6.1) will give approximations of possibly

increased accuracy for the critical point, as well as bounds the for function, gradient vector,

and Hessian matrix values. It should be noted that the interval calculations furnish upper

and lower bounds for maximum and minimum values of the function, while some other

methods give only one-sided bounds.

19
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Successful termination of the computer program will be accompanied with a list of

the number of regions processed (given by the number of times the Krawczyk transforma-

tion was performed), the number rejected, and the number of critical points found, and

the number output to the exception file. Given all its critical points, the global critical

xiaxirnumn and minimum of the function can be found simply by sorting the function values.

8. Global Critical Extrerna

The algorithm of §6 can be speeded up if only the global critical maximum or mininum of

f on X is desired. The modification of the algorithm to find the global critical minimum

will be described; finding the global critical maximum follows exactly the same pattern.

Suppose first that the global critical minimum of f on X is actually its global minimum

on X. that is, f(x) > m = f(x*) for x E X, where x* is the global critical minimum point.

The algorithm will compute a decreasing sequence of upper bounds m(t) for m, and reject

subregions Z such that infF(Z) > m(t). The modifications of the corresponding steps for

the single-processor algorithm are:

1'. Set m(O) = MAXREAL, the largest floating-point number (for example, in Pascal-

C. \ A X R E A 1. = 9.99999999999 x 1099).

2'. If sup F(x) < m(t - 1), then set m(t) = sup F(x), otherwise, m(t) = m(t - 1).

6 . Reject Z' if 0 V F'(Z') or infF(Z') > r(t); reject Z' if 0 ( F'(Z) or infF(Z') >

m(t). If neither Z' nor Z ' can be rejected. then Z' is considered to be more promising

if inf F(Z') < inf F(Z), and Z" is stacked, or conversely. In case infF(Z') = infF(Z'),

then Z' is stacked if sup F(Z") > sup F(Zt), otherwise. Z' is stacked.

Considerable savings in computer time have been observed due to the introduction of

the additional rejection conditions in 6 ' In the case of multiprocessors, an efficient way to

share the current value of rn(t) is necessary. and the rejecti(;n of regions in ' hich function

values are too large would b, carried nut in step I

In case the function f can attain smaller values than ?r, on the boundary aX of X at

18
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7. Exceptions

Several exceptions can arise in the execution of the algorithm in §6 which could terminate

the computation prematurely, or cause it to run indefinitely. These and the way they are

handled will be discussed now, because they may also occur in the search for global critical

extrema.

10. If F"(x) contains a singular or badly conditioned matrix, then the attempt to

perform the Krawczyk transformation by solving (5.1) will fail. One solution is to replace

F"(x) by some nonsingular matrix, for example, m(F"(X)) could work [9]. The implemen-

tation used for the examples given below simply outputs X to a file for later examination,

with an appropriate message, and then selects the next region to be processed from the

stack.

20. The intersection-bisection process can lead to regions which do not differ from

the previous ones, because of outward rounding, or which are so small that total time

to explore the entire region is prohibitive. This can happen, in particular, if a critical

point lies exactly on a bisection coordinate. For this reason, the user is provided with a

parameter c such that if the volume V of the region to be processed satisfies

(7.1) V < Vo,

then the region will be output to a file for later examination, with an appropriate message.

The choice c = 0 is permitted; this allows the processing of smaller and smaller regions

until their volume (6.9) underflows to 0 or some coordinate becomes degenerate.

3'. If the storage space allotted to the stack is full, then additional regions will be

output to a file.

40. Numerical exceptions, such as division by zero and overflow, are allowed to termi-

nate the present program. However, they could be used as signals to output the offending

region to a file with an appropriate message.
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In the case of a single processor, the choice of which interval to stack in step 6°(iv)

will be modified in the case global critical maxima or minima are sought. If only one

critical point is sought, the algorithm is terminated at the end of step 30. Otherwise, the

algorithm can continue until all critical points of f in X are found, and no regions remain

on the stack to process. Complete processing of X without finding critical points proves

that it contained none.

Because the processes of intersection and bisection can result in subregions of a wide

range of sizes, a simple count of the number processed at any given time does not give a

good indication of the progress being made by the algorithm. For this reason, it has been

found convenient to compute the initial volume

(6.9) V0 = rl w(X,)
i=1

of the region X = (XIX,... ,Xn) to be searched. The unexplored part of the initial

region has volume V,,(t) at time t, where V(O) = Vo. V,,(t) can be computed simply as

the sum of the volumes of the intervals being processed and those on the stack awaiting

processing at time t. Vt(t) is a monotone decreasing function of t, and the algorithm

terminates when the stack is empty and V,,(t) 0, if an exhaustive search is desired.

16
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and one takes

z'= (Z1,. .. ,z,,linf Zim(Z,)],Z,+,. .

(6.8)

z= (Z1,..., Z,.. 1, zm(Z)),sup(Zjl, Zj+1, . Z

60. (Single processor) Compute f(Z), O(Z"). The test (4.1) is applied to F'(Z) and

F'(ZT). There are four cases:

(i) If 0 € F'(Z') and 0 V F'(Z"), then X is rejected;

(ii) If 0 E F'(Z) but 0 4 F'(ZT ), then return to step 20 with X = Z';

(iii) If 0 i F'(Z) but 0 E F'(Z"), then return to step 20 with X = Z";

(iv) If 0 E F'(Z) and 0 E F'(Z"), then one of the interval vectors is to be placed on a

push-down (last in, first out) stack in storage, while the other replaces X for continued

processing at step 20. In this algorithm, the choice is made by the following heuristic:

If w(F(Z')) < w(F(Z")), then one takes X = Z' and stacks Z" for processing later;

otherwise, one takes X = Z" and stacks Z1.

The region selected for X is considered to be "more promising" than the one stacked

because the variation of a function in the neighborhood of a critical point is asymptotically

less than it is elsewhere. The goal is to find critical points as quickly as possible, particularly

if only one is desired.

60. (Multiprocessors) Z' is sent to another processor following the bisection (6.8).

Return to step 10 with the current processor taking X = Zr, while the other takes X = Z1.

If no processors happen to be free, then Z' circulates or is put on a common stack to await

the first available processor. If a number of processors are free, it could be expeditious to

decompose X into more than two subregions, and then send one to each processor. The

choices here will depend to a great extent on the multiprocessor configuration actually

used.
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20. Compute O(x) (F(x),F'(x),F"(x)) in ]HESSIAN arithmetic. Compute an

inclusion 1 (X) of the Krawczyk transformation of X by (5.1).

30. If k(X) C X, then the interval iteration

(6.1) X0 = X, Xn+' = k(Xn) n Xn

is performed until it converges to

(6.2) X XN C X N + ,

in a finite number of steps [121. The values

(6.3) x*, 4,(X*) = (F(X*),F'(X*),F"(X-)),

are output. The existence of a critical point z* of f in X is guaranteed, and furthermore

the bounds

(6.4) X E x', (f (x*)Vf(*)Hf(*)) E,'(x*),"(x*)),

for z* and the values of the function f, its gradient vector Vf, and its Hessian matrix Hf

at zx. These bounds are usually as good as can be obtained by floating-point computation,

and Fu(X*) can be used to determine the nature of the critical point x*, if necessary.

40. If

(6.5) k(x) n x 0,

then X is rejected.

5'. In the indeterminate case, the region

(6.6) Z = (Z,,Z2,.) = (X) X

is bisected in the direction of its widest component. An index j is determined such that

(6.7) w(Z,) > w(Z,), i 1,2 ..... n,
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Furthermore,

k(x) x

or

I (5.6) k(x)nx= 0

thus imply (4.5) or (4.6), respectively. In this way, existence or nonexistence of a critical

point of f in X can be established conclusively by a computation done in floating-point

o "interval arithmetic by a computer, providing it is possible to obtain an inclusion for the

solution of the system (5.1). In actual practice, the widths of the components of F"(z)

will be small, and good inclusions of Y can be obtained by a process of floating-point

approximation followed by interval iterative refinement [151, which will fail only if F"(x)

contains a singular or very badly conditioned matrix. Interval linear system solvers of this

type are available in Pascal-SC and the ACRITH package.

6. The Basic Algorithm

The algorithm described in this section will find one or all the critical points of a function

f in a given initial region X, or show that X contains no critical points, provided no

exceptions arise. Exceptions will be discussed in a later section. The computer program

implementing this algorithm handles exceptions in such a way that the computation always

terminates in a finite number of steps. Validated upper and lower bounds are given for all

critical points and values found. The algorithm will be presented first for the case of a single

processor, in the way it has actually been implemented. Adaptation to a multiprocessor

environment will be discussed at the end of the section.

The basic steps of the algorithm are:

10. Compute t(X) = (F(X), F'(X), F"(X)) in IHESSIAN arithmetic. If 0 F(X),

then X is rejected.

13
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make use of the fact that an optimization problem underlies the system of equations being

solved, which provides information additional to that inherent in an arbitrary system of

nonlinear equations. Furthermore, the algorithms given here differ by bisecting intersected

intervals in the inconclusive case, which results in a certain amount of increase in speed.

The use of subregions has the advantage that the tests (4.1) and (4.5)-(4.6) become

more sensitive as the size of the region decreases, that is, as IIw(X)Ilo, -, 0. In fact, if

x* is a regular critical point of f, that is, if (Hf(x*)) - 1 exists, then (4.5) will hold for

sufficiently small X such that x* E X if Vf is Lipschitz continuous [10]. The disadvantages

are the extra bookkeeping and storage required for pending subregions. However, these

are not overwhelming on modern computers.

5. Implementation of the Krawczyk Transformation

The system of equations (4.3), as stated, has the real coefficient matrix Hf(x), interpreted

as a degenerate interval matrix, and an interval right side. In actual computation, instead

of solving (4.3), one obtains an inclusion S of the solution Y of the system

(5.1) F"(x)Y = -F'(x) + {F"(z) - F"(X) }(X - x),

which has an interval coefficent matrix and an interval right side. The solution of such a

system

(5.2) AY = B

* is defined to be

(5.3) Y ={y iay = b, a EA, bEB},

where a is a real matrix, and b, y E R", provided all the indicated real systems are solvable.

In this case, it follows that 2 C Y =:2, Ahere E is the solution of (4.3), CA1d thus

(5.4) K(X) x + ' C x E- k (X).

12
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where I denotes here the n x n identity matrix, and x m(X) the midpoint vector of the

interval region X. The real-valued vectors and matrices in (4.2) are of course interpreted

as degenerate interval-valued objects.

In actual practice, K(X) is computed by solving the linear system

(4.3) (Hf(x)) - = -Vf(x) + {Hf(x) - F"(X)}(X - x)

for H, from which

(4.4) K(X) =x + .

Once K(X) has been computed, one of the following alternatives holds. If

(4.5) K(X) X,

then there exists a critical point x* E K(X) of f; if

(4.6) K(X)nX=0,

is empty, then X does not contain a critical point of f (another rejection criterion); oth-

erwise, the test is inconclusive [7].

With regard to (4.6), the intersection of interval vectors X,Y is said to be empty if

for some i, Xi and Y, are disjoint intervals. It also follows from (4.2) that if z* E X is a

critical point of f, then x* E K(X). Thus, in the inconclusive case, the region

(4.7) Z = X n K(X) 9 X

will also contain any critical points of f which lie in X. This suggests decomposing Z (which

may be equal to X) into several subregions, and applying the above tests to each. The

resulting algorithms, described in more detail below, are essentially modifications of the

one given by Moore and Jones 19] for locating solutions of systems of nonlinear equations

in several variables. These algorithms differ from the Moore-Jones method in that they
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and

(3.18) ]Vf(x) - Vf(y)1o < 1890.0. lIz - lloo

for x,y E X ([0.9,1.2], 10.8, 1.11) 1141. The Lipschitz continuity of Vf will enter into the

discussion later.

In actual practice, the arithmetic operators and standard library functions for type

*. IHESSIAN can be programmed once and for all, and stored in a small subroutine library,

as has been done in Pascal-SC [13].

4. Tests for Existence or Nonexistence of Critical Points

*, The key issue in the algorithm described in this paper is to determine if a region in R'

. defined by an interval vector X E IR' contains a critical point of the function f R' -- R

or not. First of all, if

(4.1) 0 F'(X),

then it is impossible that Vf(x) - 0 for x E X, and X can be rejected, since it does not

contain a critical point of f [7]. On the other hand, 0 E F'(X) does not necessarily mean

that X contains a critical point of f, because F'(X) overestimates Vf(X) in general. The

, intersection of all interval vectors containing f(X) is called the interval hull of f(X). In

several dimensions, the interval hull of f(X) can contain points outside of f(X) in general

Is[].

In addition to the rejection criterion (4.1), a test which is capable of establishing the

existence of a critical point x* in X is necessary. For this purpose, the test given by Moore

• [m3] will be used. This test is based on the application of the Krawczyk transformation K

S 15] to X:

. (4.2) K(X) = x- (Hf(x))-'Vf(x) -4 {1 (H f(z))-'F"(X)}(X - x),

10
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with € 0. The total number of Krawczyk transformations required was 82, 48 intervals

were rejected, all 5 critical points were found, and there were no exceptions. This function

is less of a computational challenge than the Rosenbrock function f 2 (x); however, the

critical points ±y* and ±z* tend to shield x* from straightforward iterative procedures,

such as Newton's method. Letting T(.) denote the number of Krawczyk transformations

required to locate a given critical point, the results were:

T(xw) 6,

T(y*)- 21,

(10.13) T(z*) = 45,

T(-y*) = 69,

T(-z*) = 79.

The search for the global minimum of g(x) in X0 required 60 Krawczyk transfor-

mations, 46 intervals were rejected, 2 critical points were located in order of decreasing

function value, and there were no exceptions. The critical points found were first -z* and

. then the global minimum point x*, with

" (0T(-z*) - 10,
p." ',(10.14)

T(x*) = 57.

Obviously, the search took an entirely different path than the exhaustive search (10.13)

" for all critical points of g(x) in Xo.

The search for the global critical maximum of g(x) was somewhat slower, due to the

" fact that g(x) attains it maximum at a noncritical point on the boundary OX 0 of Xo.

Consequently, the function M(t) which gives a lower bound for the critical maximum %%,as

* updated only at critical points. This computation required 76 Krawczyk lransformatiois,

50 intervals were rejected, and three critical points (x.* y*. and -y*) were found in order

24
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of nondecreasing function values. The number of transformations required were:

T(x*) = 6,

(10.15) T(y*) = 21,

T(-y*) = 64.

The critical points ±z* were also located, but rejected, because the values of g(x) at

these relative minimum points is smaller than at the saddle points ±j*. Investigation of

the nature of critical points is done by finding bounds for the eigenvalues of all symmetric

matrices A such that A E G"(X*), using the Pascal-SC procedure EIGEN. Denoting the

eigenvalues of a 2 x 2 symmetric matrix A by AI(A) and A2 (A), then intervals AI(X*) and

A2 (X*) are -omputed by EIGEN such that

(10.16) {A,(A) A E GI°(X*)} C A,(X*), i = 1,2.

The character of the critical point x* E X* can be decided on the basis of these bounds.

The results of the inter.ral iteration to critical points were:

x* = ([-2.0 x 10-9,2.0 x 1-91, [-2.0 x 10-"",2.o x 10-99),

G(X*) = 1-2.05 x 10-99,5.00 x 10-9],

(10.17) G(x*) ([-1.52 x 10-g",1.52 - 10-":]
1 [-6.00 x 10-9g,6.00 x 10-g °]

G(X*) = (13.99999999999,4.00000000000] -1).

The eigenvalues of Hg(x*) are contained in the intervals

AI(X*) = !4.142135623,4.1421356251,
(10.18)

A2 (X*) = 11.58578643759,1.585786437661,

which proves conclusively that the critical point x* E X* is a minimum point, because

both eigenvalues of Hg(x*) E GII(X*) must be positive [11. The midpoint of X* is t =

,* = (0,0), with G(2) = g(x*) = 0, G'(±t) = Vg(x*) = (), and G"(±) = Hg(x*) =

(-1 2
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," Next,

Y* = ([1.07054229181,1.07054229185], 10.535271145904,0.535271145921]),

G(Y*) = [0.877361557501,0.877361558041],

(10.19) G(Y*) 1([-5.81 x 10- 10, 5.26 x 10- 101
S-5.00 x 10-11,4.00 x 10-11] '

="* ([-3.87308929305, -3.87308929080] -1).S-1 2,

The eigenvalues of Hg(y*) are contained in the intervals

AI(Y*) = [-4.03868818, -4.038688181,
(10.20)

A2 (Y*) = [2.165598876,2.1655988841,

so that the critical point y* E Y* is indubitably a saddle point.

"* The next values obtained were

Z* = ([1.74755234581,1.747552345861),

G(Z*) = [0.298638440884,0.298638443572],

* (10.21) G,(Z*)= (1-2.18x1lO-0,3.82 x 10-1011
[-1.00 X 10-11,0.10

G"(Z*) = 11.21530892921,1.21530892930] -1

The eigenvalues of Hg(z*) are contained in the intervals

A, = [5.33440787,5.33440793],
." (10.22)

A2 = 12.681868136,2.681868143],

and thus the critical point z* is a relative minimum point.

*" The computed intervals

" (10.23)

-Y*= ([-1.070544229185,-1.07054229181],[-0.535271145923,-0.535271145906])

and

(10.24)

-Z* ([-1.74755234585,-1.74755234580], i-0.873776172925,-0.873776172902])

26
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contain the critical points -y* and -z*, respectively. The function, gradient, and Hessian

values on these intervals do not differ significantly from the corresponding ones for Y*

and Z*. In particular, the eigenvalues of Hg(-.y*) lie in the intervals (10.20), while the

eigenvalues of Hg(-z*) belong to the intervals (10.22). Thus, -y* is guaranteed to be a

saddle point, and -z a relative minimum point of g.
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