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ABSTRACT

The only egglicit exact solution of the problem of steady vortex rings is

N

that found, for a particular case, by M.J.M. Hill in 1894; it solves a semi-.

linear elliptic equation, of order two, involving a Stokes stream function ¥(x,2z)
st P 5 T

and a non-linearity fﬁ(%) that has a simple discontinuity at ¥ = 0., In this
paper we prove:that (a) any weak solution of the corresponding boundary-value

problem is Hill's solution, modulo translation along the axis of symmetxy (r = 0) ,
@noﬁm — W&pn—'
(b) any solution of the isoperimetric variational problem in 42} is a weak

solution, indeed, any ;ocal maximizer is a weak solution. The result (b) is not
- r

immediate because fﬁ‘ is discontinuous; consequently, the functional that is

maximized is not Fréchet differentiable on the whole Hilbert space in question.
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SIGNIFICANCE AND EXPLANATION

A number of existence theorems for steady vortex rings, and some
properties of solutions, have been established in the last 15 years, but
questions of uniqueness, and of any connection between the solutions
Y resulting from different formulations, have remained very much open.
It has not even been known whether the simple, explicit and celebrated
solution known as Hill's spherical vortex is among those whose.existence
has been established by modern methods. The present paper settles this
question; since Hill's vortex is shown to be unique, any existence'theory
that allows the discontinuous vorticity function in question recovers Hill's

solution.
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THE UNIQUENESS OF HILL'S SPHERICAL VORTEX

C.J. Amick! and L.E. Fz‘aenkel2

1. Introduction

1.1. Background

The mathematical description of steady vortex rings, in an ideal fluigd
occupying the whole space R3 , can be approached in various ways. The
physical basis of the problem, its history up to 1973, and several formulations
are outlined in {12], pp. 14-21. Another, quite different formulation and the
plan for a corresponding existence theory are presented in [é6]. Further
existence theorems, variational principles and results are to be found in [3],
[7], [11], [13] and [20). Here we state only definitions and equations that
seenm relevant to our immediate purpose.

Consider a Stokes stream function Y, defined on the closure I of the

half-plane

N = {(r,z)| £>0, =<z <},

wvhere r and 2z may be regarded as cylindrical co-ordinates, points of 1R3

being denoted by X = (xl,xz,xf = (rcosf,rsinf,z) . The significance of
Y is that (a) the fluid velocity q has cylindrical components (in the
directions r,8,z increasing, respectively) -Yz/r, 0, Vt/r ; (b) streamlines

in a meridional plane (6 = const.) are level curves of ¥, and 2w(W2 -Y)

1

.ow

1D.pattnant of Mathematics, University of Chicago, 5734 University Avenue,
Chicago, IL 60637,

znathematlcs Division, University of Sussex, Brighton BN1 9QH, England.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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is the volumetric flow rate, or flux, between two stream surfaces of revolution

described by Y(r,z) = const. = ¥ (3 = 1,2); (c) the vorticity curl q has

3
cylindrical components 0, -(LY)/r, O, where

2
3 (12 )
L'rﬁ[}'?r-]'*

Such a function ¥ corresponds to a steady vortex ring if there exists
a bounded open set A cIl, called the cross-section of the ring and unknown

a priori, such that ¥ ¢ C1 (ﬁ) n cz(ﬂ\ah) and satisfies the equations

-sz fo(‘!) in A,
LY = :[17) + ¥ = (1.1a)
r rjr zz _
0 in Ma,
‘”aa = 0, vlt‘o = -k, (1.1b,c)

as 22+22->~ in ﬁ, ‘l’(r,z)“'-':ﬁrz-k, vz/r->o

and ‘l’r/r > -W. (1.1q)

Here £, is a given, (strictly) positive vorticity function, which need be defined

0
only on (0,») because of (1.2) below. We suppose for the moment that the

vortex-strength parameter )\, the flux constant k and the propagation speed W

are also prescribed, with A >0, k20 and W >0 . (The constant W 1is the
speed of the vortex ring relative to the fluid at infinity; in (1.1) we have
taken co~ordinate axes fixed in the ring and have demanded that the fluid velocity
q-+ (0,0,-W) at infinity.) In most existence theorems, other sets of constants
are prescribed, and 'free' elements of the set {),k,W} are calculated a posteriori.
This is illustrated by the remarks following (1.8) below.

Since LY <0 in A and \l’IaA = 0, the maximum principle implies that
¥>0 in A ; similarly, Y <0 in MR . Therefore we define the cross-

section by

A = {(r,z)el | ¥(r,z) > 0} . (1.2

-2-
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It is often convenient to write
Y(r,2) = ¥(r,z) - Wl -k, (1.3

where V¥ is the stream function due to vorticity, while -Wrz - k represents
a uniform stream. Note that the latter has zero vorticity: l.('iw:2 +k) =0,

We define

0, tso0,
f(t) =
fo(t), t>0.

Abbreviating the conditions at infinity, we now re-write (1.1) as

W = < Ar’(Y) 4in 0, (1.4a)

¥l o =0, ¥rm+0 as ri+zise in 1, (1.4b,¢)

where it is to be understood that (1.4a) need not hold pointwigse on 8A, and
that vz/: and ior/z + 0 at infinity. Maximum principles for weak solutions

show that v >0 4in 101 .

1.2, Hill's spherical vortex

Only one explicit exact solution of (1.1) or (1.4) is known: that discovered

by M.J.M. Hill [17] in 1894 for the case
0, t<0,
k = 0 and f£(t) = fﬂ(t) H (1.5)

Hill observed that for this case a sphere {X ¢ R3| IX| = a} can serve as the

boundary of a steady vortex ‘ring' (Figure 1). Thus the cross-section is

2

A, = ((r,2)en | £2 + 22 < %), (1.6a)

2,4

and we let p = (rz +2z) Hill found the solution

e .
R NN
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08(2,31 s Yu(r,z) + ‘:sz = (1.6b)

where ralM = 1572 . (1.6¢)

Anticipating the definition (1.7), we note that, for a fluid of unit density,
the kinetic -energy 1r|| *B ||2 is given by

2

10 .2 3
B,z 7Wa

) rdaraz =

2 | [ g2
log 11 = J Slvg v . (1.6d)

n ¥

By Hill's problem we mean (1.1) or (1.4) for the case k =0, f = fn .
Solutions of Hill's problem are presented (among other solutions) in [12]
and [13], but no uniqueness theorem appears in these papers, and it has been
unknown whether these solutions of Hill's problem are in fact Hill's solution.
Indeed, we know of no result in the literature that connects in any way the many
solutions, of the basic general problem (1.1), that have been obtained by

[y
different formulations and different existence theorems.

1.3. Results

In the present paper we prove that, for Hill's problem, (a) any weak solution
is Hill's solution "B , modulo translation in the z-direction; (b) any solution
of the iscperimetric variational problem formulated in [12] is a weak soluticn,
indeed, any local maximizer is a weak solution (and is therefore Hill's solution).
The result (b) is not ocbvious or immediate, because fﬂ has a simple discontinuity;
consequently, the functional that we maximize is not Fréchet differentiable on the
whole Hilbert space appropriate to the prcblem.

We now make these statements precise. The Hilbert space H(N) is the
completion of the set C:; () , of real-valued functions having derivatives of

every order and compact support in N, in the norm || * || corresponding to the

-5




inner product

1
<4,x> = I -!'—2 (Orxr + QZXz) rdrdz . (1.7)
n

Thus w|| ¢ ||2 is the kinetic energy of the motion with stream function ¢ ;
also,
1 ©
<$,Xx> = -J —-2—¢ Ly rdrdz if ¢,x € Co(l'l) .

n T
We shall say that ¥ is a weak solution of Hill's problem if ¢ ¢ H(I) \ {0}

and if there exist constants )l ¢ R and W > 0 such that

<$,¢> = A J ¢ rdrdz for all ¢ ¢ H(ID) ,
Alv) (1.8)

where AW = {(r,z)el | ¥(r,2) > ':Wrz} .

Setting ¢ = ¢ 4in (1.8), one sees that ) > 0 and that A(y) must have positive

area, (For Theorem 1.2, we shall prescribe ” '} || >0 and W >0 ; then

e iy HZ/I ¥ rdrdz.) Our first result is
A

THEOREM 1.1. If ¢ is a weak solution of Hill's problem, then

v(r,z) = wn(t,z-c) for some c € R; here 4’8 is as in (1.6).

We now turn to the variational principle in [12]. To state it for Hill's

problem, we define

t
t = I £ (s)ds = max{t,0} ,
0 H

J (¢(r,z) - l:|W|r2)+ rdrdz for all ¢ e H() ,
n

J(¢)

(o eam(ioN® = n>ot;

s(n)

the sphere S(n) is a surface of constant energy. The variational problem is:

-6~
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given W and n, find ¢y € s(n) such that J(y) = max J(¢) . For

¢ esS(n)
the sake of a wide uniqueness statement, we consider not only solutions of this

problem, but alsc local maximizers of J on S(n) ; we shall prove

THEOREM 1.2, Let V be a local maximizer of J on S(n) : that is,

J($) s IJ(Y) for all ¢ € S(n) 4in some neighbourhood of ¥ . Then ¥ is a

weak golution of Hill's problem (go that Theorem 1.1 applies).

1.4. Method

The principal steps in the paper are as follows.

(i) We make the transformation = rzv in order to prove that, when ¢ is
a weak solution of Hill's problem, v depends only on p = {r2 + (z-c)z}l’ for
some c € R (and on the parameters). The resulting one~dimensional problem

for v can then be analysed without difficulty. It is a fortunate and crucial

fact that
w-:zv-)—l—w-L(z:;v) +v = Av for r>0 (1.9)
t2 r3 r'r 2z 5 ’ ‘

where v(r,z) is now regarded as cylindrically symmetric in ms , that is,

2 2.4 5 2,2
r (x1 +o..t x4) 5 while AS = zjnl 2 /axj is the Laplace operator
5

in R . The identity (1.9) was noted by Chandrasekhar ([9], p.252), and has been

and z = x

used by Ni [20] to prove regularity in his theory of steady vortex rings. However,
Ni considered only non-linearities f swoother than fn , 80 that Hill's vortex
is outside the range of his theory. The transformation ¢ = r2v is exceptionally
useful for Hill's problem because the equivalence, for r > 0, of the conditions

v > ‘:Hrz and v > 4 means that (1.4) becomes

AV = - My(v - a)  in Ro\{r = 0} , (1.10a)

vix) +0 as |x|] + o ., {1.10b)

-7~
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In Cartesian co-ordinates x1

coefficients on both sides, and this allows us to prove, in step (ii), that v

reser Xgoo equation (1.10a) has constant

depends only on p . For k #0 or f # fB , the right-hand member of (1.4a)
does not transform to a function independent of r .

(ii) To prove that the weak form of (1.10) implies spherical symmetry
of the function v, we first transform (in section 2) the definition (1.8)
of weak solution, showing at the same time that the exceptional line {r = 0}
causes no difficulty. In section 3, we establish regqularity properties and
positivity of the weak solution v, and then adapt to the present problem
the puwerful method initiated by Serrin in [24] and greatly enlarged by Gidas,
Ni and Nirenberg in [14]. A slight, further extension is needed here because
c? solutions are considered in [24] and [14], whereas for Hill's vortex second
derivatives have a finite jump across BAH . The generalized maximum principles
in Gilbarg and Trudinger's book [15] enable us to modify the relevant parts of
[14].

Different applications of the method in [24] and [14], to free-boundary
problems of the same general kind as Hill's problem, have already been made in
(8], (111 ang [18].

(iii) To prove Theorem 1.2, we transform ( in section 2) the varjational
principle for ¢ to one for v . In section 4, we overcome the difficulty,
that the convex functional N corresponding to J is not Fréchet differentiable
on its whole domain, by using convex analysis. Detailed examination of the
subdi fferential of N, and of its left-hand and right-hand Gateaux derivatives,

leads to the result.

1.5. Miscellaneous remarks

(i) The existence of a global maximizer, of J over the sphere S§(n) ,
is not in doubt: such a function is constructed in (12], pp. 40-42 (although

rather indirectly, by limiting procedures) and that particular function is

-8
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easily seen to be a weak solution, for any k 2 0 and for a class of non-

linearities £ that includes fH . For Hill's problem, one can also prove

more directly, by means of the transformation ¢ = zzv and symmetrisation
with respect to a point in :ns (that is, by re-arrangement of v to a
spherically symmetric function v*) that a global maximizer exists and is a
weak solution. However, maximizers other than these are conceivable; it is
for this reason, and to demonstrate the strength of the variational principle,
that we present Theorem 1.2.

(11) There is a variant of Hill's solution (not published, we believe,
but well known to specialists) in which the fluid domain is a ball, say

{x ¢ R3| IX| < b}, with cross-section D = {(r,z)ell | £ + 22 < b%)

. We
set k=0, f= fH as before; replace I by D in (1.1a) and (1.4a);

and replace the condition (1.1d) or (1.4c) at infinity by

¥(r,z) = -~ HW:Z on 3D, (1.11)

which states that the normal velocity on 3D is the normal component of
(0,0,-W) , and also implies the conditions (1.1¢) and (1.4b) on r =0 for
this problem.

After extending in Appendix A the relevant theorem in [14], we show in
Appendix B that the earlier results and methods carry over to this case with
only minor changes. One of these is that, while transformed solutions v are
always spherically symmetric, existence and uniqueness depend on what constants
are given. If A, W and b are prescribed, there may be no solution or there
may be two; 1if ||w H, W and b are prescribed, the solution always exists
and is unique.

(111) 1In [22], Norbury congtructed perturbations of Hill's solution that
represent genuine rings (homeomorphic to a solid torus). He solved (1.1) with
f = fH and 0 < k < ko . where ko is small, by reducing an integral egquation
to a contraction mapping of a small closed ball, in a Banach space of functions

-9-
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LEMMA 3.7. Assume that for some u > 0 we have v(x) 2 v(xu) for all
x € Y(u) , and v(xo) ¢ v(x‘(;) for some Xy € Y(u) . Then
(a) vix) > v(xu) for all x € Y(u), (3.12)
(b) -aii (x} <0 for all xe T . (3.13)
X, —_— n

Proof. fa) We define the reflection in 'I'u of any function F by
Pu(x) = F(x") , and set w = v, - V- By hypothesis, w(x) S0 for x € Y(u),
and we prove strict inequality by means of (3.1) and the maximum principle.

et Y =Y(u) and 2 =2z . Given ¢ ¢ C;(Y) , we note that ou has

support in Z, and choose u = ¢u in (3.1) to obtain

JVQ (z) *Vv(z) dz = AJ ¢ (z) 4z .
z ¥ Z0P (V)

Set z = x° 1in this equation; then x € Y, 8/3:1 = -a/ax1 and B/sz = 3/3;:j

for 3 =2,...,5. BAlso, ¢ (2) = $(z") = ¢(x) and v(z) = v(x") = v, .

Consequently,

J W(x)-Vvu (x) dx ¢(x) dx . (3.14)
Y

_AJ
YnP(vu)

Now choose u = ¢ in (3.1), and subtract the resulting equation from (3.14) to

obtain

J Vé-Vw = AJ ¢ - X J ¢ . (3.15)
Y Ynp (vu) YnpP (v)

Since vi(x) > 8w for x € P(v) , while v(xu) > 4w for x € P(vu) , our

hypothesis implies that Y n P(v) contains Y n P(vu) ; hence
J V:Yw < O for all ¢ e c;(y) with ¢ 20 .
Y

As it happens, we can now apply Theorem 3.4(a) to all of Y, because (3.10)

shows that v ¢ Lz(ms) ; then wecC{ n w;m , by Lemma 3.1, and so 4w 2 0

-23=~
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Progspectus. It is easy to see that the function Yo ! defined by (3.9),

satisfies (3.1); our aim is to prove that vo(x) = vH(Ix‘llxs) . Having

emphasized this, we shall omit the subscript 0 from v restoring it only

0 '

in the statement of our final result.

Lemmas 3.5, 3.6 and 3.8 below are merely statements for our case of
Lemmas 4.1, 4.2 and 4.4 in [14]. We include these statements for the sake
of clarity, but, apart from offering in Appendix C an alternative proof of
Lemma 4.1 in [14], we refer to [14] for proofs of these results. The first
part of the proof of Theorem 3.9 is also to be found in [14], but we include
it as an essential part of the present story.

Reflecting hyperplanes. Let Y be a fixed unit vector in RS . For

each u € R, define Tu(Y) = {x ¢ ]RS |x*y = u} . We may suppose that, after

a suitable rotation of axes, Yy = (1,0,...,0) ; then

T, = {xlx1 = u}; (3.11a)

also,

Y]

x = (2u - x x) , where x”° = (x2,...,x5) . (3.11b)

1 ’
denotes the reflection in Tu of any point x . We define open half-spaces by

Y(u) = (xlx1 <y} and z( = {x[x1 > ul .

LEMMA 3.5. Let v be as in (3.10), and consider two points y and =

s

such that Yl < z1 R y1 + z1 220 >0 and y“ = z . There exists a number

R(u) , depending only on v and min{l,u}, such that

viy) > v(z) whenever |y| 2 R(p) .

LEMMA 3.6. There exists a number Yo 2 1 such that

vix) > v(xu) whenever x e Y(u) and u o2 Vo -

-22-
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where the symmetric n X n matrix a(x) is uniformly positive definite:

E'a(x)'EZcoltlz, c, = const. > 0, for all £ ¢ R® and x € Q;

0

the entries a

13
in L_(@) , and q € L_(Q) .

of a are in w},(m , the components Pyree-rPy of p are
Given a connected open (possibly unbounded) set

- 1
GcQ, vwe say that Lu 2 0 weakly in G if u ¢ C(G nwz(G) and

A($,u;G) = I {- V¢ca(x)*Vu + ¢p(x)*Vu + ¢q(x)u} dx 2 0
G

for all oec;(c) with ¢ 20 .

THEOREM 3.4. (a) Let G < 1 be connected and open. If Luz20

weakly

in G and us0 in G, then either u=0 or u<0 in G.

(b) Let B cQ be aball, let X, € 9B and let m. be a unit vector

0

outward from B at x5 - (That is, mo'(xo-c) >0, where c is the centre

of B.) If Lu20 weakly in B, u<0 in B, and ulx)) =0, then

u(xo) - u(xo - tmo) -
0+ t !

lim inf

which implies that moo(Vu) (xo) > 0 when this derivative exists.

Proof., (a) follows from Theorem 8.19 of [15] ; (b) follows from the

proof of Lemma 3.4 and (3.11) in [15] when the classical maximum principle used
there is replaced by (a). The restriction q <0 in Q , imposed in [15], is
not necessary for the particular conclusions in (a) and (b), because we can use
a perturbation of our operator L that satisfies this restriction: if

Ad,u;G) 20 and u <0 in G, then

I {-Vé-a(x)*Yu +¢p(x) *Tu + Oq_(x)u}dx = A($,u;G) - J ¢q+(x)udx 20
G G

for all ¢ ¢ c;(c) with ¢ 20 . Q.e.4.

-21-
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Remark. Following the procedure in [14], we now eliminate the dipole

terms in (3.8) by defining (for all x € le)

vo(x) = vi(x + b), where bj = aj/3ao (3 =1,...,5 . (3.9)

Then

Vo (%) =a0|xl-3+g(x) . a. >0,
{(3.10)

17, ) for Ix| 2 2» + Ib| .

lgx) | s const.|x|-5 . |9g(x)| < comst.|x

3.2. The maximum principle and reflecting hyperplanes

We note that v 1is a Newtonian potential with an unusual property:

v(x) 1is constant on the boundary 9P(v) of the set in which the density differs
from zero. This is the underlying reason that P(v) will turn out to be a ball,
with v spherically symmetric about its centre (cf. [24]).

The method in [24] and [14] depends on moving hyperplanes in from infinity,
reflecting the graph of a function about these hyperplanes, and then using the
maximum principle. For positive solutions v of certain elliptic problems set
in .BJ‘, the arguments in [14] are of two types: (a) those which depend only on
approximations to vi{x) for large |x|, and (b) those which apply the maximum
principle to classical solutions. Our result (3.8) is sufficient for (a), but
we shall have to use (3.1) and a generalized maximum principle in place of (b).

The following maximum principle is far more general than is needed in this
section, somewhat more general than is needed in Appendix A, and considerably
less general than results in [15]. We state this particular theorem because it
is close to the Maximum Principle and Lemma H on p.212 of [14]); thus it shows
the feasibility of extending results in [14] to weak solutions of problems other
than ours.

Let Q be an open set in r". Define, for x € Q and (say) u € CZ(Q).

Lu = Ve{a(x)+Vu} + p(x)+Vu + q(x)u,

=20~
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-j Axn(y-x) viy) ¢y = XI xn(x-y) dy . (3.7
n5 P(v)

Now - 8K~ is a mollifying kernel: AK (2) =0 for lz| 2 1/, and

AKX (z)dz = 1, [Al(n(z)ldz < const.,

IB(o.:/n) IB(o.l/n)

where the constant is independent of n. Since v € C(RS) , the left-hand

member of (3.7) tends (pointwise) to v(x) as n =+« ., In addition,

l Ik(z) - K_(z)|az < + 2”2,
5 n 6

80 that the right-hand member of (3.7) tends to the right-hand member
of (3.6) a= n+ ., Q.e.d.

LEMMA 3.3, Let Rv be as in Lemma 3.1(d). There exist constants

a, > 0 and ‘j (3 =1,...,5 such that

vix) = a0|x|- + 2 ay S+him,
3=1
(3.8)
Jhix) | < const.lxl-s , Imwm| s c:omn:.lxl-6 y for |x| 2 R .
In fact,
A 3
a, = — |[pw|_, a -—-—I y, &y (3 =31,...,5 .,
0 81«2 3 ] awz P(v) J

but these details will not be needed.

Proof. In (3.6), with |y| < Hlxl for all y € P(v) , we may differentiate
repeatedly under the integral sign (once is sufficient here) and expand |y - xl.3
and its derivatives, essentially in powers of |y|/|x|, to finitely many terms

with a remainder. Q.e.d.

=]19=
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(io) , and this shows that v(x) =0 as [x| += .
(c) Since v is continuous in ]Rs , the set P(v) 1is open. Since
2

S
ve "p,loc(n ) , we infer from (3.1) that

J $(Av + ) =0 for all ¢ ¢ C;(P(v)) ;
P (v)

hence -~ Av = A almost everywhere in P(v) . But the qualification 'almost
everywhere' can be removed by means of further reqularity theory, or by means
of (3.6) below; in fact, v is real-analytic in P(v) . The argument is
similar for the set in which v(x) < 4W .

(@) This follows from (b) and the definition of P(v) . Q.e.d.

1EMMA 3.2. The function v is the Newtonian potential of P(v) with

density A :

vix) = —xz-J |y - xl-3 dy for all x ¢ Rs . (3.6)
P{v)

8w

It follows that v >0 in ]Rs .

Proof. We choose the test function u in (3.1) to be a smooth
approximation to the Newtonian kernel in :IR5 . Let ¥ be a non-decreasing
function in C (R + R) such that pui(t) =0 for t <% and u(t) =1 for

t 21, and define, for all =z € RS and any positive integer n,

Kz = 4 [z]7°, K (2) = uinlzhk(z) .

We choose and fix any x € RS , and replace the variable of integration in
(3.1) by y . Then Kn(--x) € E; we set uly) = Kn(y-x) in (3.1), and
integrate the left-hand member by parts (first over a large ball B(O,R) ;
the boundary integral is at most mx|y|=R Jviy)| and tends to zero as

R+ », by Lemma 3.1(b)). Thus

-18~
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For any X, € R  ana for J =0,.0.,3, let Bj = B(xo,Rj) with
RO-H,RI-I,Rzni and R3-2. (These choices of Rj,andthe
inequalities (3.3) to (3.5), are dimensionally consistent in the physicist's
sense only if we use non-dimensional variables, for example, if R 3 is

bk
A
3 m

theorem, with p = 10/3, yields

replaced by R and v by vM.) A first application of Agmon's

“""2,10/3.51 < "3{"3"‘0’*""”0,10/3,32} ' (3.32)
where
3/10
My(x) = Alp(w) n33|5 , {3.3b)

and where k is an absolute constant. Since wfo /3(81) is embedded in the

3
space C(il) , a fortiori in LP(BI) for all p 2 1, a second application of

Agmon's theorem gives

I v||2'9"o S k, (PIM, (xy,p) + k, (p) {My(x;) + v ”0,10/3,32} for all p e (1,#) ,

(3.4a)
where
M (x,p) = Alpw ns,|P (3.4b)
2 %0’ 2ls ¢ :
Finally, embedding theory gives
Hﬂhﬂ- s%@mnﬂb®5 for p(1 -a) >5 ; (3.5)
c By ()

the constants kn depend only on p (n=1,2) oron p and a (n = 0)
To obtain bounds independent of x., we merely replace IP(v) n les by

5
|Bj|5 and the norm of v in L,y (B)) by that in L (RV) .

10/3
(b) Lemma 2.1 shows that the norm of v in L10/3 (lR5 \B(O,m)) , and

|P(v)\B(0,m) | both tend to zero as m -+« , Hence the right-hand member of

5 ,
(3.4a) tends to zero as |x°| +® ; g0, therefore, does the norm of v in

-} 7=




|P(w) |5 >0 . It is to be understood throughout section 3 that v, XA and

W have these properties.

Notation. We define balls to be open and of positive, finite radius;

B(c,R) will denote the ball with centre ¢ and radius R in the space
implied by the context. The non-negative and non-positive parts of a real-

valued function are defined, respectively, by
g, (x) = max{g(x) ,0}, g_(x) = min{g(x),0}; (3.2)

note that, in contrast to the convention in integration theory, the non-positive
part is non-positive. Since sections 3 and 4 concern only statements (I) and
(11) , we can safely ignore two previous conventions: the As in (1.9) now
becomes A, and (as is usual) ¢ will be used for smooth test functions rather
than for elements of H(N) .

2 5 140 5

LEMMA 3.1. (a) v e wp,loc (R”) ncC (R°) for all p € (1,») and

a € (0,1) .

(b) vix) >0 (pointwise) as [x| + = .,

A 1_!1 P(V) [}
(¢} - bvix) = 5
0 in {x e R’ jvin) < W) .

(d) There exists a number R, such that P(v) < B(O,Rv) in :IRS.

Proof. (a) We use Agmon's Lp approach to the Dirichlet problem,
applying Theorem 6.1 of [1] to the operator A . The hypotheses of that

theorem are amply satisfied, because v € L (ns) and because (3.1) implies

10/3
that, for any ball B in ]R5 and any p € (1,») ,

I vAoI - AU ¢| s Mllell, . for all ¢ ¢ C.(B) ,
JB P(v)nB oaP IB 0

where

\
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the first integral vanishes because v ¢ Ec , and the second vanishes by (2.4)

and Lemma 2.3. Q.e.d.

2.3. Transformation of the variational principle

Given W > 0, we define

N (w "1—2J (u - ‘:W)+dx--—1§J (u-hW) dx for all uek, (2.8
2n 2r° ‘p(u)
R
s m = {uer| Muli® =n>o). (2.9)

Under the isomorphism in Lemma 2.2, the variational problem stated before
Theorem 1.2 becomes: given W and n, find v e Sc(n) such that

N(v) = max N(u) . Thus we have

uesc(n)

THEOREM 2.5. Theorem 1.2 is equivalent to the following statement.

(11) Let v be a local maximizer of N on S (n) . Then v is a

' transformed weak solution of Hill's problem; that is, there exists )\ ¢ R

such that (2.7) holds.

3. Transformed weak solutions correspond to Hill's vortex

3.1. Preliminary estimates

Here and in section 3.2, we prove the truth of statement (I) in Theorem
2.4. In fact, we prove a little more: that, if the hypothesis v ¢ Ec in
(I) is weakened to v € E, then the conclusion still holds, provided that
vu(lx‘l,xs-c) , for some ¢ € R, is replaced by vu(|x‘-b‘|,x5-b5) . for
some b ¢ Rs . Thus our hypothesis is: there exist v € E\{0}, XA e R

and W > 0 such that

J Vue¥v dx = A J u dx for all u € E, (3.1)
ms P(v)

where P(v) 1is as in (2.2). Setting u=v, we see that ) > 0 and

* =15~
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1 3
UgW e = 3 In r dradz J ) (“o,r"l,r + “o,z"x,z’ dnE

2% s

= J {uo rlil(w1 r) +u, zM(\\vx z)} z3drdz = 0.
“ . ’ ’ ’

since |llmull] = |||uo||| < |||u||| for all u € C;(l!s) , we extend M by
continuity to have domain E ; then the result <Mu, v-m>z = 0 extends to
all uweE, sothat M and I - M (where 1 denotes the identity operator
on E) are respectively the projection operators of E onto zc and onto

E: . Equation (2.5) now follows from the bound

ool -

implied by (2.3), and from the fact that Mw = 0 whenever w ¢ B: . Q.e.d.

I;’/lo for all u € E,

[ woax] s e llimalll 1o
r

We are now in a position to state our first objective in terms of functions

in E .

THEOREM 2.4. Theorem 1.1 is equivalent to the following statement.

(I) If there exist Vv ¢ Ec\{O} s e R and W >0 such that

J Vue9v d&x = A J u dx for all uekE, (2.7
RS P(v)
where P(v) is as in (2.2), then v(x) = vﬂ(lx‘l ,xs-c) for some Cc € R.
2
Here va(r,z) = wﬂ(r,z) /r” and WH is as in (1.6).

Proof. For any u € E, we use the decomposition u = u0 + \.'l1 , Wwhere

u, € Bc and u, € E: . Let (Io) denote the variant of statement (I) that

results from replacing u € E by \.l0 € Ec in (2.7). Lemma 2.2 shows that

Theorem 1.1 and (Io) are equivalent. Moreover, (Io) and (I) are equivalent

because

4
€ E_ ;
c ’

[ Vu, Vv = 0 and A u, =0 for all u
1 1 1
P(v)

/
RS

-14-
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For any u ¢ c"c(n ) and any positive integer n, define L C;(ms) by
u (r,z) = u(arju(r,z) . A calculation shows that lllu ~ un"l < const. n !,
where the constant depends on u but not on n ; thus c;(ns) is dense in
C;'C(RS) under the norm |[[{«||l , and hence in Ec .

Now let ¢ = rzu and x-tzw. vwhere ¢ and x are in C;(ﬂ) or,

equivalently, u and w are in c;(lts) . From (1.7) and (2.1) we £ind that

3 2
<0,x>a(m = In {rA(uzw: + uzwz) + 2{(r"uw) r}drdz = <u,wo

since the integral of 2(:2\81)! vanishes. Q.e.d.

LEMMA 2.3. Let F be a figqure of revolution having finite measure:

IPI 5 <o Let E: denote the orthogonal complement in E of Ec . Then

I wdx = 0 for all weEl. (2.5)
r —_—— c

Proof. Any u € C;(:l!s) has values u(r,£,z) , where £ € 53 ; we

define a mean-value operator M by

M) (r,2) = —= J u(r,E,2) &
3

2 £’
2% s

where dnc denotes the element of surface area at £, and decompose u as

follows:

u-u°+u1, where uo-nu, ux-u-Hu. (2.6)
Then u, € Bc ' lm1 =0 and ul(t,E,z) = O(r) as r >+ 0 . We now show that
<uo.w1>! =0 for all u,w ¢ C:(JRS) + hence (2.6) corresponds, for such

functions, to the unique orthogonal decomposition E = Ec ° z: . Differentiating

the equation Mw, = 0, we obtain u(wl'r) - (»::1)r =0 and H(wl'z) =0,

1
Consequently,

-13-
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lolyga = {1, e}

denotes the norm of Lp(ﬂ) .

Note that " . ”0

B -y

2.2. Transformation of weak solutions

We begin with three simple lemmas that establish basic properties of

functions in E .

LEMMA 2.1. (a) The space E is8 embedded in L1°/3(1R5) , and
2yh 4
Null 5 s c1|”um , where ¢ = (E) 37 for all ueeE, (2.3)
0,10/3,R
(b) with P(u) as in (2.2),
10/3

-1 10/3
lewly s oy w2 flalll*®/

2 , where ¢, = (2c1)

, for all ue E. (2.4)

Proof. The first inequality is a standard result of Sobolev embedding
([21], p.128), combined with the inequality between the geometric mean and the

root mean square. The second inequality then follows from

J wl%3 ax 2 (nw 1073 lpw ], . Q.e.q.
P (u)

LEMMA 2.2. The spaces H(N) and Ec are isometrically isomorphic under

the transformation ¢ = r2u of any ¢ ¢ B() or ue E..

Proof. Let C:(ns) denote the set of functions in C. (]Rs) that have

0,c
support disjoint from the z-axis (here r = |x‘l and z = xs) . First we show
that C:(]RB) is dense in Bc . Let u be a non-decreasing function in

Ca(l!-’m) such that up(t) =0 for t s % while u(t) =1 for ¢t 21

-12-
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will be called a figure of revolution, or cylindrically symmetric set, with

cross-section X. The subscript ¢, attached to the symbol for a set of

functions, denotes the subset of cylindrically symmetric functions; that is,

of functions u such that u(x) = B(lx'l.xs) for all x in the cylindrically
symmetric domain of u . We shall sometimes write u for u . The closed
linear subspace of E, formed by completing c;'c(ns) in the nom |||l .
will be denoted by Ec .

By the transformation ¢ = rzu we mean that, given ¢ € H() , we define
u: R\x = 0} *®R by ulx) = o(lx‘l,x_,’)/lx‘l2 . or that, given u € E_
with u(x) = ﬁ(lx‘l,xs) , we define ¢ : 1 - R by ¢(r,z) = tzﬁ(r,z) .

Since :II!3 does not occur in this statement, we now write r = |x°|, 2z = Xg

with no danger of confusion. Note that
3
uw = Jn (urwr + uzwz)r drdz if u,w e Ec ’ (2.1)

because the three-dimensional unit sphere 53 = {y ¢ R‘l lyl = 1} has area 21:2 .

Given a constant W > 0, we define ﬂ

Pw) = [xe¢ Rsl u(x) > W) for any ue€E . (2.2)

0f course, the elements of E are really equivalence classes (of functions equal
almost everywhere), and the precise form of P(u) depends on the representative
u selected from an equivalence class [ul ¢ E, but different representatives
only change P(u) by sets of (five-dimensional Lebesgue) measure zero. If
u € Ec and ¢ = tzu , then P(u) is the figure of revolution with cross-section
Alg) lef. (1.8)]).

For sets, [' In denotes n-dimensional Lebesgue measure.

For any open set  c r" ’ W:(ﬂ) denotes the Sobolev space of functions
having generalized derivatives up to order m in Lp (Q , p21; its norm

will be written

-11-
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capable of representing the unknown boundary 9A . We shall prove in [4] that
Norbury's solutions are also unique for sufficiently small (positive) values of
k. This is not trivial because, in Norbury's Banach space, the closed ball
forming the domain of his contraction mapping necessarily has a radius that
tends to zexro as k + 0. Thus, for small k > 0, there could exist solutions
.close to Hill's solution that are outside the range of the local uniqueness
result in [22]. It is reassuring that, in fact, a single branch of solutions

emerges from Hill's solution as the parameter k increases from zero.

Norbury's numerical calculations [23] suggest that this branch is defined for
; all k > 0, and represents rings of small cross-section as k + « .,
': (iv) A small third contribution, in our endeavour to unify the diverse
ﬁ theories of steady vortex rings, will be presented in [5). There we consider
¢ (1.1) with k = 0 and the power-law vorticity function fo(t) = 1:B '
E: B = const. € (0,5) , and prove that for these cases the solutions in [12]
:, coincide with those found by a wholly different variational principle in [13].

This is not a uniqueness result, but merely a proof of the equivalence of two

different methods.

2. The transformed problem

2.1. Further notation and terminology

We define the Hilbert space E to be the completion of the set C;(Rs)

in the norm ||| . | corresponding to the inner product
1 1
<u,w> = —— Vu(x) Vw(x) dx = — YueVw ;
E m? ) s 22 ) s
IR R

abbreviations as in the last expression will be used where no confusion can arise.

Any set of the form

F = {xe¢ IRSI(Ix‘I,xS) e Xxcll, where x" = (X veees Xg)

=10~
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weakly in Y . Since w #0 in Y, by hypothesis, we conclude that w < 0
in Y . (The appeal to (3.10) is not necessary. The set X = {x ¢ Yiwx) = 0}
is closed in Y because w is continuous, and open in Y by application of
Theorem 3.4(a) to a small ball about any zexro of w in Y . Therefore X = @
or X =Y, and the latter is contrary to hypothesis.)

®) For any x, € T, and any R > 0, define B = 3((x°’1 - R, %), R,
so that BcY and 3B n T, = {xo} . Then w<O0 in B, and w(x) =0;

by Theorem 3.4(b) , (aw/axl)(xo) >0, since Lemma 3.1(a) ensures that this

derivative exists. Finally, (3w/3x1/(x0) = - 2(3v/3x1)(xo) . Q.e.d.

LEMMA 3.8. The set {u > O|v(x) > v(x") for all x € Y(u)} is open in

THEOREM 3.9. let v,A and W be as in (3.1) , and Yo

- 2
Then vo(x) = VH(lx |,x5), vwhere vh(r,z) WH(t,z)/r and wu is as in (1.6).

as in (3.9).

Proof. Only v0 is discussed in this proof; we continue to abbreviate
Yo to v . Let (m,») , with m 2 0, be the maximal open interval such that
(3.12) and (3.13) hold whenever u € (m,~) . That such an interval exists
follows from Lemma 3.6 and the fact that (3.12) implies (3.13). If m>0,
then by continuity v(x) 2 v(xm) for all x € Y(m) , and by Lemma 3.5 there
exist points X, € Y(m) such that v(xo) > v(xg) . Hence Lemma 3.7 is
applicable and shows that (3.12) and (3.13) hold for u 2 m; by Lemma 3.8,
(m,») is not maximal. We conclude that m = 0, whence v(-xl,x“) 2 v(xl,x“)
whenever x 20 . Repeating the argument for the unit vector y = (-1,0,...,0),
we see that v is an even function of %y - Also, (3v/3x1)(x) < 0 whenever
x1 > 0, because (3.13) holds for all u > 0 . The same argument holds for

every unit vector ¥y 1in ‘ms; therefore, v depends only on |x| and is

strictly decreasing as |x[ increases.

-24-
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It follows that P(v) = B(0,a) for some a >0 . Let |[x| =p and
vix) = V(p) ; from Lemma 3.1 we infer that V ¢ CI[O,-) , that ¥V is real-

analytic in [0,a) and (a,») , and that

.l.i‘_(p“i);. -2 for O<pc<a,
" 9469 S 0 for p>a,
3
f V@ = i, vip) + 0 as p =,

This problem can be solved explicitly and easily; the solution corresponds
to (1.6b) and (1.6¢c). (In fact, we can reach this conclusion with less a priori

knowledge of V; once spherical symmetry is established, the maximum principle

ensures that P(v)] must be a ball about the origin, otherwise ¥ would have a

local minimum.) Q.e.qd.

4. Local maximizers of N on S_(n)
In this section, recalling that

1 1
N{u) = —EJS (u-':W)+dx = =

J (u-4W4) dx for all ue E,
2n 21° ‘p(u)

we prove statement (II) in Theorem 2.5 : that a local maximizer of N on the

. sphere Sc(n) in E, is a weak solution in the sense of (2.7). If we widen

. the question by considering N on the corresponding sphere, say I(n), in E,
i then the same analysis shows that a local maximizer of N on I(n) is a weak

- solution in the sense of (3.1). However, it is not obvious that a local

' maximizer on sc(n) (arising from Hill's problem set in 1) is a local maximizer

on the bigger sphere I(n) , and it does not seem worth while to pursue this point.

The functional N is not Gateaux differentiable, let alone Fréchet
differentiable, at all points of the space E (see the remark following Lemma

4.2 below). Hence it is not obvious that any local maximizer of N on Sc(n)
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is a weak solution, and (as was mentioned in (iii) of section 1.4) we use convex

analysis to prove this result, However, convex analysis is not needed for the

global maximizers described in (i) of section 1.5; in particular, the method
of spherical re-arrangement (which conserves N(v) and does not increase |||v|||)
leads directly to a weak solution of Hill's problem.
Before coming to the statement (II), we derive relevant properties of the
functional N, and these are established without restricting N ¢to Ec .
LEMMA 4.1. The functional N is convex, bounded by
0 s N(uw s const. w /3 |||u|||m/3 for all uc¢E, (4.1)
and locally Lipschitz continuous:
IN -Nw) | < const. w /3 R7/3 |lu-w[| for all uw e BO,R in E. (4.2)
Here the constants are independent of u, w, W and R .
Proof. The convexity of N follows from that of the function (-)+;
for t ¢ [0,1],
N({(1-t)u + tw) = %I {(1-¢) (u-4w) +t(w-‘:w)}+
2m m5
1
s = (-t (u-w  + tw-3w )
2% S
R
= (1-t)N(u) + tN(w) .
The bound (4.1) results from HSlder's inequality and (2.3), (2.4). Lipschitz
continuity of bounded convex functionals is a standard result ([10], pp. 12-13;
(163, pp. 110, 113), but it seems worth while to give the short proof of (4.2).
Let h = |||w—u|” >0 and g=w + Rw-u)/h . Then
-26-
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R+nh 3 7 R+n

Nig) + —0— N(w

h
u => KW < oh R+h

by convexity, and q € B(0,2R) . Accordingly,

h
R+h

N(w) = N(u) < N(q) - R:h N(u) < %N(q) s const. h'-7/3 37/3,

by (4.1). We cbtain a similar inequality by interchanging w and u, and

(4.2) follows. Q.e.d.

At any point v € E, the right-hand Gateaux derivative of N in the

direction u is defined by

N;(v)u = lm N(v+tu) = N(v)

0+ t ' ueeE;

the left-hand derivative N'(v)u is defined similarly with ¢t + 0- . It is
to be expected from Lemma 4.1, and is true ([16], p.117), that these limits
exist for all v and u in E, that N (viu = - N_: (v) (-u) and that N;(v)

is a sublinear functional on E . We now calculate these one-sided derivatives.

LEMMA 4.2, At any v € E we have, respectively,

21:2 N;(v)n = J ul{x)dx + I ui(x)dx for all ue¢kE,
- P(v) X(v)

where P(v) 4is as in (2.2), u, and u_ are as in (3.2), and

E X(v) = {x|vix) = W} .
Proof. It is sufficient to prove the result for N; (v} . We abbreviate
F. P(v) to P and X(v) to X, let V(x) = v(x) - 4w, and define

O(t) = P(v + tw = {x|v(x) + tu(x) >0}, t>0.

Then
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2'2 N(v«l»tu)t - N(v) %U (Vv + tu) -j V}
Q(t) P

(v +tu) -lJ v. (4.3)
P\Q(t)

L L

o ®t]
Q(t)np Q(t)\p

We consider these integrals one at a time, always taking fixed, but arbitrary,

representatives v, u of the equivalence classes [v],[ul ¢ E .

r (1) First,

l j u = I u - j u, (4.4)
. Q(t)npP P D(t)

where
D(t) = P\Q(t) = {x | vix) >0, V(x) + tulx) <0} ,

80 that u <0 on D(t) . Congequently, D(s) c D(t) for O < g < t , because

Y Y vamew v

V(x) S slu(x)| implies that V(x) s tlux)| . Por any x € P, define

to(x) = vix)/[u)| >0; then x ¢ D(t) for t < ty(x) . Hence |D(t)|5 +0

as t » 0+, and

s Jlulf 5 |D(t)|Z/lo*0 as t + 0+ . (4.5)
0,10/3,R

oo ™
D(t)
(11) Since
QI\P = {x | vi(x) + tux) >0, Vi s o},
we have u >0 on Q(t)\P, and Q(t)\P = {x]utx) >0, v(x) =0} v R(t) , where

R(t) = {x | Vv +tux) >0, vix) <0} .

Then |[R(t) |5 * 0 as t >0+, by the reasoning used for D(t) in (i), and

hoaORCRCER IR R S L as s e ad ety By o . > B

1

t

ot |-

(V+tu) = J u, o+ J (V+tu) , (4.6)
X R(t)

JQ(':.) \P
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where

1

0s (V+tu)$J u+0 as t-~*+0+. 4.7
R(t)

JR(t)

(114) The third integral in (4.3) is over D(t) , already considered in

(1), and

0s+

: lul +0 as t+o0+. (4.8)

vV <

Jl-'\Q(t:) JD(t)

Combining (4.4) to (4.8), we cbtain the result of the lemma. Q.e.d.

Leoma 4.2 shows that N {s Gateaux differentiable at v in all directions

(that is, NZ(v) = NZ(V)) Lf and only if the set {x|v(x) = %W} has measure

Zerxo.

The subdifferential of N at any point v € E is the set

N(v) = {g* € E* | g*(u-v) S N(u -N{v) for all u ¢ E}

in the dual space E* of E . The following is another standard result

({16], p.122).

LEMMA 4.3. At any point v € E, a bounded linear functional g* ¢ 3N(v)

if and only if
N (viu S g*{u) s N;(v)u for all uweE .

We now consider the restriction NIE = Nc , say. (The subscript c is
c
redundant in some statements, but helpful in others.) It is clear that Nc
enjoys the same properties relative to Bc as N does relative to E . The

following lemma provides a generalization of the usual Euler-Lagrange equation,

in weak form, characterizing a local maximum,

DML SNt i il e r) sl 5'0 2 aon L |




LEMMA 4.4. Let v be a local maximizer of Nc on the sphei'e Sc(n)

{that is, ve sc(n) and Nc(u) < Nc(v) for all u ¢ Sc(n) in some

neighbourhood of v) .

If g* e BNC(V) , then g* = a<v, >y for some a > 0 .

Proof. There exists a unique element g ¢ Ec such that g% = <g,*>p and
¢ has a unique decomposition g =av +w, where a € R, w € (span {vh' ana
(')"' denotes the orthogonal complement in Ec . We prove that w =20 .

Assupe the contrary, and define

& = wllivlll, u, = (cosB)v + (sind) n¥, (4.9)

so that I”u8 "|2 =n and |”uB -v”|2 = 2n(l1-cosB) . Since v is a local
maximizer, we may suppose that B ¥ O and that Nc(uﬁ) < Nc(v) whenever |B|

is gsufficiently small. By the definition of aNc(v) ’

02 Nc(uB) - Nc(v) 2 <¢;,u8-v>E

b

= <av+w, (cosB-1)v + (sinB)n E

= alcosB-1)n + (sinB)n® vl »

and this is a contradiction for B > 0 and sufficiently small.
To prove that a 2 0, we let w be any element of (span {vh1\{0}, not

related to g, and again define u, by (4.9). Then

8
02 Nc(uB) - Nc(v) 2 <av, uB-v>E = a(cosB-1)n,
which shows that o 2 0 .
Finally, suppose that a =0 . Then O ¢ BNc(v) , so that Nc(v) < Nc(u)
for all u € Bc; choosing u = 0, we obtain Nc(v) =0 . Hence Nc(u) =0

for all u e Sc(n) sufficiently near v, and, since Nc(O) =0 and Nc is
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non-negative and convex, we have Ne (uy = 0 4in the cone
K, = {uee_ |0« Mall®s n, % -vlll <8} &= wlluliDd,

for some § >0 . This can be shown false; we set u=3 (v + w) , choose
a point (to,z ) € T outside the set {(r,2)|v(r,z) < -1} for some
representative v of (vl ¢ E , and choose w as follows: liwlll 18 so
swall that u ¢ K., but w(r,z) +» as (r,z) + (ro,zo) . (For example,

2

w could be 1/r° times the function in (3.4) of [12]).) <Then u ¢ K; but

Nc(u) >0 . Q.e.d.

THEOREM 4.5. Let v be a local maximizer of N, on S§.(n) . Then v

is a transformed weak solution of Hill's problem; in_ fact,

J VusV¥v dx = 1 J u ax for all u ek, (4.10)
a lor al.l
1!5 P(v)

where a 4is as in Lemma 4.4.

Proof. Combining the results of Lemmas 4.2, 4.3 and 4.4, we obtain

I u 4+ J u_ s uJ Vu«Vv < J u + J u, (4.11)
P(v) X(v) RS P(v) X(v)

for all ueR . Define P (V) =P(v) U X(v) = {x]v(x) 2 4}, and note that
our bound (2.4) for IP(v) |5 applies equally well to PO (v) . Also, u, € E
when u € E, with |||u+||| s |ljulll , and similarly for u_ . Therefore, we may
first use Lemma 2.3 to extend (4.11) to all u e E (just as in the proof of
Theorem 2.4) , and then repeat the proof of Lemma 3.1; the bounds implied by
(4.11) are as adequate as were those implied by (3.1). 1In particular, the
previous arguments show that - adv(x) =1 4in P(v), that Avi(x) = 0 wherever
vix) < W, and that Po(v) is bounded; hence

31~
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= J ¢ -a J $Av for all ¢ ¢ C;(IRS) .
P(v) X(v)

But v(x) is constant almost everywhere on X(v) ; then two applications, first
to Vv and then to Av, of a known theorem ([19], p.53) show that Av(x) = 0

almost everywhere on X(v) . Thus

1 » 5
VéeVv = = ¢ for all ¢ ¢ C.(R”) ,
1 0
:IRS P(v)

and we extend this result by continuity to cbtain (4.10). Q.e.d.

Remark. One can also show that 1f w is a local minimizer of N on

Sc(n) . then N(w) =0, so that wi(x) < 4W almost everywhere.
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Appendix A. Extension to weak solutions of a theorem of

Gidas, Ni and Nirenberg

The theorem in question is Theorem 2.1 of [14]. As well as giving a
slight extension, we correct an oversight: that the caps 2Z(u) and reflected
capgs Y(u) , defined in (ii) below, need not be connected, so that the maximum
principle can be applied only to components of such caps. The geometrical and
analytical setting is as follows.

(1) Let Q@ be a bounded, connected, open set in r" , with smooth
boundary 9Q; of class Ci is sufficient for Lemmas A.1 and A.2. For
Theorem A.3, however, we assume that 29 is of class Czﬂ for some a ¢ (0,1)
which we may take to be the same H3lder exponent for 3R and for the data
mentioned after (A.2). (In fact, only 32 n {xlxl >m~€c}, where m is
defined below and € > 0, need be of class Czﬂ .) The outward unit normal
to 3 4is denoted by v = (vl,...,vn) .

M

be as in (3.11), except that x replaces Xg

(i1) Let 'ru and x
but now define a cap by 2(u = {x ¢ ﬂlxl > u} and the reflected cap by
Y = {x e R" |xu € Z(u)} . Note that our earlier definitions result from
replacing f by r" , but that now 2Z(u) need not be connected. Indeed,
Z2(uy) may have infinitely many components (maximal connected subsets) even when

M is of class C . We define critical positions of the reflecting hyperplane

T\lby

M = sup{xllx € 0} = sup{ulz(u) is not empty},
k = inflalu € (a,M) == ¥Y(u) c Q},
L = inf(Blu € (B,M) == vl(x) >0 for all x ¢ BZ(u)\Tu} ’

n = max{k,t} .

Figure 2 illustrates this notation. The following lemma states facts needed

for Theorem A.3, and shows that it is consistent with remarks in [14] to call
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Z(m) the maximal cap, and to call Z(k) , when k < £, the optimal cap.
The proof of the lemma is omitted. (In [24] and [14], such results are

regarded as self-evident; our proof is not difficult, but it is not short.)

LEMMA A.1. (a) There exists a number § > 0 sguch that, for any

e (M-6§M, wve have Y(u) <2 and v,(x) >0 for all xe az(u)\'ru;
hence k<M and R <M.
®) Y(k) <4q.

(c) vy (x) >0 for all x € az(l.)\'r,. .

(d) For any u > m, the boundaries aY(u)\'l‘“ and 23 are disjoint.

(e) If k > 2, then 23Y(k) \'1‘k meets 3N tangentially at some point

(and Y(k} ¢ @) .

(f) There exists a point Xy € Tl. n 3R such that vl(xo) =0,

Note that, if u ¢ (m,M) , then Y(u) ¢ Q and v, > 0 on BZ(u)\Tu . The
condition k > £ in (e) is necessary.

(i11) We consider a function u € Cl(ﬁ) , with u>0 in Q, such that

J {V¢evu-¢ bl(x)Dlu} dx = J ég(u) ax for all ¢ ¢ c;(m ’ (A.1)
Q Q

u=0 on T , (A.2)
m

240
where Dl = B/Bx‘ and I‘u = 3Z (u) \'l‘u . We also assume that u € C (rn-e)
for some € > 0; that the coefficient b1 € Co'“l () and that l;>1 20 on
Y(m) U 2(m) . The function g : [0,#) + R is assumed to have a decomposition
g=9, +9, such that 9, € c1[o,~) , while 9, is non-decreasing and its

restriction to [0,8) is in Cow[O,B) for some 8 > 0 .

LEMMA A.2. Let 9 be as in (1), and u as in (iii). Assume that, for

some u ¢ [m,M) and for some component Yo(w) of ¥(u), we have ulx) 2 u(x")
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u
for all x ¢ ‘lo ), u(xo) b u(xo) for some X,

for all x € Z,(u) , where 2 (u) is the reflection in T, of ¥y . Then

€ vo(u) , and Dlu(x) <0

(@) ulx) > ulx") for all x e Yo(u) ’

(b) Diu(x) <O for all x ¢ (aYo(u) n azo(u)}\an .

Proof. Defining w = u, - Yy where Fu (x) = F(x*) for any function F,

we calculate as in the proof of Lemma 3.7. Let Yo = Yo(u) and Zo = Z0 (w) .

Given ¢ € C; (Yo) , we first choose Qu as the test function in (A.1), transform

from z0 to YO , then choose ¢ itself as the test function, to cbtain (in

place of (3.15))

l") Dluu} (A.3)

L {V¢+Vw - ¢b1D1w} = I O{g(uu) - g(u) -~ (b1 + bl,

0 ¥

L
for all ¢ ¢ CO(YO) .
Now, gl(uu) - gl(u) = c(x) (uu - u) for some ¢ € C() because 9, € c’[o,-) ’
and 92(uu) < 92(U) because g, is non-decreasing and u, Su in Yo . By

hypothesis, b1 + bl,u 20 in YO , and Dluu 20 in Yo . Hence

J (Vo -Vw - ¢b10 w - ¢cw} S0 for all ¢ ¢ Co(Y.)) with ¢ 20 .
v 1 00
0

Since w #0 in Y by hypothesis, we conclude from Theorem 3.4 (a) that

0 r
w <0 in YO . Given Xy € {BYO n azo}\an , we define B = B((xo'l-R, x5

and choose R so small that B ¢ Yo . Then, since u € Cl(ﬁ)  Theorem 3.4(b)

shows that (Dlw) (xo) >0; finally, (Dlw) (xo) = - 2(Dlu) (xo) . Q.e.d.

‘), R

THEOREM A.3. (a) Let Q be as in (i), and@d u as in (iii). For any
p € (m,M) , we have u{x) > u(xu) for all x e Y(u) . Also, Dlu(x) <0 for

all x in the maximal cap 2(m)

(b) Suppose that (D u) (xy) =0 at some xy €T nQ. ©Let Z,(m be

the component of 2(m) containing (x +€,x

0.1 "“) for sufficiently small
’

0
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€ >0, and let Yo(m) be the reflection in Tm of zo(m) . Then u is an

even function of x1 - m , the set Q= Yo(m) u Zo(m) , and b1 =0 4in 9.

Proof. The hypotheses in (iii) ensure existence of a set

Ry = {x € Qldist(x,l‘m) < 26}, with &6 >0, such that g o u e Com(ﬁzé) .

Regularity theory ([2], pp. 667-8) now shows that u € o2 (56) . Then the

proof of Lemma 2.1 in [14] stands, and Lemma A.2 replaces Lemma 2.2 of [14].

The remaining part of the proof is essentially as on pp. 218-219 of [14],
For the proof of (a), it is enough that Lemma A.2 refers to any component of
Y(u) . PFor the proof of (b), the implication of (a) that u(x) 2 u(x™ for

all x € Yo (m) , the result D.u <0 in Z(m) , the hypothesis (Dlu) (xo) =0

1
and Lemma A.2 imply that u(x) = u(x™) for all x € YO (m) (otherwise, Lemma

A.2(b) would be contradicted at xo) . Then, by continuity, u(x) = u(xm) =0
for x € BYO (m) \Tm, and so 3Y°(m) \Tm c 32 . Since 2 1is connected,
Q = Yo(m) v Zo(m) . To prove that l:>1 =0 in @, we apply (A.3) with u = m
and YO = Yo (m) , noting that (A.3) follows from (A.1) without additional
hypothegses. Since we now have w = u -u 20 1in Yo(m) , (A.3) reduces to

J O(b1 + bl,m)Dlum =0 for all ¢ € Co(Yo(m)) '

Y, (m)

0

with Dlum >0 by (a), and b1 20, bl,m 20 . Hence l'::1 £ 0 and bl,m =0

in Yo(n) . Q.e.d.

Appendix B. Hill's vortex in a ball

The problem has been formulated in remark (ii) of section 1.5; the cross-

section of the fluid domain is now D = {(r,z) ¢ lez +2%2 <b%) . we denote
the analogue of Hill's solution by wh , and let p = (r2 + 22)1,

as before;

an elementary calculation yields
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2 a
N Wh(r,z) H 'l’h(:,z) + Wr® = (B.1a)
2 3
N
N ‘:lwfc[%-c). aspsb,
N P
A
where
3 2
1
‘ c =5 - Fam— (5. 1b)
N b c (1-c¢)
and
2 _ 1,2 2 . wh3_c 3.1
o, 11 - ID?(wh,r+wh,z} rdrdz Wl = (13 . (B.1c)

Here the norm is that of the Hilbert space H(D) , which results from replacing

T by D in (1.7) and in the sentence preceding it. Obviously, wh -+ wﬂ as
- b+o with a fixed.
Suppose that W and b are prescribed. Then (B.1b) shows that A(c) ,
- with 0 < ¢c < 1, has a single stationary point, a minimum at c = 2/5; we
define AO = x(2/5) . Hence, if ) is prescribed, we have no solution of

Hill's type for X < A one solution for A = 1., and two solutions for

0’ 0
. A > Ao . On the other hand, the energy 1r|| wh ||:Z , as a function of c on
) (0,1) , is strictly increasing and has range (0,») ; prescription of this norm
always gives exactly one solution of Hill's type.

Let b be given and fixed henceforth, and let = B(0,b) in ]Rs . The
Hilbert spaces E(R) and Ec(ﬂ) are defined as E and Ec were, but with Q
replacing ms; we make the same adjustment in the definition (2.2) of P(u) .

The transformation of weak solutions, from H(D) to Ec(ﬂ) , proceeds essentially

as in section 2; perhaps a little more easily, because E(R) is equivalent to

S AR

é’:;(m (functions in E() are in LP(Q) for 1 < p < 10/3) , and obviously
!P(u)]s < IQIS . Thus a weak solution ¢ € H(D) of Hill's problem for D is
equivalent, under the transformation ¢ = r2v , to a function v ¢ Ec (Q) satisfying
the hypothesis of the following theorem. We now weaken the condition v ¢ Ec Q)

to veE(@R) .
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THEOREM B.1. If there exist v e E@\{0}, X e R and W > 0 such that
J YueVv dx = A J udx for all u e E(Q) , (B.2)
Q P (v)

then v(x) = vh(|x‘| (%) and 12 Ao + Bere w (r,z) = dlh(xr,z)/z'2 and

wh h

but with distinct values of || wh || .

is as in (B.1); thus ¥ denotes a pair of functions for given A > Xo R

Proof. In order to apply Theorem A.3 to v, we must first prove that
ve Cl(ﬁ) and that v >0 in Q . Turning to Theorem B.1 of [1], and

proceeding as in the proof of Lemma 3.1 (but now with estimates of Il v "2 p n) .
, ’

we find that v e ¢ @) for every o€ (0,1) ., Then v=0 on aR;

Theorems 8.1 and 8.19 of [15] show that v >0 in 2 . Alternatively, we can

proceed as in the proof of Lemma 3.2 to obtain
vix) = ) J G(x,y) dy for all x ¢ Q,
P{v}

where G is the Green function of the Dirichlet problem for -4 in the ball &

(it is minus the function on p.19 of [15]). Classical estimates then show

that v ¢ CHG(S.Z) for every a e (0,1) , and the positivity of v in &

follows from that of G .

We now apply Theorem A.3 to the function v and the ball Q {n ]Rs '

setting b, =0, 9, = 0 and qz(t) = XfH(t - &) , wvhere fB is as in (1.5);

1
the hypotheses are amply satisfied and the maximal cap is the half-ball in which

%, >0 . Therxefore D1v(x) < 0 whenever %y >0 and x € Q . Now choosing

the unit vector y = (~1,0,...,0) , we see that Dlv(x) > 0 whenever x, < 0 and

x € Q. By continuity, Dlv =0 on TO n R, and the theorem now states that

v is an even function of x The same argument holds for every unit vector

L -
Y in 115; consequently, v depends only on [x|, and is strictly decreasing

as |x| increases. The proof now concludes like that of Theorem 3.9. Q.e.d.
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The results in section 4 are not affected in any significant way when Rs

is replaced by the ball f in Ill!5 + and E by E(Q) . Let us denote by
N(u,R) and Sc (n,) the results of these changes in the definitions (2.8)

and (2.9). Then we have

THEOREM B.2. Let v be a local maximizer of N(+,l) on the sphere

Sc (n,2 . Then v 1is a transformed weak solution of Hill's problem for D;

that is, there exists XA ¢ R such that (B.2) holds.

Appendix C. Alternative proof of a lemma of Gidas, Ni

and Nirenberg

We are concerned here with Lemma 4.1 in [14], of which our Lemma 3.5 is a
particular case; the following proof is somewhat different from that in [14].

We let x°° = (x2,...,xn) + as elsewhere, but r now denotes spherical radius.

LEMMA C.1. Assume that, outside some ball in l\n ’

vix) = aor'm+g(x), a >0, m>0, r=|x],

0

where g(x) + 0 and |Vglx)| = o3, as r+ = . Consider two points y

and 2z such that Yy <2, ¥y +2, 220>0 and y’" = z°° . There exists

a number R(p) , depending only on v and min{1,u}, such that

v(ly) > v(z) whenever |y| 2 R(u) .

Proof. There exist positive constants r. and K such that, for r 2 r.,

) )
lvgx) | s aoxr“”'3 , .1
@® a kK
lgtx) | = J 39 d'f| < —02- z"'m-2 . (C.2)
r oY o+
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We consider only points outside the ball B(O,ro) ., and introduce the notation

(Figure 3)
yi-a-h, 21=u+h, a2pw>0, h>0,
s = |yl = {a-m2+ IY“IZ]". t = |z| = {a+m? + Iy“lzll’.
so that
tz-cz = 4ah, t>s2x,. €.3)
The result will follow from two estimates of [g(y) - g(z)| and one of s -,

Let P2 denote the two-dimensional plane containing the points 0, y and
z (or any such plane if y°” = 0) , and let T be the circular arc in Pz from
y to z, centred at (a,0) . Then T has length 7h at most, and

r=|x|] 28 for x eT, so that (C.1) yields

lgty) - at2)| = ” Vq(x)-dxl s whaoxs'm'3 . (€.4)
r
Alternatively, by (C.2),
21’0K -m-2
lgty) - g(z)| s lgyp| + lg(z)l < s . (C.5)
m+2
For our third estimate, we first note that
-8 2 cmtm-l(t-s) ' where «c = min{m,1} ; (C.6)

if me (0,1), this is true because 1 - £ 2 m(l - §) for O s § < 1
(@ifferentiate both sides), and, if m > 1, because s® < t™ 's . Accordingly,

in view of (C.3),
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NN CECRS M S g a0y - Sy re Suw Siie o Aoy 2o-a |

r-1
RN 2. g% . c,t  (t-s) . S0 4oh
o0 ) S t*s |
\
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If 4oh < s>, we use (C.7) and (C.4) to obtain

L {viy) - vi2)} = s 2t ™4 1 {gly) - g(z)}
% %

c_ah
m wKh 7K

> e vy 2 0 if s 2 s °
s L] .

If 4ah 2 l2, we use (C.7) and (C.5) to obtain

1 n P d 1 2 &
= vy - v} > is—n T el w2 20 if 2 @+

We define

L |
- K 8K
R{w max {zO ! cmminﬁ.ﬂ ’ (cn(m+2)’ } '

and the lemma is proved. Q.e.d.

Remarks. (1) 1If the hypothesis lvgx)| = O(r:-m-3) as r + = 1ig
weakened to |Vg(x)| = O(r-m-2~6) , § >0, then an ob\;ious variant of the
foregoing proof still holds; 4if it is weakened to |Vq(x)| - o(:-m.z) , then
a proof is still possible, but explicit calculation of R(u) must be replaced
by an ‘'epsilon argument'.

(1) 1In [14], the lemma is stated for m > 0 (in Theorem 4, p.211), but

proved (on pp. 232-234) only for m 2 1; however, (C.6) shows that this is a

small matter.
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